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Summary

Conventional linear control allocation (LCA) methods fail to provide satisfactory per-
formance in flight control systems (FCS) for aircraft with highly nonlinear and coupled
control effector suites, especially for tailless aircraft configurations. This is due to the
inability of linear models to capture non-negligible nonlinearities and interactions of in-
novative control effectors. Nonlinear control allocation methods developed to date prove
potential benefits of nonlinear control allocation in such cases, but are too computation-
ally complex for real-time implementation in flight control computers (FCC).

This thesis implements and tests through real-time simulation an incremental nonlinar
control allocation (INCA) approach that captures nonlinear control moments and control
effector interactions, while being solvable with simple and computationally efficient linear
solvers. This makes INCA suitable for real-time, robust nonlinear control allocation in
FCS with advanced control effector suites. This incremental approach only relies on a Ja-
cobian model of the control moments and an angular acceleration feedback, which reduces
model dependency and provides strong robustness against model mismatch. In addition,
a control effector position feedback mitigates negative effects of actuator dynamics.

In this thesis an LCA- and an INCA-based FCS were designed for Lockheed Martin’s
Innovative Control Effectors (ICE) aircraft, a highly manoeuvrable tailless aircraft with
a redundant suite of 13 unconventional control effectors. These FCS were tested in a
real-time simulation framework set up with a high-fidelity aerodynamic model of the ICE
aircraft including actuator dynamics. The flight control systems were implemented with
two typical control allocation solvers and include inner angular rate loops and outer loops
to track reference trajectories. Actuator saturation and partial flight envelope protection
are handled through pseudo-control hedging (PCH).

The performance of INCA was tested through real-time simulation of aggressive air com-
bat maneuvers given as references to the outermost control loops of the FCS. These
maneuvers included loopings, aileron rolls, barrel rolls, high-angle-of-attack commands
and more. The obtained results showed the ability of INCA to perform maneuvers which
could not be achieved with LCA. Important improvements of INCA with respect to LCA
were observed in terms tracking performance by a factor of 3.0, and in terms of control
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allocation performance by a factor of 4.5. Generally, the overall control performance ob-
tained with INCA was remarkably superior than the performance obtained with LCA.
No significant increase of computational load or control effort was observed with INCA
with respect to LCA.

A robustness analysis of the INCA system against Jacobian model mismatch demonstrated
very small sensitivity to model error in the form of model offset and scaling. Only small
degradations in control allocation performance up to 10% for model offsets of ±30% and
scaling factors between 0.6 and 0.8 were observed. In addition, it was observed that
underestimation of the magnitude of the Jacobian model is beneficial for the control
performance of INCA.

The suggested lines of research for future work mainly concern the implementation of
INCA in fault-tolerant flight control systems with online system identification, the refine-
ment of the on-board spline-based Jacobian model to higher orders of continuity, extension
of the control system with translational control modules, inclusion of sensor dynamics,
delays, noise and state estimation algorithms, and eventually practical validation of the
INCA concept through flight testing.
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Chapter 1

Introduction

In the last decades, the need for low signature characteristics and reduced structural
weight has encouraged the development of tailless aircraft configurations. Due to the
resultant loss of directional stability and control authority, typically provided by the ver-
tical stabilizer and the rudder, such configurations require unconventional control effector
suites with multiple, highly redundant and axis-coupled control effectors. Redundant
actuation systems have additional benefits, such as improved recoverability capabilities
after structural damage or actuator faults in fault-tolerant flight control (FTFC) systems.

Given the inherent benefits of highly redundant control effector suites, aircraft over-
actuation is an increasingly common practice in aerospace design. Over-actuated systems
have more control inputs than controlled variables, and therefore an attainable control
command may be achievable through multiple combinations of actuator positions. Con-
sequently, the problem of allocating control commands to actuator deflections is underde-
termined. In flight control systems (FCS), control allocation (CA) algorithms distribute
control commands over the available set of control effectors, aiming to maximally ex-
ploit the maneuverability and handling qualities of the aircraft while accounting for the
physical limitations of the actuators.

Most conventional CA methods operate under the assumption that a linear relationship
exists between actuator positions and control-induced forces and moments. This sim-
plification yields a very tractable affine formulation of the control allocation problem,
which can be solved with efficient linear algorithms suitable for real-time implementation
in FCS. However, previous research has shown that the assumption of linearity of the
control effectors has important shortcomings for aircraft with large numbers of highly
nonlinear and interacting control effectors (Buffington, 1997, 1999; Davidson, Lallman, &
Bundick, 2001b; Bolender & Doman, 2004b; Poonamallee, Yurkovich, Serrani, Doman, &
Oppenheimer, 2004).

First, linear models are unable to capture interactions between control effectors. Although
such couplings are usually negligible in conventional actuator suites, more innovative
configurations feature actuators positioned downstream of others, resulting in important
nonlinear interactions. In some cases, such interactions can be positively exploited such

1
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as in the case of slots, which can be used to recover control effectiveness of trailing-edge
control surfaces at high angles of attack (AoA). In other cases, these interactions can have
negative effects on control effectiveness, such as in the case of leading-edge actuators that
disturb the downstream airflow when deflected.

Second, independently-moving control surfaces produce secondary-axis yawing moments
by generating drag through a lever arm with respect to the aircraft longitudinal axis.
Although conventional aircraft use a rudder for directional control, tailless configura-
tions exploit these secondary-axis moments as a principal source of directional control
power. These moments can also be used in conventional actuator suites to regain di-
rectional controllability after rudder failure. Common actuators using this principle are
all-moving wing tips, ailerons and elevons (Doman & Sparks, 2002; Bolender & Doman,
2004b). Whereas they produce locally linear rolling moments, they have highly nonlinear
contributions to yawing moment, especially at low AoA, where parasitic drag dominates
induced drag effects. Secondary-axis yawing moments are generally asymmetric parabolic
functions of the actuator deflections, which cannot be captured with linear effector mod-
els. This shortcoming has two negative effects concerning control allocation. First, the
yawing moments not included in the on-board aerodynamic model are seen as external
disturbances by the control system, and need to be mitigated with other sources of di-
rectional control power. Second, the ability to positively exploit these sources of yawing
moment is lost, which is particularly critical in tailless configurations.

Finally, although the control moment curves of conventional actuators are locally linear
for small deflections, nonlinearities exist in extreme regions of their operational range.
Failing to capture such nonlinearities results in model mismatch causing control allocation
error, which needs to be mitigated by the robustness of the flight control laws (Doman
& Oppenheimer, 2002). This is detrimental to the overall performance of the system,
especially in faulty conditions where the non-faulty actuators are forced to operate within
extreme regions of their moment curves.

In most conventional aircraft configurations the inaccuracies introduced by the assump-
tion of linearity are relatively small and can be acceptably absorbed by robust control
systems. However, linear control allocation fails to provide adequate performance in more
advanced and innovative designs, especially in tailless aircraft, which produce directional
control power mainly through secondary-axis parabolic yawing moments. A very rep-
resentative example is Lockheed Martin’s Innovative Control Effectors (ICE) research
aircraft concept, a tailless flying wing with a highly redundant control effectors suite of
13 actuators, which produce highly nonlinear and cross-axis coupled moments and ex-
hibit strong interactions. Nonlinear control allocation methods have been explored as
a solution with a number of different approaches. Although the methods proposed to
date clearly demonstrate important improvements over conventional linear approaches,
nonlinear optimization algorithms are highly computationally complex and not suitable
for implementation in real time.

This thesis implements and tests on a simulation framework an incremental nonlinear
control allocation (INCA) method for the tailless ICE aircraft. This approach is based on
a reformulation of the control allocation problem in incremental form that exploits the
time scale separation principle between slow and fast dynamics. It is based on a non-
linear Jacobian model of the control effectors, which can capture actuator nonlinearities,
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including interactions between control effectors. An angular acceleration feedback loop
reduces the model dependency of the nonlinear control system and makes it highly robust
against model mismatch. The crux of this method is that it operates in an incremental
scheme, which allows the nonlinear CA problem to be solved with simple and efficient
linear control allocation algorithms that are well-suited for real-time implementation in
FCS. Unlike most typical CA algorithms, INCA uses information of the current position
of the actuators, which are dynamically driven towards their optimal positions through
small increments. This mitigates the negative impact of actuator dynamics in control
allocation, which has been focus of extensive research (Harkegard, 2004; Luo, Serrani,
Yurkovich, Doman, & Oppenheimer, 2004; Luo, Serrani, Yurkovich, Oppenheimer, &
Doman, 2007; Hanger, 2011; Johansen, 2004).

This thesis demonstrates substantial benefits of INCA in terms of tracking and control
allocation performance for innovative aircraft designs with respect to linear control allo-
cation (LCA) methods. For this, an LCA-based and an INCA-based nonlinear FCS were
designed for the ICE aircraft, and their performance was evaluated through real-time sim-
ulation using the high-fidelity simulation model of the ICE aircraft described by Niestroy,
Dorsett, and Markstein (2017). The simulation model includes actuator dynamics, in
addition to position and rate constraints. Both LCA- and INCA-based FCS were imple-
mented with two typical linear control allocation solvers to compare their performance.

The research objective of this thesis was to develop and implement a control allocation
system that can handle aerodynamic nonlinearities and control effector interactions in un-
conventional control suites such as the ICE aircraft, and whose computational complexity
is in the order of conventional methods well-suited for real-time implementation in FCS.

In order to pursue the research objective, the next research questions were formulated:

1. How can control commands be allocated to control effectors in an over-actuated
aircraft to minimize the allocation error while taking into account the nonlinearities
and interactions of the actuators?

2. Is the performance of an INCA-based FCS better than that of an LCA-based FCS
for the ICE aircraft?

• Is the tracking error over aggressive maneuvers smaller?

• Is the allocation error over aggressive maneuvers smaller?

• Is the control effort over aggressive maneuvers similar or smaller?

• Can aggressive maneuvers which cannot be performed by an LCA-based FCS
be performed with an INCA-based FCS?

3. Is the computational complexity of INCA higher than that of LCA-based systems
with typical solvers such as the redistributed weighted pseudo-inverse and active-set
based quadratic programming?

4. Is the performance of INCA influenced by the CA solver in a similar way as LCA?

• Are the tracking and control allocation errors and the control effort significantly
different when using a redistributed weighted pseudo-inverse solver or an active
set-based quadratic programming solver?

• If so, is this influence consistent with that observed for LCA?
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5. How robust is INCA against control effectiveness Jacobian model mismatch?

• How does Jacobian model offset affect tracking and allocation performance and
control effort?

• How does Jacobian model scaling affect tracking and allocation performance
and control effort?

The remainder of this thesis is structured as follows. Chapter 2 provides a detailed
literature review on the state-of-the-art of existing control allocation methods. In Chapter
3 the ICE aircraft and the high-fidelity model used in this thesis are described and analysed
in detail, including a linear analysis of the aircraft controllability and stability. Chapter
4 provides the theoretical development and discussion of the proposed INCA method.
In Chapter 5 the design of the LCA- and INCA-based FCS is discussed, including the
on-board models derived for real-time use in each system. The simulations and results
are presented and discussed in Chapter 6, and conclusions and final remarks are given in
Chapter 7.

A scientific paper was submitted and accepted for presentation at the 2018 AIAA Guid-
ance, Navigation, and Control Conference. It was also nominated for presentation at the
Best Student Paper Award Competition. The paper will be presented the 8th-12th of
January 2018 at Kissimmee, Florida. The conference paper is included in Appendix A.
Additionally, a journal paper will be submitted shortly after the defence of this thesis for
publication on the AIAA Journal of Guidance, Control, and Dynamics. A draft version
of the journal paper is included in Appendix B1.

1The double-spaced draft will be shortened to 35-40 pages in upcoming revisions, which corresponds
to approximately 20 pages in the edited journal format for publication.



Chapter 2

Control Allocation Background

Control allocation is the process of distributing control commands over the available set
of actuators given an over-actuated controlled system. A wide range of control allocation
methods are available in the literature. One of the first surveys on CA algorithms is
given in (Enns, 1998), which reviews the control allocation methods developed during the
last century, mostly based on generalized inverses and geometric approaches. Johansen
and Fossen (2013) provide a more up-to-date and complete survey, which covers more
sophisticated methods, including handling nonlinearities and dynamic control allocation.
Other relevant surveys such as (Oppenheimer, Doman, & Bolender, 2006, 2010), which
are equally complete and up-to-date, focus on CA methods for aerospace applications.

The choice of a suitable control allocation approach is strongly application-dependent.
Most real-time CA applications in aerospace control require reliable and computation-
ally efficient algorithms that guarantee convergence and can be run on-board in digital
computers with sampling frequencies in the order of 100 Hz. Bodson (2002) provides
a comparative evaluation of optimization methods for CA, emphasizing on their perfor-
mance in terms of computational efficiency. Page and Steinberg (2000) also compare the
performance of different control allocation methods, but focus in their ability to attain
commanded moments and their behaviour in closed-loop with a flight control system.
Existing CA methods are reviewed and discussed in this chapter.

2.1 The Control Allocation Problem

Let the dynamics of a nonlinear system be described in the generic input-affine form

ẋ(t) = f(x, t) + g(x, t) u(t) (2.1)

where t is time, x ∈ Rn the state vector and u ∈ Rm a vector of pseudo-control inputs.
Here, the system dynamics are externally influenced only by the pseudo-control input u,
which usually corresponds to the control-induced forces and moments generated by the
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6 Control Allocation Background

control effectors, generally given by

u(t) = h(x, δ, t) (2.2)

where δ ∈ Rp is the vector of actuator positions and h a generally nonlinear function.
The control effectors are subject to rate and position constraints

δmin ≤ δ ≤ δmax

|δ̇| ≤ δ̇max

(2.3)

Due to computational constraints of real-time control systems, it is common to assume
that actuator dynamics are much faster than the dynamics of the controlled system, such
that the dynamic nonlinear function in Eq. (2.2) can be approximated at a given time
step as the static mapping

u = h(x, δ) (2.4)

This simplification implies the assumption that actuators respond instantaneously to com-
mands (Oppenheimer et al., 2010), which usually results in undesirable coupling effects
between control allocators and actuator dynamics (Oppenheimer & Doman, 2004). Dy-
namic control allocation methods that account for actuator dynamics are discussed at the
end of this chapter.

Static control allocation algorithms run in discrete-time computers, computing the con-
trol distribution at each time step for the current state x0. Thus, given a measured or
estimated x0 at a given time step, the control effectiveness function h(x, δ) becomes a
generally nonlinear static mapping h(x0) : Rp → Rm.

In a discrete-time system the actuator rate limits can be translated into local position
limits for the current time step as

∆δmax = δ̇max∆t (2.5)

The effective local position limits at a given time step are

δ ≤ δ ≤ δ (2.6)

with

δ = min
(
δmax, δ + δ̇max∆t

)

δ = max
(
δmin, δ − δ̇max∆t

) (2.7)

where δ and δ are the most restrictive upper and lower bounds of the position and rate
constraints of the actuators at a given time step, respectively (Oppenheimer et al., 2006).

Usually, and especially in vehicle control applications, the pseudo-control inputs of the
system dynamics u are the moments about the three main body axes, denoted τ ∈ R3:

τ = h(x, δ) (2.8)

This problem is usually referred to as the three-moment problem (Durham, 1994b). The
control allocation problem consists of determining the control effector positions δ that
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Figure 2.1: Classical control scheme for over-actuated systems.

produce a commanded moment τ c. Over-actuated systems have more control effectors
than controlled variables, i.e. p>m and therefore the system of equations in Eq. (2.8) is
underdetermined with p−m degrees of freedom. As shown in the classical control scheme
for over-actuated systems in Figure 2.1, the moment commands are typically provided by
a high-level control system. Then, the CA algorithm allocates the commanded pseudo-
control inputs into individual actuator positions such that the total generated moments
amount to the desired τ c.

For a given time step, the static control allocation problem is formulated as: given the
current state x0, the control effector model τ = h(x0, δ) and a pseudo-control command
τ c, determine a control vector δ such that

h(x0, δ) = τ c

subject to δ ≤ δ ≤ δ
(2.9)

Note that the inverse problem of computing δ given τ c is ill-posed and generally its
solution is not unique. A wide variety of approaches are available to solve the CA problem,
depending on the assumptions made. Figure 2.2 provides a broad classification of existing
methods. These methods are discussed in detail in the following sections.

2.2 Linear Control Allocation

Most commonly used CA methods are based on the assumption that a linear relationship
exists between control effector positions and control-induced moments, i.e. that h(x, δ) is
linear in the control inputs. Thus, the control-induced moments can be expressed using
a control effectiveness matrix B(x) ∈ Rm×p in the form

τ = h(x, δ) = B(x) δ (2.10)

Since the control allocation problem is solved statically at every time step, the control
effectiveness matrix is scheduled for the current state x0 without regard as how it will
change over time (Johansen & Fossen, 2013). For simplicity, the instantaneous control
effectiveness matrix B(x0) will be referred to as simply B in the remainder. The effects
of scheduling the control effectiveness matrix are discussed in (Hodel, 2000).
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Figure 2.2: General classification of control allocation methods.

The assumption of linearity is valid when the control effectors are placed separate enough
such that interactions are negligible, and as long as the actuators operate within the
linear region of their operational range, i.e. far from their position limits. Although
this assumption neglects nonlinearities and interactions of the control effectors, it greatly
facilitates the manipulation of the control effector equations either to find explicit solutions
to the unconstrained LCA problem or to apply efficient numerical optimization-based
solution methods with explicit constraints. The applicability of computationally efficient
linear solvers makes LCA approaches highly suitable for real-time CA systems.
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2.2.1 Generalized Pseudo-Inverses

An explicit solution can be found by solving the unconstrained LCA problem. When the
actuator position and rate limits are removed, the LCA problem can be posed as the
`2-norm minimization problem

min
δ
J =

1

2
(δ − δp)TWδ(δ − δp)

subject to Bδ = τ c

(2.11)

where δp ∈ Rp is a vector of preferred actuator positions (usually δp = 0 to minimize
control effort), and Wδ is nonsingular weighting matrix that establishes preferences on
using some control effectors over others. If BBT is full-rank, the unconstrained problem
has the explicit solution

δ = δp +B] (τ c −Bδp) (2.12)

with
B] = W−1

δ BT
(
BW−1

δ BT
)−1

(2.13)

a generalized weighted pseudo-inverse. This solution is derived in (Enns, 1998) and
(Oppenheimer et al., 2006) by applying Lagrange multipliers to the minimization problem
with equality constraints in (2.11).

Note that when no preferences are assigned to control effectors (Wδ = I), and the preferred
actuator deflections are zero (δp = 0), the solution is given by the Moore-Penrose pseudo-
inverse:

δ = B+τ c = BT (BBT )−1τ c (2.14)

This method provides a solution to the unconstrained problem as long as it exists and
BBT is not rank-deficient1.

The main drawbacks of the pseudo-inverse method are that it does not guarantee that the
actuator position and rate constraints are met, and does not take into account secondary
objectives. The most straightforward solution to the constrained problem is simple satu-
ration (or clipping) of the unconstrained solution. However, if each actuator command is
clipped individually to its corresponding limit, the direction of the desired moment is not
kept. If all commands are scaled down by a common factor, then the direction of the mo-
ment command is preserved. The performances of different command clipping strategies
for the pseudo-inverse method are evaluated in (Page & Steinberg, 2000). Despite the
simplicity of the method, Durham (1993) concluded that no generalized inverse can yield
exact allocation whenever possible using simple saturation (Johansen & Fossen, 2013).

2.2.2 Redistributed Weighted Pseudo-Inverse

The redistributed weighted pseudo-inverse (RWPI), also called cascaded generalized in-
verse, is an iterative method that uses the generalized weighted pseudo-inverse method
to find a solution that meets actuator constraints, if it exists. First, the unconstrained
explicit solution is computed with the weighted pseudo-inverse in Eq. (2.12). If the found

1Control suites for mechanical systems usually avoid control effector deficiencies by design.
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control distribution δ is within the local actuator limits, the solution is kept. Otherwise,
if one or more effectors violate constraints, the next steps are followed. First, the columns
in B corresponding to the saturated actuators are zeroed, forming an auxiliary matrix
Bsat. Second, the values of the saturated effectors are placed in the preference vector δp,
forming an auxiliary preference vector δp,sat. Then, the RWPI solution is re-computed as
follows:

δ = δp,sat +B]
sat (τ c −Bδp,sat) (2.15)

This process is repeated until all effectors are saturated or a solution within the local
actuator limits is found.

Bodson (2002) and Ducard (2009) reported results showing that the RWPI method can
yield suboptimal solutions. Additionally, Johansen and Fossen (2013) claim that the
method does not guarantee convergence to a feasible solution, even if it exists. These
conclusions were also reached by Harkegard (2002). In spite of its shortcomings, the
RWPI method is very efficient and reliable, so it is a very popular solution for real-time
control allocation in safety-critical systems, see (Eberhardt & Ward, 1999; Davidson,
Lallman, & Bundick, 2001a; Davidson et al., 2001b; Shtessel, Buffington, & Banda, 2002;
Alwi & Edwards, 2006; T. J. J. Lombaerts, Looye, Chu, & Mulder, 2012).

2.2.3 Daisy Chaining

The daisy chaining method was first presented and evaluated by Buffington and Enns
(1996). It establishes a hierarchy for the use of control effectors over certain axes. In
order to achieve a certain command, the first effector in the hierarchy is deflected until
the desired moment is attained or the actuator saturates. If saturation occurs before the
command is achieved, then the error between the allocated and the required moments is
allocated to the next effector in the hierarchy. The process is repeated until a feasible
solution is found or all actuators are saturated. For more extensive discussion on this
method, see (Buffington & Enns, 1996; Oppenheimer et al., 2010).

Due to the existence of a hierarchy, the solutions produced by daisy chaining may not
exploit the full control power of certain effectors to reduce the allocation error. This leads
to suboptimal solutions in comparison with RWPI (Johansen & Fossen, 2013).

2.2.4 Direct Allocation

Direct allocation (DA) is a control allocation method based on geometric principles, and
has the property of preserving the direction of the commanded moments (Page & Stein-
berg, 2000). The original DA algorithm was developed by Durham (1993, 1994b).

Let the attainable moments set (AMS) be the subset A⊂τ c ∈ Rm of commanded moments
for which the constrained CA problem has at least one feasible solution. For linear control
effectors with control effectiveness function in the form of Eq. (2.10), the AMS is a convex
hull with planar surfaces (Oppenheimer et al., 2006). The direct allocation algorithm
operates as follows. First, the pseudo-inverse solution is computed. If δ satisfies the
position and rate constraints, the solution is kept. Otherwise, the solution is projected
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into the boundary of A by preserving the direction of the desired moment. This is achieved
by finding a scaling factor ρ ∈ [0, 1] that satisfies

max
ρ≤1

ρ

subject to Bδ = ρτ c, ρτ c ∈ A
(2.16)

Solving Eq. (2.16) is not trivial, especially in problems with a large number of actuators.
Durham (1994a) proposed a method to compute the AMS for the three-moment problem.
Numerical algorithms with different complexities have been proposed to solve the DA
problem (Johansen & Fossen, 2013).

This approach has been extensively addressed and improved by Durham and other au-
thors, see (Durham, 1999, 2001; Bordignon, 1996; Bodson, 2002). Moreover, the method
is generalizable to problems with nonlinear constraints, provided that the AMS can be
computed. Nonlinear direct allocation will be discussed later in this chapter.

As stated by Durham (2001), the AMS changes with the state of the aircraft and therefore
must be re-computed at every time step, which is too computationally complex to be
suitable for real-time applications when the number of control effectors is large.

2.2.5 Numerical Optimization-Based Approaches

Three types of outcomes can be expected from a CA problem: either the solution does
not exist (the command is unattainable), exactly one solution exists, or there are infi-
nite solutions. In the first case, it is desirable to obtain the solution that provides the
minimum error between the commanded and allocated moments. In the latter case, a
solution may be chosen according to the fulfillment of a secondary objective. Given this
situation, control allocation can be formulated as an optimization problem with primary
and secondary objectives.

The primary objective of the CA problem is to minimize the control allocation error, i.e.
the difference between the required and the allocated moments. This is generally referred
to as the error minimization problem, and can be posed as follows: given a command τ c
and a control effectiveness matrix B, find δ such that

min
δ
J = ||Bδ − τ c||

subject to δ ≤ δ ≤ δ
(2.17)

Where ||·|| is some norm that will determine the numerical optimization algorithm re-
quired to solve the problem.

When there is sufficient control authority to attain the command, i.e. J = 0, one or
infinite solutions exist. In the latter case, a secondary objective may be minimized to
select a preferred solution. The most common approach is to minimize the actuator
deflections with respect to a preferred position δp. This is often referred to as the control
minimization problem (Bodson, 2002; Harkegard, 2002; Oppenheimer et al., 2006), and
is posed as follows: given a command τ c and an effectiveness matrix B, find δ such that

min
δ
J = ||δ − δp||

subject to Bδ = τ c
(2.18)
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The objective achieved depends on the choice of δp. Typical secondary objectives are
minimum control deflection, minimum wing loading, minimum drag or minimum actuator
power (Oppenheimer et al., 2010). For further discussion on secondary objectives, see
(Buffington, 1999). A popular secondary objective is minimizing the control effort, which
is achieved by setting δp = 0. It guarantees that, whenever a command has multiple
solutions, the actuators will remain as close to their neutral positions as possible. This
mitigates counterbalancing effects, i.e. diverging deflections of effectors that produce
opposite moments of equal magnitude.

It is also possible to combine primary and secondary objectives in a single cost function to
formulate a mixed optimization problem (Bodson, 2002). It is posed as: given a command
τ c and an effectiveness matrix B, find δ such that

min
δ
J = Wτ ||Bδ − τ c||+ εWδ ||δ − δp||

subject to δ ≤ δ ≤ δ
(2.19)

where Wτ and Wδ are nonsingular weighting matrices and ε is a scalar, selected sufficiently
small to prioritize error minimization over the secondary objective.

The minimization problems described above can be solved with linear numerical optimiza-
tion algorithms. The kind of suitable algorithms depends on the norm used to define the
cost function of the problem. Below the most common numerical optimization algorithms
used in optimization-based CA are discussed.

Linear Programming

If an `1 norm is chosen, the optimization problem can be formulated as a linear program.
The linear programming (LP) approach was used for multi-branch control allocation in
(Enns, 1998; Buffington, 1999). The first publications on LP-based control allocators are
(Paradiso, 1989, 1991). The linear program is posed as:

min
δ
J = Wτδs

subject to




δs
−δ
δ

−Bδ + δs
Bδ + δs



≥




0

−δ
δ
−τ c
τ c




(2.20)

where δs ∈ Rp is a vector of slack variables. If J > 0 the required moment is unattainable,
and the solution found is that which minimizes the weighted `1 norm distance between
the allocated and the commanded moments (Page & Steinberg, 2000). When J = 0, the
secondary objective is minimized as the linear program:

min
δ
J = Wδδs

subject to




δs
−δ
δ

−δ + δs
δ + δs



≥




0

−δ
δ
−δp
δp



, Bδ = τ c

(2.21)
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Note that other control allocation formulations can also be solved with LP. For instance,
Bodson (2002) reformulated the direct allocation and the mixed optimization problems
into linear programs.

Several numerical methods are available to solve the LP problem. The most common are
the simplex method (Bodson, 2002), active set methods (Harkegard, 2002) and interior-
point methods (Petersen & Bodson, 2005, 2006). Although the simplex method tends
to converge to the optimal solution within a number of iterations not bigger than the
number of variables and constraints, a maximum number of iterations is hard to guarantee
(Johansen & Fossen, 2013). Thus, since in real-time applications a limit for iterations
must be set, some degree of suboptimality needs to be assumed. Possible degeneracies of
the simplex algorithm for control allocation are addressed in (Bodson, 2002).

Interior-point algorithms were proposed in (Petersen & Bodson, 2005) for `1-norm mixed
optimization problems and direct allocation, both formulated as linear programs. The
authors concluded that, despite being slower than the simplex method, interior-point
methods progress uniformly toward the optimum, which makes them more suitable in
real-time applications where the number of iterations per time step is limited.

As discussed in (Bodson, 2002), LP-based solutions with the `1 norm tend to exploit a
smaller number of effectors. On the other hand, solutions found with `2 norm and `∞
norm tend to allocate the control demand to a larger number of effectors, distributing
the control effort. This is one of the reasons why quadratic programming approaches are
more popular (Johansen & Fossen, 2013).

Quadratic Programming

When the optimization problem is defined with an `2 norm, several possibilities arise.
Enns (1998) proposes some approaches with different complexities. First of all, note that
when the problem is formulated with an `2 norm and the position and rate constraints
are removed, the explicit pseudo-inverse solution in Eqs. (2.11)-(2.14) is obtained.

One of the simplest approaches for the error minimization problem with `2 norm is as
follows. First, find the explicit solution of the unconstrained problem

min
δ
J = ||Bδ − τ c||2 (2.22)

with the pseudo-inverse method. If δ does not satisfy the position and rate limits, then
find the optimal solution by adding the equality constraint

||δ||2 = p (2.23)

with p ∈ Rp. To determine the equality constraint in Eq. (2.23), first an affine transfor-
mation of the inequality constraints δ ≤ δ ≤ δ into a single equality constraint ||δ||∞ = 1
is required. The latter is an `∞ box constraint that can be approximated with the `2
equality constraint ||δ||2 = p (Bodson, 2002). In the 2-dimensional case, ||δ||2 = p can be
seen as an elliptical constraint, whose p is selected such that it adjusts to the rectangular
region enclosed by the equality constraints, see Figure 3 in (Enns, 1998).
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The explicit solution to the problem with equality constraint, as derived in (Enns, 1998)
with Lagrange multipliers, is given by

δ = BT
(
BBT + λI

)−1
τ c (2.24)

which is similar to the Moore-Penrose pseudo-inverse solution except for the Lagrange
multiplier λ, which can be found by solving the equation

γ(λ) =
∣∣∣
∣∣∣BT

(
BBT + λI

)−1
τ c

∣∣∣
∣∣∣
2

= p (2.25)

Bodson (2002) proposes the bisection method as a suitable and efficient solver for Eq.
(2.25), given the fact that γ(λ) turns out to be a monotonically decreasing function.
According to the analysis given in (Bodson, 2002), despite being computationally simple,
this method may yield not exact solutions as a consequence of the approximation of the
`∞ by an `2 constraint. Therefore command clipping needs to be applied to meet the
actual constraints, which usually yields suboptimal solutions.

A more common approach when using the `2 norm is to formulate the constrained mixed
optimization problem (2.19) as a quadratic program (Petersen & Bodson, 2006). The `2
formulation of the problem is

min
δ
J = ||Bδ − τ c||2 + ε ||δ − δp||2

subject to δ ≤ δ ≤ δ
(2.26)

As developed in (Petersen & Bodson, 2006), this problem can be rewritten as a standard
quadratic program as follows. Let the constraints be rewritten as

z = δ − δ, zp = δp − δ (2.27)

zmax = δ − δ, τ 0 = τ c −Bδ (2.28)

Then, the resulting constraints set is

z + zs = zmax, z ≥ 0, zs ≥ 0 (2.29)

where zs is a slack variable that guarantees the upper bound of z. The quadratic pro-
gramming (QP) problem is then formulated as

min
δ
J =

1

2
zTQ1z +QT2 z

subject to z + zs = zmax, z ≥ 0, zs ≥ 0
(2.30)

with

Q1 =2
(
BTB + εI

)
(2.31)

QT2 =− 2
(
τT0 B + εzTp

)
(2.32)

Many numerical algorithms are available to solve the QP problem. The most common
are fixed-point methods, active set methods and interior-point methods.
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The fixed-point method is an iterative algorithm, which was used in (Burken, Lu, &
Wu, 1999; Burken, Lu, Wu, & Bahm, 2001) to solve the mixed optimization problem in
Eq. (2.30). This algorithm was assessed by Lu (1996), who proved its global conver-
gence. However, as claimed by Petersen and Bodson (2006), its convergence tends to be
slow for large commands, and therefore it is usually implemented with limited iterations
(Harkegard, 2002; Bodson, 2002).

Active set methods were proposed by Harkegard (2002) to solve both LP and QP control
allocation problems in aircraft control. The optimal active set is defined as the set of
constraints that are active (i.e. the equality relation holds) at the optimal solution.
Active set methods are iterative algorithms which improve their guess of the optimal
active set at each iteration.

In addition to LP, interior-point algorithms were proposed to solve QP problems in
(Petersen & Bodson, 2005, 2006). In the latter publication, the authors concluded that
the active set algorithm converges exactly to the solution in a finite number of steps and
is computationally efficient for control allocation problems of small size, whereas interior-
point algorithms perform better in control allocation problems with a larger number of
control effectors, despite requiring more computations.

2.3 Nonlinear Control Allocation

As already seen, most existing control allocation methods work under the assumption
that a linear relationship exists between control-induced moments and control effector
positions. Although the expression derived from this assumption results very tractable for
the inverse problem of control allocation, forces and moments produced by aircraft control
surfaces are almost always nonlinear functions of their displacements (Bolender & Doman,
2004b). This is particularly true for large displacements, when the effectors operate at
extreme regions of the control effectiveness curve. When the linearity assumption fails, the
resulting control allocation errors need to be mitigated by the robustness of the feedback
control laws (Poonamallee et al., 2004).

Although linear effector models are usually valid for aircraft with conventional actuator
suites under nominal flight conditions, there are situations when the error due to nonlin-
earities in the control moment curves becomes especially relevant. For instance, in case
of failure events the operative actuators are forced to operate in highly nonlinear regions
of the control effectiveness curve, close to their position limits. In such situations, the
linear approximation may not be sufficiently accurate for the vehicle to be safely recovered
(Bolender & Doman, 2004b).

In conventional configurations of control effectors, where the actuators are placed far
enough from each other to avoid interactions, the control effector model can be assumed
affine in the actuator displacements. However, when more control effectors are placed on
a vehicle, the probability of interactions between control effectors increases (Oppenheimer
& Doman, 2007). In certain situations interaction effects become particularly relevant,
especially in configurations where some actuators are placed downstream of others. This
was noticed by Oppenheimer and Doman (2007), who proposed a method to correct for
control effector interactions. This method only applies to interactions between two control
effectors when they can be described by a bilinear function.



16 Control Allocation Background

Certain control effectors have nonlinear moment contributions that cannot be captured
with an affine relationship. Common examples given in (Doman & Sparks, 2002; Bolender
& Doman, 2004b) are the contributions to yawing moment of right-left pairs of effectors
such as all-moving wing tips, ailerons and elevons with asymmetric deflections. While such
effectors produce locally linear rolling moments, they have highly nonlinear contributions
to yawing moment, especially at low angles of attack where parasitic drag dominates
induced drag effects (Doman & Sparks, 2002). Such contributions are usually quadratic,
and have the same direction for positive and negative deflections. Although these effects
are relatively small compared to their primary-axis contributions, they become important
in order to attain directional control under rudder failure or when the aircraft operates
at high AoA and the flow over the rudder is interrupted by the airframe body (Doman &
Sparks, 2002).

Finally, the linear effector assumption can yield suboptimal control allocation solutions
in situations where beneficial use can be made of the nonlinear effects of the actuators.
This possibility was noticed by Oppenheimer et al. (2010), who state that fully exploiting
the effector suite of the aircraft to further improve control allocation accuracy requires
benefiting from its nonlinearities. Bolender and Doman (2004a) give some examples. The
latter authors also suggested other interesting applications of nonlinear control allocation,
such as the determination of constraints for use with trajectory reshaping algorithms
(Schierman, Hull, & Ward, 2003).

All these reasons have encouraged research effort in the last decade to emphasize on the
development of suitable nonlinear control allocation algorithms that can be utilized in
real-time applications. Below the most relevant developments are discussed.

2.3.1 Nonlinear Direct Allocation

One of the first attempts to develop algorithms for nonlinear control allocation was pre-
sented by Doman and Sparks (2002) as an extension for the direct allocation algorithm
proposed by Durham (1993). The method proposed consists on the computation of non-
linear AMS such that the direct allocation algorithm can be implemented. However, as
stated by Oppenheimer et al. (2006), the construction of the AMS for a nonlinear problem
can become extremely difficult. Since the AMS needs to be re-computed in each time step,
this solution is too computationally complex to be suitable for real-time applications.

2.3.2 Affine Control Allocation with Intercept Correction

Since most control allocation algorithms assume an affine relationship between control
effectors and control-induced moments, keeping this structure can be beneficial. Doman
and Oppenheimer (2002) suggest using an additional intercept term in the affine effector
model to correct for local errors in the slope of the control moment curve. Figure 2.3 shows
a typical control moment curve. In a linear control allocation scheme, at every time step
one may find a B matrix at the current opreating point such that h(x0, δ) = Bδ. However,
the individual control effectiveness terms, i.e. the slopes of h(x0, δ) in the directions of
δ will be inaccurate due to nonlinearities. This is due to the fact that, given the linear
formulation, global slopes are used. In order to enforce the condition h(x0, δ) = Bδ,
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Figure 2.3: One-dimensional representation of a typical control moment curve.

an error is assumed between global and local slopes, depicted by the difference in the
slopes of the dashed lines in Figure 2.3. This mismatch in control effectiveness terms
often results in control allocation error when linear control effectors are assumed.

Doman and Oppenheimer (2002) proposed adding an intercept term c(x, δ) in the defini-
tion of the pseudo-control commands τ c to adjust to the local slope. The linear control
effector model can be reformulated as an affine model with intercept correction as

τ c = h(x, δ) = Bδ + c(x, δ) (2.33)

The addition of the intercept term corrects the error in effectiveness resulting from ap-
proximating local slopes as global slopes. Aerodynamic databases can be used to compute
the slopes and intercepts of the affine control effector model. Then, the control allocation
problem can be reformulated for a new pseudo-control command

τ ′c = τ c − c(x, δ) = Bδ (2.34)

Now, any linear control allocation method can be applied to solve the problem for τ ′c.

As shown in (Bolender & Doman, 2004b) and (Poonamallee et al., 2004), the method per-
forms well in regions where the linear behavior is dominant with monotonic moment deflec-
tion relationships, but performs poorly when nonlinearities become significant. Moreover,
the affine control effector model may not be applicable in cases where the control-induced
moments are quadratic, have non-monotonic behaviour, or when the effectiveness of the
control surfaces becomes small, i.e. the slope approaches to zero. It also does not consider
interactions between control effectors. Despite these limitations, the results presented in
(Doman & Oppenheimer, 2002) show significant improvements in body rate tracking per-
formance with respect to linear effector models. This demonstrates the potential benefits
of nonlinear control allocation.

2.3.3 Mixed-Integer Programming with Piecewise Linear Functions

Typically, aerodynamic databases are discrete-valued multidimensional lookup tables.
The method proposed in (Bolender & Doman, 2004b) takes advantage of this struc-
ture and connects the data points in the aerodynamic database with piecewise linear
(PWL) functions. The resulting control effectors model is a set of PWL. Then, the
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control allocation problem can be posed as a piecewise linear program, a type of formula-
tion that approximates nonlinear programming problems that are comprised by separable
functions. This formulation of the problem can account for nonlinearities in the control
moment curves, but it assumes that the PWL are separable, i.e. interactions between
control effectors are neglected.

The control allocation problem is solved by formulating PWL programs for the `1 norm
error minimization and control minimization problems in Eqs. (2.17) and (2.18), each of
which can be considered an approximation of a nonlinear programming problem. These
PWL programs are then transformed and solved as a mixed-integer linear program (MILP)
with a branch-and-bound algorithm. The resulting MILP is substantially more complex
and difficult to solve than a regular LP problem.

Bolender and Doman (2004b) compared the performance of an affine control allocator
with intercept correction proposed in (Doman & Oppenheimer, 2002) to a PWL-based
control allocator under a failure event, where secondary nonlinear effects must be used to
control the vehicle and the actuators are forced to operate in the extreme region of the
control moment curves. Poor performance was observed for the affine control allocator
with intercept correction, which did not manage to recover the aircraft. The PWL-
based control allocator, however, managed to maintain control and land the aircraft after
actuator failure.

Despite the proven benefits of the proposed method, Bolender and Doman (2004b) point
out that this algorithm is extremely slow due to its computational complexity, which
makes it not suitable for real-time applications. Therefore, this work is a proof of the
potential benefits of nonlinear control allocation, rather than a suitable proposal for real-
time implementation with nowadays digital computers.

2.3.4 Nonlinear Programming

The existing solution that yields the most direct consideration of nonlinearities of the
control effectors is the formulation of the CA problem as a nonlinear program. The
`2 norm mixed optimization CA problem can be generally formulated as a nonlinear
programming (NP) problem as follows: given a command τ c and an operating point x0,
find δ such that

min
δ
J = ||h(x0, δ)− τ c||2 + ε ||δ − δp||2

subject to δ ≤ δ ≤ δ
(2.35)

with h(x0, δ) a generally nonlinear nonconvex control effector model. Different possi-
bilities have been explored in the literature to solve the nonlinear program, such as se-
quential quadratic programming (SQP), the Gauss-Newton algorithm and the Levenberg-
Marquardt (LM) algorithm.

SQP is a popular approach, which has been used in (Poonamallee et al., 2004; Johansen,
Fossen, & Berge, 2004; Luo et al., 2007). Since nonconvex optimization requires a large
number of iterations at each time step, Johansen et al. (2004) suggested a reformulation
of the nonlinear program as a locally convex quadratic program. This is achieved by local
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first-order linearization of the effector model at each time step:

h(x, δ) = h(x0, δ0) +
∂h(x, δ)

∂δ

∣∣∣∣δ=δ0
x=x0

(δ − δ0) (2.36)

which yields the convex nonlinear quadratic program

min
δ
J =

∣∣∣∣∣∣

∣∣∣∣∣∣
h(x0, δ0) +

∂h(x, δ)

∂δ

∣∣∣∣δ=δ0
x=x0

(δ − δ0)− τ c

∣∣∣∣∣∣

∣∣∣∣∣∣
2

+ ε ||δ − δp||2

subject to δ ≤ δ ≤ δ

(2.37)

Note that SQP may converge to local minima of J . However, as long as the optimal
control allocation solutions are within the neighbourhood of the current state, this is not
regarded as a significant problem.

The applicability of the Gauss-Newton algorithm to solve the NP problem was discussed
in (Tol, De Visser, Van Kampen, & Chu, 2014). Although it shows good convergence
when the initial solution is in the neighbourhood of the optimal solution, its convergence
performance is poor otherwise.

The Levenberg-Marquardt algorithm (Marquardt, 1963) was applied to solve the NP
problem in (Tol et al., 2014). This method overcomes the problem of global convergence
and increases robustness by adaptively varying between the Gauss-Newton search direc-
tion and the steepest descent search direction. However, a remarkable drawback of the
LM algorithm is that it does not take into account actuator limits during the optimization
process. A possible solution for this issue is to impose a barrier function in the objective
function (Johansen, 2004). In the case of flight control, optimal solutions are usually
close to the boundaries of the solution space, especially in the event of actuator failures.
For this reason, adding a barrier function can be detrimental to the performance of the
algorithm. A possible workaround is simple clipping of the controls that exceed their
position limits.

All the methods presented above are considered not suitable for real-time applications
in safety-critical systems. First, their computational complexity is too high to render
acceptable solutions when running in rates typical of on-board computers (i.e. in the
order of 100 Hz). Second, their convergence is not always guaranteed. However, in all
cases nonlinear control allocation demonstrated a dramatic improvement of the control
performance and recoverability in case of failure events with respect to linear solutions.

2.4 Dynamic Control Allocation

Oppenheimer and Doman (2004) noticed that neglecting actuator dynamics may result
in negative coupling effects between control allocators and actuator dynamics. Dynamic
control allocation methods deal with cases where the assumption that actuator dynamics
are much faster than the dynamics of the controlled system does not hold. In such cases,
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the dynamic behaviour of the actuators must be accounted for. Actuator dynamics are
generally described in state-space form as

δ̇(t) = Aδδ(t) +Bδδc(t)

δ ≤ δ ≤ δ ∀t
(2.38)

where δc ∈ Rp is the input command for the actuators, δ ∈ Rp the actual actuator
deflections, Aδ the state matrix, and Bδ the input matrix. Thus, the relationship be-
tween control-induced moments and actuator deflections must be generally described as
a dynamic mapping in the form

τ (t) = h(x, δ, t) (2.39)

In such cases computational complexity of the algorithms can be relaxed since an optimal
solution is not required at each time step, but rather a solution that dynamically converges
to the optimum with time. The most relevant methods for dynamic control allocation
proposed in the literature are described below.

2.4.1 Dynamic Control Allocation with Quadratic Programming

The approach presented by Harkegard (2004) poses the dynamic control allocation prob-
lem as a constrained quadratic program, in which the control distribution not only depends
on current state, but also on the control distribution of the previous sampling instant, sub-
ject to actuator rate constraints. The method extends the QP control allocation scheme,
which uses linear control effectors, by penalizing actuator rates through an additional
term in the cost function.

A linear control effector model is assumed in the dynamic form

τ (t) = B(t)δ(t) (2.40)

The extended QP problem is then posed as: given a time-varying command τ c(t) and a
control effectiveness matrix B(t), find δ(t) such that

min
δ
J = ||B(t)δ(t)− τ c(t)||2 + ε1 ||δ(t)− δp(t)||2 + ε2 ||δ(t)− δp(t−∆t)||2

subject to δ ≤ δ ≤ δ
(2.41)

To solve the CA problem the two last terms of J in Eq. (2.41) can be merged without
affecting the solution. Then, the problem can be solved with any QP solver suitable for
real-time implementation. The resulting control command will be some mapping in the
form

δ(t) = g(τ c(t), δ(t−∆t)) (2.42)

Hence, the control allocator becomes a dynamic system. This results in a CA scheme
whose control distribution is frequency-dependent, and therefore accounts for different
actuator bandwidths. Thus, advantage can be taken of actuator redundancy to allocate
control effort to different actuators over different frequency ranges (Luo et al., 2007).
Harkegard (2004) concluded that, for the nonsaturated case, the control allocator be-
comes a stable linear filter. Moreover, the method considers actuator position and rate
constraints to redistribute the control effort in case of actuator saturation.
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2.4.2 Model Predictive Control Allocation

Model predictive control (MPC) was applied to the dynamic control allocation problem
in (Luo et al., 2004, 2007; Hanger, 2011). The control effector model is considered in
affine form with intercept correction (Doman & Oppenheimer, 2002) as a time-varying
mapping

τ (t) = B(t)δ(t) + c(x, δ) (2.43)

As a model-based approach, MPC relies on an on-board dynamic model of the controlled
system in the form

ẋ(t) = f (x, t) +Bδ(t) + c(x, δ) (2.44)

where f includes the forces and moments that are not produced by the control effectors.

Then, a virtual control ν(t) is defined as

ν(t) = ẋ(t)− f (x, t)− c(x, δ) = Bδ(t) (2.45)

The MPC control allocation problem is then posed as follows: for the constrained system

δ̇(t) = Aδδ(t) +Bδδc(t)

y(t) = Bδ(t)

δ ≤ δ ≤ δ ∀t
(2.46)

find δc(t) such that y(t) tracks νc(t) as closely as possible, νc(t) being the predicted
value of the virtual control ν(t) obtained from the on-board model (2.44). In addition, a
dynamic model of the actuators in the form of Eq. (2.38) is used to predict y(t) in future
time steps. The MPC problem is solved by reformulating it into a linear complementary
problem, which is solved with Lemke’s algorithm.

The algorithm was proven in (Luo et al., 2004, 2007) to provide better tracking perfor-
mance than typical linear static control allocation schemes in problems where actuator
dynamics were slow enough to be comparable to the dynamics of the system.

2.4.3 Lyapunov-Based Dynamic Optimum-Seeking

Johansen et al. (2004) proposed a reformulation of the static control allocation problem
as a control-Lyapunov function, and developed an optimizing control allocation algorithm
in the form of a dynamic update law with constructive Lyapunov-design methods. The
dynamic control allocation laws derived with this method are generally applicable to both
nonlinear and linear control effector models.

A general nonlinear representation of the system and control effectors are considered in
the form

ẋ = f(x, τ , t)

τ = h(x, δ, t)
(2.47)

A generic instantaneous cost function J (x, δ, t) is defined, which may incorporate power
consumption or control effort. In order to account for actuator position constraints, the
cost function is augmented with a barrier function κ(δ):

J ′(x, δ, t) = J (x, δ, t) + κ(δ) (2.48)
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such that the fulfilment of actuator position constraints is guaranteed. Then, the control
allocation problem is posed as

min
δ
J ′(x, δ, t)

subject to τ c = h(x, δ, t)
(2.49)

The optimization problem is reformulated with Lagrange multipliers λ ∈ Rp and the
Lagrangian

L (λ,x, δ, t) = J ′ (x, δ, t) + (τ c − h(x, δ, t))T λ (2.50)

It is assumed that a Lyapunov function V0 (x, t) exists for the high-level control system.
Then, the following Lyapunov function is defined for the design of the control allocation
law:

V (λ,x, δ, t) = σV0 (x, t) +
1

2

(
∂LT

∂δ

∂L

∂δ
+
∂LT

∂λ

∂L

∂λ

)
(2.51)

with σ > 0 some constant specified in the design. By assuming V̇ < 0 along the trajectories
of the system, the control allocator can be derived as a dynamic update law in the form

[
δ̇

λ̇

]
=

[
−Γα
−Wβ

]
+

[
ζ
φ

]
(2.52)

where Γ and K are positive symmetric matrices containing gains, and α, β, ζ and φ
are terms derived from Lyapunov-design methods, whose expressions can be found in
(Johansen et al., 2004).

The dynamic control allocation update law guarantees asymptotic optimality, which im-
plies that an optimal solution does not need to be found at each sample step. This
substantially reduces the computational complexity compared to nonlinear programming
approaches to control allocation. It also guarantees not to destabilize the closed-loop
system (Johansen & Fossen, 2013).

Note, however, that the dynamic control allocation law is only asymptotically optimal,
and may deviate from the instantaneous optimal control distribution at a given time step.
Tavasoli and Naraghi (2011) showed that this can lead to some loss of performance. The
control allocator can also run into convergence problems in the case of nonconvex cost
functions and constraints (Johansen, 2004).



Chapter 3

The Innovative Control Effectors
Aircraft

Back in the 1990’s, after the fall of the Soviet Union, the office of the Deputy Director of
Research and Engineering at the Department of Defense of the United States of America
faced the challenge of leading a national program to produce substantial improvements
in aerospace technology with a dramatic reduction of spending in aerospace. Amongst
other strategic objectives, effort was focused on reducing overall costs, reducing airframe
weight, and improving aircraft lift to drag ratio and manoeuvrability (Bowlus, Multhopp,
& Banda, 1997). In parallel, low radar cross section (RCS) design practices introduced
more restrictive signature-related design constraints, enforcing requirements in external
shaping, reduction or elimination of vertical control surfaces and alignment of control
surface edges with external airframe edges (Dorsett & Mehl, 1996).

One of the most promising solutions to meet new standards in terms of weight and cost
reduction and low RCS are tailless aircraft configurations. In this context, the Innovative
Control Effectors (ICE) program was conceived in 1993 by the Flight Control Division
of the Flight Dynamics Directorate with the objective of developing and validating inno-
vative aerodynamic flight control effector suites for tailless aircraft (Bowlus et al., 1997).
The main objectives of this thesis are motivated by the challenges and opportunities
implied by the ICE configuration, and therefore the nonlinear control allocation scheme
hereby developed is implemented and tested with a high-fidelity simulation model of the
ICE aircraft.

This chapter discusses the ICE aircraft configuration, the high-fidelity aerodynamic model
and its challenges in terms of control, and presents an analysis of the dynamic character-
istics, stability and controllability of the aircraft. Section 3.1 provides an overview of the
ICE program. Section 3.2 describes the ICE control suite, whereas the challenges posed
by this design are discussed in Section 3.3. A detailed description of the high-fidelity ICE
aerodynamic model used in this thesis is provided in Section 3.4. A linear analysis on
the dynamics, stability and controllability of the aircraft is made in Section 3.5. Finally,
Section 3.6 discusses the state-of-the-art of control allocation research for the ICE aircraft.

23
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Figure 3.1: Land-based ICE concept. Figure 3.2: Carrier-based ICE concept.

3.1 The Innovative Control Effectors Program

The ICE program was divided into two phases. Phase I (Dorsett & Mehl, 1996) was
sponsored by the Wright Laboratory (WL/FIGC) and the Naval Air Warfare Center
(NAWCAD), and focused on the conceptual design and analytical study of two baseline
aircraft configurations with innovative control effector suites. The baseline concepts under
study were the land-based configuration for the Air Force in Figure 3.1 and the carrier-
based configuration for the Navy in Figure 3.2. In the analytical study, various types of
control effectors and combinations were assessed on the two baseline vehicles.

In Phase II (Dorsett, Fears, & Houlden, 1997) the concepts with greatest potential were
subject to wind tunnel tests at the Lockheed Martin Tactical Aircraft Systems (LMTAS)
Aerodynamic Development Facility (ADF). The main objectives were gathering empirical
data to develop accurate aerodynamic models at high Reynolds numbers, develop control
effector models and identify control effector interactions.

3.2 The ICE Control Suite

The simulation model used in this thesis corresponds to the land-based baseline configu-
ration in Figure 3.1 or ICE 101-TV, which will be referred to as the ICE aircraft in the
remainder. The ICE aircraft is a 65 deg sweep delta flying wing, single engine, multi-role
supersonic fighter with internal weapons carriage (Buffington, 1997) in the class of 38,000
lb takeoff gross weight (Eberhardt & Ward, 1999). The control suite, shown in the plant
view in Figure 3.3, includes a number of innovative control concepts, whose main design
goals were improved low RCS characteristics, high AoA effectiveness, applicability to tail-
less configurations, weight and lift-to-drag ratio reduction with respect to conventional
controls, reduced hinge moment and reduced susceptibility to aeroelastic effects (Dorsett
& Mehl, 1996). The control effectors included in the ICE configuration are:

• Leading edge flaps (LEF): The ICE configuration has four LEF in total, two
inboard and two outboard. Differential deflections provide lateral-directional control
power at high AoA. Leading edge up (LEU) deflections increase drag in the deflected
side, causing adverse yaw. LEF are most useful for stability augmentation and roll
coordination at low speed and high AoA. Their control effectiveness is nonlinear
with AoA in both roll and yaw, and significant interactions between inboard and
outboard LEF were reported in (Dorsett & Mehl, 1996; Dorsett et al., 1997).
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Figure 3.3: ICE control effectors suite.

• All moving wing tips (AMT): Trailing edge down (TED) deflections provide
yaw control power by increasing profile and induced drag through a moment arm.
TED deflections also produce coupled rolling moments. AMTs are an excellent
source of yaw control power at very high AoA (Gillard & Dorsett, 1997), producing
yaw control moments at large deflections in the order of those produced by an F-16
rudder (Dorsett & Mehl, 1996). Although trailing edge up (TEU) deflections can
provide good roll effectiveness up to high AoA, the AMT deflections are constrained
to TED in order to allow hingeline sealing for RCS reduction purposes. Further de-
tails about integration, configuration and testing of AMTs can be found in (Gillard
& Dorsett, 1997).

• Multi-axis thrust vectoring (MTV): The thrust vector can be directed in both
pitch and yaw axes. MTV serves the purpose of meeting the high-AoA roll per-
formance and agility requirements, since aerodynamic control power alone was not
sufficient (Bowlus et al., 1997). Originally traditional nozzle-based thrust vectoring
was considered, but more recent designs use fluidic thrust vectoring. The thrust
vector is limited by an omnidirectional deflection constraint of 15 deg.

• Spoiler-slot deflectors (SSD): Unlike conventional spoilers, SSD open a slot
between the lower and upper wing skins when deflected. SSDs provide improved
lateral-directional control effectiveness at high AoA and transonic flight with re-
spect to conventional spoilers. Furthermore, SSDs are less affected by high-speed
flexibility effects compared to conventional ailerons (Dorsett & Mehl, 1996). Their
main drawback is the strong influence over the control effectiveness of pitch and roll
control surfaces placed downstream of the SSDs.

• Pitch flaps (PF): Pitch flaps are linked to deflect simultaneously and symmet-
rically, and therefore constitute a unique control effector with control authority in
pitch. In addition to providing longitudinal control power, they contribute to lon-
gitudinal trim at high AoA and when other control surfaces with pitch authority
become ineffective.
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• Elevons: The control suite has two elevons that can deflect independently in two
directions, and therefore constitute two separate control effectors. They provide
control power in both pitch and roll by deflecting symmetrically and asymmetri-
cally, respectively. Independent elevon deflections also cause secondary-axis yawing
moments due to the increment of parasitic and induced drag.

3.3 Flight Control Challenges

Several control issues appear when considering tailless aircraft configurations. Impor-
tant challenges are the problems of generating yaw control power and ensuring lateral-
directional stability. Of more relevance are, however, the challenges faced in control
allocation, which are addressed in this thesis.

3.3.1 Lateral-Directional Control and Stability

In conventional control suites, lateral-directional stability is mainly provided by the ver-
tical stabilizer, and quasi-uncoupled yaw control power is generated by the rudder. The
elimination of vertical tails, therefore, relaxes directional stability and reduces directional
control power (Buffington, 1997). These control and stability challenges are overcome
by using redundant control suites with control effectors producing multi-axis forces and
moments, and by designing suitable control laws for stability and control augmentation.

Control and stability challenges have been extensively addressed for the ICE aircraft.
Bowlus et al. (1997) presented the stability and control challenges of tailless aircraft con-
figurations. The problem of generating directional control with all moving wing tips was
addressed in (Gillard & Dorsett, 1997). A manual flight control system based on dy-
namic inversion was presented in (Ngo, Reigelsperger, Banda, & Bessolo, 1996), which
addressed issues regarding stability, performance and plant uncertainties. A more so-
phisticated modular control system for the ICE aircraft, which included basic control
allocation with the pseudo-inverse method, was developed in (Buffington, 1999). More
work has been done in flight control and stability, such as the adaptive flight control sys-
tem in (Eberhardt & Ward, 1999) and the continuous sliding mode controller in (Shtessel
et al., 2002).

3.3.2 The Control Allocation Problem

A more challenging problem presented by the ICE configuration is control allocation. The
ICE aircraft has 13 highly redundant, multi-axis control effectors. Since the aircraft is
strongly over-actuated, a control allocator is required to distribute the control demands
among the available control effectors in an optimal way. Currently, the only control allo-
cation methods tested with the ICE configuration that are suitable for real-time imple-
mentation are linear approaches, especially methods based on generalized pseudo-inverses.
These CA methods assume, on the one hand, that the contributions of the individual con-
trol effectors to control-induced forces and moments are separable (i.e. that there are no
interactions between control effectors) and, on the other hand, that a linear relationship
exists between control-induced moments and actuator deflections.



3.3 Flight Control Challenges 27

δssd=40
◦

δssd=30
◦

δssd=20
◦

δssd=10
◦

δssd=0
◦

α [deg]

C
m

×
1
0
2
[-
]

0 10 20 30 40

0

2

4

(a) Total Cm for δe = −30 including air-
frame and control effector contribu-
tions influenced by δssd.

δssd=40
◦

δssd=30
◦

δssd=20
◦

δssd=10
◦

δssd=0
◦

α [deg]

C
m

δ
le
×

1
0
2
[-
]

0 10 20 30 40

0

2

4

6

(b) Isolated Cm contribution of δe = −30
deg influenced by δssd.

δlfi=40
◦

δlfi=30
◦

δlfi=20
◦

δlfi=10
◦

δlfi=0
◦

α [deg]

y
l
×

1
0
−
3
[-
]

0 10 20 30 40
−20

−15

−10

−5

0

(c) Total Cl for δlfo = 30 including air-
frame and control effector contribu-
tions influenced by δlfi.

δlfi=40
◦

δlfi=30
◦

δlfi=20
◦

δlfi=10
◦

δlfi=0
◦

α [deg]

C
lδ

lf
o
×

1
0
3
[-
]

0 10 20 30 40
−10

−8

−6

−4

−2

0

(d) Isolated Cl contribution of δlfo = 30
deg influenced by δlfi.

Figure 3.4: Dimensionless aerodynamic coefficients from the high-fidelity ICE aerodynamic
database showing substantial nonlinear interactions between control effectors.
The values shown correspond to M = 0.6 and α = β = 0 deg.

However, as has been emphasized in (Buffington, 1997; Eberhardt & Ward, 1999; David-
son et al., 2001a), these assumptions are especially not valid in the case of the ICE
aircraft. Due to the high number of control effectors, the mechanisms used to produce
control moments and the proximity between some control surfaces, the control effective-
ness of the ICE actuators is highly nonlinear and coupled. Some examples obtained from
the aerodynamic database of the ICE aircraft are presented here.

Figures 3.4a-3.4b show the dimensionless pitching moment Cm produced by a deflection
of the left elevon δe = −30 deg for different positions of the left SSD, δssd. In Figure 3.4a
it can be observed that the total pitching moment produced by both the elevon and the
SSD is a highly nonlinear and nonconvex function of α. Figure 3.4b shows the isolated
contribution of the elevon, exhibiting a highly nonlinear influence of the SSD position. A
similar example is given in Figures 3.4c-3.4d for the dimensionless pitching moment Cl
produced by a deflection of the left outboard LEF δlfo = 30 deg, for different deflections
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Figure 3.5: Control moment curves showing nonlinear behaviour and control effector inter-
actions. The values shown correspond to M = 0.6, α = 0 deg and β = 0 deg.
The dashed line represents a linear approximation of the rolling moment curve
for δssd = 0 deg.

of the left inboard LEF, δlfi. Figure 3.4d shows that the control effectiveness of δlfo in the
roll axis is significantly degraded when the inboard LEF is deflected. Note that, for a full
deflection of the inboard LEF, the outboard LEF does not produce any control moment
in the roll axis. This has a substantial effect in the total roll contribution of the LEF pair,
as can be observed in 3.4c: the degeneration of the effectiveness of the outboard LEF as
a consequence of the deflection of the inboard LEF causes a change of sign in the slope of
Cl with α, which can have dramatic consequences for control allocation purposes if such
effects are not taken into account.

Examples of control moment curves of effectors exhibiting nonlinear behaviour and in-
teractions are shown in Figure 3.5. Figure 3.5a shows an example of a control moment
curve that is close to linear around the neutral position and becomes nonlinear for ex-
treme deflections close to the position limits. The dashed line in Figure 3.5a represents
a linear approximation of the rolling moment curve for δssd = 0 deg, which demonstrates
the inaccuracy of linear effector models at big deflections. The observed influence of δssd

on the rolling moment curve is remarkable: for a deflection of the SSDs to less than 15%
of their position limits, the control effectiveness of the elevons is reduced to less than 30%.
Also, for SSD deflections of 20 deg and higher the slope of the control effectiveness curve
of the elevons shifts from negative to positive, which can have dramatic effects on the
control allocation strategy. Finally, the elevons completely lose their control effectiveness
for full deflection of the SSDs (note that the curves shown correspond to α = 0 deg).

Figure 3.5b shows the quadratic yawing moment contribution of the left elevon, influenced
by δamt. Besides the asymmetric influence of AMT deflections, the quadratic nature of this
yawing moment curve is particularly worth being taken into consideration. As previously
mentioned, in tailless configurations all aerodynamic contributions to yawing moment are
originated by the generation of profile and induced drag with horizontal control surfaces,
which leads to quadratic moment curves that cannot be captured with linear control
effector models.
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An extensive study of the control effectiveness of the control effectors of the ICE aircraft
can be found in (Addington & Myatt, 2000). The results thereby shown were obtained
from wind tunnel tests at the Airforce Research Laboratory’s Vertical Wind Tunnel, and
show the nonlinearities and control effector interactions of the ICE control effectors suite.

To summarise, three main challenges arise for the ICE aircraft regarding control allo-
cation. First, the control effectiveness of the actuators is strongly nonlinear. Second,
highly nonlinear interactions between control effectors exist. Third, directional control
power is mainly achieved with horizontal control surfaces, whose contributions to yaw
are quadratic and asymmetrical, and therefore cannot be captured with linear effector
models.

3.4 High-Fidelity Aerodynamic Model

A high-fidelity aerodynamic database of the ICE aircraft mainly obtained from wind
tunnel tests was released by Lockheed Martin for academic use. This aerodynamic model,
which is described in detail in (Niestroy et al., 2017), is used in this thesis to simulate the
ICE dynamics. Its structure and characteristics are described in this section.

3.4.1 Reference Frames

The aircraft dimensionless aerodynamic coefficients are expressed in body frame Fb, which
is defined as the standard aerospace right-hand axis system:

• Origin: aircraft center of gravity.

• X-axis: pointing forward through the vehicle’s nose.

• Y-axis: pointing to the right.

• Z-axis: pointing downwards, completing the right-hand axis system.

The coefficients provided in the lookup tables are defined in the aerodynamic model body
frame Fm, which is a right-hand axis system with:

• Origin: aircraft center of gravity.

• X-axis: pointing backwards through the vehicle’s tail.

• Y-axis: pointing to the right.

• Z-axis: pointing upwards, completing the right-hand axis system.

3.4.2 Control Effectors

The control input vector δ ∈ R14 is composed by the deflections of the 11 aerodynamic
control surfaces, 2 MTV deflections in pitch and yaw, and 1 throttle input. The control
surfaces and throttle are limited by absolute position constraints implemented as satura-
tions, whereas the MTV deflection vector is subject to a circular constraint in the form

√
δ2

ptv + δ2
ytv ≤ δtvmax (3.1)



30 The Innovative Control Effectors Aircraft

Table 3.1: Dynamic properties of the ICE control effectors.

Control
effector

Notation Positive
deflection

Position limits
[deg]

Rate limit
[deg]

Dynamics

Inboard LEF δlfi, δrfi LED [0, 40] 40 Hl(s)
Outboard LEF δlfo, δrfo LED [-40, 40] 40 Hl(s)

AMT δlamt, δramt TED [0, 60] 150 Hh(s)
Elevons δlele, δrele TED [-30, 30] 150 Hh(s)

SSD δlssd, δrssd TEU [0, 60] 150 Hh(s)
PF δpf TED [-30, 30] 150 Hh(s)

MTV δptv, δytv ω̇ > 0 [-15, 15] 150 Hh(s)

Actuator dynamics are considered in the form of no-load rate limits and second-order
transfer functions. A low-bandwidth or high-bandwidth transfer function is used depend-
ing on the control effector:

Hl(s) =
(18)(100)

(s+ 18)(s+ 100)
(3.2) Hh(s) =

(40)(100)

(s+ 40)(s+ 100)
(3.3)

The position limits, no-load rate limits and dynamics of the ICE control effectors are
listed in Table 3.1.

3.4.3 Multi-Axis Thrust Vectoring Model

The MTV model provided by Lockheed Martin in the current release of the ICE model
did not consider the 3D projection of the thrust vector T. In order to improve accuracy,
the MTV model was extended in this thesis to account for thrust vector projections. This
extended model has been reviewed by Lockheed Martin and will be included in the next
release of the ICE model.

The model considers the direction of the pitch δptv and yaw δytv deflection angles such
that positive deflections produce negative pitching and yawing moments, respectively.
Using this convention, the projections of the thrust vector T onto the body frame Fb for
arbitrary deflections δptv and δytv are represented in the diagram in Figure 3.6. Thus, the
vectored thrust force T and moment τT vectors are given by Eqs. (3.4) and (3.5), where
dn = 18.75 ft is the moment arm of the thrust force.

T = T




cos(δptv)/ cos(δytv)
cos(δptv) tan(δytv)

sin(δptv)


 (3.4) τT = −Tdn




0
sin(δptv)

cos(δptv) tan(δytv)


 (3.5)

3.4.4 Aerodynamic Model

The ICE aerodynamic model is a six degrees-of-freedom (6-DoF) model developed mainly
from wind tunnel data, and includes nonlinear control effector interaction effects, dynamic
derivatives, aeroelastic effects and hinge moment derivatives. It provides dimensionless
coefficients for the aerodynamic forces and moments as a summation of nonlinear terms
stored in lookup tables.
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Figure 3.6: Projections of the thrust vector in body frame.

The aerodynamic forces in body frame [X Y Z]T are obtained from the dimensionless
force coefficients, which are normalized as follows:

CX =
X

1
2ρV

2S
; CY =

Y
1
2ρV

2S
; CZ =

Z
1
2ρV

2S
(3.6)

where ρ is the air density in slug/ft3, V the true airspeed in ft/sec and S the total wing
area in ft2. These dimensionless coefficients are computed as a summation of nonlinear
terms stored in lookup tables as a function of the operating point (α, β,M) and control
effector positions δ:

−CX = + CX1 (α,M) + CX2 (α, β,M) + CX3 (α, δls, δle,M) + CX4 (α, δrs, δre,M)

+ CX5 (α, β, δlfi) + CX6 (α, β, δrfi) + CX7 (α, β, δlfi, δlfo,M) + CX8 (α, β, δrfi, δrfo,M)

+ CX9 (α, δlfo, δla) + CX10 (α, δrfo, δra) + CX11 (α, δla, δle) + CX12 (α, δra, δre)

+ CX13 (α, δrs, δls, δpf,M) + CX14 (α, β, δla) + CX15 (α, β, δra) + CX16 (α, β, δls)

+ CX17 (α, β, δrs)

(3.7)

CY = + CY1 (α,M) + CY2 (α, β,M) + CY3 (α, δls, δle,M)− CY4 (α, δrs, δre,M)

− CY5 (α, β, δlfi) + CY6 (α, β, δrfi)− CY7 (α, β, δlfi, δlfo,M) + CY8 (α, β, δrfi, δrfo,M)

+ CY9 (α, δlfo, δla)− CY10 (α, δrfo, δra) + CY11 (α, δla, δle)− CY12 (α, δra, δre)

+ CY13 (α, δrs, δls, δpf,M) + CY14 (α, β, δla)− CY15 (α, β, δra) + CY16 (α, β, δls)

− CY17 (α, β, δrs)

(3.8)
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−CZ = + CZ1 (α,M) + CZ2 (α, β,M) + CZ3 (α, δls, δle,M) + CZ4 (α, δrs, δre,M)

+ CZ5 (α, β, δlfi) + CZ6 (α, β, δrfi) + CZ7 (α, β, δlfi, δlfo,M) + CZ8 (α, β, δrfi, δrfo,M)

+ CZ9 (α, δlfo, δla) + CZ10 (α, δrfo, δra) + CZ11 (α, δla, δle) + CZ12 (α, δra, δre)

+ CZ13 (α, δrs, δls, δpf,M) + CZ14 (α, β, δla) + CZ15 (α, β, δra) + CZ16 (α, β, δls)

+ CZ17 (α, β, δrs) +
qc̄

2V
CZ18 (α,M)

(3.9)

The aerodynamic moments in body frame τ = [L M N ]T are obtained from the dimen-
sionless moment coefficients, which are normalized as follows:

Cl =
L

1
2ρV

2Sb
; Cm =

M
1
2ρV

2Sc
; Cn =

N
1
2ρV

2Sb
(3.10)

where b is the wing span in ft and c the mean aerodynamic chord (MAC) in ft. These
dimensionless coefficients are computed as a summation of nonlinear terms stored in
lookup tables as a function of the operating point (α, β,M) and actuator deflections δ:

Cl = + Cl1 (α,M) + Cl2 (α, β,M) + Cl3 (α, δls, δle,M)− Cl4 (α, δrs, δre,M)

− Cl5 (α, β, δlfi) + Cl6 (α, β, δrfi)− Cl7 (α, β, δlfi, δlfo,M) + Cl8 (α, β, δrfi, δrfo,M)

+ Cl9 (α, δlfo, δla)− Cl10 (α, δrfo, δra) + Cl11 (α, δla, δle)− Cl12 (α, δra, δre)

+ Cl13 (α, δrs, δls, δpf,M) + Cl14 (α, β, δla)− Cl15 (α, β, δra) + Cl16 (α, β, δls)

− Cl17 (α, β, δrs) +
pb

2V
Cl18 (α,M) +

rb

2V
Cl19 (α,M)

(3.11)

Cm = + Cm1 (α,M) + Cm2 (α, β,M) + Cm3 (α, δls, δle,M) + Cm4 (α, δrs, δre,M)

+ Cm5 (α, β, δlfi) + Cm6 (α, β, δrfi) + Cm7 (α, β, δlfi, δlfo,M) + Cm8 (α, β, δrfi, δrfo,M)

+ Cm9 (α, δlfo, δla) + Cm10 (α, δrfo, δra) + Cm11 (α, δla, δle) + Cm12 (α, δra, δre)

+ Cm13 (α, δrs, δls, δpf,M) + Cm14 (α, β, δla) + Cm15 (α, β, δra) + Cm16 (α, β, δls)

+ Cm17 (α, β, δrs) +
qc̄

2V
Cm18 (α,M)

(3.12)

Cn = + Cn1 (α,M) + Cn2 (α, β,M) + Cn3 (α, δls, δle,M)− Cn4 (α, δrs, δre,M)

− Cn5 (α, β, δlfi) + Cn6 (α, β, δrfi)− Cn7 (α, β, δlfi, δlfo,M) + Cn8 (α, β, δrfi, δrfo,M)

+ Cn9 (α, δlfo, δla)− Cn10 (α, δrfo, δra) + Cn11 (α, δla, δle)− Cn12 (α, δra, δre)

+ Cn13 (α, δrs, δls, δpf,M) + Cn14 (α, β, δla)− Cn15 (α, β, δra) + Cn16 (α, β, δls)

− Cn17 (α, β, δrs) +
pb

2V
Cn18 (α,M) +

rb

2V
Cn19 (α,M)

(3.13)
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A classification of the different aerodynamic terms, their dependencies and physical inter-
pretations are listed in Table 3.2. Detailed information about the model including trim
maps is provided in (Niestroy et al., 2017).

Table 3.2: ICE aerodynamic model terms and their physical interpretation.

Coefficient Dependencies Physical interpretation

Cia
Ci1 (α,M)

Aerodynamic contribution of airframe.
Ci2 (α, β,M)

Ciδj

Ci5 (α, β, δlfi)
Isolated contributions of inboard LEFs.

Ci6 (α, β, δrfi)

Ci14 (α, β, δla)
Isolated contributions of AMTs.

Ci15 (α, β, δra)

Ci16 (α, β, δls)
Isolated contributions of SSDs.

Ci17 (α, β, δrs)

Ciδj ,δk

Ci3 (α, δls, δle,M) Contribution of elevons, influenced by
SSDs.Ci4 (α, δrs, δre,M)

Ci7 (α, β, δlfi, δlfo,M) Contribution of outboard LEFs,
influenced by inboard LEFs.Ci8 (α, β, δrfi, δrfo,M)

Ci13 (α, δrs, δls, δpf,M) Contribution of PF, influenced by SSDs.

Ci9 (α, δlfo, δla) Interaction effects between all-moving
wingtips and outboard trailing-edge flaps.Ci10 (α, δrfo, δra)

Ci11 (α, δla, δle) Interaction effects between all-moving
wingtips and elevons.Ci12 (α, δra, δre)

Ciωj

pb
2V Ci18 (α,M)

Unsteady effects of the airframe.qc̄
2V Ci19 (α,M)
rb
2V Ci20 (α,M)

3.5 Controllability and Stability Analysis

Prior to the design of a flight control system, the controllability, inherent stability and
dynamic modes of the ICE aircraft were studied for a representative set of trimmed
flight conditions within its flight envelope. Besides general controllability and stability
characteristics, it was also of interest to extract information about the dependency of
the aircraft controllability on the use of multi-axis thrust vectoring, and therefore the
controllability analysis was performed both with and without MTV. Of particular interest
were low speed and high AoA conditions in the range of Mach 0.3 - 0.5, since nonlinearities
and cross-axis control effector interactions become particularly significant in this region
of the flight envelope. Additionally, it was important to study stability and controllability
in both subsonic and supersonic regions, and with different mass configurations.
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Figure 3.7: Flight envelope of the ICE aircraft and trim points used for the controllability
and stability analysis. The flight envelope was taken from (Niestroy et al., 2017).

3.5.1 Trim Conditions

In order to address all the aforementioned aspects of the aircraft dynamic characteristics,
the ICE model was trimmed and linearized around a representative set of operational
points for different altitudes, Mach numbers, mass configurations, and with/without using
MTV. Trimming was performed by minimizing the square of control surface deflections
at zero state derivatives with the active set algorithm with tolerances of 10−4. Model
linearization at the trim points was performed with the Matlab built-in function linmod.

The altitudes and speeds of the trim operating points were chosen across a representative
region of the flight envelope, as shown in Figure 3.7 and listed in Table 3.3. The system
was trimmed and linearized at every operating point for three different mass configurations
taken from (Niestroy et al., 2017), see Tables 3.4-3.6. The sets of active control effectors
used for the trim modes with and without MTV are listed in Table 3.7. Note that for
the no-MTV mode the two thrust vectoring inputs were replaced by the pitch flap. As
specified in (Niestroy et al., 2017), the aerodynamic center (AC) was placed at ∼ 40%c̄ for
subsonic flight and shifted backwards to∼ 50%c̄ for supersonic regimes. The combinations
of 9 operating points, 3 mass configurations and 2 trim modes (with and without MTV)
resulted in a representative set of 46 trim points (trimming was not achievable for 8 of
the 54 flight conditions).

3.5.2 System Linearization

The system was linearized around the 46 trim points, resulting in a state-space represen-
tation of the aircraft equations of motion in the form:

ẋ = Ax + Cδ

y = Cx +Dδ
(3.14)

with x ∈ R12 the state vector, y ∈ R25 the output vector and δ ∈ R13 the input vector.
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Table 3.3: Trim altitudes and airspeeds.

Altitude Trim airspeed

10000 ft
V = 430 ft/sec V = 862 ft/sec V = 970 ft/sec

M = 0.40 M = 0.80 M = 0.90

20000 ft
V = 415 ft/sec V = 880 ft/sec V = 1350 ft/sec

M = 0.40 M = 0.85 M = 1.30

30000 ft
V = 400 ft/sec V = 895 ft/sec V = 1500 ft/sec

M = 0.40 M = 0.90 M = 1.50

Table 3.4: Nominal mass configuration at
50% internal fuel.

Weight and CG Inertias [slug-ft2]

W 32750 lb Ixx 35479

xcg 38.84% c̄ Iyy 78451

ycg 0 Izz 110627

zcg 88.97 ft Ixz -525

Table 3.5: Lightweight mass configuration.

Weight and CG Inertias [slug-ft2]

W 25989 lb Ixx 35479

xcg 40% c̄ Iyy 67500

ycg 0 Izz 83800

zcg 88.97 ft Ixz -250

Table 3.6: Heavyweight mass configuration.

Weight and CG Inertias [slug-ft2]

W 37084 lbf Ixx 42576

xcg 36% c̄ Iyy 81903

ycg 0 Izz 118379

zcg 88.97 ft Ixz -525

Table 3.7: Sets of active control effectors for the trim modes with and without MTV.

Trim mode Set of active effectors

MTV δT δlamt δlele δramt δrele δptv δytv

No MTV δT δlamt δlele δpf δramt δrele

The state and output vectors contain:

x = [xe ye ze ub vb wb ϕ θ ψ p q r ] (3.15)

y = [xe ye ze ub vb wb Ax Ay Az ϕ θ ψ p q r ṗ q̇ ṙ ue ve we M α β ] (3.16)

An example linearization of the system at 20000 ft, M = 0.85 with nominal mass config-
uration and MTV is given in Eq. (3.17). A linearization about the same operating point
but without MTV is given in Eq. (3.18). These representations of the model have been
simplified to improve readability by removing xe, ye, ze, ϕ, θ and ψ from the state vector.
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
u̇b
v̇b
ẇb
ṗ
q̇
ṙ

 =


−0.008 −0.003 0.06 0 −31 0 0 −42 0

0 −0.01 −0.002 31 0.01 0 42 0 −878
−0.03 0.01 −1.0 0.32 −1.5 0 0 866 0

0 −0.01 0.004 0 0 0 −1.5 0 0.11
0 0 −0.01 0 0 0 0 −0.98 0
0 −0.002 0 0 0 0 −0.06 0 −0.02




ub
vb
wb
p
q
r



+


−0.01 −0.01 −0.04 0.02 −0.25 0.01 −0.01 −0.01 −0.04 0.01 −0.25 0 0
0.03 0.01 0.01 0.02 0.11 0 −0.03 −0.01 −0.01 −0.01 −0.11 0 0.07

0 0.02 −0.83 −1.7 0.73 −0.65 0 0.02 −0.83 −1.7 0.81 0.07 0
0 −0.004 0.24 0.30 −0.15 0 0 0.004 −0.24 −0.30 0.16 0 0

−0.004 0 0.10 −0.24 0.03 0.08 −0.004 0 −0.10 −0.24 0.04 −0.01 0
0 −0.001 −0.006 0.005 −0.03 0 0 0.001 0.006 −0.005 0.03 0 −0.01





δlfi
δlfo
δla
δle
δls
δpf

δrfi
δrfo
δra
δre
δrs
δptv

δytv


(3.17)


u̇b
v̇b
ẇb
ṗ
q̇
ṙ

 =


−0.009 −0.003 0.06 0 −31 0 0 −42 0

0 −0.01 −0.003 31 0.013 0 42 0 −878
−0.03 0.01 −1.0 0.28 −1.5 0 0 866 0

0 −0.01 0.003 0 0 0 −1.5 0 0.111
0 0 −0.01 0 0 0 0 −0.98 0
0 −0.002 0 0 0 0 −0.06 0 −0.02




ub
vb
wb
p
q
r



+


−0.01 −0.02 −0.04 0.03 −0.25 −0.08 −0.01 −0.02 −0.04 0.01 −0.25
0.03 0.03 0.009 0.02 0.11 0 −0.03 −0.03 −0.01 −0.01 −0.11

0 0.05 −0.84 −1.7 0.67 −0.65 0 0.05 −0.83 −1.7 0.83
0 −0.009 0.24 0.30 −0.10 0 0 0.008 −0.24 −0.31 0.16

−0.004 −0.001 −0.10 −0.23 0.02 −0.08 −0.004 0 −0.10 −0.24 0.04
0 −0.003 −0.005 0.006 −0.03 0 0 0.003 0.006 −0.005 0.03





δlfi
δlfo
δla
δle
δls
δpf

δrfi
δrfo
δra
δre
δrs


(3.18)

3.5.3 Dynamics and Stability Analysis

The eigenvalues of the 49 linearized systems were extracted in order to find unstable
eigenmodes in the open-loop aircraft dynamics. At least one unstable eigenmode was
found for every condition, hence it was concluded that the ICE aircraft is inherently
unstable for all the considered flight conditions. This is an expected result for two reasons.
First, highly maneuverable aircraft are typically designed with inherent instablity in order
to maximize maneuverability when operated with stability augmentation systems (SAS) in
closed-loop. Second, the absence of a vertical stabilizer in tailless configurations generally
implies inherent lateral-directional instability. Although unstable eigenmodes were mostly
lateral-directional, also longitudinal unstable modes were found for some flight conditions.



3.5 Controllability and Stability Analysis 37

Real axis [rad/sec]

Im
a
g
in
a
ry

a
x
is

[r
a
d
/
se
c]

−4 −3 −2 −1 0 1 2 3

−4

−2

0

2

4

Figure 3.8: ICE eigenmodes on the imaginary plane for different Mach regimes at 20000 ft
and nominal mass configuration at 50% internal fuel.

Table 3.8: ICE eigenvalues for different Mach regimes at 20000 ft and nominal mass con-
figuration at 50% internal fuel.

State
Trim condition

M=0.40 M=0.85 M=1.3

ub −0.622 + 1.07i −1.23 + 3.58i 2.90

vb −0.622− 1.07i −1.23− 3.58i −2.96

wb 0.557 −1.904 −3.23 + 0.602i

φ −0.730 + 0.212i 1.62 −3.23− 0.602i

θ −0.730− 0.212i −1.30 1.36

ψ 0.090 −0.0009 0.061

p 0.001 + 0.060i −0.005 + 0.05i −0.116 + 0.030i

q 0.001− 0.060i −0.005− 0.05i −0.116− 0.030i

r 0.003 0.006 −0.002

The eigenmodes of the ICE aircraft dynamics for three different Mach regimes at 20000 ft
and nominal mass configuration at 50% internal fuel are given as examples in Figure 3.8
and Table 3.8. Note that directional eigenmodes are always unstable, and that at least
two damped oscillatory modes appear in all cases. Similar scenarios were found for the
rest of flight conditions.

3.5.4 Controllability Analysis

Prior to undertaking the design of adequate flight control systems, analyzing the con-
trollability of the system is essential. Controllability matrices of the linearized systems
around the 49 flight conditions considered in this analysis were constructed as

Co =
[
B AB A2B . . . An−1B

]
(3.19)
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For all the flight conditions under study, including the modes with and without MTV
usage, the controllability matrix Co was full rank. Therefore it was concluded that the
ICE aircraft with the considered control effectors suite is fully controllable for all the
flight conditions under study, hence an asymptotically stable flight control system exists
for this configuration.

3.6 State of the Art of Control Allocation with ICE

Given the large redundancy of the ICE effectors suite and its innovative configuration, the
ICE aircraft has been used in past research to implement and evaluate control allocation
systems. The first published control system design for the ICE aircraft was (Ngo et
al., 1996), which developed a dynamic inversion control system for subsonic flight with
neither LEFs nor SSDs. Ngo et al. (1996) used a control selector based on simple ganging
of the control effectors to reduce the number of degrees of freedom to three. The control
derivatives were updated from a database storing values for various trim flight conditions.

Buffington (1997) developed a control allocator that considered the full ICE actuator suite.
The CA problem was stated as a constrained parameter optimization problem with linear
control effectors, solved with sequential linear programming. A control command and
axis prioritization scheme was also implemented to maintain decoupled axis responses
for unachievable control commands. This is an advantage with respect to direction-
preserving command clipping strategies, which were found to exhibit unacceptable cross-
axis coupling. Simulations were run with a state-space model of the aircraft linearized
around a nominal trim point. Despite the use of a linear effector model, Buffington
(1997) stresses the relevance of the highly nonlinear and coupled actuators in the ICE
configuration, and suggests the development of nonlinear CA strategies as future work.

Buffington (1999) proposed a control allocation scheme with linear programming using
linear control effectors. One of the major improvements of this work with respect to pre-
vious implementations was the development of multi-branch control allocation, consisting
of two independent linear programs: the error minimization problem in Eq. (2.17) and
the control minimization problem in Eq. (2.18). In this scheme, the error minimization
problem is solved first. If the commands are attainable, then the best solution according
to secondary criteria is chosen by solving the control minimization problem. Buffington
(1999) reported problems encountered due to the linear effectors assumption, which did
not allow to account for nonlinearities, especially control effector interactions. Such prob-
lems were solved by limiting the deflections of the SSD, which underexploits the available
control power and the capabilities of the control suite.

The development of reconfigurable control allocation systems in (Davidson et al., 2001a)
and (Davidson et al., 2001b) utilized the RWPI method for the ICE model. In the former,
the algorithm was extended to account for actuator rate limits, leading to an extended
method referred to as frequency-apportioned control allocation. In the latter publication,
the limitations of assuming linear control effectiveness were reported. It was suggested
that, since the linearity assumption fails in the case of the ICE aircraft, future research
effort needs to focus on developing methods that include key control interaction effects and
can be solved in real time on flight control computers. For the first time, Davidson et al.
(2001b) proposed a cost function for the CA problem that included a term accounting for



3.6 State of the Art of Control Allocation with ICE 39

control effector interactions. However, no method for solving the nonlinear CA problem
in real time was proposed, and the simulations in the remainder of the work assumed
linear effector models with no interactions. Nevertheless, a very simple static allocation
case was solved for comparison between linear and nonlinear control effectiveness models
with a nonlinear constrained optimization routine. The results showed that including
control interaction effects results in a better tracking of the commanded moments. At
this point, the potential benefits of nonlinear control allocation were demonstrated for a
very simple case. Future work shall then focus on developing nonlinear CA methods that
can be implemented in real-time and safety-critical applications.

The most recently published works on control allocation for the ICE aircraft are (Shtessel
et al., 2002; Li, Qin, & Zheng, 2009), both implementing sliding mode control systems.
In both cases, control allocation is not a main focus and is addressed with linear control
effector models. In the former work, for example, the most coupled and nonlinear effectors
(the SSDs and LEFs) were removed from the model to overcome inaccuracies due to
control effector interactions.

As discussed earlier, the non negligible presence of strong nonlinearities and interactions
in the ICE control effectors has been a known issue since the first studies in control
allocation for the ICE aircraft were conducted. However, no suitable solution has been
proposed to date.
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Chapter 4

Incremental Nonlinear Control
Allocation

Most common techniques for nonlinear flight control, such as nonlinear dynamic inver-
sion (NDI) (Snell, Garrard, & Enns, 1990; Enns, Bugajski, Hendrick, & Stein, 1994),
operate by computing absolute actuator deflections at each time step. An alternative
approach, commonly named incremental nonlinear dynamic inversion (INDI) (Ostroff &
Bacon, 2002; Sieberling, Chu, & Mulder, 2010; Simpĺıcio, Pavel, van Kampen, & Chu,
2013; Smeur, Chu, & de Croon, 2016) reformulates the nonlinear control problem in incre-
mental form, and operates by computing increments in actuator deflections with respect
to the current actuator positions. This incremental control technique has been success-
fully implemented in aerospace applications (Ostroff & Bacon, 2002; Sieberling et al.,
2010; Simpĺıcio et al., 2013; Smeur et al., 2016).

This thesis presents an incremental nonlinear control allocation (INCA) approach that
operates under the incremental scheme typical of incremental flight control systems. The
INCA scheme relies upon angular acceleration feedback, actuator position feedback and
a Jacobian model of the control effectors. Besides providing a methodology to perform
nonlinear control allocation in real time, this scheme has other inherent benefits such
as reduction of aerodynamic model dependency, robustness against model mismatch and
mitigation of the negative effects of actuator dynamics. The method presented is based
on a generalization of the spline-based CA method proposed by Tol et al. (2014). The
generic INCA formulation based on the INDI control scheme provides insight into control-
related aspects such as real-time performance, robustness, model dependency and actuator
dynamics and saturation handling.

This chapter provides a general description of the INCA method. Section 4.1 derives the
incremental formulation of the nonlinear control problem, which is extended to the INCA
problem formulation in Section 4.2. Translation of actuator constraints and preferences
into incremental form is discussed in Section 4.3. In Section 4.4 a typical LCA solver
is reformulated in incremental form. Finally, robustness and mitigation of the negative
effects of actuator dynamics are discussed in Section 4.5.

41
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4.1 The Nonlinear Control Problem in Incremental Form

Consider the aircraft dynamics expressed in the general form

ẋ(t) = f(x) + g(x) τ (4.1)

where x ∈ Rn is the state vector and τ ∈ Rm the aerodynamic inputs to the equations of
motion. Control allocation in aerospace applications typically concerns attitude control,
with τ ∈ R3 being the aerodynamic moments in body frame. The aerodynamic moment
inputs can be separated into an exclusively state-dependent part and an input-dependent
part

τ = τ a + τ δ (4.2)

where τ a contains the aerodynamic moments generated by the airframe, and τ δ is the
control effector model, providing the control-induced moments produced by the actuators.
The control effector model can be generally expressed as the nonlinear mapping

τ δ = Φ(x, δ) (4.3)

Thus, the system dynamics can be rewritten as

ẋ = [f(x) + g(x) τ a] + g(x) Φ(x, δ) = F(x) + g(x) Φ(x, δ) (4.4)

where F(x) contains all the effects not produced by the control effectors.

When the control system works in a discrete-time scheme, the dynamic equations of
the system can be locally linearized at every time step around the current state x0 and
actuator positions δ0 as a first-order Taylor expansion:

ẋ ≈ ẋ0+
∂

∂x
[F(x) + g(x) Φ(x, δ)]

∣∣∣∣δ=δ0
x=x0

(x− x0)+
∂

∂δ
[F(x) + g(x) Φ(x, δ)]

∣∣∣∣δ=δ0
x=x0

(δ − δ0)

(4.5)

The time scale separation principle states that, for systems where the derivatives of the
states have significantly faster dynamics than the states themselves, the term (x−x0) is
small enough to be neglected at high sampling rates. This principle commonly applies to
systems where δ can change significantly faster than x over a time step, which is the case
when the influence of δ on the derivatives of the states is significantly higher than the
influence of the states. This has been proven to be true for aerial vehicles such as aircraft
(Sieberling et al., 2010), helicopters (Simpĺıcio et al., 2013) and quadrotors (Smeur et al.,
2016) at common sampling frequencies of 100 Hz.

Applying the time scale separation principle and setting the virtual control input ν(x) =
ẋ, Eq. (4.5) can be simplified to

ν(x) = ẋ ≈ ẋ0 + g(x0)
∂Φ(x0, δ0)

∂δ
∆δ (4.6)

where g(x0) ∂Φ(x0, δ0) /∂δ is a control effectiveness Jacobian function that can be nonlin-
ear in δ and include interactions between input variables. In the three-moment problem,
the time derivative of the state vector ẋ0 corresponds to body angular accelerations.
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These can be obtained either by direct measurement or state estimation methods as will
be discussed later.

At this point the system dynamics can be linearized with an incremental nonlinear dy-
namic inversion loop by inverting the incremental dynamics in Eq. (4.6):

∆δc =

[
∂Φ(x0, δ0)

∂δ

]−1

g(x)−1 [ν(x)− ẋ0] (4.7)

This incremental control law provides increments of the actuator positions with respect
to the current position vector δ0, such that the absolute actuator position command is
computed as

δc = δ0 + ∆δc (4.8)

This control law linearizes the response between the virtual control input ν(x) and x.
Moreover, model dependency is significantly reduced with respect to typical NDI control
laws, since the incremental control law is independent of the aerodynamic terms in τ a.
This reduction in model dependency is due to the acceleration feedback, which provides
an estimate of the forces and moments acting on the system at a given time step.

In over-actuated systems the Jacobian ∂Φ(x, δ) /∂δ is a non-square m×p matrix, and
therefore it cannot be inverted to implement the incremental control law in Eq. (4.7).
However, a control allocation scheme can be implemented by reformulating the control
allocation problem in incremental form with Eq. (4.6).

4.2 The Control Allocation Problem in Incremental Form

Note that Eq. (4.6) establishes an affine relationship between the virtual control input
ν(x) and increments in actuator positions ∆δ. The nonlinearities and interactions of
the control effectors are captured by the Jacobian matrix ∂Φ(x0, δ0) /∂δ, which can be
updated for the current state and actuator positions at every time step. To simplify
notation, let the Jacobian matrix of Φ(x, δ) with respect to δ be denoted as

∇δΦ(x, δ) =
∂Φ(x, δ)

∂δ
(4.9)

and define the pseudo-control input dc ∈ Rn

dc = g(x)−1 [ν(x)− ẋ0] (4.10)

The INCA problem is formulated as: given the current state x0, the current control
effector positions δ0, acceleration measurements ẋ0 and a pseudo-control input command
dc = g(x)−1 [ν(x)− ẋ0], determine an increment in the control input vector ∆δ such that

∇δΦ(x0, δ0) ∆δ = dc

subject to ∆δ ≤∆δ ≤∆δ
(4.11)

where ∆δ and ∆δ are the most restrictive upper and lower bounds of the local position
and rate constraints of the actuators, translated into local incremental constraints. Note
that the INCA control allocator provides required increments of the actuator positions,
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Figure 4.1: Incremental nonlinear control allocation scheme for over-actuated systems.

which must be added to the current actuator positions to obtain the absolute actuator
position command. The top-level INCA-based control scheme is depicted in Figure 4.1.

The main advantage of INCA is that the incremental problem formulated in Eq. (4.11)
is linear in the increments of actuator positions, and therefore can be solved with simple
and efficient linear methods, such as RWPI or QP. The fact that only local increments ∆δ
are determined at each time step implies that the Jacobian ∇δΦ(x, δ), which captures
nonlinearities and control effector interactions, can be updated for the new state and actu-
ator positions at every time step while the actuators are dynamically driven towards their
optimal positions. Thus, the direction of the increments of the control vector may change
at every time step, in contrast to conventional LCA methods, which compute absolute
positions at each time step. Additionally, actual actuator positions δ0 are fed back into
the system, and therefore the allocation is always performed based on actual actuator
position measurements, which mitigates the negative impact of actuator dynamics. In
contrast, most conventional CA methods assume δc = δ0, resulting in coupling effects
between control allocators and actuator dynamics (Oppenheimer & Doman, 2004).

Note that an incremental formulation of the control allocation problem was derived for
the particular case of multivariate spline-based control systems in (Tol et al., 2014). In
this thesis, the method is generalized to incremental flight control systems based on any
kind of on-board aerodynamic model with angular acceleration feedback, and focuses on
controller-related aspects such as real-time performance, robustness, model dependency
and actuator dynamics and saturation handling.

4.3 Incremental Actuator Constraints and Preferences

The incremental formulation of the control allocation problem requires the absolute posi-
tion and rate constraints of the actuators to be translated into equivalent local constraints
in incremental form. Under a discrete-time scheme, rate limits are directly mapped into
position limits over a time step ∆t as

∆δrmax = δ̇max∆t

∆δrmin = −δ̇max∆t
(4.12)

Similarly, absolute position limits can be translated into local constraints imposed over a
time step as

∆δpmax = δmax − δ0

∆δpmin = δmin − δ0
(4.13)
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The local upper and lower bounds of the actuator position increments at a given time
step are the most restrictive of the local rate and position limits:

∆δ = min
(
δ̇max∆ts, δmax − δ0

)

∆δ = max
(
−δ̇max∆ts, δmin − δ0

) (4.14)

Similarly, a reformulation of the preference vector used in typical CA algorithms is re-
quired when operating in incremental form. Note that in the INCA problem the preference
vector refers to a preferred actuator position increment ∆δp. If the preferred increment
is set to ∆δp = 0, the actuators are forced to remain at a constant, possibly nonzero po-
sition whenever it is possible. It has been observed that this can lead to complementary
actuators (those producing moments of equal magnitude but opposite sign) diverging to
asymmetric nonzero deflections while still producing a resultant moment of zero. To avoid
this situation and minimize the control effort, the control effectors must be driven to their
preferred positions whenever it is possible. Thus, the preferred position increment at each
time step must correspond to the increment that brings the actuators closest to their pre-
ferred absolute positions δp. This is achieved by calculating the incremental preference
vector ∆δp at each time step as

∆δp = min
(
|δp − δ0| ,

∣∣∆δ
∣∣ , |∆δ|

)
· sign (δp − δ0) (4.15)

4.4 Solving INCA with Conventional LCA Methods

As previously mentioned, one of the most relevant advantages of INCA is that it allows
to solve the nonlinear control allocation problem with simple and efficient linear control
allocation methods. With the purpose of demonstrating how typical linear CA methods
can be adapted to the INCA scheme, a typical RWPI solver is reformulated in incremental
form in this section. Note that this is exposed as an illustrative example, and the same
principles apply to solve the INCA problem with other linear CA methods.

To solve the INCA problem with the RWPI method, an explicit solution to the incre-
mental problem in Eq. (4.11) can be found by first solving analytically the unconstrained
problem. This problem consists on finding an incremental control vector ∆δ that satisfies
the control demand ∇δΦ(x0, δ0) ∆δ = dc, while minimizing a quadratic cost function
that penalizes displacement from a preferred increment ∆δp.

The minimization problem is formulated using an `2-norm cost function as: given an
operating point x0, the current control effector positions δ0, acceleration measurements
ẋ0 and a pseudo-control input command dc = g(x)−1 [ν(x)− ẋ0], determine an increment
in the control input vector ∆δ such that

min
∆δ

J =
1

2
(∆δ −∆δp)

T Wδ (∆δ −∆δp)

subject to ∇δΦ(x0, δ0) ∆δ = dc

(4.16)

To analytically derive a solution to the unconstrained problem, consider the Hamiltonian

H(∆δ,λ) =
1

2
(∆δ −∆δp)

T Wδ (∆δ −∆δp) + λ (∇δΦ(x0, δ0) ∆δ − dc) (4.17)
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H(∆δ,λ) =
1

2

(
∆δTWδ∆δ −∆δTpWδ∆δ −∆δTWδ∆δp + ∆δTpWδ∆δp

)

+ λ (∇δΦ(x0, δ0) ∆δ − dc) (4.18)

where λ ∈ Rp is a Lagrange multiplier. Then, minimize H(∆δ,λ) by solving

∂H
∂∆δ

= 0;
∂H
∂λ

= 0 (4.19)

Operating the partial derivatives and solving for ∆δ (Lewis & Syrmos, 1995), the biased
weighted pseudo-inverse solution is found:

∆δ = ∆δp +∇δΦ(x0, δ0)] (dc −∇δΦ(x0, δ0) ∆δp) (4.20)

with

∇δΦ(x0, δ0)] = W−1
δ ∇δΦ(x0, δ0)T

(
∇δΦ(x0, δ0)W−1

δ ∇δΦ(x0, δ0)T
)−1

(4.21)

the generalized weighted pseudo-inverse of ∇δΦ(x0, δ0).

Note that the weighted pseudo-inverse solution in Eq. (4.25) does not consider local
position and rate constraints, and hence requires further processing. At this point, a
feasible solution to the constrained problem can be found with the RWPI method. First,
the weighted pseudo-inverse solution is computed with Eq. (4.25). If the found ∆δ is
within the local incremental limits, the solution is kept. Otherwise, if one or more control
effectors violate the incremental limits, the next steps are followed. First, the columns
in ∇δΦ(x0, δ0) corresponding to the actuators that violate the limits are zeroed, forming
an auxiliary matrix ∇δΦ(x0, δ0)sat. Second, the saturated1 values of the effectors that
violate local constraints are placed in the preference vector ∆δp, forming an auxiliary
preference vector ∆δp,sat. Then, the redistributed weighted pseudo-inverse solution to
the auxiliary problem is computed again with ∇δΦ(x0, δ0)sat and ∆δp,sat as follows:

∆δ = ∆δp,sat +∇δΦ(x0, δ0)]sat (dc −∇δΦ(x0, δ0) ∆δp,sat) (4.22)

Note that two different Jacobian matrices are used in Eq. (4.22): the auxiliary Jacobian
matrix to compute the weighted pseudo-inverse ∇δΦ(x0, δ0)]sat, and the original Jacobian
matrix for the auxiliary preference vector contribution ∇δΦ(x0, δ0) ∆δp,sat. This process
is repeated until all effectors are saturated or a solution within the incremental limits is
found. The incremental RWPI algorithm is given in pseudocode in Algorithm 1.

This incremental reformulation of the RWPI method shows how typical and relatively
simple CA solvers can be used to perform nonlinear control allocation under the INCA
scheme. The same principles used here can be applied to reformulate other linear solvers
in incremental form such as the active set algorithm-based QP, as will be shown later in
this thesis.

1In the INCA scheme, the term saturation refers to overcoming the maximum local increments over
the current time step, which does not necessarily imply reaching absolute position limits.
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Algorithm 1 Redistributed weighted pseudo-inverse in incremental form.

Given a pseudo-control input command dc ∈ Rm, an operating point x0 ∈ Rn,
the current control effector positions δ0 ∈ Rp and a control effectiveness Jacobian
Φ(x, δ) ∈ Rm×p:

1: Compute the local incremental constraints

∆δ ← min
(
δ̇max∆ts, δmax − δ0

)

∆δ ← max
(
−δ̇max∆ts, δmin − δ0

) (4.23)

2: Translate the absolute preference vector into incremental form

∆δp ← min
(
|δp − δ0| ,

∣∣∆δ
∣∣ , |∆δ|

)
· sign (δp − δ0) (4.24)

3: Compute the optimal solution to the unconstrained problem

∆δ ← ∆δp +∇δΦ(x0, δ0)] (dc −∇δΦ(x0, δ0) ∆δp) (4.25)

with

∇δΦ(x0, δ0)] = W−1
δ ∇δΦ(x0, δ0)T

(
∇δΦ(x0, δ0)W−1

δ ∇δΦ(x0, δ0)T
)−1

(4.26)

4: if
(
ANY ∆δ > ∆δ

)
OR (ANY ∆δ < ∆δ) then

5: nsat ← Number of saturated actuators
6: while

((
ANY ∆δ > ∆δ

)
OR (ANY ∆δ < ∆δ)

)
AND (nsat < p) do

7: ∇δΦ(x0, δ0)sat ← ∇δΦ(x0, δ0) with zeroed columns for saturated actuators.
8: ∆δp,sat ← ∆δ with saturated increments for saturated actuators.

9: ∆δ ← ∆δp,sat +∇δΦ(x0, δ0)]sat (dc −∇δΦ(x0, δ0) ∆δp,sat)
10: nsat ← Number of saturated actuators
11: end while
12: end if

4.5 Robustness and Implementation Particularities

Two important advantages of INCA are its robustness against aerodynamic model mis-
match and its ability to deal with actuator dynamics in real time. These features are
provided by two feedback loops present in the INCA control scheme: an acceleration
feedback loop and an actuator position feedback loop.

Unlike typical NDI-based flight control systems, the INCA control law in Eq. (4.6) de-
pends only on the control effectiveness Jacobian of the system, and is independent from
the state-dependent part of the system dynamics F(x) = f(x) + g(x) τ a. This fact alone
improves robustness against aerodynamic model mismatch with respect to conventional
control systems. Note, however, that the incremental linearization law in Eq. (4.10) de-
pends on a Jacobian model of the control effectiveness function with respect to δ, and
thus one may be concerned about the sensitivity of the INCA performance to Jacobian
model mismatch. As will be shown in the next chapter, in aircraft attitude control the
acceleration feedback ẋ0 corresponds to the angular acceleration ω̇0, the virtual control
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input ν(x) to an angular acceleration command ω̇c and g(x)−1 to the matrix of inertia of
the aircraft J . Consequently, the pseudo-control input dc is equivalent to a commanded
increment in control-induced moments ∆τ c = J [ω̇c − ω̇0]. The pseudo-control command
can be rewritten as

∆τ c = Jω̇c − Jω̇0 = τ c − τ 0 (4.27)

where the angular acceleration command ω̇c is provided by an outer control loop and the
current angular accelerations ω̇0 are provided by a feedback loop through state estimation
or angular acceleration measurement. This acceleration feedback provides real-time in-
formation about the actual moments acting upon the system at each time step, providing
added robustness against Jacobian model mismatch. A sensitivity analysis that will be
discussed later in this thesis revealed that a rough estimation of the sign and magnitude
of the Jacobian terms suffices to obtain satisfactory performance, and that large errors in
the model can be handled by the robustness of the acceleration feedback loop.

Another point to address is whether an accurate measurement/estimate of the angular
accelerations can be obtained in real time with acceptable sampling rates and delays.
Incremental control with acceleration feedback has been satisfactorily implemented in
previous research, see (Bacon & Ostroff, 2000; Sieberling et al., 2010; Simpĺıcio et al.,
2013; Smeur et al., 2016). Smeur et al. (2016) implemented an INDI control system based
on angular accelerometers for a quadrotor with fast dynamics, showing high performance,
disturbance rejection and adaptiveness properties through flight testing. Implementation
issues regarding delays occurring when deriving angular accelerations from angular rate
measurements were successfully addressed. The most relevant point of this work for
the questions hereby regarded is the demonstration of the feasibility of implementing
incremental flight control systems relying on angular acceleration feedback. This has
been also proven in further not yet published work at Delft University of Technology.

The second advantage of INCA discussed here is the minimization of negative effects
of control effector dynamics on the control allocation performance. Most conventional
control allocation methods (except for the explicitly dynamic control allocation methods
discussed in Section 2.4) operate in open loop with regard to actuator positions, i.e. posi-
tion commands δc are sent to the actuators assuming δ0 = δc. Under the INCA scheme,
however, only increments with respect to the current actuator positions are computed at
each time step, and therefore every incremental command is computed over the actual ac-
tuator positions, regardless of previous commands. This actuator position feedback loop
eliminates the inaccuracies implied by the assumption δ0 = δc. Thus, the actuators are
dynamically driven towards the desired positions through small increments using updated
information about their control effectiveness and actual positions at every time step. In
practical implementation, the actuator position feedback may be achieved either through
a companion model of the actuator dynamics or through measurements from actuator
position sensors, which are relatively simple to obtain.



Chapter 5

Flight Control System Design

In order to test the INCA concept and assess its performance with respect to conventional
LCA methods, an LCA-based and an INCA-based flight control systems were designed
for the ICE aircraft. INCA and LCA were implemented with the RWPI and the active
set-based QP control allocation solvers in order to extract performance metrics with
different typical CA methods. The control allocation systems were applied to angular
body rate control, the innermost loop of the FCS. The body rate loop was augmented
with a pseudo-control hedging loop as a partial flight envelope protection and anti-windup
system. Different kinds of outer loops were implemented, ranging from manual input loops
to flight path guidance modes.

This chapter presents and discusses the design of both the LCA-based and the INCA-
based flight control systems. The design of the innermost control loops where LCA
and INCA are implemented for body rate control is discussed in Sections 5.1 and 5.2
respectively. These sections also include descriptions of the on-board models used for each
type of controller and their derivation. The implementation of pseudo-control hedging as
a method to handle actuator saturation is discussed in Section 5.4. Finally, Section 5.5
presents the design of the different outer loops implemented to complete the flight control
system.

5.1 LCA-Based Flight Control System Design

The conventional LCA-based flight control system designed for the ICE aircraft is based
on aerodynamic model inversion and includes a linear control effector model. This section
discusses the identification of the linear control effector model, its adaptation to mitigate
issues regarding nonlinearities of the ICE aerodynamics and the design of the LCA-based
angular rate control law.

49
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Figure 5.1: Examples of control derivatives scheduled for α and β.

5.1.1 Linear Control Effectors Model

As discussed in previous chapters, LCA methods require an on-board aerodynamic model
in which the control-induced moments are affine in the actuator positions δ. Note, however
that the aerodynamic terms and control derivatives can remain nonlinear functions of α,
β and M . A linear control effector model was derived by using linear regressors to identify
aerodynamic coefficients and control derivatives as functions of α, β and M at the data
points available in the ICE aerodynamic database. In order to decouple the inputs, the
interaction effects between control effectors were eliminated from the original database.
The obtained coefficients and derivatives were stored in lookup tables. The structure of
the affine aerodynamic model is

Cl = Cla(α, β,M) +
13∑

i=1

∆Cl,δi(α, β,M) δi

Cm = Cma(α, β,M) +

13∑

i=1

∆Cm,δi(α, β,M) δi

Cn = Cna(α, β,M) +
13∑

i=1

∆Cn,δi(α, β,M) δi

(5.1)

with ∆Cj,δi the control derivative of j = {l,m, n} with respect to δi, and

Cla(α, β,M) = Cl,α(α,M) + Cl,β(α, β,M) +
pb

2V
Cl,p(α,M) +

rb

2V
Cl,r(α,M)

Cma(α, β,M) = Cm,α(α,M) + Cm,β(α, β,M) +
qc̄

2V
Cm,q(α,M)

Cna(α, β,M) = Cn,α(α,M) + Cn,β(α, β,M) +
pb

2V
Cn,p(α,M) +

rb

2V
Cn,r(α,M)

(5.2)

the dimensionless nonlinear moments generated by the airframe. Examples of identified
control derivatives scheduled for α and β are shown in Figure 5.1.
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Figure 5.2: Linear control effectors model compared to original aerodynamic data.

As discussed earlier, the assumption of linearity in control-induced moments is accurate
enough in some cases (see the pitching moment characteristic of the pitch flap in Figure
5.2a), but in other cases it fails to capture important effects. The parabolic yawing
moment curve of the right elevon shown in Figure 5.2b is an example of the impossibility
of linear models to capture parabolic yawing moment curves of horizontal control surfaces.
Other examples of bad fitting are the rolling moment curve of the outboard LEF in Figure
5.2c and the pitching moment curve of the right SSD in Figure 5.2d. It can be observed
that, due to these inaccuracies, the moments predicted by the linear model can have
opposite sign than the actually produced moments, which can lead to instability of the
closed-loop system. In order to achieve a stable LCA-based controller, the affine model
requires certain adaptations, which will be discussed later in this section.

The nonlinear MTV model in Eq. (3.5) also requires linearization to be used in LCA. The
pitching moment from the MTV can be derived from the first-order Taylor expansion of
the pitching moment term τ yT around δptv

τ yT = −Tdn sin(δptv) ≈ τ yT

∣∣∣∣
δptv=0

+
∂ (τ yT)

∂δptv

∣∣∣∣
δptv=0

δptv = −Tdn cos(δptv)

∣∣∣∣
δptv=0

δptv (5.3)

which yields the linear approximation

τ yT ≈ −Tdnδptv (5.4)
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Similarly, using the first-order Taylor expansion of the yawing moment term τ zT

τ zT = −Tdn cos(δptv) tan(δytv) ≈ τ zT
∣∣∣∣δptv = 0
δytv = 0

+
∂ (τ zT)

∂δptv

∣∣∣∣δptv = 0
δytv = 0

δptv +
∂ (τ zT)

∂δytv

∣∣∣∣δptv = 0
δytv = 0

δytv

= Tdn sin(δptv) tan(δytv)

∣∣∣∣δptv = 0
δytv = 0

δptv −
Tdn cos(δptv)

cos2(δytv)

∣∣∣∣δptv = 0
δytv = 0

δytv

(5.5)

the next affine aproximation is found:

τ zT ≈ −Tdnδytv (5.6)

Thus, an affine approximation of the MTV control moments is given by

τT = −Tdn




0
δptv

δytv


 (5.7)

The MTV vector is subject to a circular constraint imposed over the `2 norm of the vector
δtv = (δptv, δytv). When the MTV vector violates the circular constraint, it is re-scaled
into the boundary of the feasible subspace by keeping the original direction of δtv (see
Figure 5.3):

δ′tv =
δtvmax

||δtv||
δtv (5.8)

Wrapping up the control derivative terms into a control effectiveness matrix B(x), the
aerodynamic moments can be expressed in input-affine form as

τ = τ a + τe =
1

2
ρV 2S





bCla(x)
c̄Cma(x)
bCna(x)


+B(x) δ


 (5.9)

5.1.2 Angular Rate Control Loop

The innermost control loop controls the body angular rates ω = [p q r] through com-
manded moments τ c. Consider the aircraft rotational dynamic equations

ω̇ = J−1 (τ − ω×Jω) = J−1τ e + J−1 (τ a − ω×Iω) (5.10)

The aerodynamic moments produced by the airframe include the contributions from the
trim positions of the actuators:

τ a =
1

2
ρV 2S





bCla(x)
c̄Cma(x)
bCna(x)


+B(x) δtrim


 (5.11)

Setting the angular acceleration as a virtual control input νω(x) = ω̇ and solving Eq.
(5.10) for the required moments τ c = τ e leads to the model-based inversion control law

τ c = Iνω(x)− 1

2
ρV 2S





bCla(x)
c̄Cma(x)
bCna(x)


+B(x) δtrim


+ ω×Iω (5.12)
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which linearizes the system between the virtual control input νω(x) and ω. The required
moments τ c are distributed over δ by a linear control allocator. The linearized system can
now be controlled through the virtual control input νω(x) such that the output follows a
reference command ωc, by using an outer state-feedback linear control law

νω(x) = KωP (ω − ωc) + KωI

∫
(ω − ωc) dt+KωD (ω̇ − ω̇c) (5.13)

5.1.3 Adaptation of the Linear Model

As previously shown, the identified affine model fails to capture nonlinear moments, which
is particularly critical for parabolic and non-monotonic moment curves (e.g. those shown
in Figures 5.2b-5.2d). Since such errors can cause instability of the closed loop, the linear
model needs to be adapted to ensure minimally acceptable performance.

The AMT, inboard LEF and SSD are restricted to deflect in one direction only. Thus,
their yawing moment curves are half-parabolas, which can be approximated with a linear
model accepting a reasonable mismatch, which can be absorbed by the robustness of
the controller. The elevons and outboard LEF, however, can deflect in two directions,
thus having parabolic yawing moment curves. Since these actuators are not primary
sources of directional control power, their yawing moment derivatives were set to zero in
the control effectiveness matrix. As a consequence, these effectors are used to produce
pitching and rolling moments only, whereas their secondary-axis yawing moments are seen
by the control system as external disturbances, which need to be compensated by other
yawing moment-generating actuators.

These necessary simplifications of the model have two detrimental consequences on the
overall performance of the flight control system. First, the potential of the ICE control
effectors suite is underexploited (e.g. elevons cannot be used to produce yawing moments,
which might be necessary in failure conditions or extreme maneuvers). Second, the yawing
moments produced by the elevons and outboard LEF are seen as external disturbances,
and need to be continuously suppressed by other control effectors.

5.2 INCA-Based Flight Control System Design

The INCA-based flight control system implements the incremental control scheme derived
in Chapter 4. This section discusses the Jacobian model used in the INCA algorithm and
the derivation of the INCA angular rate control law.

5.2.1 Multivariate Simplex Spline-Based Jacobian Model

As discussed in Chapter 4, the INCA method has a more relaxed dependency on an
on-board aerodynamic model and therefore is more robust against model uncertainties.
Instead of a full aerodynamic model, INCA is based on a control effectiveness Jacobian
model ∇δΦ (x, δ) that includes the directional derivatives of τ e with respect to δ.
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In this thesis, the Jacobian control effectiveness matrix is derived from a multivariate
simplex spline-based aerodynamic model of the ICE aircraft identified from the high-
fidelity aerodynamic database described in Chapter 3. This spline model preserves the
original model structure of the nonlinear aerodynamic coefficients:

Ci = + Csi1 (α,M) + Csi2 (α, β,M) + Csi3 (α, δls, δle,M) + Csi4 (α, δrs, δre,M)

+ Csi5 (α, β, δlfi) + Csi6 (α, β, δrfi) + Csi7 (α, β, δlfi, δlfo,M) + Csi8 (α, β, δrfi, δrfo,M)

+ Csi9 (α, δlfo, δla) + Csi10
(α, δrfo, δra) + Csi11

(α, δla, δle) + Csi12
(α, δra, δre)

+ Csi13
(α, δrs, δls, δpf,M) + Csi14

(α, β, δla) + Csi15
(α, β, δra) + Csi16

(α, β, δls)

+ Csi17
(α, β, δrs) +

pb

2V
Csi18

(α,M) +
qc̄

2V
Csi19

(α,M) +
rb

2V
Csi20

(α,M)

(5.14)

with i = {l,m, n,X, Y, Z}, where every model term Csin is a multivariate B-spline defined
over a simplex triangulation with 0th-order continuity. This model was identified from
the original ICE aerodynamic database in (van der Peijl, de Visser, & Niestroy, 2017)
following the linear regression techniques presented in (de Visser, Chu, & Mulder, 2009).
Including all the model terms corresponding to every dimensionless aerodynamic moment
and force coefficients, the spline model consists on 108 spline functions.

From this model, the directional derivatives of every term Csij in the directions of δ can
be computed in a computationally efficient way with the method for model reduction of
parabolic partial differential equations presented in (Tol et al., 2014; Tol, de Visser, &
Kotsonis, 2016). This yields 13 partial derivatives of each of the 108 spline models, from
which the control effectiveness Jacobian matrix is constructed as:

∇δΦ (α, β,M, δ) =




∑20
j=1

∂Cslj
(x,δ)

∂δ1

∑20
j=1

∂Cslj
(x,δ)

∂δ2
· · · ∑20

j=1

∂Cslj
(x,δ)

∂δ13

∑20
j=1

∂Csmj (x,δ)

∂δ1

∑20
j=1

∂Csmj (x,δ)

∂δ2
· · · ∑20

j=1

∂Csmj (x,δ)

∂δ13

∑20
j=1

∂Csnj (x,δ)

∂δ1

∑20
j=1

∂Csnj (x,δ)

∂δ2
· · · ∑20

j=1

∂Csnj (x,δ)

∂δ13




(5.15)

The Jacobian calculation was implemented on a real-time, highly optimized routine that
can provide in the order of 104 Jacobian calculations per second.

To ensure that the Jacobian terms provide correct signs, the zero-crossing points were
imposed as a constraint in the model identification process. Note that a key factor for the
accuracy of the Jacobian terms is the continuity order between simplices. In this case,
0th-order continuity was used, and therefore the model represents the worst possible case
in terms of continuity. This implies that the performance achieved in this thesis can be
substantially improved by increasing the continuity order of the spline model.

Note that with the general formulation of the INCA method presented here, the Jacobian
model is not restricted to spline-based models. For instance, a locally linear numerical
differentiation approach with a lookup table-based aerodynamic model could also be used
to approximate the nonlinear Jacobian. In such a case, the spline model would not be
necessary. A spline model was used in this thesis because it provides an elegant way to
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Figure 5.3: Thrust vector constraints in
absolute form.
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Figure 5.4: Thrust vector constraints in
incremental form.

extend the INCA-based FCS into a fault-tolerant flight control system in future work.
Splines are function approximators that can be used in an on-line system identification
framework, in contrast to lookup table-based models.

5.2.2 Multi-Axis Thrust Vectoring Jacobian Model

A Jacobian model providing the directional derivatives of the control moments produced
by MTV can be obtained analytically by deriving the Jacobian matrix of τT in Eq. (3.5):

∇δtvτT(δptv, δytv) = Tdn




0 0
− cos(δptv) 0

sin(δptv) tan(δytv) − cos(δptv)/ cos2(δytv)


 (5.16)

The MTV circular constraints in incremental form require further consideration. In an
incremental control allocation scheme, the control allocator provides a commanded incre-
ment ∆δtv over the current actuator position δtv0 . If the resulting MTV deflection vector
δtv = δtv0 + ∆δtv violates the circular constraint, then a new increment ∆δ′tv must be
computed such that the new resulting vector δ′tv = δtv0 + ∆δ′tv satisfies the circular con-
straint while preserving the original direction of δtv. This usually involves changing the
modulus and direction of ∆δtv, as depicted in Figure (5.4). The new deflection increment
is computed as

∆δ′tv =
δtvmax

||δtv0 + ∆δtv||
(δtv0 + ∆δtv)− δtv0 (5.17)

5.2.3 Angular Rate Control Loop

INCA is implemented at the innermost control loop for body angular rate control. Con-
sider the aircraft rotational dynamic equations, where τ e is now replaced by the nonlinear
control effector model Φ(x, δ):

ω̇ = J−1 (τ − ω×Jω) = J−1Φ(x, δ) + J−1 (τ a − ω×Jω) (5.18)
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For a given time step, the incremental form of the rotational dynamics as a first-order
Taylor expansion at the operating point (x0, δ0) is:

ω̇ ' ω̇0 +
∂

∂ω

[
J−1Φ(x, δ) + J−1 (τ a − ω×Jω)

]∣∣∣∣δ=δ0
x=x0

(ω − ω0)

+
∂

∂δ

[
J−1Φ(x, δ) + J−1 (τ a − ω×Jω)

]∣∣∣∣δ=δ0
x=x0

(δ − δ0) (5.19)

where the angular accelerations at the current step ω̇0 can be obtained from angular
accelerometers, signal processing or acceleration estimation methods.

According to the previously discussed time scale separation principle, the second term of
the right-hand side of Eq. (5.19), i.e. the changes in angular acceleration due to changes in
angular rates, is negligible for high sampling rates in comparison to the input-dependent
term. This was explained by Sieberling et al. (2010) as follows. Increments in actuator
positions directly cause angular accelerations. Angular rates, however, only vary as a
consequence of integrating angular accelerations, i.e. integrating the actuator deflection
contributions. Therefore, when the sampling frequency of the FCC is high enough1, the
assumption (ω − ω0) ≈ 0 is valid.

Applying time scale separation and operating the partial derivatives, the incremental dy-
namic rotational equations are obtained as a function of the current angular accelerations
and actuator positions:

ω̇ = ω̇0 + J−1∇δΦ(x0, δ0) ∆δ (5.20)

Setting the angular acceleration as a virtual control input νω(x) = ω̇ and solving for
Φ(x0, δ0) ∆δ, the INCA formulation in Eq. (4.11) is found for the body angular rate
control problem:

Φ(x0, δ0) ∆δ = I [νω(x)− ω̇0] = ∆τ c (5.21)

where the pseudo-control input dc corresponds to the required increments of control-
induced moments ∆τ c. At this point, the required control-induced moment increments
∆τ c are allocated into actuator position increments ∆δ by a linear control allocator,
where the CA problem is formulated in incremental form as: given the current state x0,
the current actuator positions δ0 and a required increment of control-induced moments
∆τ c, determine an increment in the control effector positions ∆δ such that

∇δΦ(x0, δ0) ∆δ = ∆τ c

subject to ∆δ ≤∆δ ≤∆δ
(5.22)

Here, the inner control law
∆τ c = I [νω(x)− ω̇0] (5.23)

linearizes the system between the virtual control input νω(x) and the required moment
increments ∆τ c. The linearized system can now be controlled through the virtual control
input such that it follows a command ωc by using the outer state-feedback linear control
law in Eq. (5.13). The absolute actuator position commands are computed as δ = δ0+∆δ.

1Practical implementation of incremental attitude control in fast-dynamics aerospace vehicles has
proven that FCC frequencies of about 100 Hz are high enough for the time scale separation principle
to hold, see (Smeur et al., 2016).
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5.2.4 Global Convergence and SSDs

Since INCA dynamically drives the actuator vector towards the direction that best fulfills
moment increment commands, it is possible that it converges to local minima. This is
not a problem if the assumption that the optimal control distribution lies within the
neighbourhood of the current actuator positions is valid. This assumption holds true
for most of the ICE actuators, since their moment curves do not have local minima in
the directions of δ (local minima in the directions of α, β and M are irrelevant to the
control allocator, since they are not control variables). However, the SSDs have a dramatic
impact on the control effectiveness of trailing-edge control effectors, and therefore globally
optimal control distributions might be available far away from the current SSD positions.

It is worth noting that, besides providing lateral-directional control at high AoA, an im-
portant function of the SSDs is to redirect the airflow towards the upper wing skin at high
AoA to recover control effectiveness of trailing-edge devices. In contrast, deflecting the
SSDs at low AoA destroys the control effectiveness of downstream actuators. Therefore,
it is reasonable to assume that globally optimal control distributions will have small SSD
deflections at low AoA and large SSD deflections at high AoA. Hence, convergence to-
wards global optima can be subserved by forcing the SSDs to remain as closed as possible
at low AoA, and as open as possible at high AoA. This can be achieved by scheduling
the penalizing weights of the SSDs in the weighting matrix Wδ as a function of α. In this
case, the SSD penalties WδSSD

(α) were scheduled as the exponential function

WδSSD
(α) = [−0.25 + 0.35 exp (1.6α)]−1 (5.24)

Whereas penalties are set to 1 for all control effectors, WδSSD
is 10 at α = 0 deg, becomes

1 at α≈45 deg and goes to 0 at α≥90 deg. Although this scheduling is valid for the ICE
configuration, the characteristics of each particular controlled system shall be studied in
order to favour global convergence.

5.3 Control Allocation Solvers

As mentioned above, both LCA- and INCA-based flight control systems rely on a linear
control allocator as a core module to distribute the absolute or incremental moment
commands over absolute or incremental control effector positions. The CA module was
implemented with two typical linear CA algorithms that are known to provide real-time
performance for flight control. These two algorithms are briefly described in this section.

In order to keep the discussion general, the definitions below refer to u as a generic
pseudo-control input vector, which corresponds to δ in LCA and to ∆δ in INCA. Also,
the generic matrix G refers to the control effectiveness matrix B(x) in LCA and to the
Jacobian control effectiveness matrix ∇δΦ(x, δ) in INCA. The generic pseudo-control
command dc refers to a control moment command τ c in LCA and to a control moment
increment command ∆τ c in INCA.

5.3.1 Redistributed Weighted Pseudo-Inverse (RWPI)

The RWPI algorithm was discussed in detail in Section 4.4. For the sake of completeness,
the RWPI method is described here in general terms in order to describe its practical
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implementation in the linear CA module of the LCA- and the INCA-based flight control
systems. The derivation in Section 4.4 leads to the explicit solution to the unconstrained
control allocation problem

u = up +G] (dc −Gup) (5.25)

with
G] = W−1

u GT
(
GW−1

u GT
)−1

(5.26)

a generalized weighted pseudo-inverse.

The RWPI method computes the unconstrained solution with Eq. (5.26). If one or more
effectors are saturated, the corresponding columns in G are set to zero to form Gsat, the
saturated values are placed in the preference vector up to form up,sat and the redistributed
weighted pseudo-inverse solution is computed as

u = up,sat +G]sat (dc −Gup,sat) (5.27)

This process is repeated until the pseudo-control command dc is attained or all the control
effectors are saturated.

5.3.2 Active Set-Based Quadratic Programming (QP)

The QP formulation of the control allocation problem is derived by formulating an `2-
norm cost function for the multi-objective constrained optimization problem:

min
u
J = Wd ||Gu− dc||2 + ε Wu ||u− up||2

subject to u ≤ u ≤ u
(5.28)

where Wd and Wu are nonsingular weighting matrices and ε is a scalar, selected sufficiently
small to prioritize the minimization of the allocation error (Gu−dc) over the secondary
objective of minimizing (u−up).

Many numerical algorithms are available to solve the QP problem, such as fixed-point
methods (Burken et al., 1999, 2001), active set methods (Harkegard, 2002) and interior-
point methods (Petersen & Bodson, 2005, 2006). Petersen and Bodson (2006) concluded
that the active set algorithm converges exactly to the optimal solution in a finite number of
steps and is computationally efficient for control allocation problems of small and medium
size. For this reason, the active set algorithm for QP-based control allocation proposed
by Harkegard (2002) was used in this thesis.

Consider the reformulation of the minimization problem in Eq. (5.28) in the form

min
u

∣∣∣∣
∣∣∣∣
[
WuG
εWu

]
u−

[
Wddc
εWuup

]∣∣∣∣
∣∣∣∣
2

subject to Gu = dc, Cu ≥ U
(5.29)

where C = [I −I]T and U = [u u]. The active set algorithm consists on solving a sequence
of equality constrained problems, where in every iteration some inequality constraints
are regarded as equality constraints and form a working set W, whereas the remaining
inequality constraints are disregarded. The working set at the optimum is known as the
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Algorithm 2 Active set algorithm for QP-based control allocation (Harkegard, 2002).

Let u0 be a feasible starting point. A point is feasible if satisfies Gu = dc and Cu ≥ U .
Let the working setW contain a subset of the active inequality constraints at u0. Let
N be the maximum number of iterations.

1: for k = 0, 1, 2...N − 1 do
2: Given uk, find the optimal perturbation p, considering the constraints in the

working set as equality constraints and disregarding the remaining inequality con-
straints, by solving

min
p

∣∣∣∣
∣∣∣∣
[
WuG
εWu

](
uk + p

)
−
[
Wddc
εWuup

]∣∣∣∣
∣∣∣∣

subject to Gp = 0, pi = 0, i ∈ W
(5.30)

3: if uk + p is feasible then
4: Set uk+1 = uk + p and compute the Lagrange multipliers [µ λ]T using Eq. (5.31),

where µ is associated with Gu = dc and λ with the active constraints in Cu ≥ U .
5: if All λ ≥ 0 then
6: uk+1 is the optimal solution to (5.29).
7: else
8: Remove the constraint associated with the most negative λ from W.
9: end if

10: else
11: Determine the maximum step length α such that uk+1 = uk +αp is feasible. Add

the primary bounding constraint to the working set.
12: end if
13: end for

active set of the solution. The active set algorithm taken from (Harkegard, 2002) is given
in pseudocode in Algorithm 2.

The Lagrange multipliers are determined by

[
WuG
εWu

]T ([
WuG
εWu

]
u−

[
Wddc
εWuup

])
=
[
GT CT0

] [µ
λ

]
(5.31)

where C0 contains the rows of C that correspond to constraints in W.

5.4 Pseudo-Control Hedging

Actuator saturation represents a problem when control commands exceed the capabilities
of the actuators under rate and position constraints. When physically unachievable con-
trol commands are given, the system can run into command windup problems, which com-
promises the overall performance and stability of the system. To overcome this problem,
pseudo-control hedging (PCH) was proposed in (Johnson & Calise, 2000) and developed
in (Johnson & Kannan, 2005; Lam & Barkana, 2005) as an adaptation system to hedge
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the pseudo-control input of the control system to accommodate the commands to the
physical limitations of the actuators, thus avoiding physically unachievable commands.
PCH has been successfully used as a partial form of flight envelope protection and anti-
windup system in (T. Lombaerts, Looye, Chu, & Mulder, 2010; Simpĺıcio et al., 2013).
In addition to ensuring physically achievable commands, the first-order reference model
used in PCH is useful to compute the derivatives of the commanded variables, which
can be used as feedforward terms in the control system to improve tracking performance
(Simpĺıcio et al., 2013).

PCH was implemented in this thesis to shape the virtual control command νω(x) by
substracting the difference between the commanded νω(x) and the actual virtual control
achieved, estimated with fed-back actuator positions δ0 as ν̂ω(x) = f(x0, δ0), where
f(x, δ) is the virtual control law. The pseudo-control hedge is computed as

νh(x) = νω(x)− ν̂ω(x) (5.32)

The hedge νh(x) is fed back into a first-order reference model (RM) as a compensation
signal. The reference model νrm(x) is given by

νrm(x) = Krm (ωc − ωrm) (5.33)

with Krm a diagonal matrix. The hedged reference signal fed as a control input into the
attitude control system is the state vector of the reference model

ωrm =
1

s
(νrm(x)− νh(x)) (5.34)

When no saturation occurs, νh(x) = 0 and the reference model behaves as a low-pass
filter of bandwidth Krmi for the i-th component of ωrm. Under actuator saturation, the
pseudo-control hedge νh(x) corresponds to the difference between the commanded virtual
control input and the estimated virtual control achieved, based on the actual positions
of the control effectors. The hedge signal νh(x) is used to reshape the reference and
avoid unfeasible commands. The reference model νrm (x) corresponds to the first-order
derivatives of the commanded variables, which can be used as a feedforward term added
to νω(x) to improve tracking performance (Simpĺıcio et al., 2013).

For the LCA-based controller the virtual control input is given by the control law

νω(x) =
1

2
ρV 2SJ−1B(x) δ + J−1 (τ a − ω×Jω) (5.35)

and therefore the pseudo-control hedge is given by

νhLCA
(x) =

[
1

2
ρV 2SJ−1B(x) δc + J−1 (τ a − ω×Jω)

]

−
[

1

2
ρV 2SJ−1B(x) δ + J−1 (τ a − ω×Jω)

]
(5.36)

νhLCA
(x) =

1

2
ρV 2SJ−1B(x) (δc − δ) (5.37)
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For the INCA-based controller the virtual control input is given by the control law

νω(x) = ω̇0 + J−1∇δΦ(x0, δ0) (δ − δ0) (5.38)

and therefore the pseudo-control hedge is given by

νhINCA
(x) =

[
ω̇0 + J−1∇δΦ(x0, δ0) (δc − δ0)

]
−
[
ω̇0 + J−1∇δΦ(x0, δ0) (δ − δ0)

]
(5.39)

νhINCA
(x) = J−1∇δΦ(x0, δ0) (δc − δ) (5.40)

The internal structures of the LCA-based and the INCA-based angular rate control sys-
tems, including PCH, are given in Figures 5.5 and 5.6 respectively.

5.5 Outer Control Loops

The reference maneuvers used to assess the performance of the LCA-based and the INCA-
based controllers were coded as predefined reference signals. In order to fly these maneu-
vers, a series of outer loops were designed to track each kind of reference. Three different
outer loops were designed to fly different types of reference trajectories: a sideslip com-
pensation loop with body rate commands in roll and pitch, an aerodynamic inversion loop
with bank angle φ, α and β as input commands, and an Euler angle inversion loop with
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flight path guidance variables as inputs. Note that these loops do not work simultane-
ously, but a different outer loop was used depending on the type of reference trajectory
followed. In order to make a fair comparison, the same outer loops were used with both
the LCA-based and the INCA-based controllers. The design and implementation of these
outer loops is discussed in this section.

5.5.1 Sideslip Inversion Outer Loop

The sideslip dynamic inversion loop compensates the sideslip angle to perform coordinated
turns whereas leaving roll and pitch rates as directly controlled variables. This loop was
implemented in the yaw rate channel with β as a reference and r as control input. For
this, a dynamic inversion of the sideslip angle was performed. The sideslip angle β can
be computed as

β = arcsin
v

V
(5.41)

The first derivative of Eq. (5.41) is

β̇ =
v̇V − vV̇
V
√
u2 + w2

=
v̇√

u2 + w2
− v (uu̇+ vv̇ + wẇ)

(u2 + v2 + w2)
√
u2 + w2

(5.42)

The accelerations in aerodynamic frame are given by

u̇ =Ax − g sin θ + rv − qw
v̇ =Ay + g sinφ cos θ − ru+ pw

ẇ =Az + g cos θ cosφ+ qu− pv
(5.43)

Substituting Eqs. (5.43) into Eq. (5.42) gives

β̇ =

(
1√

u2 + w2

)
(Fx + Fy + Fz) +

[
w√

u2 + w2
0

−u√
u2 + w2

]

p
q
r


 (5.44)

with

Fx =− uv

V 2
(Ax − g sin θ)

Fy =
(

1− v

V 2

)
(Ay + g sinφ cos θ)

Fz =− vw

V 2
(Az + g cosφ cos θ)

(5.45)

Introducing the virtual control input νβ(x) = β̇ and solving for the input r the sideslip
dynamic inversion law is obtained:

rc =

( −u√
u2 + w2

)

︸ ︷︷ ︸
aβ(x)

−1


νβ(x)− 1√

u2 + w2
(Fx + Fy + Fz + wpc)

︸ ︷︷ ︸
bβ(x)




= aβ(x)−1 [νβ(x)− bβ(x)] (5.46)

The structure of the sideslip compensation loop is shown in Figure 5.7.
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5.5.2 Aerodynamic Inversion Loop

Similarly, a dynamic inversion loop can be set up to control the aerodynamic angles φ, α
and β. The dynamics of the bank angle are given by

φ̇ =
[
1 sinφ tan θ cosφ tan θ

]


p
q
r


 (5.47)

Introducing the virtual control input νφ(x) = φ̇ and solving for the body rates as control
inputs, the bank angle dynamic inversion law is obtained:



pc
qc
rc


 =

[
1 sinφ tan θ cosφ tan θ

]
︸ ︷︷ ︸

aφ(x)

−1
νφ(x) = aφ (x)−1 νφ(x) (5.48)

The dynamics of the angle of attack α are given by

α̇ = arcsin
w

V
=
uẇ − wu̇
u2 + w2

(5.49)

Substituting Eqs. (5.43) into Eq. (5.49) gives

α̇ =

(
1

u2 + w2

)
(u (Az + g cos θ cosφ)− w (Ax − g sin θ))

+

[ −uv
u2 + w2

1
−vw

u2 + w2

]

p
q
r


 (5.50)
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Introducing the virtual control input να(x) = α̇ and solving for the body rates as control
inputs, the angle of attack dynamic inversion law is obtained:



pc
qc
rc


 =

[ −uv
u2 + w2

1
−vw

u2 + w2

]

︸ ︷︷ ︸
aα(x)

−1

−
(

1

u2 + w2

)
(u (Az + g cos θ cosφ)− w (Ax − g sin θ))

︸ ︷︷ ︸
bα(x)

= aα(x)−1 [να(x)− bα(x)] (5.51)

The sideslip angle dynamic inversion law for the aerodynamic inversion loop can be ob-
tained by re-arranging Eq. (5.44) with the three body rates as control inputs:



pc
qc
rc


 =

[
w

u2 + w2
0

−u
u2 + w2

]

︸ ︷︷ ︸
aβ(x)

−1

−
(

1√
u2 + w2

)
(Fx + Fy + Fz)

︸ ︷︷ ︸
bβ(x)

= aβ(x)−1 [νβ(x)− bβ(x)] (5.52)

Combining the three control channels, the aerodynamic inversion control law is



pc
qc
rc


 =



aφ (x)
aα (x)
aβ (x)



−1



νφ (x)
να (x)
νβ (x)


−




0
bα (x)
bβ (x)




 (5.53)

The structure of the outer aerodynamic inversion loop is shown in Figure 5.8.

5.5.3 Flight Path Guidance Loop with Euler Angle Inversion

A guidance loop was designed in order to use flight path angle γ and bank angle φ as
control inputs from a reference trajectory with a sideslip compensator in the directional
channel. For this, first an Euler angle dynamic inversion loop was set up, whose pseudo-
control inputs were provided by an outer linear loop controlling φ, γ and β.

The relationship between body angular rates and Euler angular rates in the lateral and
longitudinal channels is

[
φ̇

θ̇

]
=

[
1 sinφ tan θ cosφ tan θ
0 cos θ − sinφ

] [
p
q

]
(5.54)

setting the virtual control inputs νφ(x) = φ̇ and νθ(x) = θ̇ and solving for the body rates
as control inputs, the Euler dynamic inversion law is obtained:

[
pc
qc

]
=

[
1 sinφ tan θ cosφ tan θ
0 cos θ − sinφ

]

︸ ︷︷ ︸
[aφ(x) aθ(x)]

T

−1 [
νφ(x)
νθ(x)

]
(5.55)
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Figure 5.9: Schematic of the outer guidance loop with Euler angle inversion.

Including the sideslip inversion law in Eq. (5.52), the Euler angle inversion law is



pc
qc
rc


 =



aφ (x)
aθ (x)
aβ (x)



−1



νφ (x)
νθ (x)
νβ (x)


−




0
0

bβ (x)




 (5.56)

The references for the pseudo-control input νguid(x) =
[
φ̇c θ̇c β̇c

]
are provided by a

linear outer loop with φc, γc and βc as references:



φ̇c
θ̇c
β̇c


 = KguidP




(φ− φc)
(γ − γc)
(β − βc)


+ KguidI



∫

(φ− φc) dt∫
(γ − γc) dt∫
(β − βc) dt


+ KguidD




(φ̇− φ̇c)
(γ̇ − γ̇c)
(β̇ − β̇c)


 (5.57)

The structure of the outer guidance loop is shown in Figure 5.9. The full INCA-based
flight control system including PCH with the flight path guidance controller as outer loop
is given in Figure 5.10. Note that any of the three loops described above can be used as
outer loop depending on the type of reference trajectory to follow.

5.5.4 Auto-Throttle Loop

Finally, an auto-throttle (A/T) control loop was implemented to keep the true airspeed
constant to its initial value. This system was implemented as a simple linear feedback
loop with a PID controller. The throttle dynamics are also subject to absolute limits as
described in Chapter 3.
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Chapter 6

Simulations and Results

The evaluation of the performance of INCA with respect to traditional LCA methods
was based on a real-time simulation setup with the high-fidelity ICE model described in
Chapter 3 and the LCA- and INCA-based flight control systems described in Chapter 5.
The assessment was made for both CA schemes solved with the RWPI and the active
set-based QP algorithms described in the latter chapter. The metrics used to assess the
performance of the tested systems were the control allocation performance, the overall
tracking performance, the control effort and the number of iterations per time step of the
core CA algorithms. First, the body rate tracking performance was tested with a simple
maneuver with direct body rate inputs. Then the control systems were tested against
aggressive flight maneuvers with increasing level of control effort demand, using different
outer loops. Additionally, a robustness analysis was carried out in order to assess the
sensitivity of INCA to Jacobian model mismatch.

This chapter presents the simulation setup and the results obtained from the simulations.
The simulation environment and setup are described in Section 6.1. Section 6.2 presents
the results of the preliminary performance evaluation with a simple baseline trajectory.
The results of the sensitivity analysis of INCA to Jacobian model mismatch are presented
in Section 6.3. Section 6.4 presents the results of the four tested aggressive flight maneu-
vers. Finally, the overall performance of each system is assessed and discussed in Section
6.5. The results not included in this chapter can be found in Appendix C.

6.1 Simulation Setup

The flight simulations were set up in a Matlab/Simulink framework using the high-fidelity
ICE aerodynamic model described in Chapter 3. Both LCA- and INCA-based flight
control systems were implemented with the RWPI and the active set-based QP solvers
described in Chapter 5. The simulations were run in real time with a 4th-order Runge-
Kutta solver with a fixed sampling rate of 100Hz. The simulations were performed in
a 64-bit computer with four Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz processors
and 16.0 Gb RAM.

67



68 Simulations and Results

The simulation environment included a 1976 COESA-Extended U.S. Standard Atmo-
sphere, an horizontal and shear wind model, a Dryden MIL-F-8785C wind turbulence
model and a discrete wind gust model with gust length of 4 ft and gust amplitude of 10
ft/s. The flight simulations were initialized in trim conditions at an altitude of 20000 ft
and M = 0.85. The initial true airspeed of 880 ft/sec was set as a constant reference to
the A/T controller. In all the simulations, the linear gains of the innermost body rate
control loop were set to the values listed in Table 6.1. The reference model gains Krm

were all set to 10. The penalization gains in Wδ were set to 1 for all control effectors
except for the AMTs, which were set to 0.5, and for the SSDs, which were scheduled as
a function of α with Eq. (5.24). The penalization gains in Wτ were all set to 1. The
control preference vector δp was set to 0 for all control effectors in all cases.

Table 6.1: Gains used in the linear controller of the body rate loop.

Channel p q r

KωP 6.5 6.5 5.8

KωI 0.0 0.0 0.0

KωD 0.5 0.5 0.5

6.2 3211 Maneuver with Sideslip Compensation

The first set of simulations was set up with the sideslip inversion loop, using roll and
pitch body rates and sideslip angle as control input commands. The control inputs were
simultaneous 3211 signals with amplitudes of 10 deg/sec for the roll and pitch channels
and 3 deg for the sideslip channel. 3211 inputs consist of two consecutive pulse doublets,
the pulses of which have durations of 3, 2, 1 and 1 seconds. These inputs are known to
excite a significant frequency range of the aircraft operational bandwidth (Mulder, 1986).
The gains used for the sideslip loop were KβP = 1.60, KβI = 0.30 and KβD = 0.00.

6.2.1 Simulation Results with RWPI

The tracking histories of the controlled variables with LCA and INCA solved with RWPI
are displayed and compared in Figure 6.1. Evident deficiencies are observed for the
LCA controller, which exhibits large excursions from the commanded values, including
overshoots and oscillations. This behaviour can be explained by the fact that many aero-
dynamic effects of the control effectors are neglected in the linear control effectors model,
including effector nonlinearities, interaction effects and the secondary-axis yawing mo-
ment contributions of both the elevons and outboard LEF. The fact that these effects
need to be compensated with other actuators, which in turn have nonlinear effects and
cause interactions, results in a substantial degradation of the tracking performance. In
contrast, INCA performs with considerably superior tracking accuracy. It exhibits over-
shoots, although to a lower extent. It is worth highlighting that the tracking performance
of LCA in the directional r and β channels is particularly low, since most important
nonlinearities and model inaccuracies occur for directional dynamics.
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Figure 6.1: Tracking performance of LCA and INCA solved with RWPI.

A key performance metric of control allocation systems is their allocation performance,
which refers to their capability of attaining the control moments required by the high-level
flight control system, i.e. minimizing the allocation error τ −τ c. The time histories of the
commanded and attained control moments for the 3211 maneuver with LCA and INCA
solved with RWPI are given in Figure 6.2. Large excursions in commanded moments are
observed for LCA, especially in the longitudinal and directional channels. Similarly to
the tracking case, this low performance is due to the necessity of the LCA-based FCS to
compensate inaccuracies in the control effector model. In contrast, the moments required
to satisfy the same control commands are significantly smaller with INCA, and these are
attained with a substantially higher performance.

Finally, the time histories of the 13 control effector positions along the 3211 maneuver
are given in Figure 6.3. Severe oscillations in the control effectors with lateral-directional
control authority can be observed with LCA due to control effector interactions. Note
that these couplings are not observed with INCA, since the Jacobian model captures these
interactions. In addition, LCA places bigger control effort on the AMTs, since the linear
control effector model lacks information about other sources of directional control power
such as the elevons and outboard LEF.

Since the main advantage of INCA is its suitability for real-time applications, another
key performance metric is computational complexity. The computational complexities
of the RWPI and the active set-based QP algorithms were evaluated in (Bodson, 2002;
Harkegard, 2002). Both studies concluded that these CA algorithms are well-suited for
real-time control allocation in flight control systems. Thus, further analysis of the com-
putational complexity of these CA algorithms is not required here. However, in order to
evaluate whether INCA is suitable or not for real-time implementation, it is necessary to
demonstrate that INCA does not increase the computational load on these algorithms in
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Figure 6.2: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments for the 3211 maneuver with RWPI.

comparison with traditional LCA schemes. Since an iteration implies the same number
of operations for both LCA and INCA, it suffices to demonstrate that the number of
iterations required per time step is statistically comparable for both control allocation
methods.

The number of iterations per time step ni of LCA and INCA solved with RWPI along the
3211 maneuver are shown in Figure 6.7a. It can be observed that both methods require a
similar number of iterations per time step for this trajectory. It is important noting that
the maximum number of iterations of RWPI is 14 and therefore 50% of the maximum
number of iterations is rarely reached by both systems. Quantitative statistical data on
ni will be given at the end of this chapter. The spatial trajectories of the 3211 maneuvers
solved with RWPI are given in Figure 6.8a.

6.2.2 Simulation Results with Active Set-Based QP

The time histories of the control variables of LCA and INCA solved with the active set-
based QP algorithm are given in Figure 6.4. A significant improvement with respect
to RWPI is observed for both LCA and INCA. This is consistent with previous research
(Bodson, 2002; Harkegard, 2002; Johansen & Fossen, 2013) which concluded that, despite
its simplicity, the RWPI method may yield suboptimal solutions and does not guarantee
convergence to a feasible solution, even if it exists.
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Figure 6.3: Control effector positions with LCA and INCA solved with RWPI.

In spite of this substantial improvement, the performance of LCA with QP is still poor:
the controlled variables exhibit large excursions, overshoots and oscillations in all axes.
In contrast, the INCA-based control system performs with substantially superior perfor-
mance, tracking the reference quickly and without significant excursions or oscillations.

Figure 6.5 shows the commanded and attained moments along the trajectory for both
systems. The LCA-based system still presents important allocation error in the form
of offsets and excursions from the commanded values, whereas INCA exhibits substan-
tially higher performance, requiring small moments to achieve the control commands and
attaining the commanded moments quickly and accurately.

The time histories of the control effector positions are given in Figure 6.6. Note that the
active set-based QP approach alleviates the problems regarding oscillations observed with
LCA/RWPI. Consequently, the control effort of the LCA-based system is substantially
reduced in this case.
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Figure 6.4: Tracking performance of LCA and INCA solved with active set-based QP.

t [sec]

N
[k
lb
f·
ft
]

M
[k
lb
f·
ft
]

L
[k
lb
f·
ft
]

0 5 10 15

−200

0

200

−100

0

100

200

−100

0

100

(a) LCA-based FCS.

t [sec]

N
[k
lb
f·
ft
]

M
[k
lb
f·
ft
]

L
[k
lb
f·
ft
]

0 5 10 15

−200

0

200

−100

0

100

200

−100

0

100

(b) INCA-based FCS.

Figure 6.5: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments for the 3211 maneuver with QP.

Figure 6.7b shows that approximately the same number of iterations per time step are
executed for INCA and LCA with the active set algorithm. Additionally, since the max-
imum number of iterations was set to 100, 20% of the iteration limit are rarely reached,
which demonstrates satisfactory convergence along the trajectory under consideration.
The spatial trajectories of the 3211 maneuvers with active set-based QP are given in
Figure 6.8b.
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Figure 6.6: Control effector positions with LCA and INCA solved with QP.

6.2.3 Performance Comparison

The quantitative performance metrics used in this thesis to evaluate the overall perfor-
mance of the flight control systems are:

• Tracking error: Evaluates the overall ability of the FCS to track the reference
input commands:

εTrack = RMS (u− uc) (6.1)

where u is the vector of control input variables of the FCS under consideration.

• Allocation error: Evaluates the ability of a control allocation algorithm to attain
the control-induced moments required by the high-level FCS:

εAlloc = RMS (τ − τ c) (6.2)

• Control effort: Evaluates the amount of deflection of the control effectors required
to satisfy the control commands:

Ceff = RMS (δ − δp) (6.3)
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Figure 6.8: Trajectories of the 3211 maneuver with RWPI and QP.

The allocation error assesses the ability to fulfill of the primary CA objective, the control
effort refers to the degree of fulfilment of the secondary CA objective, and the tracking
error refers to the overall performance of the closed loop control system.

The RMS tracking errors along the 3211 maneuver are given in Table 6.2 for both LCA
and INCA solved with RWPI and QP. As expected, the tracking error is reduced in both
cases with the QP solver with respect to RWPI. However, INCA outperforms LCA in
terms of overall tracking performance by a factor of about 2.3 with both solvers. Table
6.3 compares the allocation error of LCA and INCA with RWPI and QP. Although, as in
the case of tracking performance, the allocation error is reduced with QP in both cases,
the INCA-based system outperforms LCA by a factor of 3 with both solvers.

Table 6.4 lists the control effort per control effector and in total for the whole set of control
effectors. Note that INCA makes more extensive use of MTV for yaw control than LCA.
Since the on-board model of INCA captures parabolic yawing moments, it makes sense
that it prioritizes the use of uncoupled control effectors for pitch control to minimize
secondary-axis yawing contributions. In spite of the differences of the distributions of
control effort, with no remarkable particularities, it is observed that both systems use
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Table 6.2: Tracking error for the 3211 ma-
neuver with LCA and INCA.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA LCA INCA

p [deg/sec] 6.01 4.27 5.65 2.69

q [deg/sec] 9.19 2.06 5.47 1.87

r [deg/sec] 4.36 1.81 2.77 1.80

Total 6.82 2.93 4.81 2.15

Table 6.3: Allocation error for the 3211
maneuver with LCA and INCA.

RMS(εAlloc)

Solver RWPI QP

CA Method LCA INCA LCA INCA

L [klbf·ft] 25.0 17.8 31.1 7.35

M [klbf·ft] 72.6 16.7 44.9 10.4

N [klbf·ft] 35.4 14.4 20.3 14.7

Total 48.8 16.4 33.6 11.2

Table 6.4: Control effort for the 3211 maneuver with LCA and INCA.

Ceff = RMS (δ − δp)
Total δlfi δlfo δla δle δls δpf δrfi δrfo δra δre δrs δptv δytv

LCA/RWPI 2.8 0.3 0.5 3.4 2.3 0.5 4.1 0.2 0.5 6.7 3.3 1.0 1.1 2.7

INCA/RWPI 2.6 0.7 0.6 3.8 2.0 0.7 3.9 0.3 0.6 3.1 2.5 1.6 1.0 6.0

LCA/QP 3.3 0.2 0.5 6.0 3.1 1.2 4.5 0.2 0.5 6.9 4.0 0.8 0.7 3.0

INCA/QP 3.4 0.3 0.3 3.5 1.5 0.8 5.1 0.3 0.3 7.2 5.5 1.2 1.6 4.2

a similar amount of control effort in total. An important conclusion is that, for the
trajectory under study, INCA achieves a significant improvement in performance with no
significant increase of control effort.

Finally, basic statistical metrics of the number of iterations per time step are given in Table
6.5. The number of iterations required per time step is similar for both methods, which
reveals that no added computational complexity is implied by INCA for this maneuver.

To sum up, the preliminary simulations showed a substantial improvement in tracking and
allocation performance of INCA over LCA, with no significant increase in control effort
and computational load. Additionally, notable improvements in tracking and allocation
performance are observed with QP over RWPI in both cases, with only slight increases
in control effort and computational load.

6.3 Robustness Analysis to Jacobian Model Mismatch

As discussed earlier, the sensitivity of the performance of INCA to mismatch in the con-
trol effectiveness Jacobian model ∇δΦ(x, δ) is a relevant subject of study. As deducted
in the theoretical development of the method, it is expected that the acceleration feed-
back provides considerable robustness against model mismatch. In order to support this
hypothesis and quantify the degree of robustness, a sensitivity analysis was carried out.
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Table 6.5: Iterations per time step for the 3211 maneuver with LCA and INCA.

ni

Solver RWPI QP

CA Method LCA INCA LCA INCA

Min. 2 1 2 3

Avg. 3.1 2.4 5.8 5.6

Max. 7 6 23 20

There are three ways in which mismatch can be introduced in the Jacobian model. The
first one is by changing the order of continuity between simplices of the original spline
model Φ(x, δ). Abrupt discontinuities in the aerodynamic model cause undesirable peaks
in the Jacobian function. The spline model used in this thesis has 0th-order continuity
between simplices, and therefore represents the worst case scenario. Any variation in the
model continuity order can only lead to improvement in the accuracy of the Jacobian
function.

The two other possible alterations of the model accuracy are the application of offset
and scaling to the Jacobian terms. To analyse model sensitivity, offset and scaling were
introduced in the Jacobian function as follows:

∇δΦ′ (x, δ) = mΦ∇δΦmax + nΦ∇δΦ (x, δ) (6.4)

where ∇δΦmax is a matrix containing the maximum values of the Jacobian terms obtained
along the 3211 reference trajectory in Section 6.2, mΦ represents the fraction of the
maximum Jacobian values introduced as offset and nΦ represents the scaling factor of the
original Jacobian function.

The sensitivity analysis consisted on simulating the 3211 maneuver described in Section
6.2 with INCA/QP by varying the model offset and scaling between simulations. The
scale factor nΦ was varied from 0.6 to 1.4 in steps of 0.01 taking a total of 81 values, and
the offset mΦ was varied between -0.5 and 0.5 in steps of 0.01 taking a total of 101 values.
This led to a total amount of 8181 simulations. The tracking and allocation errors and
the control effort were recorded for each simulation in order to study the effect of model
offset and scaling on performance.

The obtained performance metrics are displayed as a function of the introduced model
offset and scaling in Figures 6.9 to 6.11. Note that the range of model offset was reduced
to ±30% in these figures to exclude large peaks in extreme regions and improve resolution
within the shown region. Figure 6.9 shows that the allocation error only varies between
10 and 14 klbf·ft for the study region shown. It is worth pointing out that, whereas
performance is slightly deteriorated as offset deviates from 0%, it significantly improves
for decreasing scaling factors. Maximum performance is reached for the minimum scaling
applied and within the region close to 0% offset. This reveals that the INCA system bene-
fits from underestimation of the magnitude of the Jacobian terms, whereas overestimation
results detrimental.
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Figure 6.9: Effect of model mismatch
on allocation performance.
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Figure 6.10: Effect of model mismatch
on control effort.
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Figure 6.11: Effect of model mismatch
on tracking performance.

Figure 6.10 shows a mostly uniform control effort between 3 and 3.5 deg along the shown
range of study, except for a region with offsets between -30% and -20% and scaling factors
between 0.6 and 0.9. Note, however, that a local minimum exists in a region with scalings
between 0.8 and 0.9 and offsets between -15% and -10%. This reveals a possible mismatch
of the Jacobian model used in the simulations. However, the overall variation in control
effort is very small within most of the study region shown.

Figure 6.11 shows a similar effect of model mismatch on the tracking performance than
observed on the allocation performance. Tracking performance improves when the mag-
nitude of the Jacobians is underestimated, whereas overestimation increases the tracking
error. Maximal performance is also observed for the smallest scaling factor applied, close
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Figure 6.12: Performance degradation due to model scaling and offset with respect to the
baseline study case with mΦ = 0 and nΦ = 1.

to the region of 0% offset. It is worth noting, however, that the variation of the track-
ing error ranges only between 2 and 2.4 for the shown region, demonstrating a strong
robustness of the overall tracking performance to model mismatch.

Figure 6.12 shows the performance degradation as a percentage of the error of the baseline
case with unit model scaling and zero offset. In this case, the performance degradation
is shown for the whole range of tested model offsets. Figures 6.12a and 6.12b show
the previously remarked behaviour: a slight improvement in allocation performance for
a small negative offset but degradation for higher offset values, and a close-to-linear
improvement of the allocation performance with decreasing scaling factors. Degradation
of the allocation performance reaches a maximum of about 30% for a 50% positive offset
and a scale factor of 1.2, which demonstrates strong robustness. The system becomes
unstable for negative offsets below −30% when the scaling factor is smaller than 0.8.
Finally, Figures 6.12c and 6.12d show the effect of model mismatch on control effort. The
previously mentioned local minimum can be observed here, revealing a possible mismatch
of the model used in the simulations.
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In conclusion, the INCA-based controller showed very slight performance degradation
for offsets of ±30% and scalings between 0.6 and 1.4. The overall performance of the
controller improves when the magnitude of the Jacobians is underestimated, leading to
maximal performance at scalings of 0.6 close to the 0% offset region. Observed local
minima reveal a possible mismatch of the current model of about 15% in magnitude
and 15% in offset. Allocation performance degrades only on a 20% for the maximum
tested offset and scaling, but the system becomes unstable at negative offsets of −30%
for scalings below 0.8. Overall, the INCA system demonstrated strong robustness against
Jacobian model mismatch.

6.4 Aggressive Flight Maneuvers

The ICE aircraft is a highly maneuverable fighter designed for air combat, and therefore
its design, including flight control and stability systems, must demonstrate high maneu-
verability and stability in extreme regions of its flight envelope. In order to assess the
performance of the INCA-based and the LCA-based flight control systems when the air-
craft is pushed towards the limits of its operational range, four tests were designed with
aggressive air combat aerobatic maneuvers. The designed trajectories include barrel rolls,
asymmetric loopings, Immelmann turns and more. These maneuvers were coded as prede-
fined reference trajectories using the control inputs to the different outer loops described
in Chapter 5. All aggressive maneuvers were flown with both LCA- and INCA-based
controllers solved with both RWPI and active set-based QP. The most relevant results of
these simulations are presented and discussed in this section. The results not shown here
are included in Appendix C.

6.4.1 Maneuver A: High-Bank Climbing Spiral

The high-bank climbing spiral maneuver uses the flight path guidance outer loop with
Euler angle inversion, using bank angle φ, glide path angle γ and sideslip β as control
inputs. The reference trajectory consists of a constant bank angle reference of 80 deg
with a constant flight path angle reference of 15 deg and zero sideslip. This results in a
high-bank coordinated turn while climbing.

The linear gains of the outer guidance loop used for the INCA-based system are listed in
Tale 6.6. The LCA-based flight control systems were not able to follow the trajectory with
this set of gains, so the gains of the γ channel were lowered to KγP = 0.15, KγI = 0.03
and KγD = 0.35 in order to obtain a stable trajectory.

Table 6.6: Gains used in the outer guidance loop for maneuver A.

Channel φ γ β

KgP 1.00 0.20 1.00

KgI 1.00 0.05 0.35

KgD 1.00 0.40 0.00
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Since the best performance was obtained with the active set QP solver for both LCA and
INCA, only the simulation results with the LCA/QP and INCA/QP systems are shown
here. The results with the RWPI solver can be found in Section C.1 of Appendix C.
The time histories of the outer loop and inner loop control variables along the trajectory
are given in Figures 6.13 and 6.14 respectively. These results show the inability of the
LCA-based system to properly track the flight path angle reference, resulting in severe
oscillations and excursions along the maneuver. Due to the high bank angle used during
the spiral climb, flight path angle control is mostly performed through the yaw body axis.
Due to the limitations of LCA methods with regards to directional control authority in
tailles configurations, this results in extremely poor performance when performing high-
bank climbs. Note, however, the remarkably superior performance obtained with the
INCA method. The tracking errors for the outer and inner loop control variables are
given for all the tested conditions in tables 6.7 and 6.8 respectively. INCA improves the
tracking performance of the inner loop variables by a factor of about 10 with respect to
LCA methods for this trajectory.
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Figure 6.13: Outer loop control variables of maneuver A with LCA and INCA with QP.
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Figure 6.14: Inner loop control variables of maneuver A with LCA and INCA with QP.
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Table 6.7: Tracking error of the outer loop
control variables of maneuver A.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA LCA INCA

φ [deg] 1.53 1.49 1.48 1.49

γ [deg] 6.08 3.02 6.68 3.02

β [deg] 0.44 0.25 0.47 0.25

Total 3.63 1.95 3.96 1.95

Table 6.8: Tracking error of the inner loop
control variables of maneuver A.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA LCA INCA

p [deg/sec] 0.79 0.29 0.91 0.29

q [deg/sec] 1.86 0.14 2.05 0.14

r [deg/sec] 0.44 0.03 0.47 0.03

Total 1.19 0.19 1.32 0.19

The commanded and attained control-induced moments are given in Figure 6.15. LCA
is unable to produce the required moments, which causes big oscillations and excursions.
INCA, however, is able to produce the required moments quickly and accurately, which
results in smaller moments required to satisfy the control commands. The allocation
errors are given in Table 6.15. These results show that INCA improves the allocation
performance by a factor of 16 in this case.
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Figure 6.15: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments of maneuver A with LCA and INCA with QP.

Finally, the time histories of the control effector positions are given in Figure 6.16. Given
the high bank angle at which the spiral climb occurs, INCA makes extensive use of the
pitch flap to perform the turn. In this case, sideslip is kept to zero by using a constant
AMT deflection, and roll axis commands are attained by combining elevons and outboard
LEFs. The SSDs remain closed along the whole trajectory. On the other hand, the LCA-
based controller experiments strong interactions between control effectors (note that the
SSDs start to open in several occasions), causing severe oscillations in all axes. The pitch
flap is barely used, and extensive use is made of thrust vectoring in the pitch axis instead.
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Table 6.9: Allocation error of maneuver A.

RMS(εAlloc)

Solver RWPI QP

CA Method LCA INCA LCA INCA

L [klbf·ft] 3.32 0.41 3.75 0.41

M [klbf·ft] 13.6 0.87 15.2 0.87

N [klbf·ft] 3.86 0.23 4.05 0.23

Total 8.40 0.57 9.31 0.57
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Figure 6.16: Control effector positions of maneuver A with LCA and INCA with QP.

The control efforts of this maneuver are given in Table 6.10. Note that the total control
effort is higher for INCA with both solvers. This is justified by an extensive and constant
use by INCA of the pitch flap to turn, which is a reasonable turning strategy given
the large bank angle of the maneuver. Instead of using the pitch flap, LCA places higher
control effort on the rest of actuators, especially on the elevons and pitch thrust vectoring.
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Table 6.10: Control effort of maneuver A.

Ceff = RMS (δ − δp)
Actuator Total δlfi δlfo δla δle δls δpf δrfi δrfo δra δre δrs δptv δytv

LCA/RWPI 1.4 0.0 0.1 1.1 1.9 0.1 3.4 0.0 0.1 0.6 2.0 0.1 2.4 0.7

INCA/RWPI 3.5 0.0 0.1 0.7 1.1 0.0 12.5 0.0 0.0 0.2 0.7 0.0 0.5 0.5

LCA/QP 1.5 0.0 0.1 1.1 2.0 0.0 3.5 0.0 0.1 0.7 2.1 0.1 2.6 0.7

INCA/QP 3.5 0.0 0.1 0.7 1.1 0.0 12.5 0.0 0.0 0.2 0.7 0.0 0.5 0.5

The spatial trajectories of maneuver A are shown in Figure 6.17. The time histories of
the number of iterations per time step with RWPI and QP are given in Figure 6.18, and
their statistical metrics are listed in Table 6.11. As in previous cases, no significant effect
of using INCA is observed on the computational load.
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Figure 6.17: Trajectories of maneuver A with RWPI and QP.
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Figure 6.18: Number of iterations per time step of maneuver A with RWPI and QP.
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Table 6.11: Iterations per time step for maneuver A with LCA and INCA.

ni

Solver RWPI QP

CA Method LCA INCA LCA INCA

Min. 2 2 2 3

Avg. 2.2 2.3 4.4 6.1

Max. 5 4 7 8

6.4.2 Maneuver B: Barrel Roll

The barrel roll maneuver uses the sideslip compensation outer loop with direct roll and
pitch body rate control inputs. It consists of constant pitch and roll rate inputs, synchro-
nized to complete two barrel rolls and exit the maneuver with the initial heading and zero
flight path angle (straight and level flight). The gains used for the sideslip compensation
loop are those listed in Table 6.6.

Since the best performance was obtained with the active set QP solver for both LCA and
INCA, only the simulation results with the LCA/QP and INCA/QP systems are shown
here. The results with the RWPI solver can be found in Section C.2 of Appendix C. The
time histories of the control variables are given in Figure 6.19. It can be observed that
LCA is unable to keep a constant pitch rate, and exhibits bad tracking performance in all
axes, especially in the lateral-directional channels. In contrast, the tracking performance
of INCA is excellent with no noticeable deviations from the commanded references. This
difference in performance is quantified in Table 6.12, which shows a reduction in tracking
error of INCA with respect to LCA by a factor of 5.5 for this trajectory.
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Figure 6.19: Control variables of maneuver B with LCA and INCA with QP.
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Figure 6.20: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments of maneuver B with LCA and INCA with QP.

Table 6.12: Tracking error of maneuver B.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA LCA INCA

p [deg/sec] 0.88 0.58 1.03 0.58

q [deg/sec] 3.99 0.46 3.91 0.46

r [deg/sec] 0.85 0.10 0.76 0.10

Total 2.41 0.43 2.37 0.43

Table 6.13: Allocation error of maneuver B.

RMS(εAlloc)

Solver RWPI QP

CA Method LCA INCA LCA INCA

L [klbf·ft] 3.41 1.10 4.04 1.09

M [klbf·ft] 30.2 2.16 29.6 2.15

N [klbf·ft] 8.71 1.52 7.87 1.52

Total 18.3 1.66 17.8 1.65

The time histories of the commanded and attained moments are given in Figure 6.20.
INCA shows substantially superior performance with respect to LCA, which is unable to
produce the required moments. Allocation performance metrics are given in Table 6.13,
which shows an improvement of allocation performance of INCA with respect to LCA by
a factor of 10 in this case.

The time histories of the control effector positions along the trajectory are given in Figure
6.21. It is observed that INCA makes more extensive use of the pitch flap for longitudinal
control, whereas LCA places more control effort on pitch thrust vectoring. Also, LCA uses
the elevons to a larger extent. INCA compensates for sideslip in the directional channel
with a constant deflection of the left AMT, whereas LCA opens the left SSD, provoking
interactions with the elevons resulting in the oscillations observed in both actuators. The
control efforts for this trajectory are given in Table 6.14. The total control effort of INCA
is again higher, although LCA allocates larger control effort on all the individual control
effectors except on the pitch flap.
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Figure 6.21: Control effector positions of maneuver B with LCA and INCA with QP.

Table 6.14: Control effort of maneuver B.

Ceff = RMS (δ − δp)
Actuator Total δlfi δlfo δla δle δls δpf δrfi δrfo δra δre δrs δptv δytv

LCA/RWPI 2.5 0.1 0.2 0.9 4.5 0.1 6.2 0.0 0.1 0.2 2.6 0.1 3.4 1.3

INCA/RWPI 4.3 0.1 1.1 0.9 1.2 0.1 15 0.2 2.5 0.2 0.9 0.0 0.3 2.5

LCA/QP 2.4 0.1 0.2 0.6 4.3 0.1 6.1 0.0 0.1 0.2 2.7 0.1 3.4 1.1

INCA/QP 4.3 0.1 1.1 0.9 1.2 0.0 15 0.1 2.5 0.2 0.9 0.0 0.3 2.2

The spatial trajectories of maneuver B are given in Figure 6.22. The time histories of the
number of iterations per time step are given in Figure 6.23, and its statistical metrics are
listed in Table 6.15. No significant effect of using INCA is observed on the computational
load for this maneuver.
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Figure 6.22: Trajectories of maneuver B with RWPI and QP.
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Figure 6.23: Number of iterations per time step of maneuver B with RWPI and QP.

Table 6.15: Number of iterations per time step of maneuver B.

ni

Solver RWPI QP

CA Method LCA INCA LCA INCA

Min. 2 2 2 3

Avg. 2.0 2.1 4.1 5.4

Max. 4 5 7 9

6.4.3 Maneuver C: High AoA and High Sideslip Commands

This maneuver is intended to test the behaviour of the flight control systems at high AoA
and high sideslip, since most nonlinearities and interactions occur within these regions
of the flight envelope. The simulations were performed using the aerodynamic inversion
outer loop with the aerodynamic angles α and β and the bank angle φ as control inputs.
The reference consists of a doublet α input of ±40 deg followed by a doublet β input
of ±25 deg, while keeping the bank angle reference at 0 deg. Since the controller with
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Table 6.16: Gains used in the aerodynamic inversion loop for maneuver C.

Channel φ α β

KaP 1.50 2.40 1.65

KaI 0.00 0.20 0.00

KaD 0.00 0.10 0.00

LCA/QP resulted in unstable flight with stall, only the results with the RWPI solver are
shown in this section. The results with QP can be found in Section C.3 of Appendix
C. The gains used in the aerodynamic inversion loop are given in Table 6.16. Since
the main interest of this maneuver was to study the nonlinearities and interactions of the
aerodynamic actuators at high aerodynamic angles, the penalization gains of MTV on the
weighting matrix Wδ were set to 20 to prioritize the use of aerodynamic control effectors.
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Figure 6.24: Outer loop control variables of maneuver C with LCA and INCA with RWPI.

INCACom

INCA

LCACom

LCA

p
[d
eg

/
se
c]

−50

0

50

t [sec]

q
[d
eg

/
se
c]

0 5 10 15 20 25

−50

0

50

r
[d
eg

/
se
c]

−20

0

20

t [sec]

β
[d
eg

]

0 5 10 15 20 25

−20

0

20

Figure 6.25: Inner loop control variables of maneuver C with LCA and INCA with RWPI.
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Table 6.17: Tracking error of the outer loop
control variables of maneuver C.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA LCA∗ INCA

φ [deg] 5.84 4.56 37.1 4.56

α [deg] 6.65 5.80 8.72 5.80

β [deg] 6.19 5.63 6.33 5.63

Total 6.24 5.36 22.3 5.36

∗Unstable trajectory.

Table 6.18: Tracking error of the inner loop
control variables of maneuver C.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA LCA∗ INCA

p [deg/sec] 13.1 11.2 278 1.92

q [deg/sec] 10.9 5.93 70.2 4.89

r [deg/sec] 7.25 4.62 97.0 3.72

Total 10.7 7.78 175 3.72

∗Unstable trajectory.

The time histories of the controlled variables are given in Figures 6.24 and 6.25, and
the tracking performances are listed in Tables 6.17 and 6.18. In the α doublet part
of the trajectory, the tracking performance in the longitudinal channel is poorer with
LCA than with INCA. It can be observed that within the first part of the maneuver the
required rolling moments are successfully attained by both control allocation systems.
However, directional moments are also required in the longitudinal maneuver due to the
unstable lateral-directional eigenmodes of the ICE aircraft. Unlike INCA, LCA fails to
produce the required stabilizing moments in the directional channel. It is worth pointing
out the large excursion of up to 20 deg in bank angle observed in Figure 6.24 with
LCA. This excursion is suppressed by INCA, which successfully produces the required
lateral-directional moments. The control effector positions in Figure 6.27 show that more
extensive use of the pitch flap is made by LCA in this case.

In the second part of the trajectory with the sideslip doublet, worse performance is ob-
tained with LCA, which exhibits excursions and oscillations in all channels. Figure 6.26
shows that LCA does not attain the required lateral-directional moments, whereas alloca-
tion performance is considerably superior with INCA. Excursions in rolling moment are
observed for both INCA and LCA.

In Figure 6.27 it can be observed that INCA makes more extensive use of innovative
nonlinear control effectors for lateral-directional control such as SSDs and outboard LEFs.
Since the parabolic yawing moments of the outboard LEFs had to be removed from
the linear control effector model, LCA does not use these effectors for lateral-directional
control (it is worth recalling that LEFs are an excellent source of lateral-directional control
power at high AoA). Since the positive effect of opening the SSDs at high AoA on the
control effectiveness of trailing-edge actuators is not captured by the linear control effector
model, SSDs are barely used in LCA. As a result, LCA allocates a higher control load
on the AMTs for directional control and uses the elevons to compensate for secondary
moments in the roll axis. All these effects can be observed in the allocation errors in
Table 6.19 and the control efforts in Table 6.20.

The spatial trajectories of maneuver C are given in Figure 6.28. The number of iterations
per time step are plotted in Figure 6.29 and listed in Table 6.21. It is worth highlighting
that, although only results with RWPI were shown here to ensure a fair comparison, the
performance of INCA with QP for this trajectory is notably superior. This is reflected in
Tables 6.17 to 6.19 and in the results shown in Section C.3 of Appendix C.
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Figure 6.26: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments of maneuver C with LCA and INCA with RWPI.

Table 6.19: Allocation error of maneuver C.

RMS(εAlloc)

Solver RWPI QP

CA Method LCA INCA LCA∗ INCA

L [klbf·ft] 55.1 46.7 1.69E+03 6.68

M [klbf·ft] 81.4 40.0 7.97E+02 27.0

N [klbf·ft] 59.2 37.8 1.38E+03 29.2

Total 66.2 41.7 1.34E+03 23.3

∗Unstable trajectory.

Table 6.20: Control effort of maneuver C.

Ceff = RMS (δ − δp)
Actuator Total δlfi δlfo δla δle δls δpf δrfi δrfo δra δre δrs δptv δytv

LCA/RWPI 6.5 0.4 1.0 9.3 9.3 0.8 10.2 1.4 0.9 14.2 8.4 1.2 1.0 1.2

INCA/RWPI 5.6 0.5 1.8 6.8 8.6 2.4 6.2 2.6 6.8 9.6 8.4 4.6 2.2 2.2

LCA/QP∗ 10 1.0 1.5 15 12 11 13 1.5 2.8 18 12 16 3.8 4.6

INCA/QP 5.9 0.6 1.7 7.4 7.9 3.9 7.2 2.1 2.3 11.3 9.8 4.0 2.3 2.2
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Figure 6.27: Control effector positions of maneuver C with LCA and INCA with RWPI.
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Figure 6.28: Trajectories of maneuver C with RWPI and QP.
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Figure 6.29: Number of iterations per time step of maneuver C with RWPI and QP.

Table 6.21: Number of iterations per time step of maneuver C.

ni

Solver RWPI QP

CA Method LCA INCA LCA∗ INCA

Min. 1 2 2 2

Avg. 2.8 2.5 8.4 6.7

Max. 5 6 29 24

∗Unstable trajectory.

6.4.4 Maneuver D: Aerobatics Sequence

Maneuver D is the most demanding test performed in this thesis, consisting on a sequence
of aggressive aerobatic maneuvers: aileron roll, asymmetric looping with sideslip, half 8-
point hesitation roll and Immelmann turn. These maneuvers are flown with the sideslip
compensation outer loop with direct roll and pitch body rate control inputs. The aileron
roll consists on an aggressive roll input of 180 deg/sec resulting in two full turns around
the body x-axis in 4 seconds. The asymmetric looping consists on a pitch rate input of
18 deg/sec, resulting in a full looping performed in 20 sec. During the first 10 seconds of
the looping a 5 deg sideslip input is given, which returns to 0 deg for the last 10 seconds
of the looping maneuver. This results in lateral displacement during the looping. The
half 8-piont hesitation roll consists on four quick roll rate step inputs of 90 deg/sec with
a duration of 0.5 sec each and with a separation of 1 sec, resulting in four quick steps in
roll of 45 deg each, holding constant roll angle for 1 second after each step, and finishing
the maneuver with a roll angle of 180 deg. At this position, a downward half-looping
follows, completing an Immelmann turn and ending the trajectory in straight-and-level
flight, flying in the opposite direction at a lower altitude than initially.

This maneuver is highly demanding, and the LCA/QP and INCA/RWPI systems failed
to keep stable flight throughout the simulation. Consequently, only the results for the
systems that managed to finish the aerobatics sequence with stable flight are shown here,
i.e. LCA/RWPI and INCA/QP. The results for the unstable trajectories can be found in
Section C.4 of Appendix C.
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The time histories of the controlled variables are given in Figure 6.30. LCA exhibits very
poor performance in the form of oscillations and very large excursions from the reference
values, amounting up to errors of 50 deg/sec in the longitudinal channel and of ± 10 deg in
the sideslip channel. In contrast, INCA shows excellent performance, with an accurate and
fast tracking of the references with no remarkable deviations from the commanded values.
The tracking errors listed in Table 6.22 show the superior performance of INCA/QP over
LCA/RWPI, especially on the longitudinal and directional channels.

The time histories of the control moments are given in Figure 6.31. As observed in the
previous cases, important deficiencies of LCA are especially relevant in the longitudinal
and directional axes. INCA requires smaller moments to follow the commands, and those
are tracked faster and more accurately. The allocation errors are given in Table 6.23,
which shows significantly better performance for INCA/QP.
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Figure 6.30: Control variables of maneuver B with LCA/RWPI and INCA/QP.

Table 6.22: Tracking error of maneuver D.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA∗ LCA∗ INCA

p [deg/sec] 23.0 71.1 55.8 21.2

q [deg/sec] 8.58 1050 39.4 1.10

r [deg/sec] 14.6 8120 11197 1.65

Total 16.5 4727 6465 12.3

∗Unstable trajectory.
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Figure 6.31: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments of maneuver D with LCA/RWPI and INCA/QP.

Table 6.23: Allocation error of maneuver D.

RMS(εAlloc)

Solver RWPI QP

CA Method LCA INCA∗ LCA∗ INCA

L [klbf·ft] 93.3 4.11E+06 5.57E+02 81.4

M [klbf·ft] 63.9 2.53E+06 3.41E+02 8.85

N [klbf·ft] 129 1.63E+06 1.62E+05 15.4

Total 99.0 2.94E+06 9.36E+04 48.1

∗Unstable trajectory.

The control effector positions and control efforts are given in Figure 6.32 and Table 6.24.
Although the control distributions are in general similar, INCA makes more extensive use
of the pitch flap and innovative nonlinear control effectors such as the SSDs, which open
up to 30 degrees during the 8-point hesitation roll, and both inboard and outboard LEFs.
In contrast, LCA allocates more control effort on the AMTs, since secondary sources of
yawing moment are not captured in the linear control effector model. Note that rate
saturation of the actuators occurs often.

Finally, the spatial trajectories of maneuver D are shown in Figure 6.33. Note that
INCA/QP performs the maneuver with excellent precision, keeping a straight looping
with lateral displacement, suffering no deviation after the hesitation roll, and ending the
maneuver in straight-and-level flight. Although LCA manages to end the trajectory with
stable flight, the flown path has deviations from the intended trajectory (tilted looping,
loss of altitude, deviation after the hesitation roll, and non-level flight at the end of the
maneuver).
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Figure 6.32: Control effector positions of maneuver D with LCA/RWPI and INCA/QP.

Table 6.24: Control effort of maneuver D.

Ceff = RMS (δ − δp)
Actuator Total δlfi δlfo δla δle δls δpf δrfi δrfo δra δre δrs δptv δytv

LCA/RWPI 3.6 0.3 0.5 7.2 4.4 0.5 5.2 0.2 0.5 4.1 4.8 0.6 3.0 4.8

INCA/RWPI ∗ 20 14 6.5 39 16 28 9.8 9.5 8.9 27 19 30 7.9 8.8

LCA/QP∗ 18 14 4.1 28 16 24 9.5 12 3.8 30 16 26 6.1 9.3

INCA/QP 4.3 0.4 0.6 4.5 3.1 1.5 12 0.4 1.3 3.7 5.1 2.4 3.0 2.7

∗Unstable trajectory.

The number of iterations per time step are given in Figure 6.34 and Table 6.25. The fact
that this maneuver is highly demanding and actuator saturation occurs often is reflected
in ni. For LCA/RWPI the iteration limit of 14 is reached, although the average ni is
15% of this limit. For INCA/QP the maximum number of iterations is only 27% of the
iteration limit of the active set algorithm, and the average ni is 6.8% of the iteration
limit. This result suggests that INCA does not increase the computational complexity of
the QP algorithm in this highly-demanding maneuver where actuator saturation occurs.
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Figure 6.33: Trajectories of maneuver D for the stable trajectories (left) and for the unstable
trajectories (right).
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Figure 6.34: Number of iterations per time step of maneuver D for the stable trajectories
(left) and for the unstable trajectories (right).

Table 6.25: Number of iterations per time step of maneuver D.

ni

Solver RWPI QP

CA Method LCA INCA∗ LCA∗ INCA

Min. 1 1 2 3

Avg. 2.1 1.9 13.5 6.8

Max. 14 6 100 27

∗Unstable trajectory.

6.5 Overall Performance Assessment

In this section the data from all the simulations performed and discussed previously
are combined to compute overall performance metrics. The data used for this analysis
includes the maneuvers flown with LCA/RWPI, LCA/QP, INCA/RWPI and INCA/QP,
i.e. all the results presented in this Chapter and in Appendix C. Since maneuvers C and
D resulted in unstable trajectories for some of the tested systems, only the maneuvers
3211, A and B were included in the overall analysis in order to ensure a fair comparison.
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The overall tracking errors for the four tested systems are listed in Table 6.26. As observed
in previous results, the overall tracking performance is better with QP for both LCA and
INCA. In both cases, INCA outperforms LCA in terms of tracking performance by a
factor of 2.5 with RWPI and of 3.0 with QP. Furthermore, LCA performs worst in the
longitudinal channel, in which INCA improves performance by a factor of 4.7 with QP.

Table 6.26: Overall tracking error combining maneuvers 3211, A and B.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA LCA INCA

p [deg/sec] 2.13 1.46 2.07 0.97

q [deg/sec] 3.98 0.73 3.19 0.67

r [deg/sec] 1.55 0.60 1.07 0.60

Total 2.76 1.01 2.28 0.76

Table 6.27 provides the overall allocation errors for the different tested systems. It can
be observed that the improvement of INCA with respect to LCA is remarkably high in
terms of allocation performance. INCA outperforms LCA by a factor of 3.6 with RWPI
and of 4.5 with QP. As in the case of tracking performance, LCA performs worst in the
longitudinal channel, where INCA shows an improvement in allocation performance by a
factor of 5.34 with RWPI and of 6.7 with QP.

Table 6.27: Overall allocation error combining maneuvers 3211, A and B.

RMS(εAlloc)

Solver RWPI QP

CA Method LCA INCA LCA INCA

L [klbf·ft] 8.85 5.93 10.9 2.52

M [klbf·ft] 30.8 5.67 24.7 3.69

N [klbf·ft] 12.9 4.81 8.52 4.92

Total 19.9 5.49 16.3 3.84

The overall control efforts per control effector and in total are listed in Table 6.28. It
can be observed that the overall control effort is higher for INCA than for LCA by a
factor of 1.8. However the differences in the control effort allocated to each individual
control effector reveal interesting trends. First, the elevons are more extensively used
with LCA than with INCA. Since the parabolic yawing moments of the elevons were
removed from the linear model used in LCA but are taken into account by INCA, it is
reasonable that INCA tries to place more effort on control effectors with quasi-uncoupled
moment contributions, in order to avoid secondary-axis moments. This explains the
considerably higher use of the pitch flaps by INCA for longitudinal control, since they
do not have secondary contributions in the lateral-directional axes. Also, the parabolic
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yawing moments of the outboard LEFs were removed from the LCA model. In contrast
to the elevons, the outboard LEFs are one of the primary sources of lateral-directional
control power at high AoA, but are weak sources of longitudinal control power. Since
directional contributions of the outboard LEF were removed from the linear model and
their contributions on other axes are weak, these effectors are underexploited by LCA.
However, since these moments are considered in INCA, this system places higher control
effort on outboard LEF.

Table 6.28: Overall control effort combining maneuvers 3211, A and B.

Ceff = RMS (δ − δp)
Actuator Total δlfi δlfo δla δle δls δpf δrfi δrfo δra δre δrs δptv δytv

LCA/RWPI 2.0 0.1 0.2 1.5 2.9 0.2 4.4 0.1 0.2 2.3 2.3 0.3 2.6 1.3

INCA/RWPI 3.7 0.2 0.6 1.5 1.3 0.2 13 0.1 1.4 1.0 1.1 0.5 0.6 2.4

LCA/QP 2.0 0.1 0.2 2.2 2.9 0.4 4.5 0.1 0.2 2.4 2.5 0.3 2.7 1.3

INCA/QP 3.7 0.1 0.6 1.4 1.2 0.3 13 0.1 1.3 2.4 2.0 0.4 0.7 1.9

Finally, Figure 6.35 shows the distributions of the number of iterations per time step
for each trajectory with the RWPI and QP solvers. It can be noted that the number of
iterations per time step are very similar in every case. The fact that ni is higher for LCA
in some cases is due to the large excursions and unstable flight conditions observed in
some trajectories. The maximum number of iterations possible with RWPI is 14, although
the maximum iteration count reached was 7. On the other hand, the iteration limit set
for the active set algorithm was 100, although the maximum iteration count reached was
23. This proves that INCA has a computational load on the RWPI and active set-based
QP algorithms statistically similar to traditional LCA, and therefore the INCA method
is well-suited for real-time applications.
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Figure 6.35: Distributions of the number of iterations per time step per trajectory.



Chapter 7

Conclusions and Final Remarks

Existing control allocation (CA) methods have a number of deficiencies that make them
unable to provide satisfactory performance in advanced control effector suites where non-
linearities and interactions between control effectors are not negligible. This is particularly
true for tailless configurations such as Lockheed Martin’s Innovative Control Effectors
(ICE) aircraft. Most conventional linear control allocation (LCA) methods work un-
der the assumption of linearity of the control effectors, which fails to capture important
nonlinear phenomena: parabolic yawing moment curves produced by horizontal control
surfaces, nonlinearities in extreme regions of the operational range of the actuators, and
interactions between control effectors. In addition to being strongly detrimental for the
overall performance of the flight control system (FCS), neglecting these effects results
in underexploiting the potential of highly redundant and coupled control effector suites
in terms of maneuverability and recoverability in faulty conditions. Previous research
has demonstrated the potential benefits of nonlinear CA, but the methods used were
computationally complex and not suitable for real-time implementation.

In this thesis an incremental CA concept has been implemented to perform accurate,
robust and computationally efficient nonlinear control allocation, which is suitable for
real-time implementation in flight control systems of highly manoeuvrable tailless air-
craft. This incremental nonlinear control allocation (INCA) concept works in an incre-
mental scheme, in which the high-level control system provides required increments in
control-induced moments that are mapped into commanded increments in control effec-
tor positions by an incremental nonlinear control allocator. The developed INCA system
is based on a control effectiveness Jacobian model that accounts for aerodynamic non-
linearities and interactions between control effectors, and does not require any further
aerodynamic model. An angular acceleration feedback loop reduces model dependency
and provides strong robustness against aerodynamic model mismatch. The incremental
control allocation problem can be solved with typical linear control allocation solvers,
which are computationally efficient enough for real-time implementation. In addition,
an actuator position feedback mitigates the coupling effects between control allocator
and actuator dynamics, typically problematic in conventional static control allocation
methods.

99
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The incremental scheme requires some implementation particularities. First, measure-
ments or estimations of the aircraft angular accelerations are required. These can be
achieved through state estimation methods or by direct measurement using angular ac-
celerometers. Both methods have been successfully applied in practice for incremental
control of aerospace vehicles in previous research. Second, a measurement or estimation
of the current control effector positions is required, which does not suppose major tech-
nical difficulties. Finally, the INCA method requires a nonlinear Jacobian model of the
control effectiveness of the control effectors. In this thesis, a Jacobian model derived from
a simplex B-spline aerodynamic model with 0th-order continuity between simplices has
been proven to provide excellent control allocation performance for the ICE aircraft. This
Jacobian model can provide in the order of 104 Jacobian calculations per second in real
time.

The performance of the INCA system in flight control systems was assessed and compared
to conventional LCA methods by designing an LCA- and an INCA-based flight control
systems for the ICE aircraft using a high-fidelity simulation model mainly produced from
wind tunnel empirical data. Both the LCA and INCA concepts were implemented with
two common linear control allocation solvers: the redistributed weighted pseudo-inverse
(RWPI) and quadratic programming (QP) solved with the active-set algorithm. The
controllers were implemented for body angular rate control in conjunction with outer
control loops. Actuator saturation and partial envelope protection were handled through
pseudo-control hedging (PCH).

A robustness analysis performed with INCA solved with active set-based QP showed
that the angular acceleration feedback provides the INCA-based control system with
strong robustness against Jacobian model mismatch in the form of model scaling and
offset. The control system showed very slight degradation in terms of control allocation
performance, smaller than 10% for offsets in the Jacobian model of ±30% of the maximum
observed values and scaling factors between 0.6 and 1.4. Control allocation performance
degraded to a maximum of 20% for the highest offset and scaling factors tested, of 50%
and 1.4 respectively. However, the system became unstable along the tested trajectory
for negative offsets of −30% and scaling factors below 0.8. The analysis also revealed that
the overall performance of INCA improves when the magnitude of the Jacobian terms is
underestimated (i.e. for scaling factors lower than 1), achieving maximum performance
at the lowest scaling factor tested of 0.6, close to the region of 0% offset. Magnitude
overestimation, in contrast, degrades the overall performance of the system. An observed
local minimum in the control effort revealed a possible mismatch in the Jacobian model
used in the simulations of about 15% in magnitude and 15% in offset.

The capabilities of the LCA- and INCA-based control systems were assessed by simula-
ting aggressive air combat aerobatic maneuvers with increasing control demands including
loopings, barrel rolls, aileron rolls and more. Four metrics were used to assess the perfor-
mance of the control systems: tracking error as an indicator of the overall performance
of the control system, allocation error as an indicator of the capability of the control
allocator to produce the required control moments, control effort as an indicator of the
capability of fulfilling the secondary objective of minimizing control effector deflections,
and the number of iterations per time step to compare computational load.

In all the tested maneuvers the performance of both LCA and INCA systems was consid-
erably better with the active set-based QP solver than with RWPI. The results showed
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substantial improvement of INCA in terms of tracking and control allocation performance
with respect to LCA. Due to the simplifications made to linearize the control effectors
model for LCA, several negative effects were observed. First, neglecting control effec-
tor interactions led to undesired oscillations, large excursions of the controlled variables
from the reference commands, an instability in the most demanding maneuvers. Second,
neglected parabolic yawing moments of the elevons and leading edge flaps were seen by
the LCA-based system as external disturbances which had to be compensated by other
control effectors, difficulting adequate production of the required control moments. Last,
due to model simplifications, LCA underexploited available sources of control power such
as elevons and leading edge flaps in the lateral-directional channels. In contrast, INCA
exploited the most nonlinear and coupled control effectors such that the control com-
mands could be achieved with smaller moments, and these were produced faster and
more accurately. The overall control performance observed with INCA was excellent and
remarkably superior than the observed in the results obtained with LCA.

Overall, with the QP solver INCA outperforms LCA by a factor of 3.0 in terms of tracking
performance and by a factor of 4.5 in terms of control allocation performance. This
improvement is particularly relevant in the longitudinal and directional channels. In two
occasions INCA was capable of following with excellent performance maneuvers that could
not be followed by the LCA-based controller. The total control effort increased by a factor
of 1.8 with INCA with respect to LCA, mostly due to a substantially larger use of the
pitch flap by the former. Also, more extensive use of nonlinear control effectors such as the
outboard leading edge flaps was observed with INCA. The number of iterations per time
step was statistically similar for both LCA and INCA with RWPI and QP, demonstrating
that INCA has no effect on the computational load of the solvers tested in the studied
cases. This proves that INCA is well-suited for real-time applications in FCS.

In sight of the promising results obtained in this research, the INCA concept offers many
possibilities for future improvement and testing. First, in fault-tolerant flight control sys-
tems the control effectors are usually forced to operate in extreme nonlinear regions of
their operational range, where INCA performs substantially better than LCA. In addi-
tion, INCA can capture secondary-axis parabolic yawing moments and beneficial control
interactions such as flow redirection using spoiler-slot deflectors. This opens new possi-
bilities for fault-tolerant flight control systems by making available additional sources of
redundant control power to be used to recover flight in faulty conditions. For these rea-
sons, INCA is expected to be highly beneficial in terms of recoverability of fault-tolerant
control systems under failure conditions by better exploiting the available redundancy of
the control effectors suite. Hence, it is highly recommended to extend the INCA-based
control system into a fault-tolerant flight control system with online model identification.
Second, the order of continuity of the spline model used in this thesis was 0, and therefore
the overall performance of the INCA-based control system can be further improved by
increasing the order of continuity of the aerodynamic spline model of the ICE aircraft.
This refinement of the model is also recommended as future work. Third, this thesis
has focused on attitude control, whereas translational control is only addressed with a
simple auto-throttle controller. However, the ICE control suite offers a lot of promising
capabilities for translational control, especially with spoiler-slot deflectors, which are the
most nonlinear and coupled control effectors. Thus, expanding the current control system
with a translational control module is proposed as future work. Fourth, further and most
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sophisticated flight envelope protection is expected to be highly beneficial to the overall
performance of the control system in extreme maneuvers. Flight envelope estimation and
protection is also recommended as future work. Finally, full state feedback was assumed
in this thesis. However, sensor dynamics, delays, noise and the presence of sensor fusion
and state estimation algorithms in the control loop are expected to have a strong impact
on the performance of the system. Thus, it is highly recommended to include all aspects
regarding sensors and state estimation issues in future research.

Finally, the most promising perspectives in terms of further study, research and develop-
ment of the INCA concept are regarding practical implementation through prototyping
and flight testing. In sight of the promising results obtained in this thesis, Lockheed
Martin showed interest in the possibility of setting up a collaboration framework to test
the INCA-based flight control system in a 1:7 scale model of the ICE aircraft, which is
planned to be manufactured by the US Air Force Academy in the upcoming years. Work-
ing towards this goal is strongly recommended as the main direction of this new research
project, implying a great deal of fruitful research to be conducted on the way. Not only
eventual flight tests would contribute towards the goal of practical implementation of
incremental flight control and nonlinear control allocation systems in the aerospace field,
but would also suppose a meaningful scientific contribution towards advanced, robust,
fault-tolerant, safe and high-performance vehicle control in its broadest sense.
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Incremental Nonlinear Control Allocation for a Tailless

Aircraft with Innovative Control Effectors
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Conventional linear control allocation (LCA) methods fail to provide satisfactory per-
formance in flight control systems (FCS) for aircraft with highly nonlinear and coupled
control effector suites, especially for tailless aircraft with strong interactions between con-
trol effectors. This is due to the inability of linear effector models to capture nonlinear
and coupled control forces and moments. This paper implements an incremental nonlin-
ear control allocation (INCA) approach, which can capture nonlinearities and interactions
of control effectors while being solvable with simple and computationally efficient linear
control allocation algorithms. This makes INCA suitable for real-time control allocation
in FCS. This incremental reformulation of the control allocation problem is based on a
Jacobian model of the control effectors, and relies on angular acceleration measurements
to reduce model dependency. In addition, it operates based on real-time measurements
of the actuator positions, which mitigates typical problems related to couplings between
control allocators and actuator dynamics. In this paper, LCA- and INCA-based nonlinear
FCS are designed for the Innovative Control Effectors (ICE) aircraft, a highly maneuver-
able tailless aircraft with 13 highly nonlinear, interacting and axis-coupled control effectors.
Real-time simulation results show that INCA dramatically improves tracking and control
allocation performance, thus improving maneuverability and exploiting the full potential
of innovative control effector suites.

Nomenclature

Ax, Ay, Az Specific forces in body frame
b Wingspan
B Control effectiveness matrix
c̄ Mean aerodynamic chord
C Dimensionless aerodynamic coefficients
dc Pseudo-control input
g Gravitational acceleration
I Aircraft inertia matrix
J Cost function
l,m, n Aerodynamic moments in body frame
M Mach number
p, q, r Pitch, roll and yaw angular rates
S Wing surface
T Thrust force vector
t Time
u Control input vector
u, v, w Airspeed components
V True airspeed
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X,Y, Z Aerodynamic forces in body frame
x State vector

Symbols

α Angle of attack
β Sideslip angle
δ Control effector positions
ν Virtual control input
ω Body angular rates
τ Aerodynamic moments
∇ Jacobian matrix
φ, θ, ψ Roll, pitch and yaw angles
ρ Atmospheric pressure

I. Introduction

Given the inherent benefits of highly redundant and axis-coupled control effector suites, aircraft over-
actuation is an increasingly common practice in aerospace design. Over-actuated systems have more control
inputs than controlled variables, and therefore a given control command can usually be achieved by multiple
combinations of control effector positions. Control allocation (CA) algorithms automatically distribute con-
trol commands over the available set of control effectors, aiming to optimally exploit the potential of the
redundant control suite in terms of manoeuvrability and efficiency.

Most conventional control allocation methods operate under the assumption that a linear relationship
exists between actuator positions and control-induced moments. Common examples of such methods are the
redistributed weighted pseudo-inverse,1,2 daisy chaining,3 direct allocation4–10 and numerical optimization-
based approaches such as linear programming11–14 and quadratic programming.10,13 The assumption of
linearity yields a very tractable affine formulation of the control allocation problem, which can be solved with
efficient linear algorithms suitable for real-time implementation in flight control systems. This assumption,
however, has important shortcomings.

First, linear models are unable to capture interactions between control effectors. Although such couplings
are usually negligible in conventional actuator suites, more innovative configurations feature actuators posi-
tioned downstream of others, resulting in important nonlinear interactions. In some cases, such interactions
can be positively exploited such as in the case of slots, which can be used to recover control effectiveness
of trailing-edge control surfaces at high angles-of-attack (AoA). In other cases, these interactions can have
negative effects on control effectiveness, such as in the case of leading-edge actuators that disturb the down-
stream airflow. Although the issue of control effector interactions was noticed and addressed in Ref. 15,
the applicability of the proposed method is limited to interactions between two control effectors that can be
described by a bilinear function.

Second, independently-moving control surfaces produce secondary-axis yawing moments by generating
drag through a lever arm with respect to the aircraft longitudinal axis. Although conventional aircraft
use a rudder for directional control, tailless configurations exploit these secondary-axis moments as a main
source of directional control power. These moments can also be used in conventional actuator suites to
regain directional controllability after rudder failure. Common actuators using this principle are all-moving
wing tips, ailerons and elevons.16,17 Whereas they produce locally linear rolling moments, they have highly
nonlinear contributions to yawing moment, especially at low AoA where parasitic drag dominates induced
drag effects. Secondary-axis yawing moments are generally asymmetric parabolic functions of the actuator
deflections, which cannot be captured with linear effector models. This shortcoming has two negative effects
on control allocation performance. First, the yawing moments not included in the on-board aerodynamic
model are seen as external disturbances by the control system, and need to be mitigated with other sources
of directional control power. Second, the ability to positively exploit these sources of yawing moment is lost,
which is particularly critical in tailless configurations. This problem was addressed in Ref. 18 by modelling
the control effectors with piecewise linear functions. Although the potential benefits of nonlinear CA with
respect to linear methods were clearly demonstrated, the proposed method required solving a mixed-integer
programming problem, which is extremely slow due to its computational complexity, and therefore not
suitable for real-time implementation.
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Finally, although the control moment curves of conventional actuators are locally linear for small deflec-
tions, nonlinearities exist in extreme regions of their operational range. Failing to capture such nonlinearities
results in a model mismatch causing control allocation error, which needs to be mitigated by the robust-
ness of the flight control laws.19 This is detrimental to the overall performance of the system, especially
in faulty conditions where the non-faulty actuators are forced to operate within extreme regions of their
moment curves. This problem was addressed in Ref. 19 by introducing an affine control effector model with
intercept correction. This method is not applicable when the control-induced moments are quadratic, have
non-monotonic behaviour, or when the slope of the control effectiveness curves becomes small. Despite its
limited applicability, this method demonstrated the potential benefits of considering nonlinearities in control
moment curves.

In most conventional aircraft configurations the inaccuracies introduced by the assumption of linearity
are relatively small and can be acceptably absorbed by robust control systems. However, linear control
allocation fails to provide adequate performance in more advanced and innovative designs, especially in
tailless aircraft, which achieve directional control mainly through secondary-axis parabolic yawing moments.
A very relevant example is Lockheed Martin’s Innovative Control Effectors (ICE) research aircraft, a tailless
flying wing with a highly redundant control effector suite of 13 actuators, which produce highly nonlinear
and cross-axis coupled moments and exhibit strong interactions.

Nonlinear control allocation has been explored as a solution with different approaches such as nonlinear
direct allocation,16 mixed-integer programming17 and nonlinear programming.20 Although the proposed
methods clearly demonstrated important improvements over linear approaches, nonlinear optimization algo-
rithms are highly computationally complex and not suitable for implementation in real-time systems.

This paper implements an incremental nonlinear control allocation (INCA) method based on a reformu-
lation of the control allocation problem in incremental form, exploiting the time scale separation principle.
This method is based on a nonlinear Jacobian model of the control effectors, which can capture actuator
nonlinearities, including interactions between control effectors. This, in turn, reduces the model dependency
of the nonlinear flight control system, which makes it more robust against model uncertainties. The crux
of this method is that it operates in an incremental scheme, which allows the nonlinear CA problem to be
solved with typical linear control allocation algorithms that are computationally efficient enough for real-
time implementation. Moreover, unlike most typical CA algorithms, INCA uses information of the current
position of the actuators, which are dynamically driven towards their optimal positions through small incre-
ments. This mitigates the negative impact of actuator dynamics in control allocation, which has been focus
of extensive research in the past.22–26

This paper demonstrates substantial benefits of INCA in terms of flight control and control allocation
performance for innovative aircraft designs with respect to linear control allocation (LCA) methods. For this,
an LCA-based and an INCA-based nonlinear flight control systems were designed for the ICE aircraft, and
their performance was evaluated through simulation using the high-fidelity simulation model described in
Ref. 27. The simulation model includes actuator dynamics, in addition to position and rate constraints. Both
LCA- and INCA-based flight control systems were implemented with two typical linear control allocation
solvers to compare performance.

II. The Control Allocation Problem

Consider the aircraft dynamics expressed in the general form

ẋ = f(x) + g(x) τ (1)

where x∈Rn is the state vector and τ ∈Rm the aerodynamic inputs to the equations of motion. Control
allocation in aerospace applications typically concerns attitude control, τ ∈ R3 being the aerodynamic mo-
ments in body frame. This problem is commonly referred to as the three-moment problem. The aerodynamic
moments are generally nonlinear functions of the states and the control effector positions δ∈Rp:

τ = h(x, δ) (2)

The control effectors are subject to rate and position constraints

δmin ≤ δ ≤ δmax (3)

|δ̇| ≤δ̇max (4)
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Figure 1. Classical control scheme for over-actuated systems.

The control allocation problem consists on determining the control effector positions δ that produce a
given moment command τ c. Over-actuated systems have more control effectors than controlled variables, i.e.
p > m, and therefore the system of Eqs. (2) is underdetermined with p−m degrees of freedom. When multiple
solutions that satisfy τ c exist, secondary objectives might be defined to determine an optimal solution. As
shown in the classical control scheme for over-actuated systems in Figure 1, the moment commands are
typically provided by a high-level control system. The choice of a suitable control allocation approach is
strongly application-dependent. Very extensive surveys giving a broad overview of currently available CA
methods exist in the literature, see Refs. 1, 2, 13,28.

In aerospace systems, control allocation algorithms are run in flight control computers (FCC) in discrete-
time, and the control distribution is computed at each time step for the current state x0. Given a measured
or estimated x0, the control effectiveness function h(x, δ) becomes a generally nonlinear static mapping
h(x0) : Rp → Rm. Thus, the actuator rate limits can be translated into local position limits for the current
time step as

∆δmax = δ̇max∆t (5)

The effective local position limits at a given time step are

δ ≤ δ ≤ δ̄ (6)

with

δ= min
(
δmax, δ0 + δ̇max∆t

)

δ= max
(
δmin, δ0 − δ̇max∆t

) (7)

the local upper and lower bounds of the actuator positions.
For a given time step, the static control allocation problem is formulated as: given the current state x0,

the control effector model τ = h(x0, δ) and a moment command τ c, determine a control vector δ such that

h(x0, δ) = τ c

subject to δ ≤ δ ≤ δ
(8)

Note that the inverse problem of computing δ given τ c is ill-posed and generally its solution is not unique.
In order to solve the inverse CA problem in Eq. (8), commonly used approaches assume that h(x, δ) is linear
in the inputs, and thus can be expressed using a control effectiveness matrix B(x) ∈ Rm×p in the form

τ = h(x, δ) = B(x) δ (9)

This formulation of the problem enables the use of computationally efficient linear solvers such as gener-
alized pseudo-inverses, linear programming or quadratic programming. However, as discussed above, the
assumption of linearity neglects interactions between control effectors, fails to capture parabolic moment
curves and neglects nonlinearities in the control-induced moments. Although the assumption is acceptable
for conventional control effector configurations, it is not valid for advanced configurations such as the ICE
aircraft. In aerospace control CA algorithms are required to run in real time at frequencies in the order of
100Hz,10 a requirement that is not met by current nonlinear control allocation approaches.
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III. Incremental Nonlinear Control Allocation

The incremental control allocation approach implemented in this paper is based on a reformulation
of the control allocation problem in incremental form and the application of the time scale separation
principle. Incremental nonlinear control has been successfully implemented in aerospace applications under
the incremental nonlinear dynamic inversion (INDI) scheme,29–32 showing very promising advantages such
as a substantial reduction of model dependency.

III.A. The Control Problem in Incremental Form

Consider again the nonlinear system dynamics in Eq. (1). The aerodynamic moment inputs τ can be
separated into an exclusively state-dependent part and an input-depended part

τ = τ a + τ δ (10)

where τ a contains the aerodynamic moments generated by the airframe, and τ δ is the control effector
model, providing the control-induced moments produced by the actuators. The control effector model can
be generally expressed as the nonlinear mapping

τ δ = Φ(x, δ) (11)

Thus, the system dynamics can be rewritten as

ẋ = [f(x) + g(x) τ a] + g(x) Φ(x, δ) = F(x) + g(x) Φ(x, δ) (12)

When the control system works in a discrete-time scheme, the dynamic equations of the system can be
locally linearized at every time step around the current state x0 and actuator positions δ0 as a first-order
Taylor expansion:

ẋ ≈ ẋ0 +
∂

∂x
[F(x) + g(x) Φ(x, δ)]

∣∣∣∣
δ=δ0
x=x0

(x− x0) +
∂

∂δ
[F(x) + g(x) Φ(x, δ)]

∣∣∣∣
δ=δ0
x=x0

(δ − δ0) (13)

The time scale separation principle states that, for systems where the derivatives of the states have
significantly faster dynamics than the states themselves, the term (x−x0) is small enough to be neglected at
high sampling rates. This principle commonly applies to systems where δ can change significantly faster than
x over a time step, which is the case when the influence of δ on the derivatives of the states is significantly
higher than the influence of the states. This has been proven to be true for aerial vehicles such as aircraft,30

helicopters31 and quadrotors32 at common sampling frequencies of 100 Hz.
Applying the time scale separation principle and introducing the virtual control input ν(x)= ẋ, Eq. (13)

can be simplified to

ν(x) = ẋ ≈ ẋ0 + g(x0)
∂Φ(x0, δ0)

∂δ
∆δ (14)

At this point, the system dynamics can be linearized with an incremental nonlinear dynamic inversion loop
by inverting the dynamics in Eq. (14):

∆δc =

[
∂Φ(x0, δ0)

∂δ

]−1

g(x)
−1

[ν(x)− ẋ0] (15)

This control law linearizes the response between the virtual control input ν(x) and x. Moreover, model de-
pendency is significantly reduced with respect to typical nonlinear dynamic inversion (NDI) control laws,33–35

since the INDI control law is independent of the aerodynamic derivatives in τ a. This reduction in model
dependency is compensated by feeding back acceleration measurements ẋ0.

In over-actuated systems the Jacobian ∂Φ(x, δ) /∂δ is a non-square m×p matrix, and therefore it cannot
be inverted to implement the incremental control law in Eq. (15). However, a control allocation scheme can
be implemented by reformulating the control allocation problem in incremental form with Eq. (14).
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Figure 2. Incremental nonlinear control allocation-based control scheme for over-actuated systems.

III.B. The Control Allocation Problem in Incremental Form

Note that Eq. (14) establishes an affine relationship between the virtual control input ν(x) and increments
in actuator positions ∆δ. The nonlinearities and interactions of the control effectors are still captured by
the Jacobian matrix ∂Φ(x0, δ0) /∂δ, which can be updated for the current state and actuator positions at
every time step. To simplify notation, let the Jacobian matrix of Φ(x, δ) with respect to δ be denoted as

∇δΦ(x, δ) =
∂Φ(x, δ)

∂δ
(16)

and define the pseudo-control input dc ∈ Rn

dc = g(x)
−1

[ν(x)− ẋ0] (17)

The INCA problem is formulated as: given the current state x0, the current actuator positions δ0,
acceleration measurements ẋ0 and a pseudo-control input command dc = g(x)

−1
[ν(x)− ẋ0], determine an

increment in the control input vector ∆δ such that

∇δΦ(x0, δ0) ∆δ = dc

subject to ∆δ ≤∆δ ≤∆δ
(18)

where ∆δ and ∆δ are the most restrictive upper and lower bounds of the local position and rate constraints
of the actuators, translated into local incremental constraints. Note that the INCA control allocator provides
required increments of the actuator positions, which are added to the current actuator positions to reach the
absolute position vector: δ = δ0 + ∆δ. The top-level INCA-based control scheme is depicted in Figure 2.

The main advantage of INCA is that the incremental problem formulated in Eq. (18) is linear in the
increments of actuator positions, and therefore can be solved with simple and efficient linear methods, such
as the redistributed weighted pseudo-inverse or quadratic programming. The fact that only local increments
∆δ are determined at each time step implies that the Jacobian ∇δΦ(x, δ), which captures nonlinearities
and control effector interactions, can be updated for the new actuator positions at every time step while the
actuators are dynamically driven towards their optimal positions. Thus, the direction of the increments of
the control vector may change at every time step, in contrast to conventional LCA methods, which compute
absolute positions at each time step. Additionally, note that actual actuator positions δ0 are fed back into the
system, and therefore the allocation is always performed based on actual actuator position measurements,
which mitigates the negative impact of actuator dynamics. Most conventional CA methods, in contrast,
assume δc = δ0, resulting in negative coupling effects between control allocators and actuator dynamics.36

Note that an incremental formulation of the control allocation problem was derived for the particular
case of multivariate spline-based control systems in Ref. 21. In this paper, the method is generalized
to incremental flight control systems based on any kind of on-board aerodynamic model, and focuses on
controller-related aspects such as real-time performance, robustness, model dependency, actuator dynamics
and saturation handling.

III.C. Actuator Constraints in Incremental Form

The incremental formulation of the control allocation problem requires the absolute position and rate con-
straints of the actuators to be translated into equivalent local constraints in incremental form. Under a
discrete-time scheme, rate limits are directly mapped into position limits over a time step ∆t as

∆δrmax = δ̇max∆t

∆δrmin = −δ̇max∆t
(19)
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Figure 3. ICE control effectors suite.

Similarly, absolute position limits can be translated into local constraints imposed over a time step as

∆δpmax = δmax − δ0

∆δpmin = δmin − δ0

(20)

The local upper and lower bounds of the actuator position increments at a given time step are the most
restrictive of the local rate and position limits:

∆δ = min
(
δ̇max∆ts, δmax − δ0

)

∆δ = max
(
−δ̇max∆ts, δmin − δ0

) (21)

IV. The ICE Aircraft Model

The INCA method was implemented in a simulation framework to design a flight control system for
Lockeed Martin’s ICE aircraft, a highly manoeuvrable tailless aircraft with an unconventional suite of control
effectors. This configuration presents substantial control challenges for which LCA methods are obsolete.
In this section the ICE configuration is presented, and a description of the high-fidelity model used in
simulations the is given.

IV.A. The ICE Control Effectors Suite

The ICE configuration was developed as one of the design concepts for the ICE program conceived in 1993 by
the Flight Control Division of the U.S. Flight Dynamics Directorate, which aimed to meet new requirements
in terms of improved stealth characteristics, reduction of airframe weight, improvement of lift-to-drag ratio
and high manoeuvrability.37 The result was an over-actuated 65-deg sweep, highly maneuverable, supersonic
tailless flying wing with 13 innovative control effectors. Refs. 38,39 provide technical insight on this program.

The ICE control effectors suite includes inboard and outboard leading-edge flaps (LEF) providing lateral-
directional control power at high AoA, all-moving wing tips (AMT) as one of the main sources of lateral-
directional control, and fluidic multi-axis thrust vectoring (MTV) as an additional source of directional
and longitudinal control power. It also includes pitch flaps (PF) for longitudinal control (only symmetric
deflections are possible) and independent elevons, mainly producing longitudinal and lateral control power.
Finally, the ICE aircraft has two spolier-slot deflectors (SSD). Unlike conventional spoilers, SSDs open a
slot between the lower and upper wing skins when deflected, allowing the redirection of the air flow at high
AoA to recover control effectiveness of the trailing-edge actuators. SSDs provide improved lateral-directional
control effectiveness at high AoA and transonic flight with respect to conventional spoilers. The SSDs are
placed upstream of most trailing-edge control surfaces, and therefore have a strong influence on their control
effectiveness at low AoA. The configuration of the ICE control effectors is shown in Figure 3.

The dynamics of the control effectors are modeled as second-order transfer functions. A low-bandwidth
and a high-bandwidth transfer functions are used depending on the effectors:
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Hl(s) =
(18)(100)

(s+ 18)(s+ 100)
(22) Hh(s) =

(40)(100)

(s+ 40)(s+ 100)
(23)

The position limits, no-load rate limits and dynamics of the ICE control effectors are listed in Table 1.

IV.B. Control Challenges

The ICE configuration presents a series of challenges regarding flight control and stability. In conventional
control suites, lateral-directional stability is mainly provided by the vertical stabilizer, and quasi-uncoupled
yaw control power is generated by the rudder. The elimination of a vertical tail in tailless designs implies
a substantial relaxation of directional stability and a reduction of directional control power.40 Control and
stability issues have been extensively addressed for the ICE aircraft.14,37,41–44

A more unaddressed challenge of the ICE configuration is the impossibility to successfully use linear
control allocation methods to optimally distribute control commands and fully exploit the capabilities of its
control suite. This impossibility is due to a number of reasons. First, as is common in tailless configurations,
directional control power is mainly produced with horizontal control surfaces, and therefore yawing moment
curves are mainly parabolic. These cannot be captured by linear effector models unless the concerned
actuators are restricted to operate in one direction, so LCA methods have serious issues regarding directional
control in tailless configurations. An example of a parabolic yawing moment curve of the left elevon influenced
by the AMT deflection from the ICE aerodynamic database is shown in Figure 4(a).

Second, due to the high number of control effectors, the mechanisms used to produce control moments
and the proximity between some control surfaces, the actuators exhibit strong nonlinear interactions. This is
particularly notable for trailing-edge actuators. In some cases, such interactions may even cause a change of
sign in the slope of the moment curves of some actuators, such as in the examples shown in Figures 4(a)-4(c).
Also, note that control effectiveness of trailing-edge surfaces is rapidly lost for even small deflections of the
SSDs at low AoA, as observed in Figure 4(b).

Finally, nonlinearities at the extreme regions of the control moment curves are observed in Figure 4(b).
The dashed line represents a linear approximation of the control moment curve for δs =0 deg. It is shown that
that the model mismatch becomes significant close to the actuator position limits. This error is particularly
critical in failure conditions, where the non-faulty actuators are forced to operate in extreme regions of the
moment curve. The factors discussed above make the assumption of linearity in control allocation obsolete
in the case of the ICE aircraft.

IV.C. The ICE High-Fidelity Simulation Model

The high-fidelity nonlinear simulation model used in this paper was released by Lockheed Martin to encour-
age control-related research. It is a six degrees-of-freedom (6-DoF) aerodynamic model developed mainly
from wind tunnel data, and includes nonlinear control effector interaction effects, dynamic derivatives, aeroe-
lastic effects and hinge moment derivatives. The aerodynamic model provides dimensionless coefficients for
aerodynamic forces and moments as a summation of nonlinear terms:

Ci =
19∑

j=1

Cij (δ, α, β,M,ω) (24)

with i = {l,m,n,X,Y,Z} and where the nonlinear terms Cij(δ, α, β,M,ω) are stored in lookup tables. A
detailed description of the model is given in Ref. 27.

Table 1. Dynamic properties of the ICE control effectors.

Control effector Notation Position limits [deg] Rate limit [deg/sec] Dynamics

Inboard LEF δlfi, δrfi [0, 40] 40 Hl(s)

Outboard LEF δlfo, δrfo [-40, 40] 40 Hl(s)

AMT δla, δra [0, 60] 150 Hh(s)

Elevons δle, δre [-30, 30] 150 Hh(s)

SSD δls, δrs [0, 60] 150 Hh(s)

PF δpf [-30, 30] 150 Hh(s)

MTV δptv, δytv [-15, 15] 150 Hh(s)
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(a) Yawing moment curve of the left
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(c) Total rolling moment coefficient, in-
cluding moments from the airframe, for
δlfo = 30 deg, influenced by the inboard
LEF. β=0.

Figure 4. Examples of control effectiveness from the ICE aerodynamic database.

IV.D. Multi-Axis Thrust Vectoring Model

The MTV model considers the direction of the pitch δptv and yaw δytv deflection angles of the thrust vector
such that positive deflections produce negative pitching and yawing moments. Using this convention, the
projections of the thrust vector T onto the body frame for arbitrary deflections δptv and δytv are represented
in the diagram in Figure 5. The MTV force T and moment τT vectors are given by Equations (25) and
(26), where dn=18.75 ft is the moment arm of the thrust force.

T =



Tx

Ty
Tz


 = T




cos(δptv)/ cos(δytv)

cos(δptv) tan(δytv)

sin(δptv)


 (25) τT =



τxT

τyT
τzT


 = −Tdn




0

sin(δptv)

cos(δptv) tan(δytv)


 (26)

V. Control Allocation Solvers

The LCA- and INCA-based flight control systems designed in this paper were implemented with two
typical LCA methods that have been proven to be suitable for real-time implementation. The selected
methods are the redistributed weighted pseudo-inverse (RWPI) and quadratic programming (QP) solved
with the active set algorithm. These methods are described in this section.

V.A. Redistributed Weighted Pseudo-Inverse

The RWPI method consists on using an explicit solution of the unconstrained LCA problem and iterating
over the result if actuator constraints are violated. The explicit solution to the unconstrained problem can
be derived analytically if the constraints from Eq. (8) are removed.

The unconstrained control allocation problem consists on finding a control vector u that satisfies a control
demand dc while minimizing a secondary objective formulated as a quadratic cost function that penalizes
displacement from a preferred control vector up. A linear relationship Gu=dc is assumed. Note that here
the control vector is denoted as u to keep de discussion general, and corresponds to δ for LCA and to ∆δ for
INCA. Also, the matrix G corresponds to the control effectiveness matrix B(x) in LCA and to the Jacobian
matrix ∇δΦ(x, δ) in INCA; and the pseudo-control input dc corresponds to an absolute moment command
τ c in LCA and to an incremental moment command ∆τ c in INCA.

The minimization problem is formulated using a `2 norm cost function as: given an operating point x0,
an affine relationship Gu=dc, a control demand dc and a preference vector up determine a control input u
such that

min
u
J =

1

2
(u− up)

T
Wu (u− up)

subject to Gu = dc

(27)
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T

Tcos(δptv)
δptv
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Figure 5. Projections of the thrust vector in body frame.

where Wu is a weighting matrix that penalizes to the use of some effectors over others. For the secondary
objective, the most common approach is minimizing the control effort by setting up = 0.

Analytically solving (27) with Lagrange multipliers1,13,45 the explicit biased weighted pseudo-inverse
solution is found:

u = up +G] (dc −Gup) (28)

with
G] = W−1

u GT
(
GW−1

u GT
)−1

(29)

a generalized weighted pseudo-inverse. This method provides a solution to the unconstrained problem as
long as it exists and GGT is not rank-deficienta. Note that the weighted pseudo-inverse solution does not
consider local position and rate constraints, and hence it requires further processing.

The RWPI method consists on first computing the weighted pseudo-inverse solution with Eq. (28). If the
found u is within the local actuator limits, the solution is kept. Otherwise, if one or more effectors violate
constraints, the next steps are followed. First, the columns in G corresponding to the actuators that violate
the limits are zeroed, forming an auxiliary matrix Gsat. Second, the values of the saturated effectors are
placed in the preference vector up, forming an auxiliary preference vector up,sat. Then, the redistributed
weighted pseudo-inverse solution is re-computed as follows:

u = up,sat +G]sat (dc −Gup,sat) (30)

This process is repeated until all effectors are saturated or a solution within the local limits is found. The
maximum number of iterations within a time step corresponds to the number of control effectors available plus
one. Despite being suboptimal,10 the pseudo-inverse method is a very popular44,46–49 solution for real-time
control allocation in safety-critical systems due to its simplicity, reliability and computational efficiency.

V.B. Quadratic Programming

The CA problem can be also solved as a numerical optimization problem with explicit constraints. In such
cases, the common approach is to minimize a multi-objective cost function defined with a given norm, subject
to local actuator constraints. When the `1 norm is chosen, the optimization problem can be solved as a
linear program (LP).11–14 However, as discussed in Ref. 10, LP-based solutions tend to exploit a smaller
number of control effectors, whereas solutions found using `2 and `∞ norms tend to distribute the control
effort over a larger number of actuators. For this reason, `2- and `∞-based solutions are more popular.28

A very common approach is using the `2 norm to formulate the control allocation problem as a multi-
objective constrained optimization problem, solved as a quadratic program:

min
u
J = Wd ||Gu− dc||22 + ε Wu ||u− up||22

subject to u ≤ u ≤ u
(31)

aControl suites for mechanical systems usually avoid control effector deficiencies by design.
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where ε is a scalar, selected sufficiently small to prioritize the minimization of the allocation error (Gu−dc)
over the secondary objective of minimizing (u−up), and Wd and Wu are nonsingular weighting matrices.

Many numerical algorithms are available to solve the QP problem in real time, such as fixed-point
methods,50,51 active set methods52 and interior-point methods.53,54 In Ref. 54, the authors concluded
that the active set algorithm converges exactly to the optimal solution in a finite number of steps and is
computationally efficient for control allocation problems of small and medium size, whereas interior-point
algorithms perform better in problems of larger size, despite requiring significantly more computations. In
this paper, the QP problem is implemented with the active set algorithm described in Ref. 52.

VI. LCA-Based Flight Control System Design

A conventional nonlinear attitude control system based on aerodynamic model inversion and LCA was
designed for the ICE aircraft as a baseline to assess the performance of INCA-based flight control systems.
The control system, including the linear control effector model, its adaptation and the inner loop control
laws is described in this section.

VI.A. Linear Control Effectors Model

As discussed above, LCA methods require an aerodynamic model in which the control-induced moments are
affine in the actuator positions. Note, however that the aerodynamic and control derivatives can remain
nonlinear functions of α, β, M and ω. In order to de-couple the inputs, the interaction effects between
control effectors were eliminated from the original database. Linear regressors were used to identify the
aerodynamic coefficients and control derivatives as functions of α, β, M and ω at the data points available
in the ICE aerodynamic database. The obtained derivatives were stored in lookup tables. The structure of
the affine model is

Cl = Cla(α, β,M,ω) +
13∑

i=1

∆Cl,δi(α, β,M) δi

Cm = Cma
(α, β,M,ω) +

13∑

i=1

∆Cm,δi(α, β,M) δi

Cn = Cna(α, β,M,ω) +

13∑

i=1

∆Cn,δi(α, β,M) δi

(32)

with ∆Cj,δi the control derivative of j={l,m, n} with respect to the control effector δi, and

Cla(α, β,M,ω) = Cl,α(α,M) + Cl,β(α, β,M) +
pb

2V
Cl,p(α,M) +

rb

2V
Cl,r(α,M)

Cma
(α, β,M,ω) = Cm,α(α,M) + Cm,β(α, β,M) +

qc̄

2V
Cm,q(α,M)

Cna
(α, β,M,ω) = Cn,α(α,M) + Cn,β(α, β,M) +

pb

2V
Cn,p(α,M) +

rb

2V
Cn,r(α,M)

(33)

the dimensionless nonlinear moments generated by the airframe. Examples of identified control derivatives
scheduled for α and β are shown in Figure 6.

As discussed earlier, the assumption of linearity in control-induced moments is accurate enough in some
cases (see the pitching moment characteristic of the pitch flap in Figure 7(a)), but in other cases it fails
to capture important effects. See, for instance, the rolling moment characteristic of the outboard LEF in
Figure 7(b) and the parabolic yawing moment curve of the right elevon in Figure 7(c).

The control derivative terms of the MTV can be derived by taking a first-order Taylor expansion of the
terms τyT and τzT in Eq. (26) around δptv =δytv =0, yielding the affine approximation

τT = −Tdn




0

δptv

δytv


 (34)
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(a) Pitching moment derivative of right SSD.
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(b) Yawing moment derivative of right AMT.

Figure 6. Examples of control derivatives scheduled for α and β.
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(c) Yawing moment of right elevon.

Figure 7. Affine control effector model compared to original aerodynamic data.

Wrapping up the control derivative terms into a control effectiveness matrix B(x), the aerodynamic
moments can be expressed in control-affine form as

τ = τ a + τe =
1

2
ρV 2S






bCla
c̄Cma

bCna


+B(x) δ


 (35)

The actuator constraints are translated into local constraints as in Eq. (7). The MTV vector is subject
to a circular constraint imposed over the `2 norm of the vector δtv = (δptv, δytv). When the MTV vector
violates the circular constraint, it is re-scaled into the boundary of the feasible subspace by keeping the
original direction of δtv:

δ′tv =
δtvmax

||δtv||
δtv (36)

VI.B. Angular Rate Control Loop

The innermost control loop controls the body angular rates ω = [p q r] through commanded moments τ c.
Consider the aircraft rotational dynamic equations

ω̇ = I−1 (τ − ω×Iω) = I−1τ e + I−1 (τ a − ω×Iω) (37)

where I is the aircraft inertia matrix. The aerodynamic moments produced by the airframe include the
contributions from the trim positions of the actuators:

τ a =
1

2
ρV 2S






bCla
c̄Cma

bCna


+B(x) δtrim


 (38)
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Setting the angular acceleration as a virtual control input νω(x)= ω̇ and solving Eq. (37) for the required
moments τ c=τ e leads to the model-based inversion control law

τ c = Iνω(x)− 1

2
ρV 2S






bCla
c̄Cma

bCna


+B(x) δtrim


+ ω×Iω (39)

which linearizes the system between the virtual control input νω(x) and ω. The required moments τ c
are distributed over δ by a linear control allocator. The linearized system can now be controlled through
the virtual control input νω(x) such that the output follows a reference command ωc, by using an outer
state-feedback linear control law

νω(x) = KωP
(ω − ωc) +KωI

∫
(ω − ωc) dt+KωD

(ω̇ − ω̇c) (40)

VI.C. Adaptation of the Linear Model

As previously shown, the identified linear model fails to capture nonlinear moments, which is particularly
critical for parabolic and non-monotonic moment curves (e.g. those shown in Figures 7(b) and 7(c)). Since
such errors can cause instability of the closed loop, the linear model needs to be adapted to ensure minimally
acceptable performance.

The AMT, inboard LEF and SSD are restricted to deflect in one direction only. Thus, their yawing
moment curves are half-parabolas, which can be approximated with a linear model. The model mismatch is
then compensated by the robustness of the controller. The elevons and outboard LEF, however, can deflect in
two directions, thus having parabolic yawing moment curves. Since these actuators are not primary sources
of directional control power, their yawing moment derivatives were set to zero in the control effectiveness
matrix. As a consequence, these effectors are used to produce pitch and roll only, and their secondary-axis
yawing moments are seen by the control system as external disturbances, which need to be compensated by
other yaw-generating actuators.

These necessary simplifications of the model have two detrimental consequences on the overall perfor-
mance of the flight control system. First, the potential of the ICE control suite is underexploited (e.g.
elevons cannot be used to produce yawing moments, which might be necessary in failure conditions or ex-
treme maneuvers). Second, the yawing moments produced by the elevons and outboard LEF are seen as
external disturbances, and need to be continuously suppressed by other control effectors.

VII. INCA-Based Flight Control System Design

In order to evaluate the performance of INCA as a control allocator, an INCA-based flight control system
was designed for the ICE aircraft. The control system, including the Jacobian model, inner loop control laws
and control allocation-related particularities of the INCA method are discussed in this section.

VII.A. Multivariate Simplex Spline-Based Jacobian Model

As shown in Section III, the INCA method has a more relaxed dependency on an on-board aerodynamic
model and therefore is more robust against model uncertainties. Instead of a full aerodynamic model, INCA
is based on a control effectiveness Jacobian model ∇δΦ (x, δ) that includes the directional derivatives of τ e
with respect to δ.

In this paper, the Jacobian control effectiveness matrix is derived from a multivariate simplex B spline-
based aerodynamic model of the ICE aircraft identified from the high-fidelity aerodynamic database described
in Section IV. This spline model preserves the original model structure of aerodynamic terms:

Ci = + Csi1 (α,M) + Csi2 (α, β,M) + Csi3 (α, δls, δle,M) + Csi4 (α, δrs, δre,M)

+ Csi5 (α, β, δlfi) + Csi6 (α, β, δrfi) + Csi7 (α, β, δlfi, δlfo,M) + Csi8 (α, β, δrfi, δrfo,M)

+ Csi9 (α, δlfo, δla) + Csi10 (α, δrfo, δra) + Csi11 (α, δla, δle) + Csi12 (α, δra, δre)

+ Csi13 (α, δrs, δls, δpf,M) + Csi14 (α, β, δla) + Csi15 (α, β, δra) + Csi16 (α, β, δls)

+ Csi17 (α, β, δrs) +
pb

2V
Csi18 (α,M) +

qc̄

2V
Csi19 (α,M) +

rb

2V
Csi20 (α,M)

(41)
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with i = {l,m, n,X, Y, Z}, where every model term Csin is a multivariate B-spline defined over a simplex tri-
angulation with 0th-order continuity. This model was identified from the original ICE aerodynamic database
in Ref. 55 following the linear regression techniques presented in Ref. 56. T he directional derivatives of
every model term Csij in the directions of δ can be computed in a computationally efficient way with the
method for model reduction of parabolic partial differential equations presented in Ref. 57. This yields 13
partial derivatives of each of the 108 spline models, from which the control effectiveness Jacobian matrix is
constructed as:

∇δΦ (α, β,M, δ) =




∑20
j=1

∂Cs
lj

(x,δ)

∂δ1

∑20
j=1

∂Cs
lj

(x,δ)

∂δ2
· · · ∑20

j=1

∂Cs
lj

(x,δ)

∂δ13

∑20
j=1

∂Cs
mj

(x,δ)

∂δ1

∑20
j=1

∂Cs
mj

(x,δ)

∂δ2
· · · ∑20

j=1

∂Cs
mj

(x,δ)

∂δ13

∑20
j=1

∂Cs
nj

(x,δ)

∂δ1

∑20
j=1

∂Cs
nj

(x,δ)

∂δ2
· · · ∑20

j=1

∂Cs
nj

(x,δ)

∂δ13




(42)

The Jacobian calculation was implemented on a real-time, highly optimized routine that can provide in the
order of 104 Jacobian calculations per second. A key factor for the accuracy of the Jacobians is the continuity
order between simplices. In this case, 0th-order continuity was used, and therefore the model represents the
worst possible case in terms of continuity. This implies that the performance achieved in this thesis can be
substantially improved by increasing the continuity order of the spline model.

The Jacobian model is not restricted to spline-based models. For instance, a locally linear numerical
differentiation approach with a lookup table-based aerodynamic model could also be used to approximate
the nonlinear Jacobian. A spline model was used in this thesis because it provides an elegant way to extend
the INCA-based FCS into a fault-tolerant flight control system. Splines are function approximators that can
be used in an on-line system identification framework, in contrast to lookup table-based models.

VII.B. Multi-Axis Thrust Vectoring Jacobian Model

A Jacobian model providing the directional derivatives of the control moments produced by MTV can be
obtained analytically by deriving the Jacobian matrix of τT in Eq. (26):

∇δtvτT(δptv, δytv) = Tdn




0 0

− cos(δptv) 0

sin(δptv) tan(δytv) − cos(δptv)/ cos2(δytv)


 (43)

The MTV circular constraints in incremental form require further consideration. In an incremental control
allocation scheme, the control allocator provides a commanded increment ∆δtv over the current actuator
position δtv0 . If the resulting MTV deflection vector δtv =δtv0 + ∆δtv violates the circular constraint, then
a new increment ∆δ′tv must be computed such that the new resulting vector δ′tv =δtv0

+ ∆δ′tv satisfies the
circular constraint while preserving the original direction of δtv. This usually involves changing the modulus
and direction of ∆δtv. The new deflection increment is computed as

∆δ′tv =
δtvmax

||δtv0 + ∆δtv||
(δtv0 + ∆δtv)− δtv0 (44)

VII.C. Angular Rate Control Loop

INCA is implemented at the innermost control loop for body-frame angular rate control. Consider the aircraft
rotational dynamic equations, where τ e is substituted by the nonlinear control effector model Φ(x, δ):

ω̇ = I−1 (τ − ω×Iω) = I−1Φ(x, δ) + I−1 (τ a − ω×Iω) (45)

For a given time step, the incremental form of the rotational dynamics as a first-order Taylor expansion at
the operating point (x0, δ0) is:

ω̇ ' ω̇0 +
∂

∂ω

[
I−1Φ(x, δ) + I−1 (τ a − ω×Iω)

]∣∣∣∣
δ=δ0
x=x0

(ω − ω0)

+
∂

∂δ

[
I−1Φ(x, δ) + I−1 (τ a − ω×Iω)

]∣∣∣∣
δ=δ0
x=x0

(δ − δ0) (46)
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where the angular accelerations at the current step ω̇0 can be obtained from angular accelerometers, signal
processing or acceleration estimation methods.

According to the previously discussed time-scale separation principle, the second term of the right-hand
side of Eq. (46), i.e. the changes in angular acceleration due to changes in angular rates, is negligible for
high sampling rates in comparison to the control-dependent term. This is explained in Ref. 30 as follows.
Increments in actuator positions directly cause angular accelerations. Angular rates, however, only vary
as a consequence of integrating angular accelerations, i.e. integrating the actuator deflection contributions.
Therefore, when the sampling frequency of the FCC is high enoughb, the assumption (ω − ω0)≈0 is valid.

Applying time-scale separation and operating the partial derivatives, the incremental dynamic rotational
equations are obtained as a function of the current angular accelerations and actuator positions:

ω̇ = ω̇0 + I−1∇δΦ(x0, δ0) ∆δ (47)

Setting the angular acceleration as a virtual control input νω(x) = ω̇ and solving for ∇δΦ(x0, δ0) ∆δ,
the INCA formulation in Eq. (18) is found for the angular rate control problem:

∇δΦ(x0, δ0) ∆δ = I [νω(x)− ω̇0] = ∆τ c (48)

where the pseudo-control input dc corresponds to the required increments of control-induced moments ∆τ c.
At this point, the required control-induced moment increments ∆τ c are allocated into actuator position
increments ∆δ by a linear control allocator, where the CA problem is formulated in incremental form as:
given the current state x0, the current actuator positions δ0 and a required increment of control-induced
moments ∆τ c, determine an increment in the control effector positions ∆δ such that

∇δΦ(x0, δ0) ∆δ = ∆τ c

subject to ∆δ ≤∆δ ≤∆δ
(49)

Here, the inner control law
∆τ c = I [νω(x)− ω̇0] (50)

linearizes the system between the virtual control input νω(x) and ω. The linearized system can now be
controlled through the virtual control input such that it follows a command ωc by using the outer state-
feedback linear control law in Eq. (40).

The absolute actuator position commands are computed as δ = δ0 + ∆δ. Note that the Jacobian matrix
is also a function of the actuator positions, and therefore interactions between control effectors are considered
in the control allocation process. Also, note that actual actuator position measurements δ0 are fed back
into the control system at each time step, and therefore the Jacobian matrix is always computed with the
actual actuator positions. This also implies that the required increments ∆δ are always calculated over the
actual actuator positions, avoiding couplings between control allocator and actuator dynamics typical of
LCA-based control systems.36

VII.D. Preference Vector in Incremental Form

The INCA scheme requires a re-formulation of the preference vector used in the control allocation algorithms,
since under the INCA formulation the preference vector refers to a preferred actuator position increment
∆δ0. If the preferred increment is set to ∆δp=0, the actuators are forced to remain at a constant, possibly
nonzero position whenever it is possible. It has been observed that this can lead to complementary actuators
(those producing moments of equal magnitude but opposite sign) diverging to asymmetric nonzero deflections
while still producing a resultant moment of zero. To avoid this situation and minimize the control effort,
the control effectors must be driven to their preferred position whenever it is possible. Thus, the preferred
position increment in each time step must be the increment that brings the actuators closest to their preferred
positions. This is achieved by calculating the incremental preference vector ∆δp at each time step as

∆δp = min
(
|δp − δ0| ,

∣∣∆δ
∣∣ , |∆δ|

)
· sign (δp − δ0) (51)

bPractical implementation of incremental attitude control in fast-dynamics aerospace vehicles has proven that FCC frequen-
cies of about 100 Hz are high enough for the time-scale separation principle to hold.32
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VII.E. Global Convergence and SSDs

Since INCA dynamically drives the actuator vector towards the direction that best fulfills local moment
increment commands, it is possible that it converges to local optima. This is not a problem if it is valid to
assume that the optimal control distribution lies within the neighbourhood of the current actuator positions.
This assumption is valid for most of the ICE actuators, since their moment curves do not have local minima
in the directions of δ (local minima in the directions of α, β and M are irrelevant to the control allocator,
since they are not control variables). However, the SSDs have a dramatic impact on the control effectiveness
of trailing-edge control effectors, and therefore globally optimal control distributions might be available far
away from the current control distribution.

It is worth noting that, besides providing lateral-directional control at high AoA, an important function
of the SSDs is to redirect the airflow towards the upper wing skin at high AoA to recover control effectiveness
of trailing-edge devices. In contrast, deflecting the SSDs at low AoA destroys the control effectiveness of
downstream actuators. Therefore, it is reasonable to assume that globally optimal control distributions will
have small SSD deflections at low AoA and big deflections at high AoA. Hence, convergence towards global
optima can be subserved by forcing the SSDs to remain as closed as possible at low AoA, and as open as
possible at high AoA. This can be achieved by scheduling the penalizing weights of the SSDs in the weighting
matrix Wu as a function of α. In this case, the SSD penalties WuSSD(α) were scheduled as the exponential
function

WuSSD
(α) = [−0.25 + 0.35 exp (1.6α)]

−1
(52)

Whereas penalties are set to 1 for all control effectors, WuSSD is 10 for α= 0 deg, becomes 1 at α≈ 45 deg
and goes to 0 at α≥90 deg. Although this scheduling is valid for the ICE configuration, the characteristics
of each particular controlled system shall be studied in order to favour global convergence.

VIII. Saturation Handling: Pseudo-Control Hedging

Actuator saturation represents a problem when control commands exceed the capabilities of the actuators
under rate and position constraints. When physically unachievable control commands are given, the system
can run into command windup problems, which compromises the overall performance and stability of the
system. To overcome this problem, pseudo-control hedging (PCH) was proposed58 and developed59,60 as an
adaptation system to hedge the pseudo-control input of the control system to accommodate the commands
to the limitations of the actuators set, thus avoiding physically unachievable commands. PCH has been
successfully used as a partial form of flight envelope protection and anti-windup system in Refs. 31, 61. In
addition to ensuring physically achievable commands, the first-order reference model used in PCH is useful
to compute the derivatives of the commanded variables, which can be used as feedforward terms in the
control system to improve tracking performance.31

PCH was implemented in the designed ICE flight control systems to shape the virtual control command
νω(x) by substracting the difference between the commanded νω(x) and the actual virtual control achieved,
estimated with measured actuator positions δ0 as ν̂ω(x)= f(x0, δ0), where f(x, δ) is the virtual control law.
The pseudo-control hedge is computed as

νh(x) = νω(x)− ν̂ω(x) (53)

The hedge νh(x) is fed back into a first-order reference model (RM) as a compensation signal. The reference
model νrm(x) is given by

νrm(x) = Krm (ωc − ωrm) (54)

with Krm a diagonal matrix. The hedged reference signal fed as a control input into the attitude control
system is the state vector of the reference model

ωrm =
1

s
(νrm(x)− νh(x)) (55)

When no saturation occurs, νh(x)=0 and the reference model behaves as a low-pass filter of bandwidth
Krmi

for the i-th component of ωrm. Under actuator saturation, the pseudo-control hedge νh(x) corresponds
to the difference between the commanded virtual control input and the estimated virtual control achieved,
based on the actual positions of the control effectors. The hedge signal νh(x) is used to reshape the reference
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and avoid unfeasible commands. The reference model νrm (x) corresponds to the first-order derivatives of
the commanded variables, which can be used as a feedforward term added to νω(x) to improve tracking
performance.31

For the LCA-based controller the virtual control input is given by the control law

νω(x) =
1

2
ρV 2SI−1B(x) δ + I−1 (τ a − ω×Iω) (56)

and therefore the pseudo-control hedge is given by

νhLCA
(x) =

[
1

2
ρV 2SI−1B(x) δc + I−1 (τ a − ω×Iω)

]
−
[

1

2
ρV 2SI−1B(x) δ + I−1 (τ a − ω×Iω)

]
(57)

νhLCA
(x) =

1

2
ρV 2SI−1B(x) (δc − δ) (58)

For the INCA-based controller the virtual control input is given by the control law

νω(x) = ω̇0 + I−1∇δΦ(x0, δ0) (δ − δ0) (59)

and therefore the pseudo-control hedge is given by

νhINCA
(x) =

[
ω̇0 + I−1∇δΦ(x0, δ0) (δc − δ0)

]
−
[
ω̇0 + I−1∇δΦ(x0, δ0) (δ − δ0)

]
(60)

νhINCA
(x) = I−1∇δΦ(x0, δ0) (δc − δ) (61)

The internal structures of the LCA-based and the INCA-based angular rate control systems, including
PCH, are given in Figures 8 and 9 respectively.
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IX. Sideslip Dynamic Inversion Outer Loop

In order to compensate sideslip angle to perform coordinated turns, a sideslip control outer loop was
implemented in the yaw rate channel with β as a reference and r as control input. For this, a dynamic
inversion of the sideslip angle was performed. The sideslip angle β can be computed as

β = arcsin
v

V
(62)

where V is the true airspeed V =
√
u2 + v2 + w2. The first derivative of Eq. (62) is

β̇ =
v̇V − vV̇
V
√
u2 + w2

=
v̇√

u2 + w2
− v (uu̇+ vv̇ + wẇ)

(u2 + v2 + w2)
√
u2 + w2

(63)

The accelerations in aerodynamic frame are given by

u̇ =Ax − g sin θ + rv − qw
v̇ =Ay + g sinφ cos θ − ru+ pw

ẇ =Az + g cos θ cosφ+ qu− pv
(64)

Substituting Eqs. (64) into (63) gives

β̇ =

(
1√

u2 + w2

)
(Fx + Fy + Fz) +

[
w√

u2 + w2
0

−u√
u2 + w2

]


p

q

r


 (65)

with

Fx =− uv

V 2
(Ax − g sin θ)

Fy =
(

1− v

V 2

)
(Ay + g sinφ cos θ)

Fz =− vw

V 2
(Az + g cosφ cos θ)

(66)

Introducing the virtual control input νβ(x) = β̇ and solving for the input r the sideslip loop dynamic
inversion law is obtained:

rc =

( −u√
u2 + w2

)−1 [
νβ(x)− 1√

u2 + w2
(Fx + Fy + Fz + wpc)

]
= aβ(x)

−1
[νβ(x)− bβ(x)] (67)

The structure of the outer beta loop is shown in Figure 10.

X. Simulations and Results

In order to assess the performance of INCA with respect to conventional LCA approaches, the previously
described LCA- and INCA-based attitude control systems were set up in a simulation framework with Matlab
and Simulink. Each control system was implemented with an RWPI solver and with a QP solver with the
active set algorithm, in order to compare performance using two different linear solvers. The simulations
were run in real time with a fixed sampling rate of 100 Hz.
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The flight simulations were initialized in trim conditions at an altitude of 20000 ft and M=0.85. A linear
auto-throttle (A/T) controller was added to the system to keep the true airspeed at 880 ft/sec. The gains
used in the linear control loops are given in Table 2. The reference model gains Krm were all set to 10. The
control inputs were simultaneous 3211 signals with amplitudes of 10 deg/sec for the roll and pitch channels
and 3 deg for the sideslip channel. 3211 inputs consist of two consecutive pulse doublets, the pulses of which
have durations of 3, 2, 1 and 1 seconds. These inputs are known to excite a significant frequency range of
the aircraft operational bandwidth.62

Table 2. Gains used in the linear controller loops.

p q r β

KP 6.5 6.5 5.8 1.0

KI 0.0 0.0 0.0 0.0

KD 0.5 0.5 0.5 0.7

Table 3. Root mean square tracking error.

RMS(εTrack)

Solver RWPI QP

CA Method LCA INCA LCA INCA

p [deg/sec] 6.01 4.27 5.65 2.69

q [deg/sec] 9.19 2.06 5.47 1.87

r [deg/sec] 4.36 1.81 2.77 1.80

Total 6.82 2.93 4.81 2.15
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Figure 11. Body angular rates and sideslip angle tracking
performance of LCA and INCA with RWPI.
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The tracking histories of the controlled variables for LCA and INCA with RWPI and QP are displayed
and compared in Figures 11 and 12 respectively. The deficiencies of LCA are evident in both cases, where
large excursions occur from the commanded rates, in addition to overshoot and oscillation. This behaviour
can be explained by the fact that several aerodynamic effects of the control effectors are neglected by the
linear model, including nonlinearities, effector interactions and secondary-axis yawing moment contributions
of the elevons and outboard LEF. These effects need to be compensated with other actuators, which in turn
have nonlinear effects. This results in a dramatic degradation of tracking performance. In contrast, INCA
performs with superior tracking accuracy, following all commands with slight overshoot for RWPI, and no
significant inaccuracies for QP.
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Figure 13. Commanded (dashed line) and attained (solid line) moments using the RWPI solver.

t [sec]

N
[k
lb
f·
ft
]

M
[k
lb
f·
ft
]

L
[k
lb
f·
ft
]

0 5 10 15

−100

0

100

−100

0

100

200

−100

0

100

(a) LCA method.

t [sec]

N
[k
lb
f·
ft
]

M
[k
lb
f·
ft
]

L
[k
lb
f·
ft
]

0 5 10 15

−100

0

100

−100

0

100

200

−100

0

100

(b) INCA method.

Figure 14. Commanded (dashed line) and attained (solid line) moments using the QP solver.
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Table 4. Root mean square allocation error.

RMS(εAlloc)

Solver RWPI QP

CA Method LCA INCA LCA INCA

L [klbf·ft] 25.0 17.8 31.1 7.35

M [klbf·ft] 72.6 16.7 44.9 10.4

N [klbf·ft] 35.4 14.4 20.3 14.7

Total 48.8 16.4 33.6 11.2

Table 5. Number of iterations per time step.

ni

Solver RWPI QP

CA Method LCA INCA LCA INCA

Min. 2 1 2 3

Avg. 3.1 2.4 5.8 5.6

Max. 7 6 23 20

The root mean square (RMS) of the tracking errors, defined as εTrack = (ω − ωc) and εTrack = (β − βc)
are given in Table 3 for each controller. The tracking error is substantially reduced with INCA by a factor
of about 2.3 for both RWPI and QP. It is worth pointing out that the tracking performance with the
QP solver is notably better than with RWPI for both LCA and INCA systems. This is consistent with
previous research10,28,52 which concluded that, despite its simplicity, the RWPI method may yield suboptimal
solutions and does not guarantee convergence to a feasible solution, even if it exists.

A key performance metric to be considered is control allocation performance, which measures the ability
of a control allocation system to successfully attain the commanded moments with the available set of control
effectors. The commanded an attained moments for LCA and INCA using RWPI and QP are given in Figures
13 and 14 respectively. The RMS of the control allocation errors, defined as εAlloc = (τ − τ c), are given in
Table 4. Large excursions in commanded moments are observed for LCA in all channels. Again, these are
due to the necessity of compensating for inaccuracies in the linear control effector model. In contrast, the
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Figure 15. Control effector positions with LCA and INCA solved with RWPI.
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Figure 16. Control effector positions with LCA and INCA solved with QP.

Table 6. Control effort.

Ceff = RMS (δ − δp)
Total δlfi δlfo δla δle δls δpf δrfi δrfo δra δre δrs δptv δytv

LCA/RWPI 2.8 0.3 0.5 3.4 2.3 0.5 4.1 0.2 0.5 6.7 3.3 1.0 1.1 2.7

INCA/RWPI 2.6 0.7 0.6 3.8 2.0 0.7 3.9 0.3 0.6 3.1 2.5 1.6 1.0 6.0

LCA/QP 3.3 0.2 0.5 6.0 3.1 1.2 4.5 0.2 0.5 6.9 4.0 0.8 0.7 3.0

INCA/QP 3.4 0.3 0.3 3.5 1.5 0.8 5.1 0.3 0.3 7.2 5.5 1.2 1.6 4.2

control moment commands with INCA are short and small, with high allocation performance. The control
allocation performance metrics in Table 4 show that INCA has a dramatic improvement in control allocation
performance with respect to LCA by a factor of 3 with both RWPI and QP.

The time histories of the control effector deflections are shown for RWPI and QP in Figures 15 and 16
respectively. In the RWPI case in Figure 15, severe oscillations of the control effectors with lateral-directional
control authority are observed with LCA. This behaviour is most likely due to the strong interference of
the SSD on the rest of effectors, which is neglected by the LCA-based control system. Note, however, that
these couplings are not observed with INCA, since the Jacobian model captures these interactions. The large
excursions with LCA can be explained as a consequence of compensating the unexpected interaction effects
of the SSD. LCA places relatively large control effort on the AMTs, since it lacks information about other
sources of directional control power such as the elevons and outboard LEF due to the assumption of linearity.
As can be observed in Figure 16, the QP solver alleviates the problems regarding oscillations observed with
LCA/RWPI.
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Figure 17. Number of iterations per time step with LCA and INCA.

The control efforts, defined as Ceff=RMS (δ − δp) are listed in Table 6 for each individual actuator and
for the whole set of actuators. Note that INCA makes more extensive use of MTV for yaw control than LCA.
Since the on-board model of INCA captures parabolic yawing moments, it makes sense that it prioritizes
the use of uncoupled control effectors for pitch control to minimize secondary-axis yawing contributions. In
spite of the differences of the distributions of control effort, with no remarkable particularities, it is observed
that both systems use a similar amount of control effort in total. An important conclusion is that, for
the trajectory under study, INCA achieves a substantial improvement in tracking and control allocation
performance with no significant increase of control effort.

Finally, as stated above, computational efficiency is an important concern regarding control allocation
methods, since these need to run in real time on FCCs at typical rates in the order of 100 Hz. Performance
and computational requirements for real time implementation of the RWPI and QP solvers were evaluated
in Refs. 10 and 52. In both cases, the authors concluded that RWPI and QP solved with the active set
algorithm are well-suited for real-time control allocation in flight control systems. Therefore, further analysis
on computational complexity is not required here. However, it is interesting to demonstrate that INCA does
not imply an increase in computational load with respect to conventional LCA-based controllers. The number
of iterations per time step executed with RWPI and QP are compared for LCA and INCA in Figure 17.
Average, minimum and maximum number of iterations are listed in Table 5. In the case of RWPI, the
maximum possible number of iterations corresponds to the number of available control effectors, in this case
13. Note that INCA requires slightly less iterations to converge than LCA in average, and the maximum
number of iterations does not surpass 7 in neither case. For QP, the maximum number of iterations was
set to 100. In this case, INCA and LCA required a similar number iterations in average to converge. The
maximum number of iterations in these simulations remains below 25 in both cases. This shows that the
computational load when using RWPI and QP with the active set algorithm is similar with LCA and INCA
for the considered trajectory.

XI. Conclusions and Final Remarks

Conventional linear control allocation (LCA) methods are unable to provide satisfactory performance
in advanced and unconventional control effector configurations due to the impossibility of linear effector
models to capture nonlinearities and interactions between control effectors. In this paper, an incremental
nonlinear control allocation (INCA) approach is implemented to overcome these issues. The INCA method
operates in an incremental scheme based on a Jacobian model of the control effectiveness of the actuators.
This way of operation enables the consideration of nonlinear control moment curves such as secondary-axis
yawing moments and nonlinear interactions between control effectors. The incremental reformulation of the
problem enables the use of simple and computationally efficient linear control allocation solvers, enabling the
use of INCA in real-time flight control systems. In addition, INCA dynamically drives the actuators towards
their optimal positions and is based on real-time actuator position measurements, mitigating coupling effects
between the control allocator and actuator dynamics. Moreover, it uses angular acceleration measurements
to reduce its model dependency, improving robustness against aerodynamic uncertainties.

The performance of INCA was assessed against conventional LCA methods by designing two flight control
systems based on LCA and INCA for the Innovative Control Effectors (ICE) aircraft, a highly maneuverable
tailless aircraft with 13 highly nonlinear, interacting and axis-coupled control effectors. Both control allo-
cation solvers were implemented with two typical control allocation methods. Real-time simulation results
showed that INCA dramatically improves tracking and control allocation performance for the ICE aircraft,
whereas substantially reducing the control effort.

23 of 25

American Institute of Aeronautics and Astronautics



Future work will focus on the development of outer guidance loops to test the LCA- and INCA-based
control systems in extreme flight maneuvers such as loopings, high bank angle turns, high AoA commands or
barrel rolls. In addition, flight envelope protection will be included in the control system. It is also of great
interest to upgrade the systems for fault-tolerant flight control with on-line system identification. INCA is
expected to provide substantial benefits in terms of recoverability in fault conditions. Finally, sensitivity of
the INCA allocation performance to Jacobian model uncertainties will be further investigated.
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Conventional linear control allocation (LCA) methods fail to provide satisfactory

performance in flight control systems (FCS) for aircraft with highly nonlinear and

coupled control effector suites, especially for tailless aircraft with strong interactions

between control effectors. This paper implements an incremental nonlinear control

allocation (INCA) approach that can capture nonlinearities and interactions of control

effectors, while being solvable with computationally efficient LCA algorithms. This

makes INCA suitable for real-time control allocation in FCS. This incremental refor-

mulation of the control allocation problem is based on a Jacobian model of the control

effectors, and relies on angular acceleration measurements to reduce model depen-

dency. In addition, real-time measurements of the actuator positions mitigate typical

problems related to couplings between control allocators and actuator dynamics. In

this paper, LCA- and INCA-based nonlinear FCS are designed for the Innovative Con-

trol Effectors (ICE) aircraft, a highly maneuverable tailless aircraft with 13 highly

nonlinear, interacting and axis-coupled control effectors. Real-time simulation results

showed that INCA dramatically improves tracking and control allocation performance

with respect to LCA methods, thus improving maneuverability and exploiting the full
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potential of innovative control effector suites. Additionally, a sensitivity analysis re-

vealed that the INCA method is highly robust against Jacobian model mismatch.

I. Introduction

Given the inherent benefits of highly redundant and axis-coupled control effector suites, aircraft

over-actuation is an increasingly common practice in aerospace design. Over-actuated systems have

more control inputs than controlled variables, and therefore an attainable control command may

be achievable through multiple combinations of actuator positions. In flight control systems (FCS),

control allocation (CA) algorithms distribute control commands over the available set of control

effectors, aiming to maximally exploit the maneuverability and handling qualities of the aircraft

while accounting for the physical limitations of the actuators.

Most conventional CA methods operate under the assumption that a linear relationship exists

between actuator positions and control-induced forces and moments. This simplification yields

a very tractable affine formulation of the control allocation problem, which can be solved with

efficient linear algorithms suitable for real-time implementation in FCS. Common examples of such

methods are the redistributed weighted pseudo-inverse [1], daisy chaining [2], direct allocation [3–9]

and numerical optimization-based approaches such as linear programming [10–13] and quadratic

programming [9, 12]. The assumption of linearity of the control effectors, however, has important

shortcomings.

First, linear models are unable to capture interactions between control effectors. Although such

interactions are usually negligible in conventional actuator suites, more innovative configurations

feature actuators positioned downstream of others, resulting in important nonlinear interactions.

In some cases, these can be positively exploited such as in the case of slots, which can be used to

recover control effectiveness of trailing-edge control surfaces at high angles-of-attack (AoA). In other

cases, these interactions can have negative effects on the control effectiveness of certain actuators,

such as in the case of leading-edge control devices that disturb the downstream airflow. Although

the issue of control effector interactions was noticed and addressed in [14], the applicability of the
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proposed method is limited to interactions between two control effectors that can be described by

a bilinear function.

Second, independently-moving control surfaces produce secondary-axis yawing moments by gen-

erating drag through a lever arm with respect to the aircraft longitudinal axis. Although conven-

tional aircraft use a rudder for directional control, tailless configurations exploit these secondary-

axis moments as a main source of directional control power. These moments can also be used in

conventional actuator suites to regain directional controllability after rudder failure. Common ac-

tuators using this principle are all-moving wing tips and independently-moving ailerons and elevons

[15, 16]. Whereas they produce locally linear rolling moments, they have highly nonlinear contri-

butions to yawing moment, especially at low AoA, where parasitic drag dominates induced drag

effects. Secondary-axis yawing moments are generally asymmetric parabolic functions of the ac-

tuator deflections, which cannot be captured with linear effector models. This shortcoming has

two negative effects concerning control allocation. First, the yawing moments not included in the

on-board aerodynamic model are seen as external disturbances by the control system, and need

to be mitigated with other sources of directional control power. Second, the ability to positively

exploit these sources of yawing moment is lost, which is particularly critical in tailless configura-

tions. This problem was addressed in [17] by modelling the control effectors with piecewise linear

functions. Although the potential benefits of nonlinear CA were clearly demonstrated, the proposed

method required solving a mixed-integer programming problem, which is extremely slow due to its

computational complexity, and therefore not suitable for real-time implementation.

Finally, although the control moment curves of conventional actuators are locally linear for small

deflections, nonlinearities exist in extreme regions of their operational range. Failing to capture

such nonlinearities results in a model mismatch causing control allocation error, which needs to

be mitigated by the robustness of the flight control laws [18]. This is detrimental to the overall

performance of the system, especially in faulty conditions where the non-faulty actuators are forced

to operate within extreme regions of their moment curves. This problem was addressed in [18] by

introducing an affine control effector model with intercept correction. This method is not applicable

when the control-induced moments are quadratic, have non-monotonic behaviour, or when the slope
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of the control effectiveness curves becomes small. Despite its limited applicability, this method

showed the potential benefits of considering nonlinearities in control moment curves.

In most conventional aircraft configurations the inaccuracies introduced by the assumption of

linearity are relatively small and can be acceptably absorbed by robust control systems. How-

ever, linear control allocation fails to provide adequate performance in more advanced and innova-

tive designs, especially in tailless aircraft, which produce directional control power mainly through

secondary-axis parabolic yawing moments. A very representative example is Lockheed Martin’s

Innovative Control Effectors (ICE) research aircraft concept, a tailless flying wing with a highly re-

dundant set of 13 control effectors, which produce highly nonlinear and cross-axis coupled moments

and exhibit strong interactions.

Nonlinear control allocation methods have been explored as a solution with different approaches,

such as nonlinear direct allocation [15], mixed-integer programming [16] and nonlinear programming

[19]. Although the methods proposed to date clearly demonstrate important improvements over con-

ventional linear approaches, nonlinear optimization algorithms are highly computationally complex

and not suitable for implementation in real-time systems.

This paper implements an incremental nonlinear control allocation (INCA) method based on

a reformulation of the control allocation problem in incremental form, exploiting the time scale

separation principle. This approach is based on a nonlinear Jacobian model of the control effectors,

which can capture actuator nonlinearities, including interactions between control effectors. An

angular acceleration feedback loop reduces the model dependency of the nonlinear control system

and makes it highly robust against model mismatch. The crux of this method is that it operates in

an incremental scheme, which allows the nonlinear CA problem to be solved with simple and efficient

linear control allocation algorithms that are well-suited for real-time implementation in FCS. Unlike

most typical CA algorithms, INCA uses information of the current position of the actuators, which

are dynamically driven towards their optimal positions through small increments. This mitigates

the negative impact of actuator dynamics in control allocation, which has been focus of extensive

research [20–24].

The results presented in this paper demonstrate substantial benefits of INCA in terms of flight
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control and control allocation performance for innovative aircraft designs with respect to linear

control allocation (LCA) methods. For this, an LCA-based and an INCA-based nonlinear flight

control systems were designed for the ICE aircraft, and their performance was evaluated through

simulation using the high-fidelity simulation model described in [25]. This model includes actuator

dynamics, in addition to position and rate constraints. Both LCA- and INCA-based flight control

systems were implemented with two typical LCA solvers to compare performance.

II. The Control Allocation Problem

Consider the aircraft dynamic equations expressed in the general form

ẋ = f(x) + g(x) τ (1)

where x ∈ Rn is the state vector and τ ∈ Rm the aerodynamic inputs to the equations of motion.

Control allocation in aerospace applications typically concerns attitude control, τ ∈ R3 being the

aerodynamic moments in body frame. This problem is commonly referred to as the three-moment

problem. The aerodynamic moments are generally nonlinear functions of the states and the control

effector positions δ ∈ Rp:

τ = h(x, δ) (2)

The control effectors are subject to rate and position constraints

δmin ≤ δ ≤ δmax (3)

|δ̇| ≤δ̇max (4)

The control allocation problem consists on determining the control effector positions δ that

produce a given moment command τ c. Over-actuated systems have more control effectors than

controlled variables, i.e. p > m, and therefore the system of Eqs. (2) is underdetermined with

p−m degrees of freedom. When multiple solutions that satisfy τ c exist, secondary objectives might

be defined to determine an optimal solution. As shown in the classical control scheme for over-

actuated systems in Figure 1, the moment commands are typically provided by a high-level control

system. The choice of a suitable control allocation approach is strongly application-dependent.
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Fig. 1 Classical control scheme for over-actuated systems.

Extensive surveys giving a broad overview of currently available CA methods exist in the literature,

see [1, 12, 26].

In aerospace systems, CA algorithms run in flight control computers (FCC) in discrete-time, and

the control distribution is computed at each time step for the current state x0. Given a measured

or estimated x0 at a given time step, the control effectiveness function h (x, δ) becomes a generally

nonlinear static mapping h (x0) : Rp → Rm. Thus, the actuator rate limits can be translated into

local position limits for the current time step as

∆δmax = δ̇max∆t (5)

The effective local position limits at a given time step are

δ ≤ δ ≤ δ̄ (6)

with

δ= min
(
δmax, δ0 + δ̇max∆t

)

δ= max
(
δmin, δ0 − δ̇max∆t

) (7)

the local upper and lower bounds of the actuator positions.

For a given time step, the static control allocation problem is formulated as: given the current

state x0, the control effector model τ = h (x0, δ) and a moment command τ c, determine a control

vector δ such that

h (x0, δ) = τ c

subject to δ ≤ δ ≤ δ

(8)

Note that the inverse problem of computing δ given τ c is ill-posed and generally its solution is not

unique. In order to solve the inverse CA problem in Eq. (8), commonly used approaches assume
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that h (x, δ) is linear in the inputs, and thus can be expressed using a control effectiveness matrix

B (x) ∈ Rm×p in the form

τ = h (x, δ) = B (x) δ (9)

This formulation of the problem enables the use of computationally efficient linear solvers such as

generalized pseudo-inverses, linear programming or quadratic programming. However, as discussed

above, the assumption of linearity neglects interactions between control effectors, fails to capture

parabolic moment curves and neglects nonlinearities in the control-induced moments. Although this

assumption is acceptable for conventional control effector configurations, it is not valid for advanced

configurations such as the ICE aircraft. In aerospace control CA algorithms are required to run

real-time at frequencies in the order of 100 Hz [9].

III. Incremental Nonlinear Control Allocation

The incremental control allocation approach implemented in this paper is based on a reformu-

lation of the control allocation problem in incremental form and the application of the time scale

separation principle. Incremental nonlinear control has been successfully implemented in aerospace

applications under the incremental nonlinear dynamic inversion (INDI) scheme [27–30], showing

very promising advantages such as a substantial reduction of model dependency.

A. The Control Problem in Incremental Form

Consider again the nonlinear system dynamics in Eq. (1). The aerodynamic moment inputs τ

can be separated into an exclusively state-dependent part and an input-depended part

τ = τ a + τ δ (10)

where τ a contains the aerodynamic moments generated by the airframe, and τ δ is the control

effector model, providing the control-induced moments produced by the actuators. The control

effector model can be generally expressed as the nonlinear mapping

τ δ = Φ(x, δ) (11)

Thus, the system dynamics can be rewritten as

ẋ = [f(x) + g(x) τ a] + g(x)Φ(x, δ) = F(x) + g(x)Φ(x, δ) (12)
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where F(x) contains all the effects not produced by the control effectors.

When the control system works in discrete time the dynamic equations of the system can be

locally linearized at every time step around the current state x0 and actuator positions δ0 as a

first-order Taylor expansion:

ẋ ≈ ẋ0 +
∂

∂x
[F (x) + g (x)Φ (x, δ)]

∣∣∣∣
δ=δ0
x=x0

(x− x0) +
∂

∂δ
[F (x) + g (x)Φ (x, δ)]

∣∣∣∣
δ=δ0
x=x0

(δ − δ0) (13)

The time scale separation principle states that, for systems where the derivatives of the states

have significantly faster dynamics than the states themselves, the term (x− x0) is small enough

to be neglected at high sampling rates. This principle commonly applies to systems where δ can

change significantly faster than x over a time step, which is the case when the influence of δ on the

derivatives of the states is significantly higher than the influence of the states. This has been proven

to be true for aerial vehicles such as aircraft [28], helicopters [29] and quadrotors [30] at common

sampling frequencies of 100 Hz.

Applying the time scale separation principle and introducing the virtual control input ν (x) = ẋ,

Eq. (13) can be simplified to

ν (x) = ẋ ≈ ẋ0 + g (x0)
∂Φ (x0, δ0)

∂δ
∆δ (14)

At this point, the system dynamics can be linearized with an incremental nonlinear dynamic inver-

sion loop by inverting the dynamics in Eq. (14):

∆δc =

[
∂Φ (x0, δ0)

∂δ

]−1

g (x)
−1

[ν (x)− ẋ0] (15)

This control law linearizes the response between the virtual control input ν (x) and x. Moreover,

model dependency is significantly reduced with respect to typical nonlinear dynamic inversion (NDI)

control laws [31–33], since the INDI control law is independent of the aerodynamic derivatives in τ a.

This reduction in model dependency is compensated by feeding back acceleration measurements ẋ0.

In over-actuated systems the Jacobian ∂Φ (x, δ) /∂δ is a non-square m×p matrix, and therefore

it cannot be inverted to implement the incremental control law in Eq. (15). However, a control al-

location scheme can be implemented by reformulating the control allocation problem in incremental

form with Eq. (14).
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B. The Control Allocation Problem in Incremental Form

Note that Eq. (14) establishes an affine relationship between the virtual control input ν (x) and

increments in actuator positions ∆δ. The nonlinearities and interactions of the control effectors are

still captured by the Jacobian matrix ∂Φ (x0, δ0) /∂δ, which can be updated for the current state

and actuator positions at every time step. To simplify notation, let the Jacobian matrix of Φ (x, δ)

with respect to δ be denoted as

∇δΦ (x, δ) =
∂Φ (x, δ)

∂δ
(16)

and define the pseudo-control input dc ∈ Rn

dc = g (x)
−1

[ν (x) − ẋ0] (17)

The INCA problem is formulated as: given the current state x0, the current actuator positions

δ0, acceleration measurements ẋ0 and a pseudo-control input command dc = g (x)−1 [ν (x)− ẋ0],

determine an increment in the control input vector ∆δ such that

∇δΦ (x0, δ0)∆δ = dc

subject to ∆δ ≤ ∆δ ≤ ∆δ

(18)

where ∆δ and ∆δ are the most restrictive upper and lower bounds of the local position and rate

constraints of the actuators, translated into local incremental constraints. Note that the INCA

control allocator provides required increments of the actuator positions, which are added to the

current actuator positions to reach the absolute position command: δ = δ0 + ∆δ. The top-level

INCA-based control scheme is depicted in Figure 2.

The main advantage of INCA is that the incremental problem formulated in Eq. (18) is linear

in the increments of actuator positions, and therefore can be solved with simple and efficient linear

CA methods, such as the redistributed weighted pseudo-inverse or quadratic programming. The

fact that only local increments ∆δ are determined at each time step implies that the Jacobian

∇δΦ (x, δ), which captures nonlinearities and control effector interactions, can be updated for the

new actuator positions at every time step while the actuators are dynamically driven towards their

optimal positions. Thus, the direction of the increments of the control vector may change at every
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Fig. 2 Incremental nonlinear control allocation scheme for over-actuated systems.

time step in contrast to conventional LCA methods, which compute absolute positions at each time

step. Additionally, measured or estimated actuator positions δ0 are fed back into the system, and

therefore the incremental allocation is always based on current actuator positions. This mitigates

the negative impact of actuator dynamics. Most conventional CA methods, in contrast, assume

δc = δ0, resulting in negative coupling effects between control allocators and actuator dynamics

[34].

Note that an incremental formulation of the control allocation problem was derived for the

particular case of multivariate spline-based control systems in [35]. In this paper, the method

is generalized to incremental flight control systems based on any kind of on-board aerodynamic

model, and focuses on controller-related aspects such as real-time performance, robustness, model

dependency, actuator dynamics and saturation handling.

C. Actuator Constraints in Incremental Form

The incremental formulation of the control allocation problem requires translation of the abso-

lute position and rate limits of the actuators into equivalent local incremental constraints. Under a

discrete-time scheme, rate limits are directly mapped into position limits over a time step ∆t as

∆δr
max = δ̇max∆t

∆δr
min = −δ̇max∆t

(19)

Similarly, absolute position limits can be translated into local constraints imposed over a time step

as

∆δpmax = δmax − δ0

∆δp
min = δmin − δ0

(20)
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The local upper and lower bounds of the actuator position increments at a given time step are the

most restrictive of the local rate and position limits:

∆δ = min
(
δ̇max∆ts, δmax − δ0

)

∆δ = max
(
−δ̇max∆ts, δmin − δ0

) (21)

IV. The ICE Aircraft Model

The INCA method was implemented in this paper on a simulation framework to design a flight

control system for Lockeed Martin’s ICE aircraft, a highly manoeuvrable tailless aircraft with an

unconventional set of control effectors. This configuration presents substantial control challenges

for which LCA methods are obsolete. In this section the ICE configuration is presented, and a

description of the high-fidelity model used in the simulations is given.

A. The ICE Control Effectors Suite

The ICE configuration was developed as one of the design concepts for the ICE program con-

ceived in 1993 by the Flight Control Division of the U.S. Flight Dynamics Directorate, which aimed

to meet new requirements in terms of improved stealth characteristics, reduction of airframe weight,

improvement of lift-to-drag ratio and high manoeuvrability [36]. The result was an over-actuated 65-

deg sweep, highly maneuverable, supersonic tailless flying wing with 13 innovative control effectors.

Refs. [37, 38] provide technical insight on the ICE program.

The ICE control effectors suite includes inboard and outboard leading-edge flaps (LEF) provid-

ing lateral-directional control power at high AoA, all-moving wing tips (AMT) as one of the main

sources of lateral-directional control, and fluidic multi-axis thrust vectoring (MTV) as an additional

source of directional and longitudinal control power. It also includes pitch flaps (PF) for longitudinal

control (only symmetric deflections are possible) and independent elevons, mainly producing longi-

tudinal and lateral control power. Finally, the ICE aircraft has two spolier-slot deflectors (SSD).

Unlike conventional spoilers, SSDs open a slot between the lower and upper wing skins when de-

flected, allowing the redirection of the air flow at high AoA to recover control effectiveness of the

trailing-edge actuators. SSDs provide improved lateral-directional control effectiveness at high AoA

and transonic flight with respect to conventional spoilers. The SSDs are placed upstream of most
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Fig. 3 ICE control effectors suite.

Table 1 Dynamic properties of the ICE control effectors.

Control effector Notation Position limits [deg] Rate limit [deg/sec] Dynamics

Inboard LEF δlfi, δrfi [0, 40] 40 Hl(s)

Outboard LEF δlfo, δrfo [-40, 40] 40 Hl(s)

AMT δla, δra [0, 60] 150 Hh(s)

Elevons δle, δre [-30, 30] 150 Hh(s)

SSD δls, δrs [0, 60] 150 Hh(s)

PF δpf [-30, 30] 150 Hh(s)

MTV δptv, δytv [-15, 15] 150 Hh(s)

trailing-edge control surfaces, and therefore have a strong influence on their control effectiveness at

low AoA. The configuration of the ICE control effectors is shown in Figure 3.

The dynamics of the control effectors are modeled as second-order transfer functions. Ei-

ther a low-bandwidth and a high-bandwidth transfer function is used depending on the effectors:

Hl(s) =
(18)(100)

(s+ 18)(s+ 100)
(22) Hh(s) =

(40)(100)

(s+ 40)(s+ 100)
(23)

The position limits, no-load rate limits and dynamics of the ICE control effectors are listed in

Table 1.

B. Control Challenges

The unconventional ICE configuration presents a series of control challenges. Control and

stability issues have been extensively addressed for the ICE aircraft in [13, 36, 40–43]. A more

12



unaddressed challenge of the ICE configuration is the impossibility to successfully use linear control

allocation methods to optimally distribute control commands and fully exploit the capabilities of

its set of control effectors. This is due to a number of reasons.

First, as is common in tailless configurations, directional control power is mainly produced

with horizontal control surfaces, and therefore yawing moment curves are mostly parabolic. These

curves cannot be captured by linear effector models unless the concerned actuators are restricted to

operate in one direction, so LCA methods have serious issues regarding directional control in tailless

configurations. An example of a parabolic yawing moment curve of the left elevon influenced by the

AMT deflection from the ICE aerodynamic database is shown in Figure 4(a).

Second, due to the high number of control effectors, the mechanisms used to produce control

moments and the proximity between some control surfaces, the actuators exhibit strong nonlinear

interactions. This is particularly relevant for trailing-edge actuators. In some cases, such interactions

may even cause a change of sign in the slope of the moment curves of some actuators, such as in the

examples shown in Figures 4(a)-4(c). Also, note that control effectiveness of trailing-edge surfaces

is rapidly lost for small deflections of the SSDs at low AoA, as observed in Figure 4(b).

Finally, nonlinearities at the extreme regions of the control moment curves are observed in

Figure 4(b). The dashed line represents a linear approximation of the control moment curve for

δs = 0 deg. It is shown that the model mismatch becomes significant close to the actuator position

limits. This error is particularly critical in failure conditions, where the non-faulty actuators are

forced to operate in extreme regions of the moment curve. The factors discussed above make the

assumption of linearity in control allocation obsolete in the case of the ICE aircraft.

C. The ICE High-Fidelity Simulation Model

The high-fidelity nonlinear simulation model used in this paper was released by Lockheed Martin

to encourage control-related research. It is a six degrees-of-freedom (6-DoF) aerodynamic model

developed mainly from wind tunnel data, and includes nonlinear interaction effects between control

effectors, dynamic derivatives, aeroelastic effects and hinge moment derivatives. The aerodynamic

model provides dimensionless coefficients for aerodynamic forces and moments as a summation of
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Fig. 4 Examples of control moment curves at M = 0.6 and α = β = 0 deg from the ICE aero-

dynamic database.

nonlinear terms:

Ci =

19∑

j=1

Cij (δ, α, β,M,ω) (24)

with i = {l,m, n,X, Y, Z} and where the nonlinear terms Cij (δ, α, β,M,ω) are stored in lookup

tables. A detailed description of the model is given in [25].

D. Multi-Axis Thrust Vectoring Model

The MTV model considers the direction of the pitch δptv and yaw δytv deflection angles of the

thrust vector such that positive deflections produce negative pitching and yawing moments. Using

this convention, the MTV force T and moment τT vectors are given by Equations (25) and (26),

where dn=18.75 ft is the moment arm of the thrust force.

T =




Tx

Ty

Tz



= T




cos(δptv)/ cos(δytv)

cos(δptv) tan(δytv)

sin(δptv)




(25) τT =




τxT

τyT

τzT



= −Tdn




0

sin(δptv)

cos(δptv) tan(δytv)




(26)

V. Flight Control Systems Design

In order to test the INCA concept and assess its performance with respect to conventional

LCA methods, an LCA-based and an INCA-based fight control systems were designed for the ICE
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aircraft. The control allocation systems were applied to angular body rate control, the innermost

loop of the FCS. The body rate loop was augmented with a pseudo-control hedging loop as a partial

fight envelope protection and anti-windup system. The design of both FCS is discussed in this

section.

A. LCA-Based Flight Control System Design

The conventional LCA-based flight control system was designed with a typical nonlinear dy-

namic inversion scheme. This flight control system relies on a nonlinear aerodynamic model of the

plant and a linear control effector model for the control allocation module.

1. Linear Control Effectors Model

As discussed above, LCA methods require an aerodynamic model in which the control-induced

moments are affine in the actuator positions. Note, however that the aerodynamic and control

derivatives can remain nonlinear functions of α, β, M and ω. In order to de-couple the inputs,

the interaction effects between control effectors were eliminated from the original database. Linear

regressors were used to identify the aerodynamic coefficients and control derivatives as functions

of α, β, M and ω at the data points available in the ICE aerodynamic database. The obtained

derivatives were stored in lookup tables. The structure of the affine model is

Cl = Cla (α, β,M,ω) +
13∑

i=1

∆Cl,δi (α, β,M) δi

Cm = Cma (α, β,M,ω) +
13∑

i=1

∆Cm,δi (α, β,M) δi

Cn = Cna (α, β,M,ω) +
13∑

i=1

∆Cn,δi (α, β,M) δi

(27)

with ∆Cj,δi the control derivative of j = {l,m, n} with respect to the control effector δi, and

Cla (α, β,M,ω) = Cl,α (α,M) + Cl,β (α, β,M) +
pb

2V
Cl,p (α,M) +

rb

2V
Cl,r (α,M)

Cma (α, β,M,ω) = Cm,α (α,M) + Cm,β (α, β,M) +
qc̄

2V
Cm,q (α,M)

Cna (α, β,M,ω) = Cn,α (α,M) + Cn,β (α, β,M) +
pb

2V
Cn,p (α,M) +

rb

2V
Cn,r (α,M)

(28)

the dimensionless nonlinear moments generated by the airframe. Examples of identified control

derivatives scheduled for α and β are shown in Figure 5.
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(b)Yawing moment derivative of right AMT.

Fig. 5 Examples of control derivatives scheduled for α and β.
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Fig. 6 Affine control effector model compared to original aerodynamic data.

As discussed earlier, the assumption of linearity in control-induced moments is accurate enough

in some cases such as the pitching moment of the pitch flap in Figure 6(a), but in other cases it fails

to capture important effects. See, for instance, the rolling moment characteristic of the outboard

LEF in Figure 6(b) and the parabolic yawing moment curve of the right elevon in Figure 6(c).

The control derivative terms of the MTV can be derived by taking a first-order Taylor expansion

of the terms τyT and τzT in Eq. (26) around δptv = δytv = 0, obtaining the affine approximation

τT = −Tdn




0

δptv

δytv




(29)

Wrapping up the control derivative terms into a control effectiveness matrix B (x), the aerody-

namic moments can be expressed in control-affine form as

τ = τ a + τe =
1

2
ρV 2S







bCla

c̄Cma

bCna



+B (x) δ




(30)
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The actuator constraints are translated into local constraints as in Eq. (7). The MTV vector

is subject to a circular constraint imposed over the ℓ2 norm of the vector δtv = (δptv, δytv). When

the MTV vector violates the circular constraint, it is re-scaled into the boundary of the feasible

subspace by keeping the original direction of δtv:

δ′tv =
δtvmax

||δtv||
δtv (31)

2. Angular Rate Control Loop

The innermost control loop controls the body angular rates ω = [p q r] through commanded

moments τ c. Consider the aircraft rotational dynamic equations

ω̇ = I−1 (τ − ω × Iω) = I−1τ e + I−1 (τ a − ω × Iω) (32)

where I is the matrix of inertia of the aircraft. The aerodynamic moments produced by the airframe

include the contributions from the trim positions of the actuators:

τ a =
1

2
ρV 2S







bCla

c̄Cma

bCna



+B (x) δtrim




(33)

Setting the angular acceleration as a virtual control input νω (x) = ω̇ and solving Eq. (32) for

the required moments τ c = τ e leads to the model-based inversion control law

τ c = Iνω (x)− 1

2
ρV 2S







bCla

c̄Cma

bCna



+B (x) δtrim




+ ω × Iω (34)

which linearizes the system between the virtual control input νω (x) and ω. The required moments

τ c are distributed over δ by a linear control allocator. The linearized system can now be controlled

through the virtual control input νω (x) such that the output follows a reference command ωc, by

using an outer state-feedback linear control law

νω (x) = KωP (ω − ωc) +KωI

∫
(ω − ωc) dt+KωD (ω̇ − ω̇c) (35)
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3. Adaptation of the Linear Model

As previously shown, the identified linear model fails to capture important nonlinear effects,

which is particularly critical for parabolic and non-monotonic moment curves (e.g. those shown in

Figures 6(b) and 6(c)). Since such errors can cause instability of the closed loop, the linear model

needs to be adapted to ensure minimally acceptable performance.

The AMT, inboard LEF and SSD are restricted to deflect in one direction only. Thus their

yawing moment curves are half-parabolas that can be approximated with a linear model with a

reasonable mismatch, which can be absorbed by the robustness of the controller. The elevons and

outboard LEF, however, can deflect in two directions, thus having parabolic yawing moment curves.

Since these actuators are not primary sources of directional control power, their yawing moment

derivatives were set to zero in the control effectiveness matrix. As a consequence, these effectors are

used to produce pitching and rolling moments only, whereas their secondary-axis yawing moments

are seen by the control system as external disturbances, which need to be compensated by other

yawing moment-generating actuators.

These necessary simplifications of the model have two detrimental consequences on the overall

performance of the FCS. First, the potential of the ICE control suite is underexploited (e.g. elevons

cannot be used to produce yawing moments, which might be necessary in failure conditions or

extreme maneuvers). Second, the yawing moments produced by the elevons and outboard LEF are

seen as external disturbances, and need to be continuously suppressed by other control effectors.

B. INCA-Based Flight Control System Design

The INCA-based flight control system was designed with an incremental control scheme. This

scheme relies upon angular acceleration and actuator position feedback loops, whereas model de-

pendency is limited to a Jacobian model of the control-induced moments.

1. Multivariate Simplex Spline-Based Jacobian Model

As shown in Section III, the INCA method has a more relaxed dependency on an on-board

aerodynamic model and therefore is more robust against model uncertainties. Instead of a full
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aerodynamic model, INCA is based on a control moment Jacobian model ∇δΦ (x, δ) that includes

the directional derivatives of τ e with respect to δ.

In this paper, the Jacobian control effectiveness matrix is derived from a multivariate simplex B-

spline aerodynamic model of the ICE aircraft identified from the high-fidelity aerodynamic database

described in Section IV. This spline model preserves the original model structure of aerodynamic

terms:

Ci = + Cs
i1 (α,M) + Cs

i2 (α, β,M) + Cs
i3 (α, δls, δle,M) + Cs

i4 (α, δrs, δre,M)

+ Cs
i5 (α, β, δlfi) + Cs

i6 (α, β, δrfi) + Cs
i7 (α, β, δlfi, δlfo,M) + Cs

i8 (α, β, δrfi, δrfo,M)

+ Cs
i9 (α, δlfo, δla) + Cs

i10 (α, δrfo, δra) + Cs
i11 (α, δla, δle) + Cs

i12 (α, δra, δre)

+ Cs
i13 (α, δrs, δls, δpf,M) + Cs

i14 (α, β, δla) + Cs
i15 (α, β, δra) + Cs

i16 (α, β, δls)

+ Cs
i17 (α, β, δrs) +

pb

2V
Cs

i18 (α,M) +
qc̄

2V
Cs

i19 (α,M) +
rb

2V
Cs

i20 (α,M)

(36)

with i = {l,m, n,X, Y, Z}, where every model term Cs
in is a multivariate B-spline defined over a

simplex triangulation with 0th-order continuity. This model was identified with the original ICE

aerodynamic database in [44] following the linear regression techniques presented in [45]. Including

all the model terms corresponding to every dimensionless aerodynamic moment and force coefficients,

the spline model consists on 108 spline functions.

From this model, the directional derivatives of every model term Cs
ij

in the directions of δ can

be computed in a computationally efficient way with the method of model reduction of parabolic

partial differential equations presented in [46]. This yields 13 partial derivatives of each of the 108

spline models, from which the control effectiveness Jacobian matrix is constructed as:

∇δΦ (α, β,M, δ) =




∑20
j=1

∂Cs
lj
(x,δ)

∂δ1

∑20
j=1

∂Cs
lj
(x,δ)

∂δ2
· · · ∑20

j=1

∂Cs
lj
(x,δ)

∂δ13

∑20
j=1

∂Cs
mj

(x,δ)

∂δ1

∑20
j=1

∂Cs
mj

(x,δ)

∂δ2
· · · ∑20

j=1

∂Cs
mj

(x,δ)

∂δ13

∑20
j=1

∂Cs
nj

(x,δ)

∂δ1

∑20
j=1

∂Cs
nj

(x,δ)

∂δ2
· · · ∑20

j=1

∂Cs
nj

(x,δ)

∂δ13




(37)

The Jacobian calculation was implemented on a real-time, highly optimized routine that can provide

in the order of 104 Jacobian calculations per second. A key factor for the accuracy of the Jacobians is

the continuity order between simplices. In this case, 0th-order continuity was used, and therefore the

model represents the worst possible case in terms of continuity. This implies that the performance
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achieved in this paper can be improved by increasing the continuity order of the spline model.

The Jacobian model is not restricted to spline-based models. For instance, a locally linear

numerical differentiation approach with a lookup table-based aerodynamic model could also be used

to approximate the nonlinear Jacobian. A spline model was used in this thesis because it provides

an elegant way to extend the INCA-based FCS into a fault-tolerant flight control system. Splines are

function approximators that can be used in an on-line system identification framework, in contrast

to lookup table-based models.

2. Multi-Axis Thrust Vectoring Jacobian Model

A Jacobian model providing the directional derivatives of the control moments produced by

MTV can be obtained analytically by deriving the Jacobian matrix of τT in Eq. (26):

∇δtvτT(δptv, δytv) = Tdn




0 0

− cos(δptv) 0

sin(δptv) tan(δytv) − cos(δptv)/ cos
2(δytv)




(38)

The MTV circular constraints in incremental form require further consideration. In an incre-

mental control allocation scheme, the control allocator provides a commanded increment ∆δtv over

the current actuator position δtv0
. If the resulting MTV deflection vector δtv = δtv0

+∆δtv violates

the circular constraint, then a new increment ∆δ′
tv must be computed such that the new resulting

vector δ′
tv = δtv0

+ ∆δ′
tv satisfies the circular constraint while preserving the original direction of

δtv. This implies changing the modulus and direction of ∆δtv:

∆δ′
tv =

δtvmax

||δtv0
+∆δtv||

(δtv0 +∆δtv)− δtv0 (39)

3. Angular Rate Control Loop

INCA is implemented at the innermost control loop for body-frame angular rate control. Con-

sider the aircraft rotational dynamic equations, where τ e is substituted by the nonlinear control

effector model Φ (x, δ):

ω̇ = I−1 (τ − ω × Iω) = I−1Φ (x, δ) + I−1 (τ a − ω × Iω) (40)
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For a given time step, the incremental form of the rotational dynamics as a first-order Taylor

expansion at the operating point (x0, δ0) is

ω̇ ≃ ω̇0 +
∂

∂ω

[
I−1Φ (x, δ) + I−1 (τ a − ω × Iω)

]∣∣∣∣
δ=δ0
x=x0

(ω − ω0)

+
∂

∂δ

[
I−1Φ (x, δ) + I−1 (τ a − ω × Iω)

]∣∣∣∣
δ=δ0
x=x0

(δ − δ0) (41)

where the angular accelerations at the current step ω̇0 can be obtained from angular accelerometers,

signal processing or acceleration estimation methods.

According to the previously discussed time scale separation principle, the second term of the

right-hand side of Eq. (41), i.e. the changes in angular acceleration due to changes in angular rates,

is negligible for high sampling rates in comparison to the control-dependent term. This is explained

in [28] as follows. Increments in actuator positions directly cause angular accelerations. Angular

rates, however, only vary as a consequence of integrating angular accelerations, i.e. integrating

the actuator deflection contributions. Therefore, when the sampling frequency of the FCC is high

enough, the assumption (ω − ω0) ≈ 0 is valid. Practical implementation of incremental attitude

control in fast-dynamics aerospace vehicles has proven that FCC frequencies of about 100 Hz are

high enough for the time scale separation principle to hold [30].

Applying time scale separation and operating the partial derivatives, the incremental dynamic

rotational equations are obtained as a function of the current angular accelerations and actuator

positions:

ω̇ = ω̇0 + I−1∇δΦ (x0, δ0)∆δ (42)

Setting the angular acceleration as a virtual control input νω (x) = ω̇ and solving for ∇δΦ (x0, δ0)∆δ,

the INCA formulation in Eq. (18) is found for the angular rate control problem:

∇δΦ (x0, δ0)∆δ = I [νω (x) − ω̇0] = ∆τ c (43)

where the pseudo-control input dc corresponds to the required increments of control-induced mo-

ments ∆τ c. At this point, the required control-induced moment increments ∆τ c are allocated into

actuator position increments ∆δ by a linear control allocator, where the CA problem is formulated

in incremental form at every time step as: given the current state x0, the current actuator positions
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δ0 and a required increment of control-induced moments ∆τ c, determine an increment in the control

effector positions ∆δ such that

∇δΦ (x0, δ0)∆δ = ∆τ c

subject to ∆δ ≤ ∆δ ≤ ∆δ

(44)

Here, the inner control law

∆τ c = I [νω (x)− ω̇0] (45)

linearizes the system between the virtual control input νω (x) and ω. The linearized system can

now be controlled through the virtual control input such that it follows a command ωc by using the

outer state-feedback linear control law in Eq. (35).

The absolute actuator position commands are computed as δ = δ0 + ∆δ. Note that the

Jacobian matrix is also a function of the actuator positions, and therefore interactions between

control effectors are considered in the control allocation process. Also, note that actual actuator

position measurements δ0 are fed back into the control system at each time step, and therefore the

Jacobian matrix is always computed with the actual actuator positions. This also implies that the

required increments ∆δ are always calculated over the actual actuator positions, avoiding couplings

between control allocator and actuator dynamics typical of LCA-based control systems [34].

4. Global Convergence and SSDs

Since INCA dynamically drives the actuator vector towards the direction that best fulfills local

moment increment commands, it is possible that it converges to local optima. This is not a problem

if it is valid to assume that the optimal control distribution lies within the neighbourhood of the

current actuator positions. This assumption is valid for most of the ICE actuators, since their

moment curves do not have local minima in the directions of δ, and local minima in the directions

of α, β and M are irrelevant to the control allocator since they are not control variables. However,

the SSDs have a dramatic impact on the control effectiveness of trailing-edge control effectors, and

therefore globally optimal control distributions might be available far away from the current control

distribution.
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It is worth noting that, besides providing lateral-directional control at high AoA, an important

function of the SSDs is to redirect the airflow towards the upper wing skin at high AoA to recover

control effectiveness of trailing-edge devices. In contrast, deflecting the SSDs at low AoA destroys

the control effectiveness of downstream actuators. Therefore, it is reasonable to assume that globally

optimal control distributions will have small SSD deflections at low AoA and big deflections at high

AoA. Hence, convergence towards global optima can be subserved by forcing the SSDs to remain

as closed as possible at low AoA, and as open as possible at high AoA. This can be achieved by

scheduling the penalizing weights of the SSDs in the weighting matrix Wu as a function of α. In

this case, the SSD penalties WuSSD (α) were scheduled as the exponential function

WuSSD (α) = [−0.25 + 0.35 exp (1.6α)]
−1 (46)

Although this scheduling is valid for the ICE configuration, the characteristics of each particular

controlled system shall be studied in order to favour global convergence.

VI. Control Allocation Solvers

As described in Section V, the innermost loop of the designed FCSs relies upon a linear control

allocator that distributes control moments into actuator positions in the LCA-based FCS and control

moment increments into actuator position increments in the INCA-based FCS. In this paper, both

FCS were implemented with two different linear CA solvers: the redistributed weighted pseudo-

inverse (RWPI) and quadratic programming (QP) solved with the active set algorithm. These CA

methods are briefly discussed in this section.

A. Redistributed Weighted Pseudo-Inverse

The RWPI method consists on using an explicit solution of the unconstrained LCA problem and

iterating over the result by clipping saturated actuators. The explicit solution to the unconstrained

problem can be derived analytically if the constraints from Eq. (8) are removed. The unconstrained

control allocation problem consists on finding a control vector u that satisfies a control demand

dc while minimizing a secondary objective formulated as a quadratic cost function that penalizes

displacement from a preferred control vector up. A linear relationship Gu = dc is assumed. Note

that here the control vector is denoted as u to keep de discussion general, and corresponds to δ
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for LCA and to ∆δ for INCA. Also, the matrix G corresponds to the control effectiveness matrix

B (x) in LCA and to the Jacobian matrix ∇δΦ (x, δ) in INCA; and the pseudo-control input dc

corresponds to an absolute moment command τ c in LCA and to an incremental moment command

∆τ c in INCA.

The minimization problem is formulated using a ℓ2 norm cost function as: given an operating

point x0, an affine relationship Gu = dc, a control demand dc and a preference vector up determine

a control input u such that

min
u

J =
1

2
(u− up)

T Wu (u− up)

subject to Gu = dc

(47)

where Wu is a weighting matrix that penalizes to the use of some effectors over others. For the

secondary objective, the most common approach is minimizing the control effort by setting up = 0.

Analytically solving (47) with Lagrange multipliers [1, 12, 51] the explicit biased weighted

pseudo-inverse solution is found:

u = up +G♯ (dc −Gup) (48)

with

G♯ = W−1
u GT

(
GW−1

u GT
)−1

(49)

a generalized weighted pseudo-inverse. This method provides a solution to the unconstrained prob-

lem as long as it exists and GGT is not rank-deficient.

The weighted pseudo-inverse solution does not consider local position and rate constraints, and

hence it requires further processing. If the found u is within the local actuator limits, the solution

is kept. Otherwise, if one or more effectors violate constraints, the next steps are followed. First,

the columns in G corresponding to the actuators that violate the limits are zeroed, forming an

auxiliary matrix Gsat. Second, the values of the saturated effectors are placed in the preference

vector up, forming an auxiliary preference vector up,sat. Then, the redistributed weighted pseudo-

inverse solution is re-computed as follows:

u = up,sat +G♯
sat (dc −Gup,sat) (50)

This process is repeated until all effectors are saturated or a solution within the local limits is found.
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B. Quadratic Programming

The CA problem can be also solved as a numerical optimization problem with explicit con-

straints. In such cases, the common approach is to minimize a multi-objective cost function defined

with a given norm, subject to local actuator constraints. ℓ2- and ℓ∞-based solutions are more

popular since they tend to distribute the control effort over a larger number of actuators [26].

A very common approach is using the ℓ2 norm to formulate the control allocation problem as a

multi-objective constrained optimization problem, solved as a quadratic program:

min
u

J = Wd ||Gu− dc||22 + ǫ Wu ||u− up||22

subject to u ≤ u ≤ u

(51)

where ǫ is a scalar, selected sufficiently small to prioritize the minimization of the allocation error

over the secondary objective, and Wd and Wu are nonsingular weighting matrices.

Many numerical algorithms are available to solve the QP problem in real time. In [52], the

authors concluded that the active set algorithm converges exactly to the optimal solution in a finite

number of steps and is computationally efficient for control allocation problems of small and medium

size. In this paper, the QP problem is implemented with the active set algorithm described in [53].

C. Preference Vector in Incremental Form

The INCA scheme requires a reformulation of the preference vector used in the control allocation

algorithms, since ∆δp refers to a preferred actuator position increment. Setting ∆δp = 0 results

in complementary actuators diverging to asymmetric nonzero deflections while still producing a

resultant moment of zero. In order to bring the actuators to their preferred absolute positions

whenever it is possible, the incremental preference vector ∆δp is computed at each time step as

∆δp = min
(
|δp − δ0| ,

∣∣∆δ
∣∣ , |∆δ|

)
· sign (δp − δ0) (52)

VII. Saturation Handling: Pseudo-Control Hedging

Actuator saturation represents a problem when control commands exceed the capabilities of

the actuators under rate and position constraints. When physically unachievable control commands

are given, the system can run into command windup problems, which compromises the overall

performance and stability of the system. To overcome this problem, pseudo-control hedging (PCH)
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was proposed in [47] and developed in [48, 49] as an adaptation system to hedge the pseudo-control

input of the control system to accommodate the commands to the limitations of the actuators set,

thus avoiding physically unachievable commands. PCH has been successfully used as a partial form

of flight envelope protection and anti-windup system in [29, 50].

PCH was implemented in the designed FCSs to shape the virtual control command νω (x) by

substracting the difference between the commanded νω (x) and the actual virtual control achieved,

estimated with measured actuator positions δ0 as ν̂ω (x) = f (x0, δ0), where f (x, δ) is the virtual

control law. The pseudo-control hedge is computed as

νh (x) = νω (x)− ν̂ω (x) (53)

The hedge νh (x) is fed back into a first-order reference model (RM) as a compensation signal. The

reference model νrm (x) is given by

νrm (x) = Krm (ωc − ωrm) (54)

with Krm a diagonal matrix. The hedged reference signal fed as a control input into the attitude

control system is the state vector of the reference model

ωrm =
1

s
(νrm (x)− νh (x)) (55)

When no saturation occurs, νh (x) = 0 and the reference model behaves as a low-pass filter

of bandwidth Krmi
for the i-th component of ωrm. Under actuator saturation, the hedge νh (x)

corresponds to the difference between the commanded virtual control input and the estimated virtual

control achieved, based on the actual positions of the control effectors. The hedge signal νh (x)

is used to reshape the reference and avoid unfeasible commands. The reference model νrm (x)

corresponds to the first-order derivatives of the commanded variables, which can be used as a

feedforward term added to νω (x) to improve tracking performance [29].

In the LCA-based FCS the virtual control input is given by the control law

νω (x) =
1

2
ρV 2SI−1B (x) δ + I−1 (τ a − ω × Iω) (56)
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and therefore the pseudo-control hedge is given by

νhLCA (x) =

[
1

2
ρV 2SI−1B (x) δc + I−1 (τ a − ω × Iω)

]
−
[
1

2
ρV 2SI−1B (x) δ + I−1 (τ a − ω × Iω)

]

(57)

νhLCA (x) =
1

2
ρV 2SI−1B (x) (δc − δ) (58)

In the INCA-based FCS the virtual control input is given by the control law

νω (x) = ω̇0 + I−1∇δΦ (x0, δ0) (δ − δ0) (59)

and therefore the pseudo-control hedge is given by

νhINCA (x) =
[
ω̇0 + I−1∇δΦ (x0, δ0) (δc − δ0)

]
−
[
ω̇0 + I−1∇δΦ (x0, δ0) (δ − δ0)

]
(60)

νhINCA (x) = I−1∇δΦ (x0, δ0) (δc − δ) (61)
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The internal structures of the LCA-based and the INCA-based body rate control systems,

including PCH, are given in Figures 7 and 8 respectively.

VIII. Outer Control Loops

The reference maneuvers used to assess the performance of the LCA-based and the INCA-based

controllers were coded as predefined reference signals. In order to fly these maneuvers, a series of

outer loops were designed to track each kind of reference. Three different outer loops were designed

to fly different types of reference trajectories: a sideslip compensation loop, an aerodynamic inversion

loop and an Euler angle inversion loop with flight path guidance. In order to make a fair comparison,

the same outer loops were used with both the LCA-based and the INCA-based controllers. The

design and implementation of these outer loops is discussed in this section. Additionally, an auto-

throttle (A/T) linear control loop was implemented for speed control using throttle as control input.

A. Sideslip Inversion Outer Loop

The sideslip dynamic inversion loop compensates the sideslip angle to perform coordinated turns

whereas leaving roll and pitch rates as direct controlled variables. For this, a dynamic inversion of

the sideslip angle was performed. The sideslip angle β can be computed as

β = arcsin
v

V
(62)

The first derivative of Eq. (62) is

β̇ =
v̇V − vV̇

V
√
u2 + w2

=
v̇√

u2 + w2
− v (uu̇+ vv̇ + wẇ)

(u2 + v2 + w2)
√
u2 + w2

(63)

The accelerations in aerodynamic frame are given by

u̇ =Ax − g sin θ + rv − qw

v̇ =Ay + g sinφ cos θ − ru + pw

ẇ =Az + g cos θ cosφ+ qu− pv

(64)

Substituting Eqs. (64) into Eq. (63) gives

β̇ =

(
1√

u2 + w2

)
(Fx + Fy + Fz) +

[
w√

u2 + w2
0

−u√
u2 + w2

]




p

q

r




(65)
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with

Fx =− uv

V 2
(Ax − g sin θ)

Fy =
(
1− v

V 2

)
(Ay + g sinφ cos θ)

Fz =− vw

V 2
(Az + g cosφ cos θ)

(66)

Introducing the virtual control input νβ (x) = β̇ and solving for the input r the sideslip dynamic

inversion law is obtained:

rc =

( −u√
u2 + w2

)

︸ ︷︷ ︸
aβ(x)

−1


νβ (x)−

1√
u2 + w2

(Fx + Fy + Fz + wpc)

︸ ︷︷ ︸
bβ(x)




= aβ (x)
−1 [νβ (x)− bβ (x)] (67)

B. Aerodynamic Inversion Loop

Similarly, a dynamic inversion loop can be used to control the aerodynamic angles φ, α and β.

The dynamics of the bank angle are given by

φ̇ =

[
1 sinφ tan θ cosφ tan θ

]




p

q

r




(68)

Introducing the virtual control input νφ (x) = φ̇ and solving for the body rates as control inputs,

the bank angle dynamic inversion law is obtained:




pc

qc

rc



=

[
1 sinφ tan θ cosφ tan θ

]

︸ ︷︷ ︸
aφ(x)

−1

νφ (x) = aφ (x)
−1

νφ (x) (69)

The dynamics of the angle of attack α are given by

α̇ = arcsin
w

V
=

uẇ − wu̇

u2 + w2
(70)
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Substituting Eqs. (64) into Eq. (70) gives

α̇ =

(
1

u2 + w2

)
(u (Az + g cos θ cosφ)− w (Ax − g sin θ))

+

[ −uv

u2 + w2
1

−vw

u2 + w2

]




p

q

r




(71)

Introducing the virtual control input να (x) = α̇ and solving for the body rates as control inputs,

the angle of attack dynamic inversion law is obtained:



pc

qc

rc



=

[ −uv

u2 + w2
1

−vw

u2 + w2

]

︸ ︷︷ ︸
aα(x)

−1

−
(

1

u2 + w2

)
(u (Az + g cos θ cosφ)− w (Ax − g sin θ))

︸ ︷︷ ︸
bα(x)

= aα (x)
−1

[να (x)− bα (x)] (72)

The sideslip angle dynamic inversion law for the aerodynamic inversion loop can be obtained

by re-arranging Eq. (65) with the three body rates as control inputs:



pc

qc

rc



=

[
w

u2 + w2
0

−u

u2 + w2

]

︸ ︷︷ ︸
aβ(x)

−1

−
(

1√
u2 + w2

)
(Fx + Fy + Fz)

︸ ︷︷ ︸
bβ(x)

= aβ (x)
−1

[νβ (x)− bβ (x)] (73)

Combining the three control channels, the aerodynamic inversion control law is



pc

qc

rc



=




aφ (x)

aα (x)

aβ (x)




−1 





νφ (x)

να (x)

νβ (x)



−




0

bα (x)

bβ (x)







(74)

C. Flight Path Guidance Loop with Euler Angle Inversion

A guidance loop was designed in order to use flight path angle γ and bank angle φ as control

inputs from a reference trajectory and a sideslip compensator in the directional channel to coordinate

turns. For this, first an Euler angle dynamic inversion loop was set up, whose pseudo-control inputs

were provided by an outer linear loop controlling φ, γ and β.
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The relationship between body angular rates and Euler angular rates in the lateral and longi-

tudinal channels is


φ̇

θ̇


 =



1 sinφ tan θ cosφ tan θ

0 cos θ − sinφ






p

q


 (75)

setting the virtual control inputs νφ (x) = φ̇ and νθ (x) = θ̇ and solving for the body rates as control

inputs, the Euler dynamic inversion law is obtained:


pc

qc


 =



1 sinφ tan θ cosφ tan θ

0 cos θ − sinφ




︸ ︷︷ ︸
[aφ(x) aθ(x)]

T

−1 

νφ (x)

νθ (x)


 (76)

Including the sideslip inversion law in Eq. (73), the Euler angle inversion law is




pc

qc

rc



=




aφ (x)

aθ (x)

aβ (x)




−1 





νφ (x)

νθ (x)

νβ (x)



−




0

0

bβ (x)







(77)

The references for the pseudo-control input νguid (x) =
[
φ̇c θ̇c β̇c

]
are provided by a linear

outer loop with φc, γc and βc as references:



φ̇c

θ̇c

β̇c



= KguidP




(φ− φc)

(γ − γc)

(β − βc)



+KguidI




∫
(φ− φc) dt

∫
(γ − γc) dt

∫
(β − βc) dt



+KguidD




(φ̇− φ̇c)

(γ̇ − γ̇c)

(β̇ − β̇c)




(78)

IX. Simulations and Results

Real-time flight simulations were performed to assess the performance of the INCA-based FCS

with respect to the baseline LCA-based system. First, a simple maneuver with direct body rate

input was performed to obtain straightforward insight on the overall behaviour of both systems.

Second, this manoeuvre was used to perform a sensitivity analysis of the INCA system to Jacobian

model mismatch. Finally, four reference maneuvers with different degrees of aggressiveness were

flown to assess the systems when pushed towards the limits of the flight envelope.

The flight simulations were set up in a Matlab/Simulink framework. The simulations were run in

real time with a 4th-order Runge-Kutta solver with a fixed sampling rate of 100Hz. The simulations
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were performed in a 64-bit computer with four Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz

processors and 16.0 Gb RAM. The simulations were initialized in trim conditions at an altitude of

20000 ft and M = 0.85. The initial true airspeed of 880 ft/sec was set as a constant reference to

the A/T controller. In all the simulations, the linear gains of the innermost body rate control loop

were set to KPp = KPq = 6.5, KPr = 5.8, KIp = KIq = KIr = 0 and KDp = KDq = KDr = 0.5.

The reference model gains Krm were all set to 10. The penalization gains in Wδ were set to 1 for

all control effectors except for the AMTs, which were set to 0.5, and for the SSDs, which were set

as a function of α as given by Eq. (46). The penalization gains in Wτ were all set to 1. The control

preference vector δp was 0 for all control effectors in all cases.

X. 3211 maneuver with Sideslip Compensation

The first simulation was set up with the sideslip inversion loop, using roll and pitch body rates

and sideslip angle as control input commands. These simulations are intended to provide general

insight on the behaviour of the two FCS solved with both RWPI and QP. The control inputs were

simultaneous 3211 signals with amplitudes of 10 deg/sec for the roll and pitch channels and 3 deg for

the sideslip channel. 3211 inputs consist of two consecutive pulse doublets, the pulses of which have

durations of 3, 2, 1 and 1 seconds. These inputs are known to excite a significant frequency range

of the aircraft operational bandwidth [54]. The gains used for the sideslip loop were KβP = 1.60,

KβI = 0.30 and KβD = 0.00.

The time histories of the controlled variables along the 3211 maneuver are given in Figures 9

and 10 with the FCS using the RWPI and QP solvers respectively. Important deficiencies can be ob-

served with the LCA-based controller, which exhibits large excursions from the commanded values,

including overshoots and oscillations. This behaviour is consistent with the fact that many nonlin-

ear aerodynamic effects and interactions between control effectors are neglected in the linear model

used in the LCA-based controller, which need to be compensated with other actuators resulting in

a substantial degradation of the tracking performance. On the other hand, it can be observed that

INCA presents a remarkably superior tracking performance in both cases. It is worth noting that

the tracking performance is considerably better with the QP solver in both systems. Consequently,

for the sake of conciseness, only results with the QP solver will be shown in the remainder.
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neuver using the QP solver.

A key performance metric for CA systems is allocation performance, which refers to the ca-

pability of the control allocator to attain the control moments required by the high-level FCS, i.e.

minimizing the allocation error τ − τ c. The time histories of the commanded and attained control-

induced moments for the 3211 maneuver with LCA and INCA solved with QP are given in Figure

11. Large excursions are observed with LCA in the three channels. On the other hand, the control

allocation performance is remarkably superior with INCA. Note, in addition, that due to the better

allocation performance, INCA requires considerably smaller control-induced moments to track the

reference commands. Finally, the time histories of the 13 control effector positions along the 3211

maneuver are given in Figure 12.

A. Robustness Analysis to Jacobian Model Mismatch

The sensitivity of the performance of INCA to errors in the control effectiveness Jacobian model

∇δΦ (x, δ) is a relevant subject of study. As deduced in the theoretical development of the method,
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the 3211 maneuver with the LCA (left) and INCA (right) control allocators with the QP

solver.

it is expected that the angular acceleration feedback provides considerable robustness against model

mismatch. The sensitivity analysis presented here was intended to support this hypothesis.

There are three ways in which the accuracy of the Jacobian model can be altered. First, by

changing the order of continuity between the simplices of the original spline model Φ (x, δ). Abrupt

discontinuities in the control effectiveness model cause undesirable peaks in the Jacobian function.

The spline model used in this paper has 0th-order continuity between simplices, and therefore

represents the worst case scenario in terms of continuity. The two other possible alterations to the

model are the introduction of a scaling factor and offset in the Jacobian terms. To analyze model

sensitivity, offset and scaling were introduced in the Jacobian model as follows:

∇δΦ
′ (x, δ) = mΦ∇δΦmax + nΦ∇δΦ (x, δ) (79)

where ∇δΦmax is a matrix containing the maximum values of the Jacobian terms obtained along the

3211 reference trajectory, mΦ represents the fraction of the maximum Jacobian values introduced

as offset and nΦ represents the scaling factor of the original Jacobian function.

The sensitivity analysis consisted on simulating the 3211 maneuver described in Section X with

INCA/QP by varying the model offset and scaling between simulations. The scale factor nΦ was

varied from 0.6 to 1.4 in steps of 0.01 taking a total of 81 values, and the offset mΦ was varied
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Fig. 12 Control effector positions of the 3211 maneuver with the QP solver.

between -0.35 and 0.35 in steps of 0.01 taking a total of 101 values. This led to a total amount

of 8181 simulations. The allocation error RMS (τ − τ c) and the control effort RMS (δ − δp) along

the trajectory were recorded for each simulation. The maps of control allocation error and control

effort obtained for the range of tested conditions are given in Figures 13 and 14 respectively.

For the baseline condition with no model alteration, the allocation error was 11.2 klbf·ft and the

control effort was 3.4 deg. For the whole region of study, the maximum increases of allocation error

and control effort were of 25% and 17% respectively, which demonstrates considerable robustness

against Jacobian model mismatch. It is worth noting that the allocation performance improves

considerably for decreasing scaling factors. The best allocation performance, with an error reduction

of more than 13%, was achieved with the minimum scaling factor tested, close to the 0% offset region.

This reveals that INCA benefits from underestimation of the magnitude of the Jacobian terms.
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B. Aggressive Flight Maneuvers

The ICE aircraft is a highly maneuverable fighter designed for air combat, and therefore its

design, including flight control and stability systems, must demonstrate high maneuverability and

stability in extreme regions of its flight envelope. In order to assess the performance of the INCA-

based FCS when the aircraft is pushed towards the limits of its operational range, four tests were

designed with aggressive air combat aerobatic maneuvers:

1. Maneuver A: high-bank climbing spiral using the guidance outer loop with Euler angle inver-

sion with bank angle φ, glide path angle γ and sideslip β as control inputs. The reference

trajectory consists of a constant bank angle reference of 80 deg with a constant flight path

angle of 15 deg and zero sideslip.

2. Maneuver B: barrel roll using the sideslip compensation loop with direct roll and pitch body

rate control inputs. The reference trajectory consists of constant pitch and roll rate inputs,

synchronized to complete two barrel rolls and exit the maneuver with the initial heading and

zero flight path angle (straight-and-level flight).

3. Maneuver C: highly demanding sequence of aerobatic maneuvers using the sideslip compen-

sation loop with direct roll and pitch body rate control inputs. The sequence of maneuvers is:

aileron roll, asymmetric looping with nonzero sideslip, half 8-point hesitation roll and Immel-

mann turn. The aileron roll consists on an agressive roll input of 180 deg/sec with two full
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turns about the x-axis in 4 seconds. The asymmetric looping consists on a constant pitch rate

input of 18 deg/sec for 20 sec. During the first 10 seconds of the looping, a 5 deg sideslip input

is given, which returns to 0 deg for the last 10 seconds of the looping maneuver. This results in

some lateral displacement during the looping. The half 8-point hesitation roll consists on four

quick roll rate step inputs of 90 deg/sec with a duration of 0.5 sec each and with a separation

of 1 sec after each step, finishing the maneuver with a roll angle of 180 deg. At this position,

a downward half-looping follows, completing an Immelmann turn and ending the trajectory

in straight-and-level flight.

4. Maneuver D: high-AoA and high-sidselip commands using the aerodynamic inversion loop with

the aerodynamic angles α and β and the bank angle φ as control inputs. This maneuver is

designed to test the behaviour of the flight control system at high AoA, where the nonlinearities

and interactions between control effectors become most significant. The reference trajectory

consists on a doublet α input of ±40 deg followed by a doublet β input with ±25 deg, while

keeping the bank angle reference at 0 deg.

All four maneuvers were flown with the LCA- and INCA-based FCS using the RWPI and QP

solvers to compare performance. The simulation of maneuver D with LCA/QP resulted in unstable

flight. This was also the case for the highly demanding maneuver C, which resulted in unstable flight

with LCA/QP and INCA/RWPI. The spatial trajectories obtained from the aggressive maneuvers

with LCA and INCA with the QP solver are shown in Figure 15. Note that, since LCA/QP was

unstable for maneuver C, LCA/RWPI is shown for this maneuver instead.

As an example, the results of maneuver B (barrel roll) with LCA and INCA solved with QP

are shown below. Figure 16 shows the controlled variables for this maneuver. Very large excursions

from the commanded values can be observed with LCA, especially in the longitudinal and directional

channels. INCA, however, tracks all the body rate references with excellent performance, with no

major excursions, oscillations or peaks. Figure 17 shows the commanded and attained moments by

both control allocators. Large control allocation errors are observed with LCA in contrast to INCA,

which produces the commanded moments quickly and accurately. This results in smaller moments

required to track the reference commands.
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Fig. 15 Spatial trajectories of the aggressive maneuvers.

Finally, the control effector positions along the barrel roll maneuver are given in Figure 18. Some

remarkable effects can be observed. INCA makes more extensive use of the pitch flap for longitudinal

control, whereas LCA allocates more control load on the elevons. Since the on-board model of

INCA captures parabolic yawing moments, it makes sense that it prioritizes the use of uncoupled

control effectors for pitch control to minimize undesired secondary-axis yawing contributions. On

the other hand, since LCA lacks information about the interaction effects of the SSDs on trailing-

edge actuators at low AoA, this system opens the SSDs causing the couplings that can be observed

between SSDs and elevons. Finally, it is worth noting that, since the parabolic yawing moments

of the outboard LEFs had to be removed from the linear control effector model, LCA barely uses

these effectors for lateral-directional control.
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Fig. 16 Controlled variables for the barrel roll

maneuver using the QP solver.

C. Overall Performance Assessment

The overall performance of the systems was evaluated with four performance metrics. First,

the tracking error RMS (u− uc), with u the vector of control input variables, evaluates the overall

ability of the FCS to track reference input commands. Second, the allocation error RMS (τ − τ c)

evaluates the ability of the control allocator to attain the control-induced moments required by the

high-level FCS. Third, the control effort RMS (δ − δp) evaluates the amount of deflection of the

control effectors required to satisfy the control commands. Since the INCA algorithm is intended

to run in real time on FCS, the number of iterations carried out by the CA algorithm per time

step ni was used to assess the added computational load of INCA with respect to typical LCA

methods. The overall performance metrics were computed for the combined data from the flight

simulations performed with LCA/RWPI, LCA/QP, INCA/RWPI and INCA/QP. Since maneuvers

C and D resulted in unstable flight for some of the tested systems, only maneuvers 3211, A and B
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Fig. 17 Commanded (dot-dashed line) and attained (solid line) control-induced moments of

the barrel roll maneuver with the LCA (left) and INCA (right) control allocators with the

QP solver.

Table 2 Overall tracking error combining maneuvers 3211, A and B.

RMS (u− uc)

Solver RWPI QP

CA Method LCA INCA LCA INCA

p [deg/sec] 2.13 1.46 2.07 0.97

q [deg/sec] 3.98 0.73 3.19 0.67

r [deg/sec] 1.55 0.60 1.07 0.60

Total 2.76 1.01 2.28 0.76

were considered in the overall analysis to ensure a fair comparison.

The overall tracking errors for the four tested systems are listed in Table 2. As observed in

previous results, the overall tracking performance is better with QP for both LCA and INCA. In

both cases, INCA outperforms LCA in terms of tracking performance by a factor of 2.5 with RWPI

and of 3.0 with QP. Furthermore, LCA performs worst in the longitudinal channel, in which INCA

implies an improvement by a factor of 4.7 with the QP solver.

Table 3 provides the overall allocation errors. It can be observed that the improvement of INCA

with respect to LCA is remarkably high in terms of allocation performance. INCA outperforms
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Fig. 18 Control effector positions of the barrel roll maneuver with the QP solver.

Table 3 Overall allocation error combining maneuvers 3211, A and B.

RMS(RMS (τ − τ c))

Solver RWPI QP

CA Method LCA INCA LCA INCA

L [klbf·ft] 8.85 5.93 10.9 2.52

M [klbf·ft] 30.8 5.67 24.7 3.69

N [klbf·ft] 12.9 4.81 8.52 4.92

Total 19.9 5.49 16.3 3.84

LCA by a factor of 3.6 with RWPI and of 4.5 with QP. As in the case of tracking performance,

LCA performs worst in the longitudinal channel, where INCA shows an improvement in allocation

performance by a factor of 5.34 with RWPI and of 6.7 with QP.
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Table 4 Overall control effort combining maneuvers 3211, A and B.

RMS (δ − δp)

Actuator Total δlfi δlfo δla δle δls δpf δrfi δrfo δra δre δrs δptv δytv

LCA/RWPI 2.0 0.1 0.2 1.5 2.9 0.2 4.4 0.1 0.2 2.3 2.3 0.3 2.6 1.3

INCA/RWPI 3.7 0.2 0.6 1.5 1.3 0.2 13 0.1 1.4 1.0 1.1 0.5 0.6 2.4

LCA/QP 2.0 0.1 0.2 2.2 2.9 0.4 4.5 0.1 0.2 2.4 2.5 0.3 2.7 1.3

INCA/QP 3.7 0.1 0.6 1.4 1.2 0.3 13 0.1 1.3 2.4 2.0 0.4 0.7 1.9

The overall control efforts per control effector and in total are listed in Table 4. It can be

observed that the overall control effort is higher for INCA than for LCA by a factor of 1.8. However

the differences in the control effort allocated to each individual control effector reveal interesting

trends. First, note that the elevons are more extensively used with LCA than with INCA. Since the

parabolic yawing moments of the elevons were removed from the linear model used in LCA but are

taken into account by INCA, it is reasonable that INCA allocates lateral-longitudinal control effort

on uncoupled control effectors to avoid undesired secondary-axis yawing moments. Also, note that

the outboard LEF is underexploited by LCA, despite being an excellent source of lateral-directional

control power at high AoA. This is due to the fact that yawing contributions of the outboard LEF

were removed from the linear model and their contributions on other axes are weak.

The computational complexities of the RWPI and active set-based QP algorithms were evaluated

in [9, 53]. Both studies concluded that these solvers are well-suited for real-time control allocation in

FCS. Thus, further analysis of the computational complexity of the algorithms is not required here.

However, in order to evaluate whether INCA is suitable or not for real-time implementation, it is

necessary to demonstrate that INCA does not increase the computational load on these algorithms

in comparison with traditional LCA schemes. Since each iteration implies the same number of

operations for both LCA and INCA, it suffices to demonstrate that the number of iterations required

per time step is statistically comparable for both CA methods.

Figure 19 shows the distributions of the number of iterations per time step for each trajectory

with the RWPI and QP solvers. It can be noted that the number of iterations per time step are very

similar in every case. The fact that ni it is higher for LCA in some cases is due to the large excursions
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Fig. 19 Distributions of the number of iterations per time step per trajectory.

and instabilities observed in some trajectories. The maximum number of iterations possible with

RWPI is 14, although the maximum iteration count reached was 7. On the other hand, the iteration

limit set for the active set algorithm was 100, although the maximum iteration count reached was 23.

This proves that INCA has a computational load on the RWPI and active set-based QP algorithms

similar to traditional LCA, and therefore the INCA method is well-suited for real-time applications.

XI. Conclusions and Final Remarks

Conventional linear control allocation (LCA) methods are unable to provide satisfactory per-

formance in advanced and unconventional control effector configurations due to the impossibility of

linear effector models to capture nonlinearities and interactions between control effectors. In this

paper, a novel incremental nonlinear control allocation (INCA) approach is presented to overcome

these issues. The INCA method operates in an incremental scheme based on a Jacobian model of the

control effectiveness of the actuators. This way of operation enables the consideration of nonlinear

control moment curves such as secondary-axis yawing moments and nonlinear interactions between

control effectors. The incremental reformulation of the problem enables the use of simple and com-

putationally efficient linear control allocation solvers, enabling the use of INCA in real-time flight

control systems. In addition, INCA dynamically drives the actuators towards their optimal positions

and is based on real-time actuator position measurements, mitigating coupling effects between the

control allocator and actuator dynamics. Moreover, it uses angular acceleration measurements to

reduce its model dependency, improving robustness against aerodynamic uncertainties.

The results presented in this thesis have shown very significant improvements of INCA with
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respect to typical linear control allocation (LCA) methods in terms of tracking performance, al-

location performance and control effort. A robustness analysis of INCA against Jacobian model

mismatch showed that for model offsets of ±30% and scaling factors between 0.6 and 1.4, the allo-

cation error and control effort over a reference maneuver increase up to 25% and 17% respectively,

which demonstrates considerable robustness against Jacobian model mismatch. Also, it was ob-

served that INCA performs better when the magnitude of the Jacobian terms is underestimated.

The INCA-based flight control system was tested in real-time simulations against aggressive maneu-

vers, showing substantially superior performance than the LCA-based control system. It was also

proven that the computational load of INCA is similar to that of LCA-based schemes for the redis-

tributed weighted pseudo-inverse (RWPI) and active set-based quadratic programming (QP) control

allocation methods. Since these methods are known to be well-suited for real-time implementation,

it was demonstrated that INCA is well-suited for real-time implementation in flight control systems.

INCA is expected to be strongly beneficial in fault-tolerant flight control systems. Future work

will focus on upgrading the current flight control system into and adaptive flight control system with

on-line system identification to investigate benefits in terms of recoverability in faulty conditions.

Additionally, the INCA system will be tested with larger suites of control effectors, using innovative

actuators such as flow control devices.
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C.1 Maneuver A: High-Bank Climbing Spiral (RWPI)
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Figure C.1: Outer loop control variables of maneuver A with LCA and INCA solved with
RWPI.
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Figure C.2: Inner loop and sideslip control variables of maneuver A with LCA and INCA
solved with RWPI.
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Figure C.3: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments of maneuver A with LCA and INCA solved with RWPI.
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Figure C.4: Control effector positions of maneuver A with LCA and INCA solved with RWPI.
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C.2 Maneuver B: Barrel Roll (RWPI)
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Figure C.5: Control variables of maneuver B with LCA and INCA solved with RWPI.
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Figure C.6: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments of maneuver B with LCA and INCA solved with RWPI.
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Figure C.7: Control effector positions of maneuver B with LCA and INCA solved with RWPI.
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C.3 Maneuver C: High AoA and High Sideslip Commands
(QP)
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Figure C.8: Outer loop control variables of maneuver C with LCA and INCA with QP.
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Figure C.9: Inner loop control variables of maneuver C with LCA and INCA with QP.
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Figure C.10: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments of maneuver C with LCA and INCA with QP.
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Figure C.11: Control effector positions of maneuver C with LCA and INCA with QP.
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C.4 Maneuver D: Aerobatics Sequence (Unstable Trajecto-
ries)
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Figure C.12: Control variables of maneuver B with LCA/QP and INCA/RWPI.
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Figure C.13: Commanded (dot-dashed line) and attained (solid line) control-induced mo-
ments of maneuver D with LCA/QP and INCA/RWPI.
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Figure C.14: Control effector positions of maneuver D with LCA/QP and INCA/RWPI.
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