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Abstract

Before performing a field production forecast, an inverse problem has to be solved. Resulting
in an ensemble of models that include the integration of real data with a complex physical
and geological data describing subsurface processes. For large models, this approach can
be very time and computationally expensive, therefore we propose an alternative approach
for reservoir forecasting. In this work, we develop a physics-based data-driven model that
purely relies on production data of the field and does not require any in-depth knowledge of
the reservoir geology and physics.

In the proposed approach, we utilize Delft Advanced Reservoir Terra Simulator (DARTS) as a
base for our reservoir simulations. DARTS uses an Operator-Based Linearization technique
for the approximation of exact physics. It allows us to encounter a more realistic interpre-
tation of physics and is computationally efficient. The physics-based data-driven approach
uses sequential regression to the data to increase the fidelity of the model forecast and en-
counter any significant changes in reservoir dynamics and physics over its history.

The model was examined and validated for synthetic and real field production models. We
demonstrate that the developed approach is capable of providing accurate and reliable pro-
duction forecast on a daily basis.
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1
Introduction

Computer technologies are progressing rapidly, computational capacities that are available
nowadays provide an opportunity for many industries to perform more complex numerical
simulations of high-resolution three-dimensional (3D), geo-cellular computer models. Pre-
diction from those models is an important factor governing efficient reservoir management
and decision making. Such models describe complex geological features through a set of
grid blocks and associated rock and fluid properties. A high-resolution computer model can
exceed a few million blocks and take hours or days to simulate.

It is still not computationally feasible to perform history matching or reservoir optimization
efficiently at such resolution, as it involves a large number of simulations runs. Therefore,
engineers develop different methods to speed up this process. Those methods fall into two
categories:

• Simplification of high-fidelity geo-cellular models, or

• data-driven approaches.

Methods such as upscaling, multi-scale methods and streamline simulation fall into the first
category.

Upscaling is the process of numerical homogenization, where the high-resolution model is
represented as a set of coarser grid blocks with effective property replicating high-fidelity
model response [10]. Multi-scale methods are somewhat similar to upscaling, where the
global flow is computed on a coarse grid, while fine-scale heterogeneity is accounted for thor-
ough basis functions [14]. The streamlined method [3] is the Eulerial-Lagrangian approach
with implicit pressure explicit saturation (IMPES) time approximation. In this approach, a
full 3D transport solution is translated to a set of one dimensional (1D) equations that are
solved along streamlines.

All methods in the first category, require an underlying geological characterization as a basis
for decreasing computational load. However, there are many cases when this information
is not available. Does it mean we cannot solve optimization or history matching problems
efficiently? The second category methods resolve this issue.

The data-driven method is the approach of building a proxy model with a sufficient number
of degrees of freedom to accurately mimic the high-fidelity model based on its calibration to
the production data. With a sufficient amount of data and reliable regression framework,
data-driven models can provide an accurate forecast for the given reservoir and be easily
incorporated in a software cycle used by a company.

1



2 1. Introduction

1.1. Approaches overview
1.1.1. Reduced-order models
One of the data-driven approaches was proposed by Cardoso et al. [4] to decrease the compu-
tational time of the high-resolution models. The most practical application of this approach
is to simulate the high-fidelity problem which is referred to as training. The pressure and
saturation states are saved and assembled into matrices donated by Xp and XS. Next, sin-
gular value decomposition (SVD) is performed on those matrices, where the singular vectors
represent the columns of the orthonormal reduced basis Φ, followed by truncation of Φ using
energy criteria. Finally, the system of reduced Jacobian and residuals is solved. The main
disadvantage of this approach is based on the fact that the high-fidelity (geological) model
and exact physics of reservoir fluids is required to generate enough snapshots.

1.1.2. Statistical data-driven model
Property interpolation and estimation traditionally was a stationary process, which ignored
any dynamic data. Hence, a stationary approach was applied in traditional geostatistics to
interpolate data. The assumption about stationarity was purely based on the limited and
usually very uncertain knowledge about the location and structure of a reservoir from static
measurements. Dynamic data were often excluded. However, it provides a measure of the
in-site flow process and the inter-well relation.

The first data-driven concept that incorporated dynamic data for property estimation was
proposed by Jansen et al. [13]. In this approach, the cross-correlations coefficients of each
well were generated and used as a tool for enhancing parameter interpolation, and moreover,
cross-correlation coefficients indicated the extent of continuity. The main disadvantage of
this approach is noise sensitivity. Also, due to the nature of correlation-based methods,
future reservoir performance is not quantitatively predictable.

1.1.3. Capacitance-resistance model (CRM)
It was reported by Albertoni and Lake [2] that connectivity between wells only depends on
geology and the relative position between them which can be described by a constant value.
Also, they found that those constants are independent of the rates. The authors view a
reservoir as a system that converts an input signal (injection) into an output/response (pro-
duction).

Yousef et al. [33] improved this concept, by including capacitance (compressibility) and re-
sistivity (transmissibility) effects into the model as well as the option to include bottom hole
pressure (BHP) data. In this approach, two coefficients were determined for each well pair:
one parameter (the weight) quantifies the connectivity, and another (the time constant) quan-
tifies the degree of fluid storage between the wells. Weights describe the extent of connectivity,
and time constant describes the dissipation between injector i and producer j. This approach
showed good results in the identification of geological features of the reservoir. The draw-
back of this method is that it uses an integrated fraction flow model, which originated from
an empirical correlation and can be seen only as an approximation of the reference physics.

1.1.4. Flow-network model
Lerlertpakdee et al. [18] proposed a Flow-Network model representing a complex 3D flow as
a set of 1D finite-difference reservoir models. Each well in the original model form nodes,
which are then connected with other nodes (wells) by the use of a 1D numerical simulation
model. Each reservoir is defined by a set of two parameters: absolute permeability and pore
volume. The coupling is imposed at the wells that are shared by more than one connection.
The advantages of this approach are the construction of this model does not require a high-
fidelity geological data and that it follows the physical laws of the realistic multiphase system.
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However, the Flow-Network model still requires prior knowledge of the relative permeability
curves.

1.1.5. Interwell-numerical-simulation model (INSIM)
INSIM [34] approach is somewhat similar to the CRM [33] and Flow-Network model [18]. In
the INSIM assumptions, a reservoir is viewed as a series of units connecting well pairs but
instead of discretizing those connections as in the Flow-Network model, INSIM only defines
a pair of parameters for each connection. That is a significant reduction in the number of
parameters compared to a set of 1D finite-difference reservoir models. Connections between
well pairs should be defined in the pre-processing stage and, moreover, the prior knowledge
of the relative permeability curves and fluid viscosity is required. Furthermore, INSIM uses
only a single connection between injector and producer, which is not sufficient to model
complex reservoir dynamics and get an accurate history match.

Later, Guo et al. [12] improved this model and called it INSIM-FT. He managed to fix the
main problem in the INSIM, which was related to incorrect calculating of water saturation
whenever a producer is converted to a water-injection. The new model uses the correct front-
tracking procedure to calculate water saturation, hence the name INSIM-FT. Also, imaginary
wells are added to provide more flow paths. In INSIM-FT, relative permeability is used as a
matching parameter and an option to use separate relative permeability curves for different
connections was also introduced.

1.1.6. Alternative approaches
Many other alternative methods rely on Artificial Intelligence (AI) [22] and data fitting [35]
principles, but usually they are treated as a black-box approach. Moreover, the physical
meaning of the reservoir parameters in those methods is usually lost.

1.2. Objectives and workflow
Many of the mentioned approached for history matching and production forecast either re-
quired prior knowledge of reservoir geology and fluid properties or completely refused to take
into account underlying physics. Therefore, the main intention of this work is to develop a
framework that is capable of producing a reasonably accurate forecast based only on his-
torical field data, respecting underlying physical processes at the same time. This will be
achieved through the utilization of the Operator-Based Linearization (OBL) technique [31]
and efficient implementation in Delft Advanced Reservoir Terra Simulator (DARTS) [7].

The resulting thesis objectives are the following:

• develop a framework, which is capable to accurately match and predict reservoir rates,

• test and analyze framework on synthetic and real field data,

• understand the sensitivity of regression algorithms to its inputs and constraints, and

• utilise spatial and temporal clustering to enhance framework accuracy and efficiency.

The main steps that were taken during framework development are summarised in the work-
flow shown in figure 1.1.

1.3. Thesis structure
After a brief overview of approaches used in industry, all necessary theoretical background
is thoroughly explained in chapter 2. The overview of the models and essential features
related to model data sets is presented in chapter 3. Chapter chapter 4 begins with results
obtained from real field example as this thesis is a logical continuation of the internship
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Figure 1.1: Simple visualisation of the framework development steps

project. It continues with sensitivity and quality analysis of synthetic fields: Brugge model
and an ensemble of fluvial reservoir models. Conclusion and further work can be found in
chapter 5 and chapter 6.



2
Theoretical background

This chapter describes all the necessary theoretical derivations used in the approach. The
equations which govern fluid flow in porous media are briefly mentioned, followed by the
Operator-Based linearization technique. Methods for model generation and its regression
to the historical production data are also present in this chapter. Spatial and temporal
clustering approaches used to accelerate and enhance model predictability are explained at
the end of this chapter.

2.1. Governing equations for flow and transport in porous media
In this section, we describe the set of governing equations required for a conventional compo-
sitional numerical simulation1, together with their discrete version and a recently proposed
linearization technique [31]. The transport equations for an isothermal system containing 𝑛
components and 𝑛፩ phases can be written as:

𝜕
𝜕𝑡 (𝜙

፧ᑡ

∑
፣ኻ
𝑥፣𝜌፣𝑆፣) + ∇

፧ᑡ

∑
፣ኻ
𝑥፣𝜌፣v፣ +

፧ᑡ

∑
፣ኻ
𝑥፣𝜌፣𝑞⋆፣ = 0, (2.1)

where phase velocity is described with a Darcy’s Law:

v፣ = −(K
𝑘፫፣
𝜇፣
(∇P፣ − 𝛾፣∇D)) . (2.2)

Here, 𝜙 - the rock porosity, 𝑥፣ - the mole fraction of component 𝑐 in phase 𝑗, 𝑆፣ - the phase
saturation, 𝜌፣ - the phase molar density, v፣ - phase velocity, 𝑞⋆፣ - phase rate per unit volume, K
- permeability tensor, 𝑘፫፣ - relative permeability, 𝜇፣ - phase viscosity, P፣ - vector of pressures
in phase j, 𝛾 - gravity term, D is the vector of depths (positive downwards). Equation 2.1
can be written in a discrete form by applying the finite-volume discretization in space and
backward Euler approximation in time:

𝑉 ((𝜙∑
፣
𝑥፣𝜌፣𝑆፣)

፧ዄኻ
+ (𝜙∑

፣
𝑥፣𝜌፣𝑆፣)

፧
) − Δ𝑡∑

፥Ꭸፋ
(∑

፣
𝑥፥፣𝜌፥፣𝑇፥፣Δ𝜓፥) + Δ𝑡∑

፣
𝜌፩𝑥፣𝑞፣ = 0, (2.3)

where 𝜓፥ is the difference between two blocks.

The fully implicit method (FIM) time approximation has been used here that requires that flux
term is defined based on the nonlinear unknowns at the new timestep (𝑛+1), which introduce
1Several formulations and solution techniques for compositional simulation have been proposed, which usually differ in types of
nonlinear unknowns used for the solution.
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6 2. Theoretical background

nonlinearity to the system of equations. The nonlinear formulation used here is the overall
molar formulation proposed in [6]. In the molar formulation, the nonlinear unknowns are
pressure and overall composition, therefore the physical state 𝜔 is completely defined by
these variables. A more extensive analysis of the different types of formulations and their
applicability has been performed in [32].

The derivatives of all properties in eq. 2.3 with respect to nonlinear unknowns can be found
by solving a multiphase flash [21] with subsequent application of the inverse theorem. Next,
Jacobian and residual can be constructed that result in the conventional linearization ap-
proach. This approach is based on the Newton-Rapson method, where in each nonlinear
iteration the following linear system of equations is solved:

J(𝝎፤)(𝝎፤ዄኻ −𝝎፤) = −r(𝝎፤). (2.4)

Here, J is the Jacobian matrix containing derivatives with respect to primary unknowns, 𝝎
is a vector of non-linear unknown 𝑃 and 𝑧, k is the non-linear iteration step and r is the
residual.

Conventional nonlinear solution approach involves evaluation and storage of all properties
and its derivatives with respect to the nonlinear unknowns, which is quite challenging. A
new strategy for linearization was proposed in [31]. This strategy is successfully utilised in
this work.

2.1.1. Operator-Based Linearization (OBL)
Equation 2.3 can be written in a compact form as following:

𝑎(𝝎)(𝛼(𝝎) − 𝛼(𝝎፧) −∑
፥
𝛽፥(𝝎)𝑏፥(𝝎, 𝝃) + 𝜃(𝝎, 𝝃,u) = 0, (2.5)

where 𝜔 is a state dependent parameter, 𝜉 is a space dependent parameter. All involved
operators are defined as:

𝛼(𝝎) = (1 + 𝑐፫(𝑝 − 𝑝፫፞፟))∑
፣
𝑥፣𝜌፣𝑆፣ (2.6)

𝑎(𝝃) = 𝑉𝜙ኺ (2.7)

𝛽(𝝎) =∑
፩
𝑥፣
𝐾፫፣
𝜇፣
𝜌፣ (2.8)

𝑏(𝝎, 𝝃) = Δ𝑡𝑇ፚ(𝝃)(𝑝 − 𝑝ፚ) (2.9)

𝜃(𝝎, 𝝃, 𝑢) = Δ𝑡∑
፣
𝜌፣𝑥፣𝑞፣(𝜉, 𝜔, 𝑢) (2.10)

Here, 𝑐፫ is the rock compressibility, 𝑢 is vector of well control variables and 𝑇ፚ is the geo-
metric part of transmissibility.

In this form, the nonlinear system has a simplified description in terms of physical state-
dependent operators (𝛼 , 𝛽). It is also possible to specify a set of operators for a specific
pressure, volume, temperature (PVT), special core analysis laboratory (SCAL) data region if
needed. The values of operators are uniquely determined in the parameter-space of the prob-
lem with the set of nonlinear unknowns 𝑝 and 𝑧. Operators are evaluated at every supporting
point in the discrete parameter space during a pre-processing stage and then interpolated
(using multi-linear interpolation) during simulation course. Further, this approach was mod-
ified to evaluate operators adaptively throughout a simulation run [29].
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2.2. Spatial connectivity graph
To perform a numerical evaluation or reservoir simulation we have to go from a continues to
a discrete domain. Therefore, discretization of the models, variables, and equations should
be performed into discrete counterparts. The geometrical discretization of the reservoir is
based on the control volume partitioning [15]. Spatial connectivity graph is a discrete rep-
resentation of the reservoir model, in terms of the connections between control volumes and
associated constants. The discretised model is defined using boundaries which are gridded
using hierarchical approach: a volume (convex polyhedra) is bounded by a set of surfaces
(convex polygons), a surface is bounded by a series of curves (segments), and a curve is
bounded by two endpoints (nodes).

Formodel gridding, an automatic open-sourcemeshing software package ”GMSH” was utilised
[11]. It implements several algorithms for mesh optimisation and post-processing [20]. The
simple example of meshing is a triangulation with the help of a Voronoï diagram.

First, lets consider a Voronoï cell in figure 2.1(a) of a point 𝑆።, which is a locus of point in a 2D
space (𝑅ኼ) that are closer to 𝑆። than any other points. Then, lets introduce a set of mediators
2 between point 𝑆። and points 𝑆፣ (blue lines), which result in a Voronoï cell in fig.2.1(b). The
set of a Voronoï cell is called Voronoï diagram and can be seen in figure 2.1(c). By linking
centroids of Voronoï cells to all its neighbours, we get a triangulation as seen in figure 2.1(d),
because Voronoï points are always the meeting points of 3 mediators. With the help of the

(a) (b)

(c) (d)

Figure 2.1: Step-by-step approach of a Delaunay triangulation. First we introduce a set of mediators around a
given point a, which helps to construct a Voronoï cell b. Cells can be added together to form a a Voronoï diagram

c and then perform a triangulation to produce a mesh seen in d. Figures were adapted from [11].

above mentioned procedure, a list of all connections can be generated.

2Lets ፒᎳ and ፒᎴ be two points on ፑᎴ , then the mediatorፌ(ፒᎳ , ፒᎴ) is the locus of all the points which are equidistant to ፒᎳ and ፒᎴ.
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2.3. Training of the model
By model training, we imply a minimization of the function subject to constraints on its
variables. The intention is to minimize an objective function by finding an optimal set of
input parameters. In this work, the objective function reflects the difference between the
model and the observed data. Water injection, oil production, and water production rates
were used as the basis to compute objective function. The minimization problem can be
written based on a 𝐿ኼnorm of missfit of phase reactive rates in eq. 2.11 and cumulative
phase volumes in eq. 2.12:

min
፱Ꭸፑᑟ

𝐽(𝑥) =
፧ᑨ
∑
፰ኻ

፧ᑡ

∑
፩ኻ

√
፧ᑥ
∑
፭ኻ
[𝑄፨፰,፩|፭ − 𝑄፫፰,፩|፭(𝑥)]ኼ, (2.11)

min
፱Ꭸፑᑟ

𝐽(𝑥) =
፧ᑨ
∑
፰ኻ

፧ᑡ

∑
፩ኻ

√
፧ᑥ
∑
፭ኻ
[𝑉፨፰,፩|፭ − 𝑉፫፰,፩|፭(𝑥)]ኼ, (2.12)

𝑉፨፩ =
፧ᑥ
∑
፭ኻ
(𝑄፨፰,፩|፭ ∗ 𝑇|፭), (2.13)

𝑉፫፩ (𝑥) =
፧ᑥᑤ
∑
፭ኻ
(𝑄፫፰,፩|፭(𝑥) ∗ 𝑇|፭). (2.14)

Here, 𝐽 is the objective function, 𝑛፰ is the number of wells, 𝑛፩ is the number of phases, 𝑛 is
the number of optimisation parameters, 𝑥 is the vectors of optimisation parameters, depend-
ing on the modifiers choice (see section 2.3.2), 𝑛፭ is the number of observation time steps,
depending on selected time coarsening option, 𝑄፨፩|፭ - observation reactive rate of phase 𝑝 at
well 𝑤 and timestep 𝑡 (comes from production data), 𝑄፫፩|፭ - response reactive rate of phase 𝑝 at
well 𝑤 and timestep 𝑡 (comes from simulation), 𝑉፨፩ |𝑡 - observed cumulative produced/injected
volume of phase 𝑝 at well 𝑤 and timestep 𝑡, 𝑉፫፩ |፭ - response cumulative produced/injected
volume of phase 𝑝 at well 𝑤 and timestep 𝑡, 𝑇|፭ - length of time step 𝑡, 𝑛፭𝑠 - the number of
simulation time steps.

It is important to point that in the case when wells were controlled by the oil production and
water injection rates, the model response and observation data match each other automat-
ically unless a well hits the BHP limit and its rate changes. In conventional data assimila-
tion, it is interpreted as an inconsistency between reservoir parameters and production data.
However, this issue usually is eliminated by an optimization algorithm after a few iterations.

Also, to ensure that optimizer stays away from non-physical parameters, a penalty term was
imposed. Whenever the nonlinear convergence of simulation is not reached, a large penalty
term was returned as an objective function value. The scaling of the objective function is also
important for some regression algorithms to perform reliably as well as the scaling of opti-
mization parameters. The final value of the objective function depends on many factors: time
coarsening, the closeness of the parameters to the optimum and the length of the training
period.

2.3.1. Algorithms
Before start training of our data-driven model, we compare several optimisation algorithms
that are applicable to the problem. Four regression algorithms (local, global, derivative-free,
gradient-based) have been chosen among dozens of available algorithms. The gradients for
gradient-based algorithms are approximated by finite-difference eq. 2.15:

𝑓ᖣ(𝑥) = 𝑓(𝑥 + 𝜖) − 𝑓(𝑥)
𝜖 . (2.15)
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The choice of 𝜖 or perturbation size depends on the optimised parameters range and the prob-
lem itself, but in the most of cases, the value of 1𝑒ዅዀ shows reasonable results. Optimisation
has been considered successful when the acceptable relative error 𝑓፭፨፥ in func(𝑥፨፩፭) between
iteration steps reached the value of 1𝑒ዅዀ, which is a default value for many algorithms. For
a fair comparison of the algorithms, the run time was limited by 96 hours, and the final
objective function values were compared. Simulations were performed on a cluster with 8
nodes. With each node having 40 Intel Xeon central processing units (CPU) E5-2650 v3 with
a 256 megabytes of real memory.

Sequential Least-Square Quadratic Programming (SLSQP)

SLSQP is a local sequential quadratic programming algorithm for non-linearly constrained
gradient-based optimisation. It optimises successive second-order approximations of the
objective function with a BFGS 3 update. Popular and widely used, but not practical for
problems with more than a few thousand parameters. References of this algorithm can be
found in Kraft [17].

Method of Moving Asymptotes (MMA)

MMA [27] is a local-gradient based algorithm, which was chosen as an alternative to SLSQP. It
is a globally-convergent 4 algorithm, which is very popular for topology optimisation problems.
MMA uses a special type of approximation that is both convex and separable. Optimisation
of the approximation leads to the new point of 𝑥. Then the objective and constraints are
evaluated at this point, and if the test is passed, the process is restarted with the new 𝑥. If
the test is not passed, a penalty term 5 is increased.

Constrained Optimisation by Linear Approximation (COBYLA)

COBYLA is the local derivative-free optimisation algorithm proposed by Powell [24]. It con-
structs linear polynomial approximations to the objective and constraint functions by inter-
polation at the vertices of simplices 6. Calculation of derivatives takes most of the time for
two previous algorithms. Therefore, COBYLA is a good alternative if a number of parameters
significantly increases.

Multi-Level Signle-Linkage (MLSL)

MLSL [25] is an algorithm for global optimisation by a sequence of local optimisation, either
derivative-free or gradient-based, from random starting points. The COBYLA approach was
used as a local optimizer in our comparison study.

2.3.2. Modifiers
The methods and associated parameters that are adjusted in a certain way by an optimizer
are called Modifiers in the description below. Optimization algorithm is changing modifiers
to ensure that data-driven proxy model response matches the ”true” response based on ei-
ther historical recorded data or high-resolution reservoir model response. Following model
modifiers are available in DARTS optimization package:

• nonlinear modifier,

• linear modifiers, and

• well modifier.
3Broyden–Fletcher–Goldfarb–Shanno (BFGS) is a class of hill-climbing optimisation technique, used to iteratively solve uncon-
strained nonlinear optimisation problems

4Globally convergent means that it guaranteed to converge to a local minimum from the feasible starting point.
5Penalty term makes the approximation ”conservative”
6Simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.
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Since regression is performed via constrained optimization, every modifier defines the mini-
mum and maximum values (i.e., bounds) for its parameters. Using the bounds, as some of
the regression algorithms are sensitive to the scale of a problem, every modifier automatically
performs scaling of parameters to the interval [0, 1]. For the support of regression of several
parameters sets simultaneously, a model modifier aggregator was developed. It wraps one or
several model modifiers, consistently splitting the combined vector of optimization parame-
ters between them during regression.

Nonlinear modifiers

Relative permeability has paramount significance for modelling of reservoir fluids. To date,
various models have been developed and introduced to calculated relative permeability by
Carman-Kozeny, Burdine, Chierici et al. Brooks-Corey summarised the work of Burdine and
presented a modified Brooks-Corey model or also known as the power-law model, which is
the most utilised model in the petroleum industry. The modified Brooks-Corey model may
be expressed as:

𝑘፫፨ = 𝑘፞፫፨ (1 − 𝑆∗፰)
፧ᑠ , (2.16)

𝑘፫፰ = 𝑘፞፫፰ (𝑆∗፰)
፧ᑨ , (2.17)

𝑆∗፰ =
𝑆፰ − 𝑆፰

1 − 𝑆፰ − 𝑆፨፫
. (2.18)

where 𝑆∗፰ is the normalised or effective water saturation, 𝑘፫፰ - water relative permeability,
𝑘፞፫፰ - endpoint water relative permeability, 𝑘፞፫፨ - endpoint oil relative permeability, 𝑛፰ , 𝑛፨ -
exponents for water and oil, 𝑆፰ - water saturation, 𝑆፰ - residual or connate water saturation
and 𝑆፨፫ is the residual oil saturation.
The relative permeability term is involved in mass balance equation through the Darcy ve-
locity equation, where it gets multiplied by ᑡ

᎙ᑡ
term of the corresponding phase 𝑝. The set of

Brooks-Corey modifier parameters was defined as 𝑆፨፫, 𝑆፰, 𝑛፨, 𝑛፰, 𝑘፞፫፰𝜌፰/𝜇፰, 𝑘፞፫፨𝜌፨/𝜇፨, which
were subjected to the following constrains:

• Corey exponents, for both phases, should stay within 0 and 5
• Residual saturation’s, for both phases, cant be larger than 0.49
• 𝑘፞፫፰𝜌፰/𝜇፰, 𝑘፞፫፨𝜌፨/𝜇፨ are constrained within a ranges (100, 3000) and (10, 2000), respec-
tively.

Linear modifiers

The general unstructured grid in reservoir simulation is usually characterized by a spatial
connectivity graph represented as connection list [19]. It involves the specification of the
connections between grid blocks and associates transmissibility of those connections. Trans-
missibility directly affects the flow dynamics in the reservoir, as it is involved as a constant
multiplier in the Darcy velocity equation. The transmissibility 𝑇።፣ between grid blocks 𝑖 and
𝑗 can be defined for a general unstructured grid [15] as:

𝑇።፣ =
𝛼።𝛼፣
∑፧ 𝛼፧

, (2.19)

where 𝛼 is the sub-transmissibility and can be written as:

𝛼 = 𝐴𝑘
𝐷 . (2.20)

Here, 𝐴 is the interface area between two grid blocks, 𝐷 is the distance from the pressure
node to the interface along the line connecting two pressure nodes and 𝑘 is the grid block
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permeability. For each grid block, we define as many transmissibilities as there are neigh-
bours 𝑛. Transmissibility along 𝑥 axis between two grid blocks in a Cartesian grid can be
written as:

𝑇፱ =
2𝐶፝𝐴

፝ᑩᑚ
፤ᑩᑚ

+
፝ᑩᑛ
፤ᑩᑛ

. (2.21)

It also involves a Darcy constant 𝐶፝ that is responsible for unit conversion. It can be clearly
seen from eq. 2.21 that using a single transmissibility value as a model regression parameter
is more efficient rather than rock permeability fields in 𝑥 and 𝑦 directions. First, in this way,
transmissibility calculations were excluded from the regression loop. Second, the amount of
regression parameters for transmissibility equals the number of connections that increase
the number of degrees of freedom. A smaller amount of regression parameters is preferable
out of performance considerations, as long as it is not limiting the ability to effectively change
the model during regression.

In a way, a single transmissibility parameter connecting two given mesh elements might
be even more transparent regression parameter, rather than a single permeability value,
which is involved in transmissibility calculations of all connections of the givenmesh element.
Notice that transmissibility is a linear parameter with respect to the flow rate. Through the
regression course, transmissible values were constrained by maximum value of 50000 or that
individual connection transsmisibility can be larger than 10 times of its initial value.

Well modifiers

Reservoir grid blocks are typically orders of magnitude larger than wellbore diameter. Con-
sequently, the transmissibility relationship between a well and a reservoir block should be
introduced into the simulator in a special way to couple these two different scales. It is done
through the use of a well index or productivity index (WI/PI). It was introduced by Coats
et al., [5] in the steam-flood simulation to relate the grid block pressure/rate to wellbore
flowing pressure/rate. The equation that relates a well and a reservoir grid block under the
assumption of a single-phase flow can be written as:

𝑞፰። =
𝑊𝐼።
𝜇 (𝑃። − 𝑃፰። ) (2.22)

where 𝑞፰። is the well rate into (out of) the block 𝑖, 𝑊𝐼። is the well index of the grid block 𝑖
intersected by a well, 𝑃። is the grid block pressure and 𝑃፰። is the well flowing bottom hole
pressure. Well index can be also viewed as well-reservoir transmissibility. Once it is deter-
mined in single-phase assumptions, it is also applied to a multiphase flow. The equation to
calculate WI was provided by Peaceman [23] (eq. 2.23, 2.24) and it is still used by default in
modern simulators as:

𝑊𝐼። =
2𝜋ℎ√𝑘፱𝑘፲
ln 𝑟፨/𝑟፰ + 𝑆

. (2.23)

Here, 𝑟፨ is a well-block or Peaceman radius and is expressed as:

𝑟፨ = 0.28
√√𝑘፲/𝑘፱△𝑥ኼ +√𝑘፱/𝑘፲△𝑦ኼ

Ꮆ√𝑘፲/𝑘፱ + Ꮆ√𝑘፱/𝑘፲
, (2.24)

𝑘፲ and 𝑘፱ are the permeability component in the 𝑥 and 𝑦 direction, △𝑥 and △𝑦 are the grid
block sizes, ℎ is the thickness of the grid block, 𝑟፰ is the well radius and 𝑆 is a skin factor.
Consequently, the set of WI modifier will consist of 𝑁፰፞፥፥ parameters. Well index parameters
were constrained by minimum value of 1 and maximum of 1000.

2.4. Temporal clustering
Temporal clustering of the production data was done with the most popular unsupervised
learning algorithms: k-means. K-means is the method of clustering observation data into the
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set of 𝑘 clusters where each data point is assigned to its closest cluster. The algorithm’s aim is
to iteratively minimize the euclidian distance between the centroid of the cluster and the given
observation. The algorithm was implemented though probably the most popular machine
learning library: scikit-learn. The first step is to randomly initialize 𝑘 cluster centroids. Then
the algorithm is followed by a two-step procedure until converged or a maximum number of
iterations reached:

• cluster assignment step: where the data points are assigned to the closest centroid
based on the computed distance between the data point and the cluster centroid,

• move centroid step: update the centroid position by calculating the mean of points
assigned to the cluster.

The optimal number for clusters is determined via the ”elbow” method. In the elbow method,
we run K-mean clustering for a given range of clusters and find the sum of squared distances
of each data point from the centroid of the cluster, which is also called within-cluster sum of
squares (WCSS):

𝐽(𝑐(ኻ)...𝑐(፦), 𝜐ኻ...𝜐፤) =
1
𝑚

፦

∑
።ኻ
(𝑥(።) − 𝜐(ᑚ))ኼ (2.25)

where 𝑐 is the index of cluster centroid closest to 𝑥።, 𝜐 is the cluster centroid, 𝜐(ᑚ) is the cluster
centroid of cluster to which example 𝑥። has been assigned. The point at which WCSS starts
to bend indicates the optimal number of clusters as can be seen in figure 2.2

Figure 2.2: Elbow method. The point at which WCSS starts to bend indicates the optimal number of clusters.



3
Models Overview and Construction

In this chapter, the overview of the models used in this study is presented. Historical pro-
duction data preparation and proxy model construction is also given here. Four model types
have been used in this work:

• Real field model: German

• Synthetic model: Brugge

• Synthetic process-based ensemble: Flumy

• Synthetic MPS-based ensemble: MPS

All models used in this work neglect gravity and capillary effects.

3.1. German model
The data-driven model based on the real field data will be referred to as ”German model”. It is
a brown field, hence a long history of real production data is available. The production data
is used for analysis and evaluation of regression framework robustness and efficiency taking
into account all complexities of the data measurements in the real field. German reservoir
is an elongated succession of fault blocks heading up-dip to the N-W. For the research pur-
poses, only four up-dip fault blocks are used in this study. Fault transmissibilities and other
parameters are barely known for this field. The convectional history-matching studies based
on the existing geological model performed at operation company do not produce satisfactory
results.

The reservoir has a large variety of depths and reservoir unit thicknesses, which can vary
from 2 to 35 meters. Reservoir oil is quite viscous with an average of 20 centipoises. Low
reservoir temperature and field specifics yield to in-situ paraffin and scale precipitation. In
the data-driven model, the reservoir physics was limited to the two-component compositional
formulation, due to negligible field gas rates. However, it is a rough assumption as reservoir
physics might have changed several times throughout field exploitation history.

It was decided to use the available geological model for generation of proxy model basic ge-
ometry. First, it was necessary to identify reservoir boundary points and well coordinates
(𝑖, 𝑗). Then, the average thickness was approximated to match reservoir size and volume. An
important decision was made on choosing the appropriate grid size for the proxy model: the
objective was to place all wells in a separate grid blocks. Model grid generation was done
using ”GMSH” open-source software [11] which performs finite element mesh generation.
Resulting unstructured grid of the German proxy model can be seen in the figure 3.1(a).

13
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Y

XZ

(a) (b)

Figure 3.1: Unstructured proxy model mesh with a 274 elements, dots, excluding the mesh boundary points,
represent proximate wells location (a) Volumes assigned to a proxy model grid (b)

3.1.1. Original reservoir volumes
The most important factor for accurate reservoir modeling is the consistency of the simulated
model fluid volumes and the evaluated reservoir volumes (i.e., material balance). Here, the
geological model is used as a ”true” representation of the subsurface and calculated values
are assumed to be correct. Proxy model volume was calculated with a grid pre-processor
assuming generated mesh from 3.1(a) and uniform reservoir thickness of one meter. Then,
those volumes were corrected by adjusting the following parameters:

• block height: Δ𝑧,
• porosity: 𝜙,
• initial water saturation: 𝑆፰.

The first step was to correctly approximate the heights of proxy model blocks using the geo-
logical model. The proxy model elements were associated with correspondent ranges of grid
blocks in the fine geological model. Hence, a sum over Δ𝑧 in the vertical direction for each
spatial location within a range can be found (ignoring inactive grid blocks). Then all sums
are averaged within that range, representing the approximate height of a coarse block of a
proxy model. The alternative option does not require any geological models and purely relies
on well logs. It performs simple kriging and extrapolates values across the entire proxy grid.
Only with a Δ𝑧 correction, we have managed to achieve a 16% volume absolute error.

The next step was to approximate porosity and initial water saturation. Iteratively, starting
from an initial guess obtained from the geological model we have managed to reduce an
absolute volume error to less than 1% as seen in table 3.1.

Table 3.1: Table with the optimal porosity and saturation values that lead to a good match between geological
and proxy models. Values were obtained iteratively, starting from the average values of parameters in the

geological model

𝜙 0.212
𝑆፰ 0.227

Phase Oil Water
FIIPS geological model [𝑠𝑚ኽ] 2.84𝐸 + 06 6.56𝐸 + 05
FIIPS proxy model [𝑠𝑚ኽ] 2.85𝐸 + 06 6.56𝐸 + 05
Volume abs. error [%] 0.07 0.02

The proxy model grid block volume is visualized in figure 3.1(b). It can be seen that reservoir
thickness/volumes gradually go down as we go to the down-dip (𝑦-direction). With the largest
blocks located close to the reservoir boundaries.
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3.1.2. Well locations
In total, there are 25 wells drilled on the North-West side of the modeled reservoir block. Dur-
ing field lifetime, several wells were used as producers first, and as soon as well started to
water-out, it was re-developed to be an injector. It is a normal practice for the economic de-
velopment of the field. Those switches could be a problem for the nonlinear convergence and
can provoke multiple cuts of simulation time steps which leads to the increase of simulation
time and inconsistency in gradient evaluation [28]. Therefore, several well configurations
were tested for accuracy and simulation efficiency.

• Configuration 1: all wells were duplicated and put in the same spot as original well.
With this approach, we mimic wells switch between producer and injector and vice-
versa; number of wells is 50.

• Configuration 2: well can be either producer or injector. Its type was chosen according
to whether it was dominant (larger rates) during filed life time as injector or producer.
This approach is associated with a large approximation and impose not ’realistic’ flow
in the model. Number of wells is 25.

• Configuration 3: wells can switch between controls. This approach is more accurate,
however, associated with a small convergence limitation. When well experience switch,
pressure cone has to reverse, which produce sharp changes in the function, therefore
problems for non-linear convergence. However, it can be solved with an imposing a
relaxation period (run model for a short period of 1 day or less). Unfortunately, this
configuration required rate smoothing and adjustment as well could have production
and injection rates reported for the same month. If it was the case then the minor rate
was subtracted from the major to preserve material balance. Number of wells is 25.

• Configuration 4: in this case, only wells that had a switch were duplicated. It allows the
most accurate production representation and not subjected to convergence problems.
Number of wells is 33.

In the table 3.2 the efficiency of all four well configurations is summarised. It was decided to
use well configuration 4 as a basis for further simulations as it is most accurate in terms of
preserving reported well rates and effective in terms of simulator runtime. During the sim-
ulation, wells were controlled by reported oil production and water injection rates, whereas
the water production rate was left unconstrained. Controlling rates are based on the real
historical rates reported from the field. Injection data can be labeled as reliable since 1975
when all measurement devices were replaced. On the other hand, production data is still
subjected to a large uncertainty as it is calculated from a complex allocation procedure (raw
data from the three fields). Therefore, mismatches and inconsistencies in data quality are
expected.

Table 3.2: Simulation performance analysis on the one month schedule for ኾ different wells configurations.
Numbers in the circular brackets indicate how many iterations were lost

Well Configuration: 1 2 3 4
Run time [sec] 4.8 2.82 4 3.6
Steps 786(0) 786(0) 810(13) 786(0)
Nr. of non linear iterations 3125(0) 2798(0) 3083(3083) 2952(0)
Nr. of linear iterations 34559(0) 18650(0) 18818(2153) 26137(0)

3.2. Brugge model
Brugge model is a synthetic model developed as a benchmark for optimization of reservoir
production. The structure of the Brugge field consists of an East-West elongated half-dome
with a large boundary fault at the northern edge as can be seen in figure 3.2(a).
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(a) (b)

Figure 3.2: High fidelity Brugge model, used to generate truth model response (139x48x9 grid blocks) (a)
Unstructured proxy model mesh with a 283 elements, dots, excluding the mesh boundary points, represent

proximate wells location (b)

The model has 30 wells (20 producers and 10 injectors) located in peripheral water drive.
Wells are perforated mainly from layer 3 to layer 8. There are more than 100 realizations of
this model. However, a single realization encoded as FY-SF-KM-1-1 (Classify facies, Single
Shale, Regression per facies) will be used in this study. Grid generation and material balance
for this model are performed in the same manner as for German model. The proxy model is
constructed in two regions: outer with a coarser meshing and inner with finer meshing, re-
spectively. It is done to preserve accuracy in the area where the main flow happens, whereas
outer cells were made larger to reduce the number of cells, therefore save computational
time. There will be no significant flow dynamics in that area, hence coarsening if that zone
will not significantly affect simulation accuracy.

To construct such a model, only the knowledge of reservoir boundary is required. The first
step is to do unstructured discretization of the surface (obtained from the prior knowledge
of the reservoir boundary) and extrude it to make a volume. Then, the volume of the proxy
model is adjusted with a model thickness (average thickness 12 m of the reservoir pay zone
was used), porosity and water saturation in the block to match reported fluid in-place vol-
umes. Connectivity graphs are also obtained from the discretization procedure. Initial guess
for transmissibility distribution was calculated from a uniform permeability of 1000 mD, for
Corey parameters: 𝑆፨፫ = 0.15, 𝑆፰ = 0.25, 𝑛፨ = 4, 𝑛፰ = 3, 𝑘፞፫፰

ᑨ
᎙ᑨ

= 1800, 𝑘፞፫፨
ᑠ
᎙ᑠ
= 300) and WI

were initialized with uniform set of 200.

3.3. Fluvial reservoir models
The fluvial reservoir is used for investigation if the proposed approach can be used as an
alternative to a conventional model upscaling, under a lack of petrophysical/geological data.
High fidelity and upscaled 1 2D fluvial reservoir model ensembles were generated in [8]. Each
ensemble consists of 100 model realizations. High fidelity models have been used to gener-
ate truth data for model regression and analyze the reliability of the proxy model response
counter upscaled model. Two high fidelity model ensembles were generated by two different
modeling approaches:

• Flumy: process-based models using Flumy software, see example in fig. 3.3(a),

• MSP: Multiple Point Statistics (MPS) models, see example in fig. 3.3(c).

This resulted in a completely different model complexity between the ensembles. The main
difference between models generated by MPS and Flumy is the main paloeflow orientation
ranging from SW-NE to W-E. In addition, Flumy model has a limited statistical variability in
comparison to MSP model [8].

1Model was upscaled by 100 times using global flow-based upscaling
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Each high-fidelity model has a size of 100 by 100 grid cells (cell dimensions are 10 × 10 × 10
m), which was then upscaled horizontally by 100 times. The resulting upscaled transmissi-
bility, porosity and well index was used to initialize the upscaled model. Moreover, the same
upscaled porosity was used in the data-driven proxy model to ensure pore volumes match
between models. The models use a simple 5-spot vertical well set-up (one injector is located
in the reservoir center and surrounded by 4 producers located at reservoir edges). Injection
wells are modeled by setting a rate control of 500 m3/day and production wells are modeled
by setting a fixed BHP control of 100 bar.
For the correct comparison of the data-driven and upscaled model response, those param-
eters should be identical, because upscaling is sensitive to the initial boundary conditions.
Initial guess for spatial connectivity and well indexes of the proxy model was chosen to be a
uniform distribution of 100 and 200, respectively. However, random initial guesses were also
tested with similar results. Reservoir physics was assumed to be known and correct and the
same set of parameters was used for all three models.

For ”approximate permeability” visualization, a similar approach as for the German field was
used. Porosity distribution for the high-fidelity and upscaled/proxy models of realizations
2 from MPS and Flumy ensembles can be seen in figure 3.3. It is clear, that the model
generated by MPS is more complex as the phase can flow only through district channels,
which are usually smaller sized than the coarse grid block. In contrast, the model generated
by Flumy has many overlaying channels that provide multiple possible flow paths, hence
easier for capturing of the reservoir dynamics on a larger scale. More details about ensemble
generation and simulation properties can be found in [8].

(a) (b)

(c) (d)

Figure 3.3: Porosity distribution for a high-fidelity (a,c) and upscaled/proxy model (b,d) of the realization Nr.2.
Reservoir (a) was generated by a process-based modeling approach utilizing Flumy software. Reservoir (c) was

generated by a stochastic modeling approach using Multiple Point Statistics (MPS)





4
Results and Discussion

In this chapter, we discuss the results of the development of the accurate and efficient model
regression framework, tested both on real and synthetic data sets. The efficiency and robust-
ness of the proposed framework are examined on the real reservoir model and then on the
two synthetic models. Synthetic models allow fast identification of the methodology imper-
fectness, sensitivity and counterpoising of ”ideal” data with the real-world example.

4.1. Real field model: German
Accurate choice of regression strategy and careful parameter setup are key for optimal model
regression. Proper bounds and thoughtful combination of regressed parameters will ensure
relatively fast and accurate convergence. To identify the best regression strategy, we begin
with the most simple and fast case with a single nonlinear region and a single training in-
terval. Next, we gradually increase complexity by implementing different levels in time and
space discretization. As no bottom hole pressure data is available for this model, wells were
modeled with rate controls. Thereby, the well modifier was not used and the consistency of
the solution was provided by pressure limit: under the rate control, the pressure limit should
never be reached.

4.1.1. Time coarsening

The first thing to make regression procedure more efficient in terms of computational time is
to coarsen the model schedule 1. It was done a script which pre-processes rough historical
well data 2 and output a coarsen schedule. In the original (fine) schedule averaged well rates
are given for every month. Well up-time was not used for rate correction in this study. It was
decided to apply coarsening on the original schedule from month to year average forming
coarse schedule.

Training of the model is done on the coarse schedule, whereas quantitative analysis is com-
pleted on the fine schedule for all cases presented below (unless otherwise specified). The
length of the model training is chosen to be 49 years with the maximum forecast (test) period
of 5 years. According to the results that are given in table 4.1, schedule coarsening signifi-
cantly reduces model training time, whereas almost the same level of accuracy is achieved.
Accuracy of the model is quantified by training error, which is the 𝐿ኼ-norm of the difference
between ”true” and simulated total rates.

1Model schedule is a set of well controls that are used to model wells with a historically reported well rate/BHP
2Rough data required well data allocation to correct date, data cleaning and substitution of missing points with zero rates
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Schedule Training Error Time
Fine 46.96 09 ∶ 33

Coarse 48.824 01 ∶ 37

Table 4.1: The efficiency of a month/fine and a year/coarse schedule. Both cases were trained for 49 years on a
single Corey parameter set and a single time interval. Move information about regions and intervals is given

further in this chapter. Regression was controlled by a maximum of 50 iterations, however, both cases converged
before reaching the maximum at approximately 40. Number of regressed parameters is 392. Training error was

obtained by summing a ፋᎴ-norm of rate misfit for all wells during imposed period of 49 years

4.1.2. Sensitivity to initial guess for linear regression
Next, we examine the robustness of the modifiers listed in section 2.3.2 by imposing different
bounds and initial guesses. Transmissibility is one of the most important parameters that
govern flow dynamics in the reservoir, therefore it was analyzed first. Spatial connectivity
graph was initialized using the unstructured pre-processor with an assumption of uniform
permeability of the formation and uniform thickness of the reservoir, which equals to 2545
𝑚𝐷 and 12 𝑚, respectively.
Spatial connectivity visualization is a not trivial task. Since transmissibility is an interface
property (i.e., located at the grid block connections), therefore we have to transform it into a
cell value for a 2D visualization. It was done using the ”approximate permeability” concept 3.
To obtain ”approximate permeability” we initialize mesh with a uniform permeability of one.
After pre-processing, it will allow us to get a geometric part of the spatial connectivity. Then
we calculate cell ”approximate permeability” by the division of regressed spatial connectivities
with the geometric part for each connection, and then averaging obtained values for every
mesh element overall its connections.

The resulting maps can be seen in figure 4.1. Four cases were initialized with different uni-
form/random initial guesses and surprisingly lead to a similar distribution of an ”approxi-
mate permeability” fields with quite distinct patterns. It is obvious that for such a problem
there are several local minima and regression results strongly depend on the initial guess
and chosen step size, 𝜖. However, table 4.2 indicates that starting from a different initial
guess, the regressed model converged to a similar parameter distribution with the compara-
ble objective function. It is important to mention that figure 4.1 is prone to distorting a true
property distribution image due to the approximate nature of permeability reconstruction.

Case a b c d
Training Error 12.673 12.468 12.636 12.539

Table 4.2: Training error for different initial guesses for spatial connectivity. Case letters correspond to the
permeability distribution in figure 4.1

4.1.3. Sensitivity to initial guess for nonlinear parameters regression
The next modifier that was analyzed is the nonlinear modifier. There are six parameters
in this modifiers (three for each phase): Corey exponents n that control function shape, Sc
residual saturation that impose bounds and density scaled endpoint mobility 𝜌kre/𝜇 that am-
plifies Corey function. The last parameter is multiplication of endpoint relative permeability
with density and viscosity, therefore the effect of individual parameter vanishes and cannot
be distinguished. Three cases have been assembled, which then were used to analyze how
well a framework can restore an original set of parameters starting from a random guess.
In addition, we check how far apart the nonlinear parameters can be modified based on dif-
ferent combination with regression of linear parameters (spatial connectivity). The cases are

3Permeability in this work should be not treated as geologically backed up property. It is a purely data-driven work and geologically
quantitative judgment of this parameter should be relaxed
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(a) (b)

(c) (d)

Figure 4.1: Regressed ”approximate permeability” maps with different initial guess for spatial connectivity:
uniform spatial connectivity of 10 (a), uniform spatial connectivity of 10000 (b), random spatial connectivity in a

range of 0.01 to 1000 (c), and spatial connectivity from uniform permeability of 2545 ፦ፃ (d).

following:

• regress nonlinear parameters prior to spatial connectivity,

• regress nonlinear parameters after spatial connectivity,

• regress nonlinear parameters simultaneously with spatial connectivity.

The reference nonlinear parameters were fitted to historical SCAL data using the power-law
Brooks-Corey model and can be seen in table 4.3. For the random initial guess, we have
used parameters that are far away from the reference parameters but still within a physically
reasonable range. For this analysis, training error is based on the coarse schedule.

𝑛፰ 𝑛፨ 𝑆፰ 𝑆፨፫ 𝐾፫፰፞𝜌፰/𝜇፰ 𝐾፫፨፞𝜌፨/𝜇፨
Reference 1.58 3.98 0.16 0.14 304 67
Random 2 5 0.255 0.2 1800 250

Table 4.3: Initial guesses used for nonlinear parameters regression

Analysis of the first case suggests that starting from the reference or the random initial guess
for nonlinear parameters leads to similar results which lie close to the imposed bounds. This
type of solution is called the ”bang-bang” solution in the optimal control theory which may
indicate that the other parameters of the model (e.g. linear parameters) are not consistent.
Hence, the only way to get maximum objective function reduction is to change nonlinear
parameters drastically to the limit of physical boundary. From data in table 4.4, it appears
that the random initial guess leads to slightly better results than the reference initial guess.

In the second case, we have observed that in both runs regressed parameters are close to
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𝑛፰ 𝑛፨ 𝑆፰ 𝑆፨፫ 𝐾፫፰፞𝜌፰/𝜇፰ 𝐾፫፨፞𝜌፨/𝜇፨ Training Error
Reference guess 0.56 0.50 0.15 0.4 410 200 17.600
Random guess 0.55 0.54 0.23 0.48 917 13 17.494

Table 4.4: Regressed nonlinear parameters before linear parameter regression

the reference initial guess, even when we start from a completely random initial guess. The
possible reason for this can be that we have used a regressed linear parameter set that was
trained based on reference nonlinear set. Hence, through the regression course, spatial
connectivity was modified in such a way that it reflects reference parameters. Hence, it was
not hard for the regression algorithm to restore them when they were initialized even with a
random guess. The last two parameters (table 4.5) are larger than initial guess. It is expected
result as reference values are not related to the proxy model and are the only representative
for a high-resolution model with match smaller scale of the blocks.

𝑛፰ 𝑛፨ 𝑆፰ 𝑆፨፫ 𝐾፫፰፞𝜌፰/𝜇፰ 𝐾፫፨፞𝜌፨/𝜇፨ Training Error
Reference guess 1.79 3.8 0.12 0.17 384 106 12.123
Random guess 1.83 3.9 0.11 0.17 867 261 13.545

Table 4.5: Regressed nonlinear parameters after spatial connectivity regression

In the last case, simultaneous regression of nonlinear parameters and spatial connectivity
is evaluated. With reference initial guess, the smallest training error was achieved among
all observed cases. However, it can be seen that the regressed parameters are significantly
different from the reference set. The possible explanation for this difference is that throughout
the simultaneous regression of linear and nonlinear sets, parameters are influencing each
other in each iteration step and are adjusted accordingly. In addition, optimization problem
has much more degrees of freedom which also affects the convergence.

𝑛፰ 𝑛፨ 𝑆፰ 𝑆፨፫ 𝐾፫፰፞𝜌፰/𝜇፰ 𝐾፫፨፞𝜌፨/𝜇፨ Training Error
Reference guess 1.00 1.43 0.35 0.46 564 122 11.174
Random guess 0.51 5.00 0.49 0.49 1000 157 16.036

Table 4.6: Regressed nonlinear parameters simultaneously with spatial connectivity regression

Different combinations of optimization strategies have been analyzed and the conclusion was
made that the simultaneous optimization of linear and nonlinear parameters starting from
physically realistic nonlinear parameters leads to the most accurate results.

4.1.4. Choice of objective function and optimizer
Intending to do an efficient model regression, we have to use an adequate objective function
and optimization algorithm. We have tested the objective function based on reactive rates
eq. 2.11 and cumulative volumes eq. 2.11. Both of them showed reasonable good results,
however, eq. 2.11 showed to be more sensitive to rapid changes and therefore was used as
a basis for all further runs. Also, different ways to calculate rate misfit was tested: based
on the simple error, squared error, 𝐿ኼ-norm, weighted 𝐿ኼ-norm by a standard deviation of
the well error in whole training interval, squared error normalized by 𝑁፩, and finally squared
error normalized by 𝑁፩ and weighted by the standard deviation. All of these norms showed
nearly the same rate of objective function decrease as seen in Appendix A.2. 𝐿ኼ-norm was
used as a basis for the misfit calculation.

Analysis of the optimization algorithm showed that SLSQP is the most efficient algorithm for
our problem based on the training interval error. The objective function and algorithm test
were performed based on the scenario when nonlinear parameters were assigned to each cell
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Algorithm 𝐿ኼ-norm
COBYLA 40.532
MLSL 40.273
MMA 49.483
SLSQP 31.849

Table 4.7: The objective function of 4 different regression algorithms after 96 hours

individually and the model was trained on the fine schedule. Future studies of the other
real data sets are advised to get a full sensitivity of the objective function and algorithms,
however, it is not within the main scope of this work.

4.1.5. Regression to the data
We started model regression with the fastest and simplest scenario, which consists of re-
gression of a single nonlinear parameter region and spatial connectivity between all blocks.
Model training is done for 49 years on a yearly schedule. Default function tolerance and 𝜖 was
used, as it showed good convergence results during modifier analysis. Figure 4.2 illustrates
proxy model convergence to the historical field data and surprisingly, even an un-optimized
model response is close to the ”true” data. After the regression course, training error has
decreased by two times. An interesting result is observed in the forecast period, there is a
distinct peak in optimized response of total water production rate during test interval. It is
probably related to the inconstancy of the trained model and forecast data.

Figure 4.2: shows proxy model response before and after optimization compared to the reported historical rates.

Nonlinear parameters distribution

Generally, we need at least one set of nonlinear parameters to describe and accurately sim-
ulate fluid flow in the entire reservoir. However, sometimes for very extensive and hetero-
geneous reservoirs, we need a separate set of parameters for each physically unified region.
We introduce three levels of physical discretization and model separate regions with an in-
dividual set of parameters. First, the reservoir is modeled with a single nonlinear parameter
set in fig. 4.3(a), hence we call it a single region case. Second, the reservoir was equally
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divided into 9 regions as showed in fig. 4.3(b). Third, when each grid block has an individual
parameter set as in fig. 4.3(c).

It can be seen from the table 4.8 that as we increase the number of nonlinear regions, we ex-
pect a decrease in training and prediction error and an increase in the model regression time.
However, when the model is switch from one to nine regions and an additional 54 nonlinear
parameters are introduced, the model converged even faster than for a single region with a
test error comparably close to the 274 regions. From the figure 4.3 we can see that 9 regions
and 274 regions have some similarity in the distribution of the nonlinear parameter, which
is a good indication that similar trends were captured with significantly different number of
degrees of freedom.

Regions Training Error Test Error Time
1 48.733 26.322 02 ∶ 10
9 48.824 20.113 01 ∶ 31
274 42.8921 19.250 23 ∶ 09

Table 4.8: Comparison of total reactive rate error between different levels of physical domain discretization.
Training interval length is ኾዃ years, whereas prediction length is  years

(a) (b)

(c)

Figure 4.3: Exponential constant for oil phase at different levels of physical domain discretization: single set of
nonlinear parameters (a), nine regions with individual set of nonlinear parameters (b), and a unique set of

nonlinear parameter is assigned to each individual cell (c).

Sequential in time regression

It is of general knowledge that reservoir physics can change over its field life. It involves
changes in the state of the fluid, precipitation of scales, waxes, microbial effect, wettability
change, and many other things that are typical during field development. To account for
such changes, it was decided to do a sequential regression in pre-defined time intervals. It
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ensures that we adjust a separate set of parameters that describes the specific behavior of the
reservoir better within each interval. Moreover, this approach enhances regression accuracy
as intervals with minor changes in the reservoir dynamics, as usually observed in early field
life, do not need many iterations to converge to the optimum solution. Hence, more time can
be spent on resolving more complex time intervals.

The first interval is initialized with some random guess, specified by the user. After the
regression is complete, the regressed parameters from the previous interval were used as an
initial guess for the next interval. Also, each following interval should be initialized with the
correct values of nonlinear variables in simulation (from the last time step of the previous
interval). The important question is how many intervals should be used and how they should
be distributed.

The first attempt was to divide training courses into equally spaced intervals. Then, manual
analysis of the reservoir dynamics (mainly investigation of well events: rapid rate change, well
openings/closings, water breakthrough, etc.) was performed. Finally, k-means clustering
was utilized on the data set containing oil and water production rates of each well to support
manual time discretization. As a result training course has been discretized into 4, 5, 7 and
16 intervals (interval spacing can be found in A.1).

Several attempts of time interval-based regression were made. First, sequential regression
to the data was examined in the simplest case with a single nonlinear region and coarse
training schedule. The results were not satisfactory as many intervals failed to converge
or regressed results were inconsistent with model boundary conditions. Then, the same
approach was tested with 274 nonlinear regions with no significant improvements observed.
Those results can be related to inadequate data or its insufficiency due to schedule coarsening
and intervals imposing. Finally, the sequential regression of the model using a fine schedule
reduced convergence problems and the positive effect of using intervals, shown in table 4.9,
was achieved. The analysis showed that the discretization of training course into 5 and 7
intervals was the most successful in terms of both training and forecast errors. There was
no improvement when training course was discretized equally into 4 intervals: actually, it
even decreased model accuracy. Inconsistent results were obtained with 16 intervals, which
is probably due to the limited training course data within a single interval.

Intervals Training error Test Error
1 31.84 16.485
4 40.586 15.728
5 28.69 14.361
7 29.742 15.3
16 32.8209 18.51

Table 4.9: Comparison of total reactive rate error for different levels of time refinement. Here, training interval
length is ኾዃ years, whereas prediction length is  years.

Refinement in discretization

Some optimization algorithms lose their efficiency when the number of parameters exceeds
a few thousand, but on the other hand, extra variables can have significant enhancement
on the model accuracy. Hence, there is always a trade-off between accuracy and efficiency.
To test the effect of an increase in the number of degrees of freedom, the spatial model
refinement was performed. One way to do a simple refinement is to take a coarse model
mesh and refine it by uniformly splitting all elements. The new set of nodes are inserted,
by linear interpolation, to produce new refined mesh as can be seen in figure 4.5. It is an
automated method that can be found as ”refinement by splitting” in ”ParaView” software [1].

An alternative option exists where one can manipulate element size factor or prescribe differ-
ent mesh sizes at boundary points. Furthermore, there is an option to do a local refinement
of the grid. Table 4.10 presents results obtained from a regression of the coarse and refined
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Figure 4.4: Water production rate for all wells throughout the training period; the clear improvement can be seen
as the green could is closer to the ”true” diagonal.

models under the same regression strategy. It can be seen that refinement with the same
initial guess as for the coarse-scale model has no improvement in model accuracy, despite
a nearly quadrupled number of regressed variables. To improve these results, we have re-
sampled regressed coarse-scale model parameters into a fine-scale mesh and used it as an
initial guess.

To get a re-sampled parameter field, which is used to build a fine model spatial connectivity
graph, Visual Toolkit (VTK) filter [26] was utilized. ”Re-sample with data set” filter samples
the points of one dataset on to the points of another dataset. The output parameter field has
the same structure as the source field (fine mesh), and its point data contains the re-sampled
values from the input set (regressed coarse model parameters). Since data is sampled into
a point and not a cell itself, it has to be averaged by simple arithmetic mean. Finally, if the
geometry of the connection between cells is known, a re-sampled spatial connectivity graph
can be constructed for fine model regression. As table 4.10 shows, the initialization of the
refined model with re-sampled data has a positive effect on both training error and model
regression time.

Together, these results provide important insight into the development of the optimummodel
regression strategy. With the increased number of variables, we impose a more local solution
to the given problem and the model convergence depends on the starting point (i.e., initial
guess), which sometimes can lead to poor results. Therefore, it is advised to run the coarse-
scale model (on all levels) first and use regressed parameters for the fine model. The same
approach should be used for schedule and possible nonlinear regions.

Optimal training performance

Based on the analysis of the regression for the model, we introduce two best case scenarios
(table 4.11): slower but more accurate and faster but less precise.

The cumulative water volume accumulated through the forecast period for the most accurate
case is shown in figure 4.6.
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Mesh Training Error Time
Coarse 48.83 01:37
Fine 52.04 35:35

Fine (re-sampled) 46.50 29:07

Table 4.10: Comparison between coarse scale and refined models. Cases were trained for 49 years on a single
nonlinear region and single time interval.

(a) (b)

(c)

Figure 4.5: Coarse scale mesh with 274 elements with regressed average ”permeability” assigned to each cell
(a), refined coarse scale model with 1094 elements, where each cell ”permeability” is re-sampled from the

regressed coarse scale result (b), and regressed average ”permeability” (c)

Fast Slow
Regions: 9 274
Intervals: 1 5
Mesh Size: 274 274
Schedule: Coarse Fine

Regression time: 01:31 84:08
Train error: 48.824 28.69
Test error: 20.113 14.361

Table 4.11: Two best regression scenarios for the German model

Based on the results obtained from the regression to real field data, it is hard to evaluate the
efficiency and robustness of the proposed regression framework. For all observed cases, no
significant reduction of the training and test error was achieved. This can be either associated
with the regression framework, or with poor data quality and lack of BHP data. Consequently,
to do an appropriate evaluation of the framework, the observed regression strategies were
tested on synthetic data sets, where artificially generated observed data is more complete
and accurate.
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Figure 4.6: Cumulative water volume accumulated through a reservoir forecasting period of 5 years after 49
years of model training; the un-optimized well rate can be found by an associated red point.

4.2. Synthetic model: Brugge
The first synthetic model used in this thesis is a single realization (Nr. 77) from the well-
documented Brugge benchmark. This model is used to generate synthetic production data,
which is then utilized as a ”true” response for data-driven model regression. It ensures that
the accuracy of model regression is not limited by the data quality. Moreover, it allows us to
incorporate bottom hole pressure data as one of the well controls and increase the number
of matching parameters 4, which was not usually available in the real field model.

4.2.1. Simulation performance
First, the Brugge model was used to examine the efficiency of (DARTS) [7] and to what extent
the proxy model can reduce computational time compared to a full (high fidelity) model. For
this purpose, an Automatic Differentiation General Purpose Research Simulator (AD-GPRS)
[30] was utilized. Both models were simulated for 2400 days with random perturbations 5 in
production and injection wells every 120 days.

• Injection wells: 160 bar plus random number sampled from a uniform distribution in
the range from 0 to 30

• Production wells: 100 bar minus random number sampled from a uniform distribution
in the range from 0 to 30

Table 4.12 compares the simulation run time of the two models launched on DARTS and
AD-GPRS simulators.

It can be seen that DARTS has managed to reduce the computational time of the high fidelity
model more than 6 times. It can be explained by improvements in DARTS performance based
on OBL techniques as well as a significant reduction in I/O operations since DARTS can pass
4If the rate controls are used, water injection and oil production rates are matched automatically
5To ensure consistency of the wells controls between simulators the same ”seed” for random number generator was used
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all the data to Python directly 6. The even larger performance gain was achieved for proxy
models, see results in table 4.12.

Full model [sec] Proxy model [sec]
DARTS 97 0.46

AD-GPRS 645 8.3

Table 4.12: Comparison of a run time for DARTS and AD-GPRS on high-fidelity and proxy Brugge models

4.2.2. Training strategies
Investigating the reliability of the proposed framework, we have applied the same model re-
gression strategy as for the German model mimicking similar production regimes. First, the
effect of additional data (BHP measurements) to the regression course was analyzed. The
pressure controls of the regressed German model were used to mimic the realistic pressure
data set. BHP data for each well was averaged over a year period, scaled to fit Brugge model
reservoir pressure and then used to model injection well using pressure control. Similar
random perturbation was added to injection BHP control as for simulator efficiency analy-
sis above. Production well control was fixed to 100 bar which ensures that any change in
production well rate will be purely associated with the perturbations in the injection wells.

The ”true” response was generated for 54 years as for real field example, where 49 years are
used for training and 5 years for the forecast (test). An opportunity to use pressure data in
wells control allows us to move away from the automatic matching of water injection and oil
production rates, which was an inherited principle in rate control scenario. Therefore, the
mismatch between those rates can be utilized in the objective function evaluation. Moreover,
well index (WI) can be added to the regression parameter vector as it influences the corre-
spondence between well rates and BHP values. Therefore, three modifiers (linear, nonlinear
and well) can be used simultaneously.

The results of the case where all three modifiers were used with a single nonlinear set are
shown in figure 4.7. The closer the green points are to the ”truth line”, the more accurate is
the model prediction. The farthest points from diagonal mainly clustered on the left bottom
corner, representing wells with low cumulative volume. The lower volume corresponds to
a smaller contribution to the objective function, hence the regression algorithm was less
sensitive to those wells as seen if fig.A.3.

It can be seen from the data that there is a significant improvement in the forecast accuracy
when BHP data is available. A good match in total model reactive rates and wells cumulative
water volume was found between regressed proxy model and high fidelity model response.
Nearly all points in figure 4.7 lie on or close to the diagonal that can indicate a reliable
restoration of water breakthrough.

It is important to mention that using a well modifier separately from any other modifier
affects the final results, yet not so dramatically. Therefore, major improvement of the model
regression results compared to the real field model can be associated with the accurate,
sufficient amount of data and additional inputs to an objective function (injection rate and oil
production, which before that was matched automatically). Moreover, this model set-up was
tested in the case of extensive data availability scenario, where data points were generated
every month. The results of this case showed marginal improvement over the case in fig.
4.7, but the regression time of the model was tripled. Therefore, even higher observation
data frequency does not significantly contribute to regression accuracy in this case.

Next, the model was trained on the same set up for 10 years to limit the amount of observa-
tion data and evaluate regression quality under such conditions. The training interval was

6With appropriate modifications of the standard I/O capabilities, the reduction in the runtime of AD-GPRS can be achieved as
well



30 4. Results and Discussion

Figure 4.7: Cumulative water volume accumulated through a reservoir forecasting period of 5 years after 49
years of model training; the un-optimized well rate can be found by an associated red point

Figure 4.8: Total reactive phase rates for both, training and forecast intervals. Model in both cases was
controlled by BHP and phase rates were used as a matching criterion

reduced by 5 times compared to fig. 4.7. Figure 4.9 shows the results obtained from this
regression course. It can be seen that there are more outliers, especially wells P9, P3, P7,
and P8 (three of them are the same as in the previous case - P7, P8, P9). Further analysis
showed that those wells are located far from injectors obscured by other producers, as can
be seen in fig. 3.2(a). Consequently, the waterfront reaches those wells later. We believe that
it makes rate values from those wells less informative for the regression algorithm. Hence,
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it fails to adjust parameters in the reservoir for those wells with the same quality than for
others.

Figure 4.9: Cumulative water volume accumulated through a reservoir forecasting period of 5 years after 10
years of model training. There are more outlying points, comparing to the longer training case. Those outliers are

purely associated with the lack of a strong well response.

We can conclude that versatile and accurate data should be available for a long period of
production history for efficient regression and accurate long term prediction. Scenario with
rate well controls, similar to the German model, was also tested to separate contributions of
data accuracy and completeness to successful regression. Wells were modeled using water
injection and oil production rate controls based on high fidelity model response. Maximum
injection and minimum production bottom hole pressure constraints were also imposed.
Still, pressure limits should never be reached during the regression, otherwise well rates will
not correspond to the true data as can be seen in the water injection rate in fig. 4.10(b).
Interestingly, the results, as shown in figure 4.10, indicate that even with well rates as con-
trols, we can manage to get a reasonably accurate production forecast, which is negligibly
less accurate than BHP controlled case.

4.2.3. Nonlinear modifiers
We also tried to divide the model into physical regions 7 and see if that can significantly
improve the regression accuracy. The idea behind it was to simply increase the number
of degrees of freedom while keeping a relatively fast model regression compared to a single
region case. The model was clustered into 2, 4, 8 and 283 regions as seen in figure 4.11,
where each region was modeled with an individual set of nonlinear parameters. The results
of this approach are shown in table 4.13. It can be seen that a small increase in the number
of nonlinear regions decreases the training error by up to 10% without a significant increase
in optimization time. As expected, the case with 283 regions is the most accurate, however,
it takes 6 times longer to converge. Another interesting observation can be made from figure
4.11(d). The variation of nonlinear parameters is concentrated in the area where the main

7Physical regions are the model zones that can be modeled with a single nonlinear parameter set
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(a)

(b)

Figure 4.10: Cumulative water volume accumulated during forecast interval of 5 years (a) and total reactive
phase rates for both, training and forecast (b) Wells were modeled with rate controls

flow is happening, which is a good confirmation that algorithms are sensing dominant model
dynamics. Typically, historical production data prone to large uncertainty andmeasurement
noise. We tried to simulate this situation by adding white noise to the ”true” response of the
training interval, while the response during the forecast was not changed. Noise addition
was achieved by adding a random number sampled from a Gaussian distribution with zero
mean and a standard deviation of 5% to the original well rate values. Such noise represents
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Regions Training error Time
1 0.312 02 ∶ 22
2 0.299 02 ∶ 12
4 0.282 02 ∶ 41
8 0.298 04 ∶ 21
283 0.272 13 ∶ 19

Table 4.13: Error and time comparison between different levels of nonlinear region clustering

(a) (b)

(c) (d)

Figure 4.11: Corey exponents for oil phase with 2 (a), 4 (b),8 (c) and 283 nonlinear regions (d)

an extreme case, which mimics a failure in all measurement devices. The resulting match
can be seen in figure 4.12. There is a deviation from the true solution for the injection rate
in the forecast period, however, the water rate match has improved. Similar results were
obtained with a 20% of measurement error.

4.3. Synthetic models: fluvial reservoirs
Upscaling reservoir properties is a crucial step in the reservoir simulation workflow. It a
necessary procedure, which allows the utilization of a coarser model to perform reservoir
simulation in a feasible time. At the same time, the upscaled effective parameters should still
capture all important properties of the high fidelity model. To date, various methods have
been developed and introduced to perform accurate and efficient model upscaling [16]. Each
has its advantages and drawbacks. The flow-based method is one of the most widely used
upscaling techniques in the petroleum industry. In general, the global flow-based upscaling
approach gives a reliable and consistent representation of the fluid flow in original reservoir
heterogeneity.

The data-driven approach proposed in this thesis can be an alternative to classical upscaling
techniques when an accurate high-fidelity geo-cellular model is not available, but there is
an excess of historical production data. Moreover, this method can be used even when PVT,
SCAL data are also unavailable. In our study, we an ensemble of upscaled models only for
validation purposes.
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Figure 4.12: Cumulative water volume accumulated during forecast interval of 5 years (a) and total reactive
phase rates for both, training and forecast (b) Training data has % measurement noise imposed to it.

Here, we verify the accuracy of the data-driven proxy model against its upscaled counter-
part in comparable conditions. Throughout the upscaling procedure, spatial connectivity
parameters (i.e., transmissibilities and well indexes) are evaluated to represent the fine-scale
model on a coarser grid. Hence, the same set of parameters was obtained in the data-driven
model through its training stage. Besides, the identical PVT and SCAL8 properties were used
for both high-fidelity and proxy models. However, in a more general case, they can also be
upscaled or regressed from the data. To account for data uncertainty and validate our ap-
proach for a range of models, the analysis was done based on two model ensembles with 100
high-fidelity members each.

The first ensemble was created using Flumy process-based modeling software package and
used for uncertainty quantification in [9]. For each high-fidelity model, an upscaled and a
data-driven proxy models were constructed. Each data-driven model regression was limited
by 100 iterations, however, most cases converged before reaching the imposed maximum.
Regression of a single realization took from 20 minutes to one hour on four Intel Xeon CPU
E5-2650 v3 processors.

Figure 4.13 illustrates the total water rate of all 100 models for high-fidelity, data-driven
proxy and upscaled proxy cases. It can be seen that the response of the high-fidelity and data-
driven models have a reasonably good agreement for both mean and individual realization
water rates. Whereas, the upscaled model rates matched worse, with a distinct delay in
the water-breakthrough 9. The average error between data-driven and reference water rate
throughout the simulation of 20 00 days is 3.4%, while error for the upscaled model is 14.9%.

Next, we complicated the problem for the data-driven proxy model by removing the prior
knowledge of relative permeability curves. Instead, a single region of nonlinear modifiers
was added to the vector of regression parameters. The initial guess for nonlinear parameters
was fixed to values substantially different from the reference physics.

The results for this case are shown in figure 4.14. Regression of some model realizations was

8SCAL stands for special core analysis laboratory
9Delay in the water-breakthrough can be seen in Appendix A.4. The sharp peaks that show a ኻኺኺ% error indicating that water-
breakthrough was not represented correctly
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Figure 4.13: The total water rate for the high-fidelity/reference model with the size of the 100x100 grid block for
the hundred Flumy realizations, together with data-driven, and upscaled models (10x10) response. Modifiers:

linear and well. Grey line indicates a rate from the single model realization, whereas the red, blue and green lines
indicates quantile response of the ensemble i.e the P10,P50 and P90

Figure 4.14: The total water rate for the high-fidelity/reference model with the size of the 100x100 grid block for
the hundred Flumy realizations, together with data-driven, and upscaled models (10x10) response. Modifiers:

linear, nonlinear and well

not so successful in this case (those were removed from the comparison), however, in general,
the data-driven model still gives more accurate results compared to conventional upscaling.
The mean error of the data-driven approach increased to 6.6%, which is still significantly
lower than that for the upscaled model.

Then, the same test was performed for a more complicated model ensemble build with MPS
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stochastic modeling approach. Results are shown in figure 4.15. The mean error between

Figure 4.15: the total water rate for the high-fidelity/reference model with the size of the 100x100 grid block for
the hundred MPS realizations, together with data-driven, and upscaled models (10x10) response. Modifiers:

linear and well

total water rates for both upscaled and data-driven models increased to 19.7 % and 7.4 %
respectively. It is an expected result as it is much more difficult to find a value for the effective
property on a coarse scale that will accurately represent fine-scale features (e.g., small and
poorly connected channels can be seen in figure 3.3 (c). On the contrary, the channels in
the Flumy model overlap each other creating more distinct and rough flow paths, which
are easier to capture on a coarse scale. However, the overall accuracy of the data-driven
proxy model is still significantly higher than that for the upscaled proxy model. It confirms
the applicability of the data-driven approach for uncertainty quantification analysis when a
reliable and accurate high-fidelity model is not available.



5
Conclusion

The petroleum industry has generated thousands of terabytes of data. Unfortunately, only a
limited part of it is used efficiently due to poor data organization and the absence of efficient
data-driven approaches. With the advances in data analysis and computing capabilities,
data-driven models become more widely used in all aspects of reservoir management, in-
cluding history matching, optimization, uncertainty quantification, and production forecast.
There is a large volume of published studies describing the successful utilization of data-
driven models as an analytical tool for the oil and gas industry application. However, many
of them significantly relax governing physics or even are treated as black-box approaches,
hence sometimes perceived sceptically.

In this work, a physics-based data-driven framework was developed based on the DARTS
platform. It showed excellent simulation performance crucial for efficient model optimiza-
tion. The framework was examined on historical production data from a real brown field,
where satisfactory production forecast results were obtained. Various regression strategies
have been analyzed laying the foundation for sequential regression and gradual refinement of
the model. The resulting strategy was evaluated on the two synthetic data sets and showed
exceptional prediction accuracy for a significantly reduced model size. Properly organized
multi-process gradient computations can efficiently leverage computing capabilities of mod-
ern multi-core architectures and further increase regression performance.

Finally, it was concluded that the reliability of the recorded historical data of the real field is
under considerable deliberation. The comparison of regression quality for real and synthetic
data suggests the utmost importance of reliable measurements for the successful construc-
tion of a proxy model. Besides, the implementation of the machine learning approaches can
considerably benefit in temporal and spatial refinement automatization.

To sum up, data-driven methods offer a great opportunity for the industry to get a fast and
reliable framework for solving many subsurface engineering problems, as was partly demon-
strated in this work. The rising popularity of those techniques indicates their full potential in
a modern data-dependent world. There is still a wide range of methods that can be coupled
with data-driven approaches to increase prediction capabilities and incorporate data-driven
models into widely accepted engineering practice.

37





6
Future Work

Data-driven problems can have a fascinatingly vast spectrum of possible solutions. Many
things were implemented and analyzed throughout this thesis, however, there is still a large
potential for further improvement in framework efficiency and accuracy.

To get a full-scale understanding of the framework capabilities and drawbacks, a set of real
fields should be examined. Ideally, this set should contain fields with a considerably different
extent, physics, and field life. Spatial clustering was done manually and with no qualitative
principle. Hence, there is a possibility to implement more advanced automatic spatial and
temporal clustering approaches based on the most promising machine learning practices.

All examples in the thesis used binary compositional formulation under the assumption that
real field gas rates and advanced compositional effects are negligible to account for. There-
fore, it would be interesting to test this framework with more components.

Also, the proposed data-driven framework use gradient-based optimization algorithms, where
most time is spent on gradient evaluation. Multi-process gradient computation helps to re-
duce the time spent on those computations. Alternatively, utilization of the adjoint methods
in the evaluation of gradients will provide an accurate and much more computationally effi-
cient optimization.
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A
Appendix

A.1. Intervals in temporal discretization
There are a total of four temporal discretization cases analyzed thought this work. In the
first case, the schedule was discretized equally into four intervals. Cases with five and seven
intervals were based on the manual analysis of the field events and supported by the k-means
clustering result. The interval length of the intervals can be seen in table A.1. In the last
case, the schedule was equally discretized into a 3-year interval.

Interval Nr. 1 2 3 4 5 6 7
5 intervals [years] 16 12 8 4 9
7 intervals [years] 16 4 7 8 3 4 7

Table A.1: Distribution of interval lengths for the two cases based on reservoir dynamic analysis. Reservoir
started to produce water within the first 16 years of production, therefore it was useful to set the first interval to

the same length, as model regression was reasonable simple for that period.
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A.2. Objective Function Sensitivity
Here we perform the sensitivity analysis of the optimization results based on different objec-
tive functions used in this study.

Figure A.1: Effect of six different objective functions on optimisation convergence: 1 - simple error, 2 - squared
error, 3 - ፋᎴ norm, 4 - weighted ፋᎴ norm by a standard deviation of well error in whole training interval, 5 -

squared error normalised by N, 6 - squared error normalised by N and weighted by standard deviation. The
objective function quality indicator is normalized objective function value.
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A.3. Brugge model cumulative error
Here we show a cumulative error in production rate evaluation of Brugge model at the end
of the training stage.

Figure A.2: Brugge model cumulative volume at the end of training period of 49 years. Same outliers are seen as
in forecast period.
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A.4. Ensemble-based error
Belowwe present an ensemble errors of upscaling and data-driven approaches for the Flummy-
based ensemble by the end of the training stage.

Figure A.3: The error between reference model response and data-driven and upscaled models. Sharp peaks,
when the error is ኻኺኺ% indicate water breakthrough timing miss-match.
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