
 
 

Delft University of Technology

An LSTM Approach to Short-range personnel recognition using Radar Signals

Li, Zhenghui; Le Kernec, Julien; Fioranelli, Francesco; Romain, Olivier; Zhang, Lei ; Yang, Shufan

DOI
10.1109/RadarConf2147009.2021.9455218
Publication date
2021
Document Version
Final published version
Published in
2021 IEEE Radar Conference (RadarConf21)

Citation (APA)
Li, Z., Le Kernec, J., Fioranelli, F., Romain, O., Zhang, L., & Yang, S. (2021). An LSTM Approach to Short-
range personnel recognition using Radar Signals. In 2021 IEEE Radar Conference (RadarConf21) Article
9455218 IEEE. https://doi.org/10.1109/RadarConf2147009.2021.9455218

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/RadarConf2147009.2021.9455218
https://doi.org/10.1109/RadarConf2147009.2021.9455218


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



An LSTM Approach to Short-range 
personnel recognition using Radar Signals  

Zhenghui Li 

James Watt School of Engineering 

University of Glasgow  

Glasgow, UK 

2227284L@student.gla.ac.uk 

Olivier Romain 

ETIS lab 

CY University 

Cergy Pontoise, France 

olivier.

Julien Le Kernec 

James Watt School of Engineering 

University of Glasgow  

Glasgow, UK 

julien.lekernec@glasgow.ac.uk 

Lei Zhang 

James Watt School of Engineering 

University of Glasgow  

Glasgow, UK 

lei.zhang@glasgow.ac.uk

Francesco Fioranelli  

MS3, Department of Microelectronics 

TU Delft 

Delft, The Netherlands 

F.Fioranelli@tudelft.nl 

Shufan Yang 

James Watt School of Engineering 

University of Glasgow  

Glasgow, UK 
shufan.yang@glasgow.ac.uk 

Abstract—In personnel recognition based on radar, 

significant research exists on statistical features extracted from 

the micro-Doppler signatures, whereas research considering 

other domains and information such as phase is less developed. 

This paper presents the use of deep learning methods to 

integrate both phase and magnitude features from range 

profiles and spectrogram. The temporal features of both 

domains are separately extracted using a stack of Long Short 

Term Memory (LSTM) layers. Then, the extracted features are 

aggregated in the corresponding domains and pass through a 

series of dense layers with SoftMax classifier. Finally, the 

information from the two domains is fused with a soft fusion 

approach to improve the performance further. Preliminary 

results show that the proposed network with soft fusion can 

achieve 85.5% accuracy in personnel recognition with six 

subjects. 

Keywords—Radar sensing, Personnel Recognition, LSTM 

network, Phase information, Micro-Doppler signatures, Range-

time information 

I. INTRODUCTION 

In the past few years, a series of techniques have been 
proposed for personnel recognition in order to enhance public 
security, where most of the approaches are based on optical 
devices [1] and biometric technology [2]. However, vision-
based method and biological features have their own 
limitations. For optical devices, there are possible invasion of 
privacy and disputes over image rights. People may feel 
violated when their whereabouts are monitored by a camera 
all the time. Also, the performance degrades highly when the 
field of view is narrow, and in adverse lighting conditions. On 
the other hand, biological features, such as fingerprint or retina 
scans, are also highly private and require the compliance of 
people, which cannot always be taken for granted. Radar has 
potential advantages over the sensors mentioned above, 
making it a relevant technology in personnel recognition. 

Typically, radar-based personnel recognition uses gait 
analysis from spectrograms [3, 4, 5, 6]. Human gait can 
provide clear and detailed micro-Doppler signatures [7, 8] of 
different people. The recognition and classification based on 
the micro-Doppler signatures are generally performed by 
extracting hand-crafted features, such as bandwidth and 
Doppler mean speed. However, the performance of 
classification or recognition based on the features are highly 
dependent on the robustness of those features. In [9], it is 
stated that personnel recognition based on radar signal 

requires more robust features than human activity recognition. 
Thus, the centroid features and mathematical features based 
on singular value decomposition (SVD) were proposed for 
personnel recognition. The best results achieved by the 
authors were the accuracy of 88.5% for centroid features and 
the accuracy of 99.0% for SVD matrix features, on a limited 
set of three subjects. However, the traditional feature 
extraction methods based on experience and statistical 
characteristics still have many limitations in capability and 
flexibility, which limits the achievable accuracy with the 
spectrogram. Deep learning methods are therefore introduced 
to address the issues. 

Deep learning has become a popular research topic in 
radar fields because it can automatically extract salient 
features from radar data [10, 11]. It aims to find the mapping 
relationship between the training data and labels through 
supervised and testing of a large number of samples. 
Compared with the traditional hand-picked features, using 
deep learning technologies can achieve a higher accuracy of 
classification.  

Vandersmissen et al. [12] proposed a deep convolutional 
neural network (DCNN) to identify persons based on their gait 
characteristics. They also compared its result with traditional 
techniques which were the principal component analysis 
(PCA) in combination with a support vector machine (SVM) 
and a random forest (RF) classifier. The DCNN achieved 
average classification error rates of 24.7% and 21.5% on the 
validation set and the test set, respectively, where both error 
rates were lower than the PCA with RF and the PCA with 
SVM. 

Huang, Ding, Liang and Wen [13] focused on multi-
person recognition using a separation method, which splits the 
Micro-Doppler signature of multi-person up to their 
individual components. The separated micro-Doppler 
signatures were then used with a separation convolution 
neural network (SCNN) and a residual dense network (RDN), 
achieving an average accuracy of 95.40%.   

The radar spectrogram can be treated not only as an optical 
image but also as a temporal sequence. Hence, Long Short-
Term Memory (LSTM) networks have been adopted in 
[14,15]. In [14], J. Zhu et al. proposed a deep learning model 
that consists of a 1-D convolutional neural network (1D-CNN) 
and an LSTM network. The proposed method can extract 
spatial characteristics with CNN and temporal characteristics 
with LSTM thus achieving the best accuracy of 98.28%, with 

The authors would like to thank the British Council 515095884 and 
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support. 
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relatively low complexity compared with the existing 2D-
CNN methods. In [15], Wang, Zhang and Cui developed a 
stacked recurrent neural network (RNN) with two 36-cell 
LSTM layers to extract features from six different human 
motions and then classify the motion types, which achieved an 
overall accuracy of 92.65%. 

Although the methods with both hand-crafted features and 
deep learning in personnel recognition are emerging, most of 
the researchers still focus on the radar spectrogram [10]. In 
this paper, we explore the use of phase information and high 
range resolution profile (range resolution δr = 37.5cm) in 
personnel recognition, which are less investigated in the 
current open literature. This paper proposes a novel hybrid 
information fusion algorithm based on the Long Short-Term 
Memory (LSTM) units in the recurrent neural network (RNN) 
that fuses the magnitude and phase information from both the 
spectrogram and the range profile for improving the 
performance. To summarize, the main contributions of our 
research are as follow: 

• We evaluate the performance of phase information and
range profile compared with the traditional methods
which only uses the magnitude information of
spectrogram.

• We propose a novel and robust human recognition
approach using the combination of spectrogram and
range-time domain with both magnitude and phase
information.

According to the domain of the input data of the LSTM, 
the networks investigated in the paper are named as Doppler-
LSTM and Range-LSTM [16, 17]. In this paper, we not only 
consider the spectrogram and high resolution range profile, 
but the phase information extracted from both sources. 
Besides, a hybrid information fusion solution is also given to 
improve the performance further. The input of the Doppler-
LSTM network is the spectrogram, which contains the micro-
Doppler signature magnitude and phase information of the 
spectrogram. The Range-LSTM uses the range-time 
information and phase of the high range resolution profile as 
the input. Range profiles do not illustrate the differences in 
features in an easily perceptible way, compared to the 
spectrogram. However, the fact that it is difficult to interpret 
visually for a human does not mean that it is a limitation for 
neural networks such as LSTMs investigated in this paper. 

This paper is organized as follows: in Section II, the radar 
system used to collect dataset and methodology are presented. 
Section III illustrates and discusses the initial results. Section 
IV concludes this paper and points out some possible future 
works. 

II. METHODS

A. Radar Data and Pre-Processing 

The University of Glasgow Radar Signature dataset [18, 
19] was collected using an off-the-shelf Frequency Modulated
Continuous Wave (FMCW) radar system from Ancortek, 
which operates at a carrier frequency of 5.8 GHz, with 1 ms 
pulse repetition period and 400 MHz bandwidth. The output 
power of the transmitting amplifier is approximately +18 
dBm. The radar is connected to two Yagi antennas, one for 
transmission and the other for reception, with a gain of about 
+17 dB. The database is collected from 72 participants aged 

from 21 to 98 years old containing six types of daily activities, 
which are walking, sitting, standing, picking up an object, 
drinking, and fall. In this paper, we only consider walking 
activity for the personnel recognition problem. Each walking 
data is a 10 seconds long recording, and each participant 
repeats it three times. We randomly choose five adults 
(labelled C1 to C5 and aged between 21 to 60) from the 
participants' pool to compose the dataset for this paper. An 
additional older person (labelled C6 and aged over 60) is also 
considered to increase the diversity of the dataset.  

The motivation of the pre-processing of the raw signal data 
is to generate essentially low noise data for further application. 
For the raw radar signal, the processing steps are followed. 
Firstly, a 128-point Hamming-window is proposed to reduce 
the sidelobes in range-bin. Then, a Fast Fourier Transform 
(FFT) method is applied to the raw data matrix to convert it 
into Range-Time domain, which is also known as the high 
range resolution profile. Next, a high-pass Butterworth notch 
filter with cut-off frequencies at 0.0075Hz is utilized to 
remove static clutter caused by stationary objects such as 
furniture and walls. After that, Short-Time Fourier Transform 
(STFT) is implemented with a 0.2s Hamming window with 
95% overlap on the Range-Time data to generate micro-
Doppler signatures.  

B. LSTM Recurrent Neural Networks 

CNN-based architectures do not include the memory unit. 
Hence, the network processes each window of the 
spectrogram as independent inputs. This may cause much 
overlap when the time interval is small. The response of RNN-
based structure to new data is decided by the current and the 
past input, which acts on the memory of the network. When 
the time interval is small, it can feed small pieces of the 
spectrogram into the network saving on computational load 
compared to CNN. 

LSTM uses a gate structure to achieve its function, which 
contains three types of gates: input gate i, output gate o, and 
forget gate f [20]. By controlling the gates, the cell can 
determine the storing, writing and reading operation of 
information. For each time step t, xt is the input to the memory 
cell layer, and the updated states of each parameter are shown 
in the following equations: 

1t xi t hi t ii = σ(W x +W h +b )
−

 (1) 

1t xf t hf t ff = σ(W x +W h + b )
−

(2) 

1 1t t t t xc t xc t cc = f c +i tanh(W h +W x + b )
− −

 (3) 

1t xo t ho t oo = σ(W x +W h +b )
−

(4) 

t t th = o tanh(c ) (5) 

Where σ(x), W and b represents the sigmoid function, 
weight and bias factor, respectively. For the input xt, the input 
gate it (1) can accumulate new value flowing into the memory 
cell. The forget gate ft (2) determines what needs to be 
discarded from the memory of a cell, which means it can force 
the memory cell to forget things that are not significant. 
Equation (3) demonstrates how the memory of cell updates in 
terms of the new input and the previous value. The output gate 
ot (4) determines what should be output to the next cell from 
the current memory cell and ht (5) is the hidden output of the 
current cell. 
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Fig. 1.  Overview of the hybrid solution with Doppler-LSTM and Range-LSTM. 

Overfitting is a problem that often happens in deep 
learning applications due to the robust learning ability of 
neural networks which only focus on training data. This 
negatively impacts the result when the network processes new 
or unseen testing data. This problem usually occurs when the 
database is small, or the model is complex, which is the case 
here.  

Different methods have been proposed to prevent 
overfitting problems [21]. For example, the early-stop method 
can stop the learning process when the performance begins to 
degrade on the validation set. In this paper, the dropout [22] 
method is proposed to address the overfitting problem. 
Dropout means dropping out units, which abandons a part of 
the output randomly in one layer, yielding to improved 
generalization.  

C. A Hybrid information fusion method using LSTM 

      To improve the performance, a hybrid information fusion 
method, which is the combination of neural network fusion 
and a soft fusion at the decision level, is then considered. The 
architecture of the network is shown in Fig. 1. It consists of 
two parts, a feature extraction network and a fusion network 
including a deep fusion part and a soft fusion part. The feature 
extraction network contains the Range-LSTM and the 
Doppler-LSTM, which are both composed of two LSTM 
layers extracting temporal features from magnitude and phase 
separately. Afterwards,  the temporal features from both 
magnitude and phase information in the same domain are 
aggregated, and then a series of dense layers are integrated 
with a SoftMax classifier to generate the prediction of class 
for each domain. Finally, a soft fusion method is employed to 
combine the outputs of the previous networks to improve 
performances.   

Soft fusion [23, 24, 25] aims at generating the new 
prediction of classes by combining the scores which are 
generated in the last layer of network with SoftMax activation. 
In the SoftMax layer, the classifier generates a scoring matrix 
with regard to the posterior probability, which represents the 
confidence level. The class with the highest probability will 
be chosen as the output class. The following equation 
illustrates how the combination works mathematically, where 
WD is the weight of the fused Doppler network, and WR is the 
weight of the fused range network. SD and SR are the score 
matrix of the fused Doppler network and fused range network, 
respectively.  

 
F D D R RS = W S +W S• •               (6) 

III. RESULTS 

Due to the limitation of the number of samples, the original 
samples are processed with data augmentation to expand the 
size. The original data is cut using a sliding window with a 
fixed duration of 1 second. It starts from 0s to 1s, and then 
shifts in time of 0.1s each step. For instance, the second cut is 
0.1s to 1.1s, and the third cut is 0.2s to 1.2s. By using the 
approach, the total number of samples expands from 18 to 
1638. 

In the first experiment, we investigate the performance of 
both networks using magnitude and phase separately. The 
Range-LSTM and the Doppler-LSTM networks are 
investigated with a 1310 samples training set (80%) and a 328 
samples validation set (20%), where those datasets are 
randomly picking data from the entire database, as mentioned 
before. The network structure used in this experiment is a two-
layers LSTM, with 128 neurons in each hidden layer, and the 
dropout probability between two LSTM layers is 0.6 for the 
Doppler-LSTM and 0.5 for the Range-LSTM. The output of 
LSTM layers is passed to fully connected (FC) layers. The 
first FC layer uses ReLU as the activation function due to its 
low computational cost. The second FC layer uses the same 
activation function. Then, a softmax layer is connected to the 
second FC layer since it can output the final labels. The block 
diagram of the network is shown in Fig. 2.  

The networks are trained in 200 epochs using magnitude 
and phase separately, with the Adam optimizer and fixed 
initial learning rate of 0.001. Fig. 3 and Fig. 4 demonstrate the 
loss curves as a function of epochs. The validation accuracy is 
illustrated in Table I and the training time consumption is 
shown in Table II. 

The result shows that, in both the spectrogram and range-
time domain, using phase information can accelerate the 
convergence of the network compared with traditional 
methods using amplitudes. In Doppler-LSTM, both training 
and validation of phase information converge within 50 
epochs. To the magnitude information, both training and 
validation converge at around 100 epochs, which is 
approximately twice longer than for the phase. In range-
LSTM, the convergence finishes in a short time, which is ~40 
epochs for phase and ~75 epochs for magnitude. In addition, 
the loss of both remains at an acceptable range at the end of 
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the process, which means the dropout method succeeds, and 
the network limits overfitting problems. 

 
Fig. 2. The LSTM architecture for the recognition. 

 
Fig. 3. Loss evaluation of the Doppler-LSTM. 

 

 
Fig. 4. Loss evaluation of the Range-LSTM. 

 

In the second experiment, a stratified ten-fold cross-
validation approach is used to assess our approach. Compared 
with the normal k-fold cross-validation, the stratified one 
extracts the validation set in terms of the ratio of class, which 
makes the validation more comprehensive. To further improve 
the accuracy of the recognition, the hybrid information fusion 
method is employed, where the phase and magnitude 
information from the same domain are fused using deep fusion 
methods at the first stage, and then the results are used for the 
second stage with soft fusion. The hyperparameters of the 
networks remain the same as the first experiment, and the 
network is still trained with 200 epochs. The weight ratio 
between the Doppler-LSTM and Range-LSTM sets from 1:5 

to 5:1, to appraise the performance of this method. The result 
is shown in Fig. 5. 

The Fig. 5 shows that the accuracy reaches 85.5% for the 
hybrid information fusion methods when the weight ratios 
(WD :WR) are 2:1. 

To further analyze the influence caused by the phase 
information and the differences between the two domains, the 
neural network fusions of Range-LSTM and Doppler LSTM 
are independently used. The results are shown in Table I and 
the time consumption is demonstrated in the Table II. 

 

Fig. 5. Hybrid solution evaluation with different weight ratios. 

The experiment shows the Doppler-LSTM performs better 
than the Range-LSTM, with both higher average accuracy 
(76.0% for the Doppler and 64.7% the for range-time) and 
better results in the fusion performance (81.9% and 71.0%, 
respectively). Generally, both networks achieve outstanding 
results in distinguishing C6. One possible reason is that the 
cycle of walking of the oldest person is longer than the 
younger adults, which means they have a smaller and slower 
pace. In addition, the extent of the body motion for the aged 
person is smaller than for younger adults, which results in an 
easily distinguishable micro-Doppler signature, leading to the 
recognition of that person easier. The performance of the 
Range-LSTM is not satisfying. In our perspective, the 
information contained in the range-time domain, which is the 
relative location from the target to radar, is not adequate for 
personnel recognition. Besides, the poor performance of the 
range-LSTM is possibly due to the low radar bandwidth. A 
higher bandwidth could result in a more satisfactory range 
resolution (range resolution < 10cm), which gives rise to the 
better performance. Another possible reason for the 
unsatisfactory result is that the size of the database is too 
limited to provide satisfactory performance. The recording of 
each subject is only 30s, which is not enough to provide an 
adequate number of samples. The performance could be better 
with a more extensive database in terms of longer recording 
for each subject. 

Time consumption is shown in Table II. It is obvious that 
phase information improves on computation time by ~35.0% 
in Doppler and ~32.4% in Range profile compared to the 
magnitude information. Besides, the time consumption of the 
Range-LSTM is generally lower than the computation time of 
Doppler-LSTM, which is lower by ~30.0% using magnitude 
information and ~27.2% using phase information. To both the 
spectrogram and range-time domain, the training time is 
improved when the phase information is fused with magnitude  
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TABLE I.  COMPARISON OF ACCURACY FOR HUMAN RECOGNITION USING DOPPLER-LSTM, RANGE-LSTM AND HYBRID INFORMATION 

Accuracy (%) C1 C2 C3 C4 C5 C6 Overall Performance 

Magnitude of spectrogram 75.4 73.5 76.9 77.3 71.2 95.7 78.3% 

Phase of spectrogram 67.5 72.4 68.6 73.8 74.3 85.2 73.6% 

Magnitude of range-time 70.5 62.7 55.8 61.4 67.9 87.1 67.6% 

Phase of range-time 64.8 51.5 62.9 70.4 53.8 66.7 61.7% 

Hybrid information of spectrogram 80.7 78.1 77.5 81.5 79.3 94.1 81.9% 

Hybrid information of range-time 64.1 74.7 73.1 70.5 65.5 78.3 71.0% 

Hybrid information of two domains fusion 81.6 79.7 84.2 87.8 83.2 96.5 85.5% 

information, compared with the independent use of magnitude 
information. The hybrid information fusion improves the 
performance of the recognition, which achieves the best result 
with the accuracy of 85.5%. However, in the multi-domain 
fusion, the computation time increases. One possible reason is 
that two deep fusion networks are implemented at the same 
time, which largely increase the computational load of the 
processor, leading to the degradation in computing speed.   

TABLE II.  TOTAL TRAINING TIME CONSUMPTION 

Network 

Time Consumption 

for 200 epochs 

(second) 

Doppler-LSTM with magnitude 1483 

Doppler-LSTM with phase 964 

Range-LSTM with magnitude 1038 

Range-LSTM with phase 702 

Hybrid information of spectrogram 1221 

Hybrid information of range-time 865 

Hybrid information of two domains fusion 1892 

 

IV. CONCLUSION 

In this paper, we proposed the use of the recurrent neural 
network on both the spectrogram and range-time domain of 
radar signal for the identification of individual subjects. The 
preliminary experiment results show that without a hybrid 
information fusion, the Doppler-LSTM and Range-LSTM can 
achieve accuracy of approximately 78.3% and 67.6%, 
respectively. When the hybrid information fusion is applied in 
each domain, whereby the magnitude information is fused 
with the phase information, the accuracy can reach up to 
81.9% and 71.0%. Meanwhile, the computational speeds are 
also improved by ~17.7% and ~16.7% compared with using 
magnitude information alone in Doppler-LSTM and Range-
LSTM, respectively. This suggests that the phase information 
of radar signal is as effective as the magnitude information, 
with better convergence rate. On the other hand, the 
combination of phase information and magnitude information 
can reduce the rate of abnormal prediction and improve 
accuracy. When the Hybrid information fusion continues to be 
applied in multi-domain level, the performance improves to 
85.5%, but the computational time increases largely. This 
might be caused by the simultaneous running of two neural 
network fusion, which places additional computing burden to 
the processor. 

For future work, further advanced Range-LSTM and 
Doppler-LSTM scheme will be carried out, with other types 
of the layer such as Bi-LSTM layer. Besides, the phase 
information used in this paper is wrapped. The performance 

of the algorithm with wrapped vs unwrapped phase 
information should be investigated to determine whether this 
can improve accuracy. Also, designing an adaptive algorithm 
for fusing Range-LSTM and Doppler-LSTM could have the 
potential to improve performance. Furthermore, the complex 
number can be directly used as input in the neural network, 
and thus we can use one network with complex numbers of 
radar signal instead of two separate networks. Additionally, a 
thresholding method is proposed to upgrade the performance 
of phase information, which would facilitate network training 
by focusing more on regions of interest in the phase data. The 
dataset in this experiment is still limited, and thus more data 
from different participants repeating the same action should 
be collected, including different aspect angles with respect to 
radar and various measurement environments. 
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