
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2012-07

M.Sc. Thesis

MEP-MAS: A Message Passing

Multiprocessor Array for Streaming

Applications

Mitzi E. Tjin A Djie

Abstract

This thesis presents the design and implementation of a
Chip-Multiprocessor (CMP) targeted at streaming applications(e.g.
MPEG, MP3). Streaming applications are applications which can
be split into several distinct stages working on data elements in a
pipelined fashion. We propose a distributed-memory array (MEP-
MAS), where the cores communicate via message-passing, optimizing
the throughput. Application tasks are dynamically scheduled by a
hardware scheduler taking the consumer-producer locality into ac-
count, thereby minimizing the communication overhead. The array
is evaluated in terms of performance, scalability and predictability as
a function of varied input stream sizes, multiple pipelines, number of
pipeline stages and traffic volume. The array is configured as a 4 by 5
mesh and has reached speedups as high as 3.6x for a 4-stage pipeline
and 13.4x for a 16-stage pipeline. Our experiments have highlighted
the need for a balanced workload in order to optimize the perfor-
mance. Furthermore, it is shown that MEP-MAS is scalable as the
speedup and throughput almost linearly increases with the the num-
ber of added pipelines. The speedup has increased from 3.6x to 13.5x
and the throughput from 17k data elements per second to 65k data
elements per second. Increasing the traffic volume in the network
marginally affects the speedup (-1.9%). Finally, increasing the traf-
fic volume can cause a high deviation in arrival times between two
subsequent data blocks in the pipeline of up to 8%.

MEP-MAS: A Message Passing Multiprocessor

Array for Streaming Applications

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Engineering

by

Mitzi E. Tjin A Djie
born in Paramaribo, Suriname

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright c© 2012 Circuits and Systems Group
All rights reserved.

Delft University of Technology

Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “MEP-MAS: A Message Passing Multiprocessor Array for Streaming

Applications” by Mitzi E. Tjin A Djie in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: 05-09-2012

Chairman:
prof.dr.ir. A.J. van der Veen

Advisors:
dr.ir. T.G.R.M van Leuken

ir. Sumeet Kumar

Committee Members:
dr.ir. J.S.S.M. Wong

iv

Abstract

This thesis presents the design and implementation of a Chip-Multiprocessor (CMP)
targeted at streaming applications(e.g. MPEG, MP3). Streaming applications are
applications which can be split into several distinct stages working on data elements
in a pipelined fashion. We propose a distributed-memory array (MEP-MAS), where
the cores communicate via message-passing, optimizing the throughput. Application
tasks are dynamically scheduled by a hardware scheduler taking the consumer-producer
locality into account, thereby minimizing the communication overhead. The array is
evaluated in terms of performance, scalability and predictability as a function of varied
input stream sizes, multiple pipelines, number of pipeline stages and traffic volume.
The array is configured as a 4 by 5 mesh and has reached speedups as high as 3.6x for
a 4-stage pipeline and 13.4x for a 16-stage pipeline. Our experiments have highlighted
the need for a balanced workload in order to optimize the performance. Furthermore,
it is shown that MEP-MAS is scalable as the speedup and throughput almost linearly
increases with the the number of added pipelines. The speedup has increased from 3.6x
to 13.5x and the throughput from 17k data elements per second to 65k data elements
per second. Increasing the traffic volume in the network marginally affects the speedup
(-1.9%). Finally, increasing the traffic volume can cause a high deviation in arrival
times between two subsequent data blocks in the pipeline of up to 8%.

v

vi

Acknowledgments

I would like to thank my advisor dr.ir. T.G.R.M van Leuken and Sumeet Kumar for
allowing me to be part of this project and advising me during the coarse of the project.
Special thanks to Sumeet, who was there for me on day to day basis and always checking
up on me when needed. Furthermore I would like to thank Anthony Brandon and Roel
Seedorf for helping me getting started with the ρ-Vex processor and toolchain. And last
but not least I would like to thank my friends and family who have always supported
me and helped me through tough times.

Mitzi E. Tjin A Djie
Delft, The Netherlands
05-09-2012

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Problem Statement . 1
1.2 Thesis Goals . 2
1.3 Contributions . 2
1.4 Thesis Organization . 3

2 Background 5

2.1 Parallelism . 5
2.2 Exploiting TLP and DLP . 5
2.3 Streaming applications . 6

2.3.1 The Stream Programming Model 6
2.4 A Shared-memory Multiprocessor architecture 7
2.5 A Distributed Memory Multiprocessor architecture 8
2.6 Performance analysis and comparison of a Shared-memory architecture

and a Message-Passing architecture . 8
2.6.1 Experimental setup . 9
2.6.2 Results . 11
2.6.3 Scalability . 12
2.6.4 Conclusion . 14

2.7 Related work . 14
2.7.1 The Intel SCC . 14
2.7.2 C-HEAP . 15
2.7.3 The IBM Cell-processor . 16
2.7.4 The PicoChip . 17
2.7.5 The Ambric parallel processor 18
2.7.6 AsAP . 19

2.8 Summary . 19

3 System Overview 21

3.1 System Architecture . 21
3.2 Scheduling Policy for scheduling on the VLIW array 23
3.3 Overview of the Message Passing Architecture 23
3.4 Summary . 25

4 Architecture 27

4.1 The Distributed Scheduler . 27
4.1.1 The Primary Scheduler . 27
4.1.2 The Secondary Schedulers . 29

ix

4.2 The Message Passing Tile . 30
4.2.1 The Processing Element . 30
4.2.2 Data Memory . 31
4.2.3 Instruction Cache . 32
4.2.4 The Bootloader . 32
4.2.5 Data Interface . 32
4.2.6 The Message Passing Buffer . 32
4.2.7 The Buffer Manager . 32
4.2.8 Outgoing Buffer . 33
4.2.9 The DMA Controller . 34
4.2.10 The Network Interface . 36
4.2.11 The Network Interface Bridge 39

4.3 Summary . 40

5 Experimental Setup and Results 41

5.1 The Baseline Platform . 41
5.2 The Applications . 41

5.2.1 The JPEG Decoder . 42
5.2.2 The FIR Filter . 43
5.2.3 Custom Application . 45
5.2.4 The Scheduling Overhead . 46

5.3 Performance Evaluation Metrics . 46
5.4 Performance Evaluation Process . 48
5.5 The Experiments . 48

5.5.1 Increased Input Sizes . 49
5.5.2 Multiple Pipelines . 51
5.5.3 Varied buffer sizes . 52
5.5.4 Varied number of pipeline stages 53
5.5.5 Increased traffic volume . 54

5.6 Summary . 62

6 Conclusion 65

6.1 Summary . 65
6.2 Future Work . 66

x

List of Figures

2.1 The mapping of an application when exploiting DLP. 6
2.2 The mapping of a streaming application. 6
2.3 A Dataflow Process Network . 7
2.4 The basic structure of a shared-memory architecture 8
2.5 The basic structure of a Distributed Memory architecture 8
2.6 The shared-memory configuration used in this simulation 9
2.7 The message-passing configuration used for this simulation 10
2.8 The dataflow graph of the simulated application 10
2.9 The latency for different traffic volumes 11
2.10 The Speedup for different traffic volumes 12
2.11 The mapping of the multiple pipelines on the platform for every application 13
2.12 The latency for different traffic volumes for the scaled up configurations 13
2.13 The speedup for different traffic volumes for the scaled up configurations 13
2.14 Top-level view of the SCC multiprocessor 14
2.15 The CHEAP architecture . 16
2.16 The Cell processor architecture . 17
2.17 The PicoChip architecture . 18
2.18 The Ambric channel structure . 19

3.1 The complete multiprocessor architecture configuration 22
3.2 Tasks separated by markers. 22
3.3 The basic components of a message passing tile 23
3.4 The FIFO problem . 24
3.5 The process of sending a message form core 0 to core 1 25

4.1 The basic structure of the primary scheduler. 28
4.2 Data Flow Graph representation . 28
4.3 The different traversing orders . 30
4.4 The LUT structure . 30
4.5 The Message Passing Tile . 31
4.6 The behavior of the Buffer Manager 33
4.7 Illustration of the disadvantage for multiple message send approvals . . 36
4.8 The FSM of the DMA-controller . 38
4.9 The structure of a packet . 39

5.1 The baseline platform configuration . 42
5.2 The data flow graph of the JPEG decoder 42
5.3 The data flow graph of the JPEG decoder with four stages 43
5.4 The affect of adding a fourth core to a pipeline with an unbalanced

workload . 44
5.5 The serial moving average filter implementation 45
5.6 The partitioned moving average filter implementation 45
5.7 The data-flow graph of the FIR filter 46

xi

5.8 The inner and outer loop transitions 47
5.9 The data-flow graph of the custom application 48
5.10 The different pipeline mappings . 50
5.11 The Speedup as a function of an increased input-stream size 50
5.12 Execution breakdown for each application 51
5.13 The mapping of the multiple pipelines on the platform for every application 52
5.14 The Speedup as a function of the number of pipelines 52
5.15 The Throughput as a function of the number of pipelines 53
5.16 The Speedup as a function of the MPB size 53
5.17 The Speedup as a function of the number of partitions 54
5.18 The Speedup as a function of the number of partitions 54
5.19 Top-level view of the two platform configurations 55
5.20 The average arrival rate as a function of the injection rate for each ap-

plication . 56
5.21 The critical path of the FIR filter . 57
5.22 The critical path of the custom application 58
5.23 The critical path of the JPEG decoder 58
5.24 The average deviation as a function of the injection rates 59
5.25 The average arrival rate as a function of the injection rate for each ap-

plication . 60
5.26 The different pipeline mappings . 60
5.27 The average deviation as a function of the injection rates 61
5.28 The speedup for the first configuration 61
5.29 The speedup for the second configuration 62

xii

List of Tables

2.1 Memory Latencies . 9
2.2 NOC specifications . 11

4.1 Control Registers . 35
4.2 DMA-controller operations . 37
4.3 The FSM states . 37
4.4 The communication classes . 38
4.5 The communication ID’s and their descriptions 39

5.1 The run-times of the three partitions of the JPEG decoder 43
5.2 Instruction counts of the JPEG encoder 44
5.3 The run-times of the FIR filter . 46
5.4 Instruction counts of the FIR filter . 47
5.5 The run-times of the three partitions of the Custom Application 48
5.6 Instruction counts of the Custom Application 49
5.7 The scheduling overhead for the different applications 49
5.8 The execution times of core 1 for the 3-core and 4-core JPEG pipelines 51
5.9 The injection rates . 55

xiii

xiv

Introduction 1
Current software applications demand high performance levels, which has exposed the
limitations of microprocessors. Limitations such as long-wire delays and a limited
amount of available instruction level parallelism in applications has shifted the focus
towards Chip-multiprocessors (CMPs). CMPs consists of multiple processing elements
which can be used to execute tasks in parallel. In order for an application to be
executed on a CMP, it must be partitioned into multiple tasks, which can be executed
in parallel on one of the processing elements. Several partitioning strategies exist for
mapping applications onto a CMP, one of which is the stream programming model.
Applications in the stream programming model are partitioned into distinct stages,
where each stage works on data elements in a data stream. The stages are executed in
a pipelined fashion and each stage in the pipeline requires the result of the previous stage
in the pipeline. Stages in the pipeline execute in parallel, which reduces the execution
time of the application. The main advantage of the stream programming model is that
every application, where data is being processed iteratively, can be pipelined.

1.1 Problem Statement

Communication and scheduling are two important aspects that must be considered
when designing CMPs targeted at streaming applications. There are two common CMP
architectures that support different types of communication. The first architecture is
a shared-memory architecture where tasks share one global memory and communicate
by writing data to the shared-memory. Communication between tasks on a shared-
memory architecture is implicit and not exposed to the application developer, which
makes programming for this architecture relatively easy. However applications executed
on shared-memory architectures may suffer from high communication overheads, as all
communication has to go through the shared memory. This increase in communication
overhead results in lower speedups. In a distributed-memory architecture tasks have pri-
vate memories and communicate through message passing. The application developer
must explicitly send and receive messages, by calling specific message-passing functions
and is, therefore responsible for communication and synchronization which decreases
the ease of programming on distributed-memory systems. However, distributed archi-
tectures present the possibility to exploit producer-consumer locality and, in the case
of streaming applications, intermediate results can directly be sent to the next stage in
the pipeline, possibly located on a neighboring core.

As previously mentioned, the scheduling method is also an important aspect that
must be considered when designing a CMP targeting streaming applications. Dynamic
scheduling requires scheduling logic in hardware, but has the advantage that run-time
information can be used to make scheduling decisions. On the other hand, tasks can

1

be scheduled statically at compile-time, which avoids the need for scheduling logic but
decreases the scheduling flexibility.

In summary, designing an architecture which is optimized for streaming applications
is not trivial. In order to design such an architecture, we need to:

1. Design and implement a message-passing architecture that enables fast and effi-
cient data transfers while maximizing the ease of programming.

2. Design a scheduler that implements an optimal scheduling strategy for streaming
applications.

1.2 Thesis Goals

In the previous section we have mentioned the importance of the communication and
scheduling methods for streaming applications, to that end we set the following goals:

• Design of a message-passing array to facilitate the communication between pro-
cessors.

• Design of a distributed hardware scheduler, which takes the producer-consumer
locality into account.

• Implementing a message-passing library, which allows for communication between
tasks.

• Evaluating the proposed design in terms of speedup, throughput and predictability
as a function of varied input stream sizes, multiple pipelines, varied number of
pipeline stages and increased traffic volumes.

1.3 Contributions

In this thesis we propose MP-MAS, a Message Passing Multiprocessor Array for
Streaming applications. MP-MAS offers a flexible, processor-architecture independent
message-passing array of processors, where application tasks are dynamically sched-
uled. MP-MAS also includes a message-passing library containing easy-to-use message-
passing functions. The main contributions of our thesis are, accordingly:

• The design and implementation of a distributed-memory array targeted at stream-
ing applications, where the cores communicate through message-passing.

• The design and implementation of a dynamic distributed scheduler, which exploits
producer-consumer locality. The scheduler implements two scheduling policies,
increasing the flexibility of our scheduler.

• An in-depth performance evaluation of the multiprocessor architecture, evaluating
the performance, scalability and the sensitivity to the unpredictable nature of
the network. We have implemented and simulated a 4x5 mesh containing 18
processors and the distributed scheduler and observed speedups of 3.6x for a

2

4-stage pipeline and 13.4 for a 16-stage pipeline. Furthermore, with regard to
the predictability, the maximum observed deviation of the arrival times of two
subsequent data blocks is 8%.

1.4 Thesis Organization

This thesis is organized as follows:
Chapter 2 defines the basic concepts of parallel processing. Two common chip

multiprocessor architectures (shared memory and distributed memory) are described.
Furthermore, we evaluate the performance of both these architectures by conducting
a small experiment. Finally, this Chapter provides an overview of several existing
message-passing architectures. Chapter 3 gives an overview of the complete architec-
ture, which will be discussed in detail in Chapter 4. In Chapter 5 we evaluate the
performance of the proposed architecture by conducting several experiments to evalu-
ate different aspects of the architecture. Finally, Chapter 6 provides a summary of the
work done during the project and recommendations for future work.

3

4

Background 2
This Chapter starts with several concepts of multiprocessing and introduces the stream
programming model. Next, two common Multiprocessor architectures are discussed,
which includes a shared-memory architecture and a distributed-memory architecture.
The performance of both architectures are measured by means of a simulation of the
network behavior for both architectures. The experimental setup and the results of the
simulation are presented and finally, this Chapter ends with a description of several
existing Message Passing architectures.

2.1 Parallelism

Applications can contain different types of parallelism which can be exploited when
executed on a multiprocessor. Exploiting these types of parallelism increases the exe-
cution performance. There are tree types of parallelism: Instruction-level parallelism
(ILP), Data-level parallelism (DLP) and Task-level parallelism (TLP).

• ILP: Instructions that can be executed independently from each other, can be
executed in parallel. Instruction B is independent from instruction A if instruction
B does not need the result from instruction A to execute correctly.

• DLP: Applications that contain DLP have a dataset that is distributed amongst
multiple tasks. The tasks contain the same set of instructions and can process
their part of the dataset in parallel.

• TLP: Applications that consists of different tasks, contains TLP. Each task can
be executed on a different processor in parallel. The tasks can work on the same
or different parts of the dataset and can consist of the same or different set of
instructions. Note that DLP is a form of TLP.

2.2 Exploiting TLP and DLP

Exploiting the different types of parallelism directly determines the mapping of an ap-
plication on to a multiprocessor. Applications that contain DLP are usually partitioned
in such a way that every task contains the same program code and works on a different
part of the dataset. Figure 2.1 shows an example of the mapping of an application
containing DLP onto a multiprocessor, where every task executes the same program
code and works on the different data blocks A,B,C. Applications that contain TLP
are typically divided into multiple tasks all working on parts of the same or different
data. A special case of applications containing TLP are streaming applications were
the tasks work on data elements in a stream of data. Figure 2.2 shows an example of

5

Figure 2.1: The mapping of an application when exploiting DLP.

Figure 2.2: The mapping of a streaming application.

such a streaming application. Because the tasks only depend on the next data block
in the stream, the tasks can be pipelined.

2.3 Streaming applications

There are a number of application domains that can be considered as streaming appli-
cations, usually within the digital signal processing domain. Examples include, multi-
media processing (e.g. MPEG, JPEG) and FIR filters.

2.3.1 The Stream Programming Model

A program or application can consists of several distinct phases. Each phase can
be considered as a task that processes input data and produces output data. The
output data is further processed by the next phase or task. The tasks form a pipeline,
where each stage processes data elements in a stream of data. The data elements are
communicated through FIFO’s between tasks. The tasks read and write data elements
to and from these channels.

Kahn Process Networks(KPN’s) [1] [2] is a common streaming model. The data
elements in a KPN are called tokens. Each token is produced and consumed only once.
Tasks block when they try to write to a full channel or read from an empty channel.
Once a channel has been established between two tasks it can not be removed. The
KPN’s can be represented by a graph where the nodes represent tasks and the arcs
represent FIFO channels. Figure 2.3 shows an example of a KPN. A special case of
a KPN is a Dataflow Process Network [3]. The nodes in Dataflow Process Networks
represent tasks and the arcs represent the data streams. In this thesis these dataflow
networks will be used to describe the dependencies between processes in streaming
applications, where the processes are tasks executed on a PE.

The tasks belonging to streaming applications execute in a pipelined fashion. Each
task in the pipeline executes subsequent blocks in the data stream in parallel, reducing

6

Figure 2.3: A Dataflow Process Network

the total execution-time of the application. Another advantage of the stream program-
ming model is that every task that processes data iteratively can be pipelined, which
is a rather large set of applications.

The stream programming model also has limitations, one of which is the fact that
the tasks in the pipeline must have an equal workload for an optimal performance. The
rate at which the pipeline can process data depends on the slowest task in the pipeline.
Balancing the workload can be quite difficult and is sometimes not possible.

2.4 A Shared-memory Multiprocessor architecture

Tasks executed on Shared-memory multicore architectures share one address space that
addresses a single centralized memory [4] [5]. Figure 2.4 shows what the structure of
such an architecture looks like. There are several levels within the memory hierarchy.
The first level is usually a small private data cache placed close the Processing Elements
(PE’s). The small cache size and the close connection to the PE’s allows for single-
cycle access times. The next level in the memory hierarchy is the shared l2-cache,
this cache has a bigger size and is placed further away from the PE’s. The increased
size and distance between the PE’s and the L2-cache increases the access time of this
cache. The last level is the main memory, which is large and is kept off-chip. The PE’s
are connected via an interconnect. As the small caches are private, some coherency
algorithm and logic is needed to keep all data in the private caches up to date.

The main advantage of a shared-memory architecture is that it is relatively easy
to program in comparison to the distributed-memory architecture. Communication
between tasks executed on a shared-memory platform is implicit and not exposed to
the programmer.

One disadvantage of the shared-memory architecture with regard to streaming ap-
plications is the increased communication overhead caused by simultaneous reads and
writes by the pipeline stages to the shared-memory. All stages in the pipeline need to
write their intermediate result to the shared-memory and subsequently read new data
from the shared-memory every iteration. This increases the traffic traveling towards the
shared-memory and the contention between the stages for the shared-memory. These
consequences are amplified for stages with an equal run-time.

7

PE

L1-cache

PE

L1-cache

PE

L1-cache

Interconnect

L2-cache

Figure 2.4: The basic structure of a shared-memory architecture

Figure 2.5: The basic structure of a Distributed Memory architecture

2.5 A Distributed Memory Multiprocessor architecture

The memory in distributed-memory architectures [6] is physically distributed over the
chip and PE’s have their local private memory. Tasks executed on such an architec-
ture have a private address space. When data from a remote PE is required, data
must be communicated over the network from the remote PE. The method used to
exchange this data is called Message Passing. Figure 2.5 gives the basic structure of
such an architecture. Incoming messages must be buffered until the receiving task is
ready to receive the message, therefore distributed-memory architectures often require
a message-passing buffer. Distributing the memory increases the memory bandwidth
compared to a shared-memory architecture, as all PE’s can access their local memory
concurrently. Another advantage is that producer-consumer locality can be exploited,
tasks that share data can be scheduled on neighboring PE’s. Communication latencies
depend on the distance between the sender and receiver and the traffic volume at the
time. The application mapping and network architecture are, therefore, two important
factors that determine the performance of distributed-memory architectures.

The main disadvantage of distributed memory-architectures is that the application
developer is in charge of communication and synchronization, which makes program-
ming for distributed memory architectures difficult.

2.6 Performance analysis and comparison of a Shared-memory

architecture and a Message-Passing architecture

Given the advantages and disadvantages of both the shared-memory architecture (SM
architecture) and the message-passing architecture (MP architecture) and the charac-

8

Table 2.1: Memory Latencies
Memory component Latency in Cycles

L1 Data retrieval 1
L2 Data retrieval 3

L2 Miss penalty r/w 30

PE L1

PE L1

PE L1

PE L1

L2

Figure 2.6: The shared-memory configuration used in this simulation

teristics of streaming applications, our preliminary hypothesis is that the MP architec-
ture is better suited for streaming applications. To confirm our hypothesis, a simulation
of the execution of a partitioned streaming application on both multiprocessor archi-
tectures is run. This gives us an indication of the performance of both archtictures.

2.6.1 Experimental setup

The simulation is run in Matlab, which implements a suitable programming environ-
ment for such a simulation. The performance of a multiprocessor is generally measured
by the execution time of applications on the multiprocessor. Thus, the goal of this sim-
ulation is to attain the execution time of the same application on both architectures.
The run-time behavior of the individual components belonging to both architectures
are simulated in terms of latency.

The SM architecture configuration used for the simulation, consist of four PE’s with
a three-level memory hierarchy. Each PE has a private L1-data cache and communicate
via a shared L2-data cache. The L2 is connected to an off-chip main memory. The
memory-access latencies used for the simulation are listed in 2.1 and Figure 2.6 shows
the SM configuration.

The message passing architecture consists of four PE’s with a distributed memory,
where all cores have their own address space and communicate via message passing.
To send and receive messages a message passing buffer is used, Figure 2.7 shows the
simulated MP architecture.

A dummy application is used for the simulation. This application is partitioned into
three functional parts, all having an equal execution time of 500 cycles and therefore
have a perfectly balanced workload. The size of the data blocks in the data stream is
64 bytes. Figure 2.8 gives the dataflow graph of the dummy application.

9

PE PM

PE MP

PE MP

PE MP

Figure 2.7: The message-passing configuration used for this simulation

1 2 3 4

Figure 2.8: The dataflow graph of the simulated application

2.6.1.1 Noc specifications

The same interconnect is used to connect the components in both architectures. In
previous work a scalable NOC architecture has been designed and is used for this
experiment [7]. The basic building blocks of the NOC are the routers. The task of the
routers is to route the packets arriving at the router to the next router on the path to
its destination. The router has five in and output ports, each input port has a buffer
which is used to buffer incoming packets that need to wait their turn. A round-robin
scheme is used to arbitrate between the input ports. The NOC architecture implements
wormhole switching, were a packet is broken into smaller pieces called flits. Each packet
has a header flit and one or more data flits. The header flit contains information needed
by the routers to determine the direction of the packet and also indicates the nature
of the contents of the packet. The last flit is called the tail. The routing algorithm
routes packets along the shortest path from source to destination. The time it takes
for the arbiter to arrive at a particular input port can vary from 1 to 5 cycles, which is
determined by the number of input ports. To keep the simulation rather simple, a fixed
router forwarding latency is used. The total execution time of the application depends
on the individual component latencies, they are listed in Table 2.2.

2.6.1.2 Traffic volume

In reality the traffic conditions on the NOC vary during run-time, this must be taken
into account as well. When a packet arrives at a router it either proceeds immediately
or must wait for other packets to pass through the router first. The worst possible
latency a packet can incur at a router is when four other packets consisting of the
maximum amount of flits may proceed first. The number of packets that an incoming
packet encounters at the routers, indirectly indicates the traffic volume. In heavy traffic
conditions, packets are stalled quite often and for a longer period of time. To model
these traffic conditions, incoming packets are entered into slots, each slot indicates the
number of cycles the packets must wait, i.e the time it takes for a number of packets,

10

Table 2.2: NOC specifications
Component Value

Packetizing 3 cycles
Depacketizing 1 cycle

Router arbitration 4 cycles
Flit size 36 bits

Maximum packet size 16 flits
Buffer size infinite

Figure 2.9: The latency for different traffic volumes

at most four packets, to pass through the router first.

2.6.2 Results

The latency and the speedup given as a function of the traffic volume are shown in
Figure 2.9 and Figure 2.10, respectively. The speedup is calculated by dividing the
latency of the MP architecture by the latency of the SM architecture. The latency of
the SM architecture varies between two extremes, the worst latency is when the L2
has a 100% miss rate and all requests are forwarded to the off-chip memory. In the
best case, the L2 cache has a 100% hit rate. Increasing the traffic volume, increases
the communication latencies and thus the total communication overhead. The latency
curve of the SM architecture latency curve is steeper then the MP latency curve, which
indicates that the SM architecture is more affected by the extra traffic then the MP
architecture. The MP architecture has a better performance, which is expected. The
first reason is that on the SM architecture, intermediate data blocks from a pipeline-
stage must be written to the L2, the next stage in the pipeline needs this data and
requests it from the L2. Data travels first to the L2 and then to the destination core.
On the MP architecture data is send directly to the next core in the pipeline, which
means that the time spent in the network by the data elements is on average twice as
long on the SM architecture. The traffic volume is therefore on average higher for the
SM architecture. The second reason is that the cores in the pipeline need to read new
data from memory and then subsequently write the intermediate results to memory.
Only one read or write request can be processed by the memory at once, this increases
the contention for the L2-cache between cores.

11

Figure 2.10: The Speedup for different traffic volumes

2.6.3 Scalability

One of the important requirements of many-core architectures is scalability. Both
architectures are scaled up and simulated to determine the scaled up performance. The
number of PE’s used in both scaled up architectures is increased to thirty PE’s. Ten
pipelines are executed in parallel, where every pipeline consist of three tasks. The L2 in
the SM architecture is a banked memory consisting of four banks. The pipeline stages
belonging to one pipeline read from and write to a different L2-bank. Figure 2.11a
shows the MP configuration and Figure 2.11b shows the SM configuration.

To determine the minimum performance gain (lowerbound) of executing streaming
applications on a distributed-memory architecture in comparison to the shared-memory
architecture, the pipelines running on the distributed-memory architecture are placed
on cores located on average 6 hops away. On an array of 6 by 6 cores, the maximum
average hop count is 6 hops. To get an indication of the influence of the hop count
on the performance, an average hop count of 5 hops is also simulated. The results of
this simulation are given in Figure 2.12 and Figure 2.13. Analyzing the results of this
simulation, two important aspects are observed. The first aspect is that the speedup has
increased in comparison to the previous simulation. As the number of cores increases
so does the number of read and write requests all traveling towards the L2, this further
increases the contention for the network resources as well as the L2-cache. The second
aspect is that the latency curve of the SM architecture is much steeper then the MP
architecture, indicating that the increase in traffic volume has a greater effect on the
SM architecture. This is a direct consequence of the fact that the data blocks in the
SM architecture spent more time in the network.

Considering the lower latencies and the relatively small influence of the increased
traffic volume on the performance of the MP architecture, the MP architecture is proven
to be scalable and more suited for streaming applications then the SM architecture.
In the MP architecture, traffic is distributed over the entire network, which increases
scalability.

12

PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE

(a) The scaled up message-passing configuration

PE PE PE PE

PE PE PE PE PE L2

PE PE PE PE PE L2

PE PE PE PE PE L2

PE PE PE PE PE L2

PE PE PE PE PE

PE

(b) The scaled up shared-memory configuration

Figure 2.11: The mapping of the multiple pipelines on the platform for every application

Figure 2.12: The latency for different traffic volumes for the scaled up configurations

Figure 2.13: The speedup for different traffic volumes for the scaled up configurations

13

Figure 2.14: Top-level view of the SCC multiprocessor

2.6.4 Conclusion

The results indicate that the MP architecture has a better performance compared to the
SM architecture for streaming applications. The speedup in the scaled up architecture
has increased, which indicates that the MP architecture scales well. To conclude, the
architecture most suited for executing streaming applications is a distributed memory
architecture, where the PE’s communicate via message passing.

2.7 Related work

There are several message passing architectures. Six architectures with a different
Message Passing implementation are discussed in this paragraph.

2.7.1 The Intel SCC

The Intel SCC consists of 48 P54C Pentium cores with an x86 instruction set archi-
tecture [8]. The SCC is intended for experimental research and not for commercial
use. This experimental research includes exploring the performance of applications on
a message-passing architecture. There are 24 tiles, where each tile contains 2 cores.
The tiles are connected via a network on chip organized as a mesh. Every core has
access to off-chip private memory as well as shared-memory. The SCC does not contain
any coherency logic, so the off-chip shared memory must be managed by the applica-
tion developer. This off-chip memory can be reached through four Memory controllers.
Each core has two levels of private caches. The L1-cache is part of the core itself and
the L2-cache resides on the tile along with a cache controller. Figure 2.14 shows a
top-level view of the SCC.

The SCC uses a Message Passing Buffer (MPB) and a Mesh Interface Unit (MIU) to
facilitate message passing between cores. The message passing buffer is shared between

14

all the cores and is used to store incoming messages. The cores address space is used
to address the private memory and all the message passing buffers. Every MPB has its
own address space memory mapped into the address space of the core. When a message
is sent, data is copied from the L1 to a local or remote MPB. The address of the target
MPB appears on the bus and is translated by the MIU into the physical location of
the MPB. The MIU uses a LUT for translation. When an address is translated into
a remote physical address, the MIU packetizes the data and sends it to the network.
The L1-cache contains data from private memory and from the MPB. Every cache line
has an extra field that is set when it contains data from the MPB’s. When a message
is received, the data is copied from either the local or a remote MPB into the L1.

The SCC uses a relatively small message-passing library called RCCE [9]. RCCE
implements a shared-name space model where all variables contain one name across all
nodes. This enables the application developer to reference a variable by name and core
ID. This is an advantage for applications where different cores work on data elements
from one large data structure.

The advantage of this architecture is the available off-chip memory, this allows for a
broad range of applications to be executed on the architecture without any data mem-
ory constraints. However when the processor array will be used for computationally
intensive parallelized code, the available off-chip memory is usually not needed.

The main disadvantage of the SCC is that message passing buffer does not contain
any logic that manages the messages in the buffer which, therefore, has to be done in
software. When a message needs to be sent to a remote MPB, the application developer
decides at what address the message will be stored in the MPB. To ensure that messages
still residing in the MPB are not overwritten, the application developer must manage
the buffer in software. Managing the buffer in software can become very difficult, the
application developer must know exactly when space is available and how much.

2.7.2 C-HEAP

C-HEAP is a heterogeneous Multiprocessor architecture template for the design of
embedded signal processing systems [10]. With this template the authors address the
issue of having to make a trade-off between flexibility and efficiency on one hand and
time to market versus cost on the other. The authors propose a flexible and scalable
heterogeneous multiprocessor based on a distributed-shared memory architecture. The
heterogeneity allows for an optimum balance between performance, power consumption,
flexibility and effiency. The memory is distributed among all the processing elements
and have one global address space. As these distributed memories are accesable by
all PE’s they are used as communication buffers. A message is passed by writing to
these communication buffers and received by reading from these buffers. Parts of the
memory are kept private for scratchpad purposes. Figure 2.15 shows the C-HEAP
architecture template. The target applications for this architecture are based on Kahn
Process Networks as described in a previous paragraph.

The tasks communicate via FIFO channels. Data producing tasks must claim space
in the channel buffer, thus claim empty token buffers and release full buffers. The
receiver needs to release empty token buffers and claim full buffers. This is a very
efficient way with high communication bandwidth to facilitate message passing. There

15

Figure 2.15: The CHEAP architecture

is no competition between communication resources. However these channels must be
configured when the hardware is being implemented, which works well for these specific
SOC’s.

As this is a template for embedded systems, the complete configuration of the archi-
tecture including the FIFO channels is customized for one application. This approach
is inflexible and not suitable for a more general use of the multiprocessor.

2.7.3 The IBM Cell-processor

The Cell-processor is a power-efficient and high-performance multiprocessor for a wide
range of applications [11]. The Cell-processor is a heterogeneous processor that con-
sists of 64-bit IBM Power Processing Element (PPE) and eight Synergistic Processing
Units (SPU’s). The PPE is the main processor and runs the OS and coordinates the
SPU’s. A SPU is based on a single-instruction multiple-data (SIMD) architecture and
is intended for data-intensive processing. This configuration combines the flexibility
of the IBM Power core and the computational power of the SPU’s. The ISA’s of the
PPE and SPU are closely aligned, which increases portability between these cores. The
cores are connected by high-speed, memory-coherent Element Interconnect Bus (EIB).
Figure 2.16 shows a top-level view of the cell-processor architecture.

The PPE has two levels of memory hierarchy: a 32-KB L1-data cache connected to a
512KB L2-data cache. The SPU’s use a local store to store instructions as well as data.
Every SPU contains a Memory flow controller that consist of a DMA-controller with
which main memory and local store transfers can be done. The DMA-controller also
facilitates transfers between the PPE and the SPU’s and between two SPU’s. One SPU
can transfer data from his local store to a remote local store, which is form of message
passing. The application developer can initiate DMA-transfers with DMA-instructions.

The EIB consists of one address bus and four 16B-wide data-rings. Two data-rings
run in a clock-wise direction while the other two in opposite direction. Each ring
can facilitate up to tree data transfers given that the paths don’t overlap. When a
requestor needs to use the EIB, he makes a request to the EIB arbiter, which arbitrates
amongst the requesters in a round-robin fashion. Only the memory-controller has a
higher priority to prevent stalling by the requestor of a main memory read request. 16
bytes of data can be send and received every bus cycle via the EIB. The theoretical
peak bandwidth can get is high as 204.8GB/s.

16

Figure 2.16: The Cell processor architecture

One advantage of this architecture is the potentially high communication band-
width, as the DMA-controllers can transfer data with a high transfer rate. This type
of bus based interconnect performs well with a relatively small amount of processes.

Another advantage is the use of DMA-controllers for data transfers, which can
transfer data at a high transfer rate independently and concurrently with the processor.

One limitation of this architecture is the interconnect, which is not scalable as
increasing the amount of PE’s would increase the size of the rings and the amount of
rings. The performance will not scale well with respect to the increase in area.

2.7.4 The PicoChip

The PicoChip is a multicore architecture targeted at digital signal processing applica-
tions (DSP) [12]. The picoChip is not intended to be used as general purpose processor
but as an alternative to creating an ASIC. In this approach partitioning is done by
the application developer and communication is fixed at compile-time, as would be the
case for programming an ASIC. Figure shows the PicoChip architecture.

The PicoChip consists of an array of 430 heterogeneous processors. There are four
RISC processor variants, the standard processor and three variation of the standard
processor. The standard processor is modified by increasing the data memory size and
instruction memory size and the addition of an MAC unit. Each processor tile contains
a private instruction memory and data-memory and communicate via message passing.

Messages are passed by using DMA-controllers to transfer data from one component
to another. The communication is synchronous and can only proceed if both compo-
nents are ready. The DMA-controllers are instructed by means of special put and get

17

Figure 2.17: The PicoChip architecture

functions. Message buffers are used to buffer incoming and outgoing messages.
The processors are connected through a deterministic interconnection network,

which consist of 32-bit unidirectional busses and programmable bus switches. The net-
work uses time division multiplexing, where two communicating cores using the same
communication channel are scheduled into time slots. The time slots are scheduled at
compile-time.

The main advantage of this architecture is that there is a guaranteed throughput,
the communication latency is known at compile-time, as there is no run-time bus arbi-
tration.

The main disadvantage is the fact that the whole array needs to be configured for
the a new application, which makes this architecture inflexible.

2.7.5 The Ambric parallel processor

The Ambric multiprocessor targets applications which require fast general-purpose in-
teger computations and digital signal processing [13] , [14]. The processor consists of
360 32-bit RISC processors. There are two processor variants used, simple cores (SR)
intended for control flow tasks and complex cores (SRD) intended for computationally
intensive tasks. The cores all have access to their private RAM’s. The multiprocessor
is organized as clusters called brics, half of a bric consists of two SR’s and two SRD’s.
The four cores have access to four local memories each 1kB in size. The memory banks
can be shared in several ways, as the software requires.

Communication between brics is facilitated by channels. Each channel consists of a
chain of registers, figure shows the structure of an Ambric channel. The channels can
be thought of FIFO’s between two communicating processors. Each processor contains
a special register used as starting points and end points in the channels and can be
read from and written to by the processor. The cores are stalled if the channel is full.

The Ambric tool chain includes a graphical interface for a textual language called
aStruct. AStruct is used to construct the channels to connect communicating processes.
The chip must be configured to facilitate the communication requirements of the target
application.

The fact that the communication channels must be configured at compile time,
implies that the tasks are statically scheduled on the cores. Run-time information is
not taken into account while scheduling, which limits the scheduling possibilities.

18

Figure 2.18: The Ambric channel structure

Another disadvantage of configuration at compile time is that the multiprocessor
must be configured to fit the needs of each application. This makes this architecture
not suitable for a more general multiprocessor.

2.7.6 AsAP

The AsAP [15] architecture consists of small and simple processing elements with
globally asynchronous, locally synchronous clocking. These processors are connected
through a nearest-neighbor interconnect. AsAP targets applications from the DSP do-
main and is therefore based on four key characteristics of DSP applications. These
characteristics are:

• DSP applications often consist of simple cascaded tasks.

• The tasks require not more then a few hundreds of words of data and instruction
memory.

• The need of a processor interconnect methodology that avoids long wires.

• Processing elements must only contain the required resources and no more, the
excess of resources consume more power can slows down the PE.

The processors are simple processors containing 64 words of private instruction
memory and 128 words of data memory. Each processor tile also contains a ocsilator
to change the frequency when required and to clock gate unused processors. The
processors communicate via FIFO channels, the processors contain two FIFO channels
to receive data from two neighboring processors. The processors can send data to all
four neighboring processors. The application developer can access these FIFO’s with
special variables.

One limitation of this architecture is that a core can only communicate with the
four neighboring cores, decreasing the flexibility in partitioning the tasks.

Further more, the only available memory and the chip are small private instruc-
tion memories. The fine-grained partitioning limitation might not deliver an optimal
performance.

2.8 Summary

This Chapter starts by describing several concepts of parallelism, after which the basic
structure of a shared-memory architecture and a distributed-memory architecture are

19

explained. The advantages and disadvantage with regard to streaming applications
for both architectures are listed. To compare the performance of both architectures, a
simple simulation is run, which simulates the behavior of the network for both archi-
tectures. It is shown that the architecture most suited for streaming applications is a
distributed-memory architecture, where the processing elements communicate through
message-passing. Furthermore, an overview of several message-passing architectures is
provided.

20

System Overview 3
This Chapter starts with a description of several architectural requirements of stream-
ing applications, after which the complete heterogeneous multiprocessor architecture
is explained, which consists of a combination of a shared-memory architecture and
a distributed-memory architecture. The remainder of this chapter introduces the
architecture of the message-passing tile and the distributed scheduler.

After further exploring streaming applications and the architectural characteris-
tics of the multiprocessors targeted at streaming applications, we have observed the
following characteristics typical to streaming applications:

• Streaming applications typically consists of simple, yet computationally intensive
tasks which require small data and instruction memories [15].

• Producer-consumer locality, which can be exploited during the process of mapping
tasks to cores, can reduce the communication latency between producers and
consumers.

• Parallelism, all three types of parallelism (ILP, DLP and TLP) are abundantly
present in streaming applications.

Considering the characteristics of streaming applications, the architecture should
contain a dynamic scheduler which exploits producer-consumer locality and a message-
passing tile, which provides low communication overhead and contains small scratch-
path memories and small instruction memories.

3.1 System Architecture

As mentioned in Chapter 1, one of the main advantages of a shared-memory architecture
is that it is easier to program compared to the distributed-memory counter part, as
communication and synchronization is implicit and not exposed to the application
developer. This makes the shared-memory architecture a more suitable option for a
general purpose multiprocessor. However applications can consists of tasks that contain
higher levels of ILP and can have streaming characteristics. The simulation results in
Chapter 2 show that streaming tasks have an optimal performance on a message-passing
architecture. To that end we propose a shared-memory architecture consisting of a large
array of multiple simple cores augmented with a smaller array of VLIW processors
communicating via message passing. A shared-memory task can spawn the streaming
tasks on to the array when the streaming data is available. The complete architecture is
shown in Figure 3.1a and consists of a combination of simple cores (SC) using a shared-
memory and VLIW cores (V) which have a distributed memory and communicate via

21

PS SC S
S

V V V

V V V SC S
S

SC

SC S
S

V V V

L
2
-c
a
c
h
e

SC SC

SC

SC

SC

SC

L
2
-I

(a) The basic structure of the multiprocessor array
SP

SC
L1-D

L1-I
SS

NI

SC
L1-D

L1-I
SS

NI

L2-I

NI

R

L2-D

PS

R

R

R

R

R

(b) A detailed view of several components of the multiprocessor array

Figure 3.1: The complete multiprocessor architecture configuration

P
ro

g
ra

m
 c

o
d
e

P
ro

g
ra

m
 c

o
d
e

S
tr

a
t

m
a
rk

e
r

S
tr

a
t

m
a
rk

e
r

E
n
d
 m

a
rk

e
r

E
n
d
 m

a
rk

e
r

Figure 3.2: Tasks separated by markers.

message passing. The scheduler used for scheduling the multiprocessor tasks is divided
into a primary scheduler (PS) and several secondary schedulers (SS). The primary
scheduler is in charge of scheduling the shared-memory tasks on the simple cores and
the secondary schedulers are used to schedule the streaming tasks on the VLIW array.
The several secondary schedulers are placed on one tile next to the simple cores to
facilitate fast scheduler access when needed. The tiles are shown in more detail in
Figure 3.1b.

This multi-processor is intended to run under a supervising processor (SP), which
runs the operating system. When the SP encounters an application intended to run on
the multiprocessor, the program code is transfered to the multi-processor where it is
stored into the L2-instruction cache, which is part of the primary scheduler. The SP
sends the tasks as an instruction stream to the primary schedulers. To indicate the
start and end of a task, the tasks contain start and end markers. Figure 3.2 shows the
instruction stream transfered by the SP to the primary scheduler, where the tasks are
separated by the markers.

22

PE

I-mem

D
-m

e
m

DMA

M
P
B

BM

Figure 3.3: The basic components of a message passing tile

3.2 Scheduling Policy for scheduling on the VLIW array

The communication overhead in parallel applications may decrease the overall per-
formance. Communication between tasks belonging to a streaming application has a
repetitive nature, which further increases the importance of small communication la-
tencies. The communication latency is partly determined by the physical location of
the two communicating tasks i.e. the distance between communicating tasks. To take
advantage of the producer-consumer locality of streaming applications, the scheduling
algorithm has a nearest neighbor policy, where tasks that frequently communicate are
scheduled on neighboring cores.

A data-flow graph (DFG) is used to determine which tasks depend on each other.
The secondary schedulers traverse the DFG and the tasks are scheduled on the neigh-
boring cores.

3.3 Overview of the Message Passing Architecture

Existing message passing architectures like the C-HEAP (see Section 2.7.2) and Am-
bric (see Section 2.7.5) communicate through FIFO channels, which is an efficient and
suitable way of transferring data in streaming applications. Data blocks in stream-
ing applications are processed in a certain order, and flow through the pipeline in the
same order. This behavior coincides with the characteristics of a FIFO. Every task has
its private FIFO channel, which ensures that messages from different tasks are always
separate. These communication channels are established by the application developer
and must be configured at compile-time. These FIFO channels makes the architecture
inflexible and not suitable for our dynamic architecture.

Other message-passing architectures like the Intel SCC (see Section 2.7.1) have a
MPB which is used as a RAM and is a part of the global address space of the core.
The application developer must specify the exact address in the remote MPB where a
message will be placed at, which implies that the buffer addressing must be managed
by the application developer. This can severely complicate his job.

Considering the advantages and limitations of the existing architectures we propose
the message passing architecture illustrated in Figure 3.3, which includes a combi-
nation of several positive aspects of the existing message-passing architectures. The
architecture given in Figure 3.3 includes only the basic building blocks of the message-
passing architecture. The PE has a private instruction and schratchpad memory. The
DMA-controller and the message passing buffer are used for message passing.

The DMA-controller is responsible for transferring data between several components

23

1

2

3 Fifo of task 3

M2

M1

Task 3 instructions:
Receive M1
Receive M2

Figure 3.4: The FIFO problem

on the tile. Transfers are initiated by calling specific message-passing functions in the
application software. These message-passing functions are defined in a library specifi-
cally written for this architecture. The message-passing functions consist of writing to
the control registers of the DMA-controller. The control registers are memory mapped
into the address space of the PE’s. The DMA-controller monitors the data-memory
address bus of the core to verify if the control registers are being written to. The con-
trol registers contain information that the DMA-controller needs from the software to
facilitate a correct data transfer, which include the size of the message, the source and
destination of the message and the address of the message in the private memory.

The incoming messages are stored in a message passing buffer which partly behaves
like a FIFO and partly like a RAM. The FIFO has the advantage that the application
developer does not have to manage the addressing of the buffer, however a problem
occurs when a receiving task has multiple senders, as the messages might arrive out of
order. Figure 3.4 illustrates this problem, where task 3 must first receive message M1
from task 1 and then message M2 from task 2. The order in which M1 and M2 arrive
at the FIFO (buffer) can differ as a consequence of the network, with the result of task
3 receiving the wrong message. This problem is solved by using the buffer manager
(BM). The buffer manager sees the buffer as a RAM and records the order in which the
messages arrive along with the location of the message in the buffer. When a message
needs to be received from a certain source, the buffer manager will provide the oldest
message from that source.

To paint a complete picture of all the components involved for passing a message,
the process of sending a message on one side and receiving the message on the other
side is illustrated in Figure 3.5. The processes consist of a series of steps. The first
step involves the application developer initiating a message transfer by calling the send
function. The application developer specifies the message size, the destination and
the address of the message in private memory. The second step involves writing the
message transfer specifics to the control registers of the DMA-controller. The DMA-
controller then starts to transfer the message according to the information in the control
registers. The DMA-controller transfers the message from the private memory into the
network, to the destination core, where the message is tranferend from the network into
the message passing buffer of the receiving core. On the receiving side when the task
running on core 1 requires the message, the receive function is called and the DMA-

24

R

Step 1

Program:

Send message to core 1

Step 2

DMA

Size
Destination

Address
Trans. type

Step 3

PE

I-mem

D-mem

DMA

MPB

Step 1

Program:

Receive message from core 0

Step 2

DMA

Size
Source
Address

Trans. type

PE

I-mem

D-mem

DMA

MPB

Step 3

R

Core 0 Core 1

Figure 3.5: The process of sending a message form core 0 to core 1

controller will transfer the message from the message passing buffer to the private
memory.

3.4 Summary

This Chapter describtion of the complete multiprocessor array, which consists of a large
array of simple cores using a shared-memory and a small array of VLIW cores which
communicate via message passing. Furthermore a brief introduction of our message-
passing architecture is given, which includes a DMA-controller for data transfers and
a MPB to buffer incoming messages.

25

26

Architecture 4
This chapter starts with a detailed description of the distributed scheduler. After
which the architecture of each component of the message-passing tile is explained in
detail.

4.1 The Distributed Scheduler

The Distributed Scheduler is a hardware scheduler that consist of one primary scheduler
and several secondary schedulers. The advantage of a hardware scheduler is that run-
time information can be taken into account when the tasks are scheduled. For example,
degraded or completely broken-down cores can be avoided while scheduling.

4.1.1 The Primary Scheduler

The primary scheduler is responsible for accepting and storing incoming tasks sent by
the supervising processor (SP) in a L2-instruction cache. As explained in Chapter 3
the SP sends the tasks as an instruction stream to the primary schedulers. Figure 4.1
shows the architecture of the primary scheduler. The SP asserts the valid bit to indicate
that the next instruction is ready to be transfered. The primary scheduler writes the
instruction at the given address in the L2-instruction cache.

To keep track of the tasks in the L2-instruction cache, the start address and the
end address of the tasks are entered into a table along with the task ID. The start
marker also includes a contents field and the task ID. The purpose of the contents field
is explained in the next Section. The markers are not entered in the instruction cache
along with the program code.

4.1.1.1 Scheduling Policy

To take advantage of the producer-consumer locality of streaming applications the
scheduling algorithm has a nearest neighbor policy, where tasks that frequently com-
municate are scheduled on neighboring cores.

A data-flow graph (DFG) is used to determine which tasks depend on each other.
Applications can consist of multiple independent data-flow graphs. The tasks that
form each of these independent data-flow graphs are grouped together. Each group can
be identified by a unique group number. A group number consist of 8 bits and can
therefore support 256 groups. One advantage of such a mapping, for example, when
a streaming application also contains data level parallelism, multiple pipelines can
execute in parallel, all processing a different part of the data. Each pipeline belongs
to a different group, which has its own data flow-graph and is scheduled by a different
secondary scheduler.

27

Start End IDAddr

Instr

Valid

In
te
rf
a
c
e

L
2
-I

Addr

We

Instr

Instr

Figure 4.1: The basic structure of the primary scheduler.

1 2 3

Group 1

4 5 6

Group 2

End Marker

Start Marker 1
Group 12 groups 3 members task 1

task 2 task 3 Group 2 3 members

No tasks=6task 4 task 5 task 6

task 1 1 neighbor neighbor=2 task 2

task 4 1 neighbor neighbor=5 task 5

neighbor=3 task 31 neighbor 0 neighbors

1 neighbor neighbor=6 task 6 0 neighbors

Figure 4.2: Data Flow Graph representation

The SP transfers the data-flow graph as a separate segment with a start and end
marker to the primary scheduler along with the tasks. The contents field of the marker
is used to indicate if a segment is a task or the data-flow graph. In order to start
scheduling while the program code of the tasks is being transfered, which is done to
reduce the performance overhead, the data-flow graph is send first.

The data flow graph(s) must be represented in such a way that it is simple to
read-out while keeping the size small. An example of the representation of multiple
independent DFG’s belonging to different groups is illustrated in Figure 4.2. The
contents field is set to one, which indicates that this is a DFG. First all the groups with
their group members are listed to indicate which task belongs to which group. Next
the actual data flow graph is given, where the dependencies of each node are listed.

4.1.1.2 The Secondary Scheduling Policy

As described in the last Section, the primary scheduling policy is the nearest neighbor
policy, there may be occasions where there are several neighbors with an equal distance
between the core and the neighbors. The secondary scheduling policies determine the
direction of the pipelines i.e the direction in which the data flows through the pipelines
in the multiprocessor array. This can be taken into account when the array is being
configured to avoid traffic traveling in the same direction as the data blocks in the
pipelines. For example in the case of the multiprocessor array depicted in Figure 3.1a
which partly consist of a shared-memory. The fact that there will be an increase in
traffic flowing towards the shared-L2 cache is known a priory, which can be taken into
account by chosing the best secondary scheduling policy. There are several policies that
can be applied depending on the starting points of the schedulers, which are:

• The SWEN policy, which first chooses the core to south and then if the core to

28

the south is unavailable the core to the west is chosen, then the core to the east
and then at last the core to the north.

• The WSNE policy, which first chooses the core to the west and then the core to
the south, moving on to the core to the north and at last the core to the east.

The best policy depends on the starting points of the schedulers, if the starting
points are on the north edge, the SWEN policy is the most suitable. The pipeline then
starts in the north and moves towards the south. The WSNE policy is most suited
for starting points on the west edge. The pipeline then starts in the west and moves
towards the east. For our architecture the secondary schedulers use the SWEN policy.

4.1.2 The Secondary Schedulers

The secondary schedulers are responsible for mapping the tasks belonging to one group
on a core according to the data flow graph. As there are multiple schedulers on the
platform, each group can be scheduled by a different secondary scheduler and can,
therefore be scheduled in parallel.

The secondary scheduler schedules tasks on cores by traversing the DFG and
scheduling the tasks on the nearest neighbors. The secondary scheduler contains a
map of the physical locations of the cores. The map also includes the availability sta-
tus of the cores. The first task in the group is the head task. This task is the root of
the DFG and is the starting point when traversing the DFG. After identifying the head
task, the next step is to determine on what core the head task should be scheduled
on. There are a few possible starting points. The most advantageous starting point
would be somewhere on the edge of the mesh, because the head task has no upstream
neighbors. The starting points of the schedulers are generic and can be changed when
necessary.

After a task has been assigned to a core, the secondary scheduler notifies the primary
scheduler that the program code must be sent to the target core. When the primary
scheduler receives such a notification, the core that has been scheduled on is marked as
unavailable. The primary scheduler thus has a list of the occupied cores and replies with
a positive acknolegment if the target core is indeed available. If the core has already
been scheduled on without the secudary schedulers knowledge, the primary scheduler
replies with a negative acknowledgment. This situation occurs when two schedulers try
to schedule on the same core roughly at the same time. The primary scheduler has a
first come first serve policy. After receiving the positive acknoledgement, the scheduler
notifies the remaining secondary schedulers that the core is now unavailable, which
implies that the availability status is updated every time a core has been scheduled on.
In the case of a negative acknowledgement, the secondary scheduler searches for the
next available neighbor core.

There are two ways to traverse the graph, which will be explained with the help of
Figure 4.3. Figure 4.3 shows the different orders in which the tasks can be scheduled
when traversing the graph. The difference is in the order in which the nodes with
more then one dependency are traversed. The first way is called depth-first where one
whole branch is traversed and then moved on the the next branch. The second way

29

1 2

3

4

5

6 7

(a) Depth-first

1 2

3

5

6

4 7

(b) Breadth-first

Figure 4.3: The different traversing orders

Task ID Local Tile Number

1 Tile 8

Figure 4.4: The LUT structure

is called breadth-first where one whole level is scheduled first, after which the next
level is scheduled. A level is defined as all the nodes with the same depth. The first
way has the disadvantage that when there are a limited amount of available cores the
first branch will have an optimum mapping while the second branch is left with the
remaining nodes, resulting in a suboptimal mapping. The second way does not have
this disadvantage and is therefore implemented.

As mentioned earlier, tasks have an ID, which are used to identify the source and
destination of a message. As the mapping of tasks to cores is determined during run-
time, the physical location of the sending and receiving tasks are not known during
development. To successfully send a message to the right destination task, a mapping
of the physical locations and the tasks ID’s is required. This mapping of the physical
locations to the tasks is implemented as a Lookup table (LUT). The structure of the
LUT is given in Figure 4.4. Every PE contains a LUT which is used to look up the
destinations of the messages. Every tile in the mesh has a local tile number, which is
used to identify the tile. The local tile numbers are entered into the LUT.

The secondary scheduler fills in the entries of the LUT’s when the tasks are scheduled
and have a physical location. The LUT’s only contain entries from tasks that are
actually communicating, which means that not every task is entered into every LUT.

4.2 The Message Passing Tile

The Message Passing tile architecture consists of several components which are the
PE, data-memory, instruction-cache, message-passing buffer, outgoing buffer, DMA-
controller and the network interface. Figure 4.5 shows all the components of the tile.
The components are described in detail in the following Sections.

4.2.1 The Processing Element

To improve the adaptibilty of the message-passing architecture, it must be processor
independent. Processor architecture independence is also needed to support hetero-

30

I-Mem

D-MemPE

BL

NI

Bridge layer NI

DMA

BM

D
I

M
P
B

O
B

Figure 4.5: The Message Passing Tile

geneity. As such, we support full processor-independability with the limitation that
the data-memory width has to be 32-bits wide. This limitation can be removed by
supporting multiple data-memory widths, which we leave for future work.

The message-passing architecture is based on the ρ-Vex VLIW processor architecture
[16]. The ρ-Vex is a suitable processor for our multiprocessor because it has three
advantages:

• Parameterized, which makes this processor very flexible. The processor can be
adapted to the application requirements.

• Reconfigurable operations. Custom instruction can be added to the instruction
set to increase the performance for specific applications.

• A complete tool chain.

4.2.2 Data Memory

The PE’s have a private data memory. This memory will be used for scratchpad
purposes like the stack, global variables etc. The size of the data memory depends on
the applications data-memory requirements. For streaming applications in particular,
the requirements depend on how the application is partitioned and at what granularity
the data is streamed. Generally, the computationally intensive parts of the streaming
applications do not need a large amount of memory, as the largest data structure of the
partition is most likely a single data block from the data stream. A general assumption
must be made as to what size will be enough for most of the streaming applications.
The data memory size is generic and can be easily modified when needed.

31

4.2.3 Instruction Cache

The instruction cache is used to store the program code and has the same architectural
characteristics as the PE. The width of the cache and the address width are equal to the
instruction width and the address width of the core. The instruction memory size must
be big enough to completely fit the largest partition of the application. The instruction
cache is generic and can be modified accordingly.

4.2.4 The Bootloader

The bootloader’s main task is to load the incoming instructions send by the primary
scheduler into the instruction cache according to the issue-width of the core, which can
vary with a parameterized VLIW core or different VLIW cores. The instructions arrive
as 32-bit words and must be combined to form an instruction with the correct issue-
width. The bootloader keeps track of the addresses at which incoming instructions
must be placed in the instruction cache.

4.2.5 Data Interface

The primary function of the Data Interface is to transfer the read and write requests
with an address within the address range of the data-memory to the data-memory.
Writes to the control registers are kept from reaching the data-memory.

As mentioned in Section 4.2.1 the message-passing architecture is processor indepen-
dent, the data interface is also used to make the data-memory architecture compatible
with the data-memory architecture of the PE.

4.2.6 The Message Passing Buffer

The message passing buffer (MPB) is used to buffer incoming messages. When the core
is ready to receive a message it is transferred from the MPB to the data memory. The
core is stalled when data is being transferred between the MPB and the data memory,
to prevent the core from reading data that has not been transferred yet.

The size of the MPB must be big enough to hold at least one complete message,
because a message can only be received when the complete message has been arrived.
The message size depends on the size of the individual blocks in the data stream. An
experiment described in Chapter 6 shows the independence of the size of the MPB on
the performance. For optimal performance the MPB size must be big enough to fit
all the data needed for one iteration, further increasing the size does not improve the
performance.

4.2.7 The Buffer Manager

As explained in Section 3.3, the buffer manager is used to manage incoming messages in
the massage passing buffer and provides the oldest message from the specified source.
The buffer manager (BM) keeps track of the start and end address of the messages
within the buffer along with the source of the message. When a message must be
received, the core specifies the source of the message and the oldest message from that

32

MPB

M2
0
3

M1
4
7

M1
8

11

M2
12
15

Message Info Table

Source Start End

2

1

1

2

0 3

4 7

8 11

12 15

MPB

M2
0
3
4
7

M1
8

11

M2
12
15

Message Info Table

Source Start End

2 0 3

1

2

8 11

12 15

MPB

0
3
4
7

M1
8

11

M2
12
15

Message Info Table

Source Start End

1

2

8 11

12 15

Figure 4.6: The behavior of the Buffer Manager

source is received. The behavior of the buffer manager is explained with the help of
an example which is illustrated in Figure 4.6. In this example a message from source
one must be received. To keep the example simple, the MPB can hold a maximum
of four messages and the message size of all the messages in the buffer is four words.
The start and end addresses of these messages within the MPB have been entered into
the message information table in the order of the arrival times. To receive a message
from source one, the BM searches the message information table and selects the oldest
messages from source one, which is in this example the second entry in the message
information table and starts at address four in the MPB. The next message that needs
to be received is from source two, which is the first message in the message information
table. After transferring the message, the message information table is updated and
the oldest unreceived message is again the first entry in the message information table.

4.2.8 Outgoing Buffer

The outgoing buffer (OB) is used to buffer outgoing messages. The core is stalled when
a message is being transfered to the OB, to keep the core from overwriting data that
has not been transfered yet. The main advantage of the OB is that the core is not
needlessly stalled by the flow control procedures which will be explained in Section
4.2.9.1, only by a full downstream buffer.

As soon as the message has been transfered to the outgoing buffer the core can
resume execution. The OB is a FIFO, which means that the messages are sent out in
the order of which they have been generated. A full buffer indicates that the MPB of
the destination task of the oldest message is full.

The size of the OB must be big enough to fit at least one complete message, to
take advantage of the fact that the core can resume execution immediately after the
complete message is transfered to the OB. If the OB is too small, it can only store part

33

of the message, the core will stall until the last part of the message is transfered to the
OB. This would mean that the core remains stalled for the time it takes to actually
send the message into the network, i.e. the advantage of using the OB would be lost.

4.2.9 The DMA Controller

The DMA controller is in charge of transferring data between different components.
There are four types of transfers supported by the DMA controller. The four types of
transfers are:

• Send, where data is transfered from the data memory into the OB, after which it
is transfered to the network.

• Receive, where data is transfered from the MPB to the data memory.

• Read from a global data buffer. This global buffer resides on a tile on the chip
and is used to store data from the input data stream and buffer result data. The
input data in the global data buffer can be placed there either by the SP or an
external device. For the experiments in this thesis the data in the global data
buffer is already in the buffer upon receiving the program code by the primary
scheduler. A read from the global data buffer consist of sending a read request to
the global data buffer and then, when the read data has arrived, transferring the
read data to the data memory.

• Write to the global data buffer, where data from private memory is transfered
into the network. Writes to the global data buffer are made when the last stage
in the pipeline is finished processing the data blocks. The data blocks containing
the result are buffered in the global data buffer and can be transfered back to the
SP or the external device.

Transfers are initiated by calling specific message-passing functions in the appli-
cation software. These message-passing functions are defined in a library specifically
written for this architecture. The message-passing functions consist of writing to the
control registers of the DMA-controller. Implementations of the two basic message-
passing functions are presented in Listing 4.1. The control registers are memory mapped
into the address space of the PE’s. The DMA-controller monitors the data-memory
address bus of the core to verify if the control registers are being written to. The
control registers contain information that the DMA-controller needs from the software
to facilitate a correct data transfer. There are four control registers, which are listed
in Table 4.1. The control registers can contain different information depending on the
function that has initiated the transfer.

Listing 4.1: Two basic message-passing functions

1 void MP_send (int Destination , int length_message , void ∗message) {
CONTROL_REG_1 = (int) message ;
CONTROL_REG_2 = length_message ;
CONTROL_REG_3 = Destination ;
CONTROL_REG_4 = SEND_CODE ;

34

Table 4.1: Control Registers

Register Description

Register 1 The starting address of the data in data memory for a send / The source task
ID for a receive

Register 2 The size of the message in number of bytes
Register 3 The destination task ID / The starting address
Register 4 The transfer ID, which is used to identify the different types of transfers listed

above

6
}
void MP_receive(int source , int length_message , void ∗message) {

CONTROL_REG_1 = source ;
CONTROL_REG_2 = length_message ;

11 CONTROL_REG_3 = (int) message ;
CONTROL_REG_4 = RECEIVE_CODE ;

}

4.2.9.1 Flow Control

To ensure that data is not sent to full MPB’s, there must be some form of flow control to
verify if the receiving MPB has enough space to store a message. Without the presence
of flow control, messages might be lost or the network will get saturated with messages
that can not be received.

When a message needs to be sent, a MPB space request which consists of the size
of the message is sent to the destination core first. The destination core replies with
a positive acknowledgement if there is enough space available. In the case of a full
buffer the receiver remains silent until the MPB is completely drained. A negative
acknowledgement would be redundant because the sender would still have to wait for
the positive acknowledgement.

If there are multiple tiles that need to send a message to the same tile, the receiving
tile will receive multiple MPB space requests. Only the first sender gets permission
to send his message, the other message requests are buffered in the order in which
they arrive. When the message from the previously permitted sender has completely
arrived, the sender from the next buffered MPB space request gets permission to send
his message. This implementation avoids the need to keep track of the status of multiple
incompletely received messages in the buffer, which increases the implementation costs.
This implementation has the disadvantage that the performance might decrease as
a consequence of serializing message transfers from multiple senders to one receiver.
However this decrease in performance is not applicable in every situation, which will
be explained with the example illustrated in figure. In this example core A and core B
have received permission to send their message to core C. The cores start to transfer
their messages which consist of three packets. The packets move in the same direction
towards the sender. As explained in Section 2.6.1.1 the arbiter of the routers arbitrates
between inputs in a round-robin fashion. As a consequence of the round-robin router
arbritation the packets will arrive interleaved. The message can only be received if all
his packets have arrived and in this example the message from A can only be received

35

1a

2a

3a

1b

2b

3b

Core a

Core b

Core c

R

R

R

R
1a2a

3a

1b2b

3b

Core a

Core b

Core c

R

R

R

R

Figure 4.7: Illustration of the disadvantage for multiple message send approvals

after the arrival of the first two packets of the message from B. From the example we
can conclude that approving multiple send requests also has its disadvantage.

4.2.9.2 The operational states of the DMA-controller

The DMA-controller is in charge of multiple operations, which are listed in table 4.2.
These operations all consists of data transfers to and from the network. There exist
situations where multiple components on the tile simultaneously have data transfer
requests to the network, as there is only one physical channel for data transfers to the
network, only one request can be handled at once. The remaining requests must be
stalled. To cope with these simultaneous data transfer requests, the DMA-controller
maintains a task buffer, where new request are entered in the order of which they are
generated. The DMA-controller then handles the requests in that order. These requests
in the task buffer are also referred to as tasks. Operations that include accepting data
from the network have a high priority and are handled instantly, which prevents stalling
the network.

The DMA-controller consists of several states. The controller remains in a waiting
state when there are no new tasks in the task buffer. Every operation in Table 4.2
is handled in a different state. When a new task is available, the DMA-controller
transitions into the appropriate state, where the task is executed. When the task is
completed the DMA-controller transitions back to the waiting state, where the next
task in the task buffer is selected. The FSM is given in Figure 4.8, the states are
described in Table 4.3.

4.2.10 The Network Interface

The Network Interface (NI) connects the tile to the network. The NI is part of the Net-
work and is responsible for packetizing and buffering outgoing data and depacketizing
incoming data. A packet consist of a header flit and one or more payload flits. The

36

Table 4.2: DMA-controller operations

Request Operation

A send request by the software Data transfer between data memory and the
OB and send MPB space request to remote
PE

A receive request by the software Data transfer between MPB and data mem-
ory

A read request for the global buffer Send read request to global buffer
A write request for the global buffer Data transfer from data memory to the net-

work
A MPB space request Send acknowledgement if the MPB has

enough free space, if the buffer is full the
request is put into a request buffer

A positive acknowledgement as a response
to a MPB space request

Data transfer from OB to the network

Empty buffer requests Send acknowledgments to all open requests
until the buffer is full again

Message arrival Data transfer from the network to the MPB
Global data buffer data arrival Data transfer from the network to the data

memory

Table 4.3: The FSM states

State Description

S0 Wait state
S1 Send MPB request
S2 Data transfer to OB
S3 Data transfer from MPB to data memory
S4 Send write data to the global data buffer
S5 Send read request to global data buffer
S6 Send acknowledgement
S7 Send acknowledgments as response to the accumulated MPB state requests while

the MPB was full

header contains several fields that are used to route the packet and indicate the nature
of the contents of the packet. Figure 4.9 shows the structure of a packet. The first bit
in the header is used to indicate that a flit is a header flit or a payload flit. The next
bit is the parity bit and is used to discard duplicated flits. Two subsequent flits always
have an opposite parity bit. The header flit further consists of the destination field, the
source field, the task ID field and the communication ID field. The destination field
consists of the coordinates of the destination tile in the mesh, both coordinates are
represented by three bits. The maximum mesh dimensions for three bit coordinates is
8 x 8.

The source field contains the local tile number of the source tile, which is the main
tile identifier. The local tile number is used to determine the function of the tile and
the coordinates of the tile in the mesh. A translation table is used to translate the

37

S1

S0

S2

S4

S5

S6

S7

Figure 4.8: The FSM of the DMA-controller

Table 4.4: The communication classes

Class Tile function

000 PE tile (PE)
001 PE in combination with a secondary scheduler (PSS)
010 Global data buffer (GB)
011 Primary scheduler (PS)

local tile number into the tile function called the tile class and the coordinates in the
mesh. There are four classes, which are listed in table 4.4. To completely understand
the packet contents both the class of the source tile and the communication ID are
required. The communication ID is defined as the type of communication between two
classes.

The task ID field contains the task ID of the sending task, which is required to
succefully receive a message. The last bit of the header is always zero and is used to
indicate the last flit in the packet.

4.2.10.1 Communication types

The communication ID is used to indicate the communication type between two com-
municating tiles and depends on the class (See Section 4.2.10) of the two communicating
tiles. The same communication ID can have a different meaning depending on the class
of the source tile. Communication between two PE’s consists of data messages and
flow control messages. The flow control messages consists of MPB space requests and
MPB space acknowledgments. Table 4.5 lists the communication ID’s for the different
messages between the different classes.

We now briefly describe the communication between the various classes. Commu-
nication between the PE’s and the primary scheduler (PS) only consists of transferring
the program code to the PE’s. Communication between the PE’s and the secondary
scheduler (PSS) consist of sending the LUT entries to the PE’s. The LUT entries are
entered into the LUT, which is used to map the physical location of the tile to the
task ID. After finishing execution, the PE notifies the secondary scheduler that he has
finished execution. Communication between the secondary scheduler and the primary
scheduler consists of assigning the groups to the secondary schedulers. When the tasks
of the groups are scheduled the secondary schedulers notify the primary scheduler that

38

36353433 2627 2132 01910141520

P1 Destination Source Unused Word count Task ID

4 3

Comm

ID
0

0

0

p

p

0

1

Payload

Payload

Figure 4.9: The structure of a packet

Table 4.5: The communication ID’s and their descriptions

Communication ID Description

PE-PE Communication

000 Message
010 MPB space request
100 MPB space request reply

PE-PS Communication

000 Program code

PSS-PSS Communication

000 Message
010 MPB space request
100 MPB space request reply
011 LUT entries
101 Core occupancy
110 Finished execution

PS-SS Communication

000 Group assignments
001 Scheduled task

PE/PSS-GB Communication

000 GB read request
001 GB write request

the program code of the scheduled tasks must be send to the cores. Communication
between the secondary schedulers consist of notifying the other secondary schedulers
that a core has been scheduled on and is not available anymore.

4.2.11 The Network Interface Bridge

The network interface bridge (NIB) supplies the NI with the correct header information
and the payload data. The NIB converts the communication requests of the tile into
the correct communication ID. After the specific header information is given, the NIB
transfers the payload data to the NI. The NI transforms the header information and
payload data into a complete packet and sends it out into the network.

39

4.3 Summary

In this Chapter we have described all the components of the architecture in detail, start-
ing with the distributed scheduler. The distributed scheduler consists of the primary
scheduler and several secondary schedulers. The primary scheduler accepts the tasks
sent by the supervising processor and stores the program code in the L2-cache. The
secondary schedulers schedule the streaming tasks on to the array of VLIW processors
according to the DFG.

The message-passing tile consist of several components, the most important com-
ponents include the DMA-controller, the message-passing buffer, the buffer manager
and the network interface. The DMA-controller is responsible for the data transfer
between several component on the tile. The DMA-controller maintains a task buffer,
where unanswered data transfers requests are buffered. Every data transfer request is
executed by a different operational state of the DMA-controller.

The message-passing buffer is used to buffer incoming messages. When the receiving
core is ready to receive the message, the message is transfered from the MPB into the
private memory. Message in the MPB are managed by the buffer manager, which keeps
track of the order in which messages arrive and provides the oldest message from the
specified source.

The network interface connects the tile to the network, where the packets are pack-
etized and depacketized. Each tile is classified into a class according to the function of
the tile. To understand the contents of a packet the class and the communication ID
are required.

40

Experimental Setup and

Results 5
This Chapter describes the complete evaluation process. First, our baseline (hard-
ware) platform is described, after which the partitioning strategies of the three selected
applications are explained. Next, several evaluation metrics used for this evaluation
are defined. Finally, the experiments evaluating different aspects of our architecture
are explained and the results are analyzed, from which several conclusions are drawn.

5.1 The Baseline Platform

The baseline platform consist of an array of VLIW processors, which in this case are 20
ρ-Vex processors [16], a primary scheduler (PS), 4 secondary schedulers and a global
data buffer (GB). Each secondary scheduler is placed next to a ρ-Vex processor on one
tile (PSS). The several components are connected through a NoC in a 4 by 5 mesh.
Figure 5.1 shows the baseline platform configuration, where the tiles and their functions
in the mesh are illustrated. The baseline platform is slightly modified for two of the
performance evaluation experiments as will be described in Section 5.5.5. The design
is clocked at 100MHz.

The starting points of the schedulers are on the north edge, resulting in pipelines
being scheduled from north to south with the SEWN secondary scheduling policy.

5.2 The Applications

The applications chosen for our performance evaluation are streaming applications,
which contain different partitioning characteristics, data stream granularity and flex-
ibility. The term flexibility is used as a measurement of how flexible the application
is in varying the number of partitions and varying the data stream granularity. The
flexibility is needed to determine the performance for different partitioning strategies
for one application. For example, determining the effects on the performance when the
number of stages in the pipeline are varied. Three applications are selected to run on
our platform:

• The JPEG decoder

• The FIR filter

• A Custom application, which represents a well partitioned application with a good
computation to communication ratio.

41

PSSPS

GB
�� PSS PSS PSS�� ������ �� �� ������ �� �� �� �� PS = Primary Scheduler

GB = Global Data Buffer

PSS = PE/Secondary Scheduler

PE = Processing Elements

Figure 5.1: The baseline platform configuration

Huff IDCT Color

Input Output

Figure 5.2: The data flow graph of the JPEG decoder

5.2.1 The JPEG Decoder

The JPEG decoder [17] is part of the Mibench [18] benchmark suit and implements
the well-known JPEG algorithm. The algorithm consists of an encoder and a decoder.
The JPEG encoder compresses bitmap images (BMP) into a JPEG image without the
loss of useful information and the JPEG decoder converts a JPEG image back into a
BMP image. JPEG images contain a header where information specific to the image is
listed, which is used during the decoding process.

The JPEG decoder consists of four well defined stages: the Huffman stage, the IDCT
stage, the color conversion stage and the reordering stage. The Huffman, IDCT and
color conversion stage are computationally intensive tasks and produce data blocks
which are part of the decoded BMP image. The reordering stage is responsible for
copying these data blocks into a BMP-image frame. Figure 5.2 shows the data flow
graph containing the three computationally intensive stages. The reordering stage is
ommited during the performance evaluation experiments because the array of VLIW
processors will mainly be used for computationally intensive tasks. The data blocks
which contain the results from the color conversion stage are buffered in the global data
buffer, where the data blocks can either be reordered by the SP or an external device. In
a later stage in the project when the combined shared-memory and distributed-memory
architecture, as described in Chapter 3 is realized, the data blocks can be reordered
by a shared-memory core. The color conversion stage has a different behavior as the
remaining two stages, the color conversion stage requires six blocks from the IDCT
stage to start processing.

The granularity of the JPEG decoder is also well defined. A BMP image is divided
into a grid of 8x8 pixels for every color component red, green and blue. The grid of
8x8 pixels is the smallest unit of data in the JPEG algorithm. Each 8x8 grid of pixels,
which has a size of 64 bytes, is encoded into a block with a variable block size. The
input block size of the JPEG decoder is therefore also variable. The size of an output
data block of the color conversion stage consists of four data blocks for every color
component and has a size of 764 bytes.

During the execution of the partitioned JPEG application, we have observed
that the workload of the three stages is completely unbalanced. This can be observed
in Table 5.1, where the run-times of the partitions are listed. The run-times are

42

Table 5.1: The run-times of the three partitions of the JPEG decoder

Stage Run-time (ns)

Huffman 20820
IDCT 138660
Color 60290
Total Parallel 219770
serial 219920

Huff

IDCT_1

IDCT_2

Color

Input Output

Figure 5.3: The data flow graph of the JPEG decoder with four stages

measured from the moment that the input block has been received by a certain stage
until the point at which the data block is about to be send out to the next stage. The
time spent on data transfers is not included in these run-times. Let it be noted here
that normally the length of the Huffman stage varies depending on the input data.
However, to effectively analyze our results, the run-time of the Huffman stage is kept
constant, which is realized by using a plain image.

Table 5.1 shows that the stage with the longest run-time is more than five times
as long as the stage with the shortest run-time. In pipelined applications the total
execution time is determined by the stage with the longest run-time, which we refer
to as the critical stage. To even out the workload, the workload of the IDCT stage is
divided over two stages. The data flow graph of the new pipeline is given in Figure 5.3.
The Huffman stage sends the even numbered data blocks to the first ICDT stage and
the uneven numbered blocks to the second ICDT stage. The effect of adding a second
ICDT stage is illustrated in Figure 5.4.

The instruction counts of the partitioned and the serial JPEG implementations,
generated by compiling the application for the ρ-Vex, are given in Table 5.2. The
instruction count of the partitions together approaches the instruction count of the serial
implementation. This indicates that this application consists of three distinct phases.
The extra instructions in the partitions are used for the communication instructions.

The fact that the partitions and the granularity of the JPEG decoder data blocks
are well defined makes this application relatively inflexible.

5.2.2 The FIR Filter

The FIR filter [19] is also part of the MiBench benchmark suite and is an algorithm
commonly used in digital signal processing applications. The basic function of a FIR
filter is to filter out unwanted noise in a signal. There are several types of FIR filters,

43

Stage 1

Stage 2

Stage 3

Stage 1

Stage 2a

Stage 2b

Stage 3

Time

Figure 5.4: The affect of adding a fourth core to a pipeline with an unbalanced workload

Table 5.2: Instruction counts of the JPEG encoder

Stage Number of instructions

Huffman 2017
IDCT 1773
Color 250
Total Parallel 4040
Serial 3706

such as low-pass filters, high-pass filters, moving-average filters etc. For our evaluation
we chose the Moving Average filter, because it is relatively easy to understand and
partition and also contains DLP. The moving average filter calculates the average of a
input signal based on the last N values. We refer to N as the window size. Increasing
the window size, increases the precision of the filter. The Moving Average filter is
implemented based on the equation given below, where x and y are the input and
output signal respectively.

y[i] =
1

N
x[i] +

1

N
x[i− 1] +

1

N
x[i− 2] + ... +

1

N
x[i−N − 1]

The baseline partitioning of this application consists of three partitions with more
or less equal workloads. It is, however, possible to vary the number of partitions, while
maintaining this balanced workload. The optimum number of partitions is observed in
the experiment described in Section 5.5.4. Figure 5.5 and Figure 5.6 illustrates how the
moving average filter is partitioned. The serial task in Figure 5.5 shows how an input
signal x consisting of six values is transformed into the output signal y. Figure 5.6
shows how the serial task is partitioned in three tasks. The data-flow graph of the FIR
filter is shown in Figure 5.7.

The filter contains two parameters that must be determined in order to partition the
application, which are the window size and the input stream granularity. The window
size depends on the required precision of the filter and the input stream granularity,
i.e the size of the input data blocks, partly depends on the required performance and
partly on the window size. There exist a certain block size which results in the best
performance. The block size is partly determined by the window size, because al values
in the window need to be known to calculate the moving average.

44

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]

+ +

X[0]
X[1]
X[2]
X[3]
X[4]

0

X[0]
X[1]
X[2]

0
0
0+

X[0]
X[1]

0
0
0
0

+X[0]
X[1]
X[2]
X[3]

0
0

Y[0]
Y[1]
Y[2]
Y[3]
Y[4]
Y[5]

=+

X[0]

0
0
0
0

0*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

*1N

Figure 5.5: The serial moving average filter implementation
Task � Task

�
Task

�
X[0]
X[1]
X[2]
X[3]
X[4]

0

+

Ya[0]
Ya[1]
Ya[2]
Ya[3]
Ya[4]
Ya[5]

=

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

+

Yb[0]
Yb[1]
Yb[2]
Yb[3]
Yb[4]
Yb[5]

=X[0]
X[1]
X[2]
X[3]

0
0

X[0]
X[1]
X[2]

0
0
0

Ya[0]
Ya[1]
Ya[2]
Ya[3]
Ya[4]
Ya[5]

+

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

+

Y[0]
Y[1]
Y[2]
Y[3]
Y[4]
Y[5]

=

Yb[0]
Yb[1]
Yb[2]
Yb[3]
Yb[4]
Yb[5]

+

X[0]
X[1]

0
0
0
0

X[0]

0
0
0
0

0*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

*1 N

Figure 5.6: The partitioned moving average filter implementation

The window size used for the experiments is 90, which is divided over three par-
titions, resulting in a window size of 30 for each partition. The window size is kept
high to ensure that every partition spends enough time on calculating the result in
comparison to the time spent on communication, i.e to keep the communication-time
percentage small. The input signal is divided into blocks of 94 signal values.

The run-times of the three partitions and the serial implementation are given in
Table 5.3. The run-times are measured from the moment that the input block has been
received by the stage until the point at which the data block is going to be send out
to the Outgoing buffer. One observation in the table is that the added run-times of
the partitions is considerably higher then the run-time of the serial implementation.
Normally the extra time is spent on communication, however in this case the extra
time is also spent on inner and outer loop transitions. This will be explained with an
example illustrated in Figure 5.8. The task in Figure 5.8 consists of two loops, which is
partitioned in two partitions. Each partition consists of the same amount of outer loop
iterations as the serial task, the difference is in the number of inner loop iterations. The
number of inner to outer loop transitions is twice as much as the serial implementation.
A transition to the outer loop comes with the retrieval of the outer loop variables. This
limits the speedup that can be achieved with this partitioning strategy.

This can also be observed in the program code sizes given in Table 5.4. The size of
the serial version and the partitions have more or less an equal size.

5.2.3 Custom Application

The custom application represents a well partitioned application with a balanced work-
load and a good communication to computation ratio. The custom application exposes
the capabilities of the message-passing architecture. The custom application consist of
four loops with an equal number of iterations and number of calculations. This appli-
cation is partitioned into four partitions, which all have an equal workload. The data
block size is 256 bytes. The data-flow graph is shown in Figure 5.9. The run-times of
the four partitions and the serial implementation are given in Table 5.3. The run-times
of the partitions are more or less equal, indicating a balanced workload.

45

Input Input

Output

Input

1 2 3

Figure 5.7: The data-flow graph of the FIR filter

Table 5.3: The run-times of the FIR filter

Stage Run-time (ns)

Partition 1 71180
Partition 2 73610
Partition 3 79760
Total Parallel 224550
Serial 185020

The instruction counts of the partitions are listed in Table 5.6. The added instruc-
tion counts of the partitions is larger then the instruction count of the serial imple-
mentation. The extra instructions of the partitions are used for the communication
instructions.

5.2.4 The Scheduling Overhead

The scheduling overhead which consist of sending the program code to the L2-instuction
cache, whereafter the tasks are scheduled based on the neirest neighbors and finally the
program code is send to the target core. The scheduling overhead is given in Table 5.7
where the scheduling time of the first task in the pipeline and the scheduling time of
the last stage in the pipeline are given as the percentage of the total time.

From the results given in Table 5.7 we can conclude that the scheduling overhead
only marginally affects the total execution time and thus marginally effects the perfor-
mance of the applications.

5.3 Performance Evaluation Metrics

In order to evaluate the performance of our multiprocessor, we need to establish the
performance metrics. The speedup and throughput are two very common metrics used
to evaluate the performance of multiprocessors. The speedup determines the run-time
advantage gained by increasing the available resources, throughput determines the rate
at which data is processed.

Streaming applications can have timing constraints, which need to be met. An
example of such an application is the MPEG decoder which must produce the video
frames at a certain rate to ensure an uninterrupted playback. One unpredictable com-
ponent of the architecture, which can influence the execution time, is the traffic volume
in the NoC. Therefore it is important to evaluate the effects of the traffic volume on
the execution of the applications. We have defined two different metrics for the traffic
volume evaluation, which are block arrival rate and the average deviation of the average
block arrival rate.

The performance evaluation metrics and their definitions are:

46

For (0 < i < 19)

 for(0< j < 3)

 a ++;

b = a;

For (0 < i < 19)

 for(4< j < 7)

 b ++;

Task 1 Task 2

For (0 < i < 19)

 for(0< j < 7)

 a ++;

Task

Figure 5.8: The inner and outer loop transitions

Table 5.4: Instruction counts of the FIR filter

Stage Instruction count

Partition 1 92
Partition 2 97
Partition 3 97
Total Parallel 286
Serial 90

• Speedup (S), which is calculated as:

S =
ESerial

EParallel

(5.1)

Where ESerial is the execution time of the serial implementation and EParallel is
execution time of the parallel implementation. The execution time is measured
from the moment the data-flow graph is being transfered to the primary scheduler
until the last core has finished execution.

• Average arrival rate is defined as the average time between two subsequent data
blocks arriving at the global data buffer. The average arrival rate (R) is calculated
as:

R =

n−1∑

i=0

Ti+1 − Ti

n
(5.2)

Where Ti and Ti+1 are the arrival times at the global data buffer of two subsequent
data blocks and n is the total number of blocks.

• Average deviation (D) from the average arrival rate is calculated as:

D =

n−1∑

i=0

|Ti − R|

n
(5.3)

47

1 2 3 4Input Output

Figure 5.9: The data-flow graph of the custom application

Table 5.5: The run-times of the three partitions of the Custom Application

Stage Run-time (ns)

Partition 1 51860
Partition 2 51850
Partition 3 51850
Partition 4 51980
Total Partition 207540
Serial 207090

In experiments where there are multiple pipelines the average deviation is calcu-
lated for every pipeline separately.

• Throughput(TP), which is defined as the average rate at which the resulted data
blocks arrive at the global data buffer. The throughput is given in data blocks
per second and is calculated as:

TP =
1

R ∗ 10−9
(5.4)

• Maximum rate (Rmax) is defined as the maximum arrival time difference between
two subsequent data blocks and is calculated as:

Rmax = max(Ti+1 − Ti) (5.5)

• Minimum rate (Rmin) is defined as the minimum arrival time difference between
two subsequent data blocks and is calculated as:

Rmin = min(Ti+1 − Ti) (5.6)

5.4 Performance Evaluation Process

The performance evaluation process consists of two phases. During the first phase we
wrote and simulated the behavioral VHDL program code of the individual components
of the architecture in Modelsim. The simulation results are written to a vcd file. The
vcd file consist of a list of timestamps and the signals which have transitioned from zero
to one or the other way around at that timestamp. Vcd files are large and not easily
readable, therefore we need a script which translates the raw vcd data into useful data.
During the second phase we have written several awk-scripts, which depending on the
required data, produces the data used in the graphs in the following Sections.

5.5 The Experiments

To evaluate different aspects of the multiprocessor, several experiments are conducted.
The limitations and the capabilities of our message-passing architecture are evaluated

48

Table 5.6: Instruction counts of the Custom Application

Stage Instruction count

Partition 1 94
Partition 2 88
Partition 3 88
Partition 4 93
Total Parallel 363
Serial 223

Table 5.7: The scheduling overhead for the different applications

Application First stage Last stage

FIR filter 0.09% 0.22%
JPEG Decoder 0.29% 0.65%
Custom Application 0.10% 0.28%

with the results of the different experiments. The different experiments are listed below
and will be discussed in more detail in the following Subsections.

• Varying the input data stream size.

• Varying the number of pipelines.

• Varying the buffer size.

• Varying the number of pipeline stages.

• Varying the network traffic volume for two different platform configurations.

5.5.1 Increased Input Sizes

In order to determine the influence of the input size on the performance, the input
sizes, i.e. the number of input blocks is increased. The experiment is done for all the
applications, which have been discussed in Section 5.2.

The platform used for this experiment has the baseline configuration. In order
to make a fair performance comparison, both the partitioned and the serial version
of every application are executed on the platform. A single pipeline is executed on
the platform for a different number of input data blocks for every application. The
pipelines of the different applications are scheduled according to the data-flow graph.
The mapping of the different pipelines on the platform for the different applications is
given in Figure 5.10.

The results for this experiment are shown in Figure 5.11, where the speedup of the
different applications are given as a function of the input size. The points on the x-axis
are differently defined for the different applications. The first point on the x-axis in
the case of the JPEG application is an image with the dimension of 64 by 64 pixels.
The image dimensions are doubled in both directions for every subsequent point on the
axis. The starting point on the axis for the custom application and the filter represent

49

1

3

2GB

PS PSS PSS PSS

PE PE PE

PE PE PE PE

PE PE PE PE PE

(a) FIR/JPEG 3-core

13

2GB

PS PSS PSS

PE PE PE

PE PE PE PE

PE PE PE PE PE

(b) JPEG 4-core

1

3

2GB

PS PSS PSS PSS

PE PE PE

PE PE PE PE

PE PE PE PE

(c) Custom application

Figure 5.10: The different pipeline mappings

Figure 5.11: The Speedup as a function of an increased input-stream size

a signal consisting out of 800 samples. The number of samples is doubled for every
subsequent point on the graph.

An ideal speedup increases linearly with the number of cores, i.e. the speedup should
be equal to the number of cores used. This ideal speedup is generally not reached,
because there is usually an additional percentage of time spent on communication
between tasks. The ideal speedup for the FIR is 3 and the ideal speedup for the
JPEG 4-core and custom application 4. The speedup observed in Figure 5.11 for FIR
and JPEG 4-core are far from ideal (2.1x and 2.9x respectively), however the custom
application comes close to reaching the ideal speedup with 3.6x. These performance
differences are partly caused by the communication overhead and mostly caused by an
unbalanced workload. The cores with a lighter workload will spend a lot of time idle,
waiting for the downstream core to finish processing or waiting for the upstream core
to send the next data block.

Figure 5.12 shows the execution break down of every core for every application.
The cores from the custom application spent most of the execution time (around 90%)
processing data and a small percentage of time is spend on transferring data to the
downstream task or global data buffer. The JPEG and FIR applications have an
unbalanced workload, where the cores with a lighter workload spend a large percentage
of the time waiting, wasting the resources, resulting in lower speedups.

Comparing the execution-breakdown graphs of the two JPEG configurations in Fig-
ure 5.12c and Figure 5.12d, we can further observe the influence of load balancing. The
total percentage of idle time for the last stage in the pipeline has dropped with the
addition of the fourth core (from +/-55% to +/-15% idle time). The addition of the
forth core to the second stage in the pipeline has doubled the data block arrival rate of
the last stage in the pipeline.

50

(a) The execution breakdown for the cores of
the Custom application

(b) The execution breakdown for the cores of
the FIR filter

(c) The execution breakdown for the cores of
the 3-core JPEG decoder

(d) The execution breakdown for the cores of
the 4-core JPEG decoder

Figure 5.12: Execution breakdown for each application

Table 5.8: The execution times of core 1 for the 3-core and 4-core JPEG pipelines

Configuration Total execution time (ns) Buffer full stalls (ns)

3-core JPEG 37714885 19702920
4-core JPEG 20381235 12212460

There is one unexpected characteristic observed in the bar-graph of 5.12d, the total
buffer stall percentage of the first stage in the 4-core configuration has increased in
comparison to the 3-core configuration. After analyzing the results further we discov-
ered that the total number of stall cycles did not decrease at the same rate as the total
execution time has, which increased the percentage of the total number of buffer full
stalls. The results are listed in Table 5.8

5.5.2 Multiple Pipelines

To fully take advantage of all the available resources, multiple pipelines are executed
in parallel. The number of pipelines are varied from one to four. The input data is
then divided over the multiple pipelines. The pipelines are mapped onto the baseline
platform, which is shown in Figure 5.13.

This experiment shows how the architecture handles a large number of resources,
i.e. the scalability of the architecture. The results for this experiment are presented
in Figure 5.14. The optimal speedup for the increased number of pipelines, would be
when the speedup scales linearly with the number of pipelines. The curves are almost
linear with a slight deviation (not noticeable in the graph), this small deviation from
the optimal speedup is caused by the increased traffic volume, which increases the

51

1

2

3

1

2

3

1

2

3

1

2

3

PS

GB

PE

PE PE PE PE PE

(a) FIR

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

PS

GB

PE

PE

(b) JPEG and Custom application

Figure 5.13: The mapping of the multiple pipelines on the platform for every application

Figure 5.14: The Speedup as a function of the number of pipelines

communication overhead.

The throughput as a function of the of number pipelines is given in Figure 5.15. The
throughput scales almost linearly with the number of pipelines for all applications. This
linear increase in throughput is expected, if a pipeline produces output data blocks at
a certain average rate, doubling the number of pipelines will double the average rate at
which the blocks arrive at the global data buffer. To conclude, the architecture scales
well with the increase in pipelines.

5.5.3 Varied buffer sizes

To determine the influence of the MPB size on the performance of the applications,
the MPB size is increased. This experiment has only been done for the JPEG and the
FIR application because the custom application has a completely balanced workload
and only uses the buffer to briefly store one data block. The results are shown in
Figure 5.16, where the x-axis is the buffer size in words and the y-axis is the speedup.
From this figure we can conclude that the buffer size does not influence the execution
time of the applications. The main reason for this is that the rate at which the critical
stage processes the data blocks does not increase with the increase of the buffer size. To
conclude, the buffer size must be big enough to fit all the data required for one iteration,
increasing the buffer size beyond this point has no influence on the performance.

52

Figure 5.15: The Throughput as a function of the number of pipelines

Figure 5.16: The Speedup as a function of the MPB size

5.5.4 Varied number of pipeline stages

We determine how the architecture performs for applications with deeper pipelines by
varying the number of pipeline stages used for a particular application. This experiment
consists of two parts: for the first part we have kept the window size and input size
of the FIR filter constant and divided the same amount of computational work over
an increased number of pipeline stages. The amount of work done by each stage is
decreased with addition of each pipeline stage. The pipeline is executed on the baseline
platform and the results are shown in Figure 5.17. The speedup is given as a function
of the number of pipeline stages.

The speedup increases with the increased number of cores. There is a slight dip in
the curve with the addition of the seventh core, which can be explained by the increase in
the total percentage of the communication overhead. Increasing the number of pipeline
stages increases the communication overhead while decreasing the amount of work done
by one stage. If the time spent on communication reaches a certain percentage of the
total execution time, the speedup will significantly decrease.

The second part of this experiment involves the custom application. We are in-
terested in the performance of an application with a very deep pipeline. The custom
application is modified to this end and can now be partitioned into a maximum of
sixteen stages with an equal workload. The number of pipeline stages are doubled for
every run. The pipeline is executed on the baseline platform and the results are shown
in Figure 5.18.

53

Figure 5.17: The Speedup as a function of the number of partitions

Figure 5.18: The Speedup as a function of the number of partitions

The speedup curve closely approaches the ideal speedup, the transition from eight
to sixteen cores deviates from the ideal speedup curve. The communication overhead
has increased to the point that it includes a relatively large percentage of the total
execution time, which is expressed in the decrease in speedup.

5.5.5 Increased traffic volume

To determine the influence of the traffic volume on the performance. Keeping the com-
plete multiprocessor configuration described in Chapter 4 in mind, the traffic flowing
through the network partly consists of read and write request for the shared-memory.
We simulate additional traffic through the network by using traffic injectors and a
shared-memory consisting of four memory banks. The traffic injectors generate read
and write requests for the shared-memory banks. The destination memory banks for
the requests and the type of request is random. Read requests are answered by sending
read data back to the requester.

Two different mesh configurations are considered for this experiment. These dif-
ferent configurations both determine the performance for different traffic flow patterns
relatively to the data flow of the pipelines. The tasks in both configurations have the
same mapping to cores as in the previous experiments, where four pipelines are ex-
ecuted in parallel for every application. The first platform configuration is shown in
Figure 5.19a and consists of the baseline platform with the addition of 4 traffic injectors

54

Table 5.9: The injection rates

Time interval Injection rate

4 packets every 44 cycles 0.09
4 packets every 36 cycles 0.11
4 packets every 28 cycles 0.14
4 packets every 20 cycles 0.2
4 packets every 12 cycles 0.33

HS

GB����
PSS������

PSS������
PSS������

PSS������
MB

MB

MB

MB

TI

TI

TI

TI

(a) The first platform configuration

PSSPS

GB PE

PSS PSS PSS

PE PEPE

PE PE PE PEPE

PE PE PE PE PE

MB MB MB MB MB

TI TI TI TI TI

(b) The second platform configuration

Figure 5.19: Top-level view of the two platform configurations

(TI) and 4 memory banks (MB). The data flows from the traffic injectors towards the
the memory banks in a perpendicular direction as the data in the pipelines.

The second configuration consists of the same components as the previous configu-
ration, the difference is in the locations of the traffic injectors and the memory banks.
Figure 5.19b shows the second platform configuration. The data flows from the traffic
injectors in the same direction as the data in the pipelines towards the memory banks.

Every traffic injector sends a packet into the network periodically i.e. once every
interval. Decreasing this interval increases the injection rate. The injectors are syn-
chronized to inject four packets every interval. The time intervals chosen are listed
in the Table 5.9. The table also lists the corresponding injection rate in packets per
second.

The read-request packets consists of four bytes of payload data, while the packets
belonging to write requests can consists of 4,12 or 68 bytes of payload data. Read data
always consists of 64 bytes of payload data, simulating the replacement of one cache
line.

5.5.5.1 Results of the first configuration

Figure 5.20 display the bar-graphs of the data block arrival rate at the global buffer
as a function of the injection rate of the traffic injectors for the FIR filter, Custom
application and JPEG decoder. The injection rate is given in packets per cycle and the

55

(a)

(b)

(c)

Figure 5.20: The average arrival rate as a function of the injection rate for each application

arrival rate is defined as the average arrival rate at the global data buffer of data blocks
belonging to the same pipeline. The error-bars on the bar-graphs represent Rmax and
Rmin, defined in Section 5.3. We will analyze the bar-graphs one by one, starting with
the FIR filter.

The first observation of the bar-graph of the FIR application is that the average
arrival rate of the different pipelines for one injection rate slightly increases. This can
be explained by the fact that the distance between the pipeline and the global data
buffer increases with every subsequent pipeline. Data blocks traveling on certain paths
are more affected by the injected packets then on other paths, the path taken by the
data blocks which is most affected by the network is now referred to as the critical path.

56

TI PS 1 1 1 1 MB

TI GB 2 2 2 2 MB

TI PE 3 3 3 3 MB

TI PE PE PE PE PE MB

Figure 5.21: The critical path of the FIR filter

The critical paths of the FIR filter are given in Figure 5.21. The data blocks traveling
to and from the global data buffer are more affected by the injected traffic, since the
injected packets travel in the same direction. Packets that spent a large amount of time
on the critical paths have an increased chance of getting delayed as a consequence of
the traffic on the path.

As discussed in Section 5.2.2, each stage in the FIR pipeline needs to fetch a new
data block from the global data buffer every iteration. This characteristic increases the
effect of the injected traffic on the execution-time of a single data block going through
the pipeline. Therefore the average arrival rates of the pipelines increases with the
increased distance between the global data buffer and the pipeline.

From Figure 5.20a we can also observe a slight increase in the average arrival rate
of the pipelines with the increase in traffic rate, which is as expected. The increase in
traffic increases the time spent in the network by the data blocks, which increases the
total time spent in the pipeline.

The error bars on the bar-graph represent the range of the arrival rates, i.e. the
maximum and minimum difference between two subsequent blocks. Recall that Rmax

is calculated as max(Ti+1 − Ti). Rmax is reached when Ti+1 is as high as possible and
Ti is as low as possible. The opposite conditions apply for Rmin. The occurrence of
these circumstances are highly dependent on the traffic volume at particular moments
in time and are therefore not constant. However, as can be observed in higher traffic
rates (e.g. Injection rate of 0.2 and 0.33), the chance of these situations is increased.

Moving on to the bar-graph of the custom application. The average arrival times of
the pipelines also increases with the increase in injection rate. However the difference
between the first and last injection rate is much smaller for this application in compar-
ison with the filter. Only the first stage needs an new input block from the global data
buffer, which is indicated by the critical path in Figure 5.22. This drastically decreases
the affect of the injected traffic on the average arrival rates.

The difference between the average arrival rates of the pipelines for one injection
rate is more are less constant with the exception of the last rate. This indicates that the
distance between the global data buffer and the pipelines has little effect on the data
blocks in the custom application. This behavior can be explained by the randomness of
the size and destination of the injected packets, the different pipelines can experience
different delays depending on the size and destination of the injected packets.

The arrival rate ranges for this application also slightly increases with the increase

57

TI PS 1 1 1 1 MB

TI GB 2 2 2 2 MB

TI PE 3 3 3 3 MB

TI PE
� � � �

MB

Figure 5.22: The critical path of the custom application

TI PS 1 1 1 1 MB

TI GB 2 2 2 2 MB

TI PE 3 3 3 3 MB

TI PE � � � � MB

Figure 5.23: The critical path of the JPEG decoder

in traffic, which is similar to the arrival rate range for the previously discussed FIR.

The bar-graph of the JPEG decoder behaves differently. The arrival rates for
all points on the x-axes are more or less constant, which is mostly as a consequence of
the unbalanced workload. The rate at which the Huffman stage produces data blocks
is much higher then the rate at which the two IDCT stages consume data blocks. The
data blocks coming from the Huffman stage will be placed in the MPB for a longer
period of time, which implies that the affects of the traffic volume on the data blocks
traveling to the IDCT stage does not have an influence on the total execution time of
that block. The data blocks traveling towards the global data buffer are interfered by
injected traffic from one particular memory bank. Figure 5.23 shows the critical path,
on which the resulted data blocks travel towards the global data buffer. The memory
bank that is responsible for the injected traffic on this critical path is indicated with a
red circle. A memory bank only injects a packet into the network upon the receipt of
a read request for that particular memory bank, which is approximately 20 % of the
total amount of requests.

The wide arrival rate ranges indicated by the error-bars in Figure 5.20c do not vary
much for the different injection rates. The difference in arrival rate are mostly caused
by the simultaneous writes to the global data buffer and occasionally by the injected
packets of the memory bank. The injection rates have a marginal or no effect on the
arrival times of the data blocks for this configuration.

Now that an average arrival rate has been established for the several pipelines, we
want to know how much the arrival rates deviate from this average arrival rate. The
percentage of the average deviation for all applications is given in Figure 5.24. The
average deviation is defined in Section 5.3. Two aspects of the bar-graph stand out.
The first one is that the JPEG decoder has on average a higher deviation percentage
in comparison with the remaining two applications. This is caused by the large output

58

Figure 5.24: The average deviation as a function of the injection rates

data block size and the constant change from simultaneous writes to serial writes to
the global data buffer.

The second aspect is that the deviation is inconsistent in every way, from which we
can conclude that it is not only influenced by the injection rate but on the circumstantial
traffic on the critical paths. The amount of traffic present on the critical paths depends
on the amount of traffic injected in the network, the number of writes to / reads from
the global data buffer and the size of the data blocks.

5.5.5.2 Results of the second configuration

The bar-graphs for the different applications are given in Figure 5.25. The bar-graphs
of the three applications more or less have the same behavior. The average arrival rate
for every pipeline increases with the increase in injection rate. The bar-graph of the
JPEG decoder has two inconsistencies at rate 0.11 and 0.14. These are caused by the
high amount of simultaneous writes to the global data buffer.

The average arrival rate ranges indicated with the error-bars are much wider for the
JPEG decoder then the ranges for FIR and the custom application. The critical path
of the JPEG decoder is given in Figure 5.26c. The critical path consists of two hops,
which limits the total effect of the traffic on the arrival times of the data blocks. The
large difference in arrival times of the data blocks is independent from the injection
rate and is only caused by the simultaneous read and writes to the global data buffer
and the size of the output packets.

The average deviation for the applications is given as a function of the injection
rates in Figure 5.27. The first observation is that the average deviation of the custom
application is higher then for the remaining two applications. This can be explained by
the critical paths of the different applications (see Figure 5.26), the custom application
clearly has the longest critical path. The next observation is that the average deviation
is not only dependent on the injection rate in this configuration as well.

The NoC [7] used for this simulation has Best Effort (BE) flow control, where
packets are fairly routed in the order at which they arrive at the router. This form
of router arbitration has the drawback that the packets have unpredictable latencies,
which results in unpredictable data block arrival rates observed in Figure 5.27 and
Figure 5.24. Real-time systems require the guarantee that a data block will arrive

59

(a)

(b)

(c)

Figure 5.25: The average arrival rate as a function of the injection rate for each application

PS 1 1 1 1

GB 2 2 2 2

PE 3 3 3 3

TI TI TI TI

PE PE PE PE PE

MBMBMBMB

(a) Critical path of the FIR fil-
ter

PS 1 1 1 1

GB 2 2 2 2

PE 3 3 3 3

TI TI TI TI

PE
	 	 	 	
�
�
�
�

(b) Critical path of the Cus-
tom application

PS 1 1 1 1

GB 2 2 2 2

PE 3 3 3 3

TI TI TI TI

PE
� � � �
�
�
�
�

(c) Critical path of the JPEG
decoder

Figure 5.26: The different pipeline mappings

60

Figure 5.27: The average deviation as a function of the injection rates

Figure 5.28: The speedup for the first configuration

within a certain time interval, from which we conclude that Guaranteed Service router
arbitration might be better suited for our architecture to meet the requirements of
real-time systems.

5.5.5.3 Comparison of the two configurations

The increase in the average arrival rate with the increase in injection rate for the
second configuration is considerably lower than for the first configuration. The number
of hops in the critical path of the first configuration is higher than the number of hops
in the critical path of the second configuration. This indicates that the placement of
the components is an important aspect of the multiprocessor that must be considered
during the design time. The length of the critical paths of the data blocks determines
the degree in which the traffic volume affects the arrival rate of the data blocks.

In order to determine the influence of the traffic volume on the performance of the
architecture, the speedup is given as a function of the injection rate for both configura-
tions. Observed in Figure 5.28 and Figure 5.29 is that the speedup is only marginally
affected by the injection rate in both cases, which indicates that the performance is
marginally affected by the traffic volume in the network.

61

Figure 5.29: The speedup for the second configuration

5.6 Summary

In this Chapter we described our baseline platform configured in a four by five mesh
consisting of several ρ-Vex processor, a primary scheduler, a global data buffer and sev-
eral secondary schedulers. Three application have been selected to run on our processor,
which include the JPEG encoder, FIR filter and a custom application. The partitioning
strategies and the mapping of these applications on the platform have been explained.
To evaluate our architecture four evaluation metrics are used, which include speedup,
throughput, average arrival rate, average deviation, the minimum arrival rate and the
maximum arrival rate.

Different experiments have been conducted to evaluate different aspects of our ar-
chitecture. The first experiment involved increasing the input stream size from which
we conclude that an unbalanced load severely limits the speedup and can be considered
as one of the limitations of stream programming. Further more we have shown that
the speedup approaches the ideal speedup in the case of a perfectly balanced workload
where the ideal speedup is 4 and the measured speedup is 3.6. In order to determine
how this architecture scales with respect to multiple pipelines, the number of pipelines
have been increased for each applications. The speedup and throughput have increased
almost linearly with the number of pipelines. To determine the influence of the buffer
size on the performance, the buffer size has been increased. The buffer size must be
big enough to store all data needed in one iteration, further increasing the buffer size
does not improve the performance. We were also interested in the performance of our
architecture for applications with deeper pipelines. To that end we have increased
the number of pipeline stages for the FIR filter and the custom application, to con-
clude that the communication overhead increases significantly for a certain number of
pipeline stages. The point at which the communication overhead significantly affects
the speedup depends on the application.

The last experiment determined the influence of the traffic volume on the execution
time of the applications. The speedup did not significantly change with the increase
in traffic rate, to conclude that the performance is not significantly affected by the in-
creased traffic volume in the network. We have also studied the affects of the network
on the individual data blocks going through the pipeline, to determine if this architec-
ture is suitable for real-time applications, which requires throughput guarantees. We

62

have concluded that the average deviation of the data blocks arriving at the global data
buffer is not only dependent on the injection rate but also depends on simultaneous
read and writes by the multiple pipelines to the global data buffer, the length of the
critical path and the size of the data blocks. The unpredictable behavior of the arrival
times of the data blocks have led us to believe that a Best effort QoS strategy [20]
might not be suitable for real-time streaming applications, instead we need to consider
a guaranteed service QoS strategy [20].

63

64

Conclusion 6
This chapter gives a summary of the work done during the project and recommenda-
tions for future work.

6.1 Summary

Streaming applications are applications partitioned into tasks working on data blocks
in a data stream. The advantage of such a partitioning is that the tasks are pipelined
resulting in an increased throughput and decreased execution-time compared to the
serial implementation.

A simple simulation described in Chapter 2 of the network performance has in-
dicated that an architecture consisting of a distributed memory where the processors
communicate via message passing is better suited for streaming applications than a
shared-memory architecture. To that end, a message passing architecture based on
the requirements of streaming applications is designed and implemented.

The proposed multiprocessor architecture, as explained in Chapter 3 and 4 consist
of a dynamic distributed scheduler and a distributed memory where the cores commu-
nicate via message passing. The dynamic scheduler schedules tasks at run-time based
on a nearest neighbor scheduling policy. The key components of a message-passing tile
are a DMA-controller, a message passing buffer and a outgoing buffer. The message
passing buffer is used to store incomming messages and the outgoing buffer is used
to briefly buffer unsent messages. The DMA-controller manages the transfer of data
between the several components on the message-passing tile. Existing message-passing
buffers are either implemented as a RAM, which imposes the problem of managing the
buffer address by the application developer or as FIFO channels. Each communicating
pair (sender and reciever) has their own FIFO channel. The use of FIFO channels elim-
inates the need for buffer address managing by the application developer but decreases
the flexibility of the architecture. The FIFO channels must be configured at compile-
time and can not be dynamically reconfigured. Our approach combines the advantages
of both the RAM and FIFO implementations by introducing the buffer manager, which
keeps track of the order in which messages have arrived along with the addresses of the
messages within the buffer.

The message passing architecture is evaluated in Chapter 5 by conducting several
experiments evaluating different aspects of the architecture. The platform on which we
have done our experiments includes a distributed scheduler, twenty ρ-Vex processors
and a global data buffer which is used to store the streaming data. Three applications
have been selected to run on our architecture: the JPEG decoder, a FIR filter and a
custom application. The custom application is specifically written to expose the capa-

65

bilities of the architecture. From the first experiment which involved varying the input
stream sizes, we have concluded that balancing the workload is crucial for optimal per-
formance. Balanced workloads can result in speedups that can closely approach the
ideal speedup, which is observed in the results of the custom application. The speedup
of the balanced custom application on four cores is 3.6 in comparison with the un-
balanced JPEG encoder on three cores with a speedup of 1.4, which emphasizes the
importance of load balancing. Further more, increasing the number of pipelines, almost
linearly increases the speedup and throughput. We have also tested the architecture
for applications with a deeper pipeline, where the number of pipelines of the filter and
custom application are increased. This experiment has exposed the increased commu-
nication overhead as a consequence of the high amount of pipeline stages. The speedup
for the custom application with sixteen pipeline stages is 13.4 and the speedup for the
FIR application consisting out of seven stages was 3.8. The last experiment involved
increasing the traffic volume in the network by means of traffic injectors. To determine
the effect on the run-time of the individual data blocks going through the pipeline, we
calculated the deviation of the arrival times of the data blocks arriving at the global
data buffer for various traffic-injection rates. The deviation is not significantly influ-
enced by the traffic injection rate compared to the overhead of multiple pipelines trying
to send their results to the global data buffer simultaneously. The highest average de-
viation percentage of 2% has been calculated for the JPEG decoder. The maximum
deviation percentage can get as high as 8%. The unpredictable behavior of the arrival
times of the data blocks indicates that a guaranteed service router-arbitration strategy
might be better suited for real-time streaming applications.

6.2 Future Work

While we have provided a complete message-passing archtecture and a dynamic dis-
tributed scheduler, there are still aspects which could be improved and / or further
investigated.

• As concluded in the previous section, a balanced workload is crucial for optimal
performance. However this is not an easy task to do manually. Therefore, we
need a dedicated tool that can partition the code with an optimal workload.

• The current message passing library supports the basic message passing functions.
In order to offer more flexibility to the application developers, the library must
be expanded.

• Evaluate the message-passing architecture for applications with more complex
pipelines, applications with a irregular dataflow pattern, etc.

66

Bibliography

[1] M. Geilen and T. Basten, “Requirements on the execution of kahn process net-
works,” ESOP’03 Proceedings of the 12th European conference on Programming,
pp. 319–334, 2003.

[2] S. Brookes, “On the kahn principle and fair networks,” Technical Report CMU-
CS-98-156, School of Computer Science, Carnegie Mellon University, 1998.

[3] E. Lee and T. Parks, “Dataflow process networks,” Readings in hardware/software
co-design, pp. 59–85, 1995.

[4] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The case
for a single-chip multiprocessor,” Appears in Proceedings Seventh International
Symp. Architectural Support for Programming Languages and Operating Systems
(ASPLOS VII), pp. 2 – 11, 1996.

[5] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun,
“The stanford hydra cmp,” IEEEMicro, vol. 20 Issue 2, pp. 71–84, 2000.

[6] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A
Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc, 2006.

[7] S. S. Kumar and R. van Leuken, “A 3d network-on-chip for stacked-die transac-
tional chip multiprocessors using through silicon vias,” Design & Technology of
Integrated Systems in Nanoscale Era (DTIS), 6th International Conference, 2011.

[8] Intel, “The scc platform overview.” http://www.intel.com, 2010. Accessed:
28/8/2012.

[9] T. M. (IL) and R. van der Wijngaart (SSG), “Rcce: a small library for many-core
communication.” http://www.intel.com, 2010. Accessed: 28/8/2012.

[10] A. Nieuwland, O. P. Gangwal, R. Sethuraman, N. Busa, K. Goossens, R. P. Llopis,
and P. Lippens, “C-heap: A heterogeneous multi-processor architecture template
and scalable and flexible protocol for the design of emebedded signal processing
systems,” 2002.

[11] IBM, “Cell broadband engine architecture,” 2007.

[12] A. DULLER, G. PANESAR, and D. TOWNER, “Parallel processing the picochip
way!,” Communicating Process Architectures, 2003.

[13] T. R. Halfhill, “Ambric’s new parallel processor,” Microprocessor Report, 2006.

[14] A. Inc., “Ambric, creating massively parallel solutions,” 2008.

67

http://www.intel.com
http://www.intel.com

[15] B. Baas, Z. Yu, M. Meeuwsen, O. Sattari, R. Apperson, E. Work, J. Webb, M. Lai,
T. Mohsenin, D. Truong, and J. Cheung, “Asap: A fine-grained many-core plat-
form for dsp applications,” IEEEMicro, vol. 27 Issue: 2, pp. 35–45, 2007.

[16] S. Wong, T. van As, and G. Brown, “ρ-vex: A reconfigurable and extensible soft-
core vliw processor,” Accepted at the IEEE International Conference on Field-
Programmable Technology, pp. 369 – 372, 2008.

[17] CCITT, “Information technology digital compression and coding of continuous-
tone still images requirements and guidelines,” 1992.

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “Mibench: A free, commercially representative embedded benchmark
suite,” IEEE Annual Workshop on Workload Characterization, 2001.

[19] J. O. SMITH, “Introduction to digital filters.”
https://ccrma.stanford.edu/~jos/fp/. Accessed: 28/8/2012.

[20] B. Gebremichael, F. Vaandrager, and M. Zhangy, “Formal models of guaranteed
and best-effort services for networks on chip,” Verification of Hard and Softly
Timed Systems (HaaST), 2005.

68

https://ccrma.stanford.edu/~jos/fp/

	Abstract
	Acknowledgments
	Introduction
	Problem Statement
	Thesis Goals
	Contributions
	Thesis Organization

	Background
	Parallelism
	Exploiting TLP and DLP
	Streaming applications
	The Stream Programming Model

	A Shared-memory Multiprocessor architecture
	A Distributed Memory Multiprocessor architecture
	Performance analysis and comparison of a Shared-memory architecture and a Message-Passing architecture
	Experimental setup
	Results
	Scalability
	Conclusion

	Related work
	The Intel SCC
	C-HEAP
	The IBM Cell-processor
	The PicoChip
	The Ambric parallel processor
	AsAP

	Summary

	System Overview
	System Architecture
	Scheduling Policy for scheduling on the VLIW array
	Overview of the Message Passing Architecture
	Summary

	Architecture
	The Distributed Scheduler
	The Primary Scheduler
	The Secondary Schedulers

	The Message Passing Tile
	The Processing Element
	Data Memory
	Instruction Cache
	The Bootloader
	Data Interface
	The Message Passing Buffer
	The Buffer Manager
	Outgoing Buffer
	The DMA Controller
	The Network Interface
	The Network Interface Bridge

	Summary

	Experimental Setup and Results
	The Baseline Platform
	The Applications
	The JPEG Decoder
	The FIR Filter
	Custom Application
	The Scheduling Overhead

	Performance Evaluation Metrics
	Performance Evaluation Process
	The Experiments
	Increased Input Sizes
	Multiple Pipelines
	Varied buffer sizes
	Varied number of pipeline stages
	Increased traffic volume

	Summary

	Conclusion
	Summary
	Future Work

