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List of main variables and abbreviations

• Lk: Kinetic inductance

• Lm: Magnetic inductance

• C: Capacitance

• Cc: Coupling capacitance

• NbTiN: Niobium Titanium Nitride

• T: Temperature

• QT : Total quality factor

• Qc: Coupling quality factor

• Qi: Internal quality factor

• ω: Frequency in rad/s

• f : Frequency in Hz

• fr: Resonance frequency

• gr: Gap capacitor-to-ground

• Wr: Inductor’s width

• Rr: Capacitor’s edge radius

• Lr: Capacitor’s size

• sr: Spacing between the resonator and the feedline

• CPW: Coplanar Waveguide
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Abstract

The aim of this thesis is to investigate the role of lumped element resonator geometry
in its quality factor. That is how to optimize the resonator’s design for enhanced
performance of the resonator even in the presence of applied magnetic fields.

Our device comprises a superconducting NbTiN thin film on top of a high resis-
tivity silicon substrate, patterned with a feedline capacitively coupled to ten lumped
element resonators aiming to characterize one geometric parameter. The first result
of this thesis is the dependence of the intrinsic quality factor on resonator geometry
at zero field. The second result is the power dependence for every resonator, with
whom we obtain access to the various loss mechanisms degrading the resonator’s
performance. Finally in plane and out plane magnetic field measurements are pre-
sented and a comparison with geometry is discussed. The dominant loss mechanism
observed in all resonators stems from quasiparticle loss due to microwave induced
pair-breaking. Wide inductor resonators show to be the most susceptible to this loss
form. The extracted quality factors at zero field show no correlation with capacitor’s
geometry within measurement variability, but could potentially show that thin in-
ductors have higher quality factors. In the presence of an applied parallel magnetic
field, we find that small capacitors perform better than large capacitors as the field
increases. However, we find no additional trend between parallel field and resonator’s
geometry. Analyzing the behaviour of the resonators under an applied perpendicu-
lar magnetic field, we find that thin inductors and small capacitors are features of
the most resilient resonators up to at least 100mT, while capacitor’s shape does not
show any conclusive trend. As a result, our lumped-element resonators prove to be
resilient to perpendicular magnetic fields up to at least 100mT with a very simple
design and fabrication process.
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Everyone has the right to doubt
everything as often as he pleases
and the duty to do it at least once.
No way of looking at things is too
sacred to be reconsidered. No way
of doing things is beyond
improvement.

Edward de BonoChapter 1

Introduction

Over the last decades, superconducting circuits have been of great interest to dif-
ferent areas of research. In particular the superconducting microwave resonator has
proved to be a multi-purpose component suitable for many applications. On one
hand superconducting resonators have been used as low temperature light-detectors
by the astronomy community [1]. In quantum computing the resonator has been
used for qubit protection and readout [2] [3], coupling of qubit-qubit [4] and in the
field of quantum memories [5]. In order to extend qubit coherence times and study
qubit performance in magnetic fields the use of superconducting resonators has been
fundamental, since the single-photon power operating regime of qubits do not allow
them to investigate material loss mechanisms [6]. It is these loss mechanisms that
produce unwanted relaxation of the qubit via the Purcell effect [7] and minimize
two-qubit gate fidelities [8].

Resonators are useful structures due to their simplicity in modelling, design, fab-
rication and measurement. They can be measured over a wide range of frequencies,
power and temperatures, making them convenient for many experiments. Recently,
superconducting resonators started being used to investigate microscopic phenomena
which require applied magnetic fields of the order of 1T, such as Majorana physics.
For this kind of applications it is important that resonators maintain high quality
factors in the presence of magnetic fields. Initially CPW resonators were widely
used [9] due to their simplicity in design and scalability, however their large on-chip
footprint made them more susceptible to applied magnetic fields [10]. As a result
new types of field-resilient resonators were required. Samkharadze [11] introduced
nanowire resonators which proved to be very robust to applied fields. Nonetheless
their long and narrow geometry lead to a challenging fabrication, strong sensitivity
of the resonance frequency to the film’s kinetic inductance, and difficult capacitive
coupling to other systems. A suitable candidate easy to fabricate, resilient to applied
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CHAPTER 1. INTRODUCTION 2

fields, and simple capacitive coupling is the lumped element resonator. Such type of
resonator has already been used for some experiments that require magnetic fields
[12], but a systematic study on the resonator’s optimal geometry is yet to be under-
taken. A lumped element resonator optimized for applied magnetic fields is therefore
fundamental to pave the way towards better mesoscopic physics experiments under
applied fields.

The energy losses in a superconducting resonator mainly stem from coupling to
two-level systems (TLSs), from magnetic induced vortices, radiation, and at last
quasiparticles originated from strayed IR light or microwave induced pair-breaking
[6]. The first three of these loss mechanisms are known to be associated with the res-
onator geometry and therefore can be mitigated by optimizing the resonator design
[6]. Two-level systems couple to the electric field and they are therefore dependent on
the capacitance of the resonator. On the other hand vortex and radiation losses are
known to be related to the inductance of the resonator, since it is where most current
is located at resonance. Finally quasiparticle loss is attributed to the inductor, but
its dependence on resonator geometry is yet unknown.

The outline of this thesis is as follows. To start, the theoretical framework will
be presented. First we introduce the physics of superconductivity, from which we
derive expressions describing crucial features for the design and understanding of our
system. Secondly we focus on how to obtain lumped element components such as
inductors and capacitors from a thin film superconducting pattern. We present the
main figures of merit of resonators with exemplary derivations using circuit theory.
Afterwards the work focuses on the design of our lumped element resonators and
the approach used to simulate the resonator’s response properties. We present the
measurement setup used to characterize our resonators along with the method taken
to perform the magnetic field alignment. Next we show transmission measurements
of our resonators in a two-port network. We characterize the main loss forms and
investigate its dependence on geometry by analyzing the power dependence of the
resonators. Then we study how the in-plane and out-of-plane magnetic fields degrade
the resonator’s performance, focusing on the role of resonator geometry. Finally, the
conclusions of this work will be presented, with a summary of this project and
suggestions for future work following this research.





Chapter 2

Physics behind superconducting
circuits

Our material consists of an interacting system of electrons, phonons and electro-
magnetic fields. In this chapter we introduce the theory of superconductivity to be
able to derive an expression for the internal inductance of a microstrip inductor.
First we give a brief overview of the properties of superconductors. Next we use
the Drude model to understand conduction in normal metals. After that we find
the conditions necessary to obtain infinite conductivity at DC and the first sign of
kinetic inductance at AC, the former being a distinctive feature of superconductors.
We complement the section by using the London analysis to predict the Meissner
effect and the London penetration depth. We derive a simple expression for the ki-
netic inductance of a superconducting microstrip using the theory mentioned above.
Then we introduce the microscopic theory of superconductivity, which allows us to
derive a more accurate expression for the kinetic inductance. Finally we give expres-
sions for the inductance and capacitance of a CPW, such that we can later calculate
the proper dimensions of the transmission line probing the resonators making sure
impedance matching is fulfilled. At last we provide a brief overview on the physics
of the main loss forms in superconducting resonators.

2.1 Superconductivity

At reduced temperature the electrical resistance of all elemental metals decreases
[13]. Nevertheless, Kamerlingh Onnes observed in 1911 that below some critical
temperature Tc characteristic of the material, certain metals such as mercury, lead
or tin had none DC electrical resistance and therefore became perfect conductors. A
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CHAPTER 2. PHYSICS BEHIND SUPERCONDUCTING CIRCUITS 4

new property of these materials was discovered in the year 1933 by Meissner and
Ochsenfeld [14], perfect diamagnetism, the capability to expell almost completely
magnetic field out of the material’s bulk as it is cooled through Tc. The small
distance the magnetic field can penetrate is known as the penetration depth (λ). It
was while analysing the behavior of the penetration depth that Abrikosov found in
1957 a distinction in the realm of superconducting materials. He classified as Type
I superconductors those with a discontinuous breakdown of superconductivity in a
first-order transition at Hc, whereas Type II superconductors showed a continuous
increase in flux penetration starting at lower magnetic field Hc1 up to a higher
magnetic field Hc2. A key analysis of this fascinating result is the fact that flux
penetrates in a regular array of flux tubes, each carrying a flux quantum Φ0. Each
flux tube consists in a vortex of supercurrent that concentrates the flux towards
the vortex center [13]. This leads to a non-perfect diamagnetism as well as a non-
perfect conductivity when the Type II superconductor is in its intermediate state.
Nevertheless, Type II superconductors offer technical advantages such as high critical
temperatures (Tc) and high critical magnetic fields. These practical benefits make
Type II superconductors well suited for Superconducting Qubit applications.

2.2 Conductivity of normal metals

To be able to understand the peculiarities of superconducting materials, we first
need to introduce the microscopic phenomena in normal metals underlying electrical
conductivity. The non-perfect conductivity in normal metals stems from the electrons
scattering off the ions in the lattice of the metal [15]. Such scattering decreases the
kinetic energy of the electrons previously gained by the external electric field. Here
we will use the Drude model to examine metallic conduction, since it allows to form
a simple picture and gives rough estimates of properties with underlying complexity
beyond the scope of this thesis.

We focus on the general case where the current is induced by a time-dependent
AC electric field. This field can be expressed as

E(r, t) = <{E(ω)e−iωt} (2.1)

In this case, applying classical mechanics to the electron motion we obtain [15]

dp

dt
= −p

τ
− eE (2.2)

with τ the phenomenological relaxation time, defined as the average time elapsed
since the last electron’s collision. We seek for p to be of the form p(t) = <{p(ω)e−iωt}.
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Substituting the expressions for p(t) and E(t) into Eqn. 2.2 and making sure the
real and imaginary parts of the equation are fulfilled. We get to to the following
relation:

−iωp(ω) = −p(ω)

τ
− eE(ω) (2.3)

Given that at any time t the average drift velocity of the electron v is just p(t)/m,
with p the total momentum per electron and m the effective electron mass, the
current density is j = −nep/m [15], where n is the number of conducting electrons
per unit volume with velocity v. Then using Eqn. 2.3 we obtain:

j(t) = <{j(ω)e−iωt} → j(ω) = −nep(ω)

m
=

(ne2)/m

1/τ − iω
E(ω) (2.4)

This result can be written as j(ω) = σ(ω)E(ω), where σ(ω) is known as the AC
conductivity:

σ(ω) =
σ0

1− iωτ
, σ0 =

ne2τ

m
(2.5)

We can split Eqn. 2.5 into its real and imaginary part to get an easier expression
to interpret:

σ(ω) =
ne2τ

m(1 + ω2τ 2)
+ i

ne2ωτ 2

m(1 + ω2τ 2)
(2.6)

The imaginary part of Eqn. 2.6 stems from the fact that under an applied AC
field, the electrons do not respond instantaneously to the applied field. In fact,
electrons gain momentum during the relaxation time τ , then, when the applied field
is reversed, the electrons first lose their momentum before changing their direction
to the one of the new field.

Taking into account that at room temperatures the relaxation time τ is typically
of the order of 10−14− 10−15s [15], then at microwave frequencies (ω ∼ 1010) we find
ω2τ 2 � 1, and therefore the imaginary term in Eqn. 2.6 is negligible.

2.3 Zero resistance and Meissner effect

We have seen in the previous section how the electrons scattering off the metallic
ions in the lattice cause energy losses and a finite conductivity. If we consider a
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non-scattering population of electrons ns, this is we take the limit τ → ∞ in Eqn.
2.6, we get:

σ(ω)τ→∞ → i
nse

2

mω
(2.7)

This result shows a complex impedance that, as we previously mentioned, is as-
sociated with the inertia of the (non-scattering) electron population ns when the
frequency-dependent applied electric field changes direction. Since the electron ve-
locity is proportional to the current, the current lags the field just as it would in an
inductor. Therefore Eqn. 2.7 represents the kinetic inductance. This concept will
be further detailed in the following sections. It is straightforward to see that under
an applied DC electric field (ω = 0) the conductivity goes to infinity accounting for
the zero resistance of superconductors at DC.

Another unique property of superconductors besides being resistanceless at DC
is the so-called Meissner effect, or as aforementioned, perfect diamagnetism. The
latter was the first subject of study of F. London and H. London in 1935 [16]. Their
goal was to examine in a quantitative way why a metal in its superconducting state
expelled completely the magnetic field out of its bulk.

The London analysis starts with the two-fluid model proposed by Gorter and
Casimir [17]. In such model there is one fraction of the total number of conduction
electrons that contribute to the supercurrent at T < Tc. This quantity ns is known as
density of superconducting electrons and is temperature dependent. The remaining
conducting electrons constitute the ’normal fluid’ and therefore scatter as they would
in a normal metal. These two population of conducting electrons in our metal can
be considered to flow in parallel, since any small transitory electric field will induce
the supercurrent of electrons ns and fail to produce the ’normal’ current. Hence we
suppose a superconductor under an applied time-varying electric field. The classical
equation of motion for the superconducting electrons can be obtained from Eqn. 2.2
in the limit τ → ∞. Taking into account that the current density carried by these
electrons is j = −ensvs and using the adapted form of Eqn. 2.2 we obtain the first
London equation:

dj

dt
=
nse

2

m
E (2.8)

Note that by taking the Fourier transform of the resulting equation we obtain the
AC conductivity of the non-scattering electron gas obtained with the Drude model
(Eqn. 2.7).

However, despite the First London equation (2.8) describing perfect conductivity,
it does not explain how a superconductor is able to expel any magnetic flux density
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from within its interior, the so-called perfect diamagnetism or Meissner effect. The
application of Maxwell’s equations to a perfect conductor describes diamagnetism of
time-varying magnetic fields [15]. Nevertheless it is the set of constitutive conditions
to Maxwell’s equations suggested by the Londons that expel both DC and AC fields
from the superconductor’s bulk. The second London equation superconductors must
obey reads:

∇× j = −nse
2

mc
B (2.9)

Such restrictive London equation leads to the Meissner effect, caused by surface
currents in the superconductor that screen out the applied field. Combining Eqn.
2.9 with the Ampere-Maxwell law allows to predict that currents and magnetic fields
in superconductors mainly prevail within a layer of thickness λL from the surface,
the so-called penetration depth. Such penetration depth in its ideal theoretical limit
(T → 0) reads:

λL(0) =
( mc2

4πnse2

)1/2
(2.10)

Its dependence on temperature is found empirically, and is approximately de-
scribed by:

λL(T ) ≈ λL(0)

[
1−

(
T

Tc

)4]−1/2

(2.11)

2.4 Internal inductance: Kinetic and magnetic

The kinetic inductance of superconducting electrons is the underlying phenomenon
determining many macroscopic features, such as at what frequency does a lumped
element resonator resonate. Therefore it is essential to obtain an accurate description
of its behaviour. As previously mentioned, kinetic inductance is a result of charge
carriers having mass, and therefore taking a certain finite time to respond to a time-
varying external electric field. In this work we are interested in the kinetic inductance
of a superconducting strip, therefore we will consider such particular case.

Let us assume a superconducting strip of thickness t, width W and length l, as
illustrated in Figure 2.1 a). We recover Eqn. 2.4, obtained with the Drude model in
the case of normal metals. Such expression in the superconducting limit ω2τ 2 � 1
can be rewritten as:

E(ω) = iω
m

ne2
j(ω) (2.12)
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Thus, using the fundamental definition of voltage it yields:

V =

∫
E · dl =

∫
iω

m

ne2
j · dl (2.13)

In the case of superconducting strip thin films where the thickness of the strip
is much smaller and the width much larger than the penetration depth, the current
density across the film is uniform [18] and given by j = I/Wt. Now the result for V
becomes:

V = iω
m

ne2

l

Wt
I (2.14)

From this result we can define the kinetic inductance Lk as:

V = iωLkI→ Lk =
m

ne2

l

Wt
(2.15)

It is straightforward then that the impedance reads

Z =
V

I
= iωLk (2.16)

which corresponds to an inductive behaviour with equivalent inductance Lk.

Nevertheless, kinetic inductance only accounts for one contribution to the total
internal inductance of the material. The total internal inductance is the sum of the
kinetic inductance (Lk) and the magnetic inductance (Lm). The latter is a result of
the magnetic field energy density stored within the superconducting bulk created by
the supercurrent [18]. It is defined as:

Lm =
Φ

I
→ Φ = LmI (2.17)

with I the current and Φ its induced magnetic flux. Taking the derivative on
both sides of the last expression and using Faraday’s law we find:

V = Lm
∂I

∂t
+ I

∂Lm
∂t
≈ Lm

∂I

∂t
(2.18)

which showcases the inductive response of the magnetic inductance. The last
approximation accounts for the fact that Lm is usually time-independent [19].

We can approximate the expression of the magnetic self-inductance of a strip by
considering a long straight metal wire of length l and circular cross-section r, with
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no ground plane or dielectric nearby. Following the derivation of [20], the magnetic
inductance of such system reads:

Lm ≈
µ0

2π
l

[
ln

(
2l

r

)
− 1

]
(2.19)

with µ0 = 4π · 10−7H/m. This expression indicates that for long and thin wires,
the kinetic inductance will dominate over the small magnetic inductance. It must be
noted that Eqn. 2.19 does not exactly represent the case of a micro/nanostrip on top
of a dielectric layer, however the typical geometries of our inductors yield lower Lm
values than Eqn. 2.19, hence it serves the purpose of showing that LT = Lk +Lm ≈
Lk [19].

Note than in a normal metal the kinetic inductance is very small compared to
the resistive nature of the material, since usually ωτ � 1 and only ωτ ≥ 1 at very
high frequencies. However, the resistive part in a superconducting strips goes to zero
for temperatures far below Tc. Causing the superconducting strip to behave as an
inductor with effective inductance Lk.

A more accurate description of the kinetic inductance in superconductors requires
the introduction of the microscopic theory of superconductivity.

2.5 Microscopic theory of superconductivity

The next step in understanding the phenomenon of superconductivity relies on the
key theory proposed by Bardeen, Cooper, and Schrieffer in 1957 [21]. In such theory
it is shown how an attractive interaction lead by phonon-electron interaction is able
to form bound pairs of electrons occupying states with equal and opposite momenta
and spin. These are the so-called Cooper pairs. The keystone to the formation of
Cooper pairs is the motion of the ion cores of the material. When an electron is
introduced in the lattice, it attracts the near positive ions, which in turn attract
a second electron producing this way an effective attractive interaction between
the electrons. If this attractive interaction exceeds the repulsive screened Coulomb
interaction, then a Cooper pair is formed. The breaking of a Cooper pair produces
two individual unpaired electrons, and the minimum energy to break a Cooper pair
was one of the crucial predictions by this theory, this energy is Eg(T ) = 2∆(T ). The
quantity ∆ was predicted to be temperature-dependent, going from zero at Tc to a
certain saturation value Eg(0) for T � Tc. Eventually gap widths measurements
proved the prediction right [13] and therefore the microscopic theory valid, making
this way the BCS theory the cornerstone of superconductivity.
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2.5.1 Kinetic inductance from BCS theory

Consequently, to obtain a proper expression for Lk in a superconductor we must
replace with the Cooper pair mass (m → 2me), the Cooper pair charge (e → 2e),
and the Cooper pair density ns in Eqn. 2.15:

Lk =
me

2nse2

l

Wt
(2.20)

where the Cooper pair density depends on temperature as ns(T ) = ns(0)(1 −
T/Tc) and current (for this work we consider currents far below the pair-breaking
current). This equation only holds for temperatures close to Tc and small currents
[22]. To obtain an equation for Lk valid for all T we can use the BCS theory. We
start by assuming the low-frequency limit, this is ~ω � 2∆. In this limit Mattis-
Bardeen derived the formula for the complex conductivity expressed as a ratio of the
imaginary conductivity (σi) to the normal state conductivity (σn) [13] as:

σi
σn

=
π∆

~ω
tanh

(
∆

2kBT

)
(2.21)

As we saw in Section 2.4, the AC conductivity relates the current density and the
applied electric field as j(ω) = σ(ω)E(ω). Then, by using the definition of voltage
and considering a uniform current density we can obtain the impedance:

V =

∫
E · dl =

∫
1

σ
j · dl =

l

σWt
I (2.22)

We can split the conductivity into its real and imaginary parts as σ = σr − iσi.
For the following we assume σi � σr, as it is the case in superconductors [13]. Then
the impedance reads:

Z =
V

I
=

l

Wt

1

σr − iσi
≈ l

Wt

[
σr
σr

+
i

σi

]
= R + ZL(ω) (2.23)

Recall the complex impedance is associated to the kinetic inductance as ZL(ω) =
iωLk [23]. Combining that with Eqn. 2.21 and using the definition for sheet re-
sistance as Rsq = (tσn)−1 we obtain the temperature dependent expression for the
kinetic inductance in the low frequency regime [22]:

Lk =
l

W

Rsqh

2π2∆

1

tanh
(

∆
2kBT

) (2.24)
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We can take a step further and simplify Eqn. 2.24 for T � Tc, which will be
the operating range in this work. In this limit it is known that ∆ ≈ 1.76kBTc [13],
therefore the kinetic inductance per square reads:

Lk ≈
Rsqh

2π21.76kBTc
(2.25)

This equation is important to understand how the resonance frequency depends
on the kinetic inductance at T � Tc and for small changes in frequency. In particular,
in this work we will apply in plane and out of plane magnetic fields, which will break
Cooper pairs as they increase (specifically in the inductor’s superconducting strip),
and hence increase the kinetic inductance (c.f. Eqn. 2.20), and therefore decrease
the resonance frequency of the LE resonator (see in Section 3.1.2 how a microstrip
models an inductor).

2.6 Kinetic and magnetic inductance of CPW

Deriving the kinetic inductance for a superconducting microstrip is essential for
understanding the behaviour of LE resonators under applied fields. Nevertheless the
transmission line probing the resonator has the geometry of a Coplanar Waveguide
(c.f. 2.1 b)). As we will see in Section 3.1.1, the characteristic impedance of the line
is Z0 =

√
L/C and is chosen to be 50Ω due to impedance matching. Therefore it is

necessary to design the transmission line such that Z0 = 50Ω. Since the inductance of
a superconducting coplanar waveguide is kinetic and magnetic we need an expression
for L and C depending on the geometry of the feedline.

In the case where the center electrode is much smaller than the wavelength of the
operating signal, a quasi-TEM mode can propagate in the CPW. Assuming that the
film thickness is smaller than the depth of the current flow λL so that the current
distribution is uniform, the magnetic and kinetic inductance per unit length are given
by [24]

Lm =
µ0

4

K(k′)

K(k)
(2.26)

Lk = µ0
λ2
L

Wt
g(s,W, t) (2.27)

which is obtained through the conformal mapping technique. Note that K(k)
is the complete elliptic integral of the first kind with modulus k = W/(W + 2s),
k′ = (1− k2)1/2. Moreover, g(s,W, t) is a geometrical factor depending on the center
conductor’s width W , the film thickness t and lastly the spacing between the center
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Figure 2.1: a) Microstrip of width W , length l and thickness t (not to scale). b)
Coplanar Waveguide (CPW) of center conductor width W , thickness t and spacing
between center conductor and ground planes s (not to scale).

conductor and the ground planes s. It is weakly dependent on t and s and shows
that the kinetic inductance decrease with decreasing t and W [25].

On the other hand, the capacitance per unit length obtained using conformal
mapping techinques is given by [26]

C = 4ε0εeff
K(k)

K(k′)
(2.28)

where C depends not only on the geometry but also on the effective dielectric
constant of the substrate εeff .

2.7 Material losses in superconducting resonators

Here we provide an overview for loss channels in superconducting resonators. We
describe two-level systems, magnetic vortices, radiation and quasiparticle dissipation.

2.7.1 Two-level systems loss

In amorphous materials (non-crystalline lattice), the randomness of the atomic ar-
rangements origin two-level defects (TLS) within the material at low temperatures
[27]. These TLS have low energy and consequently saturate at high temperatures.
Nonetheless at low temperatures they can dominate certain properties of the ma-
terial. The underlying microscopic physics of these defects is still unclear [28], but
the main line of thought is that some atoms can tunnel between two sites of the
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amorphous solid, resulting in two possible quantum states. This is the so-called
Standard Tunneling Model (STM) [29]. One TLS can diminish the performance of
a resonator by absorbing a photon from the resonator and then relaxing by emitting
a phonon into the material [30]. Moreover TLS can slightly change the dielectric
constant of the material and induce excess phase noise to the resonators [31]. Even
if our system does not contain a dielectric, it was shown [32] that TLS on surfaces
and interfaces of the superconductor and crystalline Si substrate can be a relevant
loss form. The intrinsic TLS loss is governed by the density and electric dipole mo-
ment of the tunneling states in the material, therefore it can couple to the electric
field of the resonator. For that reason TLS loss is attributed to the capacitor of the
resonator, and is therefore correlated with its geometry.

2.7.2 Magnetic vortices loss

Magnetic flux can be trapped in the material in the form of tubes with normal
metal core. In the presence of current the Lorentz force make the flux tubes move
sideways [13]. When the flux tubes are pinned in impurities of the material, a
finite current must be reached to overcome the Lorentz force. The movement of flux
tubes (in particular their non-superconducting core) induce a resistive voltage, which,
when being near the resonator, lowers its quality factor. Therefore vortex losses is
associated with the current flowing through the resonator. Since at resonance most
current is localized at the inductor (c.f. Fig. 4.3), it is the inductive component
the main source of vortex-induced losses. This loss form is then correlated with the
geometry of the inductor, as it has been established in previous research [33].

2.7.3 Quasiparticles loss

Quasiparticle loss may be induced by different physical phenomena: i) thermal quasi-
particle loss, ii) quasiparticle loss due to stray IR light and iii) quasiparticle loss due
to microwave induced cooper pair breaking. The first is almost negligible at the low
temperature regime, while the second one can be addressed with proper shielding
from the environment. The third type however, stems from the essential microwave
tone used to probe the resonator. Even when the microwave photons used for read
out have very small energy compared to the superconductor gap (~ω � 2∆), they
can be absorbed by quasiparticles above the energy gap E ≥ ∆. This energy gain
scatters the quasiparticle to a higher energy level. When eventually it relaxes back
to an energy level slightly above the gap, it emits a pair-breaking phonon, which
produce more quasiparticles. This multiplication process is supported by theoretical
studies [34] and experimental observations [35]. It is well known too that both the
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quality factor and resonance frequency decrease with increasing microwave power as
a result of the creation of excess quasiparticles from microwave absorption. How-
ever, it is yet unclear the dependence of this loss on geometry. A recent approach to
diminish the negative effect of quasiparticles consists in finding ways of evacuating
them from the relevant parts of the device. A promising method of this kind is gap
engineering [36], which involves adding regions in the device with subgap states so
that quasiparticles can relax in them.

2.7.4 Radiation loss

Resonators can lose their energy in the form of radiation into free space. This
way loops of electrical current may be induced by a varying magnetic field in the
conductive material on the backside of the substrate [37]. These currents are known
as Eddy currents. Studies on the effect of backside coating the chip with different
conductive media show that using thick substrates or high conductive materials on
the backside of the substrate mitigate radiative loss [37]. This loss has been shown
to be geometry correlated and power independent [38].

2.7.5 Loss uncertainty

Despite being able to design, fabricate, and measure superconducting microwave
resonators in a systematic way, resonator loss can vary from resonator to resonator
(besides being identical) [39] in the same ship exposed to the same fabricating condi-
tions. The range of Qc for the same resonator located in different places of the same
chip can vary more than an order of magnitude. This deviation is thought to stem
from slight changes in the microwave setup. On the other hand the internal quality
factor (Qi) can vary up to an order of magnitude, both at low and high powers,
which suggests that fabrication processes still need to be optimized to completely
avoid resonator mismatch. In fact, different quality factors have been observed for
the same resonator over different cooldowns [40] and even over time [41]. Therefore
the extracted quality factors of a particular resonator has an associated uncertainty
of up to one order of magnitude.



Chapter 3

Engineering behind microwave
circuits

3.1 Lumped elements in microwave circuits

Under certain conditions for alternating signal frequency and electrical circuit size we
can make the lumped-element simplification. When the circuit size is significantly
smaller than the signal wavelength, the voltage and current through any of the
electrical components do not vary with position but only in time [42]. Therefore,
in the field of microwave circuits, components such as inductors or capacitors can
be described as lumped or quasi-lumped elements. This not only entails advantages
in terms of modelling and circuit design but also smaller interaction effects between
circuit elements [43]. In this section we introduce their physical description and
highlight their main properties.

3.1.1 Lumped-element circuit model for a transmission line

Transmission lines are a fundamental element in microwave circuits, as their goal
is to carry alternating currents in a contained manner. In the field of supercon-
ducting circuits it is practical to fabricate transmission lines in the form of coplanar
waveguides. As previously mentioned, in circuit theory the physical dimensions of
the system are much smaller than the signal wavelength, however, transmission lines
might be comparable to the size of a wavelength, and therefore voltages and currents
can vary in magnitude and phase over the lines length.

Since transmission lines for transverse electromagetic (TEM) wave propagation
have at least two conductors, is common to schematically illustrate a transmission
line as a two-wire line (c.f. Fig. 3.1 a)). A small section of the transmission line

15
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Figure 3.1: a) Schematic of a piece of a transmission line. b) Lumped-element
equivalent.

can be modeled as a lumped-element circuit and the whole transmission line be-
comes an array of such small sections (c.f. Fig. 3.1 b)). This piece of line has
ifinfinitesimal length ∆z, R resistance for both conductors per unit length (in Ω/m),
L self-inductance for both conductors per unit length (in H/m), G shunt conductance
due to dielectric loss per unit length (in S/m) and finally C the shunt capacitance
per unit length (in F/m) due to the short distance between both conductors.

Using the lumped element model in Figure 3.1 b) and Kirchoff’s voltage and
current laws we obtain

v(z, t)−R∆zi(z, t)− L∆z
∂i(z, t)

∂t
= v(z + ∆z, t) (3.1)

i(z, t)−G∆zv(z, t)− C∆z
∂v(z + ∆z, t)

∂t
= i(z + ∆z, t) (3.2)

Since our focus lies on superconducting materials we look at the particular case
where losses R,G are very small, hence R,G ∼ 0. We divide the expressions by
∆z and take the limit ∆z → 0 so that we can approximate the fractions by spatial
derivatives. It results in the following differential equations:

∂v(z, t)

∂z
= −L∂i(z, t)

∂t
(3.3)

∂i(z, t)

∂z
= −C∂v(z + ∆z, t)

∂t
(3.4)

This set of differential equations is well known as the Telegrapher equations since
they were originally developed to describe telegraph wires. These equations are the
starting point for characterizing V (z), I(z) wave propagation along the transmission
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line (in our case lossless). By considering a harmonic steady-state excitation of the
form V (z) = <{V (z)ejωt}, I(z) = <{I(z)ejωt} the previous expressions simplify to

∂V (z)

∂z
= −jωLI(z) (3.5)

∂I(z)

∂z
= −jωCV (z) (3.6)

with j =
√
−1 the imaginary unit. These equations may be combined by taking

their spatial derivative to form two wave equations, for V (z) and I(z):

∂2V (z)

∂z2
− γ2V (z) = 0 (3.7)

∂2I(z)

∂z2
− γ2I(z) = 0 (3.8)

where γ = jω
√
LC is the so-called complex propagation constant. The solutions

to the wave equations are known to be

V (z) = V +
0 e
−γz + V −0 e

γz (3.9)

I(z) =
V +

0

Z0

+ e−γz − V −0
Z0

eγz (3.10)

with V +
0 , V

−
0 arbitrary constants of integration, which are determined by two

boundary conditions. There Z0 =
√
L/C is the characteristic impedance of the line,

which is usually chosen to be 50Ω for impedance matching reasons. The wavelength
on the line is λ = 2π

ω
√
LC

and the phase velocity is vp = 1√
LC

.

3.1.2 Design of microwave lumped elements

The design of the main lumped element components such as capacitors, inductors
and resistors at microwave frequencies is based on short TEM lines like microstrip
lines [43], always smaller than the operating wavelength. Lumped elements can be
used in microwave circuits at frequencies up to 60 GHz if they satisfy the condition
l < λ/10 [42], this is their size is much smaller than the operating wavelength. To be
able to understand how to build such components using transmission lines we first
need to look at the generic case of a line with length l terminated with an impedance
ZL.
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Figure 3.2: Transmission line terminated with an arbitrary load ZL.

The Terminated lossless line

Figure 3.2 shows a lossless transmission line of length l terminated with a load
impedance ZL. In the previous section we found the total voltage and current on the
line to be Eqn. 3.9, Eqn. 3.10 respectively. In order to study the effect of the load
impedance on the wave propagation, we use the relation between the total voltage
and current at z = 0:

ZL =
V (0)

I(0)
=
V +

0 + V −0
V +

0 − V −0
Z0 (3.11)

Solving Eqn. 3.11 for V +
0 we can obtain the voltage reflection coefficient Γ as a

function the impedances of the system:

Γ =
V −0
V +

0

=
ZL − Z0

ZL + Z0

(3.12)

It must be noted that the impedance seen looking into the line varies with posi-
tion. For instance at a distance z = −l from the load, the input impedance reads

Zin =
V (−l)
I(−l)

=
V +

0 (eγl + Γe−γl)

V +
0 (eγl − Γe−γl)

Z0 (3.13)

Using Eqn. 3.12 for Γ in Eqn. 3.13 we end up with

Zin =
(ZL + Z0)eγl + (ZL − Z0)e−γl

(ZL + Z0)eγl − (ZL − Z0)e−γl
Z0 =

ZL cosh γl + Z0 sinh γl

Z0 cosh γl + ZL sinh γl
Z0 (3.14)
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This result is the building block from which we can obtain lumped elements such
as capacitors, inductors and resistors by choosing the proper load.

Capacitor

To start with, an ideal capacitor of capacitance C is able to store and release electric
energy WE without dissipating any power [43]. Its capacitance is defined as C =
Q(t)/V (t) withQ(t) the charge in each conductor and V (t) the voltage between them.
Combining the definition of C with the fact that current is the time derivative of the
charge Q(t) we come up with an expression relating current and voltage:

i(t) = C
∂V

∂t
→ i(ω) = jωCv(ω) (3.15)

From which we can extract the impedance of a capacitor for a certain frequency
ω:

ZCap =
1

jωC
(3.16)

It is possible to get the same result when considering lossless transmission line
terminated with an infinite load impedance, in other words, an open circuit. Taking
Eqn. 3.13 in the limit ZL →∞ we get

Zin ≈
Z0

tanh γl
≈ Z0

γl − 1
3
(γl)3 + ...

(3.17)

Therefore, when γl � 1 we may take the Taylor expansion ( 1
x−ax3 ≈ x+ ax+ ...)

to obtain

Zin ≈
Z0

γl
+
Z0γl

3
(3.18)

For a lossy transmission line [42]

γ =
√

(R∗ + jωL∗)(G∗ + jωC∗) and Z0 =

√
R∗ + jωL∗

G∗ + jωC∗
(3.19)

being R∗,L∗, G∗, and C∗ per-unit-length quantities previously defined in Section
3.1.1. We get to a final expression by combining Eqn. 3.19 with Eqn. 3.18 in the
limit G∗ � ωC∗:

Zin ≈
G∗

l(ωC∗)2
+
R∗l

3
+

1

ljωC∗
+
jωL∗l

3
(3.20)
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Finally, we can use the total quantities to get:

Zin ≈
G

(ωC)2
+
R

3
+

1

jωC
+
jωL

3
(3.21)

being R, G,L and C the total quantities with respect to the transmission line.
This result entails that in the case where the transmission line is made out of super-
conducting material (i.e. R,G ≈ 0) then the transmission line behaves as a lumped
element capacitor with capacitance C plus an inductive parasitic contribution. For
right dimensions of the transmission line the parasitic inductive contribution is very
small and can be neglected, resulting then in a transmission line that behaves as a
lumped capacitor with capacitance C (c.f. Figure 3.3 a)).

Inductor

An inductor of inductance L is capable of storing and releasing magnetic energy Wm

while, ideally, not dissipating any power nor storing electric energy. Its inductance is
defined as L = ΦB/I, with I the current through the conductor and ΦB the magnetic
flux generated by that given current. The change in flux created by the change in
current induces a voltage across the inductor, hence, using Faraday’s law of induction
one can extract the mathematical description of an inductor:

v(t) = L
∂i(t)

∂t
→ v(ω) = jωLi(ω) (3.22)

From which we can obtain the impedance of an inductor for a certain frequency
ω:

Zind = jωL (3.23)

Now let us show how a transmission line terminated with a zero impedance load
(i.e. a short-circuit) is able to reproduce the same behavior. We take Eqn. 3.13 in
the limit ZL → 0 and focus on a small piece of transmission line (γl � 1):

Zind ≈ Z0 tanh γl ≈ Z0(γl − 1

3
(γl)3 + ...) ≈ R + jωL (3.24)

with R, L the total resistance and inductance of the transmission line. Hence
a short-circuited short transmission line behaves like a resistor in series with an
inductor, however, in the case of a superconducting material (R ≈ 0) the system is
equivalent to a lumped inductor with inductance L (c.f. Figure 3.3 b)).
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Figure 3.3: a) Tranmission line of length l terminated with a load impedance ZL =∞
(open circuit) and its equivalent circuit at the bottom. b) Transmission line of length
l terminated with a load impedance ZL = 0 and its equivalent circuit at the bottom.

Non ideal lumped elements

Special cases of transmission lines terminated with specific load lead to either lumped
capacitors or lumped inductors. Nonetheless we have seen that there are some para-
sitic contributions not desired for their ideal performance. Using a superconducting
material is the first step to having actual lumped elements, since losses are mini-
mized. When it comes to the parasitic inductive contribution found in Eqn. 3.21 we
must check that it does not dominates the transmission line behavior. The parasitic
contribution stems from the capacitor’s finite size [43] and therefore may be treated
as a parasitic inductor in series with the ideal capacitor, as shown in Figure 3.4 a).
The overall impedance of such system can be written as:

ZCp =
1

jωC
+ jωLp =

1

jωC
(1− ω2LpC) =

1

jωCp
(3.25)

Equation 3.25 indicates that the ideal-parasitic circuit can be modeled as a ca-
pacitor with an effective capacitance Cp that can be expressed as

Cp =
C

1− ω2LpC
=

C

1− (ω/ωp)2
(3.26)
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Figure 3.4: a) Ideal capacitor in series with parasitic inductor. b) Ideal inductor in
parallel with parasitic capacitor.

where ωp = 1/
√
LpC is defined as the capacitor’s self-resonance frequency. In

order for the capacitor to behave ideally one has to operate at frequencies lower than
ωp, where Cp ≈ C is fulfilled.

On another note, inductor conductor lines are usually shaped forming multiple
meanders to minimize chip footprint. This geometry allows two conductors that carry
current to be in close proximity, therefore making their magnetic flux lines overlap
and interact with each other. Specially if the currents flow in opposite directions,
then the inductance in each conductor decreases, this effect is the so-called mutual
inductance. It must also be taken into account the parasitic capacitance that arises
from the interturns of the inductor. Such parasitic capacitance (Cp) is modeled as
a capacitor in parallel with the ideal inductor, as illustrated in Figure 3.4 b). The
impedance of the LCp circuit is:

ZLp =
( 1

jωL
+

1

1/jωCp

)−1
=

jωL

1− ω2LCp
= jωLp (3.27)

As seen in Eqn. 3.27 the LCp system can be thought of as an ideal inductor with
effective inductance Lp. Such inductance reads

Lp =
L

1− ω2LCp
=

L

1− (ω/ωp)2
(3.28)

where we used ωp = 1/
√
LCp defined as the self-resonance frequency of the induc-

tor. At frequencies lower than ωp the inductor will behave almost ideally (Lp ≈ L),
however, at frequencies near the self-resonant frequency the capacitor contribution
leads to larger values of the inductance (Lp � L). Past the self-resonance frequency
the inductor behaves capacitively.
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3.2 Modelling of Resonator circuits

The design and characterization of microwave superconducting resonators require
a circuit model that best describes its system. Using electrical circuit theory one
can find such model and the key effective parameters that describe the microwave
components. In this section we construct a basic equivalent-circuit model for a single
resonator coupled to a feedline and extract the basic parameters that describe our
lumped-element microwave resonator.

3.2.1 Circuit model

Microwave resonators can usually be modeled by RLC lumped-element resonators at
frequencies near resonance. In the following sections we will show how an inductor
in parallel with a capacitor behaves like a resonator, and how such resonator can
couple to the external environment in order to be measured.

3.2.2 Unloaded parallel RLC circuit

The lumped element resonator studied in this work can be described by the classic
parallel RLC resonator. This system comprises a capacitor, inductor, and resistance
in parallel, the lumped element components described in Section 3.1.2. To start with,
we consider an unloaded resonator disconnected from the outside world as illustrated
in Figure 3.5 a). The figures of merit used to define the resonator are its resonance
frequency fr and its quality factor Q.

When an inductor is connected in parallel with a capacitor, the current and volt-
ages in the circuit oscillate between the inductor and the capacitor. The frequency
of this oscillations is the so-called resonance frequency, and it depends on the values
of inductance and capacitance of the elements in the circuit. When an AC voltage
source with the same frequency as the characteristic LC oscillations is connected to
the parallel LC circuit, then, from the perspective of the voltage source the LC com-
bination behaves like an open circuit. In other words, when the average magnetic
energy stored in the inductor is the same as the average electric energy stored in the
capacitor then resonance occurs [42]:

We =
1

4
|V |2C =

1

4
|V |2 1

ω2L
= Wm → ω0 =

1√
LC

(3.29)

Therefore ω0 is defined as the resonance frequency. It must be noted that at this
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Figure 3.5: a) Unloaded parallel RLC resonator. b) RLC resonator capacitively
coupled to a feedline.

frequency the input impedance of the RLC system is purely real:

Zin(ω) =

(
1

R
+

1

jωL
+ jωC

)−1

→ Zin(ω0) = R (3.30)

The most fundamental description for the quality factor is:

Q = ω
energy stored

average power dissipated
(3.31)

This quantity represents the loss of the circuit, which may account for any of the
losses mentioned in Section 2.7. Such losses are modeled by an effective resistance
R in the equivalent circuit (the lower the internal losses the higher the effective R).
Thus, the average power dissipated in the circuit is:

Ploss =
1

2

|V |2

R
(3.32)

Taking into account that at resonance Wm = We, we find the unloaded Q to be:

Qi = ω0
Wm +We

Ploss
= ω0RC =

R

ω0L
(3.33)

From now on this quality factor due to internal losses will be referred to as internal
quality factor.
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Figure 3.6: Capacitive coupling a) to an environment of impedance Z0 through a
capacitor Cc. b) Effective equivalent circuit in the limit ωCc � Z0 .

3.2.3 Loaded parallel RLC circuit

In the real world, however, the resonator is probed by additional circuistry, which
introduces additional loss and hence lowers the overall Q, now denoted QT . The
coupling (Qc) and internal (Qi) quality factor add up in the following way:

1

QT

=
1

Qc

+
1

Qi

(3.34)

In this work the parallel RLC resonator is coupled to a feedline through a coupling
capacitance Cc as illustrated in Figure 3.5 b). To see how this coupling affects the
RLC resonator we find an expression for Qc in the regime ωCcZ0 � 1 , ωCcZx � 1,
the derivation can be found in appendix A. Note that this assumptions are fulfilled
at our operating regime, where ω ∼ 1010 rad/s, Z0 ≈ 50 Ω, Cc ∼ 10−14 F and thus
ωCcZ0 ∼ 10−3 � 1. The final expression describing the coupling quality factor
reads:

Qc = ω0CTZx =

√
CT
L

2

ω2
0C

2
cZ0

(3.35)

with CT = C + Cc the total capacitance, ω0 = 1/
√
LCT the resonance frequency

and Z0 the impedance of the input/output lines.
Thus by coupling the resonator capacitively to probing circuistry we add an

effective capacitance Cc which will shift the resonance frequency, and an effective
parallel resistance Zx which ultimately will change the overall QT .

Equation 3.35 gives insight into the main parameters governing Qc. The capac-
itive element linking the resonator to the feedline is essential in the design of the
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Figure 3.7: a) Impedance of the RLC parallel resonator. b) Transmission of the
RLC resonator. c) Network representation of a resonator. d) Equivalent circuit of
the resonator in the two-port system.

whole system, since in the regime Qc � Qi the coupling dominates the signal shape
and the accuracy of measured Qi is lower [6]. While for Qc � Qi the signal is reduced
and it is harder to measure [1].

3.2.4 Transmission of a parallel RLC resonator

To be able to measure the resonator response and extract its resonance frequency and
quality factors the two-port technique is used (transmission measurement). Figures
3.7 c),d) show a parallel RLC resonator coupled to a transmission line of character-
istic impedance Z0 forming a two-port network. Minimum transmission occurs at
resonance since the impedance of the parallel resonator is maximum at resonance,
see Figure 3.7 a). Recall that for the effective R modelling the internal losses of the
resonator, the lower the losses the higher the effective resistance. Hence in the case
of an ideal lossless superconductor R→∞.

In order to find the magnitude of the transmission when it is minimum (i.e. at
resonance) we must first define the scattering parameters. When dealing with an
N-port network designed to measure incident, reflected, or transmitted waves in a
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microwave circuit it is useful to use the scattering matrix formalism to relate the
voltage waves incident on the ports to the reflected waves from the ports [42]. In
practice these scattering parameters are measured using a Vector Network Analyzer
(VNA). A specific element of the scattering matrix is defined as:

Sij =
V−i
V+
j

∣∣∣∣∣
V+

k =0,k 6=j

(3.36)

where V+
i is the amplitude of the incident voltage wave on port i and V−j is the

amplitude of the voltage reflected wave coming out of port j. A key condition is
that the incident waves on all ports except the port j are zero. Now that we have
introduced the scattering parameters we can consider our particular case of a parallel
RLC resonator measured by a two-port network as illustrated in Figure 3.7 c),d).
At the resonance frequency of the resonator we obtain:

Vout

Vin

=
ZRLC(ω0)

2ZRLC(ω0) + Z0

(3.37)

Then, normalizing to full transmission off resonance (i.e. S21(ω � ω0) = S21(ω �
ω0) = 1), and taking into account that the impedance of the RLC resonator at
resonance is ZRLC(ω0) = R, the transmission reads:

S21(ω0) =
2Vout

Vin

=
2R

2R + Z0

(3.38)

It is common to express the magnitude of the transmission in dB as 20 log10 |S21|.
Thus, it is straightforward to show using Eqn. 3.38 that for the ideal lossless limit
R → ∞ the transmitted power is 0 dB at resonance. When the resonator is capac-
itively coupled to the feedline we must take into account the effect of the coupling
capacitance as detailed in Section 3.2.3, in which the impedance of the Cc-RLC
system becomes ZT = ZCc + ZRLC . In that scenario we obtain:

S21(ω0) =
2ZT (ω0)

2ZT (ω0) + Z0

(3.39)

An alternative way of expressing Eqn. 3.39 is [44] [45]:

S21(ω0) =
Qc

Qc +Qi

(3.40)

This quantity represents the minimum transmission of a parallel RLC resonator
in a two-port network, and it is essential to estimate an upper limit for the number
of photons in the resonator, as will be further detailed in Section 3.2.5.
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3.2.5 Number of photons in the resonator

In order to estimate the photon number in our resonators, we use the transmission
of the parallel RLC system at resonance derived the previous section:

S21(ω0) =
Qc

Qc +Qi

(3.41)

From Equation 3.41 we can extract an additional scattering parameter [42]:

S11(ω0) = S21(ω0)− 1 =
−Qi

Qc +Qi

(3.42)

Then, the reflected and transmitted powers are given by [9]:

Prefl = Pin|S11|2 (3.43)

Ptrans = Pin|S21|2 (3.44)

where Pin is the input power and we do not account for impedance mismatches
in the measurement setup. The power absorbed by the resonator reads:

Pabs = Pin − Prefl − Ptrans =
2Q2

T

QcQi

Pin (3.45)

On the other hand, the power absorbed by the resonator can be expressed as
a function of the average photon number, the microwave photon energy, and the
energy loss rate [9]:

Pabs = 〈nph〉 ~ω0
ω0

Qi

(3.46)

Finally we can combine equations 3.45 and 3.46 to obtain an upper limit (due to
unavoidable reflections in the input line) of the number of photons of the resonator
as a function of the input power:

〈nph〉 =
2

~ω2
0

Q2
T

Qc

Pin (3.47)



Chapter 4

Design and Fabrication

In this chapter we introduce the main features of the design of our lumped-element
superconducting resonators. First we will describe each component of the design
and define the main geometric parameters that affect the resonator’s performance.
Afterwards, we will focus on how the microwave circuit properties of the resonator
can be simulated using finite element method software. We then show the different
chip designs, every one of them focusing on studying a separate geometric parameter
of the resonator. Finally we review the fabrication process of every device.

4.1 General design of a superconducting lumped

element resonator

The geometry of our lumped element resonator is shown in Figure 4.1 a). As detailed
in Section 3.1.2, an inductor can be reproduced by a short-circuited transmission line.
In our design the inductor transmission line is formed by a meandered microstrip
shaded in green (false color) in the figure. The main parameters determining the
geometry of the inductor are shown in Figure 4.1 b) and d). In order to minimize the
area of the inductor the distance between meander turns (d) and the length (h) of
such turn have to be carefully selected. In our design we chose d = 2µm so that the
turns were as close as possible without too much reduction of the total inductance
due to negative mutual inductance [46]. Moreover the edge of the turn, defined by
h, needs to limit the gap between the meander and the ground plane, so that no
parasitic capacitance arises. In the last place we have the width of the meander and
the number of meander turns, both parameters will be selected depending on the
geometric parameter that wants to be studied.

The capacitance in our LE resonator is comprised by the capacitor’s pad shaded

29
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Figure 4.1: SEM images. Gray region corresponds to NbTiN while dark region
corresponds to the HiRes Silicon substrate: a) Main design of the lumped element
resonator in false color. The capacitor’s pad is shaded in blue, the inductor is shaded
in green, and the ground is shaded in red. b) and d) show a close up of the meander
inductor, indicating its design parameters. c) Patterned holes on the ground plane
for vortex pinning. e) Lumped element resonator capacitively coupled to the feedline
showing the equivalent circuit model.

in blue (false color) and the surrounding ground planes shaded in red (false color) in
Figure 4.1 a). This geometry models the open-circuited transmission line described
in 3.1.2. The capacitance of this system is determined by the pad size (Lr), the
radius of the pad’s edges (Rr), and more importantly by the gap between the pad
and the ground plane (gr). At last, an additional parameter governing the coupling
quality factor is the spacing between the resonator and the feedline.

All the parameters mentioned above play a role in the resonance frequency of
the resonator and in its coupling quality factor, as will be further detailed in Section
4.2. In Figure 4.1 e) is illustrated how every component form together a parallel LC
resonator coupled through a capacitance Cc to the feedline.

4.1.1 Artificial pinning sites

The design is patterned on a NbTiN (Niobium Titanium Nitride) thin film of 20 nm
thickness. Such material corresponds to the family of type II superconductors and
has been frequently used for high quality resonators [9] [10] since it exhibits very
low dissipation. Nevertheless, superconductors (in particular type II) rarely expel
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completely an applied magnetic field out of its bulk. This is usually caused by
grain boundaries or other types of defects, which trap the magnetic flux within the
superconductor [47][48]. The trapped flux arises in the form of quantized tubes of
flux, the so-called Abrikosov vortices. These vortices when trapped in the vicinity of
the resonators provide another loss channel, and thus reduce the resonator quality
factor [33]. Different efforts have been focused on minimizing this loss channel by
trapping and pinning the flux lines either in a slot in the center of a CPW resonator
[49] or in artificial deffects (antidots) at the resonator edges [50]. Consequently our
design incorporates artificial pinning sites in the form of antidots arranged in an
hexagonal lattice (c.f. Fig. 4.1 c)), since that is the minimal energy configuration
for such array of vortices [13]. Nonetheless, these artificial defects only trap vortices
up to a finite applied field [10] and a critical current [13].

4.2 Simulation approach

In order to simulate the resonance frequency and the coupling quality factor of a
particular resonator it was used the Microwave Office software [51], which uses a
finite element method to solve Maxwell equations of a particular structure from its
physical geometry. For the resonator design it is essential to know the inductance of
the inductor, which is mainly kinetic and described by Eqn. 2.25. In order to get
an estimate of the kinetic inductance of the film, we extract the sheet resistance of
the film via the 4-probe method at room temperature and we take the approximate
critical temperature of the thin film to be Tc ≈ 10 K [52]. Then using Eqn. 2.25 we
obtain Lk ≈ 14.8 pH/�.

The transmission line responsible of propagating TEM waves across the chip
has the configuration of a coplanar waveguide (c.f. Fig. 2.1). In order to reduce
asymmetries in the resonance peaks of the resonators, the dimensions of the feedline
have to be properly selected according to impedance matching. In other words,
the impedance of the feedline must be 50Ω. Taking the characteristic impedance
of the transmission line as Z0 =

√
L/C (see Section 3.1.1), and the inductance

and capacitance of the CPW from Eqn. 2.26, 2.27 and Eqn. 2.28 respectively,
we find impedance matching dimensions for Lk ≈ 14.8 pH/� to be s = 2µm and
W = 29.4µm. Note that this dimensions will be re-adapted from chip to chip
according to the measured Lk.

The simulation process consists in simulating the transmission through the feed-
line and extracting the resonator’s response (fr, Qc, Qi) from the resonances with the
diameter correction method [45]. Such fitting method is also used to fit the measured
transmission data, since it tolerates a high asymmetry in the resonance peak. The
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Figure 4.2: Response of the resonator depicted in Fig. 4.3, data points are shown in
grey, fit is shown in orange and red dot shows the resonance frequency.: a) Trans-
mission amplitude in dB. b) Transmission phase in degrees. c) Imaginary and Real
part of the transmission.

general form of the transmission resonance accounting with a number of non-ideal
factors is [45]:

S21 = A

(
1−

QT

|Qe|e
iθ

1 + 2iQT
f−fr
fr

)
(4.1)

with fr the resonance frequency, A the transmission amplitude not in resonance,
QT the total quality factor of the resonator (see Eqn. 3.34), and Qe = |Qe|e−iθ
is a complex quantitiy defined as 1/Qc = <{1/Qe}. The asymmetry of the reso-
nance stems from the complex loading of the resonator, and it is quantified here
by ={1/Qe}. The typical measured/simulated response of a parallel RLC resonator
around its resonance frequency is shown in Figure 4.2. The orange continuous line
shows the result of the fit from which we extract the resonator properties.

When designing a chip with multiple resonators coupled to the same feedline,
it is desired that the resonance frequencies of all resonators are evenly spaced out
in frequency such that we can later identify which resonator corresponds to what
resonance and such that the resonance can be accurately fitted. Moreover the quality
factor of all resonators is chosen to be Qc ∼ 104, so that we can compare among
resonators in a consistent way.

It is important to corroborate that in fact our design can be treated as a lumped
element resonator. With this aim we perform current density simulations in our
resonator at two different frequencies. Off-resonance, shown in Figures 4.3 a),c), the
current density is highest at the feedline, while on-resonance, shown in Figures 4.3
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Figure 4.3: Current density distribution obtained with Microwave Office at two
different frequencies. a) and c) Current density distribution at f = 2 GHz Most
current is localized at the waveguide. b) and d) Current density distribution at the
resonance frequency of the resonator f = fr = 7.5 GHz, most current is now localized
at the meander inductor. The green arrows in a),b) show the current direction.

b),d), the current is mostly located at the meander inductor, validating this way the
lumped element model.

A complementary approach which gives further insight on the resonator’s re-
sponse consists in using COMSOL [53] to simulate capacitances C and Cc. From
these simulated values we can calculate the coupling quality factor using equation
3.35 from Section 3.2.3. Secondly we can calculate the total inductance of the res-
onator by using the estimated kinetic inductance per square and the total number of
squares in the inductor (length/width). Knowing the inductance and capacitances of
the resonator we can obtain its resonance frequency. This approach leads to a lower
accuracy in the value of resonance frequency, since it does not take into account any
current dynamics, however it serves as a tool faster than Microwave Office to obtain
rough estimates.
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Figure 4.4: Designed transmission for every chip. a) Chip with varying inductor’s
width. Each resonance has indicated below its resonator’s inductor width (µm).
b) Chip with varying capacitor’s size. Each resonance has indicated below its res-
onator’s capacitor’s size (µm). c) Chip with varying resonator’s gap. Each resonance
has indicated below its resonator’s gap (µm). d) Chip with varying capacitor’s pad
edge radius. Each resonance has indicated below its resonator’s capacitor edge radius
(µm).

4.3 Chip designs

In this section we present the design of four chips. Each chip aims to study a different
geometric parameter: the inductor’s width (Wr), the capacitor’s pad size (Lr), the
resonator’s gap (gr) and finally the capacitor’s pad edge radius (Rr). In order to
make sure any potential trend in Qi versus geometric parameter really stems from
the geometry of the resonator, it was imposed in the design the uncorrelatedness
between parameter under study and resonance frequency (c.f. Figure 4.4), as well
as parameter under study and position of the resonator in the chip. Moreover, in
order to design many resonators with a wide range of different geometries we study
the effect of the main geometric parameters on the resonator’s response (fr, Qc).



35 CHAPTER 4. DESIGN AND FABRICATION

Figure 4.5: Simulated fr and Qc with Microwave office at Lk = 11.0 pH/�. The
orange line is a guide for the eye. Resonance frequency (Coupling quality factor)
depending on the a) (e)) inductor’s width, b) (f)) capacitor’s size, c) (g))resonator’s
gap, d) (h))capacitor’s edge radius. i) Table indicating the resonator’s features used
for every parameter simulation. Spacing refers to the distance between the resonator
and the feedline. All resonators have 8 meander turns and an inductor’s width of
Wr = 0.2µm (unless Wr is the varying simulation parameter). Likewise all capacitor
pads are squared (Rr = 0µm) unless the edge radius Rr being the varying parameter.

4.3.1 Design 1: 10 resonator inductor’s width dependence

The first design intends to make the inductor’s width the main geometric feature
differentiating all resonators, as illustrated in Figure 4.6 a). The width of the induc-
tors ranges from 0.05µm to 1µm, which comprise more than one order of magnitude
(see Figures B.2 d),e),f) in Appendix B). As previously mentioned, the total kinetic
inductance depends on the total number of squares in the inductor, being one square
the ratio of the length and width of the inductor. Therefore, when increasing the
width of the inductor while keeping the rest the same, the total number of squares
decreases, and with it the the total inductance. This increases the resonance fre-
quency of the resonator, as illustrated in Figure 4.5 a). For that reason the length of
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Figure 4.6: Main design parameters for every resonator in the four designed chips.
A parameter missing in the figure means it is constant throughout all resonators.
a) Chip with varying inductor’s width, the values are normalized to illustrate how
the main parameter (inductor’s width) is the one varying the most. b) Chip with
varying capacitor’s size. c) Chip with varying resonator’s gap. d) Chip with varying
capacitor’s pad edge radius.

the inductor (or the number of meander turns) has to increase to keep the resonance
in the desired frequency range.

4.3.2 Design 2: 10 resonator capacitor’s size dependence

The second design focuses on the capacitor’s size, the smallest being 15µm and the
largest 150µm. Figure 4.6 b) shows how the capacitor size is the most distinctive pa-
rameter of every resonator. This characteristic can be seen in the actual resonator´s
design, as illustrated in Figures B.2 a),b),c) in Appendix B. Figures 4.5 b),f) depict
the effect of the capacitor’s size in the resonator response. For larger capacitor pads
we find lower resonance frequencies and lower coupling quality factors, due to the
capacitance increasing with capacitor’s size.
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Figure 4.7: a) Chip bonded to the PCB. Labels indicate the input, output pins and
the ground plane of the PCB. b) Zoom in of the bonded chip. c) Top view of the
bonded PCB, showing the aluminium wires bonding the chip’s ground planes to the
PCB ground planes, bonding the chip’s launchers to the input and output lines of
the PCB, and finally interconnecting both ground planes of the chip. Resonators
can be seen as square black spots due to the etched out NbTiN.

4.3.3 Design 3: 10 resonator gap dependence

In third place we focus on the gap between the capacitor’s pad and the ground planes,
denoted by gr. There are two orders of magnitude between the smallest (0.5µm)
and the biggest (70µm). The gap increases while keeping the other parameters
as constant as possible (see figure 4.6 c)). By increasing the gap we decrease the
capacitance of the resonator, this is reflected in the resonance frequency dependence
on gr in Figure 4.5 c). The capacitance approaches zero as the gap is increased to
infinity, which is why we can see how the resonance frequency saturates for large
gaps.

4.3.4 Design 4: 10 resonator capacitor’s edge dependence

Finally the fourth design revolves around how round is the edge of the resonator’s
capacitor (see Fig. 4.6 d)). The smallest edge radius (0µm) corresponds to a square
pad while the biggest edge radius (45µm) corresponds to a circular pad (c.f. Fig.
B.2 g),h),i) in Appendix Bd)). The size of the pad is kept constant for all resonators
at 90µm. The capacitor’s shape transformation leads to a parabolic increase of
resonant frequency and coupling quality factor shown in Figures 4.5 d),h).
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4.4 Device Fabrication

The design is patterned on a 20 nm thick NbTiN (Niobium Titanium Nitride) film
lying on a HiRes Silicon wafer. The NbTiN thin film is deposited on the wafer using
the sputtering techique. After applying the proper resist, the pattern is written using
a single electron beam lithography step. Following the development of the pattern,
RIE etching is used to carve the design on the NbTiN film. Finally the chip is diced
and cleaned and ready to bond to the Printed Circuit Board (PCB) with aluminum
wire bonds. The full fabrication recipe can be found in Appendix B.
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Measurement Setup

In order to characterize superconducting resonators with minimum thermally in-
duced quasiparticle loss [54], it is necessary to make the measurements at tempera-
tures lower than one-tenth of the critical temperature (Tc) of the electrode material
[6]. For that reason the resonators are placed in a dilution refrigerator, whose stan-
dard base temperature is around 20 mK for an indefinite period of time. Moreover,
with the aim of reducing noise and to increase thermal isolation many signal at-
tenuators are used. Consequently, amplifiers are placed in the output line to make
possible VNA measurements. In this section we briefly describe the circuistry used
to achieve the desired cryo-measurements.

5.1 Measurement procedure

A dilution refrigerator is a device capable of creating an environment with extremely
low temperatures (few mK). This is an essential condition for our resonator measure-
ments, since we need our material in its superconducting state and with minimum
thermally induced losses. Figure 5.2 shows the dilution refrigerator wiring diagram
used in this work. Particularly intended for resonator readout at millikelvin temper-
atures. The device responsible of signal excitation and readout is the so-called Vector
Network Analyzer (VNA). The signal that comes out of its input port (P1) needs to
be heavily diminished, hence many attenuators are placed in different temperature
stages. In order to reach the single photon power level there is a 95dB added atten-
uation in the input line [55]. In addition, every attenuator aims to reduce noise at
every stage. On the other hand, the output signal needs to be sufficiently amplified
for VNA measurements. This is achieved with the help of a High Electron Mobility
Transistor (HEMT) at 5 K and a room temperature amplifier. However, the HEMT
may be an additional noise origin, therefore a circulator is placed to protect the res-
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Figure 5.1: Multi packaging of the device: a) Top: Bottom metallic block onto
which the chip is glued with silver paint, thus helping the thermalization of the
chip. Bottom: Chip bonded to the PCB. b) Top: Lid of the inner enclosure box.
Bottom: PCB attached to the bottom block using various screws. c) Inner PCB
enclosure/shielding box. d) Inner PCB enclosure/shielding box placed inside an
outer enclosure box. Foam and black paint shield from external radiation. e) Outer
PCB enclosure/shielding box. f) Outer enclosure box placed in puck’s base. g)
Input and output lines of the puck are connected to the input and output pins of
the shielding box using RF coaxial cables. h) Puck with its radiation shield.

onators from such noise. Note that there is a TWPA amplifier located in the output
line as well. The TWPA requires an additional pump tone depicted in the schematic,
however for our measurements there is no need for such amplifier and the pump is
off.

In order to connect the room temperature part of the refrigerator to the 5 K plate,
stainless steel coaxial cables are used, its advantages being low loss and adequate
thermal conductivity. For the next temperature stages, the cables are made of NbTi,
so as to further reduce loss and improve thermal isolation. Finally, copper cables are
used to connect the base plate to the puck.

The sample is bonded to a Printed Circuit Board (PCB), which is later placed in
multiple packaging (c.f. Figure 5.1) that provide thermal shielding and IR absorption
to avoid losses due to RF induced quasiparticles [6]. SMP female-female adapters
(bullets) [56] are placed on the input and output ports of the PCB to connect them
to the outer enclosure stages. Next we further detail the purpose of each shielding



41 CHAPTER 5. MEASUREMENT SETUP

Figure 5.2: Schematic of the measurement setup.
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component.
The inner enclosure box, depicted in Figure 5.1 c), aims to shield stray radiation.

This small box is inserted into a bigger (outer) enclosure box, as illustrated in Figure
5.1 d). The outer box is covered with a special black paint [57] and a purpose-
built foam [58]. The foam is a microwave absorber which ensures absorption in
the 5 GHz-90 GHz range [58]. It dampens any mode that might exist in the boxes
(due to cavity-like behaviour caused by reflective surfaces), and slightly absorbs
infrared. The infrared radiation we want to greatly avoid is typically towards higher
frequencies, where the foam does not perform as well. Moreover the foam does not
thermalize effectively, and its absorbed energy is not properly dissipated. For that
reason a special black paint covering the enclosure box is used. Such black paint is
a mixture of carbon black and stycast, which are materials that absorb the relevant
infrared frequencies and are good thermal conductors [57]. In addition, the mixture
contains silicon carbite (SiC) grains of 1 mm, intended to make the surface more
coarse so that the light does not bounce off in a 90◦ angle, but it diffuses across
the absorber and stays there for a relatively long period of time, increasing this
way the absorption rate. In practice, longer stray light wavelengths are harder to
absorb [59], which is why thick absorbing layers are required. Here multiple layers of
paint were applied. Finally Figure 5.1 h) shows an additional shield protecting the
puck from radiation. In particular thermal radiation caused by the magnets used
to produce magnetic fields, since these magnets are at a relatively high temperature
(Tmagnet ≈ 4.9 K) and there is no low-temperature shield separating them from the
puck.
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5.2 Field alignment

To apply in plane and out plane magnetic fields, we use three coil magnets that apply
magnetic field in the x, y, z components respectively, see Figure 5.3 b). Tuning the
three components of the magnetic field we can obtain any resulting magnetic field’s
magnitude and direction with respect to the sample. Nonetheless, the sample inside
the dilution refrigerator has a certain orientation with respect to the magnets axis.
Hence, it is necessary to properly align the field with the sample before doing any
experiments. The perpendicular field needs to be monitored at all times during the
aligning process, making sure it stays as low as possible to not introduce vortex
related losses. Therefore, the first step consists in just applying a magnetic field in
the z component of the magnet (Fig. 5.3 c)), which should have a small out of plane
component. Note that we use spherical coordinates for the field alignment. Secondly
we apply a small angle θ to slightly increase the out of plane component (Fig. 5.3 d)).
At that same angle θ we measure the resonance frequency of all resonators versus
angle φ. Due to the influence of the magnetic field over the kinetic inductance,
the resonance frequency will follow a sinusoidal shape with φ (see Fig. C.1 a) in
Appendix C). At the sweet spot (φ∗) where the resonance frequency is lowest the
out of field component will be maximum (Fig. 5.3 e)). At such angle we will sweep
angle θ, and monitor the resonance frequency of all resonators to find the angle θin
where fr is highest (see Fig. C.1 b) in Appendix C), and thus the in plane field
component is maximum (Fig. 5.3 f)). Hence, the angles (θ,φ)=(θin, φ

∗) correspond
to the in plane field component (Fig. 5.3 g)), while the angles (θ,φ)=(θin + 90◦, φ∗)
(Fig. 5.3 h)) correspond to the out of plane field component.
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Figure 5.3: Alignment of the magnetic field with the sample: a) Sample and its axis.
b) Magnetic fields axis. c) First apply magnetic field solely on the z direction. d)
In spherical coordinates, rotate the magnetic field a small angle θ. e) Sweep angle φ
and find the φ∗ that minimizes the resonant frequency, thus maximizes out of field
component. f) At angle φ sweep angle θ to find θ that maximizes in plane field
component. g) B field components that result in the in plane magnetic field with
respect to the sample. h) B field components that result in the out of plane magnetic
field with respect to the sample.



Chapter 6

Measurement Results

Despite resonators being superconducting and therefore having low losses, there are
still some loss channels diminishing the intrinsic performance of superconducting res-
onators. In practice, the most significant loss forms in superconducting microwave
resonators are two-level systems (TLS), magnetic field induced vortices, radiation
and quasiparticles stemming from light and microwave induced pair-breaking [6].
Loss mechanisms for superconducting resonators is a relevant field of study, since
their performance are crucial in qubit applications as well as in kinetic inductance
detectors for astronomy applications. We start this chapter by associating the mea-
sured resonances with the corresponding resonator geometry through a transmission
sweep at zero field. Next we show the extracted quality factors corresponding to
every resonator design. Finally we present power and magnetic field dependent mea-
surements to allow a full study on the role of resonator geometry in resonator losses.

6.1 Zero field transmission measurements

The first step in associating a resonator with its measured resonance is looking for
the initially designed resonance frequency in the measured transmission spectrum.
When it is unclear to what resonator does it correspond a particular resonance, it is
necessary to re-simulate the resonator’s response by adapting some design parameters
to the observed ones. The parameters than vary the most from the initial design to
the real device are the kinetic inductance and the inductor’s width. The latter is
obtained through a SEM inspection of the actual fabricated device, while the kinetic
inductance can be manually tuned until simulations match measurements. Figure
6.1 b),a) show the initial transmission measurement and its corrected simulations
counterpart for the chip in which we vary the capacitor’s edge (see Appendix C
for the other devices). Moreover in Figures 6.1 c),d),e) we display the measured
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Figure 6.1: a) Simulated response of the 10 resonators with varying capacitor’s edge
radius after correcting the width of the inductor by SEM inspection of the actual
measured device. b) Measured response of the 10 resonators with varying capacitor’s
edge radius. Response of the 35µm-4.81 GHz resonator: c) Measured Transmission
amplitude minus the transmission amplitude off-resonance in dB. d) Transmission
phase in degrees. e) Imaginary and real part of the transmission. Data points are
shown in grey while fit is represented by the orange line. Red dot shows the resonance
frequency.

response of the resonator with 35µm capacitor’s edge radius. The gray markers
denote the data points, while the fit is represented by the continuous orange line.
With this representative case we highlight the resonator’s response does not show
strong impedance mismatch and therefore leads to reliable values of Qc, Qi and fr.

6.2 Geometry dependence at zero field

We extract the internal quality factor of each resonator Qi by fitting the transmission
spectrum around each resonance as detailed in Section 4.2. No conclusive correlation
is observed between Qi and capacitor’s geometry within measurement variability (see
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Figure 6.2: Measured Qi for each chip at −10 dBm at the power source output.
The errorbars estimated from the fit are smaller than data points. a) Chip with
varying inductor’s width. b) Chip with varying capacitor’s size. c) Chip with varying
capacitor’s edge radius. d) Chip with varying inductor’s width.

Fig. 6.2 b) and c)). On the other hand, figures 6.2 a) and d) show that thinner
inductors might lead to higher quality factors, however slight deviations from the
trend entail further characterization of this effect is needed. We can also compare
resonators at the same photon number (see Fig. C.5 in Appendix C). Nevertheless
the ranking of Qi remains similar throughout the entire photon number range.

The coupling quality factor remains similar for all resonators, as depicted in
Figure C.3 in appendix C. We note that two fabricated chips with varying resonator’s
gap showed strong impedance mismatch resulting in inaccurate measurements, they
are consequently not shown in this work.

6.3 Power dependence of SC resonators

The dependence of resonator loss on applied power is a fundamental way to study
the origins of various loss mechanisms [6]. At T � Tc and single photon powers the
dominant loss channel in resonators is known to be the two-level system coupling.
The population of TLS saturate as power increases. Unfortunately most experi-
ments in quantum computing are set close to the single photon limit, where the TLS
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Figure 6.3: Intrinsic quality factor divided by the lowest photon number Qi. a) Chip
with varying inductor’s width. Darker color marker corresponds to thinner inductor.
b) Chip with varying capacitor’s size. Darker marker color corresponds to smaller
capacitor. c) Chip with varying capacitor’s edge. Darker marker color corresponds
to a more squared shape capacitor. d) Chip with varying inductor’s width. Darker
maker color corresponds to thinner inductor.

loss takes its maximum value. At higher powers however, where microwave kinetic
inductance detectors operate [60], the microwave-induced quasiparticle loss governs
the quality factor of the resonator.

The intrinsic quality factor shows a slight increase for some resonators at the very
low power regime, see Figure 6.3. At medium power range the TLS are saturated
and Qi stays constant for a bit. Finally, at high powers we see a decrease in Qi

thought to be caused by the increase in quasiparticle loss. We observe that low-
power-high-Qi resonators tend to increase at low powers, contrary to low-power-low-
Qi resonators, which stay constant or decrease with increasing drive power (see Fig.
C.5 in Appendix C).

Power loss at high powers is associated with the inductive part of the resonator,
since it is where most current density is allocated. Figure 6.3 a) and d) show the
performance of resonators with different inductor’s width. Note that the thinner the
inductor the darker the color of the marker. Figure d) shows that wide inductors
are more susceptible to input power. Having established that the main loss form is
quasiparticle loss, it could be that the wider the inductor the larger the population of
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quasiparticles, and therefore the multiplication process described in Section 2.7.3 is
more dominant. This trend might occur in Figure a) but with some slight deviations,
thus further characterization of this phenomena is warranted.

Figure C.4 in Appendix C shows the estimated average photon number in de-
pendence on the input power Pin. The logarithmic photon number scales linearly
with the the logarithmic input power with only one slope. This behaviour suggests
the TLS systems are already saturated at low powers, and therefore the main loss
source is microwave-induced pair-breaking. The red line in Figure C.4 accounts for
the linear dependence of the photon number at both low and high power regimes:

〈nph〉 = 0.7 · 1011Pin[mW ] (6.1)

The observed overall behaviour can be understood by looking at Equation 3.47.
Our resonators are in the regime Qc < Qi, allowing this way the approximation
QT ≈ Qc. Since Qc is power independent [38], then the average photon number will
scale with drive power and increase with lower resonance frequency.

6.4 Magnetic Field

Superconducting microwave circuits for qubits and kinetic inductance detectors are
frequently operated at relatively small fields. The performance of superconducting
resonators under applied fields provide a simple way of studying magnetic field in-
duced losses, and is therefore the motivation for the following sections. Here we will
show parallel (in plane) and perpendicular (out of plane) magnetic field measure-
ments and their analysis, aiming to shed light on the role of geometry on resonator
resilience.

6.4.1 Parallel Magnetic Field

The performance of our lumped-element resonators to a parallel magnetic field is
shown in Figure 6.4, which shows the dependence of intrinsic quality factor on B||.
The most visible feature is the dip in Qi in the range 120− 260 mT, consistent with
previous results in NbTiN thin films [10]. Such dip is associated to a coupling of the
resonator with an electron spin resonance (ESR), which increases losses in the cavity.
The frequency of the dip scales with the resonance frequency of the resonator. In
fact, using the condition for spin resonance ~ω0 = gµBBmin [11] we can extract the
Landé factor g ≈ 2.14, as illustrated in Figure C.7 in Appendix C.

Our resonators appear to be resilient under parallel magnetic fields up to at
least 1 T, magnitude that was limited by the maximum magnetic field allowed in
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Figure 6.4: Intrinsic quality factor divided by the quality factor at zero field. a) Chip
with varying inductor’s width. Darker color marker corresponds to thinner inductor.
b) Chip with varying capacitor’s size. Darker marker color corresponds to smaller
capacitor. c) Chip with varying capacitor’s edge. Darker marker color corresponds
to a more squared shape capacitor. d) Chip with varying inductor’s width. Darker
maker color corresponds to thinner inductor.

the measurement setup. Additional measurements (not shown due to misalignment
of magnetic field and misfabrication subtleties) of our LC resonators in a different
fridge suggested the Qi ∼ 105 could be retained up to 5 T. Consistent with previous
studies [10][11], we observe a slight enhancement in Qi in the range 0.5 T-1 T. This
has been attributed to the Abrikosov vortices in the superconducting film, which
act as quasiparticle traps and thus reduce quasiparticle losses [10]. No clear trend
for Qi versus parallel field is observed in terms of capacitor’s shape or inductor’s
width. Nonetheless Figure 6.4 b) seems to indicate that small capacitors (darker color
markers) perform better at increasing in plane magnetic field. Since the main loss
mechanism stems from quasiparticle loss (see Section 6.1), one possible explanation
would be that since large capacitor pads contain more Cooper pairs, then more
Cooper pairs are broken by B|| and thus more quasiparticles are produced, increasing
this way quasiparticle loss. This effect is supported by the fact that all resonators are
equally well aligned (see Figure 6.5 b)) and that this possible trend is not noticeable
in the other chips, which have similar capacitor size.

As the parallel magnetic field increases the population of Cooper-pairs decrease.
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Figure 6.5: Relative resonance frequency with applied parallel magnetic field. a)
Chip with varying inductor’s width. Darker color marker corresponds to thinner
inductor. b) Chip with varying capacitor’s size. Darker marker color corresponds
to smaller capacitor. c) Chip with varying capacitor’s edge. Darker marker color
corresponds to a more squared shape capacitor. d) Chip with varying inductor’s
width. Darker maker color corresponds to thinner inductor.

This effect translates into a higher kinetic inductance (c.f. Eqn. 2.20) and therefore a
decreasing resonance frequency, since fr = 1/

√
LkC. Figure 6.5 shows the resonance

frequency shift is quadratic, and can be fitted through:

∆fr
fr

=
fr − f 0

r

fr
= −k||B2

|| (6.2)

where f 0
r is the resonance frequency at zero field and k|| a coefficient reflecting

the Cooper-pair breaking of the external magnetic field. This coefficient can provide
information on material’s parameters if an analytic expression is derived. First we
note that fr ∼ L

−1/2
k , and Lk ∼ T−1

c from equation 2.25. For small changes in
frequency we have

fr − f 0
r

fr
≈

1/
√
Lk − 1/

√
L0
k

1/
√
Lk

≈ −1

2

∆Lk
L0
k

=
1

2

Tc − T 0
c

Tc
(6.3)
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where we used the Taylor expansion at ∆Lk = Lk − L0
k ≈ 0:

1√
Lk

=
1√

L0
k + ∆Lk

≈ 1√
L0
k

− ∆Lk

2 3
√
L0
k

+ . . . (6.4)

On the other hand, the Cooper-pair breaking strength is frequently characterized
by the effective pair-breaking energy 2α [13]. An applied magnetic field reduces the
critical temperature Tc linearly in α as kB(Tc − T 0

c ) = −πα/4. In the thin film
parallel field approximation, Tc and α are related through [13]:

α =
1

6

De2t2

~
B2
|| → kB(Tc − T 0

c ) = − π

24

De2t2

~
B2
|| (6.5)

where D is the electron diffusion constant of the material and t the thin film
thickness. Combining Eqn. 6.3 with Eqn. 6.5 we obtain the final expression:

∆fr
fr

= − π

48

De2t2

~kBTc
B2
|| (6.6)

Which indicates a quadratic shift of the resonance frequency with the parallel
magnetic field with parabolic coefficient k|| = (π/48)[De2t2/~kBTc]. The quadratic
behaviour depends on the superconducting film thickness (20 nm), the critical tem-
perature of the superconducting film (Tc ≈ 10 K [52]) and the electron diffusion
constant of the material (D). We make use of Eqn. 6.6 and the measured reso-
nance frequencies shown in Figure 6.5 to extract D ≈ 0.56 cm2 s−1, consistent with
previous studies with the same material [10] [61].

6.4.2 Perpendicular Magnetic Field

Further insight into the effect of resonator geometry on Qi can be achieved by ori-
enting the field perpendicular to the sample plane. Figure 6.6 shows the dependence
of Qi in four different chips with different resonator geometry. In particular, Figures
6.6 a) and d) show that the thinnest inductors (the darkest color markers) are the
most resilient to perpendicular magnetic field. This effect may be a result of the
fewer number of magnetic induced vortices that fit in the inductor, and correspond-
ing fewer vortex-induced losses. Secondly, Figure 6.6 b) shows that the smaller the
capacitor, the most resilient is the resonator to out of plane fields. It must be noted
that despite having the widest inductor (∼ 50 nm wider due to fabrication inhomo-
geneities), the smallest capacitor maintains its enhanced performance (see Fig. 6.7
b)). This effect may be related to the the fact that small capacitor pads contain less
magnetic induced vortices. The shape of the capacitor (squared or circular) does not
play a significant role in resonator’s resilience, as shown in Figure 6.6 c). The typical
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Figure 6.6: Intrinsic quality factor with applied perpendicular magnetic field. a)
Chip with varying inductor’s width. Darker color marker corresponds to thinner
inductor. b) Chip with varying capacitor’s size. Darker marker color corresponds
to smaller capacitor. c) Chip with varying capacitor’s edge. Darker marker color
corresponds to a more squared shape capacitor. d) Chip with varying inductor’s
width. Darker maker color corresponds to thinner inductor.

dip in Qi due to coupling of the resonator with magnetic impurities in the silicon
substrate has been previously observed at B⊥ ∼ 100 mT[11] and therefore should be
beyond the range of measurements.

The frequency shift of the resonators with perpendicular magnetic field follows a
quadratic behaviour:

∆fr
fr

= −k⊥B2
⊥ (6.7)

where the parabolic coefficient now depends on the inductor’s width Wr as:

∆fr
fr

= − π

48

De2W2
r

~kBTc
B2
⊥ (6.8)

where the critical temperature depends on the superconducting material’s thick-
ness, and the rest comprise physical constants and a material related parameter (D).
The frequency shift dependence on the inductor’s width is clearly depicted in Fig-
ures 6.7 a) and d), where the thinnest inductors (darkest color markers) have a lower
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Figure 6.7: Relative resonant frequency with applied perpendicular magnetic field.
a) Chip with varying inductor’s width. Darker color marker corresponds to thinner
inductor. b) Chip with varying capacitor’s size. Darker marker color corresponds
to smaller capacitor. c) Chip with varying capacitor’s edge. Darker marker color
corresponds to a more squared shape capacitor. d) Chip with varying inductor’s
width. Darker maker color corresponds to thinner inductor.

parabolic coefficient. In these figures we can observe how some of the wide inductors
are not resilient up to 100 mT and therefore their corresponding resonances vanish
with increasing out of plane field.

Figures 6.7 b),c) support the observation that the fabricated inductors have
slightly different widths than initially intended due to fabrication factors difficult to
control. This phenomena can become a useful additional tool when trying to iden-
tify resonators in the frequency spectrum, once the SEM inspection of the measured
device has been done. Nevertheless, it can be seen that all resonator configurations
with an inductor’s width W ≈ 200 nm± 10 nm are resilient up to at least 100 mT.



Chapter 7

Conclusions and further research

In this work we present the design, fabrication and characterization of magnetic field
resilient lumped element resonators. We use the power dependence of resonators
to extract their main loss mechanisms, and then analyze the role of geometry in
resonator losses. Then we study the performance of all resonators under in plane and
out of plane magnetic fields and obtain the optimum geometries for high-resilience
resonators.

First, we find no clear correlation between Qi and resonator’s geometry at zero
field within measurement variability, although thin inductors might origin higher
quality factors. Further characterization of this trend is needed. The Qi dependence
with photon number in the resonator suggests that at powers high enough to saturate
TLS systems, wide inductors are more susceptible to input power than thin inductors.
We propose that the quasiparticle loss due to microwave induced cooper pair breaking
is the main origin of that phenomenon. Wide inductors may contain a larger number
of quasiparticles than thin inductors, therefore the multiplication process inherent
of quasiparticle loss may be enhanced. The size and shape of the capacitor does not
seem to play a significant role in the resonator’s loss power dependence, which may
stem from the fact that unsaturated TLS is not the main loss form of our resonators,
type of loss that has been associated with the capacitance of the resonator [6].

In the presence of an applied in plane magnetic field, small capacitors appear to
perform better than large capacitors as the field increases. This phenomena may
be associated to quasiparticle loss, since on average large capacitors will contain
more Cooper pairs, and the more Cooper pairs broken by the applied field the more
quasiparticles will be produced. The in plane magnetic field does not seem to affect
the rest of the geometries in any conclusive way, but remains a useful tool to ensure
all resonators are properly aligned with the applied field. The small cross section of
thinner inductors minimize the number of Abrikosov vortices present in the inductor

55



CHAPTER 7. CONCLUSIONS AND FURTHER RESEARCH 56

and therefore make resonators more resilient to the out of plane magnetic field, in
agreement with previous studies [10][11]. The same reasoning can be applied to the
size of the capacitor, for which we observe that small capacitors make the resonators
more resilient to the out of plane field. However the shape of the capacitor does not
play a role in the resonator’s performance.

In this work the coupling quality factor was designed to be slightly lower than the
internal quality factor at zero field, such that when the Qi decreases for increasing
applied magnetic fields the signal can still be accurately measured [6] [1]. Nonetheless
when we study the power dependence of all resonators at zero field, we find that the
condition Qc < Qi does not allow the photon number in resonators to vary with Qi,
since QT ≈ Qc. Therefore if loss characterization is aimed through power dependence
measurements, it is warranted to have a better matching between Qc and Qi.

After several fabrication iterations of this resonator design, we learnt that in or-
der to more accurately define the meander inductor, the whole resonator gap needs
to be patterned using fine beam electron lithography and proximity error correc-
tion. Moreover, additional cleaning steps before applying lithography resist proved
to produce better fabricated resonators.

7.1 Outlook

Different experiments can be made to gain further insight in superconducting res-
onators loss mechanisms. In this work we focused on geometry, in particular the
inductor’s width, capacitor’s size and shape. The gap between the capacitor and the
ground planes requires further investigation, since our measurements were unreliable
and inconclusive. In addition, a comparison between one and multiple capacitor pads
could be studied. By inserting a dielectric layer between the superconducting film
and the substrate we could further investigate TLS dissipation, and thus analyze the
role of the capacitor’s geometry in resonator losses. One way to mitigate TLS losses
from the substrate could stem from replacing our planar capacitor by a parallel plate
capacitor, confining this way the electric field between the capacitor plates. Finally,
varying the film thickness could give a deeper understanding of the losses trade-off.

Geometry aside, different superconducting materials such as ALD TiN and granu-
lar aluminum could be used. This could pave the way towards a better understanding
of resonator geometry regardless of the material. Moreover, the performance of our
lumped element resonators in different material platforms would provide a simple
way to study the dependence of the kinetic inductance in different materials. Fol-
lowing this line of work, the current dependence of the kinetic inductance could be
analyzed by incorporating a loop in the resonator and sending flux through it.



Appendix A

Coupling Quality factor

Here we present the derivation of the coupling quality factor of a resonator coupled
to a feedline through a capacitance Cc. Note that we neglect internal losses. In order
to simplify calculations we need to simplify the initial circuit illustrated in Figure
A.1 a) [62].

The first step consists in doing the Norton equivalent of the initial circuit (c.f.
A.1 b)). The new configuration results in the source and load impedances being
in parallel, hence we can add them up (c.f. A.1 c)). Next, we do the Thevenin
equivalent of the current circuit to obtain an LC resonator coupled to a voltage
source. Then, we aim to obtain an equivalent circuit with the coupling capacitance
in parallel with the LC system. We start by doing the Norton equivalent of circuit
d). Following Norton theorem, we shortcircuit the voltage source and find the input
impedance. This input impedance comprises a resistor in series with a capacitor:

Zin =
Z0

2
+

1

jωCc
(A.1)

We can rewrite the input impedance in such a way that is equivalent to the same
capacitor in parallel with a certain impedance Zx:

Z−1
in =

1

Zx
+ jωCc (A.2)

We consider the domain bounded by ωCcZ0 � 1 and ωCcZx � 1. In this regime
the effective impedance reads:

Zx ≈
2

Z0(ωCc)2
(A.3)
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Figure A.1: a) Initial circuit with resonator capacitively coupled to a feedline. b)
Norton equivalent of initial circuit. c) Simplification of the parallel impedances.
d) Thevenin of the previous circuit. e) Norton equivalent and equivalent circuit
transformation. f) Final simplified circuit.

Finally, we calculate the coupling quality factor with its fundamental definition
(c.f. Eqn. 3.31):

Qc = ω0CTZx =

√
CT
L

1

ω2
0C

2
c (Z0/2)

(A.4)

with CT = C + Cc the total capacitance, ω0 = 1/
√
LCT the resonance frequency

and Z0 the impedance of the input/output lines.



Appendix B

Fabrication recipe

In this section we describe the fabrication steps necessary to fabricate our NbTiN
multi-resonator sample.

B.1 Wafer

B.1.1 Deposition

The substrate below our superconductor is a HiRes silicon wafer of 525 µm. Before
sputtering our superconductor, we clean the wafer properly with a HNO3 bath (1
min) and posterior water soaking. Then we place the wafer in a beaker with HF for 5
minutes and rinse the wafer with water twice. After that we quickly move the wafer
to the HMDS (that neutralizes the radicals so that the surface does not oxidize that
quick) [9]. After the HNDS processing we move the wafer to the sputtering station.

NbTiN thin films were deposited by DC reactive magnetron sputtering in a high-
vacuum deposition chamber (AJA International, Inc.). We achieve a NbTi plasma
at room temperature with a fixed flow of Ar and N and let it active for 45 seconds,
after which we put the shutter on. At the end of this process we should have a 20nm
NbTiN thin film on top of the HiRes Si wafer. We can get an estimate on the kinetic
inductance of the film by measuring the resistance with a 4 probe resistance meter
and using equation 2.25 [19].

B.1.2 Markers

Next we apply titanium and palladium markers that will be used as coordinates
references for the electron beam lithography. Finally we dice the sample in 1.5 cm
by 1.5 cm samples.
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B.2 Chip

B.2.1 Sample cleaning

Before anything else, we properly clean the sample by leaving it in a beaker filled
with acetone at 50 ◦C for one hour with a magnetic spinner at constant angular
velocity. Then the sample is placed in a beaker filled with PRS-3000 at 80 ◦C and a
magnetic spinner for three hours. Next we rinse the sample with water twice, soak
it in IPA and dry it out with a nitrogen gun.

B.2.2 Lithography

We apply CSAR 09 ebeam resist on the sample through spin coating at 4000rpm and
5 minutes of baking at 185 ◦C. After the proper sample tilt and rotation alignment,
the sample is loaded in the Raith EBPG-5200. The design is patterned in the resist
via three different beams: fine, medium, and coarse. Each one of them with an
appropriate dose selected through different dose tests.

B.2.3 Development

After the electron beam lithography is done, we place the samples in a teflon holder
and introduce them to the beakers according to the sequence:

• Amylacetate: 1 min

• MIBK:IPA: 1:3 1 min

• IPA to stop development

• Nitrogen gun

B.2.4 Dry Etching

We etch 20 nm by 7 mm of NbTiN with a mixed plasma of SF6 and O2 in Sentech
Etchlab 200 for 47 seconds.

B.2.5 Dicing

We strip the dicing resist using ARS 600-71 for three hours. Then we apply dicing
resist through spin coating at 1000 rpm and baking at 90 ◦C for 5 minutes. Finally
two 2 mm by 7 mm chips are diced from the every sample.
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B.2.6 Wire Bonding

The sample is bonded to a Printed Circuit Board (PCB) through aluminum wires of
25µmm of diameter.

B.2.7 Optical micrographs

Figure B.1 shows an optical micrograph of every fabricated chip just before wire
bonding.

Figure B.1: Fabricated chips, thin film of NbTiN coloured in light blue, HiRes silicon
substrate in dark blue. Each chip is 2 mm by 7 mm and contains 10 resonators. a)
Chip with varying inductor’s width. b) Chip with varying capacitor’s size. c) Chip
with varying resonator’s gap. d) Chip with varying capacitor’s pad edge radius.

B.2.8 SEM inspection

Here we show different SEM inspections to illustrate the change in resonator design
within the same chip.
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Figure B.2: SEM figures of resonators with varying capacitor’s size:
a)Lr=30µm,b)Lr=70µm,c)Lr=130µm. SEM figures of resonators with vary-
ing inductor’s width: d)Wr=0.1µm,e)Wr=0.2µm,f)Wr=1.0µm. Insets show a
zoom in of the inductor. SEM figures of resonators with varying edge radius:
g)Rr=0µm,h)Rr=25µm,i)Rr=45µm.



Appendix C

Additional Measurements

In this chapter we show additional figures to complement results from the main
measurement section.

Figure C.1: Field alignment of 0.6µm wide inductor resonator with fr ≈ 5.778 GHz
at a magnetic field magnitude of 500 mT. a) Magnetic field φ-sweep (spherical coordi-
nates) of the resonance frequency at θ = 0.8◦. The lowest fr at φ = φ∗ (indicated with
a dashed blue line) corresponds to the largest out of plane component. b) Magnetic
field θ-sweep (spherical coordinates) of the resonance frequency at φ = φ∗ = 177.1◦.
The highest fr at θ = θin (indicated with a dashed blue line) corresponds to the
largest in plane component.
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Figure C.2: Transmission comparison of chip in which we vary: a)b) inductor’s width,
c)d) capacitor’s size, e)f) capacitor’s shape, g)h) inductor’s width. Left column
corresponds to simulated resonances after SEM inspection of fabricated chip, while
right column corresponds to measured resonances at drive power −20dBm (at the
source output) and mixing chamber temperature of T ≈ 25mK. The numbers below
simulated resonances denote the geometric feature corresponding to that resonance,
in µm.
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Figure C.3: Measured Qc for each chip at −10 dBm at the power source output.
The errorbars estimated from the fit are smaller than data points. a) Chip with
varying inductor’s width. b) Chip with varying capacitor’s size. c) Chip with varying
capacitor’s edge radius. d) Chip with varying inductor’s width.
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Figure C.4: Estimated photon number using equation 3.47 versus drive power.
Darker blue corresponds to lower resonant frequency. Red line is a fit to show
the single linear dependence of the photon number with input power. a) Chip with
varying inductor’s width. b) Chip with varying capacitor’s size. c) Chip with varying
capacitor’s edge radius. d) Chip with varying inductor’s width.
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Figure C.5: Intrinsic quality factor versus photon number. a) Chip with varying
inductor’s width. Darker color marker corresponds to thinner inductor. b) Chip
with varying capacitor’s size. Darker marker color corresponds to smaller capacitor.
c) Chip with varying capacitor’s edge. Darker marker color corresponds to a more
squared shape capacitor. d) Chip with varying inductor’s width. Darker maker color
corresponds to thinner inductor.
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Figure C.6: Intrinsic quality factor with increasing parallel magnetic field. a) Chip
with varying inductor’s width. Darker color marker corresponds to thinner inductor.
b) Chip with varying capacitor’s size. Darker marker color corresponds to smaller
capacitor. c) Chip with varying capacitor’s edge. Darker marker color corresponds
to a more squared shape capacitor. d) Chip with varying inductor’s width. Darker
maker color corresponds to thinner inductor.
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Figure C.7: Dip of parallel magnetic field versus resonant frequency. The darker
the color markers the lower the frequency of the corresponding resonator. The red
line corresponds to the average g-factor of all resonators of the same chip. a) Chip
with varying inductor’s width. b) Chip with varying capacitor’s size. c) Chip with
varying capacitor’s edge. d) Chip with varying inductor’s width.
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Figure C.8: Intrinsic quality factor divided by quality factor at zero field with in-
creasing perpendicular magnetic field. a) Chip with varying inductor’s width. Darker
color marker corresponds to thinner inductor. b) Chip with varying capacitor’s size.
Darker marker color corresponds to smaller capacitor. c) Chip with varying capac-
itor’s edge. Darker marker color corresponds to a more squared shape capacitor.
d) Chip with varying inductor’s width. Darker maker color corresponds to thinner
inductor.
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