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Learning-Based Multi-UAV Flocking Control With
Limited Visual Field and Instinctive Repulsion

Chengchao Bai , Member, IEEE, Peng Yan , Haiyin Piao , Wei Pan , Member, IEEE,
and Jifeng Guo , Member, IEEE

Abstract—This article explores deep reinforcement learning
(DRL) for the flocking control of unmanned aerial vehicle
(UAV) swarms. The flocking control policy is trained using a
centralized-learning-decentralized-execution (CTDE) paradigm,
where a centralized critic network augmented with additional
information about the entire UAV swarm is utilized to improve
learning efficiency. Instead of learning inter-UAV collision avoid-
ance capabilities, a repulsion function is encoded as an inner-UAV
“instinct.” In addition, the UAVs can obtain the states of other
UAVs through onboard sensors in communication-denied envi-
ronments, and the impact of varying visual fields on flocking
control is analyzed. Through extensive simulations, it is shown
that the proposed policy with the repulsion function and limited
visual field has a success rate of 93.8% in training environ-
ments, 85.6% in environments with a high number of UAVs,
91.2% in environments with a high number of obstacles, and
82.2% in environments with dynamic obstacles. Furthermore,
the results indicate that the proposed learning-based methods are
more suitable than traditional methods in cluttered environments.

Index Terms—Deep reinforcement learning (DRL), flocking
control, inter-unmanned aerial vehicle (UAV) collision avoidance,
limited visual field, UAVs.

I. INTRODUCTION

RECENTLY, unmanned aerial vehicle (UAV) swarms [1]
have attracted increasing attention due to their superior

mission efficiency and robustness compared to the deploy-
ment of a single UAV, and have a wide range of applications,
such as in communication services [2], detection and surveil-
lance [3], reconstruction and mapping [4], and agriculture [5].
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The cooperative control of a UAV swarm is essential to ensure
the success of a mission. In particular, flocking control is an
effective method to control a UAV swarm collaboratively.

Much research has been conducted on the flocking control
problem [6]. Some authors have treated the UAV swarm control
as a multiobjective optimization problem and have employed
optimization algorithms to solve it. For example, in [7] an
evolutionary optimization framework was proposed to solve
the collective motion problem of aerial robots in confined
spaces where motion constraints, communication status, and
perturbations were explicitly modeled. In [8], the flocking
control of a UAV swarm was formulated as a multiobjective
optimization problem, and the multiobjective pigeon-inspired
optimization (MPIO) was modified based on the hierarchical
learning behavior of pigeon flocks to solve the problem in
a distributed manner. The aforementioned methods achieved
collision avoidance between UAVs through mutual repulsion.
When the distance between UAVs is less than the range of
repulsion, the repulsive force pulls the UAVs away in opposite
directions, which can cause jitter in the control commands. The
algorithm may fall into local minimum traps when the number of
UAVs is high. Lyu et al. [9] formulated the multivehicle flocking
control problem in a model predictive control (MPC) scheme
where the vehicles are driven to follow a commonly desired
trajectory, and collision avoidance is considered a necessary
condition by setting it as an optimization constraint. However,
the limited computing power of the onboard computer can make
it challenging for an optimization algorithm to find the optimal
result in a limited time. The models of the environment and
UAVs are difficult to obtain in practice, which further limits
the performance of the optimization algorithm.

Several studies have been conducted based on Reynolds’
three heuristic rules of flocking control [10]. Olfati-Saber [11]
proposed a theoretical framework for the design and analysis
of distributed flocking algorithms and proposed the concepts
of α-agents, β-agents, and γ -agents. Liu and Gao [12] further
improved the flocking algorithm in [11] by using a virtual
leader to ensure the information security of UAV swarms
and optimize the communication performance between UAVs.
In [13], three modes of control protocol and a state-dependent
switching logic were designed to address complex constraints
such as nonholonomic constraints, speed limits, and efficient
use of airspace. Although the above methods use simple rules
to implement flocking control, they assume that UAVs can
communicate to obtain the states of other UAVs and do not
consider communication denial environments.
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In the flocking control of the UAV swarm, the inter-UAV
information interaction is generally achieved through commu-
nication networks [14]. However, the vision-based estimation
of the inter-UAV state is a more reliable method in commu-
nication denial environments. Still, only a few studies have
considered the impact of the visual field of the UAV on the
control of the UAV swarm. In [15], a relative positioning
solution was proposed for the rendezvous and close forma-
tion flight of UAVs based on IR cameras with a nonlinear
estimation framework. However, this work did not focus on
flocking control of UAVs in complex environments, and the
environment used for flight experiments was relatively simple.
In [16], a vision-assisted flocking system was proposed, but
it only considered the case of a small number of UAVs, and
it is not clear how it can be extended to a large-scale UAV
swarm. Therefore, there is still a need for further research on
the flocking control of UAV swarms in communication denial
environments, particularly focusing on the impact of the visual
field of the UAV.

Accurate UAV models are crucial for UAV motion con-
trol [17]. However, building an accurate UAV model is
challenging due to uncertain nonlinearities and the strong cou-
pling of the UAV model, mainly when there are external
disturbances. To address this issue, Wang et al. [18] developed
a neural observer to estimate the unknown state variables of
a quadrotor UAV. Elhaki and Shojaei [19] proposed a model-
free controller for quadrotors in a reinforcement learning (RL)
framework [20] based on actor-critic neural networks, which
only requires measurable signals of the closed-loop system
and does not rely on the UAV model. Furthermore, due to
the model-free characteristics of RL and the strong repre-
sentational ability of deep neural networks (DNNs), deep
reinforcement learning (DRL) has a wide range of applica-
tions in complex multiagent systems [21]. For example, Wang
and Chen [22] investigated linear multiagent systems’ optimal
containment control problem through a model-free approach,
where DNN-based Q-functions and control policies were used
to improve the proposed approach. In [23], a multiagent
actor-critic algorithm was proposed, which can construct an
interpretable interaction structure in dynamic environments.

DRL has also been extensively used in UAV flock control.
In [24], RL and flocking control were combined to enable
a multirobot system to learn collaboratively to avoid preda-
tors while maintaining network topology and connectivity.
However, the RL-based decision module operates in a discrete
space, making it challenging to find the appropriate safe place
when encountering complex and dynamic environments. Hung
and Givigi [25] proposed a Q-learning-based approach to teach
followers how to flock in a leader–follower topology. Based
on the work in [25], the leader–follower flocking problem was
addressed in [26] in continuous state and action spaces. The
authors developed an actor-critic RL approach for flocking
control, known as the continuous actor-critic with experi-
ence replay (CACER). However, in the studies by both [25]
and [26], altitude differences were used to avoid collisions
among the UAVs, and collision avoidance among UAVs at the
same altitude was not considered.

In addition, there have been some methods to enable UAVs
to learn to avoid each other by designing reward functions.

Yan et al. [27] addressed the collision-free flocking problem
of fixed-wing UAVs in a DRL framework. Specifically, the
collision risks of other nearby UAVs were constructed as a
fixed-size local situation map. A DRL algorithm was then used
to learn the collision-free flocking behavior. Xu et al. [28]
used a deep deterministic policy gradient (DDPG) to learn the
flocking control policy with collision avoidance and commu-
nication preservation. Wang et al. [29] used DDPG to learn
a policy that enables UAVs to flock and perform navigation
tasks in complex environments where each UAV only con-
siders the relative position of the nearest two neighbors on
its left and right sides. Both in [27] and [28], a centralized-
training-decentralized-execution (CTDE) [30], [31] paradigm
was used to train the control policies. However, the meth-
ods of [27], [28], and [29] do not account for communication
denial environments, which is the primary concern of this
article.

To address the aforementioned challenges, this article pro-
poses a distributed DRL-based algorithm for the flocking
control of a UAV swarm. The algorithm is formulated as a
sequential decision problem for each UAV in an RL frame-
work. It utilizes the soft actor-critic (SAC) method, a state-
of-the-art off-policy actor-critic DRL algorithm. The main
contributions of this work are as follows.

1) A distributed DRL-based algorithm is proposed to
enable the UAV swarm to have robust generalization
performance in unknown environments, improving the
ability of the UAV swarm to perform missions in
complex environments. The UAV swarm flocking con-
trol policy is trained in continuous state and action
spaces without requiring precise models of the envi-
ronment and UAVs. In addition, a CTDE framework
is used, where the experience of all UAVs is utilized
for training a distributed, shared policy network. This
reduces the burden of online computation by performing
the computationally resource-intensive training process
offline.

2) The flocking control is considered in communication
denial environments, where the UAVs can only sense
other UAVs within their limited field of view through
onboard sensors to achieve coordination. A central-
ized critic network augmented with extra information
about the entire UAV swarm is proposed to facilitate
training, which can improve the UAV swarm flocking
performance when the UAVs have limited perception
capability.

3) Collision avoidance between UAVs is implemented as
an innate capability in the DRL framework, allowing
the UAV swarm to balance collision avoidance and flock
topology maintenance. By interacting with the environ-
ment, the UAVs can learn to cooperate and navigate
complex environments as a flock without inter-UAV
collisions.

II. PRELIMINARIES

A. Problem Scenario

We examine a scenario where a swarm of UAVs, denoted as
U(ui ∈ U , i = 1, 2, . . . , N), consisting of N identical UAVs,
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Fig. 1. Problem scenario considered in this article.

is tasked with scouting a crucial building in an urban envi-
ronment. To minimize the risk of detection, the UAV swarm
must maintain a tight formation and complete the mission
as quickly as possible. Furthermore, the mission area is a
communication-denied zone, in which inter-UAV communica-
tion could compromise the UAVs’ movements. In this scenario,
the UAVs can only detect and coordinate with other UAVs
within their visual field, using onboard sensors, such as a
laser rangefinder and a vision camera. The problem scenario
is depicted in Fig. 1.

B. UAV Kinematics Model

The UAVs are assumed to fly at a fixed altitude. Thus, the
kinematics model of the UAV can be modeled in a 2-D plane

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = vxi

ẏi = vyi

v̇xi =
(
vc

xi
− vxi

)
/τv

v̇yi =
(

vc
yi
− vyi

)
/τv

(1)

where (xi, yi), (vxi , vyi), and (vc
xi
, vc

yi
), respectively, denote the

position, velocity, and command velocity of the UAV i in a
2-D Cartesian coordinate system, and τv is the time constant
related to the dynamics of the UAV.

C. UAV Perception System Model

The sensing range of the laser rangefinder is 0–360 degrees
and can provide 36 distance measurements, denoted by dscan,
with a maximum range of dscan

max . On the other hand, the vision
camera has a perception angle of φv and a perception distance
of dv. It is important to note that the camera is also able to
adjust its orientation to align with the velocity direction of
the UAV, making it necessary to control only the position of
the UAV and not its orientation. The direction of the velocity
of UAV i is represented by the angle made with the x-axis,
denoted by ϕi. The UAV model is illustrated in Fig. 1.

D. Problem Formulation

Formally, we address the problem of flocking control for a
UAV swarm, denoted as U , operating in an environment with
M building obstacles, denoted as B(bi ∈ B, i = 1, 2, . . . , M).
At each time step t, each UAV i perceives the state of the
environment st through its onboard sensors and generates an
observation ot

i∼O(st), where O(st) is the observation function.
The UAV then takes an action at

i according to its flocking con-
trol policy π(at

i|ot
i). The control objectives of policy π(at

i|ot
i)

are two fold.
1) To enable each UAV in the swarm to navigate from the

starting area to the goal area in the shortest possible
time while avoiding collisions with obstacles and other
UAVs.

2) To enable each UAV to maintain proximity to the center
of the swarm, thereby forming a compact flock with the
other UAVs.

This problem can be formulated as the following optimization
problem:

arg min
π

E
[
tg|π]+ βE

[
1

N

N∑

i=1

d̄c
i |π

]

s.t.
∥
∥pi − pg

∥
∥ ≤ dg

max, i = 1, 2, . . . , N
∥
∥
∥pi − pb

i,j

∥
∥
∥ ≥ db

min, i = 1, 2, . . . , N, j = 1, 2, . . . , M
∥
∥pi − pj

∥
∥ ≥ db

min, i, j = 1, 2, . . . , N, i �= j

pt
i = pt−1

i +	tat−1
i , i = 1, 2, . . . , N (2)

where tg represents the time taken by the first UAV in the
swarm to reach the goal area. The position of UAV i is repre-
sented by pi = (xi, yi), and the center and radius of the circular
goal area are represented by pg = (xg, yg) and dg

max, respec-
tively. The position of the closest point of obstacle j to UAV
i is represented by pb

i,j, and db
min represents the minimum safe

distance for collision avoidance. The average distance between
UAV i and the center of the flock while the UAV swarm moves
from the starting area to the goal area is represented by d̄c

i ,
and the positions of UAV i at times t and t−1 are represented
by pt

i and pt−1
i , respectively. The command of the velocity of

UAV i at time t− 1 is represented by at−1
i , and the time step

is represented by 	t. The weighting factor β(β > 0) is used
to balance the tradeoff between the optimality of time and the
compactness of the flock.

The value d̄c
i is calculated using the following equation:

d̄c
i =

1

tg

∫ tg

0
dc

i (t)dt (3)

where dc
i (t) represents the distance between the UAV i and the

center of the flock at time t, which is calculated as follows:
⎧
⎪⎨

⎪⎩

dc
i (t) =

√

(xi − xc)
2 + (yi − yc)

2

xc = 1
N

∑N
i=1 xi

yc = 1
N

∑N
i=1 yi.

(4)

As expressed in (2), the optimization objective contains both
time-optimal and flock compactness metrics, and the con-
straints are the goal area constraints, collision avoidance
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Fig. 2. System architecture.

constraints, and UAV kinematics constraints. In the next sec-
tion, we translate the above optimization problem into a
sequential decision problem in an RL framework and use a
DRL method to solve it.

III. APPROACH

A. Overview

In this study, we investigate the use of a DNN, referred
to as πφ , as a control policy for a swarm of UAVs in flock-
ing behavior. The policy is learned through interaction with
the environment, as described in previous research by [20].
The system’s architecture is depicted in Fig. 2. As shown, the
flocking control policy πφ is trained under a CTDE framework.

During the execution process, each UAV utilizes its percep-
tion system to obtain observations ot

i of the environment and
assess the potential risk of collisions. If a risk is detected, the
UAV uses a repulsion function to calculate the necessary col-
lision avoidance control command vrep

i . On the contrary, if the
environment is considered safe, the policy network πφ is used
to calculate the flocking control command vc

i . The integration
of the repulsion function ensures the safety of the UAVs while
maintaining the integrity of the flock topology.

In the training process, the experiences of all UAVs
are utilized to train a distributed, shared policy network.
Furthermore, augmented states st

k and st+1
k that contain addi-

tional information about the entire swarm are utilized to
train Q-value networks Qθ1 and Qθ2 , which help to train the
policy network πφ . The various components and details of
the proposed approach are discussed in more detail in the
following sections.

B. Reinforcement Learning

RL is a class of machine-learning methods used to
solve sequential decision-making problems. Typically, an RL
problem can be formulated as a Markov decision process
(MDP), defined by a tuple 〈S, A, P(s′|s, a), R(s′, s, a), γ 〉,

where S is the state space, A is the action space, P(s′|s, a)

is the state-transition model of the environment, R(s′, s, a) is
the reward function, and γ (0 < γ < 1) is a discount factor. At
time t, an RL agent obtains state st ∈ S from the environment
and takes action at ∈ A according to its policy at ∼ π(at|st).
Subsequently, the environment state is changed to st+1 ∈ S
based on the state-transition model st+1 ∼ P(s′|s, a), and
the agent receives a reward rt+1 ∈ R(s′, s, a). The RL agent
learns the optimal policy at ∼ π∗(at|st) by interacting with the
environment to maximize the long-term cumulative reward

Gt =
∞∑

k=0

γ krt+k+1. (5)

In the RL framework, the value function of a state s under
a policy π is defined as follows:

vπ (s)
.= Eπ [Gt | St = s]

= Eπ

[ ∞∑

k=0

γ kRt+k+1 | St = s

]

(6)

where the notation “
.=” represents an equality relationship that

is true by definition.
Similarly, the action-value function for a policy π is defined

as follows:

Qπ (s, a)
.= Eπ [Gt | St = s, At = a]

= Eπ

[ ∞∑

k=0

γ kRt+k+1 | St = s, At = a

]

. (7)

C. Soft Actor-Critic

We used the SAC [32], [33], a state-of-the-art off-policy
actor-critic RL method, to solve the above problem. The SAC
is based on the maximum entropy RL framework, where its
objective is to learn a policy π(at|st) that maximizes the
following objective:

π∗ = arg max
π

∑

t

E(st,at)∼ρπ
[r(st, at)+ αH(π(· | st))] (8)
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where ρπ denotes the trajectory distribution of the action of
the state induced by a policy π(at|st), H(π(· | st)) denotes
the entropy of the policy π(at|st), and α is the temperature
parameter that balances the importance of the reward and the
entropy term.

In the policy evaluation step of the SAC, the soft state value
function is given by

V(st) = Eat∼π

[
Q(st, at)− α log π(at | st)

]
(9)

where the soft Q-value Q(st, at) can be computed by

Q(st, at) = r(st, at)+ γEst+1∼ρ

[
V(st+1)

]
. (10)

In practical applications, the Q-function Qθ (st, at) and a
policy πφ(at|st) can be approximated by neural networks
with parameters θ and φ, respectively. The soft Q-function
parameters can be trained to minimize the following loss:

JQ(θ) = E(st,at)∼D
[

1

2

(
Qθ (st, at)−

(
r(st, at)

+ γEst+1∼ρ

[
Vθ̄ (st+1)

]))2
]

(11)

where D denotes the dataset, such as a reply buffer, and θ̄

represents the parameters of the target Q function, which can
stabilize the training.

The policy parameters can be learned by minimizing the
following loss function:

Jπ (φ) = Est∼D
[
Eat∼πφ

[
α log

(
πφ(at | st)

)− Qθ (at, st)
]]

. (12)

According to [32], the temperature parameter α can be
automatically adjusted by minimizing the following loss:

J(α) = Eat∼πt

[−α log πt(at | st)− αH̄]
(13)

where H̄ is the target entropy of the policy πt(at | st).

D. Ingredients of SAC

1) Observation Space: At the time t, the observation of
each UAV ot = [og

t , oscan
t , ocam

t ] consists of the relative
position of the target og

t , partial measurements of the laser
rangefinder oscan

t , and the states of the other UAVs within the
visual field ocam

t . The current UAV observation is illustrated
in Fig. 1.

The observation og
t = [dg

t , α
g
t ] represents the position of the

goal in the UAV’s heading coordinate system, where dg
t rep-

resents the distance between the goal and the current UAV’s
position and α

g
t represents the angle between the vector point-

ing to the goal position from the UAV’s current position and
the current UAV’s heading. The observation og

t is normalized
as follows:

dg
t =

{
dg

t /denv, if dg
t < dS

1.0, else
(14)

α
g
t = α

g
t /π (15)

where dS is a constant related to the size of the environment.
The observation oscan

t = [dscan
1 , αscan

1 , dscan
2 , αscan

2 , dscan
3 ,

αscan
3 ] represents the three shortest laser rangefinder measure-

ments and their angles relative to the current UAV’s heading.

Observations oscan
t are arranged in ascending order of the dis-

tance dscan
i (i = 1, 2, 3), that is, dscan

1 is the shortest distance.
The observation oscan

t is normalized as follows:

dscan
i =

{
dscan

i /dscan
max , if dscan

i < dscan
max

1.0, else.
(16)

The normalization of αscan
i is the same as in (15).

The observation ocam
t = [ouav1

t , ouav2
t , ouav3

t ] represents the
states of the three closest UAVs within its visual field, where
ouavi

t = [duavi
t , α

uavi
t ,	ϕuavi ](i = 1, 2, 3) represents the state

of UAV i concerning the current UAV. duavi
t represents the

distance between UAV i and the current UAV, α
uavi
t repre-

sents the angle between the vector pointing to the position of
UAV i from the current UAV’s position and the current UAV’s
heading, and 	ϕuavi represents the heading angle difference
between UAV i and the current UAV, that is, 	ϕuavi = ϕ−ϕi. If
the number of UAVs observed is less than 3, the correspond-
ing position is filled with ouavi

t = [1, 0, 0]. The observation
ocam

t is normalized as follows:

duavi
t =

{
duavi

t /dv, if duavi
t < dv

1.0, else.
(17)

The normalization of α
uavi
t and 	ϕuavi are the same as (15).

2) Centralized Critic: In this study, we adopt the CTDE
framework, as inspired by the work of [30], to train a
decentralized policy and a centralized critic. The use of addi-
tional information is used to facilitate the training process.
Specifically, the critic is augmented with the state of the cen-
ter of the UAV swarm, sc

t = [dc
t , α

c
t ,	ϕc

t ], where dc
t represents

the distance between the center of the UAV swarm and the cur-
rent position of the UAV, αc

t represents the angle between the
vector that points to the center of the UAV swarm from the
current position of the UAV and the direction of the current
UAV, and 	ϕc

t represents the difference between the direc-
tion of the current UAV and the average heading of the UAV
swarm, which is calculated as follows:

	ϕc
t = ϕ − ϕ̄, ϕ̄ = 1

N

N∑

i=1

ϕi. (18)

Also, for the centralized critic, all UAVs have an unlimited
visual field angle, that is, φv = 2π rad. Thus, the local obser-
vation ocam

t = [ouav1
t , ouav2

t , ouav3
t ] is replaced with an improved

state scam
t = [suav1

t , suav2
t , suav3

t ], representing the states of the
three closest UAVs within the visual field of the current UAV,
where suavi

t and ouavi
t have the same meaning.

Overall, the augmented state for the critic consists of og
t ,

oscan
t , scam

t , and sc
t , and is denoted as st = [og

t , oscan
t , scam

t , sc
t ].

As in observation ot, the augmented state st is normalized to
be in the interval [−1, 1].

3) Action Space: The action space is a set of limited
command velocities in a continuous space. The command
velocities of the UAV i are the translational velocities in
the 2-D Cartesian coordinate system, that is, vc

i = [vc
xi
, vc

yi
],

vc
xi
, vc

yi
∈ [−vmax, vmax], where vmax is the maximum speed in

one dimension. The output of the policy neural network is the
change in the direction and speed of the UAV, indicated by
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Fig. 3. DNN architectures.

	ϕi and Vi, respectively. Thus, the command velocities of the
UAV i are calculated as follows:

{
vc

xi
= Vi cos(ϕi +	ϕi)

vc
yi
= Vi sin(ϕi +	ϕi).

(19)

4) Network Architecture: We used two DNNs to approxi-
mate the Q-value and policy functions. The policy network
maps the observation ot to the action at, and the Q-value
network maps the concatenation of the augmented state st and
the action at to the Q-value Q(st, at). Fig. 3 shows both the
DNN architectures.

We used three fully connected neural network layers to
approximate the policy network. Each layer has 128, 128,
and 4 nodes, respectively. The first two layers have rec-
tified linear units (ReLUs) as the activation function. The
third output layer has two different outputs with different
activations: 1) a hyperbolic tangent (tanh) is used to con-
strain the mean of the action at

mean in [−1, 1] and 2) a
linear function is used to output the log standard deviation
at

logstd. Subsequently, the action at = [aϕ
t , aV

t ] is sampled from
a Gaussian distribution N (at

mean, exp(at
logstd)). Finally, the

change in the heading and the speed of the UAV are calculated
as follows:

{
	ϕ = aϕ

t ∗ π/2, 	ϕ ∈ [−π/2, π/2
]

V = aV
t + 2, V ∈ [1, 3].

(20)

The Q-value network is similar to the policy network except
that its third output layer has one node with a linear activation
function.

5) Reward Function: The design of the reward function is
used to encourage the UAV swarm to learn a flocking control
policy that meets (2). Thus, a reward function is designed to
achieve this objective

rt = rg
t + rc

t + rf
t + rv

t (21)

where rt is the reward received by the UAV at the time step t,
and consists of four terms, namely, the reward for reaching the
goal rg

t , the obstacle avoidance reward rc
t , the flocking control

reward rf
t , and the penalty reward rv

t , related to changes in
velocity commands.

The goal-reaching reward rg
t awards the UAV for approach-

ing and reaching its goal, and is designed as follows:

rg
t =

{
20.0, if dg

t < dg
max

0.2
(
dg

t−1 − dg
t
)+ 0.02

(
π/2− ∣

∣α
g
t

∣
∣
)− 0.02, else.

(22)

The obstacle avoidance reward rc
t penalizes the UAV for

collisions with the obstacles and is designed as follows:

rc
t =

⎧
⎪⎪⎨

⎪⎪⎩

−0.2, if 2 < dscan
1 ≤ 3

−0.5, elif 0.5 < dscan
1 ≤ 2

−1.0, elif dscan
1 ≤ 0.5

0, else.

(23)

The flocking control reward rf
t encourages the UAV swarm

to maintain a compact and consistent flock and is designed as
follows:

rf
t = 0.05

(
1−	ϕc

t /π
)+ 0.05

(
1− dc(t)/3

)
. (24)

The penalty reward rv
t encourages the UAV to move

smoothly and is designed as follows:

rv
t = −0.02|at−1 − at|. (25)

In the design of the reward function, we do not consider
the case where the UAV collides with other UAVs. We con-
sider collision avoidance between UAVs as an instinct, and we
design a repulsion function to implement it in Section III-E.

E. Repulsion Function

We designed a repulsion function to implement the colli-
sion avoidance capability between UAVs and obstacles based
on the work of [7]. Although the learned policy can avoid col-
lisions with obstacles, in general, adding a repulsion term for
obstacles can provide more assurance for the UAVs in terms
of safety.

First, a linear distance-dependent central velocity term is
proposed

vr
ij =

{
prep

(
rrep

0 −
∥
∥pij

∥
∥
)pi−pj∥

∥pij

∥
∥ , if

∥
∥pij

∥
∥ < rrep

0

0, otherwise
(26)

where prep is the linear gain of repulsion, rrep
0 is the maximum

interaction range, and ‖pij‖ is the distance between the UAVs
i and j.

This central velocity term will cause oscillations because it
is only related to the relative positions of the UAVs. To mini-
mize the oscillations, a tangential velocity term vt

ij is proposed
that satisfies the following constraints:

∥
∥
∥vt

ij

∥
∥
∥ =

∥
∥
∥vr

ij

∥
∥
∥, vt

ijv
r
ij = 0,

(
pg − pi

)
vt

ij > 0. (27)

Equation (27) means that the magnitude of the tangential
velocity term vt

ij is equal to that of the central velocity term
vr

ij and its direction is perpendicular to vr
ij, with the angle

between vt
ij and (pg−pi) being an acute angle. Thus, the final

repulsion velocity between UAVs i and j can be formulated as
follows:

vrep
ij = vr

ij + vt
ij. (28)
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TABLE I
PARAMETERS OF ALGORITHM 1

For obstacles, the point closest to the UAV i on the obstacle
surface is considered a virtual UAV V . Finally, the total repul-
sion term for UAV i concerning the other UAVs and obstacles
is calculated as follows:

vrep
i =

∑
vrep

ij , j = 1, 2, . . . , N,V, i �= j. (29)

F. Flocking Control Algorithm

In this section, we present a flocking control algorithm for a
UAV swarm that combines the SAC algorithm and the repul-
sion function. The SAC algorithm is utilized to learn a shared
and distributed policy that can control each UAV’s flock as a
compact group while avoiding obstacles. The repulsion func-
tion provides an instinctive collision avoidance capability for
UAVs. The policy is trained using the CTDE paradigm. During
the training stage, each UAV independently observes the state
of the environment, performs actions, and then uses the expe-
riences of all UAVs to train the networks. The workflow of
the flocking control algorithm is outlined in Algorithm 1.

As summarized in Algorithm 1, we utilize two soft Q-value
networks to mitigate the positive bias in the policy update
step, as previously proposed in [32] and [34]. These networks
are trained independently and the minimum of their values is
used to update the policy network in (12) using the Adam
optimizer, as outlined in [35]. The training process alternates
between collecting the experiences of all UAVs from the envi-
ronment with the current strategy and updating the networks
and the temperature parameter using a minibatch of experi-
ences randomly sampled from a replay buffer. The execution
strategy depends on the minimum values of duav1

t and dscan
1 . If

the minimum value is greater than the safe distance dsafe, the
command velocities are calculated using the policy network;
otherwise, the command velocities are calculated using the
repulsion function. This approach allows the flocking control
policy to adapt to the UAVs’ instinctive repulsion capability
while improving the collected experience’s quality.

IV. SIMULATION EXPERIMENTS AND RESULTS

A. Simulation Setup and Training Results

We evaluated the proposed flocking control algorithm
through numerical simulations. The Q-value and policy
networks were trained in a 2-D environment comprising five
UAVs and three obstacles. The training environment was a
rectangular area with a size of 80 m × 80 m. The networks
were implemented using the PyTorch deep learning frame-
work. Table I provides a summary of the parameters used in
Algorithm 1, and Table II lists the parameters of the UAV
model.

TABLE II
PARAMETERS OF THE UAV MODEL

Algorithm 1: SAC for UAV Flocking Control With
Repulsion

Initialize policy network πφ and Q-value network
Qθ1 , Qθ2

Initialize target Q-value network Qθ̄1
, Qθ̄2

, θ̄1 ← θ1,
θ̄2 ← θ2
Initialize an empty replay buffer D← ∅ with size C
for episode = 1,2, . . . , do

for t = 1,2, . . . , Tmax do
for UAV i = 1, 2, . . . , N do

Observe the environment states ot
i and st

i,
select action at

i ∼ πφ(at
i|ot

i)

if min(duav1
t , dscan

1 ) > dsafe then
Using equation (19) calculates the
command velocities

else
Using equation (29) calculates the
command velocities

end
Execute the command velocities, and then
receive reward rt+1

i and observe new
environment states ot+1

i and st+1
i

Store transition (ot
i, st

i, at
i, rt+1

i , ot+1
i , st+1

i )

in D
end
Sample a random minibatch of K transitions
(ot

i, st
i, at

i, rt+1
i , ot+1

i , st+1
i ) from D

Update Q-value networks by minimizing the loss
in (11),
θi ← θi − λQ∇̂θi JQ(θi) for i ∈ {1, 2}
Update the policy network by minimizing the
loss in (12), φ← φ − λπ ∇̂φJπ (φ)

Update the temperature parameter by minimizing
the loss in (13),
α← α − λα∇̂αJ(α)

Update the target network
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}

end
end

1) Policy1: The angle of the visual field of each UAV φv
is set to 2π radians and there is no instinctive repulsion
ability.

2) Policy1-G: The angle of view of the field of each UAV
φv is set to 2π radians, and there is no instinctive
repulsion ability.

3) Policy2: The angle of view of the field of each UAV
φv is set to 0.5π radians, and there is no instinctive
repulsion ability.
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4) Policy2-G: The angle of view of the field of each UAV
φv is set to 0.5π radians, and there is no instinctive
repulsion ability.

5) Policy3: The angle of the visual field of each UAV φv is
set to 0.5π radians, and there is an instinctive repulsion
ability.

6) Policy3-G: The visual field angle of each UAV φv is
set to 0.5π radians, and there is an instinctive repulsion
ability.

7) Policy4-G: The visual field angle of each UAV φv is
set to 0.5π radians, and there is no instinctive repul-
sion ability, instead, the collision avoidance capability
between UAVs is obtained using a learning method, that
is, replacing dscan

1 in (23) with min(duav1
t , dscan

1 ).
8) Policy5-G: The visual field angle of each UAV φv is set

to 0.5π radians, and there is instinctive repulsion ability,
but it does not consider the term tangential repulsion,
that is, (28) is changed to vrep

ij = vr
ij.

For Policy1, Policy2, and Policy3, the critic is not aug-
mented with additional information, that is, the observation of
the critic network is the same as the observation of the policy
network. For Policy1-G, Policy2-G, Policy3-G, Policy4-G, and
Policy5-G, the critic is augmented with additional information
as described in Section III-D2.

In training, the value of dS is set to 80 m, and the time
step 	t is set to 0.2 s. We used 5000 episodes to train the
eight policies. At the beginning of each training episode, for
a high-quality experience, the positions of the UAVs and the
goal were randomly reset, and the positions of the obstacles
were fixed, with the positions of the UAVs’ center and the
goal set as follows:

⎧
⎪⎪⎨

⎪⎪⎩

xc = denv cos(χ)+ 40
yc = denv sin(χ)+ 40
xg = denv cos(χ + π)+ 40
yg = denv sin(χ + π)+ 40

(30)

where (xc, yc) represents the center of the UAVs, denv is the
distance value determining the distance between the UAVs and
the goal area and is set to 40 m in training, χ is an angle sam-
pled from [−π, π ] uniformly. The position of each UAV was
randomly sampled from a circular area with a center (xc, yc)

and a radius of 3 m.
The obstacles consist of two rectangles and one circle,

and their centers are located at (10, 40) m, (70, 40) m, and
(40, 40) m, respectively. Fig. 4 shows the training results under
the eight policies.

As illustrated in Fig. 4, all eight policies, except Policy4-G,
can obtain stable rewards after 1000 episodes (Policy4-G can
obtain stable rewards after 3000 episodes) and maintain this
performance up to 5000 episodes. This means that all eight
trained flocking control policies can allow the UAV swarm to
navigate to the target area in the training environment.

In particular, Policy1-G can obtain more rewards than
Policy1 in the early stages of the training, indicating that
using a centralized critic can enable the policy to achieve
better flocking control rewards. As training progresses,
Policy1 and Policy1-G receive similar rewards, suggesting
that Policy1 can effectively control the UAV swarm to

Fig. 4. Curves of the rewards for different policies in training. (Note: The
rewards are calculated every 100 episodes and the size of the confidence
interval is set to 0.95.)

form a tight flock and simultaneously infer the states of the
flock center from the states of neighboring UAVs. Thus, the
effect of the centralized critic on the training of Policy1-G
becomes insignificant. Policy2-G and Policy3-G can receive
more rewards during training than Policy2 and Policy3,
respectively. This is because Policy2, Policy3, Policy2-G, and
Policy3-G have limited visual fields, and the use of additional
information from the centralized critic can aid these policies
in determining global states. As a result, Policy2-G and
Policy3-G can obtain better flocking control rewards than
Policy2 and Policy3. From this comparison, we can infer that
when the UAV has limited perception, the use of a centralized
critic has a more significant impact on the training of the
policy, leading to better rewards for the UAV.

Furthermore, after the policies have learned the flocking
control ability in the final stages of the training, for policies
augmented with additional information, we find that Policy1-G
has the most rewards, whereas Policy3-G has the least. This
is because all three policies can control the swarm of UAVs
to reach the target area and avoid collisions with obstacles.
However, Policy1-G has the widest visual field, which enables
the UAVs to obtain more rewards for flocking control. In addi-
tion, Policy3-G controls each UAV to avoid collisions with
other UAVs and ensures that each UAV is far away from
the center of the UAV swarm, thus obtaining fewer rewards.
Policy2-G obtains fewer rewards than Policy1-G due to its
limited visual field. Policy1, Policy2, and Policy3 have similar
results.

In addition, compared to Policy5-G, Policy3-G can obtain
more rewards during the training process. This indicates
that the tangential repulsion term in instinctive repulsion
can improve the flocking control performance of Policy3-G.
However, compared to Policy3-G and Policy5-G, Policy4-G
has a slower convergence rate throughout the training pro-
cess and gets the least rewards after the training is stable.
This suggests that learning collision avoidance between UAVs
and compact flocking control ability is challenging through
learning alone. However, this problem can be effectively
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TABLE III
COMPARISON RESULTS OF DIFFERENT POLICIES IN THE TRAINING ENVIRONMENT

solved by considering collision avoidance among UAVs as an
instinctive capability, as shown in Policy3-G.

In the next section, we compare the performance of the
proposed policies with various test cases.

B. Comparison Tests

This section compares our policies using learning-based,
traditional, and nonlearning methods.

1) The policy is trained using DDPG [36], which is an
actor-critic algorithm based on the deterministic policy
gradient. In addition, the critic is augmented with addi-
tional information in training and UAVs have instinctive
repulsion ability. We name this policy PolicyD-G.

2) The policy is trained by proximal policy optimization
(PPO) [37], which is a policy optimization method with
the stability and reliability of the trust region. In this
study, the PPO is implemented in an actor-critic style
with the critic augmented with additional information in
training. In addition, UAVs have instinctive repulsion,
which is why we called this policy PolicyP-G.

3) The policy is trained according to [11], where the flock-
ing behavior is generated by constructing collective
potentials. We name this policy Policy-MA.

4) The policy is trained according to [7], where the flocking
problem is solved in an optimization way. We call this
policy Policy-OP.

We use the following two metrics to evaluate the collision
avoidance capability of UAVs.

1) The minimum distance dobs
min between the UAVs and the

obstacles in an episode, calculated by

dobs
min = min

(
Dobs

)

Dobs =
{

d|d = dobs
t (ui), i = 1, 2, . . . , N, t = 1, . . . , Tmax

}

(31)

where dobs
t (ui) represents the minimum distance between

UAV i and obstacles at time step t.
2) The minimum distance duav

min between the UAVs in an
episode, calculated by

duav
min = min

(
Duav)

Duav = {
d|d = duav

t (ui), i = 1, 2, . . . , N, t = 1, . . . , Tmax
}

(32)

where duav
t (ui) represents the minimum distance between

the UAV i and the other UAVs at the time step t.
We use the following three metrics to evaluate the compact-

ness and consistency of the UAV flock.
1) The average distance dc from the UAVs to the center of

the UAV swarm in an episode, which is calculated by

dc = 1

N

1

T

N∑

i=1

T∑

t=1

dc
i (t). (33)

2) The average speed difference Vc
error between the UAVs

and the center of the UAV swarm, calculated by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vc
error = 1

N
1
T

∑N
i=1

∑T
t=1 |Vi − Vc|

Vi =
√

v2
xi
+ v2

yi

Vc =
√

(∑N
i=1 vxi

)2 +
(∑N

i=1 vyi

)2
.

(34)

3) The average heading deviation ϕc
error between the UAVs

and the center of the UAV swarm, calculated by

ϕc
error =

1

N

1

T

N∑

i=1

T∑

t=1

|ϕi − ϕ̄|. (35)

We use the following two metrics to evaluate the flying
speed and optimal time of the UAV flock.

4) The average speed V of UAVs in an episode, calcu-
lated by

V = 1

T

T∑

t=1

Vc. (36)

5) The time tg it took the first UAV to reach the target area.
Furthermore, we measure the success rate as the ratio of the

number of tests that successfully reach the goal area without
collision within the total time step Tmax in each test scenario.
We randomly tested each policy 500 times in the training
environment using the same random seed. The average and
standard deviation of the aforementioned metrics are listed in
Table III.

As shown in Table III, Policy1-G, Policy2-G, and Policy3-G
perform better than Policy1, Policy2, and Policy3, respectively,
in almost all metrics. This indicates that the centralized critic
can train a better policy for controlling the UAVs as a com-
pact flock and navigating them from the starting area to the
goal area without collision with obstacles. Policy1-G has the
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Fig. 5. Test case results for different policies in the training environment. (a) Policy1. (b) Policy1-G. (c) Policy2. (d) Policy2-G, (e) Policy3. (f) Policy3-G.
(g) Policy4-G. (h) Policy5-G. (i) PolicyD-G. (j) PolicyP-G. (k) Policy-MA. (l) Policy-OP

lowest value of dc as it has the maximum visual field and can
ensure that UAVs approach the center of the UAV swarm more
easily without considering collision avoidance. Policy2-G has
the highest success rate of 97.0.

For all trained policies, except PolicyP-G and Policy5-G,
the average minimum distance dobs

min is greater than 3 m, which
is the safe distance designed in the reward function in (23).
Compared to Policy3-G and PolicyD-G, PolicyP-G has a lower
success rate with smaller values of dobs

min and duav
min, indicat-

ing that the UAVs controlled by Policy3-G are more likely
to collide with obstacles as well as other UAVs. Furthermore,
although PolicyD-G has a lower value of dc, Policy3-G has
lower values of Vc

error and ϕc
error and a higher success rate;

therefore, Policy3-G has superior flock control performance.
Furthermore, compared to Policy3-G and Policy5-G,

Policy4-G has the lowest values of Vc
error and ϕc

error, indicat-
ing that when the collision avoidance ability and the flocking
control ability are simultaneously learned through the learn-
ing method, the learned policy can make the UAV swarm
more compact and consistent without instinctive repulsion.
However, Policy4-G also has the lowest success rate (65.4%)
due to its inability to balance collision avoidance between
UAVs and compact flocking control, resulting in collisions
between UAVs. This can be observed in the fact that it has the
smallest duav

min. Furthermore, the results of Policy5-G show that
when there is no tangential repulsion term, both dobs

min and the
success rate decrease, indicating that the tangential repulsion
term can improve the UAVs’ collision avoidance ability.

Furthermore, all trained policies have a lower average speed
of the UAVs compared to Policy-MA and Policy-OP. One of
the main reasons for this is that reducing the speed makes
it easier to form a compact flock and obtain more flock-
ing control rewards. Compared to Policy-MA and Policy-OP,
Policy3-G has a higher success rate and lower values of dc,
Vc

error, and ϕc
error, indicating that it can enable UAVs to form a

compact flock with high-velocity consistency. Policy-MA and
Policy-OP have low success rates and high values of dc due to
their inability to achieve a balance between collision avoidance
and flock maintenance, resulting in collisions with obstacles
or sparse flocks; this is further proved by the low values of
dobs

min under Policy-MA and Policy-OP. Fig. 5 illustrates the test
case results for different policies in the training environment.

Fig. 5(a) and (b) show the trajectories of the UAVs con-
trolled by Policy1 and Policy1-G, respectively, in an environ-
ment with three obstacles represented as two red rectangles
and one red circle. The blue triangles indicate the positions
of the UAVs at different times. The green circle indicates
the target area. Policy1 and Policy1-G can enable the UAV
swarm to form a compact flock and navigate it from the
starting area to the goal area without collision with the
obstacles.

Fig. 5(c) and (d) show the trajectories of the UAVs con-
trolled by Policy2 and Policy2-G, respectively. Compared with
Fig. 5(a) and (b), the UAV swarm is sparser because the
UAVs have limited visual fields. Furthermore, compared to
Fig. 5(c) and (d) show that the UAV swarm is more compact
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TABLE IV
COMPARISON RESULTS OF FIVE POLICIES UNDER FIVE DIFFERENT SCENARIOS

and takes less time to reach the goal area, which implies that
the central critic has a positive effect on the policy when UAVs
have limited perception capability.

Fig. 5(e) and (f) show the trajectories of the UAVs con-
trolled by Policy3 and Policy3-G, respectively. Due to the
repulsion function of UAVs, the flock becomes more sparse
than in the case of Policy1, Policy1-G, Policy2, and Policy2-G.
Similarly, the UAV swarm controlled by Policy3-G forms a
more compact and consistent flock than that controlled by
Policy3.

Fig. 5(g) and (h) show the trajectories of the UAVs con-
trolled by Policy4-G and Policy5-G, respectively. Compared
with Fig. 5(f), the UAV swarm controlled by Policy4-G has
a more compact flock, and the UAV swarm controlled by
Policy5-G is closer to the obstacles, which is consistent with
the results in Table III.

Fig. 5(i) and (j) show the trajectories of the UAVs con-
trolled by PolicyD-G and PolicyP-G, respectively. Compared
with Fig. 5(f), the UAV swarm controlled by PolicyD-G has
a more compact flock and takes more time to its goal area,
and the UAV swarm controlled by PolicyP-G is closer to the
obstacles.

Fig. 5(k) and (l) show the trajectories of the UAVs con-
trolled by Policy-MA and Policy-OP, respectively. As shown
in Fig. 5(k), the UAVs oscillate near the circular obsta-
cle. In addition, the UAV swarm controlled by Policy-OP
is divided into two parts when encountering an obstacle,
as shown in Fig. 5(l), and the UAV swarm does not avoid
obstacles as an entire. The lack of a practical obstacle
avoidance strategy is the main reason for the poor flock-
ing results of Policy-MA and Policy-OP when encountering
obstacles.

C. Generalization Tests

We tested the generalization performance of Policy3-G in
five different scenarios, all of which were different from the
training scenario.

1) The first scenario (Scenario 1, S1) has five UAVs with
no obstacles.

2) The second scenario (Scenario 2, S2) has nine UAVs and
the environment is the same as the training environment;
that is, there are three obstacles in the environment.

3) The third scenario (Scenario 3, S3) has five UAVs, and
the environment is more complex, that is, it has nine
obstacles. In Scenario 3, we set the value of denv as
60 m.

4) The fourth scenario (Scenario 4, S4) considers the obser-
vation errors of the UAVs. In practice, it is difficult
for the UAVs to accurately obtain the states of the
other UAVs and the obstacles through vision cameras
and laser rangefinders. For this reason, we added ran-
dom errors to the observations of UAVs to simulate
the real environment. Specifically, we add the Gaussian
noise to the UAV observations oscan

t and ocam
t , that is,

dscan
i = dscan

i + 0.1N (0, 1), duavi
t = duavi

t + 0.2N (0, 1),
α

uavi
t = α

uavi
t + 0.05N (0, 1), and 	ϕuavi = 	ϕuavi +

0.05N (0, 1).
5) The fifth scenario (Scenario 5, S5) adds two dynamic

obstacles to the training environment. These two obsta-
cles are circular with a radius of 3 m and both move at
a speed of 0.5 m/s.

We randomly tested each scenario 500 times with the same
random seed as reported in Section IV-B. The results are listed
in Table IV. As shown in Table IV, all five policies achieved
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Fig. 6. Generalization tests results.

TABLE V
GENERALIZATION TEST RESULTS OF POLICY3-G UNDER DIFFERENT VALUES OF τv IN THE TRAINING SCENARIO

a success rate of 100% in Scenario 1. In particular, both
Policy-MA and Policy-OP outperformed learning-based meth-
ods, indicating that traditional methods can effectively control
the UAV swarm in free environments to form more compact
and consistent flocks compared to the proposed learning-
based methods, as demonstrated by the low values of dc,
Vc

error, and ϕc
error. It is worth noting that Policy3-G outper-

formed PolicyD-G and PolicyP-G in all metrics. Fig. 6(1)
illustrates the trajectories of the UAVs in Scenario 1. It can

be observed that UAVs controlled by Policy-MA and Policy-
OP have a stable flock topology and shorter flight times,
and Policy-OP achieves particularly impressive results by
maintaining the initial flock topology throughout the entire
flight. On the contrary, UAVs controlled by learning-based
methods have a longer flight time and a dynamically chang-
ing flock topology, indicating that traditional methods are
more suitable for flocking control of UAV swarms in free
environments.
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In Scenarios 2 and 3, the success rates of all policies
decrease. As the number of UAVs and obstacles increases,
it becomes more challenging for UAVs to maintain control
in a flock. Compared to Policy3-G, both the learning-based
and traditional methods do not perform as well and have low
success rates; in particular, in Scenario 2, PolicyP-G has a
success rate of less than 70%, and in Scenario 3, PolicyP-G,
Policy-MA, and Policy-OP have success rates of less than
80%. The limitations of these two traditional policies are
highlighted in an environment of dense obstacles. Fig. 6(2)
shows the trajectories of UAVs in Scenario 2. As shown,
Policy3-G and PolicyD-G are able to guide the nine UAVs
to form a flock while navigating around obstacles. However,
PolicyP-G controls the UAVs too closely to the central obsta-
cle, resulting in quick collisions and thus a low success rate.
Furthermore, the UAVs controlled by Policy-MA and Policy-
OP are split into two groups to avoid collisions with obstacles,
contributing to the high values of dc, Vc

error, and ϕc
error, as listed

in Table IV.
Furthermore, in Scenario 3, as the number of obstacles

increases, the UAV swarm is divided into multiple flocks, as
shown in Fig. 6(3). Fig. 6(3-A) illustrates that the UAV swarm
under Policy3-G is divided into two groups to avoid obsta-
cles in t = 20 s, which contributes to the increase in the
value of dc. In contrast to Fig. 5(k) and Fig. 6(1-D), the UAV
swarm controlled by Policy-MA avoids obstacles together
without dividing into multiple parts. As seen in Table IV, in
Scenario 3, the minimum distance duav

min between the UAVs con-
trolled by Policy-MA is smaller, which is due to Policy-MA’s
inability to balance inter-UAV collision avoidance and obstacle
collision avoidance. The results in Fig. 6(3-E) are consistent
with the results in Fig. 5(l) and Fig. 6(2-E). It is worth not-
ing that the increase in denv leads to an increase in tg in
Scenario 3.

Compared to the results in Table III, the results in
Scenario 4 listed in Table IV show that UAV observation errors
negatively impact UAV flocking control performance. The suc-
cess rates of all policies are reduced. However, Policy3-G
still has a success rate greater than 90%, indicating that
Policy3-G has better robustness to UAV observation errors
than other methods. Fig. 6(4) illustrates the trajectories of
UAVs in Scenario 4, which are similar to the UAV trajectories
in Fig. 5, indicating that the UAV observation errors have little
influence on the UAV trajectories.

From the results of Scenario 5, we found that dynamic
obstacles significantly impact the control of the UAV flocking.
First, dynamic obstacles result in smaller distances between
UAVs and obstacles, as well as other UAVs, that is, smaller
values of dobs

min and duav
min, resulting in a lower success rate. For

the learning-based methods, environments with dynamic obsta-
cles are not encountered during the training and, therefore,
cannot handle this situation well. Policy-MA and Policy-OP
have poor obstacle avoidance capabilities, and dynamic obsta-
cles increase obstacle avoidance difficulty. Second, to avoid
obstacles, the compactness and consistency of the UAV flock
become worse, and the values of dc, Vc

error, and ϕc
error all

increase. In comparison, Policy3-G has a success rate of
more than 80% and better-flocking control metrics. Fig. 6(5)
illustrates the trajectories of the UAVs and the locations of the

dynamic obstacles at different times. As seen under policies
Policy3-G, PolicyD-G, and PolicyP-G, the trajectories of the
UAVs are all affected by dynamic obstacles and the flocks
are more dispersed. In contrast, under policies Policy-MA and
Policy-OP, the trajectories of the UAVs are unchanged because
the dynamic obstacles are farther away from the UAVs.

The results of our tests demonstrate that our proposed flock-
ing control policy, Policy3-G, has a good generalization ability
in environments not encountered during training, indicating
that it has strong robustness to changes in the external envi-
ronment. We also tested the generalization ability of Policy3-G
to changes in the UAV model. As shown in (1), the motion
performance of the UAV is mainly determined by the param-
eter τv. Therefore, we tested the flocking control performance
of Policy3-G with different values of τv. The results, listed in
Table V, show that when the value of τv differs from the train-
ing environment (τv = 1.0 s), the success rates decrease, with
the lowest success rate of 87% observed when τv = 0.2 s. This
decrease in success rate is due to the fact that when τv < 1.0 s,
the response to the UAV velocity command increases, lead-
ing to an increase in average speed and a higher likelihood
of collisions. Similarly, when τv > 1.0 s, the velocity com-
mand response capability of the UAV decreases, leading to
a decrease in average speed and a higher likelihood of colli-
sions. However, in general, when the parameter τv changes,
Policy3-G can enable the UAV swarm to maintain a high suc-
cess rate (at least 87%) and high flocking control performance,
indicating that it also has good generalizability to changes in
the UAV model.

Although a large number of simulation results demonstrate
that our proposed DRL-based flocking controller has a good
generalization ability to changes in the external environment
and the internal UAV model, it is not trivial to theoretically
analyze the stability of the flocking controller. On the one
hand, as the flocking controller is represented as a DNN with
a complex structure and many parameters, it is difficult to
effectively analyze its input–output response characteristics.
Although the stability of neural network-based controllers with
a single hidden layer has been analyzed in [19] and [38], it
remains challenging to analyze the stability of neural network-
based controllers with multiple hidden layers. On the other
hand, since DRL is a model-free approach, there is a lack of
suitable UAV models to analyze the stability of the DRL-based
flocking controller. In conclusion, the theoretical analysis of
the stability of DRL-based controllers poses a significant chal-
lenge and is a key factor that limits the practical application
of DRL-based controllers.

V. CONCLUSION

In this study, we addressed the problem of flocking control
of a UAV swarm in continuous state and action spaces. First,
we formulated the flocking control problem in an RL frame-
work and solved it using an actor-critic DRL method, SAC.
Subsequently, the inter-UAV collision avoidance capability
was considered an instinct of the UAVs and was imple-
mented using a repulsion function. Furthermore, we investi-
gated communication denial environments, where UAVs used
their onboard sensors to perceive the states of other UAVs.
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The flocking control policy was trained through a CTDE
paradigm, where the UAVs’ experience was used to train
the shared policy network. Specifically, we used a central-
ized critic augmented with additional information on the entire
UAV swarm to facilitate training, which positively affected the
policy, particularly when UAVs have limited perception capac-
ity. Finally, we conducted simulation experiments to verify the
performance of the proposed algorithm. From the results, we
can draw the following conclusions.

1) The policy with the repulsion function and the limited
visual field exhibited a high success rate of up to 93.8%
in training environments.

2) The repulsion function and the limited visual field
caused the UAVs to flock more sparsely at high speed.

3) The policy with the repulsion function and the limited
visual field exhibited robust generalization performance:
an 85.6% success rate in environments with a high num-
ber of UAVs and a 91.2% success rate in environments
with a high number of obstacles and an 82.2% success
rate in environments with dynamic obstacles.

4) Traditional methods are more suitable for flocking con-
trol of UAV swarms in free environments, whereas the
proposed learning-based methods are more suitable in
cluttered environments.

In future research, we will further establish a more accurate
6DOF model of the UAV and extend the motion process of
the UAV to 3-D space. In addition, we will further validate
our proposed flocking control policy on real UAV platforms to
improve its performance in real flights and continue to focus
on the theoretical stability analysis of the proposed DRL-based
controller.
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