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Abstract

Water Accounting Plus or WA+ was developed as an answer to the ever growing need of a reliable, basin-
scale, moisture accounting. The main attraction of WA+ is its ability to draw an explicit relationship between
water users and available water resources. By doing this, it is able to improve the understanding of human
and nature interactions in the field of water resource management. Similar to other moisture accounting
methods, the computation in WA+ starts with the tracking of various hydrological stocks that are present in
the area of interest. The accuracy and reliability of these inputs will significantly influence the performance
of WA+. The terrestrial storage change or ∆S is one of those required inputs. The term itself is a combination
of a surface component (∆SSW ), a groundwater component (∆SGW ), and an unsaturated zone component
(∆SU Z ).

Since it is very complicated to directly measure ∆SU Z , many moisture accountings implement a certain
estimation method to get an approximation of the real value. Among the more popular ∆S estimation meth-
ods are hydrological models (i.e. WaterPix, STREAM, and PCRGlobwb) and land surface model (i.e. GLDAS-
Noah). In addition to these, there are also empirical relationships that are used to derive the unsaturated zone
soil moisture from the surface condition. A more uncommon method is to use the Budyko Curve approach
on to solve an unsteady water balance. This thesis aims to find the optimal (∆SU Z ) estimation method for the
application within WA+. The Ca River Basin and the Downstream Red River Basin were chosen as the study
areas. A period of 4 years, from December 2006 to 2010 was chosen as the simulation period. Each method
was run on a monthly time step to facilitate the need of a monthly application of WA+.

The methods mentioned above were evaluated based on their ability to regenerate the observed stream-
flow at available measuring stations in both basins. An additional check was also done by comparing the
estimated ∆SU Z from each method to the streamflow-derived ∆SU Z . A second evaluation, based on the spa-
tial distribution of land use and land cover classes, was done to see which of the methods is able to reflect
the variation of ∆SU Z based on the land use and land cover types. The results of both evaluation processes
suggest that the downscaled products of the PCRGlobwb model are the most accurate method to estimate
∆SU Z . However, it is not the most practical since the original spatial resolution of the outcomes of this model
is relatively coarse (i.e. 10 km) which will be a problem if the study area is classified as a small to medium
basin.

On the other hand, although the statistical performance of the WaterPix model and the empirical rela-
tionship are quite low during the evaluation process, these two methods show promising potential for appli-
cation within WA+, considering their flexible computing structure and their ability to produce outcomes at a
fine spatial resolution (i.e. 250m). Further investigation should test the accuracy of these methods in regions
with other hydrological characteristics. Using the same evaluation processes, the results from the Budyko
Curve method are found to be the least accurate.

G. P. Agnindhira
Delft, October 2016
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1
Introduction

The global sustainable development movement has put the need of responsible water resources exploitation
as its utmost priority. In order to answer this challenge responsibly, a clear understanding of the governing
hydrological processes and their interactions with different groups of user is required. However, this task
proved to be difficult since there is a lack of coherency in the terminologies and data sharing among many
different water resource management institutions. The up and running WA+ framework was proposed as an
answer to the issue mentioned above.

1.1. Background
The distinctive quality of WA+ lies in its ability to draw an explicit relationship between the available water
resources and the water users, while other water accounting methods (i.e. IWMI Water Accounting, FAO
Aquastat, UN SEEAW, the Australian Water Accounting, etc.) do not manage to achieve this [12, 27, 43]. WA+
is also a depletion based accounting method, therefore it is able to avoid the problem of withdrawals data
scarcity and the errors that usually come with neglecting the return flows and the partitioning of ET [27].

In short, the WA+ framework provides a coherent and consistent method to track the quantity of fluxes
and stocks in the hydrological cycle. Further, the outcome of WA+ may be utilized as a foundation for a con-
structive discussion about the partitioning of water resources among the users. The WA+ framework uses a
mass balance approach where the outflow from a certain area of interest (e.g. country, basin, etc.) is explicitly
related to the net inflow and the depletions. Eq. 1.1 and Figure 1.1 show the mass balance equation of WA+
and its graphical visualization respectively.

P −ETtot al +Qi n −Qout =∆S (1.1)

The combination of P, Qi n , and ∆S forms the net inflow into the area of interest. The net inflow repre-
sents the available water that can be converted into two components: the combination of evaporation and
transpiration from the landscape (ETpr ec ) and exploitable water. ETpr ec is also known as the Green Water
since its supply comes solely from precipitation that falls across the area. Although the Green Water only ac-
counts for natural water extraction, the influence of human actions on ETpr ec may occur through conversion
of land use and vegetation density. The exploitable water represents the portion of water that is available for
downstream use after ETpr ec occurs. Conceptually, the exploitable water is analogous to the Blue Water. In
the end, the depletion of water is quantified as the combination of total ET (i.e. ETpr ec and ETq ) and flow
from the area of interest to the sinks [27].

A reliable and accurate quantification of∆S can improve WA+ effectiveness in many different ways. Firstly,
while multi annual or annual WA+ framework analysis can assume that ∆S is negligible, shorter time step
(e.g. monthly) water balance analysis is proven to be sensitive to ∆S [42]. In most cases, especially in the
field of agriculture, a short time step moisture accounting is more desirable than annual accounting because
it provides information on the intra-annual variability of water storage which is critical for the planning of
cropping strategy (e.g water distribution among irrigation schemes, etc.).

Secondly, in regions with pronounced seasonality, an accurate estimation of ∆S might provide the right
explanation on how crops can sustain the drought periods and at the same time helps to improve the iden-
tification of the Blue and Green water resources. In the most practical way, an accurate estimation of ∆S

1



2 1. Introduction

Figure 1.1: Graphical visualization of WA+ water balance

combined with enough information on water users will enable water managers to determine which users
produce water and which ones use more water that what is allocated to them. In addition,∆S is also effective
in identifying the extent of dependency of a certain ecosystem to its water storages [27, 42].

∆S itself is actually a bulk term which consists of a groundwater component, a surface component, and
an unsaturated zone component. This study only focuses on the latter, since the rooting system of most
vegetation is located in this particular zone. It also acts as a critical factor in controlling the land-atmospheric
moisture exchange, the hydrological responses, and the bio-geochemical processes [20, 52].

Recent research by de Boer-Euser et al. [9] suggested that the capacity of the storage is largely influenced
by the climatic condition rather than other factors. Vegetation tends to invest their resources efficiently, espe-
cially during the drought period or the periods between rainfall events. This tendency is physically translated
into the size of the storage in the soil where the rooting system is located. Acknowledging the dependency
between the climatic condition and the size of storage in the unsaturated zone, it is no longer accepted to
neglect ∆S in a water balance equation, especially if it is applied in a short time scale analysis. The estima-
tion of ∆S in the unsaturated zone should also be done in a spatially distributed manner since the difference
in both land use and climatic conditions will result in the spatial variability of water storage capacity in the
unsaturated zone. More importantly, the right method should be able to produce independent estimates of
∆S so that the application within the current WA+ framework will not introduce an additional bias.

In conclusion, the amount of ∆S in the unsaturated zone is influenced by the variability of the climatic
condition and the type of land use and land cover. Since both variables are functions of space and time, an
acceptable ∆S estimation method should consider a high temporal and spatial variability.

1.2. Research Objective and Questions
Considering the presence of various ∆S estimation methods and the importance of applying an accurate
estimation of the unsaturated zone ∆S in the WA+ framework, this master thesis aims to provide the answer
to that challenge. Spatial variability of ∆S in the unsaturated zone will be observed in monthly basis in order
to facilitate the need of monthly WA+ application. Therefore, the main objective of this work is:

To determine the optimal method to estimate spatially distributed monthly∆S in the unsaturated zone
using remote sensing data and the information on land use practices in the area which further will

improve the reliability and accuracy of the WA+ framework.

In order to evaluate different estimation methods, two study areas and a period of observation was estab-
lished. The Ca Basin and the lower part of the Red River Basin in Vietnam were selected as the study areas
based on the presence of abundant land use and land cover information and the streamflow measurement
from previous studies done in both areas [36, 42]. Taking in to account the inter-annual climatic variability
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and the availability of the hydrological data, a period of 4 years (from December 2006 to December 2010) was
chosen as the simulation and the observation period.

Constrained within the study areas and the period of observation, the main objective of the research is
translated in to several research questions:

1. Given the case study small to medium basins’ sizes, is the global distributed hydrological model (PCR-
Globwb) a better option to simulate monthly unsaturated zone∆S compared to the global land-surface
model (GLDAS-Noah)?

2. Can a model-independent, empirical method, using top soil moisture information and vegetation in-
dices from remote sensing, outperform the more popular global hydrological or land-surface models?

3. Can a curve number based distributed hydrological model (i.e. WaterPix) produce a reliable estimation
of the monthly unsaturated zone ∆S in small to medium basins?

4. Does the soil moisture deficit derived from the Budyko Curve accurately represent the ∆S in the unsat-
urated zone in small to medium basins?





2
Materials and Methods

In order to achieve the research objective, this study follows a certain research methodology as shown in
Figure 2.1. It starts with a literature study to get the bigger and more complete picture about the previous
studies that have been done in the estimation of unsaturated zone ∆S (e.g. the most common methods to
calculate ∆S, etc.). Once the general ideas of the available methods are known, the next step is to gather
the required input to perform the calculation or the simulation on the study areas. This ranges from directly
extracting the datasets from public online data portals or cooperating with the corresponding institutions to
get their limited access.

Figure 2.1: The research methodology

The estimation methods in this study are derived from 4 different branches; a-model-independent em-
pirical relationship between the ground surface and the unsaturated zone, hydrological models, land surface
models, and the Budyko Curve approach. Once the results from each method are attained, a validation is
due. This study takes 2 different aspects into account to determine which of the methods is most suitable for
WA+.

More detailed explanation of each estimation method and the validation process is provided in the sec-
tions below.

5



6 2. Materials and Methods

2.1. Empirical Relationship Between the Ground Surface and the Unsatu-
rated Zone

The main idea behind this method is to make use of the top soil moisture storage and the maximum rooting
depth ability to indicate the amount of moisture storage in the unsaturated zone.

The amount of water in the top soil layer affects the variability in the unsaturated zone water content at all
time. However, in monthly basis, the greenness of vegetation cover also reflects the availability of soil water
for extraction by the vegetation roots. The degree of saturation in the unsaturated zone is assumed to exceed
the degree of saturation in the top soil when vegetation is actively performing photosynthetic processes. Un-
der the presence of no vegetation cover, the unsaturated zone soil moisture is directly connected to the top
soil moisture. An empirical formula derived from this relationship is applied in the ETLook model v.01 [6],
which then adopted in this study. The empirical formula is shown in Eq. 2.1.

SEsub = 0.1(L AI )+ (1−0.1(L AI ))
[
1−exp

(
SEtop (−0.5(L AI )−1)

)]
(2.1)

SEtop represents the effective saturation in the top soil layer which was calculated by multiplying the
relative top soil moisture from ASCAT (%) with the soil porosity from HWSD (m3/m3). The ASCAT products
are available in daily time step as a-5 days mean for both ascending and descending overpasses [16, 34, 35, 49].
The descending overpass is taken at 09.30 LST and the ascending is taken at 21.30 LST on the same day.
Generally, over the study areas, the descending overpasses have better quality compared to the ascending
overpasses. This study used the combination of both overpasses, excluding data with poor quality.

LAI is commonly accepted as the proxy of canopy light absorption. In this study, LAI is used to represent
the vegetation greenness or the leaf water. However, LAI cannot be measured directly by satellite sensors
[21]. This study adopted the approach embedded in the SEBAL model which calculates the value of LAI from
Vegetation Cover (VC) that is derived from NDVI data as shown in Eq. 2.2 [5]. NDVI is the widely accepted in-
dicator of the vegetation’s biophysical activity, since it is able to represent the distribution of vegetation cover
over the ground surface. A time series of NDVI data shows the variability of vegetation’s state in its period of
growth. Higher NDVI values correspond to denser vegetation (e.g. tropical rainforest, etc.) while lower NDVI
values usually represent bare soil and sparsely vegetated area. In this study, 0.8 was used as the maximum
NDVI boundary condition to represent full vegetation cover and 0.125 as the minimum NDVI boundary con-
dition to represent bare soil. The NDVI products used in this study is the eMODIS NDVI, provided from the
Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by the National Aeronautics and
Space Administration’s (NASA) Earth Observing System. The NDVI dataset for Vietnam was retrieved from
Earth Explorer, courtesy of the U.S. Geological Survey [26].

V C = 1−
(

0.8−N DV I

0.8−0.125

)0.7

(2.2)

L AI1 = log (−(V C −1))

−0.45
L AI2 = 9.519(N DV I )3 +0.104(N DV I )2 +1.236(N DV I )−0.257

(2.3)

The SEBAL model applies 4 different ways to calculate LAI however, this study only uses 2 out of the 4
ways to calculate LAI and took the average of both calculations as the final LAI value. The first equation in Eq.
2.3 is based on the asymptotic relationship between LAI and VC, where a is the coefficient of light extinction
with a range of 0.4 to 0.65. This study treated a as a constant parameter with a value of 0.45 since vegetation
type based variability of a is not available yet. In order to balance this simplification, a second LAI function
is needed. Using an empirical approach, the second equation in Eq. 2.3 calculates LAI as a function of NDVI.

In order to get the actual water content in the unsaturated zone, SEsub or saturation degree in the unsat-
urated zone from Eq. 2.1 (m3/m3) was then adjusted to the saturated water content (m3/m3) and residual
water content (m3/m3). Both of these soil parameters are available in a spatially distributed manner at 1 km
resolution as parts of HiHydroSoil soil map courtesy of FutureWater.

The other variable needed to complete this method is the rooting depth of the vegetation cover. The root-
ing depth was derived from the maximum root zone storage capacity (SR,max ) developed by Wang-Erlandsson
et al. [52]. Her study assumes that vegetation adjusts its rooting system to bridge drought periods. Hence, the
size of storage capacity in the unsaturated zone is optimized based on the moisture demands and the nutrient
resources consumption by vegetation during drought periods.
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The Wang-Erlandsson SR,max product is available at 50 km spatial resolution while the available water
content that was retrieved from the FutureWater’s HiHydroSoil dataset is available at 1 km spatial resolution.
The unit of the SR,max product mm and the unit of the available water content is m3/m3. A downscaling
process was performed to the SR,max map so that both datasets have the same spatial resolution (i.e. 250
m). A monthly average of NDVI over the whole period of observation was calculated and used as proxy of
the downscaling process. The use of NDVI as a proxy is based on its correlation with the extent of vegetation
rooting depth in certain conditions. The downscaling process was adopted from the study performed by
Immerzeel et al. [25]. Detailed steps of the downscaling process are explained in section 2.6: Downscaling
Process at the end of this chapter.

Once the Wang-Erlandsson SR,max has the appropriate spatial resolution (i.e. 250 m), the rooting depth
(mm) was calculated by dividing Wang-Erlandsson SR,max with the total available water content in the soil.
Since SR,max is analytically the maximum storage capacity, the rooting depth derived from this variable
should be seen as the upper boundary for rooting depth instead of the actual rooting depth itself.

The amount of soil moisture in the unsaturated zone (mm) is calculated by multiplying the actual wa-
ter content in the unsaturated zone (m3/m3) with the maximum rooting depth (mm). The overview of this
method is shown in Figure 2.2 below.

Figure 2.2: Flowchart of the empirical relationship of Method 1

Once the unsaturated zone water storage on every first day of the month is calculated, the ∆S is obtained
by subtracting the magnitude of the storage in the next month from the current month. The unit of∆S derived
from this method is millimetre.

2.2. Hydrological Models
Hydrological models are frequently used to simulate streamflow in large basins. These models use a water
balance approach to correctly simulate and rout surface runoff into the basin outlets. Generally, hydrological
models can be divided in to two different categories; lumped and distributed models. The models from each
category can be further differentiated into empirical models, conceptual based models, and process based
models. This study adopts two different approaches under the distributed model category. The first is semi-
empirical distributed models and the second is conceptual distributed models.
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Empirical models are often said as the most robust approach towards streamflow generation because
these models simply use an empirical relationship between the hydrological influx and the streamflow to
simulate the streamflow generation itself. On the other hand, the conceptual models have a more elegant
approach towards the streamflow generation. These models are built based on the conceptualization of the
dominant physical processes that contribute to the generation of streamflow. The processes are explained
using mathematical equations and reservoirs are used to represent the hydrological stocks, where the water
balance equation in each reservoir must be closed. The application of distributed modelling on top of both
empirical and conceptual models allows the users to preserve the impact of distributed input (i.e. precipi-
tation, total evaporation and transpiration, elevation, land use and land cover, etc.) and translate it into the
generation of streamflow [40].

Three hydrological models were used in this study as examples of two different modelling approaches ex-
plained above, the WaterPix model as an example of a semi-empirical distributed model and the STREAM and
the PCRGlobwb model as examples of conceptual distributed models. It should be noted that although both
STREAM and PCRGlobwb are distributed and conceptual based, they have some fundamental differences.
The most significant aspect is the fact that PCRGlobwb was developed as a global hydrological model while
STREAM is meant for a smaller, more local, spatial scale analysis. Hence, the model structure and the param-
eterization differ significantly. PCRGlobwb applies a more complex model parameterization while STREAM
has a more modest and flexible structure. More detailed explanation on the background of each model is
provided in the sub-sections below.

2.2.1. WaterPix
WaterPix is a name given to this semi-empirical distributed model which is based on the modified SCS-CN
method. This study used an earlier version of the WaterPix model that was developed by Espinoza-Dávalos
and Bastiaanssen [15]. SCS-CN method is a simple and robust way to calculate surface runoff based on the
empirical relationship between precipitation and surface runoff itself [31]. The mathematical equation of the
original SCS-CN method is shown in Eq. 2.4.

Q = (P − Ia)2

(P − Ia)+S

Ia = 0.2S

S =
(
24.5× 1000

C N

)
−10

(2.4)

The set of equations above show that the relationship between P and Q is influenced by Ia , S, and the
curve number (CN) of the study area. Ia or the initial abstraction serves as a threshold for the occurrence
of surface runoff (Q) after each rainfall event. Ideally, the value of Ia should represent the demands from
interception and evaporation processes, the amount of water that is retained in the depression storages, and
the amount of water that infiltrates the soil [11]. The value of this parameter can be estimated through an
empirical relationship using the S parameter, as shown in the second equation in Eq. 2.4.

Not to be confused by the common use of S as a symbol for soil moisture storage capacity, the S parameter
in this case represents the potential retention of water in the soil after surface runoff begins. The value of S
is based on the CN of the study area. According to SCS-CN, the value of CN varies based on several physical
aspects such as the type of soil according to Hydrologic Soil Groups, land cover types, land treatment, and
hydrologic conditions.

Conceptually, the computing steps of WaterPix are shown in the sequence of equations (i.e Eq. 2.5 to Eq.
2.7) below. The main assumption of WaterPix is that the annual Q is equal to the difference between annual P
and annual ET (i.e. Eq. 2.5). However, in a smaller time scale (i.e. monthly and daily), the change in soil water
storage becomes a contributing flux to the surface runoff generation process (i.e. Eq. 2.6).

0 = Pann −ETann −Qann

Qann = Pann −ETann (2.5)

∆Smonthl y = Pmonthl y −ETmonthl y −Qmonthl y (2.6)

Qmonthl y is calculated using the first equation in Eq. 2.4 from the original SCS-CN. However, instead of
using CN values from a look-up table, WaterPix uses an optimization process to find the value of S as shown
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in Eq. 2.7. The value of S parameter is optimized so that yearly accumulation of monthly Q is equal to the
annual Q from Eq. 2.5.

S = ∣∣Stop,max −Stop,actual
∣∣z (2.7)

Stop,max is the maximum available water content in the top soil and the Stop,actual is the actual water
content. The value of the available water content in topsoil from HiHydroSoil map was used as Stop,max . The
z parameter is a tuning parameter and it is analogous to the vegetation rooting depth. The rooting depth used
in this method was taken from the rooting depth calculation in Section 2.1, where it is treated as a function
of both maximum storage capacity in the soil and available water content in the root zone. Stop,actual was
calculated from precipitation, total evaporation and transpiration, interception, soil moisture vertical profile,
and the ratio between fast generated surface runoff and a combination of fast and slow generated runoff.
Once monthly Q is known, monthly ∆S can be back-calculated using the same P and ET input.

The outcomes of the WaterPix model are monthly surface runoff, base flow,∆S, and infiltration zone. The
unit of the outcomes are millimetre. The model needs 6 input variables and 2 spatially distributed parameters
as described in Table A.1 in the Appendix section. In order for the model to produce stable and more reliable
result, the simulation should be done for at least a period of 2 years.

2.2.2. STREAM
The STREAM model is a conceptual distributed hydrological model that solves a water balance equation on
a certain gridded landscape. In most cases, the STREAM model proved to be an effective tool to perform
analysis on the hydrological impact of both land use and climate change in a river basin [36]. A simplification
of the water balance used in the STREAM model is pictured as one linear reservoir as shown in Figure 2.3
below.

Figure 2.3: Simplification of the STREAM model structure

When P −ET or the influx in a time step is positive, the resulting water is partitioned into two different
components (i.e. the infiltrated and the surface component) based on the p1 parameter. The surface compo-
nent forms the majority of the fast flow surface runoff (Q) while the infiltrated component went further to the
soil. The first layer of the soil is called the water holding layer. This layer will be filled with the infiltrated water
until it reaches the saturation threshold. Only when this layer reaches saturation, then the infiltrated water
can percolate further to the second soil layer which is treated as the groundwater reservoir. The p2 parameter
is used to calculate a fraction of the water in the groundwater reservoir that will contribute to the formation
of base flow. The depth of each soil layer, w1 and w2, is treated as the other model parameters. If the influx at
a time step is negative (P < ET ), then water is taken from the water holding layer to balance out the demand
and no surface runoff from the upper soil layer is produced [2, 24].

Since the STREAM model enables the incorporation of remote sensing data into a rainfall-runoff model,
it can be used to perform simulation of water availability and river discharge in large river basins. The non-
linearity character of these large basins is represented using a combination of threshold values and linear
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reservoirs. The streamflow is generated by accumulating the surface runoff in the local drainage direction,
using the information derived from a DEM layer. The STREAM model does not involved any surface runoff
routing in its simulation since the surface runoff in each pixel is removed from the model within the same
time step as it is generated [54]. This condition restricts the time step options that are allowed to be used in
the simulation; it has to be at least as long as the residence time of water in the basin.

This study uses the STREAM model developed by Ate Poortinga for his study in the Ca River Basin [36].
The validation process using runoff data from several streamflow measuring stations in the Ca River Basin
proved that his version of the STREAM model is able to generate a reliable simulation of monthly surface
runoff with a spatial resolution of 250 m. Due to limited time and operating power, the STREAM model was
only used to simulate the runoff in the Ca River Basin.

In order to run the model, the input should at least contain a DEM file and climate data. However, more
information about the basin will increase the reliability of the simulation result. On the case of the Ca River
Basin, the input datasets are shown in Table A.2 in the Appendix section.

The STREAM model produces three categories of spatially distributed outcomes; groundwater storage,
soil water storage, and surface runoff. Based on the conceptual structure of STREAM itself, soil water storage
was taken as the unsaturated zone moisture storage. The ∆S in unsaturated zone is calculated in millimetre
as the difference between storage in the first day of the next month and the current month.

2.2.3. PCRGlobwb
PCRGlobwb model was developed as a tool to simulate global terrestrial hydrology in a grid-based manner
using a leaky bucket approach [45]. The simplification of a vertical structure of the model is shown in Figure
2.4 below.

Figure 2.4: Simplification of the PCRGlobwb model structure

In each time step the model calculates the amount of water stored in two vertically stacked soil layers
(Store 1 and Store 2) and in the underlying groundwater layer (Store 3) as a result of the vertical and lateral
movement of water [46]. The first and the second soil layer are each treated as a finite reservoir with a max-
imum capacity of 0.3 m and 1.2 m respectively. On the other hand, the groundwater layer is modelled using
an infinite reservoir.

The vertical water fluxes are comprised of downward and upward movement among the three under-
ground layers and water exchange between top soil layer and atmosphere. The lateral water flux is equal
to the total specific runoff which is a combination of interflow (i.e. flow of water through the preferential
pathways in the unsaturated zone to the nearest water courses), groundwater flow (i.e. the base flow), and
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overland flow.

The sub-grid spatial variability is built upon the land cover map from GLCC version 2 courtesy of the USGS
EROS database and the separation between tall and short vegetation [45]. First, the GLCC land cover map is
re-classified into four classes; open water, natural vegetation, rain fed crops, and irrigated crops. Second, a
separation between tall and short vegetation is made for all vegetation classes with an addition of a bare soil
fraction. The next step is to separate shallow open water from deep open water. This sub-grid classification is
particularly useful where actual ET is involved in the simulation. However, the depth of the vegetation rooting
system that is applied in the model computation is independent from these land cover classification.

The net input is made from a fraction of liquid precipitation that neither get intercepted by the canopy and
evaporated, converted into snow pack (if the air temperature is below 0oC), nor stored in the available pore
space in the snow cover (if the air temperature is above 0oC and there are already presence of snow). A fraction
of the net input infiltrates the top soil layer and the rest is converted into overland flow. The partitioning of
these fluxes is done based on the fraction of saturated soil contained in the top soil layer. If the saturation
degree of the top soil layer is low, the net input will infiltrate fully to the soil layer and overland flow does not
occur. The opposite will happen when the soil is partially or highly saturated [22].

The abstraction of water from soil layers is based on the magnitude of actual ET. These abstractions differ
in mechanism according to the sub-grid spatial variability mentioned in the previous paragraph. Bare soil
evaporation is limited by the amount of available water in the first soil layer after transpiration takes place.
Short vegetation transpiration only involves extraction of water from the first soil layer while tall vegetation
is able to extract water from both soil layers.

The vertical exchange between the first and the second soil layer is determined by the unsaturated hy-
draulic conductivity of each layer [46]. However, upward flux from the groundwater layer to the second soil
layer has slightly different mechanism, where the capillary fringe occurrence is bounded by three conditions;
field capacity of the second layer, the amount of water in the active groundwater storage, and the proximity
of the water table. The hydraulic conductivity that drives this upward flux is the geometric mean of unsatu-
rated hydraulic conductivity of the second soil layer and saturated hydraulic conductivity of the groundwater
layer. Percolation from the second soil layer to the groundwater layer applies the same mechanism as the
downward movement from the first soil layer to the second soil layer.

Interflow originates from the second soil layer. This lateral movement of water usually occurs in regions
with presence of bedrock and steep hillslopes [45]. Neglecting interflow will result in the overestimation of
groundwater storage and groundwater response time. PCRGlobwb takes a simplified approach to model this
flux where the process is only activated when water content in the second soil layer reached field capacity.

Although the groundwater layer is assumed to be an infinite reservoir, it is further divided in to active and
inactive storage. The active storage is where the generation of base flow takes place. PCRGlobwb uses a first
order linear reservoir to model base flow with groundwater residence time as the calibrated parameter.

The total specific runoff of every cell is accumulated and routed over the drainage network that defines the
flow from 8 cardinal directions. The routing method is done using a numerical solution of the Saint-Venant
kinematic wave equation with a time explicit scheme and a variable time stepping [46]. The essential part of
this specific runoff routing is the separation of drainage network into river stretches, lakes or reservoirs, and
floodplains. Unfortunately, the reservoir database used in PCRGlobwb does not include the major reservoirs
in either the Ca or the Downstream Red River basins.

This study uses the results of global simulation of PCRGlobwb done by the Department of Physical Ge-
ography of Utrecht University using the combination of ERA-40 and ERA-Interim daily climate data as the
input [48]. Since PCRGlobwb only allows transpiration to extract water from the first and the second soil lay-
ers, the unsaturated zone storage is then calculated as the combination of storage in these soil layers. The
unsaturated zone ∆S is the difference between storage in the first day of the next month and the first day
on the current month. The unit of soil moisture in Store 1 and Store 2 is in meter; therefore a conversion to
millimetre was done to get consistent results with the other estimation methods.

Unfortunately, the spatial resolution of PCRGlobwb’s outcomes are only available at 10 km. Hence, a
downscaling process was performed to the total monthly unsaturated zone storage using monthly NDVI
datasets as proxies. The downscaling method used in this process is the same as the one performed in Method
1. More detailed explanation of the downscaling process is provided in Section 2.6: Downscaling Process.
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2.3. Land-surface Model: GLDAS-Noah
Land surface models are developed to investigate the dynamics of land and atmosphere interactions to im-
prove climate models and numerical weather predictions [23, 24]. In particular, they are meant to capture the
variability of terrestrial energy and hydrological fluxes/stocks as a response to near-atmospheric forcing.

Unlike hydrological models, land surface models derive ET flux from the coupling of water and energy
balance simulations. They are also able to use the Regional Climate Model (RCM) output more extensively.
This particular trait has made land surface model as the more potential tool to accurately estimate water par-
titioning within the hydrological cycle [24]. However, the fact that land surface models have a more complex
structure and a high number of parameters made the parameterization process rather difficult compared to
most hydrological models. Traditionally, this process is done using a global land surface classification scheme
based on various landscape or vegetation indices [23]. The leading examples of land surface models are those
under the GLDAS scheme.

GLDAS is a global system that has been developed jointly by NASA-GSFC and NOAA-NCEP to address the
problem of land surface model parameterization. They constrain the states and fluxes in the land surface
model using data obtained from state-of-the-art ground and space observation systems. The constraints
themselves are applied in two different ways; by using observation-based meteorological forcing to avoid
biases that come from atmospheric model-based forcing and by employing data assimilation technique in
order to make sure that the model does not produce unrealistic result [38]. Another benefit of the LSMs
under GLDAS is the ability of those models to produce various continuous estimates of land surface states
and fluxes in a high spatial resolution (i.e. 0.25o and 1o) and timescale (i.e. 3 hourly, daily, and monthly).

A recent development was made by NASA by introducing a more consistent climatic forcing into the
GLDAS land surface models. The forcing itself, produced by Princeton University, is a reanalysis meteorolog-
ical product that has undergo a bias correction process using an observation-based dataset [7]. The product
is called GLDAS-2 and it covers the period of 1948 to 2012.

Noah is 1 of the 4 LSMs that are currently run by GLDAS. It was first introduced in 1993 as a core project
within the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP)
that was spearheaded by NCEP. The original purpose of its development was to create a modern LSM for
NCEP’s weather and climate prediction models and the data assimilation systems which can be accessed
freely by the hydro-meteorological community [14].

Noah is a 1-D column model that can be coupled or uncoupled to atmosphere. It incorporates the soil-
vegetation-atmosphere transfer scheme (SVATS) into its model structure to simulate the states and fluxes.
Hence, vegetation and soil properties are significant in the model parameterization process. Noah uses at
least 37 parameters where 10 of them are related to vegetation properties, 11 are soil properties dependent,
and the rest are universal parameters [33]. Soil is divided in to 4 different depths; 0-10 cm, 10-40 cm, 40-100
cm, and 100-200 cm. The outputs are frozen soil moisture, liquid soil moisture in 4 soil layers, soil tempera-
ture, skin temperature, snow pack depth, snow pack water equivalent, canopy water content, and the energy
and water fluxes within the coupled water and energy balance. The concept behind Noah is presented in
Figure 2.5.

The key flux in land-surface simulation in tropical regions is bare soil evaporation and plant transpiration.
This flux hugely influences the variability of streamflow and change in the soil moisture storage. The nonlin-
earity in the direct evaporation process means that as water content in the top millimetres of the soil declines,
the top soil becomes drier and acts as a barrier to dampen the rate of direct evaporation. This phenomenon
is modelled using Eq. 2.8 and Eq. 2.9.

F X = Θ1 −Θdr y

Θsat −Θdr y
(2.8)

Edi r =
(
1−σ f

)
(F X ) fx Ep (2.9)

Where:
F X = fraction of the saturated soil
Θ1 = top soil moisture
Θdr y ,Θsat = dry and saturated soil moisture
fx = empirical coefficient to indicate nonlinearity in the process of evaporation(
1−σ f

)
= non-vegetated fraction in the grid cell

Ep = potential evaporation
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Figure 2.5: Simplification of the GLDAS-Noah model structure

The other significant component is plant’s transpiration. Noah models the seasonality of vegetation using
temporally and spatially varying green vegetation fraction (σ f ) based on NDVI information. Noah’s default
land cover parameter is derived from IGBP MODIS 20-category vegetation. Land-water mask is derived from
the new MODIS land-water mask at 250 m (MOD44W) while elevation and soil texture data are obtained
from GTOPO30 and the combination of STATSGO/FAO soil classification. However, little attention is put on
the lateral movement of energy and water on ground surface and underground, such as the lateral subsurface
flow between grids and grids along the slope [7]. This neglect may lead to the overestimation of water storage
in soil layers.

The finest spatial resolution produced by Noah is 0.25o x 0.25o, or almost equivalent to 25 km in the
equator. The sub-grid variability is applied within the model using a mosaic approach. This is done through
several steps. First, the land cover classes that are present in each Noah’s grid are identified. The coverage
area of each class within one grid is treated as a weight factor. The land cover mask is based on a 1 km global
vegetation dataset. Second, Noah is run on a series of individual soil column where each column represents a
single land cover class. Finally, the total average grid value is obtained by combining the weighted tiles’ value
[38]. The temporal resolution for the Noah product is 3-hourly. The monthly product is obtained by averaging
the 3-hourly products.

This study used the monthly product of GLDAS-Noah version 2.0 with a spatial resolution of 0.25o [37].
Since the spatial resolution is very coarse, a downscaling process was implemented, using monthly NDVI
dataset as proxy. The unsaturated zone is calculated as the combination of three Noah soil layers (i.e. 10-40
cm, 40-100 cm, and 100-200 cm). The unit of soil moisture content in each soil layer is kg/m2. A conversion
was done using the density of water to get the volumetric soil moisture content. The unsaturated zone ∆S is
calculated by subtracting storage in the first day of the current month from the first day of the next month.
The final ∆S products are calculated in millimetres.

2.4. Budyko Curve
Budyko Curve is a framework that explains the relationship between climatic condition and water balance
in a certain basin. It is physically based on the combination of annual energy and water balance with an
assumption that the basin is in a steady state condition [13]. The steady state water and energy balance are
presented in Eq. 2.10 and Eq. 2.11.
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∆S = P −ETa −Q

P = ETa +Q
(2.10)

Where ∆S = 0 and water balance is at steady state.

∆E = Rn −λρE −H −G

Rn =λρE +H
(2.11)

Where the soil heat flux (G) is approximately 0 and energy balance is at steady state.
In the most practical sense, Budyko Curve can be used to partition mean annual precipitation into mean

annual surface runoff and mean annual total evaporation and transpiration. The original Budyko Curve is
shown in Figure 2.6.

Figure 2.6: The Budyko Curve

The vertical axis of Budyko Curve is the ratio of actual ET over supply of water, or what is commonly
known as the evaporative index (ε). If the evaporative index approaches unity, the area has sufficient energy
to evaporate water from the surface and the soil layers. The rate of ET will only be limited by the amount of
water supply in the area. On the other hand, the horizontal axis shows the ratio of potential ET over the water
supply or the aridity index (Φ). Lower values of the aridity index refers to less available energy to evaporate
water in the area, hence it is said that the area is energy constrained. In a steady state condition, the supply
of water in a certain area is solely coming from precipitation. However, the steady state condition is rarely
achieved since influence of terrestrial ∆S on the supply of water is rather significant, especially in irrigated
agricultural fields or in between the drought periods [50].

Deviation from Budyko Curve in many different basins has been a topic of various researchers. Among
other factors, the terrestrial∆S and the influence of vegetation cover seasonality are the two most nominated
causes [13, 32, 51, 53].

Following the same understanding as previous researches, this study tries to implement the Budyko Curve
framework on to the partition of water in a monthly water balance. Even though Budyko Curve is meant for
a long term and steady state water balance analysis, this study assumes that Budyko Curve is also applicable
for monthly and unsteady water balance analysis.

The sequence of equations shown by Eq. 2.12 explains the hypotheses mentioned before.

∆S = P −ETa −Q

∆S = (P −Q)−ETa

∆S = ETp −ETa

(2.12)

The first line in Eq. 2.12 is an unsteady monthly water balance. The second line shows the rearrangement
of elements of the first line. It shows that monthly terrestrial ∆S is the residual of the incoming flux and the



2.5. Validation Process 15

outgoing flux. To close the water balance, potential ET should makes up the difference between P and Q.
Most of the times, actual ET differs from potential ET. Therefore monthly terrestrial ∆S can be explained as
the difference between monthly potential ET and actual ET. Moreover, although ∆S in above equations refer
to the bulk term of terrestrial ∆S, this study assume that the influence of unsaturated zone ∆S variability is
more significant than the surface or the groundwater component.

The reference potential ET is described as a combination of water that is going to be extracted from soil
surface and water that is generated by plants’ biophysical activities if the process is not limited by actual
supply of soil moisture. In other words, reference ET is the physical representation of atmospheric demands
of evaporated and transpired water. It is solely influenced by climatic condition. FAO describes reference
ET as the amount of water that is evaporated and transpired from a hypothetical grass covered surface with
specific characteristics [4]. The most common method to quantify reference ET is the Penman-Monteith
formula as shown in Eq. 2.13 below.

ETp =
0.408∆ (Rn −G)+γ

900

T +273
u2 (es −ea)

∆+γ (1+0.34u2)
(2.13)

Where: ETp = reference ET (mm/day)
Rn = net radiation at the crop surface (MJ/(m2.day))
G = soil heat flux density (MJ/(m2.day))
T = mean daily air temperature at 2 m height (oC)
u2 = wind speed at 2 m height (m/s)
es = saturation vapour pressure (kPa)
ea = actual vapour pressure (kPa)
es −ea = saturation vapour pressure deficit (kPa)
D = slope vapour pressure curve (kPa/oC)
g = psychrometric constant (kPa/oC)

This study uses the monthly reference ET values which were calculated using a mathematical model based
on the Penman-Monteith formula. The input needed to force this model and their sources are shown in the
Table A.3 in the Appendix section.

On the other hand, actual ET is equal to the amount of water that is actually being evaporated and tran-
spired from the soil surface. The present soil moisture is the limiting factor. The amount of the present
soil moisture is influenced by many physical factors aside from the climatic demand such as antecedent soil
moisture condition, soil type, land cover and land use type, the amount of occurring precipitation, etc. This
study uses an ensemble ET product to represent actual values of ET in both the Ca and the Downstream Red
River Basin [36, 42].

The precipitation dataset for the Downstream Red River Basin uses the TRMM 3B43 product from NASA
[29] while the Ca River Basin uses an ensemble precipitation product derived from TRMM 3B43 from NASA
[29] and CHIRPS from the Climate Hazard Group [19].

The unit of the monthly actual and potential ET and the monthly precipitation input is millimetre. The
final monthly ∆S products are also in millimetre.

2.5. Validation Process
This study adopts 2 validation approaches to determine which method is the optimum for WA+ application.
The first approach is the evaluation of each method’s ability to regenerate the sub-basin average observed
river discharge at the streamflow measuring stations and the streamflow-derived ∆S. In addition to that,
since comparison using spatially average values can lead to inter-pixel compensation and also considering
the high spatial variability of ∆S, the relationship between land use and land cover classes and ∆S values
needs to be evaluated as well. More detailed explanation on each approach is provided in the following sub-
section.

2.5.1. Comparison to the observed streamflow and the streamflow-derived unsaturated
zone∆S

The first comparison is to the streamflow observation in different measuring stations. First, the estimated
monthly streamflow from each method is computed using pixel-based water balance equation with climate
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input (i.e. P and actual ET from remote sensing products) provided from Poortinga et al. [36] and Simons
et al. [42] and the estimated ∆S. The pixel-based monthly water balance is shown in Eq. 2.14.

Qest ,monthl y = PRS,monthl y −ETRS,monthl y −∆Sest ,monthl y (2.14)

The next step is to perform sub-basin delineation in the Ca River Basin and the Downstream Red River
Basin to match the correct drainage area to the location of streamflow stations. The location of the streamflow
stations in both the Ca and the Downstream Red River Basin is shown in Figure 2.7.

Figure 2.7: The locations of the streamflow stations and their drainage areas in the Ca and the Downstream Red River Basin

After the sub-basins are identified, both the observed and estimated streamflow are averaged spatially
over the area of the sub-basins. Finally, the estimated streamflow values are compared to the observed
streamflow values in each station.

The steps for the unsaturated zone ∆S comparison are similar to what is written above. The only dif-
ference is that instead of directly measured values, a derivation from streamflow observation is used as the
reference for the validation. This is calculated using a point-based monthly water balance equation similar
to Eq. 2.14. The equation is shown in Eq. 2.15 below. The P and the actual ET inputs are the same as the one
used in Eq. 2.14.

∆Sobs,monthl y = PRS,monthl y −ETRS,monthl y −Qobs,monthl y (2.15)

The performance of each estimation method is then evaluated using weighted R2 and RMSE. These math-
ematical measures evaluate different aspects of the fit between the observed and estimated values. The Root
Mean Square Error or RMSE is the square root of variance of the residuals. This parameter is often seen as
the absolute measure of the fit between observed and estimated values. Lower values of RMSE indicate bet-
ter performance of the model in regenerating observed values. The R2 tells how good the dispersion of the
observed values explains the dispersion of the estimated values. Lower R2 values are equal to small correla-
tion between the observed and the estimated values; whereas R2 values of 1 show that the estimated values
are equal to the observed ones. However, R2 should not be used alone since it only accounts for the disper-
sion. This study uses weighted R2 which is a combination of slope of the correlation and R2. A good method
should generate a near-1 weighted R2 value [28]. The Eq. 2.16 below explain the rules for the weighted R2. b
represents the slope of the relationship between the estimated and the measured values.

wR2 =
{

|b| ·R2 for b ≤ 1

|b|−1 ·R2 for b > 1
(2.16)

2.5.2. Spatial distribution correctness
The second approach is meant to check the ability of each estimation method to recreate the spatial distribu-
tion of land use and land cover classes. It is important to note that this approach is based on the hypothesis
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that there is a correlation between the types of land and/or vegetation cover to the magnitude of the unsatu-
rated zone ∆S.

The first step is to calculate the average unsaturated zone∆S value in different land use land cover classes
for each method. Next, these values are plotted in time. The purpose is to check whether there are any out-
of-place behavioural trends that can be observed (e.g.: the irrigated crop fields generate more water than
the forest land cover type, etc.). Second check for the spatial distribution correctness is done by plotting the
entire unsaturated zone ∆S pixels generated from each estimation method and grouped them based on their
corresponding land use and land cover class.

2.6. Downscaling Process
The goal of this study is to produce a spatially distributed estimation of the unsaturated zone storage change
with a fine spatial resolution. The spatial quality of the product is heavily dependent on the input datasets.
Unfortunately, most of the input datasets used in this study are only available in lower spatial resolutions,
with 50 km being the coarsest spatial resolution to be dealt with. On the other hand, information such as the
NDVI dataset is available at a very fine spatial resolution (i.e. 250 m). While it is understood that the quality of
the outcome will only be as reliable as the coarsest input dataset, using medium to low spatial resolution will
risk the study to lose too much spatial information given by the fine scale input datasets. The example of the
coarse input dataset and a fine proxy layer is shown in Figure 2.8. Starting from upper left going clockwise, the
Wang-Erlandsson maximum root zone storage capacity with a pixel size of 50 km, the PCRGlobwb monthly
unsaturated zone moisture storage with a pixel size of 10 km, the GLDAS-Noah monthly unsaturated zone
moisture storage with a pixel size of 25 km, and the eMODIS NDVI with a pixel size of 250 m.

Figure 2.8: The example of the coarse resolution input dataset and a fine resolution proxy dataset of Ca River Basin

This study adopted the downscaling method developed by Agam et al. [3] for thermal imagery sharpening
using NDVI, which then improved by Immerzeel et al. [25] using a coarse scale TRMM precipitation dataset
and a set of finer scale NDVI datasets. Both of the downscaling methods mentioned above are based on the
hypotheses that there is a unique relationship between the finer scale proxy layer (i.e. the NDVI dataset) and
the coarse scale input layer (i.e. the Landsat temperature dataset and the TRMM precipitation dataset). This
unique relationship is then used to project the spatial variability of the input variable from a coarse spatial
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scale to a finer spatial scale. It is also important to consider that the spatial scale of the biophysical process
to be disaggregated has to be larger than or, at the very least, equal to the spatial scale of proxy layer. Both of
these conditions limit the options of finer resolution datasets suitable to become the proxy layer.

The steps taken in the downscaling process is explained through the flowchart shown in Figure 2.9. The
regression applied in the thermal imagery sharpening by Agam et al. [3] was a second order polynomial re-
gression while Immerzeel et al. [25] chose to use an exponential regression to define the unique relationship
between TRMM and NDVI products. As mentioned in steps above, this study chose to follow Agam’s footstep
and used a polynomial regression to explain the relationship between the input and the proxy layer. However,
it is also important to note that the quality of a polynomial regression is sensitive to the presence of either high
or low outliers in the relationship between the input and the proxy data points. One way to overcome this is
to apply a selection criterion before computing the parameters of polynomial regression such as screening
out coarse pixels in the input dataset that correlate to high sub-pixel variability in the proxy dataset.

Figure 2.9: The downscaling process
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Like the rest of the Southeast Asian countries, climate in Vietnam is governed by the South Asian and North-
east Asian monsoon, the Pacific Tropical Cyclones, and the El-Nino Southern Oscillation (ENSO) events. Lo-
cated in the humid sub-tropic, the northern part of the country experiences a more distinct summer and
winter rainfall events while the tropical southern regions have a slightly more uniform rainfall pattern [30].
The start of the summer season varies from early May in the southern Vietnam to late July-August as it moves
northward. The rainfall events in this season are dominated by the South Asian monsoon. The Northeast
Asian monsoon mainly influences the rainfall events during winter months in the north and central regions.
The long coastline of Vietnam is mostly vulnerable to the Tropical Cyclones rainfall events especially during
June to November. In addition to the monsoonal system, the inter-annual climate variations in Vietnam are
also driven by the ENSO which enhances the dry and warm conditions during El-Nino years. Given this high
inter-annual variability, some regions can suffer from both flooding in the rainy season and drought during
the dry season [17].

3.1. The Ca River Basin
The Ca River Basin is a trans-boundary river basin shared between Vietnam (65%) and the LAO People Demo-
cratic Republic or LAO DPR (35%). The total area of the Ca Basin is around 27,277 km2. The Vietnamese Ca
Basin occupies around 17,730 km2 area in the north-central region of the country 1. It is estimated to be
inhibited by 4 million people from 8 different ethnic groups. Rainfall events are concentrated in the period
between May and October, in accordance with the influence of the South Asian monsoon. In general, the
peak rainfall occurs in September. However, the southern part of the basin usually experience heavier rainfall
events compared to the northern regions [1]. The spatial distribution of monthly precipitation and actual ET
on January and July is shown in Figure 3.1. The clear distinction between January and July indicates strong
seasonality in the Ca River Basin. On average, January is drier compared to July where the amount of precipi-
tation and actual ET is significantly lower than what was recorded for July. These two months are seen as the
peak of dry and rainy season, respectively.

In total, the Ca River stretches for a distance of 531 km with 361 km of it runs over the Vietnamese land-
scape. The Ca River originates in Muong Khut and Muong Lap Mountain in LAO DPR. The main branch of
the Ca River enters the Vietnamese border through Nge Anh Province, flows to the south-eastern direction
before flowing out into the Eastern Sea via the Cua Hoi river mouth [18]. There are several tributaries feeding
the main Ca River. The largest tributary is called the Hieu River which enters Vietnam through Thanh Hoa
Province and flows southward to Nge Anh Province, joining the Ca River at the midstream. The second biggest
tributary is the La River. It originates from the Giai mountainous area in Ha Tihn Province and joins the Ca
River at Cho Trang confluence [1]. The discharge in the main Ca River before the confluence is measured
by Dua Station. The observed monthly streamflow in Dua Station for the period of 2007 to 2010 is shown in
Figure 3.2.

1Some documents consider an additional area of 2,650 km2 into the Vietnamese Ca River Basin to account for the wetlands, lagoons,
and smaller streams that bypass the main Ca River and flow directly to the Eastern Sea. This made the total area of Vietnamese Ca River
Basin closer to 70% of the total Ca River Basin or around 20,460 km2.
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Figure 3.1: Average January and July precipitation and actual ET in the Ca River Basin

Figure 3.2: Monthly observed discharge in Dua Station

Although Nge Anh and Ha Tihn Province occupy the majority of the Vietnamese Ca River Basin, not all
of the areas in the provinces are hydrologically connected to the Ca River. These disconnected areas receive
water through a series of irrigation systems. Currently there are 3 large, operating, irrigation systems which
not only provide water supply to the agriculture sector but also utilized to meet the domestic and industrial
demands [36]. There are 5 major reservoirs included in the water supply system as shown in the information
provided in Table 3.1 2.

The unsaturated zone soil in the downstream of the basin is dominated by the Gleysols, the typical soil of
lagoons, wetlands, and other areas with shallow groundwater table. Infiltration is low due to the fine texture
of the soil particles and frequent water logging conditions. In the mountainous area in the upstream of the
basin, the soil is mainly comprised of the Acrisols, a soil type typical to the wetter part of tropical countries.

The land use and land cover map used in this study is the one developed by Poortinga et al. [36] for his
study about the partitioning of water in the Ca River System. As shown in Figure 3.3, the three major land-
use classes are the secondary forest, the irrigated rice fields, and the broadleaved forests. The upstream part
of the basin is dominated by the secondary forest class followed by a smaller portion of rain fed rice fields.
The secondary forest functions as the producer of goods and services for the local livelihood. The intensive

2A = Agriculture, I = Industry, M = Maintenance of normal flow, P = Hydro power, F = Flood control, W = Municipal water supply
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River
Name

Dam Name
Catchment

Area
Gross

Capacity
Effective
Capacity Purpose

Year of
Completion

(km2) (106 m3) (106 m3)
Ca Ban Ve 8,700 1,834.6 1,383 A, I, M, P, F 2009

Hieu Ban Mong 2,785 252.6 125.8 A, I, M, P 2012
Ca Khe Bo 14,300 97,8 17.2 P 2010

Giang Thac Muoi 785 558.1 437.8 P, F -
Ngan Sau Ngan Truoi 506 425.6 353.9 A, P, I, F, W 2014

Table 3.1: The list of major reservoir in the Ca River Basin

Figure 3.3: Land use and land cover information in the Ca River Basin

irrigated rice cultivation occupies most of the delta areas. There can be up to 3 harvests over a year, one for
each season, with the summer rice cultivation (i.e. during May to August) being the staple farming practice.
There are more farmers in Nge Ahn Province (45%) who practice 3 harvests per year compared to the farmers
in Ha Thinh Province [36, 44].

3.2. The Downstream Red River Basin
The Red River Basin is a trans-boundary river basin which upstream is located in China and the rest of the
basin is mainly located in Vietnam, with only less than 1% in LAO DPR. The main stream is around 1200
km long, originating in Yunnan Mountain in China and flows in the southeast direction to Vietnam before
it drained into Halong Bay in the Eastern Sea. The part of the Red River Basin in Vietnam is regarded as
the Downstream Red River Basin. It covers an extremely large area of 87,236.75 km2 which comprised of 26
provinces in northern Vietnam, including Hanoi, the capital of Vietnam. The total population in the Down-
stream Red River Basin is around 28 million people with the majority of the population inhibit the Red River
Delta area [10]. This basin is the second largest basin in the country after the Mekong River Basin in southern
Vietnam. Consequently it also serves as the country second largest agricultural area, providing livelihood for
around a third of the country population.

The Downstream Red River Basin is divided in to 5 sub-basins as shown in Figure 3.4 below. The names
of the sub-basins and their main streams are the Da River, the Thao River, the Lo Gam River, the Upper Thai
Binh River, and the Lower Red River. The Lo Gam and the Da River Basin are the two largest sub-basins [44].
The 3 mainstreams of the Downstream Red River Basin; the Da River, the Thao River, and the Lo River, join
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in Viet Tri, upstream of Hanoi, to form the Lower Red River [1]. The Da River contributes the most discharge
compared to the other main streams, making it as the most important source of water for the irrigation system
in the Lower Red River Basin [8].The main streams of the Red River also carry huge quantities of silt originating
from the upstream area in China. This alluvium silt contributes greatly to the development of the agriculture
activities in the Red River Delta [47].

Figure 3.4: Land use and land cover information in the Downstream Red River Basin

The typical wet months in the Downstream Red River Basin occurs during the summer season, from May
to October. The wet season is characterized by a high net radiation value, a high temperature, and moderate
relative humidity. This season is followed by the dry season with low net radiation, low temperature, and
low relative humidity. The dry season usually lasts from October to January. The months between the dry
and the wet season (i.e. February to April) is known as the intermediate season, which is characterized with
moderate to low temperatures and a high relative humidity. From a long-term time series analysis, it is found
that the annual rainfall over the basin’s vast area varies extremely between 700 to 3000 mm [42]. The spatial
distribution of the monthly precipitation and actual ET on January and July is shown in Figure 3.5. Similar to
what was found in the Ca River Basin, precipitation and actual ET on January is significantly lower than what
was found for July.

The high rainfall variability between wet and dry season leads to the variability and irregularity in the river
discharge, with June to October regarded as the peak flow period [8]. The flow through the basin is unequally
distributed in space and time which leads to two extremes condition; drought during the dry winter season
and flooding in the wet summer season. The low flow during the dry period also causes the rise of salinity in
the river since it draws back saline water from the Eastern Sea to the river system [42]. The dynamic of the
streamflow in the Downstream Red River Basin is shown in Figure 3.6 below using measurement in Son Tay
Station, the most downstream station in the basin.

This study adopted the land use and land cover map developed by Simons et al. [42]. The highlands
area in the basin is characterized by hilly and mountainous terrains whereas the lower part of the basin is
mainly formed by wetlands. The highlands are mainly comprised of a mixture of forest classes with a small
fraction of agriculture lands where dry crops (e.g. rain fed rice, vegetables, or maize) are grown. The lower
Downstream Red River Basin is also known as the Red River Delta. The area is a rich-agriculture growing
area, where an intensive rice cropping activity is practiced by most of the farmers. Currently there are 4 major
reservoirs being operated in the Downstream Red River Basin to provide service for the agriculture fields and
the hydropower plants. The biggest reservoir is the Hoa Binh reservoir which located in the Da River Basin
[10].

As the principal crop, rice is harvested all year round. However, without irrigation systems, rice can only
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Figure 3.5: Average January and July precipitation and actual ET in the Downstream Red River Basin

Figure 3.6: Monthly observed discharge in Son Tay Station

be grown once per year during the wet summer season. A second rice cropping period usually occurs during
the spring season with the help of irrigation. Hence, the irrigation systems are an integral part of the Red
River Delta. A study in 2012 noted that there are 31 irrigation schemes in the Red River Delta, providing water
supply for approximately 8,500 km2 irrigated rice fields [8]. The irrigation water is also being recycled within
the irrigation schemes. This has becomes a substantial source of water for the more downstream farmers
[42].

The other type of dominant land use class in the Red River Delta is the urban areas with Hanoi as the
most overpopulated and overdeveloped region in the class. Often hit by the recurring summer floods, the
main protection infrastructure in the city and its surrounding areas is a system of two series of dykes with a
total length of 2,700 km [8]. Aside from the flood events, the Red River Delta also experiences a serious water
quality issue as the pollution from the industries and domestic use in the upstream areas increases over the
last decade [10].
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4.1. Unsaturated Zone∆S Estimation Methods
The estimated unsaturated zone ∆S in both the Ca and the Downstream Red River Basin is shown in Figure
4.1 and Figure 4.2. To highlight the importance of seasonal trend, only the results for January and July are
included in the figures. The peak of the rainy season and, consequently, the primary rice farming season
occurs on July each year. On the other hand, January is when the dry season in its peak and when the farming
activities rely mainly on the irrigation system.

4.1.1. Ca River Basin
Two important aspects in the spatial distribution of the unsaturated zone ∆S in the Ca River Basin can be
observed from Figure 4.1; the seasonal and the land use/land cover spatial distribution trend. Methods that
are able to generate consistent temporal trends are the downscaled PCRGlobwb and the STREAM model. The
results from these two methods consistently show distinctive dry and rainy months over the 4 years period
(2007 to 2010), where July is generally wetter than January. Both also generate a more negative unsaturated
zone ∆S in the upstream area during the dry month (i.e. January) which can be caused by the extraction of
water due to farming activities in the secondary forest class. However, there is a difference in July where the
downscaled PCRGlobwb products show more positive unsaturated zone ∆S in the forest class compared to
the cultivated land class, while the STREAM model results show the opposite trend.

Seasonal trend can also be observed from the downscaled GLDAS-Noah results however it is less obvious
than the PCRGlobwb and the STREAM model. July is mostly wetter than January, with the exception of 2008.
Despite the obvious remnants from the coarse pixel size of the original GLDAS-Noah product, a finer land
use/land cover based-spatial distribution trend can still be observed for January in 2007, 2008, and 2010, and
July 2007 and 2009. The next method to show a seasonal trend is the Budyko Curve, where January is generally
drier than July. A distinctive characteristic is observed from the July results where the northeast part of the
basin is consistently drier than the rest of the basin. According to the land use and land class map, this part
is a mixture of broadleaved forest, secondary forest, and rain fed crop fields. On July 2008 and 2010, the
cultivated part of the basin extracts more water than the natural landscape. During the peak dry season, 2007
and 2008 are the wetter years compared to the 2009 and 2010.

The last two methods, the empirical relationship of Method 1 and WaterPix show similar results in terms
of seasonal trend inconsistencies. The results from WaterPix show that January is generally a wetter period
compared to July in 2007 and 2010. During 2007, the cultivated land class in the downstream part of the basin
experienced a more negative unsaturated zone ∆S compared to the natural landscape in the upstream. The
opposite happened in 2010 where the forested upstream extracts more water than the cultivated downstream.
In 2008 and 2009, July is wetter than January. Both also show a more negative unsaturated zone ∆S in the
forested upstream compared to the cultivated land class. A very clear change in unsaturated zone ∆S values
can be seen in the upstream part of the basin. This follows the slicing process that had to be performed when
running the model.

The seasonal trend in Method 1 switched after 2 years, where initially January is the drier month and July
is the wetter month. The general spatial trend of this method is that the cultivated downstream area extracts
less water compared to the natural landscape in the upstream area. The only exception is January 2008 where
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the irrigated crop field land cover class shows a more negative unsaturated zone ∆S. Spatial distribution
of the unsaturated zone ∆S of this method closely follows the spatial distribution of the downscaled Wang-
Erlandsson et al. [52] maximum rooting depth.

Overall, the STREAM model results show the narrowest range of unsaturated zone ∆S values followed by
the downscaled PCRGlobwb, Budyko Curve, downscaled GLDAS-Noah, WaterPix, and the empirical relation-
ship of Method 1.

Figure 4.1: The estimated unsaturated ∆S results in the Ca River Basin

4.1.2. Downstream Red River Basin
The result of each estimation method in the Downstream Red River Basin is shown in Figure 4.2. Similar to
the Ca River Basin, the seasonal-based variation and the land use/land cover spatial distribution are the two
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aspects to be evaluated. Generally, the seasonal trend in the Downstream Red River Basin is more obvious
than in the Ca River Basin. The difference between the peak of wet and dry season is clearer, where July is the
wetter month and January is the drier month. Four out of the five methods applied in this basin show that
2008 is the driest year over the course of the observation period and that during January 2010 the central part
of the basin generates more water than the rest of the area. The exception is generated by the Budyko Curve
method.

Figure 4.2: The estimated unsaturated ∆S results in the Downstream Red River Basin

Both the downscaled PCRGlobwb and the downscaled GLDAS-Noah generate similar results in terms of
consistency in seasonal variation. However, the spatial distribution of the downscaled PCRGlobwb products
agrees more with the spatial distribution of the land use/land cover classes. The results from this method
show a more positive unsaturated zone ∆S in the upstream part of the basin which correspond to the lo-
cation of the forested area. The more negative unsaturated zone ∆S is generated in the lower part of the
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basin, where the intensive irrigation schemes are located. The result of July 2009 is even able to show a more
negative unsaturated zone ∆S in the small patches of rain fed crop fields in the northern part of the basin.
Meanwhile, the spatial distribution of the downscaled GLDAS-Noah products does not seem to reflect the
spatial distribution of the land use and land cover classes. The results in January 2007 and 2009 show more
wet pixels where the intensive irrigation schemes are located. Due to the size of the basin, the remnants of
the coarse original GLDAS-Noah pixels size seem less obvious compared to the Ca River Basin.

The results from WaterPix also show a consistent seasonal variation where January is generally drier than
July. The results show that the intensive irrigated land cover class extracts more water than the rest of the
basin, with an exception of January 2008 and 2009. The empirical relationship of Method 1 also generates
similar result to the downscaled PCRGlobwb, the downscaled GLDAS-Noah, and WaterPix except for June
2010. Two distinctive features that can be observed from this method are the similar range of unsaturated
zone ∆S values for the intensive irrigated land class regardless the season and the consistent appearance of
dry pixels in the western part of the basin every July.

The results of the Budyko Curve method have less agreement with the other methods in term of seasonal
variation. However there is a distinctive feature that can be observed in each season. Firstly, dry pixels con-
sistently appear in the northwest, northeast, and southwest of the basin every July. These area correspond
to the mixture of rain fed and irrigated crop field and the natural landscape classes. The unsaturated zone
∆S in those areas is even more negative than what was found in the intensive irrigation pixels. Secondly, the
spatial distribution of the unsaturated zone∆S during the peak dry season (i.e. January) is more homogenous
compared to the wet summer season.

4.2. Validation to the Observed Values
4.2.1. Ca River Basin
Both the estimated unsaturated zone ∆S values and the estimated discharge in the Ca River Basin from each
method were compared to the observed values in 6 different streamflow stations. Figure 4.3 shows the com-
parison of the unsaturated zone ∆S and the discharge in Dua Station. Dua station is the station with the
largest drainage area in the Ca River Basin, accounted for almost 76% of the total Ca River Basin area. For the
sake of simplicity, the streamflow-derived unsaturated zone ∆S is going to be called as the observed unsatu-
rated zone ∆S.

Figure 4.3: The unsaturated zone ∆S and the discharge comparison in Dua Station
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From the figures above, it can be seen that the results from Method 1 and WaterPix show similar dynamic
where the peaks and lows are generated in similar timing and magnitude. With the exception of the year 2007,
the results from the downscaled PCRGlobwb, the downscaled GLDAS-Noah, and the STREAM model are all
quite similar to each others. Out of the 6 different methods, the Budyko Curve results have less similarity
towards other methods. However, apart from the similarities of one method to the others, none of them are
able to replicate the observed peaks and lows in Dua Station correctly, both temporally and in magnitude.

Figure 4.4 shows the comparison of each method to the observed ∆S values. The distribution of the
colourful markers around the 1:1 black line shows how well the estimated method approaches the real condi-
tion in Dua Station. From this figure, it can be seen that the downscaled PCRGlobwb has the least dispersion
of markers around the black line while WaterPix has the most dispersion. The Budyko Curve seems to over-
estimate the ∆S values while the estimated ∆S from the STREAM model are often close to 0 mm.

Figure 4.4: The comparison of each method to the observed unsaturated zone ∆S in Dua Station

Since the majority of water generated in the Ca River Basin drains to Dua Station, the statistical per-
formance of this particular station is deemed representative for the whole Ca River Basin. The final basin-
average statistical performance of each method is shown in Figure 4.5 below.

Figure 4.5: The comparison of basin-average statistical performance of each method in the Ca River Basin

Generally, the statistical performance of each method during the validation using the observed unsatu-
rated zone ∆S is very poor while the discharge validation has better values. The STREAM model has better
performance in replicating the observed discharge in the Ca River Basin (i.e. weighted R2 = 0.27 and RMSE
= 76.31), however it does not perform well in the estimation of the unsaturated zone ∆S (i.e. weighted R2 =
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0.006 and RMSE = 76.31). On the other hand, the downscaled PCRGlobwb has the highest performance in the
unsaturated zone ∆S validation with weighted R2 = 0.210 and RMSE = 67.84, and a moderate performance
during the discharge validation with weighted R2 = 0.26 and RMSE = 67.84.

4.2.2. Downstream Red River Basin
There are 7 streamflow measuring stations in the Downstream Red River Basin where 2 of them record the
inflow from the upper part of the Red River Basin. The same as before, the estimated unsaturated zone ∆S
values and discharge were compared to the observed values in the available stations. Figure 4.6 shows the
comparison of the unsaturated zone∆S and the discharge in the most downstream station in the basin which
is called Son Tay station. The drainage area of this stations accounts for almost 85% of the total Red River
Basin area.

Figure 4.6: The unsaturated zone ∆S and the discharge comparison in Son Tay Station

The methods are able to produce better estimation for the discharge compared to the unsaturated zone
∆S. Moreover, the methods are able to better replicate the peaks and lows of the observed discharge in terms
of timing and magnitude with an exception of July 2008, where all the methods overestimate the discharge.
However, the similarities among the different methods can be better observed in the unsaturated zone ∆S
comparison. The temporal dynamic of the results of both Method 1 and WaterPix are quite close to each other.
However, Method 1 produces systematically lower values than WaterPix. The results from the downscaled
PCRGlobwb and GLDAS-Noah are also quite similar to each other. But the downscaled PCRGlobwb are able
to replicate the observed unsaturated zone ∆S more accurately compared to the downscaled GLDAS-Noah.
There are some over estimation of low values during the dry period from all the 4 methods described above.
The results from Budyko Curve show the least similarities to the other methods and also has the least ability
to replicate both the observed unsaturated zone ∆S and the discharge.

The one on one comparison of the results from each method to the observed unsaturated zone ∆S gives
a clearer impression on the performance of the different methods. Based on Figure 4.7 below and similar to
what was found in Dua Station, the downscaled PCRGlobwb has the least scatter around the black 1:1 line.
The most dispersion is generated from the results of the Budyko Curve method.
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Figure 4.7: The comparison of each method to the observed unsaturated zone ∆S in the Son Tay Station

Figure 4.8: The statistical performance of the estimation methods in the Downstream Red River Basin

Using Son Tay station as the indicator, the basin-average statistical performance for the Downstream
Red River Basin is shown in Figure 4.8. The downscaled PCRGlobwb and the downscaled GLDAS-Noah give
similarly good performance during the unsaturated zone ∆S validation and the discharge validation. The
weighted R2 and RMSE of the downscaled PCRGlobwb during the unsaturated zone ∆S and the discharge
validation are 0.62 and 21.45, and 0.75 and 21.45. The scores for the downscaled GLDAS-Noah for the same
parameters are 0.62 and 23.89, and 0.78 and 23.89. On the other hand, the Budyko Curve yields the worst
performance in both validations where the weighted R2 and RMSE for the unsaturated zone ∆S are 0.04 and
49.06, and the weighted R2 and RMSE for the discharge are 0.5 and 49.06.

4.3. Spatial Distribution Correctness
4.3.1. Ca River Basin
The three major land use and land cover classes in the Ca River Basin are the irrigated crop fields, the rain
fed crop fields, and the forest group. The latter is a combination of 5 sub-classes; the secondary forest, the
mangrove forest, the bamboo forest, the medium broadleaved forest, and the rich broadleaved forest. Based
on the distribution of these classes in the land use and land cover map of the Ca River Basin [36], the monthly
average unsaturated zone ∆S for each class can be calculated. The results are shown in Figure 4.9 below.

A clear temporal trend of the peaks and lows can be observed from the result of the STREAM model. The
trend seems to coincide with the seasonal trend in Central Vietnam where May to October is considered as
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the rainy season and the rest of the year as a combination of the dry season and the intermediate season. The
forest class gains more water compared to the other classes on March, April, and May. However, during the
rest of the rainy season, the irrigated crop field class has the more positive∆S. The forest class has the biggest
∆S during the dry season except on February. The other method that also has a clear trend of peaks and lows
is the downscaled PCRGlobwb. Similar to the STREAM model, the timing of the peaks and lows coincides with
the occurrence of the rainy and the dry seasons. However, the magnitude of the monthly average ∆S differs
significantly from the STREAM model. An extremely positive ∆S occurs in on August for all three classes,
while the forest class has the biggest ∆S during the first three months of the rainy season and the irrigated
crop field for the last two months of the same season. Same as the STREAM model, November and December
are the driest month with the highest negative ∆S.

The rest of the methods do not show a coincidence between the peaks and lows trend and the seasonal
trend. A more detailed breakdown of the distribution of the unsaturated zone ∆S in each land use and land
class from different estimation methods is provided in Figure C.1 the Appendix section.

Figure 4.9: The monthly average unsaturated zone ∆S in 3 major land use and land cover classes in the Ca River Basin

4.3.2. Downstream River Basin
The forest class in the Downstream Red River Basin is an aggregation of 6 different forest sub-classes (i.e.
close-open broadleaved forest, open broadleaved forest, close broadleaved forest, close needle-leaved forest,



4.3. Spatial Distribution Correctness 33

close-open mixed forest, and permanently flooded area/forest). Based on the spatial information provided
in the land use and land cover map of the Red River Basin [42], the average unsaturated zone ∆S value for the
irrigated crop fields class, the rain fed crops field class, and the combined forest sub-classes were calculated.
The monthly averages for each method were taken over the whole period of observation (i.e. 4 years). Figure
4.10 shows the comparison of the monthly average unsaturated zone ∆S from the different methods in the
Downstream Red River Basin.

Figure 4.10: The monthly average unsaturated zone ∆S in 3 major land use and land cover classes in the Downstream Red River Basin

A clearer temporal trend of the peaks and lows can be observed from the results generated by the down-
scaled PCRGlobwb and the downscaled GLDAS-Noah. The timing of these peaks and lows slightly reflect the
occurrence of the rainy season (i.e. around May-October) and the dry season (i.e. around November-January)
in northern Vietnam. More importantly, differences between the unsaturated zone∆S in the three major land
use and land cover classes are relatively clear. During the rainy season, the forest class tends to have the high-
est increase in the soil moisture storage while the irrigated crop fields class has the lowest increase. However,
during the dry season, the forest class is also the one that extracts the most water out of the soil storage,
followed by the rain fed crop fields, and the irrigation crop fields.

The results from the other methods seem to yield different trends of peaks and lows. The empirical rela-
tionship of Method 1 generates two peaks (i.e. April and September) and one low (i.e. November). Most of the
time, the forest class has higher unsaturated zone ∆S than the other classes, with the exception of March and
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August. WaterPix produces two to three peaks (i.e. March, July, and October) and one low (i.e. November).
The forest class has higher unsaturated zone ∆S except in January and March. The Budyko Curve yields no
negative monthly average ∆S, even during the dry season. More detailed comparison between the estimated
unsaturated zone ∆S in each land use and land cover class is provided in Figure C.2 the Appendix section.
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Discussion and Recommendation

5.1. Statistical Performance of the Estimated∆S
Both of the comparisons in the first validation approach used the same remote sensing P and actual ET prod-
ucts as the ones used in the calculation of WaterPix, STREAM, and the Budyko Curve method. On the other
hand, PCRGlobwb and GLDAS-Noah have a completely different climate input (i.e. P and ET). The empirical
relationship of Method 1 is the only one that is independent from any climatic input.

This repeating use of the same P and ET datasets as computation input might introduce a bias to the
statistical performance of WaterPix, STREAM, and the Budyko Curve method. This effect is quite apparent
in the STREAM model results since the model was run using the same climatic input and calibrated to the
same observed streamflow data. However, the fact that WaterPix and the Budyko Curve method did not yield
satisfactory performance during validation suggests that the current versions of these two methods are not
suitable for the application in the Ca and the Downstream Red River Basin.

The other point of discussion is the use of a simplified monthly water balance equation to produce both
the pixel-based estimated Q and the spatially-averaged unsaturated zone ∆S. In both Eq. 2.14 and Eq. 2.15,
the unsaturated zone ∆S is treated as equal to the bulk term of ∆S. In other words, the water balance equa-
tion neglected the contribution of the change in surface and groundwater storage to the generation of total
streamflow. In the area where the effect of both groundwater and surface storage is relatively significant, this
neglect could lead to a very poor statistical agreement with the observed streamflow.

In addition to that, although the basin average performance was only evaluated at the stations with the
biggest drainage area in each basin, there are smaller, upstream stations which performances should also be
taken into account. More detailed explanations on each individual station are presented in the sub-sections
below.

5.1.1. Individual station in the Ca River Basin
Dua station is located in the downstream part of the main Ca River. There are 2 tributaries feeding the main Ca
River before the location of Dua Station; the Hieu River and the Nam Mo River. The upstream measurement
of the flow in the Hieu River is available through Quy Chau Station and the downstream part is measured by
Nghia Dan Station. The flow in the Nam Mo River is measured by Muong Xen Station. The performance of the
estimated ∆S from the different methods were also tested in these stations. The results yielded from this test
proved to be in agreement with what have been found for Dua Station validation: equally good performance
of both the downscaled PCRGlobwb (i.e. weighted R2 of 0.049, 0.071, and 0.27, and RMSE of 119.82, 94.8,
and 75.83) and the downscaled GLDAS-Noah (i.e. weighted R2 of 0.062, 0.07, and 0.09, and RMSE of 116.05,
100.31, and 83.39). A complete overview of the statistical performance of the estimation methods in the Ca
River Basin can be seen in Table B.1 and Table B.2 in the Appendix section.

Apart from the 4 stations mentioned above, there are 2 other stations located in the southern part of the
basin. The flow measured in these stations does not contribute to the measurement in Dua Station and their
drainage areas are relatively small compared to the other sub-basins. The unsaturated zone ∆S validation
was also performed for these stations. However, all the methods yield poor statistical performance where the
RMSE scores are nearly twice as big as the results in the previous 4 stations and the weighted R2s are 100 times
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smaller. Therefore the results from the validation using the observation from these two stations were deemed
too unreliable.

5.1.2. Individual station in the Downstream Red River Basin
Out of 6 streamflow stations that are located in the Red River Basin, only 4 of them are within the boundary
of the Downstream Red River Basin. These stations measure the flow of the three main Red River tributaries.
The biggest tributary is the Da River and its downstream flow is measured by Hoa Binh Station. The second
biggest tributary is the Thao River and its downstream flow is measured by Yen Bai Station. Both of these trib-
utaries originate in China. The last tributary, the Lo River, has its upstream and downstream part within the
administrative boundary of Vietnam. The upstream part is measured by Bac Me Station and its downstream
is measured by Vu Quang Station.

The unsaturated zone ∆S validation in these stations yields the same results as the one performed in
Son Tay Station. The performance of the downscaled PCRGlobwb is found to be the best among the others,
except in Yen Bai Station where the downscaled GLDAS-Noah performed slightly better than PCRGlobwb.
The downscaled PCRGlobwb weighted R2 in the stations mentioned above are 0.35, 0.65, 0.11, and 0.23 while
the RMSE are 41.45, 19.08, 44.15, and 40.79. The GLDAS-Noah statistical performances for Yen Bai Station are
0.71 (weighted R2) and 18.10 (RMSE).

Overall, the validation in Yen Bai Station yields the highest statistical parameters values for all the estima-
tion methods and the validation in Bac Me station yields the lowest. The complete overview of the statistic
scores of each estimation method in the Downstream Red River Basin can be seen in Table B.3 and Table B.4
in the Appendix section.

5.1.3. Basin average performance
Generally, the application of each estimation method in the Downstream Red River Basin yields better statis-
tical performance compared to the application in the Ca River Basin. In addition to that, the agreement on
the statistical performance of each estimation method between different sub-basins is also clearer to see in
the Downstream Red River Basin.

The agreement is easily observable in Table B.3, and B.4 in the Appendix section. It can be seen that
the best overall performance is given by the downscaled PCRGlobwb, followed closely by the downscaled
GLDAS-Noah. The WaterPix model performance is consistently in the medium range, while the Budyko Curve
method consistently underperforms the other methods. The inconclusive performance is shown by the em-
pirical relationship of Method 1. Its RMSE values in the sub-basins are relatively better but the weighted R2s
are in the low part of the scale.

However, this division of statistical performance into groups is not that obvious in the Ca River Basin.
While it is conclusive from Table B.1 and B.2 in the Appendix section that the downscaled PCRGlobwb gives
the best statistical performance during the unsaturated zone∆S validation and followed closely by the down-
scaled GLDAS-Noah, the performance of the rest of the methods is inconsistent.

One possibility that may explain the difference in performance between both basins is the effect of ne-
glecting the groundwater and surface water component in the water balance equation during the validation
process. It could be possible that groundwater and surface water ∆S play significant roles in the hydrolog-
ical cycle of the Ca River Basin compared to the Downstream Red River Basin. The fact the Ca River Basin
is half the size of the Downstream Red River Basin might also contribute to the relative importance of each
hydrological fluxes and stocks.

5.2. Estimation Methods
As a model that has been calibrated specifically in Ca River Basin, it is acceptable that the STREAM model has
the highest statistical performance during the discharge validation in the Ca River Basin. Unfortunately, the
model is unavailable for application in the Downstream Red River.

The overall results of the validation process proved that the empirical relationship of Method 1 does not
produce a reliable unsaturated zone ∆S estimation. Looking back to the computing steps in Figure 2.2 in
Section 2.1, the use of a maximum rooting depth instead of an actual rooting depth could be the cause of this
low performance.

The rooting depth used in this study was derived from the maximum root zone storage capacity developed
by Wang-Erlandsson et al. [52]. Initially, the computation of Method 1 is done using the maximum storage
capacity of 5 years return period to match the occurrence of El Nino years. However the results were not sat-
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isfactory. An improvement was made when the return period for the maximum root zone storage capacity
is switched to 2 years instead, considering the type of the major land cover classes and the general climatic
condition. Even though the quality of the estimated unsaturated zone ∆S was improved, they are still rela-
tively lower than the other methods. The calibration of the storage capacity in the root zone may improve the
ability of Method 1 to accurately recreate the unsaturated zone ∆S.

Although the application of the Budyko Curve on unsteady and short term water balance analyses is un-
common, this study tries to use the Budyko Curve in a simplistic way to explain how the presence of ∆S will
affect the water partition in monthly water balances. This is done based on the fact that, as mentioned in
Section 2.4, the finite storage capacity of soil and local climate condition might influence the deviation from
the asymptotes in the Budyko Curve.

However, based on the validation results, the Budyko Curve-estimated ∆S has the lowest statistical per-
formance. An obvious explanation of this low performance is the possibility of other factors, beside the ∆S,
to influence the difference between the potential and actual ET. This issue is significant, especially in areas
such as the irrigated crop fields, wetlands, and permanently flooded land cover class. Further research should
investigate the possible factors that, along with the ∆S, make up the difference between the potential ET and
the actual ET.

The performance of WaterPix in both the Ca River Basin and the Downstream Red River Basin can be
considered as medium to low. While this model still performs better than the Budyko Curve, it is too far
behind the downscaled PCRGlobwb. The fact that the current version of this model does not take into account
the contribution of ET from irrigation withdrawal into its monthly water balance equation could be the reason
why. The effect of neglecting this withdrawal ET can be rather significant, especially in the irrigated crop field
pixels. Further improvement of the model should consider adding the irrigation withdrawal to the monthly
water balance.

The PCRGlobwb and GLDAS-Noah are both global models developed by reliable institutions. Huge amount
of energy and efforts have been invested to improve the quality of these global models (i.e. expert knowledge
to determine model parameterization, model testing, quality of forcing data, etc.). It is only logical that both
models generate reliable estimation of the unsaturated zone ∆S compared to the other untested methods.
The downside of using the products of these global models is the relatively coarse spatial resolution and its
time-exhaustive processing nature.

5.3. The Downscaling Process
The first validation approach done in both the Ca and the Downstream Red River Basin proves that both the
downscaled PCRGlobwb and GLDAS-Noah are the statistically optimal methods to estimate the unsaturated
zone ∆S. However, both are global models that come with a coarse spatial resolution, which made it imprac-
tical to use in small to medium basin-scale analysis.

This study adopted a downscaling procedure developed by Agam et al. [3] and Immerzeel et al. [25] and
used the monthly NDVI dataset to downscale the original PCRGlobwb and the GLDAS-Noah. By doing this,
it is assumed that the spatial distribution of NDVI in the study areas represents the spatial distribution of the
unsaturated zone∆S there. In addition, since the monthly NDVI value is used to downscale both PCRGlobwb
and GLDAS-Noah, it is assumed that the seasonal dynamic of the unsaturated zone storage ∆S is reflected
in the changes of the monthly NDVI value. While this assumption is highly possible for the forest land cover
class, it is uncommon for crop fields and other type of land cover classes.

Generally, the confidence level of the downscaled products in the Ca River Basin is higher than in the
Downstream Red River Basin. Moreover, the confidence level of the downscaled GLDAS-Noah products is
higher than the PCRGlobwb in the Downstream Red River Basin but lower in the Ca River Basin. The average
R2 and RMSE value for both basins are shown in Table 5.1 below.

Parameter
Ca Downstream RR

PCRGlobwb GLDAS-Noah PCRGlobwb GLDAS-Noah
Average Monthly R2 0.1869 0.1708 0.1134 0.1342

Table 5.1: The confidence level of the downscaled PCRGlobwb and GLDAS-Noah in the Ca and the Downstream Red River Basin

More detailed analysis on the seasonal trend shows that, over the course of the observation period, the
downscaling procedure of the PCRGlobwb products yields lower level of confidence during the rainy season
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(i.e April to September) and higher level of confidence during the drier months (i.e. October to March). On the
other hand, the seasonal trend of the downscaled GLDAS-Noah confidence level is a three peaks curve with
March, July, and December as the best months. Lowest points are the months right after these best months.
A clearer visualization of these trends is provided in Figure D.1 and Figure D.2 in the Appendix section.

The one issue that comes with this downscaling procedure is the inability of the spatially distributed cor-
rection factors to compensate for the gap between the original value and the interpolated value of the input
layer. This means the average value of the disaggregated (finer-resolution) pixels does not match the value
of the original (coarse-resolution) pixel. An improvement to the calculation of the correction factor so that
the original coarse pixel value can be preserved is needed. This should increase the confidence level of the
resulted downscaled product.

The statistical performance of the downscaled PCRGlobwb and GLDAS-Noah indicates the reliability of
this downscaling procedure. In addition to that, it suggests that NDVI can be used as a proxy for the spatial
distribution of soil moisture in the unsaturated zone. However, more tests in regions with different climatic
and topographic characteristics are needed to conclude the reliability of this procedure. More importantly,
an evaluation to see whether a downscaling procedure can actually improve the reliability of monthly soil
moisture estimates from PCRGlobwb and GLDAS-Noah should be done. Both of the study areas in this study
can be classified as small to medium basins, therefore the coarse pixel size of the original PCRGlobwb and
GLDAS-Noah may significantly affect the basin-averaged estimate of the unsaturated zone ∆S.

5.4. Spatial Distribution Correctness
It is commonly understood that during active cropping season, the irrigated crop field land cover class will
have a more negative unsaturated zone∆S than the other land cover classes, especially the rain fed crop fields
and the forest classes.

In the case of the Ca and the Downstream Red River Basin, there are 2 to 3 cropping seasons in one year.
The irrigation system plays a huge role during the cropping in the dry season (i.e. October to January) while
the abundance of rain during the wet summer months (i.e. May to October) reduces the dependency of the
farmers to their irrigation schemes. These understandings are translated to a negative unsaturated zone ∆S
during the dry season and a more positive unsaturated zone ∆S during the wet season.

The result of the land use and land cover classes distribution-based evaluation proves that the down-
scaled PCRGlobwb is able to reproduce the seasonal trend of the irrigated crop field land cover class. It is also
found that the results of the downscaled PCRGlobwb follow the distribution of the unsaturated zone ∆S val-
ues among different land use and land cover classes as explained in the beginning of this sub-chapter, shown
in Figure 5.1 below. The boxplot of other methods in both the Ca and the Downstream Red River Basin is
provided in Figure C.1 and C.2 in the Appendix section.

Figure 5.1: The monthly average unsaturated zone ∆S from the downscaled PRGlobwb in 3 major land use and land cover classes in the
Ca River Basin and the Downscaled Red River Basin
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5.5. Practical Aspect
Although the downscaled PCRGlobwb is found to be the optimum method to estimate the unsaturated zone
∆S in both study areas, it is not automatically the most suitable method for the application in the WA+ frame-
work. As a global hydrological model, the PCRGlobwb model requires huge amount of preparation before it
can be run, especially during the calibration of the model parameters. While additional expert knowledge can
help to fasten the calibration process, it is still an exhaustive step that involves a big amount of computing
power and time. As a consequence, this model is not calibrated most of the time.

Out of the 5 estimation methods, the empirical relationship of Method 1 can be considered as the most
practical one. Its computing structure is less complicated than hydrological or land-surface models, and it
is also less data intensive while still scientifically sound. The other method that shows potential is the Wa-
terPix model. Its computing procedure requires less input data and less intensive iteration compared to the
STREAM model while still preserving the elegant approach towards the streamflow generation. These charac-
teristics will be very beneficial for an application within bigger and more complicated computing framework,
such as the WA+. This is important, especially because WA+ was meant to be a friendlier water accounting
method for implementation in un-gauged basins where measurement data is scarce. Other countries in the
same region (e.g. Indonesia, Thailand, Malaysia, etc.) that spans over large areas require a sound water bud-
geting tool to improve their own water management institutions. These countries definitely can benefit from
a more accurate WA+ implementation.

Acknowledging the up and growing use of the WA+ framework, the evaluation process also needs to
consider the practicality and reproducibility of each of the estimation method. A more complex and data-
intensive method will face more reluctance from prospective users and therefore will not be suitable for WA+
application. Ideas to improve the reliability of the empirical relationship of Method 1 and the WaterPix model
should be further investigated since it will be more suitable for an implementation within the WA+ frame-
work.





6
Conclusions

There are 4 research questions that were written in the beginning of this thesis report. These questions were
constructed so that the main objective of the thesis can be achieved. The first research question asks to com-
pare the ability of the PCRGlobwb and the GLDAS-Noah to simulate the unsaturated zone∆S. The evaluation
of the results from both models suggests that the downscaled PCRGlobwb has the better statistical perfor-
mance compared to the downscaled GLDAS-Noah. Although the downscaled PCRGlobwb is slightly better
than the downscaled GLDAS-Noah, both of these global models proved to be much better than the rest of the
other methods.

The current version of the empirical relationship of Method 1 does not outperform either the hydrological
or the land surface model. The statistical performance of Method 1 is actually rather low compared to either
the hydrological or the land surface models.

The current version WaterPix model does not take in to account the effect of irrigation withdrawal in its
monthly water balance routine. This may cause a significant negative impact on its statistical performance
during the validation process. However, further improvement on the computation procedure (i.e. including
the ET from withdrawal) may increase its ability to generate more accurate estimates.

The Budyko Curve method yields the lowest statistical performance compared to the other methods. This
can be addressed to the fact that the framework is originally meant for a long term steady water balance
analysis. The ∆S does not solely explain the difference between the monthly potential and actual ET.

Reliable statistical performance from both the downscaled PCRGlobwb and GLDAS-Noah indicates that
the spatial distribution of the NDVI dataset represents the spatial distribution of the unsaturated zone ∆S.
Moreover, the use of monthly NDVI to downscale the monthly unsaturated zone moisture storage may help
incorporate the effect of seasonality in to the models’ simulation results. However, the downscaling proce-
dure should be further investigated in regions with different hydrological characteristics to test its reliability.

The main objective of this study is to find the optimal method to estimate the unsaturated zone ∆S in
order to improve the reliability of the accounting method in WA+. After evaluating 5 different estimation
methods mentioned above, the final result suggests that the downscaled PCRGlobwb is able to produce sta-
tistically accurate unsaturated zone ∆S estimates. However, taking into account the methods’ practicality,
this global hydrological model is not the most suitable for the implementation within WA+ framework. On
the other hand, the empirical relationship of Method 1 and the WaterPix model have the potential to be the
optimal method although their current performances are still rather low.
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A
Input for the Estimation Methods

Input Unit Product Description

Precipitation (P) mm

Ca: composite products were derived from CHIRPS (Climate
Hazard Group) [19] and TRMM (NASA) [29]. Downstream RR:
TRMM 3B43 (NASA) [29]. Monthly time step observation was

taken for both basin, from the period of January 2007 to
January 2011.

Potential Total
Evaporation (PET)

mm

Ca: products were obtained from the USGS SSEBop model
[41] result. Donwstream RR: composite products were

derived from ALEXI model, MOD16, and SSEBop model [41].
Monthly time step observation was taken for both basin, from

the period of January 2007 to January 2011 [42].

Leaf Area Index
(LAI)

cm2/cm2
Both: products were derived from NDVI datasets [26] as

performed previously in the first method for the period of
January 2007 to January 2011 in monthly time step.

Soil Water Index
(SWI)

%
Both: ASCAT SWIT60 product the period of January 2007 to

January 2011 in monthly time step [16, 34, 35, 49].
Ratio between

surface runoff and
baseflow (Qratio)

-
Both: products were obtained from a PCRGlobwb simulation

for the period of January 2007 to January 2011 in monthly
time step [22].

Number of rainy
days (rainydays)

-
Both: products were derived from CHIRPS [19] for the period

of January 2007 to January 2011 in monthly time step.
Max. available water

content (Θavai l )
cm3/cm3 Both: products from the HiHydroSoil map courtesy of

FutureWater. This is a temporally static input.

Rooting depth (h) mm
Both: products were derived from the maximum storage

capacity in the rootzone and the available water content. This
is a temporally static input.

Table A.1: The list of input for the application of WaterPix Model in the Ca and the Downstream Red River Basin
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Input Product Description

Precipitation (P)
A composite product derived from CHIRPS (Climate Hazard Group)

[19] and TRMM (NASA) [29] for the period of January 2007 to January
2011 in monthly time step

Potential Total
Evaporation (PET)

USGS SSEBop model [41] result for the period of January 2007 to
January 2011 in monthly time step.

Land Use and Land
Cover (LULC)

A static land mask derived from different sources [36].

DEM A static raster map derived from different sources [36].

Outlet locations
A text data file derived from different sources, the fill factor for the

dam was set to zero to deal with constraints [36].

Calibration
parameters

A text data file containing the calibrated parameter values (i.e. the
Crop factor, the direct runoff-groundwater recharge separation

factor, and the groundwater stock depletion factor) [36].

Table A.2: The list of input for the application of STREAM in the Ca River Basin

Input Unit
Product
Source

Max. air temperature (tai r,max ) oC

GLDAS [37]
Min. air temperature (tai r,mi n) oC

Near-surface relative humidity (qai r ) kg/kg
Near-surface surface pressure (psur f ) kPa

Wind speed at 2 m height (wind) m/s
Downward short wave radiation (down_short) W/m2

CFSR [39]Downward long wave radiation (down_long) W/m2

Upward long wave radiation (up_long) W/m2

Digital Elevation Model (DEM) m HydroSHED

Table A.3: The list of input for the application of Penman-Monteith reference ET formula



B
Statistical Performance Overview of the

Estimation Methods

River
Sub-basin

Name

Drainage
Area

(km2)
Parameter

Method
1

PCRGlob
wb

GLDAS-
Noah

Curve
Number

Budyko
Curve

STREAM

Hieu
Quy Chau 1960

RMSE 149.11 119.82 116.05 170.14 142.27 117.02
Weighted R2 0.000057 0.049 0.062 0.000012 0.003006 0.013

Nghia
Dan

4024
RMSE 120.50 94.08 100.31 135.35 121.69 99.60

Weighted R2 0.00009 0.071 0.070 0.002 0.002 0.003

Nam Mo
Muong

Xen
2620

RMSE 113.31 75.83 83.39 180.06 179.50 76.29
Weighted R2 10-11 0.27 0.09 0.00013 0.10 0.02

Ca Dua 20800
RMSE 102.02 67.84 62.79 131.26 94.69 76.31

Weighted R2 0.0002 0.210 0.174 0.002 0.029 0.006

Ngan Sau
Hoa

Duyet
1880

RMSE 231.57 237.57 268.75 262.25 234.35 220.01
Weighted R2 0.0001 0.0001 0.0003 0.003 0.011 0.002

Ngan Pho Son Diem 790
RMSE 208.90 170.37 198.28 229.23 181.18 173.46

Weighted R2 0.000043 0.026 0.00005 0.000193 0.030 0.007

Table B.1: The overview of statistical performance of the unsaturated zone ∆S estimation in the Ca River Basin
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River
Sub-
basin
Name

Drainage
Area

(km2)
Parameter

Method
1

PCRGlob
wb

GLDAS-
Noah

Curve
Number

Budyko
Curve

STREAM

Hieu

Quy
Chau

1960
RMSE 149.11 119.80 115.83 170.17 142.27 117.02

Weighted R2 0.02 0.12 0.10 0.01 0.12 0.21
Nghia
Dan

4024
RMSE 120.50 94.08 100.31 135.35 121.69 99.60

Weighted R2 0.06 0.21 0.18 0.06 0.24 0.36

Nam Mo
Muong

Xen
2620

RMSE 113.31 75.59 83.13 180.03 179.52 76.29
Weighted R2 0.14 0.31 0.29 0.01 0.23 0.33

Ca Dua 20800
RMSE 102.02 67.84 62.79 131.26 94.69 76.31

Weighted R2 0.02 0.26 0.30 0.0002 0.24 0.27
Ngan
Sau

Hoa
Duyet

1880
RMSE 231.57 237.61 268.74 262.11 234.35 219.92

Weighted R2 0.28 0.26 0.15 0.19 0.37 0.34
Ngan
Pho

Son
Diem

790
RMSE 181.18 170.37 198.30 228.94 181.18 173.47

Weighted R2 0.15 0.26 0.15 0.13 0.35 0.31

Table B.2: The overview of statistical performance of the discharge estimation in the Ca River Basin

River
Sub-basin

Name

Drainage
Area

(km2)
Parameter

Method
1

PCRGlob
wb

GLDAS-
Noah

Curve
Number

Budyko
Curve

Da Hoa Binh 50880.41
RMSE 44.58 41.45 46.72 48.42 58.40

Weighted R2 0.16 0.35 0.23 0.16 0.09

Thao Yen Bai 48833.26
RMSE 25.42 19.08 18.10 23.85 28.58

Weighted R2 0.42 0.65 0.71 0.48 0.26

Lo
Bac Me 9266.41

RMSE 53.25 44.15 59.34 60.54 75.65
Weighted R2 0.00002 0.11 0.009 0.0052 0.00013

Vu Quang 31218.68
RMSE 60.31 40.79 54.25 63.59 78.87

Weighted R2 0.00140 0.23 0.09 0.04 0.00001

Red River Son Tay 137861.98
RMSE 33.87 21.45 23.89 32.08 49.06

Weighted R2 0.17 0.62 0.62 0.35 0.04

Table B.3: The overview of statistical performance of the unsaturated zone ∆S estimation in the Downstream Red River Basin

River
Sub-basin

Name

Drainage
Area

(km2)
Parameter

Method
1

PCRGlob
wb

GLDAS-
Noah

Curve
Number

Budyko
Curve

Da Hoa Binh 50880.41
RMSE 44.58 41.10 46.72 48.42 58.40

Weighted R2 0.64 0.58 0.47 0.48 0.69

Thao Yen Bai 48833.26
RMSE 25.42 19.08 18.10 23.85 28.58

Weighted R2 0.57 0.67 0.70 0.59 0.50

Lo
Bac Me 9266.41

RMSE 53.25 44.15 59.34 60.54 75.65
Weighted R2 0.38 0.34 0.12 0.23 0.49

Vu Quang 31218.68
RMSE 60.31 40.79 54.25 63.59 78.87

Weighted R2 0.48 0.55 0.24 0.33 0.43

Red River Son Tay 137861.98
RMSE 33.87 21.45 23.89 32.08 49.06

Weighted R2 0.59 0.75 0.78 0.63 0.50

Table B.4: The overview of statistical performance of the discharge estimation in the Downstream Red River Basin



C
The Land Use and Land Cover Based

Evaluation

Figure C.1: The monthly average unsaturated zone ∆S in 3 major land use and land cover classes in the Ca River Basin
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48 C. The Land Use and Land Cover Based Evaluation

Figure C.2: The unsaturated zone ∆S in 3 major land use and land cover classes in the Downstream Red River Basin



D
Evaluation of the Downscaling Process

Figure D.1: The monthly R2 of the downscaled PCRGlobwb and GLDAS-Noah products in the Ca River Basin
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50 D. Evaluation of the Downscaling Process

Figure D.2: The monthly R2 of the downscaled PCRGlobwb and GLDAS-Noah products in the Downstream Red River Basin
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