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MAVRL: Learn to Fly in Cluttered Environments
With Varying Speed

Hang Yu , ChristopheDe Wagter , and Guido C. H. E de Croon

Abstract—Autonomous flight in unknown, cluttered environ-
ments is still a major challenge in robotics. Existing obstacle avoid-
ance algorithms typically adopt a fixed flight velocity, overlooking
the crucial balance between safety and agility. We propose a re-
inforcement learning algorithm to learn an adaptive flight speed
policy tailored to varying environment complexities, enhancing
obstacle avoidance safety. A downside of learning-based obstacle
avoidance algorithms is that the lack of a mapping module can
lead to the drone getting stuck in complex scenarios. To address
this, we introduce a novel training setup for the latent space that
retains memory of previous depth map observations. The latent
space is explicitly trained to predict both past and current depth
maps. Our findings confirm that varying speed leads to a superior
balance of success rate and agility in cluttered environments. Ad-
ditionally, our memory-augmented latent representation outper-
forms the latent representation commonly used in reinforcement
learning. Furthermore, an extensive comparison of our method
with the existing state-of-the-art approaches Agile-autonomy and
Ego-planner shows the superior performance of our approach,
especially in highly cluttered environments. Finally, after minimal
fine-tuning, we successfully deployed our network on a real drone
for enhanced obstacle avoidance.

Index Terms—Collision avoidance, reinforcement learning,
vision-based navigation.

I. INTRODUCTION

OBSTACLE avoidance is a fundamental challenge in au-
tonomous drone technology. While the past decades have

seen a proliferation of obstacle avoidance algorithms [1], [2],
[3], [4], [5], particularly those based on learning methods, their
application within reinforcement learning (RL) frameworks [6],
[7] presents unique challenges.

In drone obstacle avoidance, most research sets a fixed or
expected speed for drones, leading to low flight efficiency in
simple environments [8] and inadequate reaction times in com-
plex ones [1]. In [9], published after our preprint, the concept
of adaptive speed for enhanced obstacle avoidance safety was
also utilized. However, this study relied solely on reinforcement
learning for speed determination and maintained dependence on
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Fig. 1. (a) is the basic framework of MAVRL. (b) illustrates drone’s trajectories
in a Cluttered Environment. Fixed-speed flight often results in collisions with
large obstacles. Absence of augmented memory leads to frequent entrapment
in such obstacles. In contrast, MAVRL-equipped flights demonstrate safe and
efficient navigation through complex terrains.

mapping and traditional path optimization. In autonomous drone
RL, choosing between end-to-end learning from raw data [2],
[10] and using a more efficient fixed latent space approach [11],
[12] significantly influences training efficiency and policy per-
formance. While end-to-end RL offers a thorough learning
approach, it demands considerable computational resources and
large datasets. Alternatively, condensing high-dimensional im-
age data into low-dimensional latent spaces enhances learning
efficiency. However, using only the current state as input, without
the mapping module found in traditional obstacle avoidance
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algorithms, often causes drones to become stuck in front of
complex obstacles.

In our study, we introduce a novel obstacle avoidance
pipeline named Memory-Augmented Varying-speed Reinforce-
ment Learning (MAVRL). As shown in Fig. 1(a), MAVRL
utilizes depth maps, along with the drone and target’s states
as inputs, and generates acceleration commands. Following the
acceleration generation, model predictive control (MPC) from
Agilicious [13] is employed to derive body rates and thrust
commands for the drone. We train the pipeline in a simulated
environment, featuring randomly generated obstacles of various
complexities. Additionally, our approach introduces a novel
latent space design that explicitly integrates memory. This latent
space induces the drone to remember obstacles it has seen within
a certain period of time, even if they are already outside of the
field of view. As shown in Fig. 1(b), our memory-augmented
latent representation and varying speed policy enable the drone
to fly in a safe and efficient way instead of getting stuck in front
of large obstacles or colliding.

Our main contributions are as follows:
� A latent space that retains past depth observations by pre-

dicting both past and current depths gives the drone a more
explicit and structured memory. Extensive ablation studies
show that this latent representation outperforms existing
solutions in obstacle avoidance tasks.

� A thorough comparison in simulation with state-of-the-
art approaches to obstacle avoidance, Agile-autonomy [1]
and Ego-planner [8], shows superior performance of our
proposed method with varying-speed strategy, especially
in cluttered environments.

� The network is effectively deployed on a real drone with
minimal post-simulation fine-tuning, demonstrating the
practicality of our solution.

II. RELATED WORK

A. Learning-Based Obstacle Avoidance

Recent studies [1], [2], [3] have shown significant advances
in learning-based methods for obstacle avoidance. In supervised
learning, Agile-Autonomy [1] uses the Metropolis-Hastings
method for generating collision-free trajectories, with a neural
network learning optimal policies. Reinforcement learning (RL)
studies [6], [14] have demonstrated that training in high-fidelity
simulators can exceed optimal control performance, with [6]
developing ‘Swift,’ a system surpassing champion-level human
pilots. However, such methods often rely on prior knowledge
or additional detection modules, restricting their effectiveness
in unfamiliar environments. [5] employed reinforcement learn-
ing to create a vision-based policy from a teacher policy with
comprehensive state information. [15] proposed a 2D navigation
planner using LiDAR-based costmaps and the Soft Actor Critic
(SAC) algorithm, but the additional weight of LiDAR sensors
limits practical deployment. Other methods [7], [10], [16] utilize
RGB images as input, transforming them into a latent format
conducive to RL training. Beyond supervised and reinforcement
learning, self-supervised approaches have been used for obstacle
avoidance [4], [17], [18], [19]. Notably, [19] introduced a robotic
system that adapts its flying speed to obstacle density, drawing
inspiration from flies and bees. We enable drones to perform
reinforcement learning across variously complex environments,
allowing for a wide range of adaptive speeds.

B. Latent Representations

Given the high dimensionality of visual inputs, the role of
latent representation is pivotal in effectively processing this
intricate data. Studies like [1], [2], [10] demonstrate the use
of depth or RGB images to orchestrate aerial vehicle motions
in an end-to-end fashion. However, such methods are not full-
proof, particularly in cluttered environments, as evidenced by a
sub-optimal success rate [11]. Latent representation is integral to
numerous applications, including image classification [20] and
vision-based navigation [2], [12], [21]. Study [21] introduced
a latent representation for sampling-based motion planning.
This representation incorporates AutoEncoders to encapsulate
high-dimensional states like images, a dynamics network for
predicting the next state, and a collision checker network. Mihir
et al. [11] developed a unique collision encoding method for
depth images, adept at preserving information about thin ob-
jects. When compared with a standard Variational Autoencoder
(VAE) [22], their method demonstrated an ability to retain more
details with the same latent dimensions. Further, [12] unveiled
a learning-based pipeline for local navigation with quadrupedal
robots in cluttered settings, featuring a pre-trained state repre-
sentation. This representation combines a VAE to process depth
images and a Long Short-Term Memory (LSTM) network [23]
to predict the next latent state.

Our work is inspired by [12], but we focus on enhancing the
latent representation to embody more explicit past memories,
rather than predicting future states. We have validated that our
approach yields superior performance, particularly in cluttered
environments with large obstacles.

III. MEMORY-AUGMENTED REPRESENTATION

In this section, we present our approach to learning a latent
space using a 256-dimensional vector to represent depth. Our
method encodes a sequence of depth images, allowing the drone
to retain memory of obstacles over time.

As shown in Fig. 2(a), the process starts by using a VAE to
convert the current depth image into a latent representation zvaet .
This is processed by an LSTM to generate a final latent state
representing past, present, or future depth images. The LSTM
output, zt, is merged with a vectorxt containing the drone’s state
and target information, which is then fed into the Proximal Policy
Optimization (PPO) algorithm [24] to compute acceleration
commands. The pipeline consists of three components: VAE,
LSTM, and PPO. The training process is as follows:
� Train a initial PPO policy with fixed and random VAE and

LSTM components. This initial policy can navigate the
drone to the target without considering obstacles.

� Collect a dataset of depth image sequences using the initial
policy and train the VAE, skipping the LSTM phase in this
step.

� Train the LSTM with a frozen encoder using the dataset
collected from the initial policy.

� Retrain the PPO to obtain an adaptive speed policy for
environments of varying complexity.

A. Encoding Depth Images

Our pipeline is based on AvoidBench [25], a high-fidelity
simulator with photo-realistic scenes. Instead of directly ac-
quiring depth images, AvoidBench uses a semi-global matching
algorithm (SGM) [26] from a virtual stereo camera to replicate
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Fig. 2. (a) depicts MAVRL’s network architecture. The depth image, encoded into a latent space by VAE, is processed by LSTM to create a memory-augmented
representation. This, combined with the drone’s state and target data, informs the acceleration command via PPO. The network within the red dotted box, used for
LSTM training, is not for reference. (b) compares original and reconstructed depth images from latent space zt, showing better quality for past and current images
than for future ones(highest MAE loss).

realistic depth errors, reducing the gap between simulation and
reality. We use AvoidBench to generate depth images for training
the VAE.

Consider a depth image at time t, denoted by It ∈ D, where
D is the set of all depth images. We use a VAE to encode each
image into a latent space, zvaet ∈ Z

Ne , where ZNe represents all
possible latent spaces and Ne = 64 is the dimension of VAE
latent space. The VAE training employs an encoder-decoder
framework without recurrent structures, using convolutional
neural networks for both the encoder and decoder.

The encoder includes six convolutional layers, each followed
by a ReLU activation function. The output from the final convo-
lutional layer is flattened and then split into two components by
two fully connected layers, representing the meanμ and variance
σ2. The latent spacezvaet is sampled from a Gaussian distribution
characterized by μ and σ2. The decoder, mirroring the encoder,
comprises six deconvolutional layers, each also followed by a
ReLU activation function. The output of the last deconvolutional
layer passes through a sigmoid activation function to yield the
reconstructed depth image I recon

t . The loss function for the VAE
is detailed in (1).

�VAE = �recon + βnorm�KL

�recon = MSE(It, I
recon
t )

�KL =
1

2

Ne∑
i=1

(1− μ2
i − σ2

i + log(σ2
i )) (1)

whereβnorm is the weight of Kullback-Leibler (KL) loss, Irecont
is the reconstructed depth image from latent space zvaet . The
MSE loss is used to calculate the reconstruction loss �recon,
while KL loss is used to calculate the KL divergence between
the latent space and the Gaussian distribution.

B. Memory-Augmented Latent Representation

As shown in Fig. 2(a), the VAE output, zvaet , is input to a
single-layer LSTM network. During training, the LSTM out-
put zt ∈ Z

Nl (Nl = 256) will be concatenated with the vector
xt consisting of the drone’s state and target information. The
combined vector is then passed through a fully connected layer

to produce a vector of dimension 3×Ne, which will be split into
three segments corresponding to the past, current, and future
depth images, Ît−T , Ît, and Ît+T , all decoded by the same
decoder. We use T to represent the number of time steps to
predict forward or backward. The LSTM employs a specific
loss function described in (2).

�LSTM =
∑

i=−1,0,1

λi · MSE(It+iT , Ît+iT ) (λi ∈ {0, 1}) (2)

Where Ît+iT denotes the reconstructed depth image from
the latent space zt. The coefficient λi determines whether the
past, current, or future depth image will be reconstructed during
training. In the section V, we will show the impact of different
λi configurations.

Fig. 2(b) shows depth images reconstructed from the latent
space zt. The past and current images are more detailed than
future ones, indicating the LSTM module’s better encoding of
past and present over future depth images. This is likely due to
the unpredictability of future events and unseen environmental
aspects.

IV. REINFORCEMENT LEARNING FOR OBSTACLE AVOIDANCE

We detail the reinforcement learning algorithm used to train
our obstacle avoidance policy. We utilize PPO, a policy gra-
dient method, to optimize the policy network by maximizing
expected rewards. We treat obstacle avoidance as a Markov
Decision Process (MDP), which structures decision-making
in stochastic environments. Our approach, distinct from other
RL-based strategies [5], [15], is tailored to handle environments
of varying complexity, allowing the policy to adaptively respond
to environmental challenges.

A. Problem Formulation

We use the AvoidBench simulator [25] for RL environment
setup. Our drone, equipped with a stereo camera, uses PPO for
training. For enhanced efficiency, we replace RotorS [27] dy-
namics model with a simpler kinematics model to allow parallel
data generation with multiple drones. The control command
includes 3D acceleration and a 1D yaw rate. The kinematics
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Fig. 3. (a) illustrates the drone’s coordinate system, with the bearing angle β between body axis xb and the target vector, and the track angle χ as the horizontal
velocity’s direction in the world frame. (b) presents an adaptive drone trajectory in a cluttered environment. The blue hollow arrows point to the reconstructed depth
maps at the corresponding positions in the trajectory. The drone decelerates when navigating complex obstacles and accelerates in simpler scenarios, demonstrating
dynamic speed adjustment based on obstacle density. (c) displays the drone’s average speed in response to uniformly bright gray images (green diamond), and the
mean and standard deviation of the speed when the input are actual depth images from (b) (red circles).

model is:

ṗ = Rw
b v, v̇ = a, (3)

wherep is the drone’s position in the world frame, v is its velocity
in the body frame, Rw

b is the rotation matrix from the body to
the world frame, and a is the body-frame acceleration. This
simplified kinematics model is used solely for policy training.
For benchmarking against other methods, the RotorS dynamics
model is employed.

The Markov Decision Process (MDP) for our model is defined
as a tuple (�,�,�,�, γ), where � represents the state space,� denotes the action space,� defines the transition probability,� is the reward function, and γ signifies the discount factor.
The state space� comprises the current latent representation zt,
along with the drone’s state and target informationxt. The action
space� includes the acceleration in the body frame and the yaw
rate. The transition function is deterministic, governed by (3).
Thus, for any state s and action a, the transition probability�(s′|s, a) is 1 for the unique next state s′ and 0 for others.

As illustrated in Fig. 2(a), the drone’s state and target infor-
mation at time t, denoted as xt, is represented by a vector of
length Ns. In our specific case, Ns is equal to 7. The coor-
dinate system is shown in Fig. 3(a): the drone’s position and
velocity in world frame at time t are denoted as p(xt, yt, zt)
and v(vxt, vyt, vzt), respectively, with the target position rep-
resented as pg(xgt, ygt, zgt). The vector from the drone to
the target is d = pg − p, which represented as (dxt, dyt, dzt),
and the drone’s heading angle is ψ. The bearing angle β is
defined as the angle between the body frame’s xb axis and the
target vector, while the track angle χ represents the direction
of horizontal velocity in the world frame. The drone’s state and
target information xt is defined as:

xt = [dhor, vhor, β
′, dzt, vzt, χ′, ψ],

dhor = ln
(√

d2xt + d2yt + 1
)
, vhor =

√
v2xt + v2yt,

β′ = β + ψ = arctan (dyt/dxt) ,

χ′ = χ− ψ = arctan (vyt/vxt) , (4)

Here, dhor is the log horizontal distance to the target, vhor the
drone’s horizontal velocity, vzt the vertical velocity, β′ the

direction to the target in the world frame,χ′ the velocity direction
in the body frame, and dzt the vertical distance to the target.

B. Reward Functions

The reward function is designed to ensure that the drone
flies safely and efficiently. As reaching the target and avoiding
collisions are sparse rewards, we introduce a progressive reward
to efficiently guide the drone. The progressive reward is defined
as follows:

rprogress = λd · dhor + λb · |χ′ + ψ − β′|
+ sign(vhor − vmax) · λv · vhor + λz · dz
+ λf · |χ′|+ λa · ‖at−1 − at‖, (5)

where λd, λb, λv, λz , λf , and λa are weights for each term.
at is the acceleration from the policy at time t. The first two
terms guide the drone towards the target by penalizing horizontal
distance and promoting correct directionality. The third term
penalizes high horizontal velocity (activated when vhor > vmax
and λv = 0 for vhor < vmax, where vmax represents the threshold
for penalizing horizontal velocity). The fourth term addresses
vertical distance, the fifth encourages forward flight, and the
last penalizes jerk for smoother flight.

Then the whole reward function is defined as:

r =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

rexceed if (pt < pmin or pt > pmax)

(p ∈ {x, y, z})
rarrive

TRAV
if ‖d‖ < dmin

rcollision if collision
rprogress otherwise

(6)

where pmin and pmax are the minimum and maximum values of
the coordinates at the boundary, respectively. We define rexceed as
the boundary-exceed penalty, rarrive as the target arrival reward
which can be obtained when the distance from the drone to the
target point is less than dmin, and rcollision as the collision penalty.
TRAV , introduced by Nous et al.[28], measures environmental
clutter, accounting for drone’s size and complex obstacle shapes.
Higher values indicate easier navigation. PPO, trained within a
fixed time window, incentivizes faster flight for higher arrival re-
wards. To balance safety and agility, the arrival reward inversely
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correlates with TRAV , while the horizontal velocity penalty in
(5), moderates speed.

The episode terminates once any of the previously mentioned
conditions are met, following which the drone is reset to a new
random starting point. In our setup, the values are configured
as follows: rexceed = −2.0 for exceeding boundaries, rarrive =
10.0 for reaching the target, and rcollision = −2.0 for collisions.
The traversability range, TRAV , is set between 3 and 13. The
progressive reward, rprogress, ranges from −0.2 to 0 as defined
in (5). Notably, this progressive reward is considerably smaller
than the other rewards.

C. Training in Varying Complexity Environments

We use AvoidBench [25] to set up the RL environment, which
is designed to test vision-based obstacle avoidance algorithms.
AvoidBench builds on Flightmare [29] but includes larger bushes
as obstacles, offering more environmental complexity than
Flightmare’s thin red trees. This complexity is adjustable via
the radius of the Poisson distribution.

To enhance training efficiency, we start with a warm-up in
a simpler environment (12-meter Poisson radius) to facilitate
learning of basic navigation and achieving high rewards. We
then increase the complexity (Poisson radius between 3.0 and
5.4 meters) to train the drone on speed adjustment relative to
environmental density—speeding up in simpler settings and
slowing in denser ones. This adaptive speed feature is crucial
for balancing agility and safety in cluttered environments.

As illustrated in Fig. 3(b), the task involves the drone flying
from the green arrow (start point) to the red arrow (target).
The trajectory is color-coded to represent the drone’s velocity.
Additionally, we display some predicted depth images generated
by our memory-augmented latent representation. These images
are presented as pairs of (Ît−10, Ît). For instance, in the pairs
(Î0, Î10) and (Î10, Î20), it is evident that the drone retains
memory of the depth image Î10 seen 10 timestamps earlier.
Observations from pairs (Î10, Î20), (Î70, Î80), and (Î205, Î215)
demonstrate the drone’s tendency to decelerate when encounter-
ing complex obstacles and to accelerate when observed distances
in the flight direction are larger, as seen in (Î140, Î150) and
(Î250, Î260).

We collected depth images and their corresponding speeds
along the trajectory in Fig. 3(b) at 0.1 s intervals. The images
were divided into six groups based on their average grayscale
value, with each group containing an equal number of images.
The average grayscale and speed, along with their standard devi-
ations, were then calculated to plot the curve of red circles shown
in Fig. 3(c). Speed responses to uniformly bright gray images,
represented by green diamonds, are measured during stable zero
acceleration periods, closely matching real navigation speeds.
The plots show an inverse relationship between drone speed and
obstacle proximity, with faster speeds when obstacles are distant
and slower speeds as they get closer.

V. EXPERIMENTS

To assess MAVRL’s effectiveness, we conducted a series
of experiments. We trained various latent representations to
predict past, current, and future depths, then compared their
performance using a policy network with consistent parameters.

Fig. 4. Average success rates of It−10 & It supervised LSTM latent space
policy (purple line), encoder in-the-loop without LSTM policy (pink line),
LSTM in-the-loop policy (yellow line), and embedded It−20 & It without
LSTM policy (cyan line). The shaded area represents the standard deviation.

We also evaluated MAVRL’s varying speed feature by com-
paring a fixed-speed training regime to Agile-Autonomy [1]
and Ego-planner [8], focusing on success rate and the balance
between safety and agility. Finally, we implemented our network
on an actual drone with minimal fine-tuning. It should be noted
that all training and testing are performed in static obstacle
environments.

All simulation experiments are run on a server with an Intel
Core i7-13700 K CPU and an NVIDIA GeForce RTX 4090 GPU.
To get enough training results for statistical analysis, we create
5 docker containers in the server and run per configuration 5
parallel, independent training processes.

A. Latent Representation

To assess the effectiveness of our latent representation, we
conducted several ablation studies. Initially, we trained the net-
work end-to-end, followed by training the policy network with
encoder in the loop (no decoder and reconstruction loss). Then,
we trained the policy with LSTM in the loop while the encoder
was pre-trained as a VAE model.

We trained five policies with the same parameters but different
random seeds for each ablation study, conducting 600 iterations
with checkpoints every 20. Each policy was tested on four
maps, performing 25 trials per map, resulting in 5× 4× 25
trials per study. As depicted in Fig. 4, our memory-augmented
latent representation (purple line) surpassed both the encoder
in-the-loop (pink line) and LSTM in-the-loop (yellow line) poli-
cies in obstacle avoidance, with shaded areas showing standard
deviations.

Further, to assess the necessity of LSTM, we experimented
with inputs of embedded It−20 and It from the data buffer
directly without an LSTM policy. The cyan line in Fig. 4
indicates that the success rate is significantly higher when us-
ing the memory-augmented latent representation with LSTM
compared to using embedded inputs alone. This confirms that
LSTM’s continuous memory capabilities substantially enhance
performance in obstacle avoidance tasks.

To evaluate the effectiveness of the memory-augmented latent
representation, we conducted an experiment where the LSTM
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TABLE I
INFLUENCE OF DIFFERENT T

TABLE II
COMPARISON OF DIFFERENT TYPES OF LATENT SPACE

was trained using various reconstruction configurations. These
configurations were then employed to train the policy network.
We investigated eight distinct types of latent representations for
this study:
� Current depth image prediction It,
� Future depth prediction It+10 with only embedded depth

as LSTM’s inputs,
� Future depth prediction It+10 with embedded depth, cur-

rent actions at and states xt as LSTM’s inputs,
� Current depth It, with short-term future It+10,
� Current depth It, with long-term future It+20,
� Current depth It, and past depth It−10,
� Current depth It, with more distant past It−20,
� Current It, past It−20, and future It+10 depth maps, also

with current actions at and states xt as LSTM’s inputs,
where predicting current depth [2] and predicting future

depth [12] separately are the most common in the literature.
Considering the onboard computing constraints, we set the
high-level control frequency to 10 Hz. To assess the impact
of different memory lengths, we tested various T values to
reconstruct current and past depths (It&It−T ). Success rates
of obstacle avoidance in the same evaluation environments are
shown in Table I. For the ablation studies, we selected T = 20,
the best value from the fine-tuned hyperparameter results, and
used T = 10 as a comparison reference.

To evaluate how various latent representations affect policy
network performance and the benefits of augmented memory,
we conducted an extensive testing regimen. The policy network,
using consistent latent representations, was trained ten times,
each with a unique random seed, saving checkpoints every
20 iterations for a total of 600 iterations. The evaluation was
conducted the same as the ablation study, and the results are
detailed in Fig. 5 and Table II.

In Table II, we compared the highest success rate checkpoints
for each latent representation, detailing average success rates
and standard deviations. Fig. 5 displays the success rates of It,
It+10 without actions, It+10 with actions, the superior com-
binations It&It−20 (the better one compared with It&It−10),
and It&It+10 (the better one compared with It&It+20). The P-
values from permutation tests [30] for each latent representation
compared to It and It+10 are provided in the last two columns of
Table II. A P-value below 0.05 signifies significant differences.

Fig. 5. Success rates of It, It+10 without actions, It+10 with actions, and the
superior combinations It&It−20 and It&It+10. The shadow area represents
the standard deviation.

TABLE III
ERRORS OF DIFFERENT PREDICTION ITEMS

For example, the P-value for It&It−20 versus It+10 is 0.0016,
suggesting only a 0.16% chance that the results are from the same
distribution. Comparatively, the P-value for It&It−20 versus It
is 0.0, indicating a significant difference.

Thus, we deduce that augmenting current depth with past or
future information consistently outperforms predictions based
solely on current depth. The combination of It and It−20

emerged as the most effective, closely followed by the com-
bination of current and future depth It&It+10 which are both
much better than only predicting future depth. Adding actions as
input when predicting the future also improves the performance.
Predicting It−20, It, and It+10, along with auxiliary predictions
of the drone’s state and action, performs similarly to the latent
representation obtained by predicting only It and It−20. This
leads us to conclude that predicting past depth can be more
beneficial in our task.

Since the LSTM training dataset was gathered using an initial
policy, we compiled Table III to show the variations in pre-
dicting past, current, and future depths across different latent
spaces, both before and after retraining with PPO. The mean and
standard deviation, calculated from the grayscale values of the
depth images, reveal that future prediction errors are the highest,
though they slightly improve when actions are incorporated for
It+10. Lower errors indicate that the latent space retains more
features (2(b)). Reconstruction accuracy decreases slightly after
retraining PPO.

Memory-augmented latent spaces significantly enhance drone
navigation in environments with large obstacles, as shown in
Fig. 1(b). Drones with memory navigate around large obstacles
more effectively, opting for longer, safer paths, while those with-
out memory often become entrapped. This highlights the crucial
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Fig. 6. (a) is the success rate of 2 different MAVRL versions, Agile-Autonomy and Ego-Planner. (b) is the average goal velocity (AGV) of 2 different MAVRL
versions, Agile-Autonomy and Ego-Planner. (c) is the Pareto frontier of success rate versus average flight speed.

role of memory in improving obstacle avoidance, particularly
with larger obstructions.

B. Benchmarking for Varying Speed Policy

Since predicting past and future depth images significantly
improves policy performance, we use the combination of It and
It−20 as the latent representation for the following experiments.
To evaluate the impact of a varying speed policy, we compared
a policy network trained with variable speeds against one with a
fixed speed. For the fixed speed setup, we modified the velocity
penalty in the reward formula (5) to λv · |vhor − vdesire|, where
vdesire is the desired velocity. While λv was set high, it remained
lower than the collision penalty, allowing consistent speed learn-
ing. Both of the fixed speed model and varying speed model were
then benchmarked against the learning-based Agile-Autonomy
method [1] and the optimization-based Ego-planner [8] using
the AvoidBench framework [25].

For MAVRL, it utilized the MPC controller from Agili-
cious [13] when outputting acceleration commands, which then
generated body rate and thrust commands for the drone. Fig. 6(a)
shows the success rates over six groups, each with seven maps
and 30 trials per map (1260 runs per method), indicating
MAVRL with varying speed often performs best. Fig. 6(b)
explores the link between average goal velocity (AGV) [25] and
map complexity, revealing MAVRL with varying speed tends
to have higher AGV in less complex environments, while all
algorithms maintain a similar AGV (around 2.0 m/s).

To validate MAVRL’s superior performance across various
agility levels when employing varying speeds, we fine-tuned the
reward function parameters of both MAVRL variants to achieve
different average flight speeds. This led to the construction of
a Pareto frontier of success rate versus average flight speed,
as shown in Fig. 6(c). The results confirm that MAVRL with
varying speed forms the Pareto frontier, dominating the results of
the other methods. However, its average speed could not exceed
3.0 m/s due to flight distance limitations, although the maximum
speed reached 5.5 m/s.

C. Real World Tests

To validate MAVRL’s real-world efficacy, we implemented
our network on a real drone, maintaining the same architecture
and hyperparameters as in our simulation experiments. Our test

Fig. 7. Real world test of MAVRL.

setup included a quadrotor equipped with 5-inch propellers and
a Realsense D435i camera, powered by a Jetson Xavier NX
featuring a 384-core GPU, 48 Tensor Cores, and a 6-core ARM
CPU. On the RTX 4090 server, the network inference speed
reaches 275 Hz, while on the Xavier NX it reaches 15 Hz. To
ensure sufficient onboard computing power for MPC and data
recording, we set the acceleration control frequency to 10 Hz on
both the simulator and the real drone, with the MPC generating
a high-frequency low-level control command at 100 Hz.

Depth images were captured with a Realsense D435i stereo
camera facing forward on the drone, which has the same reso-
lution and field of view setups as simulator. The simulation im-
proved depth map accuracy by using the SGM algorithm without
distortion, while the Realsense D435i achieved centimeter-level
accuracy up to 3 meters in real world. Indoor positioning in-
formation is provided by Optitrack, while outdoor positioning
information is provided by a RealSense T265 tracking camera.

Due to the real scene’s environmental background shown in
Fig. 7 being too close to the obstacles, the VAE and LSTM
trained in simulation struggled to differentiate between obstacles
and background effectively. We collected approximately 1,200
real depth maps and fine-tuned the VAE and LSTM using a
smaller learning rate, consistent with the training method de-
scribed in Section III for these components. When using the
PPO network trained in the original simulation environment, the
latent space generated by the fine-tuned VAE and LSTM was still
able to effectively perform obstacle avoidance navigation tasks.
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As shown in Fig. 7, the drone successfully navigated a cluttered
environment, utilizing a latent representation augmented with
past memory. In the supplementary video, we show that a
network fine-tuned indoors can operate outdoors but is more
prone to collisions in forests due to small branches and leaves
being underrepresented in the latent space.

VI. CONCLUSION

Our approach leverages memory-augmented latent represen-
tations to endow the drone with a recollection of past scenarios.
Experimental results demonstrated that reconstructing a more
extensive history of past and current depth information sig-
nificantly enhances the drone’s performance in reinforcement
learning-based obstacle avoidance tasks. Additionally, we estab-
lished that adopting a varying speed strategy not only improves
success rates but also strikes an optimal balance between safety
and agility. The successful deployment of our network on a
real drone, requiring minimal fine-tuning, marks a significant
achievement. Looking forward, we will focus on improving the
prediction and avoidance of dynamic obstacles while ensuring
the retention of information about small obstacles, such as
branches and leaves.
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