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Abstract

Previous studies have investigated the remote appearance of Earth-like exoplanets in the prospect of
retrieving biosignatures of planets orbiting extrasolar stars, utilizing the variation of (polarized) flux.
However, these studies did not use horizontally inhomogeneous models that include (1) daily cloud
observations of planet Earth accounting for different cloud parameters (i.e. using real data about the
cloud optical thickness, cloud top pressure and effective size parameter of the cloud droplets) with (2)
an underlaying Earth-like surface cover, for (3) a set of wavelengths covering the ultra-violet, visible
and near-infrared spectral domain. We present simulations of spatially resolved disks and planetary
phase curves of the total flux, degree of polarization and linearly polarized fluxes. We discuss the
presence of spectropolarimetric signatures that can potentially be directly retrieved from future obser-
vations. Moreover, in the design of future telescopes the characteristics of these signatures may be
considered.

The contribution of either the surface or cloud cover to the (polarized) reflected flux by the exoplanet
depends on the considered wavelength. Hence, the signatures that may indicate the presence of liq-
uid water particles suspended in the exoplanet atmosphere, namely the glory and primary rainbow,
vary in strength. In particular, both features are visible in the total flux, degree of polarization and
polarized flux 𝑄, where the primary rainbow is the most likely candidate to be retrieved, however, the
daily variation and seasonality in the cloud observations may suppress its enhancement in the total flux.

In a previous study, it was shown that ocean exoplanets may potentially be characterized by the
color reversal in the planetary phase curves of the polarized flux 𝑄. We show that, when Earth-like
continents are introduced, this intersection in the planetary phase curves, corresponding to various
wavelengths, may still be observed in the presence of an Earth-like ocean and is absent in the absence
of an Earth-like ocean. We show that the continents do not affect the location of the intersection point
but induce rapid oscillations in the planetary phase curves. Hence, we show that the cloud fraction
can still roughly be estimated from the planetary phase angle where this intersection point is located.
Alternatively, for the Earth-like vegetation and desert surfaces we are not successful in finding an un-
ambiguous signatures in the planetary phase curves.

Using our planetary model, we attempted to fit Earthshine observations, i.e. measurement of the
degree of polarization of the reflected Earthshine by the Moon. Our simulations show moderate agree-
ment for all 𝜆, which can be caused by (1) neglecting the presence of other aerosols, such as maritime
aerosols, or (2) the approximation of the correction for the depolarizing behaviour of the Lunar surface.

We conclude that utilizing a set of wavelengths in the visible and near-infrared domain, could poten-
tially allow one to retrieve information about the presence, abundance and micro-physical properties
of clouds in the atmosphere of, and also the presence of an ocean cover on, an Earth-like exoplanet.
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1
Introduction

As long as civilized societies have existed, mankind has explored the boundaries of what was thought
to be unreachable. In 1492 Christoffel Columbus explored the boundaries of Earth, which many people
believed to be flat at the time, and found The New World, i.e. America. Although he thought that to
have reached India, he crossed the entire Atlantic Ocean and enabled worldwide colonization. In the
19th century World War II brought harm to millions of people, nonetheless Germany was a pioneer in
launching human made objects into space as they developed the V-2 rocket that reached 84.5 kilome-
tres on October 3rd 1942. After WWII these series of ballistic missiles were used by the United States
and the Soviet Union to further explore space. During the era of space exploration, the Soviets were
the first to successfully cross the boundary of space as they launched the Sputnik 1 in an orbit around
Earth on the 4th of October 1957. Shortly after, this achievement was outdated by multiple American
and Russian satellite programs. Although several animal space flights were already successful, the next
step in exploration was the first human space flight. Yuri Gagarin left our atmosphere on the 12th of
April 1961. After multiple interplanetary missions in our solar system, like the Venera, Mariner and Pio-
neer programs, Voyager 1 and 2 were developed to push the boundary of exploration to unimaginable
distances.

The first telescope that allowed us to accurately picture the far boundaries of space is Hubble. Since
Hubble was launched on April 24th 1990, remarkable pictures of other galaxies have been taken. In
that same period the search for planets orbiting stars in extrasolar systems (i.e. exoplanets) started,
when a Jupiter-like planet was found around the main sequence solar-type star 51 Pegasi, using the
Radial velocity technique (Mayor and Queloz 1995). As of today over 3700 exoplanets have been de-
tected and confirmed in over 600 multi-planetary systems1, with various types of observation methods.
Additionally, almost 4500 exoplanet candidates have been identified by NASA’s Kepler mission, with
several of them being Earth-sized planets located in the habitable zone around Solar-type stars2. Of
the confirmed exoplanets a majority is investigated via indirect methods providing important planet
parameters such as its radius, its minimum mass, and its orbital period. Also, atmospheric components
have been retrieved with spectroscopy during secondary eclipses and planetary transits (Swain et al.
2009, 2008; Tinetti et al. 2007). However, Earth-like exoplanets in habitable zones are relatively small
and their transits so rare that no sufficient signal-to-noise ratio can be acquired (Kaltenegger and Traub
2009). One of the most recently and closest found Earth-like exoplanet is TRAPPIST-1e, orbiting around
the star TRAPPIST-1. This potentially habitable planet is located 40 light years from Earth and has a
similar radius and equilibrium temperature as Earth, thus located in the habitable zone. In particular,
a planet is called habitable if it lies in the habitable zone with conditions similar to Earth, favouring the
existence of water-based Earth-like life (Lammer et al. 2009).

At present and in the near future, direct observations of exoplanets are and will be spatially unre-
solved, i.e. one pixel images, because even the largest telescopes have insufficient spatial resolutions

1Obtained from: http://exoplanetarchive.ipac.caltech.edu/.
2(NASA Releases Kepler Survey Catalog with Hundreds of New Planet Candidates n.d.)
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4 1. Introduction

at such large distances (Hoeijmakers et al. 2016). Ford et al. (2001); Stam et al. (2006) showed that
spatially unresolved spectroscopy of reflected light from exoplanets by their parent star can character-
ize atmospheres and, if present, surfaces. A number of instruments that are being designed or used
are able to obtain such observations, for example Earth based such as SPHERE (operational on the
Very Large Telescope (VLT)), EPICS (which will be designed for European Extremely Large Telescope
(E-ELT)) and GPI (operational on the Gemini South Telescope), and space based such as New Worlds
Observer (NWO), Wide Field Infrared Survey Telescope (WFIRST) and James Webb Space Telescope
(JWST) from NASA.

A promising addition to direct observations of reflected starlight is polarimetry. Early attempts to
detect ”hot jupiters” type exoplanets have already been made (Hough et al. 2006; Lucas et al. 2006).
Seager and Sasselov (2000); Stam (2008a); Stam et al. (2004b) show that a combination of reflected
flux and linear polarized fluxes provides an extra dimension in retrieving signatures which can help in
the characterization of these potential habitable worlds. In particular, polarized light carries information
about the source from which it is scattered, such as dust, liquid water particles or an ocean surface.
Additionally, as light from stars is naturally unpolarized and scattered light by an exoplanet surface
and/or atmosphere generally is not, it is possible to improve resolving the planet from its parent star
(Hoeijmakers et al. 2016). To obtain such observations, space based telescopes are most favourable
because Earth’s atmosphere does influence the polarization of light, albeit that ground based telescopes
with adaptive optics can also be used (Gisler et al. 2004; Saar and Seager 2003; Schmid et al. 2006).

1.1. Hypothetical relevance and contribution to the scientific com-
munity

In the last decade a significant amount of work has been published about the simulation results of
Earth-like models. Most of these studies provide only photometric results and are focused on a signa-
ture specifically related to the presence of an ocean, vegetation or clouds individually. In recent years,
the addition of polarization in models and observations, however, has shown to be an indispensable
tool for exoplanet characterization.

In the characterization of oceans especially the presence of a glint in spectropolarimetric simulations
seems to provide an unambiguous signature (Williams and Gaidos 2008). These models do, however,
only only simple cloud models, no gaseous atmosphere and no ocean albedo, which might overestimate
the strength of the ocean glint in reality. A more diverse study by Zugger et al. (2010a) provided the
shift of the peak of polarization for cases with increasing optical depth of the gaseous atmosphere, the
presence of ocean winds, the interference of clouds and the effect of maritime aerosols. The study
is fully devoted to ocean planets, and the signatures found might not be present with an Earth-like
continental surface distribution. Also, no variability in clouds is included and the clouds are modeled
again as Lambertian reflectors without a gas layer on top.

A study on the presence of the vegetation’s ”red-edge”, an enhancement in the albedo of vegeta-
tion in the near-infrared, is modeled with a realistic cloud cover and an enhanced radiative transfer
code by Montañés-Rodríguez et al. (2006). They find that enhancements are visible in the disk inte-
grated spectrum, but cannot be associated with vegetation unambiguously without knowing the cloud
distribution in advance. These results are obtained by photometric modelling and observations only. A
similar study, based on four observations also shows that vegetation only induces a small enhancement
in the photometric signal, especially when comparing its magnitude to absorption bands such as 𝑂ኼ and
𝑂ኽ gaseous absorption lines. A recent study by Berdyugina et al. (2016) shows that a similar feature of
the ”red-edge” in photometric signals can also be observed in linearly polarized signals. These results
were obtained by lab measurements and used later on in an Earth-like model that includes clouds and
other surface types. In this configuration a rather unambiguous detection of photosynthetic pigments
is found.

In general, one can approximate liquid cloud particles by spheres. If such spherical aerosols are
present in an atmosphere, a glory, the primary and secondary rainbow may be present in both photo-
metric and polarized signals. Bailey (2007) mainly investigated the strength and shape of the primary
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rainbow from single scattering and found that depending on the nature of particles the rainbow may
shift to different phase angles. Also, he investigated the width and amplitude of this signature. The
practical effect of spherical liquid water particles in the form of clouds are analyzed by Karalidi, Stam
and Hovenier (2012); Karalidi et al. (2011). They used different cloud models in quasi homogeneous
and horizontally inhomogeneous simulations with a realistic gaseous Earth-like atmosphere. They,
however, did not model an Earth-like surfaces distribution, instead they used a black horizontally ho-
mogeneous surface. With these models they showed that variability in the rainbow feature is apparent
for different particles sizes. The interesting question arises how spectropolarimetric signals evolve
when applied to an inhomogeneous Earth-like model that has a variable cloud cover on top of an
Earth-like surface distribution. Clouds in the form of patchy covers were modeled by Rossi and Stam
(2017), who attempted to distinguish different types of cloud covers that can exist on exoplanets.
The results show that a distinction between cloud covers can be made and an estimate of the total
cloud fraction on the planetary disk can be retrieved with reduced ambiguities from the polarized signal.

In order to develop a more realistic Earth-like model, Muñoz (2015) simulated an Earth-like exoplanet
with realistic surface albedos and cloud fractions according to MODIS data. The gaseous atmosphere
is Earth-like and the clouds are modeled with a single cloud model that consists of a constant effective
radius and optical thickness, but with a spectrally varying refractive index of the liquid water particles.
With this model, multiple cases for cloud free, patchy-clouded and fully clouded atmospheres were
computed for large sets of phase angles, sub observer longitude and wavelength regions covering the
visible and infrared regions.

Based on photometric data obtained with the Deep Space Climate Observatory (DSCOVR), Jiang et al.
(2018) recently simulated Earth as a proxy exoplanet. This data set comprises two years of obser-
vations for multi-wavelength in the ultra-violet, visible and near-infrared region. With these data an
attempt is made to retrieve surface types, cloud patterns and the planetary rotation. The use of re-
flected light signals at multiple wavelengths, that evolve in time, shows to be a valuable tool in the
characterization of Earth-like exoplanets. Moreover, polarization is not included in this study as it is
based on photometric data only.

A more comprehensive and realistic model that includes the time evolution of clouds in an inhomo-
geneous 3D configuration for a full range of wavelengths in the ultra-violet, visible and near-infrared
regions might provide stronger signatures that reveal important characteristics of Earth-like exoplanets.
Utilizing a set of wavelengths allows for the analysis of the gradual spectral behaviour of scatterrers. For
example, Rayleigh scattering in a pure gaseous atmosphere is most effective at ultra-violet wavelengths,
whereas Mie scattering in clouds is approximately equally effective at all wavelengths. Modeling time
evolving clouds and a spatial inhomogeneous surface cover are expected to induce, while the planet
rotates around its axis, rapid oscillations in the planetary phase curves. Combining the complexity of
both cloud and surface covers based on Earth observations in combination with a gas atmosphere, at
different wavelengths, will contribute to the understanding of the photometric and polarimetric signals
originating from Earth-like exoplanets.

1.2. Lunar Observatory for Unresolved Polarimetry of Earth
The fact that polarization becomes an increasingly valuable tool in exoplanet characterization encour-
aged scientists to start the development of LOUPE, the Lunar Observatory for Unresolved Polarimetry
of Earth (Karalidi, Stam, Snik, Bagnulo, Sparks and Keller 2012). This entails the placement of a po-
larimeter on the Lunar surface that faces Earth, allowing direct observation of the Earth. Hoeijmakers
et al. (2016) presents the most recent and advanced design of LOUPE’s polarimeter, which combines a
spectral modulation and a micro-lens array. The micro-lens array essentially splits the observed object
into multiple pixels, provided that the object is sufficiently close to the instrument. The spectral modu-
lation is optimized for linear polarization alone (no circular polarization); more detailed information can
be obtained from Snik et al. (2009).

The main objective of LOUPE for exoplanetary research is to generate disk-resolved spectra of the
Earth, which can be disk-integrated, providing benchmark data for future exoplanetary observations.
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In addition, the aim is to understand the different effects of Earth-like surfaces and atmospheric fea-
tures in the flux and polarimetric spectra from these potential observations. This can now only be done
by radiative transfer models, Earthshine observations and POLDER/PARASOL data. The latter two are
far from ideal as Earthshine observations do not provide spectra for a full range of phase angles, require
globally spread ground based telescopes, which introduce additional atmospheric interference and un-
certainty in depolarization of the Moon’s surface. The POLDER/PARASOL instruments are in low-Earth
orbit, observing only small parts of Earth and thus cannot provide an image of the entire Earth disk
(Hoeijmakers et al. 2016; Karalidi, Stam, Snik, Bagnulo, Sparks and Keller 2012). If successful, LOUPE
will allow to observe Earth at all times, at all phase angles, during a full diurnal Earth rotation and
possibly spanning over Earth’s seasons as being in an almost edge-on orbit. In this research we will
assess which wavelength regions are important for Earth-like exoplanet characterization and present
results which can be compared to future observations.

1.3. Research framework
The research goals for this thesis research are based on research objective and research questions.

The research objective is stated as:
The research objective is to retrieve spectropolarimetric signals from an Earth-like exoplanet
model in an edge-on configuration to be able to rationalize future disk integrated observations,
by use of a radiative transfer algorithm in combination with Earth observations.

From this research objective, we state the following Central Research Questions:

1. What are the spectropolarimetric signals for a resolved and unresolved Earth-like exoplanet?

2. Which signatures from spectropolarimetric signals can be identified such that Earth-like exoplan-
ets can be characterized?

Each Central Research Question can be discriminated into Sub Research Questions as follows:

1. What is the spectropolarimetric signal for a resolved and unresolved Earth-like exoplanet?

(a) How does light reflect from an Earth-like exoplanet?
(b) How can an Earth-like exoplanet be modeled?
(c) Which features characterize Earth and how can these features be used in future exoplanet

characterization?

2. Which signatures from spectropolarimetric signals can be identified such that Earth-like exoplan-
ets can be characterized?

(a) Can Earth biomarkers be characterized in spectropolarimetric signals?
(b) Can spectropolarimetric signatures characterize exoplanet surfaces?
(c) Can spectropolarimetric signatures characterize exoplanet atmospheres?
(d) How can spectropolarimetry be used to identify planetary and orbital elements?

The answer to these research questions will be found by taking the following steps:

1. Create a radiative transfer model for Earth-like exoplanets that incorporates Earth Observations.

2. Create an Earth-like model that allows one to efficiently and accurately compute spectropolari-
metric signals.

3. Obtain and characterize the spectropolarimetric signals from the Earth-like model.

4. Assess the variability of the Earth observations in the spectropolarimetric signal.

5. Analyze and retrieve the presence of correlated parameters in the spectropolarimetric signal.

6. Extend the Earth-like model to incorporate polarizing surfaces.

7. Obtain and characterize the spectropolarimetric signals of the extended Earth-like model.
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1.4. Outline of this thesis report
This thesis is separated into two parts. In the first part, we describe our radiative transfer model,
supported by theoretical methods and algorithms and further practical considerations. In the second
part, we use this model to present results and associated discussions.

In the first part, the principles of radiation and polarized light, and the methods to describe the trans-
fer of light in a terrestrial atmosphere, are presented. These various techniques are combined in a
radiative transfer code and developed further to be able to appropriately model Earth (Chapter 2). In
Chapter 3 we describe our Earth model. This Earth model is based on high temporal observations and
is created in such a way that we still provide accurate results at a reduced cost of computation effort.

In Chapter 4 we start the second part, were we present and discuss some straightforward results.
The quest for finding correlations between the varying parameters in our Earth model and the re-
trieved spectropolarimetric signals is described in Chapter 5. These first two chapters of the second
part are based on an Earth model that contains a simple surface approximation. In the third chapter of
this part, Chapter 6, we introduce and incorporate anisotropic polarizing surfaces in our Earth model,
to produce an even more comprehensive and detailed model. With this model we will simulate similar
spectropolarimetric signals as in Chapter 4 to be able to compare and discuss the shortcomings of such
a simplified model and the possible new signatures in the extended Earth Model. Finally, in Chapter 7,
we compare our most comprehensive model to actual polarization observations of Earth, and discuss
the possible limitations of our model and the observations.

In Chapter 8 we provide a review of our findings in the research on which we base the most im-
portant conclusions. Some points of improvements that came up during the thesis research will be
provided as recommendations in Chapter 9.





2
Modelling scattered light curves of

Earth-like exoplanets

Before we present the Earth model, a description of the theory that drives this model is presented. In
this research, radiative transfer of reflected light by a terrestrial planet is computed using the doubling-
adding method of de Haan et al. (1987a). First the basic principles of polarized light and some defini-
tions are discussed, which will be used in the remainder of this report. Under the influence of a model
atmosphere, light will or will not be scattered. Such an atmosphere is approximated by several layers
that define the scattering behaviour of that single layer, essentially stacked together to form the entire
model atmosphere. For the scattering behaviour of a specific layer we will describe the most general
forms of scattering in a terrestrial atmosphere (Section 2.1). All this theoretical work is put together
into a computing environment, which is called the Python Mie Doubling Adding Program (PyMieDAP)
(Rossi et al. 2018). A description of this code is provided in Section 2.2. This code is used as a base
for our computations, but is modified to include Earth modelling. It has to be noted that no alterations
will be made in the radiative transfer routines, but only to the Python based interface (Section 2.3).

2.1. Radiative Transfer on Terrestrial Planets
Basic principles of light and radiation
Light consists of plane electromagnetic waves of which one is shown in Figure 2.1. Each of these
waves is completely polarized and quasi-monochromatic as described by the solution of the Maxwell’s
equations (van de Hulst 1957). For each light ray we define the wavelength (𝜆) as the length between
two subsequent peaks in the electric/magnetic field. The radiance and state of polarization that is

Figure 2.1: Representation of an electromagnetic wave. The red waves represent the magnetic field component and the blue
wave represents the electric field component. The length of one period of either the magnetic or electric field is defined by ᎘.

9
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reflected by an exoplanet is fully described by the Stokes vector I:

I =
⎡
⎢
⎢
⎣

𝐼
𝑄
𝑈
𝑉

⎤
⎥
⎥
⎦

(2.1)

where I is the total radiance, Q and U describe the linearly polarized radiance in mutually perpendicular
directions with respect to a reference plane, and lastly V is the circularly polarized radiance. All quan-
tities are expressed in 𝑊 𝑚ዅኼ 𝑠𝑟ዅኻ (or 𝑊 𝑚ዅኽ 𝑠𝑟ዅኻ to include the wavelength dependence). For all
quantities expressed in 𝑊 𝑚ዅኼ (or 𝑊 𝑚ዅኽ to include the wavelength dependence), i.e. the irradiance
or flux vector, we will use the following expression:

𝜋F = 𝜋
⎡
⎢
⎢
⎣

𝐹
𝑄
𝑈
𝑉

⎤
⎥
⎥
⎦

(2.2)

For starlight that is integrated over the entire stellar disk, the electric vector does not have a preferred

Figure 2.2: Illustration of polarized light. The top panel shows the principal characteristic of circularly polarized light, where the
blue and green line represent the electric field of two light rays. The red line describes the superimposed electric field vectors

of the two light beams. The lower panel shows the same curves for a linearly polarized light.

direction of vibration and is unpolarized (Hansen and Travis 1974a; Kemp et al. 1987). More specifically,
if light is unpolarized the electric vector traces out no specific pattern in the plane perpendicular to the
propagation direction. If light is polarized linearly or circularly, the electric field vector traces out a line
or a circle, respectively. The concept of linear and circular polarized light is shown in the lower panel of
Figure 2.2, where the blue and green curves represent the two different light waves. In case of linearly
polarized light two orthogonal waves are in phase. If these waves are superimposed on each other,
the resulting electric field vector traces out a linear pattern in time. When the phase between the two
orthogonal light rays are exactly a quarter period out of phase, the resultant electronic field traces out
a circular pattern in time (upper panel of Figure 2.2). To get more insight into the different Stokes
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Figure 2.3: Representation of electric field in components of r and l. ጕ is the angle between the unit direction l and the
direction of vibration of the electric field vector (Hansen and Travis 1974a).

parameters, we will look at the definition of the electric field vectors. The electric field is described
by unit vectors in the mutual perpendicular r- (𝐸፫) and l-direction (𝐸፥), shown in Figure 2.3. In single
scattering events, the l unit vector is always oriented in the plane of scattering, i.e. the plane that
contains the incident and scattered light beam. The electric field is described according to (Hansen
and Travis 1974a)

𝐸፥ = 𝑎፥𝑒።(Ꭶ፭ዅ፤፳ዅᎨᑝ)

𝐸፫ = 𝑎፫𝑒።(Ꭶ፭ዅ፤፳ዅᎨᑣ)
(2.3)

with 𝜔 the circular frequency of the light, z the distance oriented in the direction of propagation, k
the wavenumber: 𝑘 = 2𝜋/𝜆, 𝑖 = √−1, 𝑎፥ and 𝑎፫ the amplitude, 𝜖፥ and 𝜖፫ the phases retardation and
t representing time. The Stokes vector is expressed in these terms of electric field components by
(denoting the complex conjugate with an asterisk) (Hansen and Travis 1974a)

I =
⎡
⎢
⎢
⎣

< 𝐸፥𝐸∗፥ + 𝐸፫𝐸∗፫ >
< 𝐸፥𝐸∗፥ − 𝐸፫𝐸∗፫ >
< 𝐸፥𝐸∗፫ + 𝐸፫𝐸∗፥ >
𝑖 < 𝐸፥𝐸∗፫ − 𝐸፫𝐸∗፥ >

⎤
⎥
⎥
⎦

(2.4)

Referring to Figure 2.3 the radiance, 𝐼(𝜓, 𝜖), is defined by 𝜓, the angle between the scattering plane
(l-direction) and the direction of vibration, and 𝜖 a phase retardation. This phase retardation is thus
zero for linearly polarized light and a quarter wave for circular polarized light. The Stokes vector can
be measured according to (Hansen and Travis 1974a)

I =
⎡
⎢
⎢
⎣

𝐼(0∘, 0) + 𝐼(90∘, 0)
𝐼(0∘, 0) − 𝐼(90∘, 0)
𝐼(45∘, 0) − 𝐼(135∘, 0)

𝐼(45∘, 𝜋/2) + 𝐼(135∘, 𝜋/2)

⎤
⎥
⎥
⎦

(2.5)

To further clarify the difference between the linearly polarized radiances Q and U, Figures 2.4 and 2.5
show the mutual different directions with respect to a horizontal reference frame. For Q we can see
that in the directions of vibration, 0∘ and 90∘, a plane of symmetry is present, which we can also see
for U at the inclined planes by 45∘ and 135∘. If one now considers a homogeneous planetary disk and
a horizontal reference plane, when integrated over the disk U is zero. The same is true for Q if we
rotate the reference plane by 45∘ in either direction. Because Earth can certainly not be considered as
homogeneous, neither U and Q can be assumed to be zero. An effective way to transform between Q
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Figure 2.4: Illustration of linearly
polarized flux ፐ on a spherical disk
aligned to a horizontal scattering

plane.

Figure 2.5: Illustration of linearly
polarized flux U on a spherical disk
aligned to a horizontal scattering

plane.

and U is to use rotation matrix L (Eq. 2 of Stam et al. 2006)

L(𝛽) =
⎡
⎢
⎢
⎣

1 0 0 0
0 cos 2𝛽 sin 2𝛽 0
0 − sin 2𝛽 cos 2𝛽 0
0 0 0 1

⎤
⎥
⎥
⎦

(2.6)

where 𝛽 is the angle between the old and new reference frame defined in an anticlockwise direction,
looking towards the observer. In the characterization of terrestrial exoplanets it is advantages to mea-
sure the degree of polarization (Hough et al. 2003; Saar and Seager 2003; Schmid et al. 2006; Seager
and Sasselov 2000; Stam et al. 2004a)

𝑃 = √𝑄ኼ + 𝑈ኼ + 𝑉ኼ
𝐼 (2.7)

The circular polarized part of light reflected by terrestrial planets is very small and can thus be neglected
(Hansen and Travis 1974a)

𝑃𝑙 = √𝑄ኼ + 𝑈ኼ
𝐼 (2.8)

Ignoring the circular polarized light in the computation of Stokes elements F, Q and U does not induce
significant errors according to Stam and Hovenier (2005). The situation we presented and which we
will be using in the forthcoming simulations are upper limits to real future exoplanet observations. In
reality, background stellar flux is present in spatially unresolved exoplanets and also to a lower degree
in spatially resolved exoplanets. This additional unpolarized flux in spatially unresolved exoplanets
causes the degree of linear polarization to be significantly lower.

2.1.1. Doubling-Adding Method
To describe the Doubling-adding method, first some definitions and parameters are provided. The
incident and reflected light are expressed with respect to two types of reference planes:

1. Firstly, the planetary plane of scattering which coincides with the center of the planet, the observer
and the parent star;

2. Secondly, the local plane of scattering that is defined by the local meridian plane and the local
zenith direction.

For the Doubling-adding method the second reference plane will be used. In a subsequent section we
will use the first reference plane to calculate the disk-integrated Stokes vector. In Figure 2.6 the local
plane of scattering is illustrated. The local incident light is defined by: 𝜇ኺ = cos 𝜃ኺ, where 𝜃ኺ is the
angle between the local zenith direction and the direction of incident light, where 𝜋Fኺ is the incident
flux vector. Furthermore, for the internal radiation field the following is defined: 𝑢 = cos 𝜃።፧፭፞፫፧ፚ፥ or
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cosዅኻ 𝑢 = 𝜃።፧፭፞፫፧ፚ፥ (illustrated in the right panel of Figure 2.6). The reflected radiance, I፫ is reflected
from the medium under an angle relative to the zenith direction: 𝜇 = | cos 𝜃|. Lastly, the azimuth angle
or azimuthal difference (left panel), 𝜙−𝜙ኺ, is used and defined counterclockwise looking downward to
the local surface. The absolute azimuth angles of incident and outgoing light rays are not important as
a locally rotational symmetric planet is assumed. The light that is reflected (I፫) and transmitted (I፭)

Figure 2.6: Left panel: Spherical representation of locally reflected flux with the azimuth angles Ꭻ and ᎫᎲ, zenith angles ᎕ and
᎕Ꮂ, the scattering angle ጆ, and the local zenith direction. Right panel: definition of light transmission and reflection on a single
layer, with incidence irradiance of ᎝FᎲ, the same incidence angles as the left panel and an optical thickness of ᎡᎲ. (Hansen and

Travis 1974a; Liou 1980).

by the atmosphere are described by the reflection (R) and transmission (T) 4𝑥4 matrices, respectively,
as follows (Hansen and Travis 1974a)

I፫(𝜇, 𝜙) =
1
𝜋 ∫

ኻ

ኺ
𝜇ኺ𝑑𝜇ኺ∫

ኼ᎝

ኺ
𝑑𝜙ኺR(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ)Iኺ(𝜇ኺ, 𝜙ኺ),

I፭(𝜇, 𝜙) =
1
𝜋 ∫

ኻ

ኺ
𝜇ኺ𝑑𝜇ኺ∫

ኼ᎝

ኺ
𝑑𝜙ኺT(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ)Iኺ(𝜇ኺ, 𝜙ኺ)

(2.9)

where Iኺ is the incident Stokes vector. The flux vector is related to the radiance by

𝜋F = 2𝜋∫
ኻ

ዅኻ
Iኺ(𝑢)𝑢𝑑𝑢 (2.10)

where Iኺ is the azimuth-independent term in the Fourier expansion of I(𝑢, 𝜙 − 𝜙ኺ). To approximate
the incident Stokes vector as monodirectional, a dirac delta function (𝛿) is used accordingly

Iኺ = 𝛿(𝜇 − 𝜇ኺ)𝛿(𝜙 − 𝜙ኺ)𝜋Fኺ (2.11)

The reflected and transmitted light are then defined by

I፫(𝜇, 𝜙) = 𝜇ኺR(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ)Fኺ,
I፭(𝜇, 𝜙) = 𝜇ኺT(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ)Fኺ

(2.12)

Before we continue with the adding equations, some symmetry relations will be defined. Other symme-
try relations that will not be used in this report can be found in Hansen and Travis (1974a). Light that
is transmitted and reflected from below, resulting from reflection on lower layers or the surface, are
labeled with a superscript asterisk (*). The equations for reflected light, that is traveling downwards,
and the transmitted light, travelling upwards, for illumination from below are described by:

I∗፫(𝜇, 𝜙) = 𝜇ኺR∗(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ)Fኺ,
I∗፭(𝜇, 𝜙) = 𝜇ኺT∗(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ)Fኺ

(2.13)
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with the symmetric relations

R∗(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ) = R(𝜇, 𝜇ኺ, 𝜙ኺ − 𝜙),
T∗(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ) = T(𝜇, 𝜇ኺ, 𝜙ኺ − 𝜙)

(2.14)

Adding method
In order to compute the reflected and transmitted light from a horizontally plane parallel system that is
composed of different media, the reflection and transmission matrices for an arbitrary number of layers
need to be defined. To explain the fundamentals of this method we use a representation that consists
of two layers, provided with the appropriate reflection, transmission and layer characteristics in Figure
2.7. The transmission and reflection of the first layer are represented by: 𝑇ኻ (diffusive and direct) and

Figure 2.7: Schematic representation of adding method with two layers with different optical thicknesses stacked on each
other. Incident irradiance of ᎝FᎲ, optical thicknesses of ᎡᎳ and ᎡᎴ. (Hansen and Travis 1974a).

𝑅ኻ, respectively; and for the second layer: 𝑇ኼ (diffusive and direct) and 𝑅ኼ, respectively. The combined
total reflection and transmission (diffusive and direct) between the two layers is represented by 𝑈
and �̃�, respectively. The optical thicknesses of the first and second layer are 𝜏ኻ and 𝜏ኼ, respectively.
Reflection and transmittance of a specific layer depend on its single scattering characteristics (𝑅 and
𝑇) and the optical thickness. The total reflection and transmittance of an arbitrary number of layers is
mathematically described in de Haan et al. (1987a) and Hovenier et al. (2004). The doubling method
is mathematically the same as the adding method but uses: 𝜏ኻ = 𝜏ኼ, essentially doubling the layers.
Local multiple scattering can now thus be numerically computed by only requiring the transmission
and reflection matrices for single scattering of all layers that are considered in the local atmosphere.
Furthermore, in the case of unpolarized incident sunlight, the adding equations can be simplified by
using only the first column of the transmission and reflection matrices (see e.g. Rossi et al. 2018)

I፫(𝜇, 𝜙) = 𝜇ኺRኾ፱ኻ(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ)Fኺ,
I፭(𝜇, 𝜙) = 𝜇ኺTኾ፱ኻ(𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ)Fኺ

(2.15)

In the subsequent two sections a detailed description of atmospheric scattering is provided, where the
single scattering relations of Rayleigh and Mie scattering are defined.
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Rayleigh scattering
The most pronounced type of scattering in Earth’s atmosphere is Rayleigh scattering, which was first
described by Lord Rayleigh (1871). This type of scattering causes the clear sky to color blue for most
part of the day and to color reddish at sunrise and sunset. Two conditions are associated with Rayleigh
scattering. First, the wavelength of the incident light ray must be much larger than the size of a particle.
Second, the wavelength must be much larger than the particle size after penetration of the incident
ray. These conditions can be described as follows: the particle can be considered to be in an external
homogeneous electric field, and as the incident ray penetrates the particle, the particles electric field
arises instantly compared to the period of the light ray. The electric field that is produced by the incident
radiation may be called the applied field, producing a dipole configuration on the particle. Following
the electrostatic formula, the relation between the combined electric field (applied field plus particles
electric field) and the induced dipole moment P። becomes

P። = 𝛼፩E። (2.16)

where 𝛼፩ denotes the polarizability of the particle. The polarizability is in general a tensor, caused by
the misalignment of E። and P።. When these vectors align 𝛼፩ is a scalar and the particle has isotropic
polarizability. We are most interested in the properties of the scattered electric field at a distance R
away, namely the far-field (𝑅 ≫ 𝜆). Furthermore, the angle between the scattered dipole moment and
the direction towards the observer is defined as 𝛾, P፬ is the scattered dipole moment and c the speed
of light. A representation of these parameters is presented in Figure 2.8. The scattered electric field is
described by

E፬ = sin 𝛾
𝑐ኼ𝑅

𝜕ኼP፬

𝜕𝑡ኼ (2.17)

where the scattered dipole moment can be written as function of the induced dipole moment for an
oscillating periodic field as

P፬ = P።𝑒ዅ።፤(ፑዅ፜፭) (2.18)

where 𝑐𝑘 = 𝜔 represents the circular frequency, with k the wavenumber. Substituting Equations 2.16
and 2.18 in Equation 2.17, results in

E፬ = −E።𝑒ዅ።፤(ፑዅ፜፭) 𝑘
ኼ𝛼 sin 𝛾
𝑅 (2.19)

To define the electric vector of a light ray, we employed the orthogonal representation (section 2.1,
Figure 2.3). In this representation the scattered electric field is thus separated in the r and l direction.
Based on Figure 2.8 and Figure 2.3 the following relations can be obtained

𝐸፬፫ = −𝐸።፫𝑒ዅ።፤(ፑዅ፜፭)
𝑘ኼ𝛼 sin 𝛾ኻ

𝑅 (2.20)

𝐸፬፥ = −𝐸።፥𝑒ዅ።፤(ፑዅ፜፭)
𝑘ኼ𝛼 sin 𝛾ኼ

𝑅 (2.21)

In Figure 2.8, Θ denotes the scattering angle defined in the scattering plane as being the plane on
which the incident and scattered light wave travel. Furthermore, the l unit direction is defined in the
same plane and constrains 𝛾ኻ to

᎝
ኼ . Subsequently, a system of scattering electric field components can

be obtained

[ 𝐸
፬
፫
𝐸፬፥

] = −𝑒ዅ።፤(ፑዅ፜፭) 𝑘
ኼ𝛼
𝑅 [ 1 0

0 cosΘ ] [ 𝐸
።
፫
𝐸።፥

] (2.22)

The next step is to define the flux vector as function of the electric field: 𝐹፬ = 𝐶|𝐸፬|ኼ, with C a
proportionality factor (Liou 1980), to obtain the polarized intensity components

𝐹፬፫ = 𝐹።፫
𝑘ኾ𝛼ኼ
𝑅ኼ (2.23)

𝐹፬፥ = 𝐹።፥
𝑘ኾ𝛼ኼ cosΘ

𝑅ኼ (2.24)
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Figure 2.8: Schematic representation of Rayleigh scattering by a spherical particle, with electric field components Eᑚᑣ and E
ᑚ
ᑝ,

dipole moments Pᑣ and Pᑝ, scattering angle ᎕, and dipole moment angles ᎐ᑣ and ᎐ᑝ. (Liou 1980)

The total scattered intensity is then simply: 𝐹፬ = 𝐹፬፥ + 𝐹፬፫ . For unpolarized incident light the following
is true

𝐹፬ = 𝐹። (2𝜋)
ኾ𝛼ኼ

𝑅ኼ𝜆ኾ
(1 + cosኼ Θ)

2 (2.25)

The phase matrix for a full representation of light scattering follows accordingly (Hansen and Travis
1974a):

F፦(Θ) =
⎡
⎢
⎢
⎢
⎢
⎣

ኽ
ኾ(1 + cos

ኼ Θ) −ኽ
ኾ sin

ኼ Θ 0 0
−ኽ
ኾ sin

ኼ Θ ኽ
ኾ(1 + cos

ኼ Θ) 0 0
0 0 ኽ

ኼ cosΘ 0
0 0 0 ኽ

ኼ cosΘ

⎤
⎥
⎥
⎥
⎥
⎦

(2.26)

where the superscriptm indicates molecular scattering. This phase matrix is representative for isotropic
particles. In reality, however, atmospheric molecules show some degree of anisotropy, which is ac-
counted for with a depolarization factor, 𝛿, in the following form (Hansen and Travis 1974a):

F፦(Θ) = 1 − 𝛿
1 + 𝛿/2

⎡
⎢
⎢
⎢
⎢
⎣

ኽ
ኾ(1 + cos

ኼ Θ) −ኽ
ኾ sin

ኼ Θ 0 0
−ኽ
ኾ sin

ኼ Θ ኽ
ኾ(1 + cos

ኼ Θ) 0 0
0 0 ኽ

ኼ cosΘ 0
0 0 0 ኻዅኼ᎑

ኻዅ᎑
ኽ
ኼ cosΘ

⎤
⎥
⎥
⎥
⎥
⎦

+ 3𝛿/2
1 + 𝛿/2

⎡
⎢
⎢
⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦

(2.27)
A table with depolarization factors for various atmospheric molecules can be obtained from Hansen
(1971). The scattering matrix elements can be expanded in generalized spherical functions, for which
the expansion coefficients are provided in e.g. Stam et al. (2002). This approximation is used to
save large amounts of computer storage and computing time. We now have the single scattering
matrix of our molecular atmosphere. In the next paragraph we will define a single scattering matrix
for the aerosols in our atmosphere. The conversion of this scattering matrix to a reflection matrix or
transmission matrix is provided in Hovenier et al. (2004).

Mie scattering
Mie scattering is used to represent the single scattering behaviour of homogeneous isotropic spheres.
Just as with Rayleigh scattering (Paragraph 2.1.1), the solution for Mie scattering in the far-field is
required for exoplanetary reflection. Consider that an isotropic homogeneous spherical particle is il-
luminated by a light ray traveling in the positive z-axis (Figure 2.9). The scattered waves defined by
𝑅𝑢 and 𝑅𝑣, where 𝑅 denotes the distance to the far-field, are derived from reduced Hankel functions
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(described in more detail in Liou (1980)):

𝑅𝑢፬ = −𝑖𝑒
ዅ።፤ፑ cos𝜙
𝑘

ጼ

∑
፧዆ኻ

2𝑛 + 1
𝑛(𝑛 + 1)𝑎፧𝑃

ኻ
፧ (cos 𝜃),

𝑅𝑣፬ = −𝑖𝑒
ዅ።፤ፑ sin𝜙
𝑘

ጼ

∑
፧዆ኻ

2𝑛 + 1
𝑛(𝑛 + 1)𝑏፧𝑃

ኻ
፧ (cos 𝜃)

(2.28)

where k is the wavenumber, 𝑎፧ and 𝑏፧ are Mie coefficients and 𝑃ኻ፧ a Legendre polynomial. These
waves are expressed in spherical coordinates, where the total system is provided in Figure 2.9. The
components of the electric field vectors in spherical coordinates become (Liou 1980):

𝐸፬፫ = 0,

𝐸፬᎕ = −
𝑖𝑒ዅ።፤ፑ cos𝜙

𝑅𝑘

ጼ

∑
፧዆ኻ

2𝑛 + 1
𝑛(𝑛 + 1)[𝑎፧

𝑑𝑃ኻ፧ (cos 𝜃)
𝑑𝜃 + 𝑏፧

𝑃ኻ፧ (cos 𝜃)
sin 𝜃 ],

𝐸፬Ꭻ =
𝑖𝑒ዅ።፤ፑ sin𝜙

𝑅𝑘

ጼ

∑
፧዆ኻ

2𝑛 + 1
𝑛(𝑛 + 1)[𝑎፧

𝑃ኻ፧ (cos 𝜃)
sin 𝜃 + 𝑏፧

𝑑𝑃ኻ፧ (cos 𝜃)
𝑑𝜃 ]

(2.29)

From Equation 2.29 two scattering functions can be defined

𝑆ኻ(Θ) =
ጼ

∑
፧዆ኻ

2𝑛 + 1
𝑛(𝑛 + 1)[𝑎፧𝜋፧(cosΘ) + 𝑏፧𝜏፧(cosΘ)],

𝑆ኼ(Θ) =
ጼ

∑
፧዆ኻ

2𝑛 + 1
𝑛(𝑛 + 1)[𝑏፧𝜋፧(cosΘ) + 𝑎፧𝜏፧(cosΘ)]

(2.30)

with the coefficients 𝜋፧(cosΘ) and 𝜏፧(cosΘ) being defined as:

𝜋፧(cosΘ) =
𝑃ኻ፧ (cosΘ)
sinΘ ,

𝜏፧(cosΘ) =
𝑑𝑃ኻ፧ (cosΘ)

𝑑Θ

(2.31)

For consistency the scattered spherical waves are defined in the r- and l- unit direction (Section 2.1)
(Liou 1980):

𝐸፬፫ = −𝐸፬Ꭻ ,
𝐸፬፥ = 𝐸፬᎕

(2.32)

and from Liou (1980) the incident electric vectors are

𝐸።፫ = 𝑒ዅ።፤፳ sin𝜙,
𝐸።፥ = 𝑒ዅ።፤፳ cos𝜙

(2.33)

Using Equations 2.29, 2.30, 2.32 and 2.33 the fundamental system of equations for a light beam
scattered by homogeneous spheres can be obtained (de Rooij and van der Stap 1984; Hansen and
Travis 1974a; Liou 1980)

[ 𝐸
፬
፥
𝐸፬፫ ] =

𝑒ዅ።፤ፑዄ።፤፳
𝑖𝑘𝑅 [ 𝑆ኼ(Θ) 0

0 𝑆ኻ(Θ) ] [
𝐸።፥
𝐸።፫

] (2.34)

More detailed derivations of the functions 𝑎፧ and 𝑏፧ are provided in de Rooij and van der Stap (1984).
The next step is now to define the total single scattering matrix or phase matrix, which is proportional
to the transformation matrix T(Θ):

Fፚ(Θ) = 4𝜋
𝑘ኼ𝜎፬፜ፚ

T(Θ) (2.35)
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Figure 2.9: Incident and scattered electric vectors in Cartesian (analogous to r- and l-direction) and spherical coordinates (Liou
1980). Electric field components are thus provided by Eᑚᑣ and E

ᑚ
ᑝ (cartesian) and Eᒍ and Eᒣ (spherical). The direction of

propagation is the positive Z-axis and a scattering angle of ጆ. The scattered electric field components are denoted with the
superscript s.

where the superscript a is a shortname for aerosols. Following van de Hulst (1957), the transformation
matrix, T(Θ), is defined as:

T(Θ) =

⎡
⎢
⎢
⎢
⎢
⎣
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⎥
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⎦

(2.36)

where the asterisk denotes the complex conjugate. Similar to the Rayleigh scattering single scattering
matrix, the Mie single scattering matrix is expanded into expansion coefficients according to the expan-
sion provided in de Rooij and van der Stap (1984); Domke (1974). The conversion of this scattering
matrix to a reflection matrix or transmission matrix is provided in Hovenier et al. (2004).

2.2. PyMieDAP code
Since the basic theory of radiative transfer was discussed in the former section, we can now have a
closer look at the PyMieDAP code that we will use to model the Earth. Not only the atmosphere of our
exoplanet will influence the reflection behaviour towards the observer, but also the surface, both of
which implementations in PyMieDAP are covered. The radiative transfer of PyMieDAP is applied to an
arbitrary amount of pixels. To understand how the reflection is computed for a grid of pixels the basic
formulas for disk integrated and disk-resolved reflected spectropolarimetric signals are provided.

2.2.1. PyMieDAP’s basic structure
The PyMieDAP radiative transfer code (Rossi et al. 2018) is used to model Earth as an exoplanet. This
code allows the user to compute the Stokes vector reflected from exoplanets. The program consists
of several modules/subroutines written either in Python or Fortran, with the Fortran subroutines being
interfaced with Python. In Figure 2.10 an overview of the PyMieDAP code is provided. The core radia-
tive transfer computations are housed by the Fortran subroutines, mainly covering the doubling-adding
algorithm (see de Haan et al. 1987a), the Mie scattering and Rayleigh scattering and some geometrical
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conversion algorithms. The input to and output from these routines is housed in the Python environ-
ment.

The variables that an user can specify to model a certain locally plane horizontally homogeneous,
but vertically inhomogeneous atmosphere are:

• a list containing the wavelengths of the incident light;

• gravitational acceleration of the planet;

• a reflection matrix or Fourier coefficients file to describe the planetary surface;

• the depolarization factor of the atmospheric gas;

• the molecular mass of the atmospheric gas;

• a confirmation to automatically compute the gaseous refractive index. Options are restricted to
”air”, 𝐶𝑂ኼ, 𝐻ኼ, 𝐻𝑒 and 𝑁ኼ. The relation for ”air” is retrieved from Ciddor (1996), where ”air” is
defined as dry air at 15∘𝐶, 1013.25 Pa, and with 443 ppm 𝐶𝑂ኼ content.

• temperature of the star;

• distance between the planet and star;

• the radius of the star;

• a sub class to define the planetary atmosphere with multiple layers. The input parameters for a
single layer object are the following:

– the bottom pressure of the layer;
– the aerosol optical thickness of the layer;
– the column density of the layer;
– an option to compute the optical thickness for molecular (Rayleigh) scattering;
– an user-defined optical thickness for molecular (Rayleigh) scattering;
– optical thickness of gaseous absorption.
– a subclass to define a type of aerosols in a layer. This aerosol object is described by the
following input parameters, with additional input parameters for layered spherical particles:
⋄ the effective radius and variance of the aerosol;
⋄ the real and imaginary refractive index;
⋄ the type of distribution of particle sizes;
⋄ an user preferred label of the aerosol;
⋄ if layered spheres are present:

· the real and imaginary refractive index of the inner core, the outer core is specified
with the previous index;

· the ratio between the radii of the outer and inner core.

Based on the input parameters for the aerosol properties and gaseous properties, Mie and Rayleigh
scattering matrices are computed and combined for each distinct layer. Subsequently, the doubling-
adding method computes the reflection matrix for the entire atmosphere, including the surface, and
expands it into Fourier coefficients. These coefficients describe the Top Of Atmosphere (TOA) scattering
behaviour of the entire system. The Stokes vector of the reflected light can then be computed at the
desired geometry(ies) and wavelength(s). A more detailed description of the surface and atmospheric
models are provided in the following paragraphs.

The arrangement of the pixels in a planetary disk can exhibit different structures, ranging from a
full homogeneous disk based on one pixel model type to a patchy cloud coverage that is based on
two different pixel model types: a model simulating clear sky conditions and one simulating cloudy
conditions. More specifically, PyMieDAP calculates a gridded disk and allows one to mask regions of
cloud cover on that disk that correspond to (an) a priori defined pixel model(s). To obtain disk-resolved
or integrated spectropolarimetric signals from these grids a more detailed description is provided in the
last paragraph of this section.
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Figure 2.10: Schematic representation of PyMieDAP doubling-adding algorithm (Rossi et al. 2018).

Surface model
The surface model that is used in PyMieDAP is a Lambertian depolarizing reflecting surface, which is
described by a reflection matrix. For a Lambertian surface, its albedo is specified in the (1, 1) element
of the reflection matrix, where other entries describe how incident light undergo changes in their po-
larized state, hence being zero (Rossi et al. 2018). Furthermore, due to its isotropic reflection, the
matrix is geometrically independent. The surface layer is described by the lowest layer in the doubling
adding method.

More detailed surface models can be implemented in PyMieDAP by transforming a geometric dependent
surface model to ”Fourier files” and providing it as a read file for the algorithm. These ”Fourier files”
need to be restricted to the same format as that generated by PyMieDAP itself. In short, Fourier files
are data files that contain expansion coefficients, which describe the total reflection from the locally
plane horizontally homogeneous model atmosphere for any desired geometry1.

Atmospheric model
In Section 2.1 a detailed description of atmospheric scattering is provided. In this theoretical description
Rayleigh and Mie scattering matrices are defined which can be described by expansion coefficients (de
Rooij and van der Stap 1984; Domke 1974). In order to model a layer with multiple aerosols in
combination with gaseous scattering, phase matrices for Rayleigh and Mie scattering thus have to be
combined. Subsequently, a mixed layer is modeled by PyMieDAP as follows (see e.g. Stam 2008a)

F(Θ) = 𝑏፦፬፜ፚF፦(Θ) + 𝑏ፚ፬፜ፚFፚ(Θ)
𝑏፦፬፜ፚ + 𝑏ፚ፬፜ፚ

(2.37)

where F፦(Θ) and Fፚ(Θ) are the scattering matrices of molecular (Rayleigh scattering) and aerosol (Mie
scattering) scattering; and 𝑏፦፬፜ፚ and 𝑏ፚ፬፜ፚ are the molecular (gaseous) and aerosol scattering optical
thicknesses, respectively. For each layer there is no limitation for the number of aerosols that can be

1For more information about these coefficients one can consult Section 3 and 4 in de Haan et al. (1987a).
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modeled. For each mixture of aerosols, the scattering matrix is computed and summed accordingly

F(Θ) =
∑፧።዆ኺ 𝑏ፚ,።፬፜ፚF

ፚ(Θ)
∑፧።዆ኺ 𝑏ፚ,።፬፜ፚ

=
∑፧።዆ኺ 𝑏ፚ,።፬፜ፚF

ፚ(Θ)
𝑏ፚ፬፜ፚ

=
፧

∑
።዆ኺ
𝑓።Fፚ። (Θ) (2.38)

where i is the distinct type of aerosol, n is the number of aerosol types, 𝑏ፚ፬፜ፚ the total aerosol scattering
optical thickness of the layer, 𝑏ፚ,።፬፜ፚ the scattering optical thickness of aerosol type i, and Fፚ። (Θ) the
scattering matrix of aerosol type i.

Integrating over the planetary disk
To compute the integrated signal we refer again back to the definitions of the two reference planes
from Section 2.1:

1. Firstly, the planetary plane of scattering coincides with the center of the planet, the observer and
the parent star;

2. Secondly, the local plane of scattering which is defined by the local meridians and the local zenith.

In that section, the second reference frame was used to define locally reflected light by the atmosphere
and the surface. The first reference plane will be used to describe the disk-integrated and disk-resolved
(Section 2.2.1) reflected light from a planet. The analytic formulation of the total reflected light over
the illuminated and visible part of the planetary disk is given by (Eq. 17 of Stam et al. 2006)

𝜋F(𝛼, 𝜆) = 1
𝑑ኼ ∫�

𝜇𝜇ኺRᖣኻ(𝜇, 𝜇, 𝜙 − 𝜙ኺ, 𝜆)𝐹ኺ(𝜆)𝑑𝑂 (2.39)

where d is the distance between the observer and planet, 𝐹ኺ is the unpolarized incident flux vector, 𝜋F
the flux vector of reflected starlight and 𝜇𝑑𝑂/𝑑ኼ is the solid angle from which the area 𝑑𝑂 is seen by the
observer. For horizontally inhomogeneous planets, the reflection matrix is depending on the orientation
between the planet and the observer. For all locally reflecting matrices a rotation is required, such that
the reference plane is no longer the local meridian but the planetary scattering plane, where it is thus
dependent on the location of surface area 𝑑𝑂 and the local viewing angle 𝜃. The rotated reflection
vector is obtained by (see Rossi et al. 2018)

Rᖣኻ = L(𝛽)Rኻ (2.40)

where L is the rotation matrix provided by Equation 2.6. In this case, 𝛽 is the angle between the local
meridian plane and the planetary scattering plane, being positive when looking towards the observer
and rotating in the anti-clockwise sense from the old to the new plane. PyMieDAP calculates the
reflected flux by replacing the integral in Equation 2.39 by a summation over all visible and illuminated
pixels (Eq. 12 of Rossi et al. 2018)

𝜋F(𝛼, 𝜆) = 𝐹ኺ(𝜆)
𝑑ኼ

ፍ

∑
፧዆ኻ

𝜇፧𝜇ኺ፧L(𝛽፧)Rኻ(𝜇፧ , 𝜇ኺ፧ , 𝜙፧ − 𝜙ኺ፧ , 𝜆)𝑑𝑂፧ (2.41)

In theory each pixel can have a different reflection matrix, depending on the local reflection properties,
such that horizontal variations of Earth can be modeled. In practice this is computational very intensive
though. PyMieDAP calculates the disk-integrated light in the following sequence:

1. The planetary disk is divided into a desired number of pixels in order to obtain a horizontally
inhomogeneous model;

2. For each pixel 𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ and 𝛽 are computed;

3. For each pixel the local reflection matrix Rኻ is computed;

4. Equation 2.41 is used in combination with previous computed parameters.
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For the above process all local parameters (𝜇, 𝜇ኺ, 𝜙 − 𝜙ኺ, 𝛽 and Rኻ) are computed in the middle of
the pixel. In order to get rid of the dependency on d we normalize the reflected flux vector to the
geometric albedo:

𝐴ፆ(𝜆) =
𝜋𝐹(0∘, 𝜆)
𝜋𝐹ኺ

(𝜆)𝑑
ኼ

𝑟ኼ (2.42)

where 𝜋𝐹(0∘, 𝜆) is the total reflected flux at phase angle 𝛼 = 0∘ and wavelength 𝜆. The normalization
on Equation 2.41 produces:

F፧፨፫፦ =
F(𝛼, 𝜆)
𝐹ኺ(𝜆)

𝑑ኼ
𝑟ኼ =

ፍ

∑
፧዆ኻ

𝜇ኺ፧L(𝛽፧)Rኻ(𝜇፧ , 𝜇ኺ፧ , 𝜙፧ − 𝜙ኺ፧)
𝑑𝑂፧𝜇፧
𝜋𝑟ኼ (2.43)

where ፝ፎᑟ᎙ᑟ
᎝፫Ꮄ is equivalent to ኻ

ፍ and F፧፨፫፦ is the normalized reflected flux.

Computing the resolved spectral disk is very similar to that of the disk-integrated process (Section
2.2.1). The only difference is that the summation of Equation 2.41 is left out and the reflected flux is
calculated for each pixel separately:

(F፧፨፫፦)፧ = 𝜇ኺ፧L(𝛽፧)Rኻ(𝜇፧ , 𝜇ኺ፧ , 𝜙፧ − 𝜙ኺ፧)
𝑑𝑂፧𝜇፧
𝜋𝑟ኼ (2.44)

2.3. Modeling horizontally inhomogeneous Earth-like planets with
PyMieDAP

PyMieDAP in its original form is able to create horizontally homogeneous and inhomogeneous cloud
patterns above a homogeneous or inhomogeneous surface in the form of for example latitudinal bands,
subsolar clouds, polar cups, and patchy clouds (Rossi and Stam 2017). These models are using only a
small sequence of pixel models that are assigned to a ”masked” grid that is created by the Mask_planet
function. Due to the diversity of Earth, as well for its surface as its atmosphere, assigning a large
sequence of pixel models a priori to a specific sequence for a specific observational day is very cumber-
some. To create an inhomogeneous disk that is based on Earth observations the Mask_planet function
is extended to do just that. In the upcoming section a description of this extension is provided. The
term ”pixel models” is used to denote the locally plane parallel horizontally homogeneous atmosphere
and surface interface that describes the radiative transfer of a specific pixel. A general overview of the
modified PyMieDAP routine is provided in Appendix A. Using PyMieDAP to model the Earth-like model
requires us to define some core radiative transfer input parameters, which depend largely on the pa-
rameters that are extracted from the Earth observations. In Section 2.3.2, we provide a description
of how we tune the PyMieDAP code to efficiently simulate the reflected Stokes parameters from an
Earth-like exoplanetary model, to allow for reasonable computation effort. We also provide preliminary
results which are valuable in the construction of a planetary model.

2.3.1. Mask_planet function extension
In this section we will provide a brief explanation of how the Mask_planet function uses the Earth
observations to create an unique mask. The basic structure is provided in a small flow chart, Figure
2.11, and is referred to in the text.

Disk formation with getgeos function
The first step is to define the planetary disk in an arbitrary amount of pixels, on which we can apply
a mask. The disk coordinates and geometric quantities are computed with the getgeos2 function of
PyMieDAP. The planetary disk is approximated by pixels with equal area. A planetary disk with 20×20
pixels is shown in the left panel of Figure 2.12.

Pixel coordinate transformation
To extract data for a single pixel we need to mask a specific region of longitudinal and latitudinal
coordinates in the observation file(s). This is most efficiently done by converting the boundaries of the
2This function is part of the standard PyMieDAP tool (Rossi et al. 2018).
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Disk formation
with getgeos
function

Pixel coordinate
transformation

Extraction and
discretiza-
tion of data

Output mask
and statistics

Figure 2.11: Flowchart of the general process with which an Earth-like disk mask is produced, based on Earth observations.

disk pixels to polygons as conversion to another map projection does not produce square shapes. The
conversion is only valid for polygon coordinates that lie on the boundary or in the planetary disk. The
left panel of Figure 2.12 shows that a region of some pixels lie outside the planetary disk, i.e. outside
the trigonometric domain of conversion to longitudinal and latitudinal coordinates. On these pixels we
apply a shaping method to replace the invalid coordinates by a section of the circle boundary before we
convert it to the appropriate map projection. The result of this conversion is provided in the right panel
of Figure 2.12, showing that some pixels are cut off at the edges. In this process, we took into account
the resolution of the observations such that no data points are left out. The polygons are converted
from a Vertical Perspective Projection to a Geographic Map Projection (an example of the latter is shown
in Figure 2.14). The Vertical Perspective Projection approaches, in case of infinite distance between
the observer and the object, the Orthographic Projection (shown in Figure 2.13). The conversion from
a X,Y grid to a Longitude,Latitude (𝜙, 𝜆) grid for a sphere is described by the following set of equations
(Snyder 1987):

𝜌 = √𝑥ኼ + 𝑦ኼ,

𝑐 = arcsin 𝐷 − √1 − 𝜌
ኼ(𝐷 + 1)/(𝑅ኼ(𝐷 − 1))

𝑅(𝐷 − 1)/𝜌 + 𝜌/(𝑅(𝐷 − 1)) ,

𝜙 = arcsin cos 𝑐 sin𝜙ኺ + (𝑦 sin 𝑐 cos𝜙ኺ/𝜌),
𝜆 = 𝜆ኺ + arctan 2[(𝑥 sin 𝑐), (𝜌 cos𝜙ኺ cos 𝑐 − 𝑦 sin𝜙ኺ sin 𝑐)]

(2.45)

where 𝑃 is the distance between observer and object divided by the planet radius 𝑅, 𝜙ኺ the obliquity
of the planet and 𝜆ኺ the sub-observer point. The radius of the planet is 𝑅 = 1 to correspond with the
grid coordinates 𝑋 and 𝑌. Verification of the coordinate conversion is provided in Appendix B.

Extraction and discretization of data
We now have created the pixel polygons. The next step is to use these polygons to extract a portion
of the data. We achieve this by using the Python-package Rasterio. The ”mask” function of Rasterio
allows one to define a non-square geometry and read a two dimensional data set on which to extract
the corresponding geometry. In Figure 2.14 it is shown how the geometries are applied on the grid
of data, in this case Earth’s land cover. From this representation one can see that at the edges some
polygons seem to be missing. This is due to the square pixel approximation that we use in PyMieDAP,
that can be more clearly seen from the disk in the right panel of Figure 2.12, where some regions of
the planetary disk are not covered by a pixel.
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Figure 2.12: Illustration of a ኼኺ × ኼኺ pixel grid that approximates a planetary disk. In the left panel we see the pixel used to
approximate the disk. In the right panel we see the constructed polygons that are still in a X,Y coordinate system.

Figure 2.13: Schematic representation of disk coordinate conversion to geographic latitude and longitude coordinates (Snyder
1987).

Output mask and statistics
Now that we have acquired the (discretized) data for each pixel it is converted to an one dimensional
bit-string. In Figure 2.15 one can see the concept of such a masked disk for a four parameter Earth
model. In that case there was chosen to vary the surface type and three cloud parameters, where
the first integer denotes the type of land cover, and the other three integers define a certain cloud
parameter forming one type of cloud. Additionally, based on these parameters an additional set of
statistics are computed to broaden the parameter space. The following set is provided:

1. Mean values of the extracted cloud properties;

2. Land cover fractions of each land cover type;

3. Cloud fraction, i.e. the fraction of pixels that have nonzero optical thickness to the total number
of pixels;

4. Asymmetry of land cover and cloud properties, i.e. the fraction of pixels that have no equal land
cover or cloud properties mirrored over the equator to the total number of pixels. This statistic
thus has asymmetry values for each varying parameter on the disk;

5. Patchiness of each pixel.

2.3.2. PyMieDAP simulation strategy and pixel model results
In order to adequately implement and compute pixel models that can describe the Earth-like surface-
atmosphere system, several core parameters in the PyMieDAP code need to be determined. In the first
section we determine the required number of Gaussian abscissae based on the accuracy of simulated
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Figure 2.14: A representation of the method to extract data for a specific pixel. The data is provided in a Geographical Map
Projection of which an example of Earth’s land distribution is provided.

Stokes vectors and required computational effort. In the second section, based on the goal of this
research and again computation effort, we determine the number of Stokes elements to be computed,
where a lower number of Stokes elements yield a decrease in computation effort. Using these setting
we present the reflected Stokes elements from an isolated cloud layer with Earth-like cloud parameters.
Lastly, we will provide an estimation of the computation time required to model such cloud layers.

Number of Gaussian abscissae in pixel model computations
Earth-like clouds contain particles that have an effective particle size that is significantly higher com-
pared to the wavelength of interest (Han et al. 1994a). In Figure 2.16 we provide the relative difference
for 𝐹 and 𝑃𝑙 between a phase curve computed with 160 Gaussian abscissae and that with 110, 120,
130, 140 and 150 Gaussian abscissae. These simulations use a 20×20 pixel planetary disk covered by
a horizontally homogeneous thick cloud composed of particles with a large effective radius, and located
at mid altitudes: 𝜏 = 20, 𝑟 ፟፟ = 17.5 and 𝑃፜ = 700𝑚𝑏. The results that for 150 Gaussian abscissae
we do not see any significant difference in accuracy compared to 160 Gaussian abscissae. For the
total flux, we see a maximum relative difference of approximately ∼ 0.003 and for the total degree of
polarization a maximum relative difference of approximately ∼ 0.25%. When computing pixel models
with 160 Gaussian abscissae as compared to 150 Gaussian abscissae, PyMieDAP will have to write an
additional ∼ 13% in file size and the computation time increases by ∼ 46%. For a single pixel model
file this might not seem as a drastic increase, but when we want to compute an Earth-like exoplanet
with 150 different models at 5 different wavelength, resulting in 750 different models, this increase is
significant, without even considering the increase in time of reading the files. Lastly, for clouds with
lower effective radii and optical thicknesses the convergence is more quickly and requires less Gaussian
abscissae. We will thus compute all pixel models with 150 Gaussian abscissae.

Number of Stokes elements in pixel model computations
The size of the Stokes vector is limited to either three (𝐹, 𝑄, 𝑈) or four (𝐹, 𝑄, 𝑈, 𝑉) elements as we
need to model at least linear polarized fluxes to retrieve Earth-like exoplanetary spectropolarimetric
signals. From Hansen and Travis (1974a) we know that the circular polarization of reflected light from
planetary atmospheres is very small. In this research the analysis will be restricted to total flux and
linear polarized fluxes, so only requiring the computation of three Stokes elements. We omit the circular
polarization, because (1) measurements of circular polarization reflected from terrestrial exoplanetary
atmospheres show to be very small (Hansen and Travis 1974a). Although, some studies do argue that
the circular polarization is a valuable tool to unambiguously retrieve the presence of homochirality,
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Figure 2.15: Representation of a ኼኺ × ኼኺ masked disk that is based on a four dimensional varying parameter space.

e.g. vegetation (Sparks et al. 2009), which we will not be able to retrieve because of the depolarizing
Lambertian surface and the lack of a polarizing surface model anyway. (2) the computation time of the
Fourier files is on average increased by a factor of ∼ 3.

Reflection behaviour of cloud layers in the pixel models
We have now defined our core model parameters, which we can use to accurately compute our Earth-
like pixel models. In this last section, we will look at some results from the different types of cloud
models to identify the general behaviour. We will only model the layer with clouds and thus use a
Rayleigh optical thickness of zero and a black surface. The Earth-like cloud layers will be modeled
with four cloud particle effective radius values: 𝑅፞፟፟ = 8, 12, 16, 20 𝜇𝑚, and 16 values of cloud optical
thickness: 𝜏 = 0, 2, ..., 30 (see Han et al. 1994a; Nakajima and King 1990). In Figure 2.17 the Stokes
elements 𝐹, 𝑄 and 𝑈 are provided for the geometrical angles: 𝛼 = 0∘, 𝜃ኺ = 0.1∘𝑎𝑛𝑑 𝜃 = 0.1∘, which is
equivalent to a pixel located slightly above or below the planetary scattering plane. In the left panels
the reflection is provided as function of the cloud optical thickness and in the right panel as function
of the logarithmic value of optical thickness. With increasing optical thickness we see a logarithmic
like increase in flux, which makes sense as eventually a cloud is so thick that no significant amount
of light can travel through the layer and all is reflected back to space. Applying now a logarithm on
the optical thickness provides a linear like behaviour. This logarithmic behaviour was also observed
by Oreopoulos et al. (2007), who also argued that approximating a range of optical thickness values
by one ”mean” can best be applied with the logarithmic mean. No tests were made for the polarized
fluxes. The influence of the effective radius is very small, but seems to increase the reflected flux
decreasing radius. In the lower two panels we provided the reflection behaviour of the two linearly
polarized fluxes. We can see that the effect of the strong depolarizing Mie scattering of the clouds
has a far more direct effect on the polarizing fluxes than on the total flux. Also, for different values
of effective radius we see very different behaviour and an alteration in sign. In the right panels we
can see that applying a logarithmic value on 𝜏 provides a very linearly like behaviour for both polarized
Stokes elements, and thus shows that a logarithm mean can also better be applied for the polarized
fluxes. The specific behaviour of the pixel model located at different locations on the planetary disk is
provided in Appendix C. These different cases show the same behaviour as described in this section.

Computation effort for different cloud layer parameters
In the left panel of Figure 2.18 we present the computation time of pixel models with with a range
of different optical thicknesses that shows an increasing computational effort with increasing optical
thickness. In the middle panel we can see an increase in computation time for an increase in effective
radii (see de Haan et al. 1987a). In the right panel we see an increasing computation time for a
decreasing top pressure. This might not seem intuitively, but we will explain this by use of some
computed pixel models. The source essentially lies in the complex reflection pattern of the clouds in
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Figure 2.16: Relative difference in ፅ (upper panel) and ፏ፥ (lower panel) as function of phase angle for different number of DAP
Gaussian abscissae. All computations are made with 100 Mie Gaussian abscissae. Computation times are provided for all

cases. The simulation is started at 110 Gaussian abscissae, the smallest number of points that provide a converging sequence.

the geometrical domain: 𝜃ኺ, 𝜃 and 𝜙 − 𝜙ኺ. Such a complex pattern is provided in the upper two
panels of Figure 2.19, where we provided polar plots3 of 𝑄 for incidence angles of 𝜃ኺ = 0, 20, 40, 60
and 85∘. The emission zenith angle, 𝜃, is provided radially and 𝜙 − 𝜙ኺ with the circle periphery. For
completeness, we provided the polar plots for 𝐹, 𝑃𝑙 and 𝑈 in Appendix D, which essentially exhibit
similar patterns as 𝑄. These plots show that clouds exhibit ring like regions of high reflection that
spread out for higher incident angles. Additionally, we know that the reflection pattern of molecular
scattering (Rayleigh scattering) is rather easy (See Stam 2008a). If one puts a gaseous atmospheric
layer on top of a cloud layer, the complex features are flattened, resulting in a less complex shape to be
approximated by a Fourier expansion. By modelling the cloud layer at the top of the model atmosphere
the TOA reflection patterns become more complex, requiring more Fourier terms. Similar behaviour
also occurs when moving to longer wavelengths. We know that optical thickness of Rayleigh scattering
approximately scales with ኻ

᎘Ꮆ . This means that with a constant layer division the gaseous layer on top
of a cloud layer becomes optically thinner when moving to longer wavelengths, essentially allowing
complex reflecting patterns of the clouds to dominate the overall reflection. This effect can also be
seen in the lower three panels of Figure 2.19, where we modeled TOA reflection 𝑄 for 𝜆 = 350, 550
and 865 𝑛𝑚. In conclusion, the computation time increases with decreasing cloud top pressure and
with increasing wavelength, due to the increase in complexity of the TOA reflection. Also note from
the polar plots that by using 150 Gaussian abscissae the complex reflection patterns are reproduced
well.

3These polar plots are not to be mistaken by resolved plots of homogeneous planetary disks. That is, the plots show the TOA
reflection of a horizontally homogeneous, but vertically inhomogeneous atmospheric model with a low reflecting Lambertian
surface.
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Figure 2.17: Normalized reflected flux (upper panel) and polarized fluxes ፐ (middle panel) and U (lower panel) as function of
cloud optical thickness for four values of cloud particle effective radius. The computations are made for a pixel located at
ᎎ ዆ ኺ∘ , ᎕Ꮂ ዆ ኺ.ኻ∘ and ᎕ ዆ ኺ.ኻ∘. The left panels show the cloud optical thickness on the x-axis and the right panels the

logarithmic value of cloud optical thickness.
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Figure 2.18: Computation time of Fourier files for different cloud optical thickness (left panel), cloud particle effective radius
(middle panel) and cloud top pressure (right panel).
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Figure 2.19: Polar plots representing the TOA reflection ፐ of a locally horizontally homogeneous, but vertically inhomogeneous
atmosphere. The atmosphere includes a layer of clouds. The upper left to the middle right panels correspond to solar zenith
angles of ᎕Ꮂ ዆ ኺ, ኼኺ, ኾኺ, ዀኺ and ዂ኿∘,respectively. In the bottom panel the polar plots for ᎘ ዆ ኽ኿ኺ, ኿኿ኺ and ዂዀ኿ ፧፦ are

provided.





3
The Earth model

In this chapter we present the Earth-like planetary model that is used in this research. If one looks at
Earth the most distinctive inhomogeneities are the surface and clouds covers. To properly account for
these inhomogeneities and still be able to run the PyMieDAP code with adequate computation times and
storage a discretized (variable) parameter space is defined. The variable parameters are retrieved from
Earth observations (Section 3.1). Due to the large computation times of pixel models a discretization
will be applied on the model surface (Section 3.2.1) and model atmosphere (Section 3.3). Based on
this discretization a sensitivity study is provided in Section 3.4. Further considerations and assumptions
regarding our model are provided in the last section of this chapter (Section 3.5).

3.1. Earth Observations
PyMieDAP defines a reflecting terrestrial body by its surface, atmospheric molecules and atmospheric
aerosols. The properties that described these three physical parts of Earth are extracted from the
MOderate Resolution Imaging Spectroradiometer (MODIS) mission databases. In the remainder of this
thesis we will refer to MODIS observations whenever we use observations. In the search for a suitable
database, the major requirements were the following: quality of observations, preferable daily cover-
age for multiple years, and coverage of full parameter set.

Two other observational campaigns that provide global atmospheric observations are the International
Satellite Cloud Climatology Project (ISCCP) and the Multiangle Imaging Spectroradiometer (MIRS).
MIRS is not suitable as it only provides optical depth observations above the oceans and does not pro-
vide cloud effective radii observations. ISCCP is not able to retrieve the cloud particle effective radius
and base their retrievals on a less accurate algorithm than MODIS (Marchand et al. 2010). Besides
MODIS, land cover products can also be obtained from the GlobeCover (MERIS sensor) and GLC2000
(SPOT VEGETATION). These products are developed using unsupervised classification techniques and
moreover are only restricted to land cover observations (Friedl et al. 2010).

The daily coverage over multiple years requirement is twofold; firstly, multiple years of observations
are required if one wants to model inter-annual variability. As an example, Pallé et al. (2008) used
multiple years to assess the accuracy of his rotation rate retrieval method. Secondly, if one wants to
approximate observed data, such as Earthshine observations, daily coverage of that date is a minimum
requirement, because of the daily changing cloud patterns on Earth.

Using MODIS data sets for every varying model parameter allowed us to simplify the extraction and
processing procedures, because they consistently use the same data set structures. Simple examples
are the naming conventions a specific data set uses, the file type in which observations are stored and
the structure of the data. More specifically, data is most generally stored as an integer representation
of a ”real” float value. This integer value then needs to be scaled and/or offsetted after the data is
extracted from the file to its ”real” float value.

31
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In the subsequent sections a description of the used MODIS data sets is provided as well as the
discretization of the data. A detailed description of all MODIS data set structures, retrieval algorithms
and additional information is provided in EOS Data Products Handbook Volume 1 (2000) (n.d.); EOS
Data Products Handbook Volume 2 (2000) (n.d.).

MODIS Land Cover Type Data set from 2016 was retrieved from https://lpdaacsvc.cr.usgs.
gov/appeears/, maintained by the NASA EOSDIS Land Processes Distributed Active Archive Center
(LP DAAC) at the USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South
Dakota. The Aqua/MODIS Cloud Top Pressure, Cloud Particle Effective Radius, Cloud Optical Thickness
and Cloud Fraction Daily L3 Global 1 Deg. CMG datasets were acquired from the Level-1 and Atmo-
sphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC), located in the
Goddard Space Flight Center in Greenbelt, Maryland (https://ladsweb.nascom.nasa.gov/).

3.2. The model surface
In order to model the reflection by an Earth-like surface, different approximate methods can be applied
to a specific type of surface, e.g. a Fresnel’s reflecting surface to a fresh ice sheet and an ocean surface,
or a Bidirectional Reflectance Distribution Function (BRDF) surface to that of vegetation (Coakley 2003).
To be able to apply such methods to a specific surface type we need some indication of which surface
type or land cover type corresponds to which pixel on the planetary disk. In similar studies that model
Earth-like exoplanets, such as Cowan et al. (2009); Fujii et al. (2011, 2010); Kawahara and Fujii (2010,
2011); Oakley and Cash (2009), MODIS land cover observations are also used. To globally retrieve the
land cover type, MODIS uses both the Aqua and Terra satellites. Five different classifications for land
cover can be used: the International Geosphere-Biosphere Programme (IGBP), University of Maryland
classification (UMD), MODIS LAI/FPAR algorithm (LAI/FPAR), Biome (BGC) and the Plant Functional
Type (PFT) classification. Of these five classifications, the IGBP classification is used, being the most
practical (Friedl et al. 2010). This classification consists of 17 classes, including eleven categories of
natural vegetation discretized by life form, three classes of mosaic and developed covers and three
non-vegetated classes. An example of an IGBP classified global land cover is provided in Figure 3.1.
From this cover, one can clearly see the contributions of North and South Polar ice, the Amazone forests
and the Sahara dessert. The land cover type algorithm development and validation efforts are based on
a large global network of test sites that represent major biomes and cover types. The spatial resolution
of the surface coverage data is 500𝑘𝑚×500𝑘𝑚. On this grid a quality assurance data set is applied to
only consider the confidently retrieved pixels in our surface model.1 The overall accuracy of collection
5.1 is reported to be 74.8%, which is substantiated by several studies (MODIS Land Validation Web
Site n.d.). In the newer collection 6 data, substantial upgrades have been applied. A study is in review
that exactly describes the accuracy and development of this new data set that we applied in our model
(User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product n.d.a).

Figure 3.1: Global MODIS land cover type according to the IGBP classification.

1more information at: https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/
mcd12_user_guide_v6.pdf

https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://ladsweb.nascom.nasa.gov/
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mcd12_user_guide_v6.pdf
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mcd12_user_guide_v6.pdf
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3.2.1. Surface discretization
The surface is modeled with the land cover database of MODIS in combination with the Aster Spectral
Library. The Aster Spectral Library (User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and
MCD12C1) Product n.d.b) provides Lambertian Equivalent Reflection (LER) albedos for the desired
wavelength region, shown in Figure 3.2. Because of the high spatial resolution of the land cover
observations we may end up with large sets of different land cover types in one disk pixel. To assign
one value of land cover type to a pixel we will use the mode of the entire set of data that falls into
that pixel. When using Lambertian albedos, a better approximation could have been to weight the
land cover types by its reflection. But, if one were to use geometrical dependent surface models, i.e.
anisotrope reflecting surfaces, such as a BRDF or a Fresnel’s reflecting surface, this type of weighted
processing of land cover becomes very complex.
For a first order approximation we will use four different surface types: Ocean, Vegetation, Desert
and Snow/Ice. In Table 3.1 the IGBP classification for the four discretized surface covers is provided.
Fujii et al. (2010) used the same discretization which showed to provide fairly accurate results in their
attempt to retrieve land distributions from their simulated photometric signals.

Table 3.1: IGBP classification applied to the model surface

No. IGBP Classification Our Classification Ocean/Land
0 Water Ocean Ocean
1 Evergreen needleleaf forest Vegetation Land
2 Evergreen broadleaf forest Vegetation Land
3 Deciduous needleleaf forest Vegetation Land
4 Deciduous broadleaf forest Vegetation Land
5 Mixed forest Vegetation Land
6 Closed shrubland Vegetation Land
7 Open shrubland Soil Land
8 Woody savannas Vegetation Land
9 Savannas Vegetation Land
10 Grasslands Vegetation Land
11 Permanent wetlands Soil Land
12 Croplands Vegetation Land
13 Urban and built-up Soil Land
14 Cropland/natural Vegetation mosaic Vegetation Land
15 Snow and Ice Snow Land
16 Barren or sparsely vegetated Soil Land

Figure 3.2: Lambertian Equivalent Reflection for Ocean, Ice/snow, Desert and Vegetation surface covers in the ultra-violet,
visible and near infrared spectral domain (User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product

n.d.b).
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3.3. The model atmosphere
From a theoretical point of view the reflection behaviour of a cloud is depending almost exclusively
on the cloud optical thickness and cloud particle effective radius (Fouquart et al. 1990; Nakajima and
King 1990; Slingo 1989). Modeling clouds in an Earth-like atmosphere introduces two more variables:
the vertical position and fraction of clouds. The effect of both parameters on reflected spectropolari-
metric signals was thoroughly examined by Rossi and Stam (2017). Their results show a significant
effect on the phase curves of 𝐹 and 𝑃 in an edge-on configuration. Furthermore, using PyMieDAP, one
may also vary the effective variance and the refractive index of the cloud particles. From a practical
view modeling a variable effective variance might not be ideal as global and daily observations are not
available. On the other hand, does the variability induce significant changes in our spectropolarimetric
signals? This question can also be asked about the variable particle refractive index. These ques-
tions will addressed in Section 3.3.2. Multi-layered liquid water clouds are not considered in this thesis.
For a thorough analysis about multi-layered clouds one may consult Karalidi, Stam and Hovenier (2012).

In the following subsections we will describe the parameterised gaseous atmosphere (Subsection 3.3.1)
and clouds (Subsection 3.3.2).

3.3.1. Parameterization of the molecular atmosphere
The spatial variation of the molecular atmosphere is kept constant in this analysis. A constant Earth-like
gas mixture is assumed with a molecular mass of 29𝑔/𝑚𝑜𝑙, a depolarization factor of 0.03 and constant
gravitational acceleration of 9.81𝑚/𝑠ኼ (Hansen and Travis 1974a; Rossi and Stam 2017). A wavelength
dependent air refractive index is used to compute the scattering cross section of the gas molecules,
according to the dispersion formula of Ciddor (1996). We will only use continuum wavelengths, thus
no gaseous absorption is considered. The atmosphere is modeled by three horizontally homogeneous
layers, being in hydrostatic equilibirum, on top of a horizontally homogeneous Lambertian surface at
a surface pressure of 1𝑏𝑎𝑟. If present, the cloud particles are placed in the middle atmospheric layer.
The specification of such a cloud layer is given in the next section.

3.3.2. Parameterization of the clouds
Clouds are modeled as a horizontal homogeneous atmospheric layer filled with aerosols and a vertical
extent of 100 𝑚𝑏. The aerosols are homogeneous spherical liquid water particles, with a constant
refractive index of 𝑛፫ = 1.33 + 1𝑒 − 8𝑖 (Hale and Querry 1973) and a two-parameter gamma parti-
cle size distribution (Hansen and Travis 1974a). Daimon and Masumura (2007); Kokhanovsky (2004)
show that the real part of the refraction index in the ultra-violet, visible and near-infrared wavelength
regions is fairly constant, but the imaginary part varies significantly between 𝑛። = 10ዅ኿ − 8 × 10ዅኻኺ
(Pope and Fry 1997). Hansen and Travis (1974a) showed the effect of 𝑛። on the scattering properties
of a terrestrial atmosphere for various effective particle size distributions (𝑥 = 1−1000). They provide
that for 0.001 ≧ 𝑛። the effect on the single scatter properties of cloud particles2 is negligible.

A gamma size distribution is described by the particle effective radius and the effective variance. The
effective variance is based on Earth clouds according to Han et al. (1994b); Nakajima and King (1990):
𝑣፞፟፟ = 0.1. In the ultra-violet, visible and near-infrared wavelength regions this effective variance
varies between ∼ 0.05 − 0.2 (Diem 1948; Platnick et al. 2015). Hansen and Travis (1974a) simulated
the single scattering albedo as function of the effective size parameter (𝑥) for various values of the
effective variance. For values of 𝑥 ≧ 10 the single scattering albedo is practically insensitive to the
width of the particle size distribution. For Earth-like cloud effective radii and wavelength in the range of
0.3−1.0𝜇𝑚 we obtain effective size parameters of ≳ 30. It is thus safe to assume a constant effective
variance of 𝑣፞፟፟ = 0.1.
As mentioned before, the particle effective radius, optical thickness and top pressure are not constant in
our model and will vary according to the MODIS observations. The horizontal position of clouds is mod-
eled by the resolved planetary disk approximation. Additionally, in this research we will not consider ice
particle clouds. Firstly, because they are hard to model (Liou and Yang 2016) and a method to do so is
not implemented in PyMieDAP, although it is possible to import scattering matrices of ice crystals into

2The particle effective radius for cloud ranges from ∼ ኿ ዅ ኽኺ ᎙፦ (Han et al. 1994a), resulting in a range of size parameters for
the ultra-violet to near-infrared wavelength range of: ፱ ዆∼ ኽ኿ ዅ ኿ኾኺ.
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a layer. Secondly, it would increase the number of pixel models and thereby increasing computation
time and storage. The effect of ice clouds on the spectropolarimetric signal in an Earth-like atmosphere
is modeled by Karalidi, Stam and Hovenier (2012). In this paper, the effect of ice clouds on the liquid
water cloud enhancements in flux and polarization, primarily the rainbow feature, shows to be fairly
small; unless the atmosphere contains a very large number of ice clouds the primary rainbow feature of
the liquid water clouds is still observable in the polarimetric signal. Karalidi, Stam and Hovenier (2012)
also shows that the scattering properties of underlaying liquid water clouds are masked by ice clouds
if their optical thickness exceeds approximately 𝜏።፜፞ ≳ 3. From Rossow and Schiffer (1999) we can
read that the most abundant ice clouds, i.e. Cirrus and Cirrostratus, have both annual mean optical
thickness values of ∼ 2.2. The third less abundant ice cloud type, the Deep convective cloud, has
annual mean optical thickness values of over 30 but has only an approximate abundance of ∼ 2.6%.
We therefore expect that ignoring ice clouds only insignificantly effects our spectropolarimetric signals,
but greatly limiting computation times and storage.

In order to restrict the computation time and disk space for computing the pixel models even more,
bins need to be created for the varying cloud properties. These restrictions are mainly based on the
most abundant types of clouds in Earth’s atmosphere and their position, and to second order based on
computation time and storage. The histograms, which will show the abundance of each parameter,
are based on the MODIS monthly averaged data sets: MYD08-M3 collection 6.1. A full year is chosen,
such that any seasonal effects on the cloud properties are covered. To adequately represent the distri-
butions we fitted 200 of the most commonly used continuous statistical distributions to the empirical
data (Kotz 1994), from which we obtained a Johnson SU Distribution, Johnson SB Distribution and a
Generalized Normal Distribution for the cloud optical thickness, cloud particle effective radius and cloud
top pressure, respectively. From these distributions we can define confidence intervals, from which we
strive to cover 95% of the data adequately. The distributions and the confidence intervals are shown
in Figure 3.3.

The observations for cloud top pressure, cloud particle effective radius and cloud optical thickness
are provided for probably cloudy and confidently cloudy pixels only, in time series of one day (solar
day), eight days or a month (Platnick et al. 2015). In order to obtain the appropriate pixel cloud cov-
erage we also need to apply a cloud fraction data set. In the subsequent sections we will provide a
description and discretization of the used observations.

Cloud Top Pressure
The cloud top pressure is provided for the full spatial domain of latitude and longitude in a geograph-
ical format on a 1∘ × 1∘ pixel sized grid. This daily data product is part of the MYD08 data set. A
representation of such a grid is provided in Figure 3.4. In order to obtain the cloud top pressure of
a planetary disk pixel, a weighted arithmetic mean will be applied on the cloudy MODIS pixels3 only.
The averaging routine is defined by:

�̄�፜ =
1
𝑁፜

ፍᑔ
∑
።዆ኻ
𝑃፜,። ∗ 𝐶𝐹። (3.1)

where 𝑁፜ are the number of cloudy MODIS pixels, 𝑃፜,። the cloud top pressure for a MODIS pixel i, and
𝐶𝐹። the cloud fraction for a MODIS pixel i. MODIS uses the same averaging scheme (Hubanks et al.
2015), which is applied on the MOD06 data set from which the MYD08 data set is derived. The weights
on the top pressure data are simply the collocated cloud fractions. The equatorial data gaps, which
are caused by the limited spatial coverage of the satellite, are interpolated by averaging over only the
valid pixels that fall into the disk pixel, and applying the same weighted arithmetic mean (Fujii et al.
2011).

Cloud Top Pressure Discretization
We will model the cloud top pressure on a relatively large range of top pressures as compared to
the ISCCP classification (Rossow and Schiffer 1999). In Figure 3.5 we see that the mean cloud top

3Whenever we use the term MODIS pixels we refer to the pixels in the MODIS observation data sets.
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Figure 3.3: Histograms and fitted Probability Density Functions (PDF’s) to the cloud optical thickness (upper panel), the cloud
particle effective radius (middle panel) and the cloud top pressure (lower panel). For all PDF’s a confidence interval of ዃ኿% is

provided. On top of the figures the PDF fitting parameters are provided.
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Figure 3.4: Daily averaged global MODIS cloud top pressure distribution.

pressure as function of latitude remains between approximately ∼ 550 − 800 𝑚𝑏, where this relation
is based on monthly mean MODIS data from 2011 entirely. Also, from Section 2.3.2 we know that
the computation time significantly increases with decreasing top pressure. From Figure 3.3(c) we see
that the peak cloud top pressure is located at around ∼ 680 𝑚𝑏, which corresponds approximately
with previous studies that show average cloud top pressures of 700 𝑚𝑏. We will center our bins on
this average cloud top pressure of 700 𝑚𝑏. In the histogram distribution we see another local peak at
around 850 𝑚𝑏, on which we center the second bin. The low cloud top pressures will be approximated
by the third bin, centered at 500 𝑚𝑏, around which we see still some significant abundances. For the
cloud top pressure we also considered the cloud top pressure - cloud optical thickness bins of ISCCP
(Rossow and Schiffer 1999). In a later research by Hahn et al. (2001), however, a comparison with
individual weather observations shows that the validity of this discretization is somewhat coarse for at
least ”low clouds”. We do however cover approximately the same region of cloud top pressure that
represent the liquid water clouds (Rossow and Schiffer 1999), but distinguishing it into three bins as
compared to their two bin approximation. The three bins in Table 3.2 will be used to discretize the
cloud top pressure. The bin boundaries show the interval in which a pixel parameter may fall. For
every parameter that falls in such a bin, it is approximated by a bin value.

Table 3.2: Discretization bins of the cloud top pressure with associated bin values.

Bin number 1 2 3
Bin boundaries 0<CTP≦600 600<CTP≦800 800<CTP
Bin values 500 700 850
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Figure 3.5: Latitudinal dependence on mean cloud top pressure derived from monthly data in 2011 entirely.
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Cloud Particle Effective Radius
Cloud particle effective radius observations are restricted to daytime only as the retrieval is based on
measurements of reflected sunlight. The observations are provided on a global grid of 1∘ by 1∘ pixels
as shown in Figure 3.6. The disk pixel cloud particle effective radius is computed in a similar fashion
as the cloud top pressure:

̄𝑟 ፟፟,፜ =
1
𝑁፜

ፍᑔ
∑
።዆ኻ
𝑟 ፟፟,፜,። ∗ 𝐶𝐹። (3.2)

where 𝑁፜ are again the number of cloudy pixels, 𝑟 ፟፟,፜,። the cloud particle effective radius for a MODIS
pixel i, and 𝐶𝐹። the cloud fraction for a MODIS pixel i. Interpolation of the latitudinal and orbital gaps is
the same as that of the cloud top pressure, only for these daytime only observations we obtain a large
gap at high latitudes. For the relatively coarse pixel disk sizes to the observations this type of interpo-
lation is possible at these outer regions. If significantly more disk pixels are required, reprocessing of
the data can be considered, or one could consider using 8-day or monthly averaged MYD08 data sets
to fill the gaps.

Figure 3.6: Daily averaged global MODIS cloud particle effective radius distribution.

Cloud Particle Effective Radius Discretization
The 95% interval of cloud particle effective radius lies between 9 − 21 𝜇m. From Section 2.3.2 we
know that the computation time increases for increasing particle effective radii. We see, however, from
Figure 3.7 that the largest effective radii are located near zero latitude. The histogram bars and the
fitted distribution show that there are two regions of high abundance, one located near ∼ 12.5 𝜇𝑚 and
one near ∼ 17.5 𝜇𝑚. Two of the bins are centered at these regions. We will, however, not use a bin
larger than 17.5 𝜇𝑚, due to the high computation time. A third bin is located at the lower boundary
of the distribution, centered at 10 𝜇𝑚 describing the fairly steady decreasing abundance. The fourth
bin is centered at 15 𝜇𝑚 that approximates the fairly steady varying abundance between the fist two
bins. In total, the distribution is thus approximated by four equally spaced bins with corresponding
bin values, provided in Table 3.3. A similar discretization is used by Nakajima and King (1990), also to

Table 3.3: Discretization bins of the cloud particle effective radius with associated bin values.

Bin number 1 2 3 4
Bin boundaries 0≦ CER<11.25 11.25≦ CER<13.75 13.75≦ CER<16.25 16.25≦ CER
Bin values 10 12.5 15 17.5

numerically simulate Earth clouds.

Cloud Optical Thickness
In Figure 3.8 a daily global observation of the cloud optical thickness is provided. The cloud optical
thickness have the same spatial extend as the cloud particle effective radius, i.e. daytime only, and
the same spatial resolution. For the cloud optical thickness two data sets are available: one based on
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Figure 3.7: Similar to Figure 3.5, except for the cloud particle effective radius.

the ”logarithmic mean”, and one based on the ”arithmetic mean”. The ”logarithmic mean” processed
data set provides for a better approximation in the range of optical depths of 0.01 − 100, according
to Hubanks et al. (2015); Oreopoulos et al. (2007). In the analysis performed in Section 2.3.2 we
observed the same results for total flux as well as for the polarized fluxes.
If we now zoom out to the planetary disk, we will not only be subjected to cloudy pixels, but also to
clear pixels. These clear pixels will have a cloud optical thickness of zero. The problem that occurs is
that for a single disk pixel that is patchy, we will have a fraction of cloudy pixels and clear pixels, 𝜏፜፥፝
and 𝜏፜፥፞ፚ፫ respectively.

This means that we need to define some sort of average disk pixel that includes both the radia-
tive transfer behaviour of clear and cloudy pixels or more specifically, a Rayleigh scattering and a
Rayleigh/Mie scattering behaviour. To approximate a patchy pixel by a cloudy and clear region their
reflection matrices R፜፥፝ኻ (𝜇፧ , 𝜇ኺ፧ , 𝜙፧−𝜙ኺ፧ , 𝜆) and R፜፥፞ፚ፫ኻ (𝜇፧ , 𝜇ኺ፧ , 𝜙፧−𝜙ኺ፧ , 𝜆) need to be calculated. Ide-
ally, to approximate one disk pixel by a cloudy and clear part, not only the reflection matrices should be
case specific but also the geometrical parameters; the solar and emission zenith angles, the azimuthal
difference angles, etc. In practice this is not possible because MODIS only provides which ratio of their
pixels is cloudy and does not provide their specific location. We will approximate the single patchy disk
pixel by calculating the reflection properties for a cloudy and clear case separately, at the center of the
disk pixel, and weigh both pixels by the local cloud fraction. This method is similar to that presented
by Stam (2008a), who approximated a horizontally inhomogeneous planet by weighting the results of
horizontally homogeneous planets. In our case we will only use this approximation for one disk pixel.
The total reflection of the patchy pixel will then be approximated by:

R፭፨፭ = R(𝜏፜፥፝)
∑ፍ።዆ኻ 𝐹𝑐𝑙𝑑።

𝑁 + R(𝜏ኺ)(1 −
∑ፍ።዆ኻ 𝐹𝑐𝑙𝑑።

𝑁 ) (3.3)

where R፭፨፭ is the total reflection of the pixel, R(𝜏፜፥፝ፓ ) is the reflection of a pixel model that includes
a cloud layer (with parameters according to the collocated MODIS cloud observations), R(𝜏ኺ) the re-
flection of a pixel model that does not include a cloud layer, ∑ፍ።዆ኻ 𝐹𝑐𝑙𝑑። the total fraction of clouded
MODIS pixels and 𝑁 is the total number of MODIS pixels (cloudy+clear) that fall into the disk pixel. The
reflection of the cloudy pixel will be computed with the logarithmic averaged optical thickness men-
tioned before. The only discrepancy of this approach is that the position of the cloudy and clear pixels
cannot be precisely modeled, but we do not know these anyway. Also, this method allows the user
to apply the exact factor of cloudy pixels. Furthermore, if one wants to incorporate more atmospheric
scattering models in one disk pixel, such as models that describe scattering from ice, dust, biomass-
burning, urban and/or maritime mineral aerosols, these can be easily included by incorporating them
in the weighted sum.

Interpolation of the equatorial gaps is processed in the same sense as the other cloud parameters.
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To minimize the effect of surface reflection, MODIS retrieves the optical thickness at 645, 858 and
1240 𝑛𝑚 MODIS bands for respectively land, ocean and snow/ice surfaces. So, in order to compute
the TOA reflection of a cloudy pixels at a specific wavelength 𝜆∗ we will scale the cloud optical thickness
assuming a constant column density. In our computations we do not consider any absorption by cloud
particles, thus the scattering cross-section is equal to the extinction cross-section. We retrieve the
extinction cross-section for a specific wavelength by use of the Mie subroutine in PyMieDAP. To scale
the optical thickness the following formula is used

𝜏∗(𝜆∗) = 𝜎∗፞፱፭(𝜆∗)
𝜎፞፱፭(𝜆)

𝜏(𝜆) (3.4)

Figure 3.8: Daily averaged global MODIS cloud optical thickness distribution

Cloud Optical Thickness Discretization
The upper panel of Figure 3.3 shows that the cloud optical thickness peaks at approximately 5. We
further see that 95% of the data lies between optical thickness values of 3 − 31. From Section 2.3
we know that the computation time increases with increasing optical thickness, so we want to restrict
high values of optical thickness as much as possible. To be able to further reduce the interval of
interest we will look at the relation of the optical thickness as function of latitude (Figure 3.9). This
relation is based on monthly mean data from 2011 entirely, and the mean value is calculated according
to Hubanks et al. (2015); Oreopoulos et al. (2007). The effect of pixels at high latitude regions on
the total exoplanet reflection properties is significantly lower than that of low-latitudes due to the
combination of high solar and emission zenith angles. Furthermore, we can see from Figure 3.9 that
the average optical thickness only just merely approaches 20 at ∼ 78∘. A similar average maximum
cloud optical thickness is observed by Hahn et al. (2001), for Nimbostratus clouds. Also, if we look
at the reflection of cloudy pixels, we observe that for the polarized fluxes the reflection evens out
fairly quickly and for the total flux starts to even out for optical values of 30 and higher values, thus
not contributing significantly to the total reflected spectropolarimetric signal. We did also look at the
basic ISCCP cloud type classification that is based on cloud top pressure and cloud optical thickness
(Rossow and Schiffer 1999), but similarly as described in the discretization of cloud top pressure there
occur ambiguities in these bins. The four bins in Table 3.4 will be used to discretize the cloud optical
thickness. The first bin is used to extract the clear sky pixels from the observations. The second

Table 3.4: Discretization bins of the cloud optical thickness with associated bin values.

Bin number 1 2 3 4
Bin boundaries COT=0 0.01≦ COT<7.5 7.5≦ COT<15 15≦ COT
Bin values 0 5 10 20

bin is centered at the peak abundance, to model the largest amount of clouds. For slightly higher
optical depths we observe a small bumb at approximately a value of 10 on which we center the third
bin. The last bin is centered at the maximum mean value of 20, modelling the very edge of the 95%



3.4. Sensitivity study 41

5 10 15 20
Mean cloud optical thickness (-)

−80

−60

−40

−20

0

20

40

60

80

La
tit
ud

e 
(in

 d
eg

re
es
)

Figure 3.9: Similar to Figure 3.5, except for the cloud optical thickness. Mean values are computed according to Hubanks et al.
(2015).

interval. The consequence of these bins is that some over and/or underestimation will occur, but this
is inevitable when attempting to discretize the parameter space.

Cloud fraction
MODIS provides two cloud fraction data sets, namely: Cloud Fraction and Cloud Retrieval Fraction.
According to Hubanks et al. (2015) does the Cloud Retrieval Fraction account to a better fit in regions
with high amounts of aerosols such as dust, but performs worse in the interpretation of cloud-edges.
For these areas MODIS uses an algorithm that identifies smoke contamination, partly clouded pixels,
the sunglint, edges of clouds and heavy dust. These cases are expected to deviate from the homoge-
neous overcast cloudy 1-dimensional plane-parallel radiative transfer approximation for optical property
retrieval and are assigned as a clear sky pixel. The Cloud Retrieval Fraction is thus derived from the
Cloud Optical Properties retrieval algorithm and therefore assigns pixels with a clear sky label and fits
the cloud particle effective radius and cloud optical thickness data exactly, whereas this is not the case
for the Cloud Fraction (Platnick et al. 2015). However, when comparing the mean cloud fractions for
both databases of the year 2011 to over a decade worth of ISCCP cloud data we see that the Cloud
Fraction agrees significantly better: MODIS mean Cloud Fraction of 0.68, MODIS mean Cloud Retrieval
Fraction of 0.27 and an ISCCP mean cloud fraction of 0.675± 0.012 (Rossow and Schiffer 1999). Thus
the cloud retrieval fraction underestimates the ”real” cloud fraction in case of cloud-edges, as the confi-
dence of cloud property retrieval at these edges is less confident. Furthermore, Ackerman et al. (1998,
2008); Li et al. (2004) reviewed the Cloud Fraction data set to other collocated observational data sets
for which they retrieve good agreement. In this regard the choice is made to use the Cloud Fraction
data set.

3.4. Sensitivity study
In Table 3.5 an overview of the entire surface-atmosphere system is provided. The values from this

Table 3.5: Overview of the discretized model atmosphere that will be used in the planetary model.

Parameter Symbol Value(s)
Surface (bounding) pressure [bar] ፏᑤᑦᑣᑗ 1
Depolarization factor ᎑ 0.03
Mean molecular mass [፠/፦፨፥] ፦ᑘ 29
Acceleration of gravity [፦/፬Ꮄ] ፠ 9.81
Cloud particle effective variance ፯ᑖᑗᑗ 0.1
Cloud particle effective radius [᎙፦] ፫ᑖᑗᑗ 10;12.5;15;17.5
Cloud particle distribution - Two parameter gamma
Cloud particle refractive index ፧ᑔ ዆ ፧ᑣ ዄ ፧ᑚ ኻ.ኽኽ ዄ ኻ፞ ዅ ኺዂ።
Cloud optical thickness [-] Ꭱ 0;5;10;20
Cloud top pressure [mb] ፏᑔ 500;700;850
Cloud vertical extend [mb] - 100



42 3. The Earth model

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

P=1 bar

P=0 bar

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

P=1 bar

P=CTP

P=0 bar

Figure 3.10: Sketch of the surface-atmosphere pixel model without a cloud (left) and with a cloud (right). A cloud layer also
contains gaseous particles.

table are based on the schematic model atmospheres shown in Figure 3.10. We compute either clear
sky pixel models, with no cloud layer, or a cloudy pixel model with a cloud layer. Both atmospheres
are bounded by pressure levels of zero and one bar at which we model a reflecting surface layer. The
cloud layer is defined by its top pressure; the size distribution of particles, i.e. the particle effective
radius; and the optical depth of the layer. In this layer we do still consider Rayleigh scattering from
molecular particles. Lastly, for the entire atmosphere the molecular mass and depolarization factor in
the Rayleigh scattering computations is assumed constant.

In order to investigate how sensitive the spectropolarimetric signals are to the binned cloud parame-
ters, we will generate some cases where we restrict the bins. For all cases we model the phase curves
with low temporal resolution: 3.059 days. With this resolution the Earth rotates four times as seen
from the observer. The reference case is the model utilizing all bin values. The acronyms CTP, COT
and CER represent the cloud top pressure, cloud optical thickness and cloud particle effective radius,
respectively. The following cases are computed:

1. Without CTP of 850 mb -> pixels with CTP of 850 mb are considered as 700 mb;

2. Without CTP of 500 mb -> pixels with CTP of 500 mb are considered as 700 mb;

3. Without CTP of 850 and 500 mb -> both type of pixels are considered as 700 mb;

4. Without COT of 20 -> pixels with COT of 20 are considered as an optical depth of 10;

5. Without COT of 10 -> pixels with COT of >10 are considered as 20 and <10 as 5;

6. Without COT of 20 and 10 -> all pixels are considered as an optical depth of 5;

7. Without CER of 10𝜇𝑚 -> pixels with CER of 10𝜇𝑚 are considered as pixels with a CER of 12.5𝜇𝑚;

8. Without CER of 15𝜇𝑚 -> pixels with CER of > 15𝜇𝑚 are considered as 17.5𝜇𝑚 and 15 >,>
11.25𝜇𝑚 are considered as 12.5𝜇𝑚;

9. Without CER of 10 and 15𝜇𝑚 -> pixels with CER of > 15𝜇𝑚 are considered as 17.5𝜇𝑚 and
15 > 𝜇𝑚 are considered as 12.5𝜇𝑚;

10. Without CER of 17.5𝜇𝑚 -> pixels with CER of 17.5𝜇𝑚 are considered as pixels with a CER of
15𝜇𝑚;

11. Without CER of 10, 15 and 17.5𝜇𝑚 -> all pixels are assigned a CER of 12.5𝜇𝑚.
For the first case we neglect low altitude clouds and consider them as the most abundant cloud type
in our observations. In case two the same is true for high clouds. Then for the third case we con-
sider only an average cloud top pressure of 700 𝑚𝑏. In the discretization of the COT we saw that
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the average optical thickness values were only significant for high latitudes. By considering optical
values of 20 as 10 we will see how much effect the abundance of thick clouds have. Furthermore,
we see in the histogram of the optical thickness that there was a small bump at optical values of 10.
By neglecting this bin value we will be able to observe its effect on the planetary phase curves. For
the last case of COT we approximate every pixel by the optical depth with the highest abundance: 5.
The highest abundance of CER lies approximately at the bin value of 12.5 𝜇𝑚. The last cases show
the individual sensitivity of neglecting the other effective radii values and a combination of these values.

From Figure 3.11 one can see the effect of using more heavily discretized bins for the three cloud
parameters relative to a reference phase curve. This reference phase curve is computed with the same
observations and temporal resolution of 3.059 days. From the top left panel one can see that for low
phase angles there is a significant disagreement when we ignore bin values for COT of 10 and 20.
Also when only ignoring the COT 10 bin we see a relative difference near 60 degrees of ∼ 5%. At
crescent phases we see a large disagreement for a discretized bins with bin values of CTP 700 𝑚𝑏 and
CTP 700, 850 𝑚𝑏. A much smaller, but still significant difference is induces by using bin values of CTP
700, 500 𝑚𝑏, but this is much smaller than the other CTP bin cases. The heavily discretized bins for
cloud particle effective radius induce only minor differences, for which the heaviest discretized bin CER
12.5 𝜇𝑚 shows the largest disagreement. These results show that for the normalized reflected flux we
certainly need to use the full bins for at least the cloud optical thickness and top pressure. We also see
that if we use all the bin values in our bins we get a behaviour of convergence.
In the upper right and middle left panel we see the effect on the degree of polarization and normalized
polarized flux 𝑄, respectively. The behaviour of both is almost identical: the largest errors, up to
300−400%, are induces at low phases by a more heavy CER bin discretization and both CER and CTP
bin discretizations at crescent phases. For the discretized COT bins we see only a maximum relative
difference of ∼ 15%. Again, if we approach our maximum bin values we see a convergence behaviour
to our reference phase curve. Lastly, in the middle right panel we see that the different bins induce
very large errors, up to 3000 − 4000% for heavy discretization on the CTP and COT bins. The errors
induced by the heaviest CER bin discretization are up to ∼ 350%. These major disagreements lie in
the region of 𝛼 = 40−60∘. The reason for this large disagreement is because the absolute values of 𝑈
are really small, and badly discretized bins induces relatively large differences in 𝑈. We do, however,
again see some sort of convergence when we decrease the discretization on all the bins. For example,
the case ”Wo CER 10” we see an overall agreement within 15%, except at 𝛼 =∼ 50∘. For the case ”Wo
CER 15” we see an overall agreement within 40%, except at 𝛼 =∼ 50∘. Our full bin Earth-like planetary
model will be more accurate and produce smaller errors, which for the normalized reflected flux, degree
of polarization and 𝑄 will not be significant anymore, but for 𝑈, especially around 𝛼 = 40 − 60∘, will
still produce a disagreement of at least ≲ 15%. This sensitivity study is simulated at 𝜆 = 550 𝑛𝑚.
Simulations at 𝜆 = 350 and 865 𝑛𝑚 show overall better agreement.

3.5. Observation strategy
The orbital plane of the exoplanet around its parent star can be inclined with respect the observer,
e.g. Earth. In Figure 3.12 the definition of this inclination is shown. The inclination is defined as the
angle between the total angular momentum vector of the extrasolar system and a line connecting the
observer (Earth) and the star. All computation in this research are conducted with a spherical Earth
in a 90∘ inclined circular orbit, with the orbital period the same as an Earth year with the definition of
a solar day as a diurnal rotation period. With such an inclination and an obliquity of zero degrees the
entire surface of the exoplanet can in theory be observed.
In earlier attempts to map the surface of Earth-like planets, Fujii et al. (2011, 2010); Kawahara and
Fujii (2011) considered an orbital geometry in a face-on sense, i.e. 𝑖 = 0∘, with an obliquity of 90∘.
This allowed them to continuously observe the entire planet during its full rotation about the parent
star. However, in this orientation it would not be possible to observe the phase angle dependency of
(polarized) flux, which proved to be a valuable tool in among other things: characterization of oceans
(Williams and Gaidos 2008; Zugger et al. 2010a) and clouds (Bailey 2007; Karalidi et al. 2011; Rossi
and Stam 2017). It has to be noted that in practice one can not recover reflected starlight at certain
phase angles due to the lack of spatial separation of the exoplanet and its star at full and new phase
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Figure 3.11: Sensitivity study of different bin parameters on our Earth-like models. The different cases are compared to a case
which uses all bin parameters. For every run we use the same starting day: 1st of January 2011. In the upper left panel the
relative difference in ፅ is provided. In the upper right panel the relative difference in degree of polarization is provided, and the

two normalized polarized fluxes ፐ and ፔ are provided in the bottom left and right panel, respectively.
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at least for 𝑖 = 90∘.

Figure 3.12: Interstellar representation of an exoplanet for different inclination angles ። (Todorov 2008).

We have now described the basic geometry of our extrasolar system. However, it is interesting to
model an Earth-like exoplanet at an Earth-like obliquity. Obliquity angles larger than that of Earth will
not be considered, because higher obliquity angles violate the physical limit of the land distributions
and cloud distributions, or in other words extremely deviate from our current climate. For example,
Williams and Pollard (2003) simulated obliquity’s between 0−85 degrees by using a three-dimensional
general-circulation climate model, showing that for obliquity’s ≧ 54∘ some seasonal ice and snow covers
the equatorial regions, for which our land cover distribution would not be realistic anymore. Addition-
ally, Williams and Pollard (2003) simulated Earth at an obliquity of 0∘. These simulations show that the
seasonal changes are small, and the land coverage stays fairly constant. In one way this strengthens
the choice of using a yearly constant land cover (Section 3.2.1), but weakens the use of daily cloud ob-
servations that include seasonal effects. The reversed logic is true for Earth-like obliquity angles. The
effects for these low obliquity angles, however, do not show to have a major effect on the land cover
distribution and cloud seasonality as compared to modeling obliquity’s greater than Earth’s (Williams
and Pollard 2003).

As one can read from Section 3.3.1 is that only continuum wavelengths are considered as no ab-
sorption for as well the molecular atmosphere as the cloudy atmospheric layers is considered. As a
result of the large computation times and required disk space we will have to limit the number of
wavelengths on which we will perform computations. Ideally we want to cover the domain of the
ultra-violet, visible and near-infrared wavelengths as these show significant alterations in the strength
of Rayleigh scattering and Mie scattering. Also, we want to avoid absorption wavelength bands for
the gaseous atmosphere and liquid water particles. Bogumil et al. (2003); Lacis and Hansen (1974)
and King et al. (1990); Stephens and Tsay (1990) provide a parameterization of spectral absorption
by the gaseous atmosphere and the cloud particles, respectively. The following wavelengths will
be used: 350, 443, 500, 550, 670, 750 and 865 𝑛𝑚, where we mainly focus on providing results for
350, 443, 550, 670 and 865𝑛𝑚 due to the high computation times. At 350 𝑛𝑚 we will be able to pro-
duce simulations where Rayleigh scattering is strongest and no Ozone absorption is present. At 865𝑛𝑚
we simulate our outer boundary in the near-infrared where Rayleigh scattering is very ineffective. Re-
garding the vegetation green-bump and the red-edge we will use 550 and 750, 865 𝑛𝑚, respectively.
Additionally, the trough in the vegetation spectrum is accounted for with 670 𝑛𝑚.





4
The scattered light curves from an

Earth-like exoplanet

In this chapter, we present simulations of disk-resolved and disk integrated planetary phase curves
of our Earth-like planetary model. First, in order to investigate how the different cloudy and clear
pixel models contribute to a disk integrated signal we will investigate the locally reflected light and
present the results as spatially resolved planetary disks (Section 4.1). We compare the (polarized)
flux and degree of polarization at different wavelengths and various orbital geometries to provide a
comprehensive overview of the possible features in an Earth-like planetary disk. In Section 4.2 we
will present the planetary phase curves of our planetary model. A more thorough analysis on how
these phase curves are built up from different components of our model, such as the pure gaseous
atmosphere, cloud layers and surface reflection, is provided. An Earth-like phenomenon that everyone
encounters in their day-to-day life are weather changes and seasons. We discuss the variability that is
induced on the Earth-like phase curves due to the seasonality in the observations. In the second to last
part of this section, we provide the wavelength dependent Earth-like phase curves. In the last section,
the diurnal variations are addressed. That is, horizontal inhomogeneities on the planet, in combination
with the rotation of Earth around its axis, induce major oscillations in the reflected (polarized) flux and
degree of polarization.

4.1. Resolved planetary disks
This section acts as an introduction to the reflection of light from an Earth-like exoplanet that is modeled
as a horizontally inhomogeneous disk. That is, we will show that depending on the local properties and
position of a pixel the reflection behaviour can be very different. Moreover, the reflection of the pixels
also depend on the orientation of the exoplanet-star-observer system and the wavelength considered.
The disk-resolved cases are simulated at phase angles 0∘, 40∘, 90∘ and 135∘ for 𝜆 = 350, 550 and
865 𝑛𝑚. We present 𝐹, 𝑄, 𝑃𝑙 and 𝑈 for every wavelength in Figure 4.2, 4.3 and 4.4. Also, we present
the associated land cover, cloud top pressure, cloud optical thickness, cloud particle effective radius and
cloud fraction distributions on the corresponding planetary disks in Figure 4.1. One can observe that
the parameters in the disks attain only a specific set of values, being in accordance to the discretization
in Chapter 3. Thus, we use the planetary model described in Chapter 3: surfaces with Lambertian
depolarizing reflection, variable cloud layers that are described using the complete set of bins and a
constant gaseous atmosphere. All disks are simulated with 100× 100 pixels at the same sub-observer
longitude. Our findings for 𝐹 at all phases and wavelengths are itemized as follows (cf. Figure 4.2, 4.3
and 4.4):

• At 350 𝑛𝑚 the features in the disks of 𝐹 are dominated by the cloud fraction and cloud optical
thickness, which are directly related to each other. Because of the dominant Rayleigh scattering
at this wavelength, we see that only pixels with high cloud optical thickness exhibit high values of
reflection. The area of low reflection at the Saharan Desert/Atlantic Ocean is caused by (1) the
weak reflecting Lambertian desert and ocean surfaces at 350 𝑛𝑚 and (2) the low cloud fraction

47
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Figure 4.1: From top to bottom we present the land cover, cloud top pressure, cloud optical thickness, cloud particle effective
radius and cloud fraction distributions are provided for ᎎ ዆ ኺ, ኾኺ, ዃኺ, ኻኽ኿∘ from left to right, respectively. All disks are

simulated with ኻኺኺ × ኻኺኺ pixels.
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in this region. Albeit, Rayleigh scattering is highly efficient, we are still able to see the effect from
the surface. For larger phases the effect of surface reflection is not apparent and the distribution
of all cloud types, i.e. the cloud fraction, seem to agree well with the anomalies in the disk.

• At 550 𝑛𝑚 we start to recognize the spatial distribution of the clouds and the surface clearly.
More specifically, the regions of large cloud fraction and cloud optical thickness correspond to
high reflection, but one can also vaguely see the contribution of the bright vegetation1 and desert
as compared to the dark ocean. For higher phases we remain to see these features.

• At 865 𝑛𝑚 the spatial distribution of the continents are clearly visible. This is caused by (1) the
increasing albedo of the desert and vegetation at the near-infrared2 (Figure 3.2) and (2) the light
beams are less effectively scattered by gas in the atmosphere (Rayleigh scattering) allowing them
to penetrate through the atmosphere and getting reflected on the surface and clouds. Hence,
we also recognize the contribution of the clouds, especially those on top of the oceanic regions.
More specifically, highly reflecting cloudy pixels correspond to high values of optical thickness.
For 𝛼 = 40 and 90∘ the dominance of the surface and cloud distribution is still well observable.
At crescent phases the presence of Saudi-Arabia is still visible, but only barely, where only the
dominance of the clouds is clearly visible.

• For crescent phases at 350 𝑛𝑚 the reflection looks homogeneous. These light beams a more
effectively scattered in the gaseous atmosphere than those of longer wavelengths. Hence, a
much smaller fraction of the light beams are able to reflect from the cloud layers and/or surface.
At longer wavelengths the distribution of the clouds becomes more apparent, because the pen-
etration depth of light beams penetrating in the gas layer on top of the clouds is much longer
as Rayleigh scattering becomes much less effective, allowing more light beams to scatter on the
highly reflecting cloud layer.

Our findings for the polarized flux 𝑄 at all phases and wavelength are itemized as follows:

• At 350 𝑛𝑚 and full phase the disk closely resembles the reflection of a homogeneous disk, like
the disk in Figure 2.4, which is caused by the constant gaseous atmosphere that effectively
scatters light beams by Rayleigh scattering. The anomalies in the disk correspond fairly well to
the spatial distribution of optically thick clouds. At 𝛼 = 40∘, we can not only recognize optically
thick clouds, but also the vertical position of the clouds. The pixels with optically thick clouds
cause a decrease in the state of polarization, because in general clouds cause depolarization due
light that is scattered multiple times in the cloud layer Stam (2008a). At quadrature and crescent
phases the disk becomes increasingly homogeneous-like, because of the optically thick gas layer
on top of the clouds and surface.

• At 550 𝑛𝑚, 𝑄 shows a far weaker homogeneous-like disk as Rayleigh scattering becomes less
effective, essentially increasing the contribution of the clouds. For 𝑄 at full phase the distribution
of different particle effective radii show correspondence to reflection pattern in 𝑄. For bigger
phases angles the distribution of the entire cloud cover becomes more apparent, again most
dominantly at 40∘.

• At long (865 𝑛𝑚) wavelength the clouds dominate the polarized light 𝑄 at especially full phase
and 40∘, where large particle effective radii are correlated to high polarized fluxes. When moving
to crescent phases we can see some correlation with the cloud top pressure and cloud fraction.
At quadrature, the relative difference in reflection between regions of different cloud properties
and fraction is very small. This is caused by the fact that at a scattering angle of 90∘ the spherical
liquid particles induce low polarization on the scattered light beams as compared to 𝛼 = 40∘ (see
Figure 1b of Stam 2008a).

• At full phase and 𝛼 = 40∘ we saw that the contribution of the clouds to the polarized signal
was apparent, where in general clouds are depolarizing because of the high degree of multiple
scattering. The disks at full phase are not modeled exactly at 𝛼 = 0∘, but at 𝛼 = 3∘. If one again

1In Figure 3.2 one can see that at ኿኿ኺ ፧፦ vegetation exhibits an increase in reflection, namely the green bump.
2For vegetation this is also known as the red-edge, i.e. an enhanced reflection caused by the presence of chlorophyll contained
in vegetation (Horler et al. 1983).



50 4. The scattered light curves from an Earth-like exoplanet

consults Figure 1 of Stam (2008a) or Figure 3 of Bailey (2007) it is apparent that at 0 < 𝛼 <∼ 5∘
and 𝛼 around 40∘ single scattering of spherical liquid particles exhibit high polarized intensities.
These enhancements are generally known as the glory and the primary rainbow, respectively.
In total intensity these phenomenon also cause increased reflection from single scattering (see
Bailey 2007; Hansen and Travis 1974a; Karalidi, Stam and Hovenier 2012). In a realistic Earth-like
atmosphere this enhancement is much smaller due to the occurrence of multiple scattering. Bailey
(2007) states that polarization is generally suppressed by multiple scattering, so that the polarized
intensity is dominated by single scattering from the top layers of the clouds. Consequently, the
shape of the polarized intensity curve in a multiple scattering medium is very similar to that of
the single scattering curve. In contrast, for the total intensity unpolarized light from multiple
scattering is added to the total signal, essentially diluting the polarization and thus reducing the
rainbow peak. In a later section we will illustrate this in more detail.

Our findings for the polarized flux 𝑈 at all phases and wavelength are itemized as follows:
• At 350 𝑛𝑚 and 550 𝑛𝑚 a homogeneous like reflection behaviour of a gaseous atmosphere is
prominent, comparable to Figure 2.5. Small anomalies are caused by optically thick clouds.
At 550 𝑛𝑚 the clouds become more apparent at the edges of the disks, where the absolute
magnitude of 𝑈 is largest.

• At 865 𝑛𝑚 𝑈 again shows some homogeneous-like patterns, but with more anomalies induced
by cloudy pixels and the depolarizing surfaces. At bigger phases angles we can hardly relate any
features in the disks, but we see the largest agreement with the cloud fraction.

• Although in magnitude the resolved pixels of 𝑈 show to be only one order of magnitude lower
than 𝑄 the integration over the disk results in very small values of 𝑈, which will be explained
in the next section. As described in Section 2.1 𝑈, is defined as: 𝐼(45∘, 0) − 𝐼(135∘, 0). For a
homogeneous disk this results in four quadrants that are in magnitude symmetric over the plane
of scattering, but in sign opposite. This essentially means that with small asymmetric3 deviations
(anomalies) from this homogeneity a non zero disk integrated polarized flux 𝑈 can be measured.
The larger the anomalies, the larger 𝑈 becomes in magnitude. Although, 𝑈 can also be zero if
the anomalies in the disk are spatially symmetric with respect to the planetary scattering plane.

Our findings for 𝑃𝑙 at all phases and wavelength are itemized as follows:
• Recall from Section 2.1 that the degree of polarization is defined as the polarized flux divided by
the total flux. Since 𝑈 is very small compared to 𝑄, which was explained above, the degree of
polarization is mainly determined by the ratio between 𝐹 and 𝑄. At 350 𝑛𝑚 𝐹 and 𝑄 were mainly
affected by the cloudy pixels and more specifically the optically thick cloudy pixels. Consequently,
also 𝑃𝑙 shows to be mostly affected by the clouds. For short wavelength we thus recognize no
effect from the surface cover.

• For 𝑃𝑙 at 550 𝑛𝑚 we can clearly observe the land distribution of Africa and the clouds at 40∘ phase.
Low values of polarization occur at the Saharan Desert and small parts of Southern Africa. Stam
(2008a) already showed that Lambertian surface reflection with increasing surface albedo results
in a lower degree of polarization. This is caused by the increased flux from the reflection by
the surface, which is, in case of a Lambertian (i.e. non-polarizing) reflecting surface, completely
unpolarized. An increased total flux compared to the polarized flux thus results in a low degree of
polarization. At 90∘ high degree of polarization is caused by the clouds and, in particular, clouds
that have large particle effective radii. At quadrature and crescent phases any presence of the
clouds lower the degree of polarization, i.e. agreeing well to the cloud fraction distribution.

• 𝑃𝑙 at 865 𝑛𝑚 shows regions of low magnitude that correlate to the African continent, Southern
America, parts of Azia/Europe and even Antarctica. This is similar to what we found at 550 𝑛𝑚,
but is stronger due to the increase in reflection of the vegetated and desert surface. At quadrature
and crescent phases we can not clearly extract any contribution from the surface cover or clouds,
although in 𝐹 the contribution of the land cover was still significant. This is caused by the small
variations in 𝑄.

3More specifically, asymmetric around the planetary scattering plane.
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In conclusion, we showed that the dominance of inhomogeneous surface and cloud distributions be-
come more apparent for longer wavelength as Rayleigh scattering becomes much less effective, allow-
ing the light beams to penetrate further into the atmosphere. The contribution of the clouds to 𝑄 is
largest at 𝛼 = 40∘ (The location of the primary rainbow). 𝑈 is dominated by Rayleigh scattering, but
small anomalies exhibited by optically thick pixels are present. The depolarizing Lambertian surface
approximation exhibits regions of low 𝑃𝑙 that correspond fairly well to the land cover distribution of
high reflecting surfaces. Moreover, the increased contribution from the (non-polarizing) Lambertian
surfaces at long wavelengths is caused by the fact that the light beams are able to penetrate furthest
through the gaseous atmosphere.

4.2. Disk integrated light curves
In this section, disk integrated planetary phase curves are presented to provide insight into the reflection
behaviour of an Earth like exoplanet in an edge-on orbit around its star. If not stated otherwise, the
planetary model for our simulations in this section is exactly the one used in Section 4.1, except for
the disk size which is 20 × 20 pixels. In Section 4.2.1 we present the general form of the planetary
phase curves. We also show the seasonal effect of the clouds, and the effect of the obliquity on the
planetary phase. Then, we present the planetary phase curves at multiple wavelengths ranging from
the ultra-violet to the near-infrared domain (Section 4.2.2). Lastly, in Section 4.2.3, we show what the
rapid oscillations in the planetary phase curves look like at a diurnal time scale.

4.2.1. Dependence on phase angle
Figure 4.5 shows the phase curves of 𝐹, 𝑄, 𝑈 and 𝑃 at 𝜆 = 550𝑛𝑚. The observation that is used at full
phase is that of January 1st, 2011, and consecutive observation days for consecutive solar days for half
a year. The temporal resolution is 2 hours. At a phase angle of 0∘, the exoplanet and its parent star
are in line with the observer. In practice, this means that one cannot measure reflected light as it is
blocked by the star. At a phase angle of 180∘, no light can be scattered from the planet to the observer
as the planet is exactly in front of the star. For all phases many variations occur in 𝐹 that are caused
by the rotation of the planet in combination with the inhomogeneous surface and cloud cover. The
absolute amplitude of the variations tend to decrease with increasing 𝛼 as the continuum of 𝐹 gradually
tends to zero. That is, for increasing 𝛼 the visible and illuminated part of the planetary disk becomes
smaller, thus reflecting less light to the observer. Despite these daily variations we are still able to
observe the enhancement in total intensity due to the spherical liquid water particles in our clouds.
The glory, near full phase, seems less apparent, but near full phase we observe an enhancement in 𝐹.
For 𝑄 the clearly visible glory produces a sign difference that is also retrieved in simulations by Bailey
(2007); Karalidi, Stam and Hovenier (2012); Stam (2008a). When comparing the absolute magnitude
to that of 𝐹 this enhancement is small. The daily variations present in 𝐹 show to be much less in 𝑄,
except for a small region of phases around the primary rainbow. This primary rainbow is much stronger
than in 𝐹 as was also suggested by Bailey (2007), caused by the depolarization of light due to multi-
ple scattering. Also, we observe a second bump near 𝛼 = 56∘, corresponding to the secondary rainbow.

From 𝑃𝑙 the primary rainbow at 𝛼 = 40∘ and glory near full phase are also clearly visible. The secondary
rainbow is mostly suppressed by the daily variations. These daily variations are induced by 𝐹 and are
maximum in a large region around quadrature.

The variability due to Earth’s rotation can be clearly seen in 𝑈. On a similar scale as 𝐹 or even 𝑄
these variations, however, would be extremely small. Consequently, the contribution of 𝑈 to 𝑃𝑙 is
negligible. Nevertheless we will analyze our findings for 𝑈 for all our simulations as from a theoretical
point of view it might show us information about the asymmetry in the planetary disk. The overall
trend in 𝑈 seems to oscillate around zero at low phase angles, shifts to slightly more positive values
at higher phase, where after it decreases to zero at new phase. This behaviour might be due to some
asymmetry between the Northern and southern Hemispheres of Earth, and will be studied more deeply
in a following section.

The significance of the primary rainbow feature shows that measuring 𝑃𝑙 or 𝑄 is a powerful tool in
characterizing especially terrestrial atmospheres. It should be noted that the rainbow features exhibits
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Figure 4.2: Resolved disk for ᎘ ዆ ኽ኿ኺ ፧፦ at ᎎ ዆ ኺ∘ , ኾኺ∘ , ዃኺ∘ and ኻኽ኿∘. In the upper four panels the Stokes elements ፅ, ፐ and
ፔ, and ፏ፥ are provided, respectively. The corresponding disk properties are provided in Figure 4.1. All disks are simulated with

ኻኺኺ × ኻኺኺ pixels.
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Figure 4.3: Similar to Figure 4.2, except for ᎘ ዆ ኿኿ኺ ፧፦.
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Figure 4.4: Similar to Figure 4.2, except for ᎘ ዆ ዂዀ኿ ፧፦.
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Figure 4.5: Disk integrated planetary phase curves from an Earth-like exoplanet using MODIS data from 2011 at a wavelength
of ኿኿ኺ፧፦. From top to bottom: ፅ, ፏ፥, ፐ and ፔ as functions of the phase angle.



56 4. The scattered light curves from an Earth-like exoplanet

a major enhancement in our signal on the assumption that our cloud particles are spherical. A slight
deviation from this sphericity has been shown to strongly affect the strength of these rainbow features
(Bailey 2007). More specifically, they modeled a prolate spheroid with axis ratio4 of 0.8, an oblate
spheroid with axis ratio of 1.2 and a cylindrical particle with length equal to its diameter simulated
by using the T-matrix method (see Waterman 1971) to calculate the scattering properties of a size
distribution of randomly oriented axially symmetric particles. In their comparison they used the same
size distribution as those for spherical particles: effective radius of 5 𝜇𝑚 and effective variance 0.1.
For all slightly non-spherical particles the peak of a clear rainbow peak is lost.

Decomposition of Earth-like phase curve
In order to show the effect of different components of our planetary model, we computed the phase
curves for four different end cases: the planetary model with a homogeneous black surface and no
cloud layers (pure Rayleigh scattering of the gas), the planetary model without cloud layers but with an
Earth-like surface distribution (No Earth clouds), the planetary model with a black homogeneous sur-
face but with Earth-like distributed cloud layers (Black surface Earth), and lastly the complete planetary
model (Earth-like) as we use it in general (Figure 4.6). The cases are computed at a wavelength of
550 𝑛𝑚. For this simulation we used a temporal resolution of 2 hours over half a year of observations
from 2011, where full phase corresponds to January 1st 2011.

The Rayleigh scattering curves for 𝐹 and 𝑃𝑙 show a very similar shape with plots in Stam (2008a).
From a theoretical point of view the polarized flux 𝑄 is zero at full and new phase as a result of the
homogeneity of the disk. 𝑈 is zero for all phases owing to the fact that the planet is homogeneous.
The maximum 𝑃𝑙 is located at 𝛼 =∼ 90∘. The maximum polarized flux 𝑄 is located near 𝛼 =∼ 70∘.
The slight asymmetry in the curve of 𝑃𝑙 is caused by the low occurrences of multiple scattering in the
pure gaseous atmosphere.

If we now add an Earth-like surface major variations occur in 𝐹 and 𝑃𝑙. Also, the peak of polarization in
𝑃𝑙 moves to larger phases. Similar behaviour can also be observed in results from Stam (2008a). For
all phases 𝑃𝑙 decreases as a result of the overall increase in 𝐹. The increase in 𝐹 is attributed to the
increase of surface albedo over the entire planetary disk. When we look at the behaviour of 𝑄 there
is virtually no difference with respect to the Rayleigh curve, because the Lambertian reflecting surface
does not add polarized light. The small oscillations that are present are caused by the fact that the
generally unpolarized light that gets reflected by the surface can get polarized in the atmosphere while
traveling to space. For 𝑈 we retrieve similar extremely small oscillations. In conclusion, the Lambertian
depolarizing surface alone in a gaseous atmosphere has no significant effect on the linearly polarized
fluxes.

A major effect on the reflected signals is induced by the addition of an Earth-like cloud cover (The
Earth-like case). Due to the high occurrence of (multiple) scattering in the clouds, more light is re-
flected from the exoplanet causing a significant increase in 𝐹. On the other hand, multiple scattering
depolarizes light, decreasing 𝑃𝑙 significantly. In the addition of liquid water clouds we can also see
the primary rainbow clearly and even the secondary rainbow. Furthermore, the daily variations are
affected in amplitude and become less smooth, potentially affecting the periodicity of the constant
surface cover. For 𝑄 the clouds only significantly induced a higher polarized reflection near the two
rainbows and the glory, whereas for other phases the effect is minimal. This is in accordance with what
we expect in theory as the clouds mostly induce low amounts of polarization on reflected light except
near these known regions. At the primary rainbow daily variations of the clouds are visible, whereas
for other phases the variability in the signal remains very low. We state the following hypothesis about
adding polarized surfaces:

When including a horizontal inhomogeneous planetary surface (i.e. continents and oceanic re-
gions) that polarize reflected light beams, the smooth curve of 𝑄 will exhibit major variability,
while the planet rotates around its rotation axis.

This variability will, however, not be solely attributed to the spatial inhomogeneity of the surface cover,
because (1) polarized reflected light from the surface gets depolarized when a sufficiently thick cloud is
4Ratio between minor and major axis.
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Figure 4.6: Disk integrated planetary phase curves computed at ᎘ ዆ ኿኿ኺ ፧፦. From top to bottom we provide ፅ, ፐ, ፔ and ፏ፥.
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overcast, where the presence of such a cloud can vary daily, and (2) the vertical variability in the clouds
induce changes in the vertical extend of the top pure gas layer, yielding variability in the strength of
polarized reflected light. Lastly, from Figure 4.6 we observe a significant increase in the strength of 𝑈,
where the clouds induce large oscillations.

To further discriminate the effect of the surface we applied a black surface to our Earth-like atmo-
sphere (Black surface Earth). When we omit the surface reflection, we see an overall decrease in
𝐹. Similar to the ”No Earth clouds” end case the fully absorbing surface causes a decrease in overall
brightness of the planetary disk. The primary rainbow shows to be relatively untouched, although there
seems to occur more fluctuations around ∼ 50∘ phase. A similar behaviour is observed for 𝑃𝑙 at the
edge of the primary rainbow. Overall 𝑃𝑙 increases, because less unpolarized light is scattered back into
space. For 𝑄 and 𝑈 the absence of a reflecting surface has negligible effect. For 𝑈 small increases
occur in amplitude. The extremely small effect on 𝑄 shows again that the assumption of Lambertian
surfaces has a negligible contribution to the polarized reflection. This strengthens the hypothesis that
was introduced in the former paragraph. We will further investigate this hypothesis in Chapter 6.

Phase curves for cloud end cases
In the former section we showed that the clouds induce major oscillations in the planetary phase curves,
but what is the effect of the different cloud parameters? To investigate the effect of a single cloud type
as function of phase angle we will replace any type of cloud that we retrieve from the observations by
one specific cloud type, e.g. a cloud with 𝑃፜ = 700 𝑚𝑏, 𝜏 = 10 and 𝑟 ፟፟ = 12.5 𝜇𝑚. These end cases
allow us to present the pure effect of each parameter in an Earth-like cloud cover distribution. The
cloud fraction for every pixel is not altered and we use the Earth-like surface distribution and gaseous
atmosphere from our standard planetary model.
The first day of observations again corresponds to the first of January 2011. The different cloud types
are labeled in the lower panel of Figure 4.7, where CTP resembles the cloud top pressure, COT the
cloud optical thickness and CER the cloud particle effective radius.

Figure 4.7 shows the results of these end case simulations. From inspection of the upper panel we
retrieve that the dominant factor in 𝐹 is the cloud optical thickness. A significant difference in the
reflection of 𝐹 is observed until approximately a phase angle of 120− 130∘. The highest reflection oc-
curs for optically thick clouds, as less light is transmitted through the clouds. Furthermore, we observe
slight differences in the cloud particle effective radii and the cloud top pressure. An increase in cloud
particle effective radius relates to a decrease in 𝐹, agreeing to the results from Section 2.3.2 for the
single pixel TOA reflection. For increasing cloud top pressures 𝐹 increases, due to the thicker gas layer
above the clouds that reflect more light and decreases the penetration depth into the atmosphere, so
that less light reaches the surface and getting partly absorbing.

The second panel shows the dependence of 𝑃𝑙 on the end cases. At phases higher than the pri-
mary rainbow and around crescent phases, the effect of the cloud optical thickness and cloud top
pressure on the degree of polarization are most prominent, where the cloud optical thickness exhibits
the largest differences. We also see a small effect of the cloud particle effective radius in this range of
phase angles. So, it seems that high 𝑃𝑙 occur in the presence of a large abundance of optically thin
clouds in the planetary disk. Also, for increasing 𝑃፜ 𝑃𝑙 increases. By increasing 𝑃፜ the column of gas on
top of the cloud layer increases, essentially allowing more light to be polarized by Rayleigh scattering.
At the primary rainbow peak we see an interesting behaviour regarding the cloud particle effective
radius. Although we still observe the dominant effect of the cloud optical thickness, higher values of
𝑟 ፟፟ yield higher 𝑃𝑙. Bailey (2007) modeled the strength of the rainbow peak for 𝑟 ፟፟ = 1−100 𝜇𝑚 with
𝑣፞፟፟ = 0.1. They also found that the strength of the primary rainbow peak in polarized flux increases
with increasing 𝑟 ፟፟. A similar behaviour for the secondary rainbow can not be observed.

To be able to retrieve the effect of the Earth-like clouds solely on the polarized fluxes we also computed
and plotted the effect on 𝑄 and 𝑈. This effect can be particularly interesting, because we saw in Figure
4.6 that the Earth-like clouds seem to be only significantly effective on 𝑄 near the primary rainbow
feature. In the third panel we indeed retrieve that the different cloud types induce significant varia-
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Figure 4.7: Multiple phase curves with different cloud end cases. The temporal resolution is 3.059 days, and correspond to the
1st of January 2011 at full phase. The upper panel shows the ፅ, the second panel ፏ፥, and the third and lower panels show the
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tions near the primary rainbow, but also at quadrature. For phases near the quadrature the dominant
parameter is the cloud top pressure. In essence this is caused by the gaseous atmosphere on top of
the clouds, allowing more or less light to be scattered by the pure gaseous top layer. At the primary
rainbow, the dominating parameter is the cloud particle effective radius, where the cloud optical thick-
ness shows almost no dominance. The dominance of the cloud optical thickness on the rainbow in the
degree of polarization is thus mostly induced by 𝐹( again in agreement with Bailey (2007)).

The lower panel shows the Stokes vector 𝑈. Similarly to Figures 4.5 we observe for all cases large
fluctuations, but for small absolute values of 𝑈. Near full phase and before the rainbow phase angle a
small dominance of cloud optical thickness and cloud top pressure is observed. This trendy behaviour
seems to be somewhat distorted near the primary rainbow, where after 𝑈 shifts to positive values.
At quadrature different cloud top pressures and optical thicknesses produce clear distinctive trends.
At higher phase angles this can be seen even more clearly agreeing well to what we found for the
disk-resolved simulations in Section 4.1.

At different wavelength, the behaviour of the previously presented results will be more pronounced
or less so, for example in the blue it is expected that the clouds are far less dominant and we wouldn’t
retrieve the dominance of the cloud optical thickness. The cloud top pressure might show the largest
dominance at this wavelength region as Rayleigh scattering is most efficient in the blue. Provided that
significant light can still reach the top of the clouds. At red wavelengths, Rayleigh scattering is less
effective and reflection by the clouds is more dominant. We then expect the cloud optical thickness
and particle effective radius to show clear distinctive trends in our signals. In Section 5.2 we will show
whether any of the cloud parameters from our Earth-like planetary model is correlated to the reflection
of the Stokes parameters.

Effect of Earth’s seasonality and temporal sampling
For the previously presented phase curves, full phase always corresponded with the 1st of January
2011 and consecutive solar days with consecutive observation dates. In this section, we show the
variability in the phase curves if we simulate different starting days. This type of analysis will enable us
to retrieve how the seasonal variability in the Earth observations affects 𝐹, 𝑃𝑙, 𝑄 and 𝑈. In Chapter 3
it was provided that our planetary model requires quite some pixel models for every time step already
for a planetary disk of 20 × 20 pixels. To save time, we will therefore not compute the phase curves
for all 365 possible starting days. We provide two simulations with slightly different temporal reso-
lutions: 3.059 and 3.0 days. For these two resolutions the longitude/phase relations are provided in
Figure 4.8. With a resolution of 3.0 days we basically simulate an Earth-like exoplanet that is artificially
phase locked to its parent star as seen from the observer. With a resolution of slightly more than three
days we simulate the Earth-like planet to artificially rotate four times in half an orbit as seen from the
observer. This will also give us a general idea of how different types of sampling can effect the variety
in our signals and the retrieval of Earth signatures. The observation date at full phase is shifted every
14 days over the full year of 2011, resulting in 53 different runs.

In Figure 4.9 the planetary phase curves of with a resolution of 3.0 and 3.095 days are shown. The
solid lines corresponds to the mean and the shaded areas corresponds to the minimum and maximum
values of the 53 different simulations. The surface cover and gaseous atmosphere are invariant in time,
so the seasonal variations are solely due to the variability in cloud observations.

In the upper left panel we provide 𝐹. Similarly to Figure 4.7 much variations occur around 𝛼 = 5−35∘
and decreases with for larger phase angles. The shape of the primary rainbow is maintained for the 3
day resolution, but not for 3.095 day resolution. Overall we see that by artificially rotation Earth in our
observations the continuum is less smooth continuum. For both simulations the secondary rainbow
is not clearly present. In the upper right panel, 𝑃𝑙 shows to be relatively insensitive to the changing
cloud cover at low phase angles and at the primary rainbow feature for both resolutions. Albeit, the
magnitude of the primary rainbow peak varies with the temporal resolution, being caused by the daily
variations at this peak, which was shows in Figure 4.5. A bump, corresponding to the secondary rain-
bow, can be observed, but the amplitude does not exceed that of the seasonal variability, which makes
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it hard to retrieve it unambiguously. For higher phases, near quadrature and crescent phases much
more variations are induced from the seasonality in the cloud observations. For 𝑄 we only see a slight
variation near the peak of the primary rainbow. As compared to the middle left panel of Figure 4.7,
we see a major difference in variability at phases other than the rainbow: very low variability induced
by the dynamic Earth-like seasonal cloud cover at especially quadrature and crescent phases, showing
again that 𝑄 is particularly insensitive to the clouds. Also, we see that changing the sub-observer lon-
gitude also has minimal effect on 𝑄. Albeit, this may not be the case by introducing polarizing surface
models. For 𝑈 we see a lot of variation for the entire phase angle region, but no pattern similar to
that in the middle right panel of Figure 4.7. We do retrieve that for other sub-observer longitude 𝑈
seems to consistently attain higher positive values. This can be caused by (1) the different continental
distribution that is not facing the observer for an artificially phase locked Earth or (2) the presence of
a substantially different cloud cover at other sub-observer longitude.

From both simulations we conclude that 𝑄 is the least sensitive to the seasonally changing cloud cover,
except near the primary rainbow. The amplitude of the variation remains the same for different types
of sampling, and glimpses of the primary rainbow in 𝐹 depend on the sampling. For both simulations
𝑈 still induces the most complex behaviour, but is also very small. Lastly, it may be noted that all the
seasonal variations are in the order of relative magnitude of the diurnal variations, so it would be very
difficult to identify seasonality from such curves. Also, we have seen that with a temporal resolution of
∼ 3 days we are still able to observe the gross shape of the curves including important features as the
rainbow and the glory for 𝑃𝑙 and 𝑄. However, the exact width and amplitude of this primary rainbow
may not be retrieved properly.

Effect of different orbital geometries
In this research we mainly model our Earth-like planet with an obliquity of zero. Here, we will show
results of simulations with different values of the obliquity: −23.4, −15.4, −7.8, 7.8, 15.4 and 23.4 de-
grees. In Figure 4.10, the angle of obliquity is directed away (negative) or towards (positive) the
observer for all phases. In Figure 4.11, the angle of obliquity is directed to the left (negative) or
the right (positive) of the observer for all phases. Due to computation times we only present these
result for 𝜆 = 550 𝑛𝑚. In the upper left, upper right, middle left and middle right panels of Figure
4.10 we provide 𝐹, 𝑃𝑙, 𝑄 and 𝑈, respectively. Every case includes 27 runs to incorporate the effect
of Earth’s seasonality as explained in Section 4.2.1, with a temporal sampling of 3.059 days (Figure 4.8).

By rotating the north pole of an Earth-like exoplanet away from the observer (see the lower right
panel of Figure 4.10, 𝐹 increases due to higher reflection from the increased visible region of the
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Antarctica continent or due to an annually present cloud deck on the southern mid latitudes. This
relative increase in 𝐹 becomes smaller with increasing phase angle as is illustrated in the upper left
panel of Figure 4.10. With increasing phase angle the illuminated and visible region of Earth becomes
smaller, but more importantly the poles becomes less visible. For 𝑃𝑙 we see the same effect for large
phase angles. For phase angles near quadrature negative obliquity angles (away from the observer)
yield lower values of 𝑃𝑙. At the primary rainbow and smaller phases we do not see a significant dif-
ference between the different values of obliquity. Also, for both 𝐹 and 𝑃𝑙, we can see that negative
values of obliquity show much more variations than the positive values. This may again be related to
the ice caps on our poles. The ice abundance on the North Pole is much smaller than on the South
Pole, essentially providing much less variation. If we look at the polarized flux 𝑄, as illustrated in the
middle left panel of Figure 4.10, we see that with positive obliquity values the averaged reflected light
is less polarized, but the overall difference is very small. Because the ice surface reflection as well
as the reflection from clouds is generally depolarizing, we can expect variations in 𝑄 to be minimal.
For 𝑈, see the middle right panel of Figure 4.10, one can see that the different types of obliquity ex-
hibit very different patterns, especially for the mean values of 𝑈. In the first half of the phase curve
it seems that negative values of obliquity induce more negative values of 𝑈 and that this behaviour
is clearly reversed for the other half of the phase angle range, vice versa for positive values of obliquity.

In the upper left, upper right, middle left and middle right panels of Figure 4.11 one can see 𝐹,
𝑃𝑙, 𝑄 and 𝑈, respectively for the six different cases of obliquity, for the same planetary model. For
𝐹 we observe that there is no significant difference between the different values of obliquity from full
phase to approximately 𝛼 = 60∘. For quadrature and crescent phases we see a consistently higher
total reflection from negative obliquity’s. If we look at the orientation of the land distributions in
the lower panel one can see that for negative obliquity’s and high phases the Antarctic ice sheet is
more dominantly visible, whereas for negative obliquity’s the North Pole is more dominantly visible.
As mentioned before the abundance of ice, and thus the abundance of highly reflecting surfaces, is
significantly higher for the Antarctic continent, essentially inducing the increase in reflection. For 𝑄
we again see almost no effect from the different orientations. So, any variation from the six cases in
𝑃𝑙 are induced by 𝐹. Hence, the continuous lower degree of polarization for negative obliquity’s at
quadrature and crescent phases. For 𝑈 we see a clear distinction between negative and positive obliq-
uity values for phases until 𝛼 =∼ 80∘, where negative obliquity’s seem to induce negative values of 𝑈
and vice versa for positive obliquity’s. This clear division might be induced by the fact that with relative
large visible and illuminated regions of the disk, for negative obliquity’s, a higher portion of the conti-
nents is located on the norther hemisphere, whereas for positive values a larger portion is located on
the southern hemisphere. At high phases the different obliquity values can not be clearly distinguished.

In conclusion, different orientations and angles of the Earth’s obliquity influence especially 𝐹, 𝑃𝑙 and 𝑈.
The polarized flux 𝑄 seems to be relatively insensitive even at the rainbow feature, essentially implying
that the different cloud distributions on the disk do not show much differences. The main influence
appears to come from the North and South Polar ice caps, whose spatial extent plays a roll in the total
increase of reflection. The different distributions of the continents on the upper and lower part of the
planetary disk have effect on 𝑈, at least for small to moderate phase angles.

4.2.2. Phase curves at multiple wavelengths
In the former section, we provided the main characteristics of an Earth-like polarimetric signal at
𝜆 = 550 𝑛𝑚. In Section 3.2.1, we discussed the wavelength dependency of surface albedos. Here,
we will show phase curves computed at wavelength: 𝜆 = 350, 443, 550, 670 and 865 𝑛𝑚. Figure 4.12
shows the phase curves 𝐹, 𝑃𝑙, 𝑄 and 𝑈. We simulate the planetary disk with 20 × 20 pixels. We use
the planetary model described in Chapter 3: surfaces with Lambertian reflection, variable clouds that
are described by using all bins and a constant gaseous atmosphere. Our findings for 𝐹 are itemized as
follows:

• The daily variations increase with increasing wavelength, due to the decreasing effectively of
Rayleigh scattering, essentially exposing the spatially inhomogeneous daily varying clouds.

• For smaller phase angles, 𝐹 attains high values at 350 𝑛𝑚 because (1) more light is reflected
from the optically thick gaseous layer on top of the clouds and (2) if light is able to travel through
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Figure 4.10: Six runs with different angles of obliquity oriented towards (positive) or away (negative) from the observer at full
phase. In each run the seasonality is included, similar to Figure 4.9 and 4.15. The top left panel provides ፅ, the top right panel

ፏ፥, the bottom left panel ፐ and the bottom right panel ፔ.
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Figure 4.11: Six runs with different angles of obliquity oriented with the North Pole to the left (positive) or to the right
(negative) as seen from the observer at full phase. In each run the seasonality is included, similar to Figure 4.9 and 4.15. The

top left panel provides ፅ, the top right panel ፏ፥, the bottom left panel ፐ and the bottom right panel ፔ.
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that gaseous layer it is likely to be reflected by an underlaying cloud layer, if present. Hence, due
to the small penetration depth of the light beams in the atmosphere only a small portion of the
light reaches the surface, and getting partly absorbed. Thus, for longer wavelength light is more
likely to travel to the absorbing surface, essentially decreasing the overall reflection. However,
at 865 𝑛𝑚 𝐹 attains a higher reflection than at 670 and 550 𝑛𝑚, which is caused by (1) the
spectral increase of the surface albedo of vegetation and desert, where the albedo of the ocean
and ice only vary slightly, and (2) the increase in reflection of the liquid water particles for longer
wavelength as is shown in Figure 1a from Stam (2008a). Albeit, this increase in cloud particle
reflection is only minor and not the case for all scattering angles.

• The primary rainbow is visible for all wavelengths. The strength of this enhancement relative to
the continuum of the phase curve increases for longer wavelengths. The magnitude of the daily
variations does not seem to be affected much at the primary rainbow.

• At 𝛼 =∼ 120∘ there occurs a color reversal in a particularly clean intersection point. For large
𝛼 at long wavelengths the clouds reflect light more intensively to the observer, because (1) the
optically thin gaseous atmosphere on top of these clouds allow more light to travel relatively
undisturbed to the clouds and back through the atmosphere to the observer, and (2) because
the clouds reflect more light in a forward scattering direction (see Figure 1a in Stam (2008a)). At
short wavelengths the atmosphere is much thicker, i.e scattering light in a diffuse manner.

Our findings for 𝑄 are itemized as follows:

• The absolute magnitude of the rainbow peak decreases for longer wavelengths, but the magni-
tude relative to the continuum increases with increasing wavelengths. The enhancement centered
at 𝛼 =∼ 56∘ shows up for all wavelengths except 350 𝑛𝑚, where reflection from the clouds are
mostly suppressed by the thick gaseous atmosphere.

• Without considering phases near both rainbows and the glory, 𝑄 decreases for longer wave-
lengths. Also for longer wavelengths the variability in 𝑄 decreases. The overall decrease in 𝑄 is
caused by (1) the fact that Rayleigh scattering becomes less effectively allowing (2) the clouds to
scatter more light multiple times, essentially depolarizing it, and allowing (3) the more accessible
surfaces to completely depolarize the reflecting light. The latter reasoning also explains why the
daily variations are suppressed for longer wavelengths. That is, other than gaseous medium in
our model other sources of scattering mostly or fully depolarize the reflected light (see (2) and
(3)) thus inducing no variability in the polarized flux 𝑄 where the gas is optically thin.

• The fact that almost no variability is present at all wavelengths, could be a valuable tool when
adding polarized surfaces to our model, as we expect that these will cause large oscillations at
longer wavelengths, due to (1) the increase in albedo of some surface types and (2) the larger
penetration depth of the atmosphere, allowing more light to be reflected from the surface.

• The daily variation on the primary rainbow is present for all wavelengths, being caused by the
fact that, as we know, the cloud particles polarize light more strongly and thus induce variability
in 𝑄.

Our findings for 𝑃𝑙 are itemized as follows:

• For all wavelengths the daily variability is small for 𝛼 <∼ 35∘, where the maximum variations
occur, except 865 𝑛𝑚, in a large region of phases around quadrature. For 865 𝑛𝑚 this maximum
variability is observed around the primary rainbow.

• The absolute magnitude of the primary rainbow peak in 𝑃𝑙 is relatively constant, albeit the magni-
tude relative to the continuum increases for longer wavelengths. At 350 𝑛𝑚 the peak only slightly
exceeds the continuum. The secondary rainbow is only barely visible for 670 and 865 𝑛𝑚, but
its presence is mostly suppressed by the daily variations.

• Other than near the glory and primary rainbow the order of colors are maintained for all phases,
except near crescent phases where long wavelength cross other phase curves due to attaining
negative values in 𝑄.
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Our findings for 𝑈 are itemized as follows:

• At short wavelengths, 𝑈 shows large variations with high magnitude relative to longer wave-
lengths. In absolute magnitude, however, the variations of 𝑈 are very small. The relatively high
oscillations are caused by the high effectively of Rayleigh scattering. For longer wavelengths,
this source of polarized light decreases as the clouds are mostly depolarizing and the surface
completely depolarize.

• At short wavelengths the variations quickly diminish for phases larger than quadrature, which is
not the case for longer wavelengths.

In comparison to the results of Karalidi, Stam and Hovenier (2012), Figures 5, 6, 7 and 8, we found that
the strength of the rainbow in 𝐹 relative to the continuum is much stronger. Also we found that the
relative magnitude increases for longer wavelengths, whereas in their analysis the rainbow completely
vanishes. This major difference is caused by the fact that they use 𝑟 ፟፟ = 0.2; 6.0 𝜇𝑚, 𝑣፞፟፟ = 0.1; 0.4
and 𝜏 = 2.0, whereas we use 𝑟 ፟፟ = 10; 12.5; 15; 17.5 𝜇𝑚, 𝑣፞፟፟ = 0.1 and 𝜏 = 5.0; 10; 20. It is thus
apparent that the strength and possible retrieval of the primary rainbow signature greatly depends on
the size and distribution of the particles and the optical thickness of the clouds. Lastly, we find for 𝐹 and
𝑄 that the peak of the primary rainbow moves to higher phase angles for decreasing wavelength. This
is completely trivial as one remembers the visual effect of an actual cloud bow on liquid water clouds
in our atmosphere, which does not appear white, but exhibits different colors. In the next section we
will continue this discussion. In the last section we will provide the seasonal effect of the clouds for all
wavelengths considered here.

Color decomposition of the spectropolarimetric signal
In the former section we saw that in 𝐹 the reflection from a ”cloudy” Earth-like exoplanet is blueish for
𝛼 <∼ 120∘ and reddish for larger phase angles. That is, we saw an alternation between the different
wavelengths in a clear intersection point where for 𝛼 <∼ 120∘ the light beams with short wavelengths
are scattered more intensely and for larger phase angles light beams with longer wavelengths. If we
compare this to the appearance of clouds in our day to day life we would expect that clouds appear
white and thus reflect light beams at all wavelengths with the same intensity. As we mentioned before,
the cloud fraction is in the range of ∼ 0.68. So, how do we explain that the reflected light appears
blueish and reddish with such a high amount of clouds? To answer this question we will simulate the
color of reflected light with a weighted additive color mixing model in combination with phase curves
at 𝜆 = 443, 550 and 670 𝑛𝑚, acting as the primary colors.

In Figure 4.13 we simulated different homogeneous cloudy planets with a black depolarizing surface
and a gaseous Earth-like atmosphere. More specifically, in the upper left panel we model a cloudy
planet with 𝑃፜ = 700 𝑚𝑏 and 𝜏 = 20, in the upper right panel 𝑃፜ = 0 𝑚𝑏 and 𝜏 = 20 and in the lower
panel 𝑃፜ = 0 𝑚𝑏 and 𝜏 = 5, where with the latter two cases we simulate a cloud layer at the top of the
atmosphere. In all simulations we use 𝑟 ፟፟ = 10, where for other values no significant difference was
observed on the phase curves. Also, we provide RGB plots under every plot. We observe the following:

• With a gaseous atmosphere on top of a thick cloud we still observe a weak blueish and reddish
reflection from our planet as we saw in the planetary phase curves of our Earth-like model.

• By placing a thick cloud layer at the top of the atmosphere, both colors disappear and we obtain
a white reflection from the exoplanet at all phase angles.

• If we model the cloud at the top of the atmosphere, with an optically thin cloud layer we see that
at large phase angles the cloudy planet still appears white, but becomes blueish at quadrature
and smaller phase angles.

We can conclude the following: (1) the red appearance at large phases emerges if a gaseous layer is
present of top of a cloud layer, and (2) the blue appearance at small phases emerges from the gas
molecules on top, but also in and under the cloud layer, being more pronounced for lower optical depth
of the cloudy layer.
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Figure 4.12: Planetary phase curves for ፅ, ፏ፥, ፐ and ፔ in the top to bottom panels, respectively. These phase curves are
provided for five wavelengths: ኽ኿ኺ, ኾኾኽ, ኿኿ኺ, ዀ዁ኺ and ዂዀ኿ ፧፦. Lambertian surface models are used and the gaseous

atmosphere is kept constant. The cloud layers vary according to MODIS data.
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Figure 4.13: Upper left panel: homogeneous planet with black surface; clouds of Ꭱ ዆ ኼኺ, ፏᑔ ዆ ዁ኺኺ ፛ፚ፫ and ፫ᑖᑗᑗ ዆ ኻኺ ᎙፦.
Upper right panel: homogeneous planet with black surface; clouds of Ꭱ ዆ ኼኺ, ፏᑔ ዆ ኺ ፛ፚ፫ and ፫ᑖᑗᑗ ዆ ኻኺ ᎙፦. Lower panel:
homogeneous planet with black surface; clouds of Ꭱ ዆ ኿ኺ, ፏᑔ ዆ ኺ ፛ፚ፫ and ፫ᑖᑗᑗ ዆ ኻኺ ᎙፦. All have a gaseous atmosphere like

we used for all our simulations. RGB color strokes are provided for all ᎎ.

By inspection of Figure 4.12 it may be observed that the primary rainbow peak shifts to higher phases
for longer wavelengths. We argued that this is completely trivial as one sees multiple colors from a
cloud bow in our atmosphere. Figure 4.14 shows the RGB colors for 𝐹, 𝑄 and 𝑃𝑙 from the planetary
phase curves in Figure 4.12 at 𝜆 = 443, 550 and 670 𝑛𝑚. Despite the large daily variability’s in our
simulated phase curves we retrieved a clear color alternation near 𝛼 = 40∘ that corresponds fairly
well to that of a cloud bow. The color alternation is most clearly retrieved for 𝑃𝑙 for which we saw
that the primary rainbow peak attain approximately the same magnitude. For 𝑄 the rainbow peak
attained different absolute magnitude for different 𝜆, but still provides a clear color alternation. For
both parameters this feature is not observable by a human eye, because it can both be observed only
by using a linear polarization filter. For 𝐹 the variation of absolute magnitude of the rainbow causes
the cloud bow to be hardly visible, but if one looks closely it is present. This is caused by the gaseous
atmosphere in our model that was show in the former discussion. In conclusion, the shift in position of
the primary rainbow results in a cloud bow not only for 𝐹, but also for 𝑄 and 𝑃𝑙, unless the presence
a of ”blue” gaseous atmosphere in the planetary model.
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Figure 4.14: RGB color strokes according to the phase curves ፅ, ፐ and ፏ፥ at ᎘ ዆ ኾኾኽ, ኿኿ኺ and ዀ዁ኺ ፧፦ provided in Figure
4.12.

Seasonality at different wavelengths
In this section we provide phase curves, which are simulated in the exact same manner as described
in Section 4.2.1, but at 350, 443, 550, 670 and 865 𝑛𝑚 and only for a temporal resolution of 3.095
days. The phase curves are provided in Figure 4.15. The shaded areas and solid lines represent the
same statistics as in Figure 4.9. The main feature that we observe for these phase curves are already
addressed in the first part of this entire section.

The seasonal variability in 𝐹 shows to increase for increasing wavelengths. These variations have
similar or less magnitude as compared to the daily variations in Figure 4.12. The primary rainbow fea-
ture is barely visible at the short wavelengths, but is clearly visible at the near-infrared wavelengths.
Also, similar to Figure 4.12 the absolute seasonal variability decreases with phase angle. 𝑄 appears to
be relatively insensitive to the seasonal variability for wavelengths longer than 350 𝑛𝑚. At the rainbow
peak we see small variations for 𝜆 = 443, 550, 670 and 865 𝑛𝑚. One could expect this result as we
have seen that 𝑄 is virtually insensitive to the cloud and surface cover. For 𝜆 = 350 𝑛𝑚 we see much
variations for phase angles near quadrature and the primary rainbow. We do, however, again see that
these variations have the same relative magnitude as the daily variations. For 𝑃𝑙 the relative magni-
tude in variability, induced by the different seasons, also closely resembles that of the daily variations
in Figure 4.12. As for the previous parameters also 𝑈 shows similar orders of magnitude as the general
phase curves presented in the previous section.

In conclusion, 𝑄 is least sensitive to the seasonally changing cloud cover for long wavelengths. For all
wavelengths the seasonal variations are in the order magnitude of the diurnal variations, so it would be
very difficult to identify seasonality at any wavelength region directly from the planetary phase curves.
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Figure 4.15: From top to bottom we provide ፅ, ፏ፥, ፐ and ፔ, all as function of phase angle. The shaded areas show the
minimum and maximum values and the solid line shows the mean value. The plots consist of 53 runs with different starting
days and are simulated at ᎘ ዆ ኽ኿ኺ(magenta), ኿኿ኺ(green) and ዂዀ኿ ፧፦(brown). The temporal resolution of each run is 3.059

days.
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4.2.3. Diurnal light curves
The major oscillation that we observed in Figure 4.12 occurs due to (1) the rotation of Earth around
its own axis in combination with (2) the horizontally inhomogeneous cloud and surface cover. The
analysis for diurnal light curves is limited to a number of interesting phase angles, which are: 𝛼 =∼ 0∘,
∼ 40∘, ∼ 90∘ and ∼ 135∘; with a temporal resolution of one hour. Figure 4.16 shows the variations in
𝐹, 𝑃𝑙, 𝑄, and 𝑈 as functions of the sub-observer longitude for various wavelengths and phase angles,
normalized by subtracting the mean value of each diurnal curve. In the bottom panels we present the
land cover, cloud top pressure, cloud optical thickness, cloud particle effective radius and cloud fraction
distributions at full phase. If one refers to 𝛼 = 90∘ only the right half side of the disk would contribute
to the signal, etc. The planetary model the same as that used in Section 4.1.

For 𝐹 at 350𝑛𝑚 we see an overall agreement between the different phases, except for crescent phases,
with peak values corresponding the vegetated continents of Southern America and Asia, even though
the surface albedo is very low. Because various cloud patches are correlated to the shapes of the
ocean/land, during a full rotation, parts of the variability in our curves can be attributed to both clouds
and/or surface features. From the different diurnal curves we can observe a slight shift to lower lon-
gitudes with increasing phase angle, which is caused by the fact that we see a decreasing visible and
illuminated region that shifts to the right side of the planetary disk, essentially delaying the diurnal
variation to smaller longitudes. At 865𝑛𝑚 the variation for 𝛼 = 40 and 90∘ become stronger, where
for other phases it remains approximately the same. For example, at 90∘ phase there are three peaks
that seem to correspond to the highly reflecting vegetation covering Africa, America and Asia, where
at this wavelength the vegetated surface covers are highly reflecting. In all cases the low values of
reflection near 0∘ and 180∘, corresponding to the Atlantic and Pacific Ocean respectively.

For 𝑃𝑙 at 350 𝑛𝑚 we see only significant variations at quadrature. This trend shows two minima for
the vegetated land covers of Southern America and Asia. For crescent we observe a lot of variations,
whereas for full phase these are relatively smooth. At 443 and 550 𝑛𝑚, there are strong variations
near zero longitude that seem to be caused by a major region containing clouds with high cloud top
pressure. For longer wavelengths we start to see much more variation at other phases, especially at
the primary rainbow.

𝑄 shows much variations for all phase except crescent phases at 350 𝑛𝑚. As shown in Section 4.2 we
would expect the strongest variations for 𝛼 = 40, which is clearly visible. For increasing wavelengths
these variations tend to smooth out. At quadrature and crescent phases no clear variations are visible
in agreement to our phase curves in Figure 4.12.

For 𝑈 we can see some major variations for all wavelengths regions and phases. In magnitude, how-
ever, the strongest variations occur at 350 𝑛𝑚. As seen before, it is hard to retrieve an unambiguous
correlation with cloud parameters or surface types. In the presented analysis, it was found that 𝑈
is affected by the clouds, and mostly by the cloud optical thickness (Section 4.1). For full phase at
350 𝑛𝑚 we do see that with increasing longitude a higher abundance of high optical thickness values
near the center of the disk occurs, but for longer wavelengths this correlation seems to vanish, which
is in agreement for what we found in the resolved disks. When referring back to Section 4.1 we saw
that 𝑈 is not only affected by the abundance of cloud parameters over the center of the disk, but more
so by extreme cloud parameters in one of the four quadrants of the circle, such that an asymmetry
over the planetary scattering plane occurs. Although we may know how 𝑈 is affected, it is still hard to
retrieve some kind of cloud distribution from the disk integrated signal.

In conclusion, the shape of the diurnal light curve of 𝐹 as function of wavelength show to be fairly
constant. The variations of 𝑃𝑙 are small near full phase and crescent phase of 𝑄 for quadrature and
crescent phases. For 𝑈 we found major variation, but can not be unambiguously correlated these to
any temporal variation in the surface or cloud distributions. The fact that observations on the level of
the diurnal period might not tell us much directly is not necessarily a loss, because in reality integration
time depends on both the telescope and polarimeter capabilities, the planetary and star properties,
the orbital geometry, distance to the extrasolar system, etc, and may exceed a sufficient temporal
resolution to map the diurnal variability accurately.
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Figure 4.16: Diurnal variations for ፅ, ፏ፥, ፐ and ፔ in the upper left, upper right, bottom left and bottom right panel,
respectively. In each sub panel we present diurnal variations as function of sub observer longitude for ᎎ ዆ ኺ∘ , ኾኺ∘ , ዃኺ∘ and
ኻኽ኿∘. Each sub panel corresponds to a specific wavelength, from top to bottom: ᎘ ዆ ኽ኿ኺ, ኾኾኽ, ኿኿ኺ, ዀ዁ኺ and ዂዀ኿ ፧፦. As an
addition we provide the land cover distribution, cloud top pressure, cloud optical thickness, cloud particle effective radius and

cloud fraction.





5
Characterization of Earth clouds
from the scattered light curves

A parameter that potentially can be retrieved from photometric signals is the rotation rate of an exo-
planet around its own axis. Pallé et al. (2008) used Fourier power analysis and an autocorrelation to
retrieve the rotation rate of Earth around its axis by using a synthetic planetary model, for different
sub-observer views, exposure times, signal-to-noise ratios and observation periods. These cases were
applied to a data set of 21 years and percentages of success for the 24 hour, 12 hour and other periods
were documented. Based on these success rates, Pallé et al. (2008) concluded that the autocorrelation
method is more accurate and robust in the characterization of the rotation period using photometric
time-series data. In a later study by Oakley and Cash (2009), similar results were obtained also based
on photometric signals only. The question remains: can polarimetry provide additional confidence in
retrieving this period? Also, can we retrieve the presence of dynamic cloud cover on an Earth-like
exoplanet by comparing the confidence in retrieving the rotation rate for 𝐹, 𝑃𝑙 and 𝑄 together? Both
questions will be answered in the first section (Section 5.1). In Section 5.2, we will investigate the
variability of the spectropolarimetric signals at two fixed phase angles and assess whether there exists
a correlation with any of the cloud parameters.

5.1. Periodicity analysis on spectropolarimetry
Periodic patterns in our spectropolarimetric signals can be retrieved by transforming them into the fre-
quency domain with a Discrete Fourier Transform (DFT). We consider the following spectropolarimetric
signal:

𝑥(𝑛), 𝑛 = 0, 1, ..., 𝑁 − 1 (5.1)

where 𝑋(𝑛) is a specific data point and 𝑁 the total number of data points. The principal idea of the
Fourier transform method is that the original signal is expressed by a linear combination of periodic
components, more specifically the following complex sinusoid (Vlachos et al. 2005):

𝑠፟(𝑛) =
𝑒፣ኼ᎝፟ ፧/ፍ

√𝑁
(5.2)

The DFT on the sequence of data points 𝑋 provides us (Vlachos et al. 2005):

𝑋(𝑓፤/ፍ) =
1
√𝑁

ፍዅኻ

∑
፧዆ኺ

𝑥(𝑛)𝑒ዅ
ᑛᎴᒕᑜ
ᑅ (5.3)

where 𝑘/𝑁 is the frequency of a specific coefficient and 𝑘 = 0, 1, ...𝑁−1. In order to retrieve the periodic
components of the signal, the Power Spectral Density (PSD) or power spectrum needs to be exam-
ined, which essentially provides the power of the signal at a specific frequency, or in other words the
most dominant time period. Estimators of this PSD are the periodogram or the autocorrelation function.
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In Sections 5.1.1 and 5.1.2 we provide an introduction to the periodogram and autocorrelation function.
Next, we will assess what type of noise is generally induced the photometric and polarimetric signals
(Section 5.1.3). In Section 5.1.4 we attempt to retrieve the rotation period of Earth for various level
of noises, temporal intervals and temporal resolutions. Lastly, we use the autocorrelation method to
retrieve the presence of the dynamic cloud cover in our planetary model (Section 5.1.5). If not stated
otherwise, we use the phase curves presented in Figure 4.6, Section 4.2. These phase curves were
computed with the planetary model described in Chapter 3 that consists of a Lambertian surface model,
a temporally invariant gaseous atmosphere and the cloud distribution according to MODIS data.

5.1.1. Periodogram
The periodogram 𝒫 is produced by using the DFT from Equation 5.3 and computing the length of each
frequency component (Vlachos et al. 2005):

𝒫(𝑓፤/ፍ) = ||𝑋(𝑓፤/ፍ)||ኼ, 𝑘 = 0, 1, ..., [𝑁 − 12 ] (5.4)

where the power signal can only be computed up to half the maximum signal frequency, limited by the
Nyquist theorem. For large periods the accuracy of the power spectrum deteriorates for two reasons:
(1) the frequency component 𝑋(𝑓፤/ፍ) corresponds to the period interval [

ፍ
፤ ...

ፍ
፤ዅኻ), which increases in

width with increasing period; (2) Spectral leakage, which occurs due to bad sampling of frequencies in
the DFT bins, resulting in a dispersion over the entire spectrum. The periodogram is thus particularly
useful for small to medium periods.

5.1.2. Autocorrelation function
The circular autocorrelation function, or more commonly known as the autocorrelation function (ACF) is
an estimator of the dominant periods, by examining the similarity between sequences of data separated
by different lags (𝜏) (Vlachos et al. 2005):

𝐴𝐶𝐹(𝜏) = 1
𝑁

ፍዅኻ

∑
፧዆ኺ

𝑥(𝜏) ⋅ 𝑥(𝑛 + 𝜏) (5.5)

A more convenient expression can be exploited by using the DFT of the signal:

𝐴𝐶𝐹 = ℱዅኻ < 𝑋, 𝑋∗ > (5.6)

where ∗ denotes the complex conjugate. The ACF is a better periodicity detector than the periodogram
and can detect larger periods more accurately. This difference was also observed by Oakley and Cash
(2009); Pallé et al. (2008) for Earth-like photometric signals. However, the ACF on itself is not sufficient
for automatic periodicity detection. According to Vlachos et al. (2005) the ACF requires a manually set
threshold, and the method introduces many false alarms that need to be removed manually. Also high
frequency periodicity events with low amplitude appear less strongly in the ACF than in the periodogram.

5.1.3. Noise in the spectropolarimetric signal
Until now, we provided simulated spectropolarimetric signals without attenuation of e.g. interstellar
dust and noise from e.g. instrumentation. Here, we take a brief look at how our periodicity analysis
is affected when we add noise to our simulated signals. We believe that this is appropriate for the
current analysis, because we will attempt to retrieve the rotation period of Earth based on the tech-
niques proposed by Oakley and Cash (2009); Pallé et al. (2008), ultimately linking these results to the
presence of dynamic cloud covers. Examples of dominant non-instrumental noise sources are: direct
star light from the parent star and exo-zodiacal/zodiacal light from for example dust (Oakley and Cash
2009; Traub et al. 2006). Examples of instrumental noise sources are: throughput, quantum efficiency,
readout noise and dark current.

For the current test case we will ignore non-instrumental noise. White Gaussian noise will be added
to the fluxes 𝐹, 𝑄 and 𝑈 separately to mimic instrumental noise (Snyder et al. 1995). This consider-
ation is based on a recently developed polarimeter: DIPOL-2 (Piirola et al. 2014). This polarimeter is
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designed to observe polarized light for three wavelength passbands simultaneously by used of three
CCD’s (Charged Coupled Device). The two orthogonal polarized light beams are split by a calcite ana-
lyzer. The polarized light beams are thus separately detected on one CCD and independently receive
instrument noise. It has to be noted that currently and in the future other types of polarimeters or
spectrometers might be employed that induce noise on the spectropolarimetric signals differently, like
if for example the degree of polarization is measured directly. In this case, the White Gaussian noise
should have been applied directly on the simulated parameter 𝑃𝑙, whereas in this case we compute 𝑃𝑙
from 𝐹, 𝑄 and 𝑈 that contain already some degree of noise.

5.1.4. Retrieval of rotational period
In this section we will review the ability to reproduce the rotation rate Earth, i.e. a solar day. As we
described in the previous section, we will apply some degrees of White Gaussian noise to our spec-
tropolarimetric signals. This is mainly done to assess with what level of noise the diurnal rotation
period cannot be retrieved anymore. Additionally, we try to retrieve the period with different temporal
resolutions and intervals. The White Gaussian noise that will be used has a mean of zero and a variable
standard deviation. We start by analyzing a full set of data that consists of a simulation done with a
diurnal resolution of data 12 points and an observation interval between and including 01/01/2011-
06/30/2011. We increase the standard deviation of noise until we see no significant peak in either the
correlogram or periodogram. Values of noise are labeled in the lower panel of Figure 5.2.

In Figure 5.1 one can observe the periodogram for 𝐹, 𝑃𝑙, 𝑄 and 𝑈 in the upper left, upper right,
bottom left and bottom right panel, respectively. For 𝐹 we can see that there are significant peaks
at frequencies that correspond to 24 and 12 hours. Lower peaks can be observed for 6 hours, and
even less strong peaks at 8 and 4.8 hours. The maximum level of noise is simulated with a standard
deviation of 2% and shows to completely dilute any possible retrieval of any dominant frequency. With
a standard deviation of 1% we are able to retrieve peaks that correspond to 24 and 12 hours, where
there is no significant difference between the two. By decreasing the noise level we start to be able to
retrieve strong peaks for 8, 6 and 4.8 hours. Also, with decreasing noise level the peak at 12 hours is
stronger than that at 24 hours.

When we apply the Fourier technique on 𝑃𝑙 we see that by adding 0.1% noise the major peaks at
24 and 12 hours are still visible, but by increasing the noise to 0.2% we completely lose any dominant
frequency. We have seen in Chapter 4 that 𝑄 contains barely any significant variability, or diurnal
variations, in the simulated signal. With no noise we see that the strength of the peaks especially at 24
and 12 hours are already an order of magnitude lower in strength than that of 𝐹 or 𝑃𝑙. It is therefore
no surprise that when adding only a small portion of noise any dominant frequency is immediately lost.
For 𝑈 the magnitude is even lower. Without noise we however see significant peaks with respect to
the continuum, which might indicate that 𝑈 carries the rotation period quite well. Albeit, if we add
only a small portion of noise any dominant frequency is immediately lost. These results show that the
rotation rate can only be confidently retrieved from 𝐹, and that 𝑄 and 𝑈 are a relatively weak tool if
we consider some noise in our signals.

Now that we have seen what periods we can retrieve with the Fourier based technique, we will analyze
the results from the autocorrelation method. In Figure 5.2 the correlogram of 𝐹, 𝑃𝑙, 𝑄 and 𝑈 are
provided in the upper left, upper right, middle left and middle right panels, respectively. We again
simulated several cases with different standard deviations to include White Gaussian noise. The cor-
responding values are provided in the lower panel. With the autocorrelation function, one is able to
retrieve periods on a longer timescale relative to the Fourier based technique.

The correlogram of 𝐹 shows a significant bump/peak at 12 legs, which corresponds to 24 hours. One
can also see a smaller bump, which corresponds to 12 hours. Similar bumps can be observed that
correspond to consecutive rotation periods up to 96 hours or four solar days. If we increase the noise
in these signals, one can see that the dominant peak of Earth’s rotation period is maintained fairly well,
and the peak corresponding to half of Earth’s rotation’s rate decreases much more rapidly. Similar
to the Fourier based technique, with 𝜎 = 2% noise, the rotation rate cannot be unambiguously re-
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Figure 5.1: Periodogram of ፅ, ፏ፥, ፐ and ፔ in the upper left, upper right, bottom left and bottom right panel, respectively.
Different line colors correspond to different levels of White Gaussian noise. The red curve corresponds to our simulated

spectropolarimetric signal without noise. The corresponding noise values are provided in a legend in Figure 5.2. On the x axis
the time in hours is provided.
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trieved. In these results for the correlogram and periodogram we see a similar behaviour as Pallé et al.
(2008) identified, namely that the autocorrelation provides a much more confident retrieval of the ro-
tation rate, whereas the Fourier based technique often retrieves 12 hours as the most dominant period.

If we add only a small portion of noise to 𝑃𝑙 any significant correlation is immediately lost, essen-
tially oscillating around zero. This effect was not as strong for the Fourier based technique, where we
were still be able to retrieve some peaks with 𝜎 = 0.1%. The lack of daily variability in 𝑄 can also be
retrieved from the correlogram of 𝑄, where we see hardly any highly correlated period, without even
considering noise. In this case, we see that in an ideal case the Fourier based technique would have
been more appropriate for the low fluctuations in 𝑄. For 𝑈 we again easily retrieve a significant cor-
related period at 24 hours. However, by adding a small amount of noise any highly correlated period
vanishes. This is again in close correspondence to what was found with the Fourier based technique.

In conclusion, we found that the autocorrelation technique applied on 𝐹 will provide a much more
confident retrieval of an Earth-like exoplanet rotation period than that with the Fourier based tech-
nique, where the latter method retrieves the 12 hour period more confidently. For both methods we
saw that the retrieval of any dominant period in 𝑃𝑙 with the addition of some noise deteriorates fast.
This was also observed for 𝑄 and 𝑈. In the case of 𝑄 this might be totally different if we only observe
the region of the primary rainbow, where we see lots of variations. In the following section we will
investigate different temporal intervals.

Periodicity analysis on different observation intervals
In theory we can simulate our spectropolarimetric signal in any way we want, but in reality an observer
is unlikely to observe an exoplanet for half an Earth year. In this section we assess the periodicity
retrieval at four different observation intervals with a total observation time of 10 days and an observa-
tional resolution of two hours: 𝛼 =∼ 35−45∘, 𝛼 =∼ 85−95∘ and 𝛼 =∼ 130−140∘. In the past sections
we have included some deficiencies of present and possible future polarimeters or spectrometers that
limit our ability to retrieve characteristics from an exoplanet. In this section the phase angle range to
30∘ −150∘, similar to Oakley and Cash (2009). The range of observable phase angles depends largely
on the Inner Working Angle (IWA) of the observing system, but also the inclination that have assumed
as 90∘ (Section 3.5). For a more detailed discussion about this IWA one can review Rossi and Stam
(2017). In this paragraph we will not show any results regarding periodicity’s found in 𝑈, because they
did not provided any substantial difference to what we saw in the previous section.

In Figure 5.3 we have provided the correlograms of 𝐹, 𝑃𝑙 and 𝑄 in the left, middle and right panel,
respectively. In the upper panel we provide the correlograms of the light signal for 𝛼 =∼ 35 − 45∘, in
the middle for 𝛼 =∼ 85−95∘ and in the lower panel for 𝛼 =∼ 130−140∘. The associated noise values
are provided in the lower panel of Figure 5.2. Overall we observe that the correlation of intermediate
lags, i.e. lags that do not correspond to Earth’s rotation rate, fractions of this period or consecutive
Earth periods, are significantly lower. For 𝐹 at the rainbow peak we see a stronger identification of
the rotation period and consecutive periods, even for high values of noise. For 𝑃𝑙 and 𝑄 no significant
correlation is present at all, which is fairly surprising especially for 𝑄. By inspection of the phase curves
in Chapter 4 we know that at the rainbow large variations are induced by the polarizing clouds. The
bad autocorrelation retrieval can be caused by two things: (1) The clouds that dominate the fluctu-
ations in the signal have a large temporal variation, causing a lot of anticorrelation in the signal; (2)
The highly non-linear continuum causes large anticorrelation in the signal. If we look at the retrieval
around 90∘ we observe major peaks that correspond to the rotation period and consecutive periods
for 𝐹 and 𝑃𝑙. The retrieval of dominant periods in 𝐹, however, performs worse with increasing noise.
We also see a consistent trend of slightly shorter periods than the real period at 24 hours, 12 hours or
periods of consecutive days for the ideal as well as the noisy retrievals. For 𝑄 we find small peaks for
the ideal case, but when adding a small amount of noise, no significant correlated period is retrieved.
At crescent phases we see that 𝐹 performs slightly worse than at 𝛼 = 90∘ in terms of absolute values
of correlation and resilience to noise. For both 𝑃𝑙 and 𝑄 we see that some addition of noise completely
dilutes any possible correlated period.
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Figure 5.2: Correlogram of ፅ, ፏ፥, ፐ and ፔ in the upper left, upper right, bottom left and bottom right panel, respectively.
Different line colors correspond to different levels of White Gaussian noise. The red curve corresponds to our simulated

spectropolarimetric signal without noise. The corresponding noise values are provided in a legend in the lower panel. On the x
axis the number of lags is provided, where 1 leg corresponds to 2 hours in a solar day.
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Figure 5.3: Autocorrelation on ፅ, ፏ፥ and ፐ in the left, middle and right panel, respectively. In the upper panel we provide the
correlograms of the light signal for ᎎ ዆∼ ኽ኿ ዅ ኾ኿∘, in the middle for ᎎ ዆∼ ዂ኿ ዅ ዃ኿∘ and in the lower panel for
ᎎ ዆∼ ኻኽኺ ዅ ኻኾኺ∘. All data ranges comprise of a 10 day data set with a diurnal variation of 12 data points.

The Fourier based technique results are provided in Figure 5.4. Results of 𝐹 show that at the rainbow
phases half an Earth rotation period is dominant, and is significant up to noise with a standard devi-
ation of 2%. The peak corresponding to 24 hours is significantly lower, and as dominant as the peak
at 8 hours. Furthermore, we can see that the peaks are a bit blunt and do not correspond exactly to
the expected periods, again being short of or longer than the real rotation rate. In Pallé et al. (2008)
similar behaviour was identified, on which they provide that depending on the resolution of the data
one has to take into account a delta equivalent to the exposure time, in this case two hours (Δ = 2ℎ𝑟).
For the retrieval at 𝛼 =∼ 90∘ and 𝛼 =∼ 135∘ any dominant peak deteriorates for lower values of noise
than at the rainbow, where at crescent phases the effect of noise most prominent. This is also true
for the signals 𝑃𝑙 and 𝑄. For 𝑃𝑙 and 𝑄 we moreover find that again any retrieval is diluted quickly by
noise if we compare their performance to 𝐹.

In Pallé et al. (2008) several interesting findings were made that can identify dynamic cloud cover
on Earth-like exoplanets. By simulating different sub sets of a full data set, the presence of dynamic
weather can be related to ”apparent” rotational periods that are consistently short of or longer than
the real rotation period. These shifts are completely gone when considering only a clear atmosphere
on which they argue that these are produced by the dynamic cloud cover. More specifically, shorter
periods might correspond to cloud decks that move westward (in the direction of Earth’s rotation) and
longer periods to cloud decks that move eastward. It is hard to confidently retrieve whether this is
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Figure 5.4: Fourier based analysis on ፅ, ፏ፥ and ፐ in the left, middle and right panel, respectively. In the upper panel we
provide the periodograms of the light signal for ᎎ ዆∼ ኽ኿ ዅ ኾ኿∘, in the middle for ᎎ ዆∼ ዂ኿ ዅ ዃ኿∘ and in the lower panel for

ᎎ ዆∼ ኻኽኺ ዅ ኻኾኺ∘. All data ranges comprise of a 10 day data set with a diurnal variation of 12 data points.
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exactly the cause, because in reality Earth houses different global weather patters like the Intertropical
Convergence Zone, the Horse Latitudes and the Polar Fronts. In our results, we can identify similar
slightly shorter apparent rotation periods like Pallé et al. (2008) found.

5.1.5. Using polarized surfaces to detect the presence of dynamic weather
In this section we attempt to retrieve the presence of dynamic weather from the correlogram of 𝐹,
𝑃𝑙 and 𝑄. In the previous section it was mentioned that dynamic cloud cover can be related to the
”apparent” rotation rate of different data sub sets. In this thesis we will not delve any further into this
theory, but investigate a possible new signature that can be retrieved from the periodicity analysis,
essentially employing our ability to process polarized light curves. Our hypothesis:

The polarized flux 𝑄 shows to be relatively insensitive to the varying cloud cover, except around
the primary rainbow and glory. The strength of the autocorrelation over multiple consecutive
Earth rotation periods from 𝑄 is higher than for 𝐹 and 𝑃𝑙. That is, the surface cover is annually
invariant, but the spatial distribution of the clouds depend on daily observations (Chapter 3).

More illustrative, Figure 4.6 shows that 𝑄 is barely affected by introducing clouds in our model for
𝛼 ≳ 60∘, whereas 𝐹 and 𝑃𝑙 are affected significantly for the full range of 𝛼. We employ the anisotropic
”polarizing” surfaces that are extensively introduced and analyzed in Chapter 61. Also, this analysis is
provided for signals without noise.

Figure 5.5 shows the correlogram of 𝐹, 𝑃𝑙 and 𝑄 on various data sub sets. We provided the auto-
correlation up to 88 lags, where 84 lags corresponds to a period of 7 solar days. The specific sub set
that is used is illustrated in the panels below the correlograms. Our findings for the different sub sets
are itemized below:

• For 𝛼 < 60∘ the phase curve of 𝑄 showed to be affected by clouds. The corresponding correlogram
in the upper left sub figure shows that the correlation in the signal 𝑄 exhibits no clear peak at
the solar day nor at consecutive solar days. After a three day period the correlation of 𝑄 is
consistently lower than that of 𝐹 and 𝑃𝑙.

• For 35 < 𝛼 < 150 we include both the region of phase angles that cover the primary rainbow and
the region where 𝑄 showed to be fairly insensitive to the clouds (upper middle panel). Here, we
restrict the phase angle range to < 150∘ (or equivalently > 30∘), which for example corresponds
to a system at 40 light-years, with the planet at 1𝐴𝑈 from its star and an IWA of 40 𝑚𝑎𝑠2. In
this phase angle range a correlation at a solar day or consecutive days is more distinctive than
the former case. The correlation for consecutive days becomes largest for 𝐹 and approximately
similar for 𝑄 and 𝑃𝑙.

• In the upper right panel we see a similar case the the former, but now without the primary rainbow
phases. Overall the correlation for all parameters is higher than the former case, and we see that
𝑄 exhibits the highest correlated periods, with no false positives that relate to half an Earth day.
After multiple consecutive solar days there occurs a clear divergence in the autocorrelation of 𝑄
compared to 𝐹 and 𝑃𝑙.

• In the bottom left panel we show the correlogram that includes the ”unobservable” phase angles
near new phase. The correlation for high number of lags increases for 𝑄, and less so for 𝑃𝑙 and
𝐹, showing even a more clear diverging trend than in the former case.

• For 𝛼 > 60∘ in the lower middle panel we model the region which is least affected by the variant
cloud cover. As compared to the former case we still see a clear divergence, but for all parameters
the correlation at multiple consecutive solar days is less.

1For our Lambertian surface approach we saw that no significant period was retrieved. By analyzing phase curves with a planetary
model that include polarizing surfaces a much stronger period can be retrieved. We provided a figure equivalent to Figure 4.6,
except with anisotropic ”polarizing” surfaces, in Appendix F Figure F.1, to show that these polarizing surface models induce
major oscillations on ፐ.
2See Figure 14 of Rossi and Stam (2017).
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Figure 5.5: Correlogram of ፅ, ፏ፥ and ፐ on various data sub sets, illustrated in the lower panel of each sub plot. On the x axis
the number of lags is provided, where 1 leg corresponds to 2 hours in a solar day.

• If we restrict us to the ”observable” part of phase angles that show low sensitivity to the variant
clouds the diverging trends are less strong. The peaks at an Earth day or consecutive days is still
clearly retrievable and also is the diverging trend.

In conclusion we showed that for small phases 𝛼 < 45∘ the presence of a dynamic cloud deck can not
be retrieved from the correlation in the signals of 𝐹, 𝑄 and 𝑃𝑙. Considering only 𝛼 > 45∘ we retrieved a
clear diverging trend in the autocorrelation of 𝑄 at multiple consecutive rotation periods for all cases as
compared to 𝐹, but less so to 𝑃𝑙. This is only considered for the reflection of light at 𝜆 = 550 𝑛𝑚 and
for a temporal resolution of 2 hours, but it might provide as a valuable tool in retrieving the presence
of dynamic clouds in an exoplanet atmosphere.

5.2. Dependency of total flux and polarized light on Earth’s dy-
namic clouds

In the previous section we saw that the dynamic cloud cover of Earth has quite some effect on the diur-
nal variations for different days in the year. In this section we will look if there exists some correlations
in the spectropolarimetric signals with the mean cloud properties of Earth. From Chapter 4 we know
some interesting regions which we will further investigate in this section: the approximate rainbow
peak, 40∘ phase angle, and the approximate peak of max polarization, at 90∘ phase (which may not
be true for all wavelengths). For these two phase angles the diurnal variations with a 2 hour temporal
resolution are computed for 53 different observation days in 2011, spaced by 2 weeks. This means
that the simulation includes the full diurnal rotation of Earth and thus captures different continental
distributions, as well as the seasonality in the clouds. Furthermore, we will look at three wavelengths,
namely 350, 550 and 865 𝑛𝑚. In the subsequent section we will look at signals of 𝐹, 𝑃𝑙 and 𝑄 only,
because 𝑈 does not provide any prominent correlation with any of the cloud parameters. Also, some
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cloud properties are left out for the same reason.

5.2.1. Correlations of Stokes elements with cloud parameters
We start with the behaviour of 𝐹. In Figure 5.6 we plotted 𝐹 as function of the mean cloud fraction (CF),
particle effective radius (CER) and top pressure (CTP) for 𝜆 = 350, 550 and 865 𝑛𝑚. The behaviour of
the cloud optical thickness does not provide any prominent correlation and is therefore not included in
this analysis. At short wavelengths we see a strong relationship for CF at both the rainbow peak and
quadrature. For CER and CTP we do not observe such strong trends. With reasonable confidence we
can say that an increase in 𝐹 at both phases correlate to an increase in CF, regardless of the position
of the cloudy pixels on the disk. Increasing the number of cloudy pixels increases the brightness of the
disk, because as we know clouds are white and highly reflecting. At the rainbow the correlation is more
pronounced, which may be due to the fact that cloud particles reflect light less intensively at phases
around quadrature (see Figure 1 in Stam 2008a). We do, however, observe a small trend for CTP, at
short wavelengths, of decreasing 𝐹 for increasing CTP, caused by the high effectiveness of Rayleigh
scattering, such that light has a shorter path length and thus the reflects more intensively from the
clouds if the gaseous layer is geometrically thinner.
At green wavelengths the dominant correlation from CF gets somewhat diluted. Although, in theory
we would expect this correlation to strengthen with decreasing effectiveness of Rayleigh scattering, we
observe the opposite. For CTP we observe very minor differences with respect to short wavelengths
and for CER we again see no clear trends.
At long wavelengths we observe a significant trend for CER. At quadrature a decreasing trend of 𝐹
occurs with increasing CER, whereas at the rainbow peak the shape of this correlation seems to tend
to a logarithmic relation. In Section 2.3.2 we saw a similar effect for a single pixel TOA reflection, where
for increasing CER a continuously lower value of reflected flux was simulated. For CF we observe that
the degradation of the trend at short wavelengths continued onward from 550 𝑛𝑚. If one looks closely
to this anti correlation at both phases, one can see some division of data points into three areas that
might suggest a major degenerescence of another cloud property at this wavelength. For CTP the
small correlation that was present is completely gone at this wavelength.

The interesting part of this analysis is to look at the degree of polarization, because Rossi and Stam
(2017) provided an extensive study, with slightly idealized Earth-like clouds in the form of a patchy
cloud cover, into the variation of 𝑃𝑙 with different values of CF. Figure 5.7 shows the variation of 𝑃𝑙
as function of CF, CER and CTP. The relation with the cloud optical thickness is not provided, because
of no clear trends. At 350 𝑛𝑚 we only see a significant correlation with CTP at the rainbow. This
decreasing trend of 𝑃𝑙 versus an increasing CTP is similar to that of 𝐹, but much more significant. Also,
we observe a small correlation with the cloud particle effective radius at the rainbow, but much less
significant.
If we move to 550 𝑛𝑚 a clear trend at the rainbow for CER is observed. At quadrature it is less promi-
nent. CF shows different trends at the rainbow and quadrature, where at quadrature an increasing CF
provides a lower 𝑃𝑙 and at the rainbow this is correlated to a high 𝑃𝑙. An increase in CTP at quadrature
causes and increase in 𝑃𝑙, whereas at the rainbow the data is randomly scattered.
For long wavelengths CER seems again to be the most dominant correlated parameter as we also saw
for 𝐹. For most of the parameters at both phases we again see some division into three or more
regions. We also find that CF at the rainbow is correlated more clearly than for 𝐹. CTP shows only
randomly scattered data, but this can be easily related to the optically thin gas layers.

As we have seen in Chapter 4, 𝑄 shows limited variability induced by the clouds, except at the primary
rainbow. In Figure 5.8 the behaviour of 𝑄 as function of CF, CER and CTP is provided. For 350 𝑛𝑚
at quadrature we see some significant trends for CF and CER. It has to be noted however that the
variability in 𝑄 is relatively small near these phases. At the rainbow a less clear trend for both CF and
CER is retrieved, but a clear trend for CTP. This trend is again related to the optical properties of the
top gas layer, but in this case 𝑄 decreases in magnitude for increasing CTP. When referring back to the
fact that Mie scattering of the clouds is generally strongly depolarizing this might seem odd, but at the
rainbow we know that the clouds polarize reflected light more intensively. This causes the increase in
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Figure 5.6: Relation between cloud parameters and total normalized reflected flux, for ᎘ ዆ ኽ኿ኺ, ኿኿ኺ and ዂዀ኿ ፧፦ in the left,
middle and right panel respectively. Alternatively from top to bottom we see ፅ computed near ᎎ ዆ ዃኺ∘ and ᎎ ዆ ኾኺ∘, the

approximate point of maximum polarization (in general) and peak of the primary rainbow, respectively. For each of these two
cases we see from top to bottom the cloud fraction, cloud particle effective radius and cloud top pressure.
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Figure 5.7: Similar to Figure 5.6, except for ፏ፥.
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𝑄 with increase of CF.
At 550 𝑛𝑚 the variability near quadrature are very small, where the effect becomes stronger for longer
wavelengths. For CF and CER at the rainbow we retrieve clear trends. These trends strengthen for
longer wavelengths, because of the more dominant clouds. The correlation of CTP deteriorates for
longer wavelengths. We see thus that Rayleigh scattering dilutes the correlation of the cloud fraction
at short wavelengths and and its absence weakens the trend found for CTP at long wavelengths.

5.2.2. Retrieval of the shape of the light curves
From the former section we have seen several trends that can explain some behaviour in 𝐹, 𝑃𝑙 and
𝑄. Rossi and Stam (2017) (RS2017) showed that the shape of 𝑃𝑙 exhibits some strong variability as
function of CF. We can not directly compare our results, because RS2017 fixed the CF for a full phase
curve and in our case this fraction varies constantly according to the daily observations. Also, RS2017
introduced a region of variability in which different spatial distributions of cloudy pixels in their plan-
etary disk are modeled. In our case, we attempt the same by simulating different observation days
for the two phase angles. Even with this region of variability, RS2017 could still distinguish between
different cloud fractions by observing a monotone decrease of 𝑃𝑙 at 𝛼 =∼ 50 − 140∘ for increasing
CF, where the largest distinction can be made with values of 0.1-0.4. In our case we observe a values
of ∼ 0.5 − 0.8. For these fractions RS2017 could also observe a relative difference, but much smaller
in absolute magnitude. Also, RS2017 only modeled 𝜆 = 300 and 500 𝑛𝑚, where we also introduced
a near-infrared wavelength. For 𝜆 = 500 𝑛𝑚 they found that different cloud fractions do not induce
changes in the strength of the primary rainbow. In Chapter 4 and the former section we saw that in
our case some variability is induced on this peak in the presence of varying cloud parameters. More
specifically, this variability showed to be mostly induced by the different values of CER that we intro-
duced in our model, but the CER is fixed in the analysis by RS2017. In the following part of this section
we will look at the percentage of 𝐹, 𝑃𝑙 and 𝑄 at 90∘ phase with respect to that at our reference phase
of 40∘, and attempt to retrieve changes in the shape of the phase curve that are correlated to CF, CER
or CTP. 90∘ phase is chosen because this point can in most cases be considered as the maximum point
of 𝑃𝑙. This can slightly deviate, but in our case we are mostly interested in the shape of the curves and
not so in the exact position of the maximum polarization peak. The shape of the curve is more clearly
defined in Figure 5.9, where in the left panel we observe a shape that corresponds to a fraction below
100%, in the middle panel a shape that corresponds to a fraction slightly higher than 100%, and in the
right panel that of a fraction significantly higher than 100%. For the following plots we basically use
the data from the scatter plots we presented in the former section and look at the relation between
every possible combination of data points. In the following we refer to the fractional percentage by
the fraction of 𝐹, 𝑃𝑙 or 𝑄.

Fraction of 𝐹
Despite the fact that the rainbow is much more varying in 𝐹 than in 𝑃𝑙, we find some correlation be-
tween the fraction of 𝐹 at the rainbow and quadrature phase, which are provided in Figure 5.10. In
the upper three panels we observe clearly a decreasing correlation between CF and the fraction of 𝐹.
In this case we expect the fraction to be higher than 100 as 𝐹 decreases continuously with increasing
phase angle. We see that for small CF at quadrature and high values at the rainbow we see a large
fraction of 𝐹. In this region of the plot we reasonably constrain the high and low values of CF at the
rainbow and quadrature, respectively, at 350 𝑛𝑚. For longer wavelengths we still see a significant
correlation at 550 𝑛𝑚, but at the red wavelengths no clear trend is prominent and any fraction of 𝐹
can be induced by a large set of CF at both phases.
For CF at 350 and 550 𝑛𝑚 one can not confidently constrain any value of CER at both the rainbow
or quadrature. At 865 𝑛𝑚, however, we see a strong trend that constraints at least the mean CER at
quadrature and to a lesser extend CER at the rainbow, because the red region extends more to lower
effective radii at this phase.
In the lower panel we plotted all combinations of CTP, which show that there are slight trends visi-
ble. At short wavelengths low values of CTP at quadrature seem to correspond to a low fraction of 𝐹,
whereas high values correspond to low CTP at the rainbow. For 550 𝑛𝑚 the trend strengthens some-
what, where high fractions move also to high top pressures at quadrature, whereas at 865 𝑛𝑚 this
trend looks more diluted. For the fraction of 𝐹 we observed that we can reasonably constraint high and
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Figure 5.8: Similar to Figure 5.6, except for ፐ.
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Figure 5.9: Definition of the fraction of ፏ፥, similarly applied to ፅ and ፐ.

low values of CF at both phases, and with less confidence the high and low values of CER at both phases.

Fraction of 𝑃𝑙
In Figure 5.11 the fraction of 𝑃𝑙 is provided. For short wavelengths the fraction less than 100%, mean-
ing that Pl at quadrature is higher than at the rainbow. At 550 and 865 𝑛𝑚 we observe a fraction
> 100%, meaning that the ”peak of maximum polarization” is less in absolute magnitude than the
rainbow peak. In this case low and high values of CF at both phases are clearly restricted at 350 and
550 𝑛𝑚. At 865 𝑛𝑚 any unique correlation of CF at any phase with the fraction of 𝑃𝑙 is lost.
CER at both phases are not related to any unique fraction of 𝑃𝑙 at 350 𝑛𝑚. By moving to longer
wavelengths we start to see a clear trend that constraints in particular CER at the rainbow. It has to
be noted that for good visibility the y-axis is inverted for the 3d plot at 865 𝑛𝑚.
For both phases we are able to constraint values of CTP reasonably well. At 350 𝑛𝑚 we observe that
CTP at the rainbow has a linearly like trend, where low CTP correspond to high fractions of 𝑃𝑙. At
550 𝑛𝑚 the trend is more clear and the pattern is rotated to constrain CTP at quadrature, where no
unique value of CTP at the rainbow can be related to a fraction of 𝑃𝑙. For red wavelengths we see a
similar pattern, but much more diluted.

Fraction of 𝑄
All fractions of 𝑄 are larger than 100%. For long wavelengths this fraction increases, and at red wave-
lengths we see fractions as high as 1800. For the fraction of 𝐹 and 𝑃𝑙 we were able to constraint
values CF reasonably well. The fraction of 𝑄 shows very clear trends at 550 and 865 𝑛𝑚, essentially
constraining high and low values of CF at the rainbow reasonably well. For 350 𝑛𝑚 a similar pattern is
observed, but includes much more dilution.
For CER heavily diluted patterns are found. They do show, especially for 550 𝑛𝑚 an increasing trend
that is only related to values of CER at the rainbow. So, from these results we could distinguish with
some restricted accuracy high mean values of CER from low values at the rainbow for mutual different
observations.
In case of CTP we only see a clear trend at 350 𝑛𝑚. For the fraction of 𝑃𝑙 we saw that we could
constrain CTP at quadrature with observations at 550 𝑛𝑚, but this trend is somewhat diluted. In case
of the fraction of 𝑄 we a similar trend at 350 𝑛𝑚 but much stronger and less diluted. For longer
wavelengths this pattern vanishes quickly, from which we can hardly retrieve constraints for CTP.

Comparison to previous study
We compare our results with RS2017. In Figure 6 and 7 of RS2017 they show that at 𝜆 = 500 𝑛𝑚
an increasing cloud fraction correlates with a decreasing degree of polarization at quadrature. For
𝜆 = 350 𝑛𝑚 they also found such a trend, but much weaker to where it is almost not distinguishable
anymore. As was described before these trends of decreasing 𝑃𝑙 with increasing CF corresponds to
an increase in fraction of 𝑃𝑙. In the upper left and middle panel of Figure 5.11 one can observe
the corresponding results in our simulations. Despite the fact that the wavelengths do not agree
exactly, we expect that this small difference does not change the conclusions qualitatively. In the
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Figure 5.10: The fraction of ፅ (z-axis) as function of all combinations between the cloud fraction, cloud particle effective radius
and cloud top pressure at ∼ ኾኺ∘ phase (x-axis) and ∼ ዃኺ∘ phase (y-axis). The cloud parameters are retrieved from 53

simulations of diurnal variations with a resolution of 2 hours to fully include any seasonality in the clouds. In the top panel,
middle and bottom panel one can see the cloud fraction, cloud particle effective radius and cloud top pressure, respectively. In

the left, middle and right column we distinguish the wavelengths ኽ኿ኺ, ኿኿ኺ and ዂዀ኿ ፧፦.

upper left panel, which corresponds to Figure 7 in RS2017 shows a very ambiguous trend from which
we can not qualitatively conclude that the fraction of 𝑃𝑙 increases for increasing CF. We do however
see that the largest fractions tend to the upper far corner in the plot, which corresponds to high cloud
fractions at both phases. Alternatively, minimum values seem to be mostly present at the closest corner,
corresponding to low cloud fractions at both phases. Also, one can see from the color scale that the
fractions only change by ∼ 6 − 7%. Thus, unless the fact that the trend is not strong, the limiting
cases do correspond to the results that RS2017 found. Figure 6 of RS2017 presents the same case at
𝜆 = 500 𝑛𝑚. From our results (the upper middle panel of Figure 5.11) we retrieve a clean trend that
shows an increasing fraction of 𝑃𝑙 to be correlated to increasing values of CF at quadrature. These
results agrees well with the results of RS2017.

5.2.3. Parameter retrieval overview
To conclude the information in the former two sections we provide a cloud parameter retrieval overview
in the form of a summary that entails the main correlations that we found and if and how they are
influenced by other cloud parameters. An analysis of the latter is provided in Appendix E. In Table
5.1 this summary is provided. As a last note we must mention that by assuming Lambertian reflecting
surfaces the true variability in 𝑄 might not be simulated properly. The consequence might be that some
major dilution from the variability in the inhomogeneous surface distribution can occur in the relatively
clear correlations that we found for 𝑄.
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Figure 5.11: Similar to Figure 5.10, except for the fraction of ፏ፥.
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Figure 5.12: Similar to Figure 5.10, except for the fraction of ፐ.
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Table 5.1: Overview of the retrieval strategy of mean cloud parameters for the normalized reflected flux, degree of polarization
and normalized reflected polarized flux Q for ᎎ ዆ ኾኺ and ዃኺ degrees at ᎘ ዆ ኽ኿ኺ, ኿኿ኺ and ዂዀ኿ ፧፦.

Normalized reflected flux (ፅ)
Cloud fraction • The cloud fraction can be retrieved at ᎘ ዆ ኽ኿ኺ፧፦.

• For both phases we retrieve a highly correlated trend.
• From the shape of the curve we can confidently constraint high and low cloud fractions,
but the absolute difference in the shape parameter is very minor.

• Limited degenerescence from other cloud parameters.
• The cloud fraction can also be retrieved at ᎘ ዆ ኿኿ኺ፧፦, but with less confidence and more
degenerescence than at 350 nm.

cloud particle effective radius • The cloud particle effective radius can be retrieved at ᎘ ዆ ዂዀ኿፧፦.
• For both phases we retrieve a highly correlated trend.
• From the shape of the phase curve we can confidently constraint high particle sizes at ᎎ ዆ ዃኺ∘
and low particle sizes at ᎎ ዆ ኾኺ∘, where other sizes can be retrieved with more ambiguity.

• Limited degenerescence from other cloud parameters.
Cloud top pressure • The cloud top pressure can be retrieved at ᎘ ዆ ኿኿ኺ፧፦.

• For both phases we retrieve a moderately correlated trend.
• From the shape of the phase curve we can only constraint high and low cloud top pressures
with some ambiguities.

• degenerescence from the cloud fraction.

Degree of polarization (ፏ፥)
Cloud fraction • The cloud fraction can be retrieved at ᎘ ዆ ኿኿ኺ፧፦.

• For both phases we retrieve a correlated trend with some dilution.
• From the shape of the curve we can confidently constraint high and low cloud fractions.
• degenerescence from cloud particle effective radius at ᎎ ዆ ኾኺ∘, and moderate degenerescence
from both cloud particle effective radius and top pressure at ᎎ ዆ ዃኺ∘.

• The cloud fraction can also be retrieved at ᎘ ዆ ዂዀ኿፧፦, but with less confidence and more
degenerescence than at 550 nm.

• From the shape of the curve we can constraint high and low cloud fractions at ᎎ ዆ ኾኺ∘.
• High degenerescence from cloud particle effective radius at ᎎ ዆ ዃኺ∘

cloud particle effective radius • The cloud particle effective radius can be retrieved at ᎘ ዆ ኿኿ኺ and ዂዀ኿ ፧፦.
• For ᎎ ዆ ኾኺ∘ we retrieved a highly correlated trend for both wavelengths.
• From the shape of the phase curve we can confidently constraint particle sizes at ᎎ ዆ ኾኺ∘, but
ambiguities arise for high values at ᎎ ዆ ዃኺ∘.

• An increasing degenerescence of the cloud fraction at ᎎ ዆ ኾኺ∘ for longer wavelengths.
At ᎎ ዆ ዃኺ∘ we see a continuous degenerescence from the cloud fraction.

Cloud top pressure • The cloud top pressure can be confidently retrieved at ᎘ ዆ ኿኿ኺ፧፦.
• For ᎎ ዆ ዃኺ∘ we retrieve a moderately correlated trend.
• From the shape of the phase curve we can only confidently constraint the
cloud top pressure at ᎎ ዆ ዃኺ∘

• Some moderate dilution of the cloud particle effective radius at ᎎ ዆ ኾኺ∘ is observed.
• At ᎘ ዆ ኽ኿ኺ ፧፦ one is able to constraint high and low top pressures from the shape of the
phase curve, but the absolute difference in the shape parameter is very minor.

Polarized flux ፐ
Cloud fraction • The cloud fraction can be retrieved at ᎘ ዆ ኿኿ኺ and ዂዀ኿ ፧፦.

• For ᎎ ዆ ኾኺ∘ we retrieve highly correlated trends.
• From the shape of the curve we can confidently constraint the cloud fraction at ᎎ ዆ ኾኺ∘ at
both wavelengths considered.

• At both phases and wavelengths the cloud particle
effective radius only slightly dilutes the shape parameter.

• Moderate degenerescence from the cloud particle effective radius.
cloud particle effective radius • The cloud particle effective radius can be retrieved with some ambiguity at ᎘ ዆ ኿኿ኺ፧፦.

• We only find a moderate trend for ᎎ ዆ ኾኺ∘.
• From the shape of the phase curve we can identify the low and high values only at ᎎ ዆ ኾኺ∘.
• Significant degenerescence form the cloud fraction.

Cloud top pressure • The cloud top pressure can be retrieved at ᎘ ዆ ኽ኿ኺ.
• For ᎎ ዆ ኾኺ∘ we retrieve a correlated trend.
• From the shape of the curve we can confidently constraint the cloud top pressure at ᎎ ዆ ኾኺ∘.
• Some dilution from the cloud particle effective radius.



6
The scattered light curves from an

Earth-like exoplanet with polarizing
surfaces

In this chapter, we present simulations of disk-resolved and disk integrated light signal of the planetary
model presented in Chapter 3 in combination with more realistic surface models for oceanic, vegetated
and desert covers. We start by introducing the model atmosphere that is used in these simulations
(Section 6.1). The anisotropic polarizing surface models that are incorporated in the planetary model
are introduced in Section 6.2. In Section 6.3 we present resolved disks at the same geometry and at the
same spectral region as the disks presented in Section 4.1. This allows us to provide a more illustrative
explanation of how these new surface models impact our simulated spectropolarimetric results. In the
last section, Section 6.4, we provide the spectropolarimetric phase curves of this extended model, and
a thorough discussion on the impact of all introduced surface models.

6.1. The model atmosphere
We model the gaseous atmosphere in the same fashion as described in Section 3.3.1 and the clouds
as described in Section 3.3.2. The gaseous atmosphere in the atmosphere-ocean system uses a wave-
length dependent air refractive index, which is based on the dispersion formula of Peck and Reeder
(1972) (Trees 2018). The different dispersion formulas of Ciddor (1996) and Peck and Reeder (1972)
only show minor differences in the ultra-violet, visible and near-infrared wavelength domain (see Ciddor
1996). Additionally, scattering cross sections were compared and showed good agreement.The pixel
models with underlaying vegetation cover are directly computed with scattering cross sections from
the PyMieDAP code. The pixel models with underlaying desert surface are computed with PyMieDAP.

6.2. The polarizing Earth-like surface models
In this section we provide a brief explanation of the anisotropic polarizing surface types that are used
in the planetary model. In this regard also a description of how the models are implemented in our
Earth-model is provided. This is especially important to restrict the total computation time, by for
example only adding these polarized surfaces under clear and thin clouds as one might expect that
under thick clouds the reflection of these surface are insignificant. The discretization of the model
surfaces is provided in Table 6.1. In the following sections we will describe in detail the models for the
vegetated, oceanic and desert surface types.

6.2.1. The polarizing vegetation model
The polarizing vegetation code developed by Cheung (2018) that we use in our planetary model is
a combination of a Bidirectional Reflectance Distribution Function (BRDF) model and a Bidirectional
Polarized Distribution Function (BPDF) model. Several BRDF and BPDF models exist that can be used.
In order to find the most suitable BRDF and BPDF models the following criteria were set:
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Table 6.1: IGBP classification applied to the model surface

No. IGBP Classification Our Classification Ocean/Land
0 Water Ocean Ocean
1 Evergreen needleleaf forest Vegetation Land
2 Evergreen broadleaf forest Vegetation Land
3 Deciduous needleleaf forest Vegetation Land
4 Deciduous broadleaf forest Vegetation Land
5 Mixed forest Vegetation Land
6 Closed shrubland Vegetation Land
7 Open shrubland Soil Land
8 Woody savannas Vegetation Land
9 Savannas Vegetation Land
10 Grasslands Vegetation Land
11 Permanent wetlands Soil Land
12 Croplands Vegetation Land
13 Urban and built-up Soil Land
14 Cropland/natural Vegetation mosaic Vegetation Land
15 Snow and Ice Snow Land
16 Barren or sparsely vegetated Soil Land

1. Anisotropic reflection must be accounted for;

2. Different types of vegetation must be able to be simulated;

3. The total flux and/ or polarized flux need to be modeled in the spectral domain of the visible and
near-infrared wavelength regions.

From these criteria one BRDF and one BPDF model is chosen to be implemented into the vegetation
code. The BRDF model developed by Roujean et al. (1992) is used to simulate the anisotropic reflected
flux of several types of vegetation, where mutual shadowing is not taken into account, i.e. the shadows
projected by the trees do not overlap each other. With the use of the 𝑘-parameters provided in the
table of Roujean et al. (1992), different types of vegetation, such as deciduous forest, pine forest,
steppe, grass lawn and more as well as plowed fields can be simulated. These 𝑘-parameters are given
in the near-infrared (NIR) and visible (VIS) wavelength region, i.e. 580−680 𝑛𝑚 and 730−1100 𝑛𝑚.
A smoothstep interpolation method is used to obtain the 𝑘-parameters between 680 − 730 𝑛𝑚 as dis-
cussed in Cheung (2018). Extrapolation is used to account for the ultra-violet wavelength region.

In order to account for the polarization induced by vegetation, the polarized reflection model developed
by Maignan et al. (2009) is used. According to Schaepman-Strub et al. (2006), the BPDF model is then
obtained by dividing the polarized reflection model with 𝜋. This BPDF model is a linear, one parameter-
model, which is a simplification of the non-linear, two-parameter model from Nadal and Breon (1999).
It assumes that the polarized reflection is reflected specularly, which introduces the polarized Fresnel
function component to the Maignan model. By using the normalized difference vegetation index (NDVI)
and the 𝛼-parameter provided in the table of Maignan et al. (2009), the polarized flux of different types
of vegetation is calculated. The parameters that are used are listed in Table 6.2. As seen from Table
6.2 only the vegetation types deciduous forest and steppe are taken into account.

Table 6.2: Parameters of our standard atmosphere and vegetation. Unless stated otherwise, the values listed in this table are
used.

Deciduous Forest Parameters Symbol Value(s)
፤-parameters (NIR) ፤Ꮂ, ፤Ꮃ, ፤Ꮄ 40.0; 4.0; 29.5
፤-parameters (VIS) ፤Ꮂ, ፤Ꮃ, ፤Ꮄ 3.0; 0.0; 8.7
ᎎ-parameter ᎎ 6.87
NDVI ፯ 0.8
Steppe Parameters
፤-parameters (NIR) ፤Ꮂ, ፤Ꮃ, ፤Ꮄ 35.6; 5.6; 21.7
፤-parameters (VIS) ፤Ꮂ, ፤Ꮃ, ፤Ꮄ 26.6; 5.0; 5.9
ᎎ-parameter ᎎ 6.66
NDVI ፯ 0.3
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The vegetation code also follows the doubling-adding method from de Haan et al. (1987b). Since
the doubling-adding method only considers mirror symmetric functions with respect to the planetary
scattering plane, the Roujean model is altered to satisfy this condition. A detailed description is given
in Cheung (2018). In order to implement a fully vegetated surface into the doubling-adding method,
the Roujean model and Maignan model are inserted into the reflection matrix R(𝜇ኺ, 𝜇, Δ𝜙), which then
simulates the reflection of light that is reflected anisotropically and gets polarized from vegetation. The
Roujean model is put on the (1,1) element and the Maignan model in the elements (2,1) and (3,1) of
the reflection matrix, with the relationships (Litvinov et al. 2011)

𝑄 = −BPDF cos(2𝛽) (6.1)

𝑈 = BPDF sin(2𝛽) (6.2)

where BPDF is the Maignan model and 𝛽 the rotation angle from the planetary scattering plane to
the local meridian plane. Since no rotation is required 𝛽 = 0. For more details about the vegetation
reflection model, we refer to Cheung (2018).

Figure 6.1 shows the phase curves of the 𝐹, 𝑃𝑙 and 𝑄 in the upper left, upper right and bottom panel,
respectively, for the 𝜆 = 350, 443, 550, 670, and 865 𝑛𝑚 of a planet covered fully with deciduous for-
est. For these curves a purely gaseous atmosphere is assumed, i.e. there are no cloud layers present.
𝐹 is lowest at 670 𝑛𝑚 for 0∘ < 𝛼 < 100∘ and increases with decreasing wavelengths except at 865 𝑛𝑚,
which results in the highest reflected 𝐹. From the spectrum of vegetation, provided in Figure 3.2,
one sees that at 670 𝑛𝑚 vegetation has the lowest albedo, which explains why at this 𝜆 the 𝐹 attains
the lowest reflection. The second, third and fourth lowest surface albedo is, respectively, observed
at 350, 443 and 550 𝑛𝑚. One would therefore expect the same relationship in the flux-phase curve.
However, as seen in Figure 6.1, the second lowest reflected 𝐹 is observed at 550 𝑛𝑚 followed by 443
and 350 𝑛𝑚. These differences are caused by the gaseous atmosphere that is accounted for on top of
the vegetated surface. Due to the high albedo of vegetation at 865 𝑛𝑚 we obtain a high reflection in 𝐹.

For 𝑄 the polarized reflection is lowest at 865 𝑛𝑚 due to ineffective Rayleigh scattering, which thus
results in the lowest 𝑃𝑙 at 865 𝑛𝑚. At 350 𝑛𝑚 one sees that 𝑄 is the highest. However, due to
also having a high reflected 𝐹, 𝑃𝑙 is not largest at 350 𝑛𝑚 but at 443 𝑛𝑚. One also sees that at
350, 443, 550 and 670 𝑛𝑚 the peak in 𝑃𝑙 occurs around 𝛼 = 90∘, while at 865 𝑛𝑚 the peak is shifted
towards 𝛼 = 130∘. This shift in peak is caused by the diffuse scattering of light in the atmosphere at
𝛼 > 100∘. Furthermore, in 𝑄 there is no color alternation, whereas for 𝐹 we did see some alternation
because of the high red-edge reflection. 𝑃𝑙 exhibits several color alternations, but all occurring at
different 𝛼.

6.2.2. The polarizing ocean model
For the ocean pixels we use the atmosphere-ocean model of Trees (2018). That is, the ocean con-
sists of a wind-ruffled air-water interface, whose roughness as a function of wind speed is deter-
mined by the isotropic wind slope distribution model of Cox and Munk (1954). We use the shad-
owing function of Smith (1967) and Sancer (1969) to account for the energy abundance across the
rough air-water interface at grazing angles caused by neglecting wave shadowing (see also Tsang
et al. 1985; Zhai et al. 2010). The elements of the reflection matrix of the air-water interface are
verified with the bidirectional reflection code of Mishchenko and Travis (1997), which is available on
https://www.giss.nasa.gov/staff/mmishchenko/brf/. 1 From the reflection and transmis-
sion matrices, we computed the energy balance across the air-water interface and obtained a similar
plot as Fig.4 in Nakajima (1983). The interface matrices are normalized through the division by the
remaining energy deficiency, which is caused by the ignorance of multiple scattering of light between
the wave facets (Nakajima 1983). The ocean parameters are listen in Table 6.3.

The water-leaving reflection accounting for the ocean albedo is computed with the adding-doubling
method of de Haan et al. (1987b), analogous to scattering computations in the gaseous atmospheric
1The analytic solution of the elements of the reflection matrix of the air-water interface for illumination from below, and the
elements of the transmission matrices for illumination from above and below are verified with the equations of Zhai et al. (2010).

https://www.giss.nasa.gov/staff/mmishchenko/brf/


98 6. The scattered light curves from an Earth-like exoplanet with polarizing surfaces

0 20 40 60 80 100 120 140 160 180
Phase angle (in degrees)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
or

m
al
iz
ed

 re
fle

ct
ed

 fl
ux

350nm
443nm
550nm
670nm
865nm

0 20 40 60 80 100 120 140 160 180
Phase angle (in degrees)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
eg

re
e 
of
 p
ol
ar
iz
at
io
n

350nm
443nm
550nm
670nm
865nm

0 20 40 60 80 100 120 140 160 180
Phase angle (in degrees)

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

Q

350nm
443nm
550nm
670nm
865nm

Figure 6.1: Phase curves from a homogeneous planet fully covered with a ”polarizing” vegetated surface cover, more
specifically that of deciduous forests. On top of this surface we modeled only a gaseous atmosphere and no clouds. We provide
the normalized reflected flux, degree of linear polarization and polarized flux in the left, middle and right panel, respectively.
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Figure 6.2: Figure 7.6 of Trees (2018). Disk-integrated flux, degree of polarization and polarized flux in terms of Stokes
parameter ፐ as a function of planetary phase angle ᎎ of light reflected by the ocean planet with a gas atmosphere. Also, the
rough Fresnel interface (F) and rough Fresnel interface without whitecaps (F - WC) are drawn, where the surface pressure is
set equal to 0 bar and the subinterface ocean scattering is neglected. The wind speed is 7 m/s for all curves. The lines for ፅ

and ፅ ዅፖፂ can hardly be distinguished.
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Table 6.3: Parameters of our standard atmosphere and ocean. Unless stated otherwise, the values listed in this table are used.

Ocean Parameters Symbol Value(s)
Wind speed [m/s] ፯ 5.0; 7.0
Foam albedo ፚfoam 0.22
Depolarization factor ᎑w 0.09
Air refractive index just above air-water interface ፧Ꮃ 1.0
Water refractive index just below air-water interface ፧Ꮄ 1.33
Chlorophyll concentration [mg/mᎵ] [Chl] 0
Ocean depth [m] ፳ 100
Ocean bottom surface albedo ፚbs 0

layer. Thus, the ocean water is divided into a stack of homogeneous layers, and we assume an ocean
depth of 100 m with a black Lambertian surface underneath representing the ocean bottom. Following
Chowdhary et al. (2006), we use the scattering matrix for anisotropic Rayleigh scattering of Hansen
and Travis (1974b), and a depolarization factor for pure seawater of 0.09, which was measured by
Morel (1974). We use the wavelength dependent scattering coefficient of pure seawater tabulated in
the work of Smith and Baker (1981) and the wavelength dependent absorption coefficients for pure
seawater of Pope and Fry (1997).2 We do not include hydrosols (e.g. phytoplankton, detrituts and
bubbles) in the water, which would require a proper determination of the hydrosol scattering matrix
elements (see Chowdhary et al. 2006). Our ocean thus belongs to the clearest natural waters. How-
ever, we compared the recomputed subinterface ocean albedo with the ocean albedos computed with
the bio-optical model for Case 1 Waters of Morel and Maritorena (2001) for various chlorophyll concen-
trations and find realistic ocean albedos that correspond to low chlorophyll concentrations.3 The final
ocean reflection is a weighted sum of the clean ocean reflection (as described in this paragraph) and
the Lambertian (i.e. isotropic and non-polarizing) reflection from wind-generated foam, also known as
whitecaps, with an effective foam albedo as a function of wind speed taken from Koepke (1984). The
weighting factor for the whitecap reflectance is determined by the whitecap fraction of Monahan and
Ó Muircheartaigh (1980). Note that the air refractive index used for the Fresnel computations is set
equal to 1.0, while the air refractive index to compute the scattering cross section of the gas molecules
varies with wavelength, as explained in Section 6.1. For more details about the ocean reflection model,
we refer to Trees (2018).

The upper, middle and lower panel of Figure 6.2 show the 𝐹, 𝑃𝑙 and 𝑄 as a function of planetary
phase angle 𝛼 of light reflected by the ocean planet with a gaseous atmosphere for a wind speed of 7
m/s. As explained in Trees (2018), the increased flux 𝐹 at big phase angles (𝛼 ≈ 90∘-180∘) increases
with increasing wavelength because of the glint in the ocean. That is, at big phase angles the Fresnel
reflection from the wave facets is stronger due to the bigger reflection angles and the glint fraction of
the illuminated disk, which has a crescent shape at these phase angles, is increased. Because the light
beams of longer wavelengths are less effectively scattered by Rayleigh scattering, they can penetrate
deeper into the atmosphere as compared to light beams of shorter wavelengths. Thus, the beams of
longer wavelengths are more likely to penetrate through the atmosphere at these big phase angles,
to be reflected by the ocean, and to reach the top of the atmosphere again without being multiply
scattered in the atmosphere.

Because the ocean reflection contribution is more dominant at long wavelengths, a shift of the peak
of the degree of polarization towards bigger phase angles (in the direction of two times the Brewster
angle) may be observed (middle panel of Figure 6.2), as explained in Trees (2018), and was also found
by Zugger et al. (2010b, 2011a,b). Trees (2018) showed that this shift is sensitive to surface pressure
and can hardly be detected for a surface pressure of 5 bar when the wavelengths 350, 443, 550, 670
and 865 𝑛𝑚 are used. However, the degree of polarization is not a measure of the actual polarized
flux. Trees (2018) mentioned that the intersection point in the polarized flux 𝑄 could potentially be
2The lower limit of the range from 380 nm to 350 nm is extended by using the additional data of Sogandares and Fry (1997).
Between 727.5 nm and 800 nm we use the values of Smith and Baker (1981). Above 800 nm, we assume there is no water-
leaving light and the ocean reflection reduces to the reflection by the interface only.
3The recomputed ocean albedos at a solar zenith angle of 30∘ are 0.0920, 0.0870, 0.0058, 0.0032 and 0 at the wavelengths
ኽ኿ኺ, ኾኾኽ, ኿኿ኺ, ዀ዁ኺ and ዂዀ኿ ፧፦. These values correspond to chlorophyll concentrations between 0 and 0.1 mg/mᎵ in Morel
and Maritorena (2001).
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used for detecting oceans on exoplanets. More specifically, this intersection point resembles a point at
which the (polarized) reflected light at different 𝜆 alternate in order of absolute strength, i.e. the color
of the exoplanet changes. This signature could be observed in the presence of an ocean for surface
pressures op to 10 bar (provided that at least 2 significantly different wavelengths are used, preferably
of which one is in the near-infrared) and cloud fractions up to 95%, while it never occurred in the ab-
sence of an ocean. Trees (2018) also found an apparent intersection of the phase curves of the degree
of polarization when modelling clouds with different cloud fractions above the ocean, however, such an
intersection was also found in case of a substellar cloud with a black Lambertian surface underneath
the atmosphere,4 although the color reversal was not very apparent for the substellar cloud model. In
this chapter, we will investigate whether the intersection in the phase curves of the Stokes parameter
𝑄 still occurs for an Earth-like exoplanet model, thus including Earth-like continents with appropriate
land cover types.

Wind speed statistics are based on half year’s worth of data from 01/01/2011 till 30/06/2011, the
same interval as the observation data files that we use for our cloud observations. The wind speed
data is provided as a near global six hour data set every day at an altitude of 10 meters above the
ocean surface, retrieved from Cross-Calibrated Multi-Platform (CCMP) Wind Vector Analysis Product5.
An example of this data set is provided in the right panel of Figure 6.3. The spatial extend of the data
set is limited in latitude by ±80∘, with a spatial resolution of 0.25∘. In the left panel we provide the
latitudinal dependence of the mean wind speed in m/s, showing an approximate mean between 7-8
m/s. The reflection behaviour of the glint, more specifically the spatial extend of the glint, which has no
real physical boundary, varies with the wind speed as mentioned before and as is extensively described
in Trees (2018). In Figure 6.4 the spatial extend of the glint is presented for various phase angles and
a wind speed of 7 𝑚/𝑠. These homogeneous disks are computed with a pixel model consisting of an
Earth-like gaseous atmosphere without clouds on top of the polarizing ocean model. Outside the glint
the effect of wind speed is negligible. From these disks we can see that the significant reflection from
the glint does not exceed ±30∘ latitude. To discretize the wind speed we therefore focused on this
region. Form the left panel of Figure 6.3 we see that for ±30∘ latitude the mean wind speed varies
between 5 and 7 m/s. The difference in magnitude and spatial extend of the glint for 5-6 or 6-7 m/s is
small. Considering also computation time and storage we will limit the number of bins to two. Hence,
we will discretize the wind speed by 5 and 7 m/s (Table 6.4).
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Figure 6.3: Left panel: mean wind speed as function of latitude. This mean is computed from all data spanning 01/01/2011 till
30/06/2011. Right panel: wind speed observation.

6.2.3. The polarizing desert model
For the vegetation and ocean models we were able to use semi-empirical models. For the desert no
such model has been created that characterizes both the anisotrope reflection as well as polarized

4A black Lambertian surface underneath the gaseous atmosphere allows for a high degree of polarization in the red part of
the visible spectrum when the substellar cloud has been rotated away from the observer, because of the singly scattered (and
limited multiply scattered) light at these long wavelengths, see also Stam (2008b).
5Further details can be found on: http://www.remss.com/measurements/ccmp/

http://www.remss.com/measurements/ccmp/
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Figure 6.4: Spatial extend of the glint for ᎎ ዆ ዁ኺ, ዃኺ, ኻኻኺ, ኻኽኺ and ኻ኿ኺ∘ from left to right, respectively. The atmosphere is
Earth-like and without clouds. The red line represents the small circles at ±ኽኺ∘ latitude.

Table 6.4: Discretization bins of the ocean wind speed (Wspd) with associated bin values in m/s.

Bin number 1 2
Bin boundaries 0<Wspd≦ 6 6<wspd
Bin values 5 7

reflection. In the attempt to obtain at least some approximation for the reflected polarized fluxes we
use a scattering matrix from an ”Olivine S” sample. The scattering matrix elements are measured as
a function of a finite number of scattering angles, which are freely available in the Amsterdam light
scattering database (Munoz et al. 2012). In (Moreno et al. 2006) they attempted to approximate the
scattering matrix of the ”Olivine S” sample for a distribution of irregularly shaped compact particles
using a Discrete Dipole Approximation (DDA) method. They found that the synthetic scattering matrix
from a size distribution of synthetic compact irregularly shaped particles fits the measured scattering
matrix quite well. The approximate scattering matrix for incident light beams at 𝜆 = 663 𝑛𝑚 is available
in the form of Expansion Coefficients. In PyMieDAP one is able to load such Expansion Coefficients into
an user defined layer. As Moreno et al. (2006) did not consider absorption of the particles, the provided
single scattering albedo (SSA) is set to 1. In order to model a desert surface with the scattering matrices
of irregularly shaped Olivine S particles, we will define the following

1. The Expansion Coefficients are loaded into the bottom layer of the pixel model;

2. The bottom pressure of the layer is 1.001 𝑏𝑎𝑟 and the top pressure is 1 𝑏𝑎𝑟. This top pressure
is in accordance with the planetary model we presented in Chapter 3;

3. We model no Rayleigh scattering in this layer;

4. To approximate this layer as a surface, we define it as an extremely thick aerosol layer, that only
comprises of the Olivine S particles. We will use an optical thickness of 100. For all wavelengths
considered any higher optical thickness provided the same reflection properties;

5. We model the wavelength dependence by altering the SSA.
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We changed the SSA to account for the wavelength dependent reflection of the anisotrope surface.
By changing the SSA, the hemispherical albedo of our local atmosphere changes. Ultimately we fitted
this albedo to the albedo of Entisol that we obtained earlier from the Aster spectral database. This
Lambertian Equivalent Reflection (LER) is defined as the total hemispherical reflection at an incidence
angle of 10∘. In Table 6.5 the fitted SSA’s are listed for the corresponding wavelengths.

Table 6.5: Fitted Single Scattering Albedos (SSA’s) to approximate dust aerosols with empirically obtained scattering
coefficients by Moreno et al. (2006). The scattering coefficients were fitted to Lambertian Equivalent Reflectance (LER) albedos

from Aster Spectral Database.

Wavelength [፧፦] SSA [-] LER [-] Model albedo [-]
350 0.235 0.010604 0.010613
443 0.6103 0.05319 0.053186
550 0.82353778 0.139387 0.139390
670 0.89436 0.215352 0.215391
865 0.9279 0.279383 0.279351

In Figure 6.5 we present the disk integrated phase curves for a homogeneous planet fully covered
with the polarizing desert model with a gaseous atmosphere as described in Chapter 3, but without
clouds. We provide 𝐹, 𝑃𝑙 and 𝑄 in the upper left, upper right middle and bottom panel, respectively.
For 350 𝑛𝑚 one can see that 𝐹 at 0 ≤ 𝛼 ≲ 60 exceeds that of the longer wavelengths, which is caused
by the highly effective Rayleigh scattering of the gaseous layer on top of the surface. At big phases
angles, near new phase, 𝐹 at 350 𝑛𝑚 becomes less than at longer wavelengths. This is mainly caused
by the diffuse scattering of light as a result of the gaseous atmosphere. For longer wavelengths, except
for 443 𝑛𝑚 and 550 𝑛𝑚 near full phase, we see a clear separation in strength, which is maintained
for all phases. For the longer wavelengths this is caused by the LER albedo that increases almost
monotonously with wavelength in the ultra-violet, visible and near infrared region (see Figure 3.2).
For 443 𝑛𝑚 the effectiveness of Rayleigh scattering is still significant to produce a higher reflection
near full phase as opposed to 550 𝑛𝑚. When comparing our results to that of a homogeneous planet
with a Lambertian surface (see the left panel of Figure 4 in (Stam 2008b)), one can see that due to
the anisotropy in the modeled scattering matrix there exists an enhancement of flux for high phase
angles. For 𝑃𝑙 one can see a rather symmetric behaviour around 90∘ phase, which looks very similar
to that of a homogeneous planet with a Lambertian surface (See the right panel of Figure 4 in (Stam
2008b)). We also know that with increasing surface albedo a shift to higher phase angles is apparent.
For the polarizing desert, however, we see no significant shift. Furthermore, the order of colors is
approximately maintained for all phases, except for 350 𝑛𝑚 and 443 𝑛𝑚.
For 𝑄 the order of colors is preserved even more clearly for all phases, even for 350 𝑛𝑚 and 443 𝑛𝑚
as opposed to what was seen for 𝑃𝑙. The peak of maximum polarized fluxes shifts slightly to higher
phases with increasing wavelength, but is very insignificant.

In the planetary model we will model the polarizing surface models for clear pixels and the optically
thinnest clouds, i.e. with a cloud optical thickness of 5. For these clouds we do model variant cloud
particle effective radii and cloud top pressures as we presented in Chapter 3. For values of optical
thickness of 10 or 20 we use the Lambertian surface approximation from our initial planetary model.
This was decided upon the fact that we are limited by computation time and storage.

6.3. Spectrally and geometrically varying disk-resolved simula-
tions

The disk-resolved cases of an Earth-like exoplanet are simulated at phase angles 0∘, 40∘, 90∘ and 135∘
for wavelengths 350, 550 and 865 𝑛𝑚. We present 𝐹, 𝑃𝑙, 𝑄 and 𝑈 for every wavelength in Figure 6.7,
6.8 and 6.9. Also, we present the associated land cover, cloud top pressure, cloud optical thickness,
cloud particle effective radius and cloud fraction distributions on the corresponding planetary disks in
Figure 6.6. All disks are simulated with 100 × 100 pixels with the same sub-observer longitude. The
planetary model is that described in the former sections.
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Figure 6.5: Phase curves from a homogeneous planet fully covered with a ”polarizing” desert surface. On top of this surface
we modeled only a gaseous atmosphere and no clouds. We provide the normalized reflected flux, degree of linear polarization

and polarized flux in the left, middle and right panel, respectively.
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In this section we will highlight what the main contributions from the ”polarizing” surfaces are with
respect to the Lambertian surfaces we used in Section 4.1. The former model will be referred to as
”Model 2” and the later model as ”Model 1”. Because we use exactly the same atmosphere, i.e. pure
gas with cloud layers, any changes in the disks will be attributed to the anisotropic polarizing reflection
models for the ocean, vegetation and desert.

Our findings for 𝐹 at all phases and wavelengths are itemized as follows:

• At 350 𝑛𝑚, and for all phases considered, the surfaces that are covered by clear sky pixels or pixels
with a low cloud fraction are more recognizable, where especially pixels with desert cover exhibit
lower values of reflection, where for Model 1 we only saw low values of reflection corresponding
to low values of cloud fraction. The correlation between optically thick clouds and high values of
reflection is still clearly visible.

• At 550 𝑛𝑚 we observe the same as at short wavelengths, but with a more clear spatial distribution
of the different surface covers, owing due to the anisotrope reflection in the surface models. At
𝛼 = 135∘ we observe a major increase in reflection, which is concentrated around the planetary
scattering plane, where the underlaying surface is that of ocean. This increase is directly related
to the specular reflection of the ocean, i.e. the glint. For an illustration of where exactly the region
of high reflection is located we refer Appendix G where we modeled a homogeneous ocean planet
with a pure gaseous atmosphere at 𝛼 = 90 and 135∘, at 865 𝑛𝑚.

• At 865 𝑛𝑚 the disks at 𝛼 = 0 and 40∘ show no clear difference to that of Model 1. At quadrature
we see a small enhancement in reflection to the right of Africa on the planetary scattering plane,
corresponding to a small glimpse of the glint. At 𝛼 = 135∘ the contribution of the glint to the
total reflection is clearly visible.

Our findings for 𝑄 at all phases and wavelengths are itemized as follows:

• As we know from Model 1 is that 𝑄 is dominated by highly effective Rayleigh scattering at 350 𝑛𝑚.
Hence, we do not see any substantial differences between both models. However, at quadrature
and crescent phases we do see an enhanced region of polarized fluxes above the oceanic surface
coverage. More specifically, the specular reflection on the ocean highly polarizes scattered light
beams (see Trees 2018, for a more thorough analysis on the ”polarizing” glint).

• At 550 𝑛𝑚 a small effect of the surface can be seen near Saudi Arabia at full phase. At quadrature
and crescent phase we can clearly retrieve the presence of the glint. At quadrature, this glint is
partly masked by the presence of the African continent. On this continent, the vegetated and
desert surface covers can be distinguished from each other where the latter exhibits a lower
magnitude of polarization. At both phases we also see that glint is slightly suppressed by regions
of high cloud fraction.

• At 865 𝑛𝑚 we basically see an enhanced case of what we observed at 550 𝑛𝑚, but with a stronger
magnitude of polarized reflection from the glint, caused by the lower effectiveness of Rayleigh
scattering.

Our findings for 𝑈 at all phases and wavelengths are itemized as follows:

• At 350 𝑛𝑚 we do not see any substantial difference between Model 1 and Model 2. At 550 𝑛𝑚
we observe the appearance of several surface types for all phases, for example Saudi Arabia and
Madagascar. The strongest appearance of different surface covers is shown for 𝜆 = 865 𝑛𝑚,
whereas with Model 1 no such dominance was retrieved. In 𝑈 we do not retrieve the specu-
lar reflection of the glint, but we do not expect that anyway. The disk-resolved polarized flux
𝑈 of a homogeneous ocean planet is provided in Appendix G. This simulation only models a
gaseous atmosphere on top of the ocean surface, thus without any clouds. These disk show no
enhancement whatsoever from the ocean cover.

Our findings for 𝑃𝑙 at all phases and wavelengths are itemized as follows:
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Figure 6.6: From top to bottom we present the land cover, cloud top pressure, cloud optical thickness, cloud particle effective
radius and cloud fraction distributions are provided for ᎎ ዆ ኺ, ኾኺ, ዃኺ, ኻኽ኿∘ from left to right, respectively. All disks are

simulated with ኻኺኺ × ኻኺኺ pixels.
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• At 350 𝑛𝑚 we only observe a more apparent surface coverage in regions of low cloud fraction,
caused by more clear surface distinction found in 𝐹. We do not recover any presence of the glint
at large phases.

• At 550 𝑛𝑚 we observe the same as at short wavelengths for full phase. At 𝛼 = 40∘ we observe a
much clearer land cover distribution of vegetated and desert covers. At quadrature we observe the
same, but mainly the presence of the glint. At crescent phase the glint is even more pronounced,
but for both phases still affected by the over-laying clouds.

• In the near-infrared at full phase and 𝛼 = 40∘ we observe not much difference with respect to
Model 1. At quadrature and crescent phase we observe an overwhelming appearance of the glint.
As compared to the appearance of the glint in 𝐹 and 𝑄, for 𝑃𝑙 the spatial extend is much larger
at both quadrature and crescent phase. This can also be observed in Appendix G.

In conclusion, we have seen that the vegetation and desert models induce slight differences in 𝐹 that
provide more distinguishable surface covers. Also, by including polarization in the model a more clear
distinction in the polarized fluxes 𝑄 and 𝑈 for the different surface types is observed. By introducing
the anisotropic polarizing ocean model we observed a strong presence of the glint in 𝐹, 𝑄 and 𝑃𝑙. For
𝐹 and 𝑄 the glint is already present at 350 𝑛𝑚, where at long wavelengths the glint is clearly visible
for 𝐹, 𝑄 and 𝑃𝑙. The width of the glint is largest for 𝑃𝑙, but the presence is most clearly observed in
𝑄.

6.4. Spectrally and geometrically varying disk integrated simu-
lations

The disk integrated signals of an Earth-like exoplanet are simulated for wavelengths 350, 443, 550, 670
and 865 𝑛𝑚. We present 𝐹, 𝑃𝑙, 𝑄 and 𝑈 for every wavelength in Figures 6.10, 6.11, 6.12 and 6.13.
All disks are simulated with a 20 × 20 pixel grid. The planetary model is again that described in the
first two sections of this chapter.

In this section we will highlight what the main contributions are from the model with ”polarizing”
surfaces to that with Lambertian surfaces we used in Section 4.2.2. Again, we refer to the former
model as ”Model 2” and the later model as ”Model 1”. The results of Model 2 are provided in Figure
6.10. We also provide the absolute difference with respect to Model 1. Our findings for 𝐹 at all phases
and wavelengths are itemized as follows:

• At 𝜆 = 350 𝑛𝑚 the magnitude in daily variability is only slightly affected. For 𝛼 ≲ 120∘ the
absolute magnitude of 𝐹 at 𝜆 = 443∘ increases, whereas at 𝜆 = 865∘ it slightly decreases, but
the daily variability decreases significantly.

• For 𝛼 ≳ 120∘ 𝐹 increases stronger in absolute magnitude for longer wavelengths.

• The intersection point where the colors alternate is still located near 𝛼 = 120∘.

Our findings for 𝑄 at all phases and wavelengths are itemized as follows:

• For all wavelengths the absolute magnitude of the reflected polarized flux increase, owing to the
introduction of our polarized surface models. Furthermore, the daily variability increases for all
wavelengths and most strongly for shorter wavelengths.

• At crescent phases Model 1 showed no alternations in colors, whereas for Model 2 we observe
an intersection point at 𝛼 ≈ 135∘ in which the colors clearly alter.

Our findings for 𝑃𝑙 at all phases and wavelengths are itemized as follows:

• For all wavelengths, 𝑃𝑙 increases in absolute magnitude for all phases. At crescent phases we
observe a strong bump, which becomes stronger for longer wavelengths. For 𝜆 > 670 𝑛𝑚 this
bump does not increase anymore, because Rayleigh scattering is already very ineffective. More
evidently, the daily variability also increases for longer wavelengths. As a consequence, we also
observe an intersection point in 𝑃𝑙, but less clear due to the major daily variations.
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Figure 6.7: Resolved disk for ᎘ ዆ ኽ኿ኺ ፧፦ at ᎎ ዆ ኺ∘ , ኾኺ∘ , ዃኺ∘ and ኻኽ኿∘. In the upper four panels the stokes elements ፅ, ፐ and
ፔ, and ፏ፥ are provided, respectively. The corresponding disk properties are provided in Figure 6.6. All disks are simulated with

ኻኺኺ × ኻኺኺ pixels.



6.4. Spectrally and geometrically varying disk integrated simulations 109

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 F

2

4

6

8

×10−5

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 F

1
2
3
4
5
6
7
8

×10−5

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 F

1

2

3

4

5

6

×10−5

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 F

0.2
0.4
0.6
0.8
1.0
1.2
1.4

×10−4

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 Q

−1.0

−0.5

0.0

0.5

1.0

1.5
×10−6

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 Q

−1.6
−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

×10−5

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 Q

−2.5

−2.0

−1.5

−1.0

−0.5

×10−5

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 Q

−8

−6

−4

−2

0
×10−5

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 U

−1.0

−0.5

0.0

0.5

1.0

1.5
×10−6

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 U

−2

−1

0

1

2

×10−6

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 U

−2

−1

0

1

2

×10−6

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 U

−2

−1

0

1

2

×10−6

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 Pl

1
2
3
4
5
6
7

×10−2

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 Pl

1

2

3

4

×10−1

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 Pl

1
2
3
4
5
6
7
8

×10−1

−1.0 −0.5 0.0 0.5 1.0−1.0

−0.5

0.0

0.5

1.0 Pl

1

2

3

4

5

6
×10−1

Figure 6.8: Similar to Figure 6.7, except for ᎘ ዆ ኿኿ኺ ፧፦.
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Figure 6.9: Similar to Figure 6.7, except for ᎘ ዆ ዂዀ኿ ፧፦.



6.4. Spectrally and geometrically varying disk integrated simulations 111

• The primary rainbow at all 𝜆 is not affected. Near the secondary rainbow, at 𝛼 ≈ 56∘, we observe
a small dip in daily variability only at 𝜆 = 350 𝑛𝑚.

For 𝑈 we observe only a major increase at 350 𝑛𝑚, however, the absolute magnitude of the varia-
tions are still small. Also, we do not find a specific pattern that can potentially act as a signature of
an Earth-like surface distribution or cover. We have retrieved some major changes in our reflected
signals, but to which surface cover(s) can these be attributed? In the following figure we provide spe-
cial end cases in which we provide the relative difference to the ”complete” Model 2 for every parameter.

In Figure 6.11 we replaced the vegetated surface covers with a black Lambertian surface cover to
investigate its contribution to the model. For 𝐹 we observe that the daily variability and absolute mag-
nitude decreases significantly at 865 𝑛𝑚, which is attributed to the red-edge feature in the reflection
spectrum of vegetation in general. The green bump, another enhancement in the reflection of vegeta-
tion, also causes a decrease in magnitude and daily variability. For spectral regions of low vegetation
reflection, i.e. 𝜆 = 350, 443 and 670 𝑛𝑚, the absolute difference is least. The change is largest near
full phase and decreases with increasing 𝛼. At crescent phases vegetated land covers have limited
effect on the phase curves. For 𝑄 vegetation induces no significant change in the absolute amplitude
and variability at 443, 670 and 865 𝑛𝑚. For 𝜆 = 550 𝑛𝑚 the absolute amplitude increases and the
variability slightly decreases for a large region of phases near quadrature. An interesting feature near
the secondary rainbow is observed at 350 𝑛𝑚, which shows an increase in the amplitude of a local
daily variation. 𝑃𝑙 shows a significant reduction of the daily variability induced on the primary rainbow,
especially for 𝜆 at the red-edge feature. We observe the same at the glory. At the secondary rainbow
we again see an increase in a local daily variation. At other 𝛼 there occur slight increases in daily
variations, which is largest for 𝜆 = 550 𝑛𝑚. Lastly, for 𝑈 at 350 𝑛𝑚, we also observe the increase in
a local daily variation at the secondary rainbow. Furthermore, there occur changes in the variability at
all other 𝜆, but all are very small.

In Figure 6.12 we replaced the desert surface cover with a black Lambertian surface cover, to investi-
gate its contribution to the model. For 𝐹 we observe that the daily variability and absolute magnitude
decrease and is strongest for longer wavelengths. As opposed to the reflection spectrum of vegeta-
tion, that of soil increases much more gradually, hence the gradual decrease in variability and absolute
magnitude. The change is largest near full phase and decreases with increasing 𝛼. At crescent phases
desert land cover have limited effect on the phase curves. For 𝑄 the desert model induces only changes
in absolute amplitude and variability in a large region of phases around quadrature, being largest at
350 𝑛𝑚. An interesting feature near the secondary rainbow is also observed without the desert at
350 𝑛𝑚, but also at other 𝜆 and shows to decrease with increasing 𝜆. At the primary rainbow the vari-
ability is affected, but not so much the amplitude of the variations. 𝑃𝑙 essentially shows the same as
in 𝑄, but with a slight increase in daily variability at crescent phases for longer wavelengths. Lastly, for
𝑈 at 350 𝑛𝑚 the change in daily variability is also apparent. Also, there occur changes in the variability
at all other 𝜆, but all are very small.

In Figure 6.13 we replaced the oceanic surface cover with a black Lambertian surface cover, to inves-
tigate its contribution to the model. For 𝐹 we see that at crescent phases, at and after the intersection
point, the magnitude and variability increases significantly, being strongest for longer wavelengths. In
the absence of an ocean cover we do, however, still preserve a color alternation, which is attributed to
the gas layers on top of the clouds as was described in Section 4.2.2. Also, at other phases we observe
a decrease in absolute magnitude, which is strongest near full phase and for short wavelengths. This
is caused by the fact that light, which is reflected by the ocean, is now completely absorbed. More
specifically, from Figure 6.1a in Trees (2018) the albedo of the ocean just below the air-water interface
is highest in the blue/ultra-violet wavelength region at which we also observe the largest decrease in
𝐹. For 𝑄 we completely lose the intersection point. Furthermore, the variability and amplitude near
quadrature and at the primary rainbow decrease significantly. Again, for 𝜆 = 350 𝑛𝑚 at the secondary
rainbow, we observe an anomaly for Δ𝑄. Similarly, in 𝑃𝑙, the intersection point is lost, being of course
a result of what we found for 𝑄. In 𝑈 we observe no interesting changes, but an overall decrease in
daily variability, which is strongest for short 𝜆.
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Figure 6.10: Semi-annual phase curves for ፅ, ፏ፥, ፐ and ፔ. These phase curves are provided for five wavelength:
ኽ኿ኺ, ኾኾኽ, ኿኿ኺ, ዀ዁ኺ and ዂዀ኿ ፧፦. The planetary model is that described in Chapter 3, except we replaced the Lambertian
surface model of oceanic, vegetated and desert surface covers with anisotropic polarizing models. For every parameter we

provide the absolute difference with respect to the Lambertian planetary model.
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Figure 6.11: Similar to Figure 6.10, except without considering vegetated surface covers in the planetary model, i.e. the
surface models are Lambertian with an albedo of 0. For every parameter we provide the absolute difference with respect to the

”full” planetary model provided in Figure 6.10.
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Figure 6.12: Similar to Figure 6.10, except without considering desert surface cover in the planetary model, i.e. the surface
model are Lambertian with an albedo of 0. For every parameter we provide the absolute difference with respect to the ”full”

planetary model provided in Figure 6.10.
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In conclusion, we saw that the polarizing desert cover mainly has an effect on the daily variations at
phases near full phase until quadrature, but less so as compared to the vegetation model, which can
be attributed to the fact that the desert is much less spread out over the Earth disk than for example
vegetation or ocean. The intersection points induced on 𝑄 and 𝑃𝑙 are also not caused by the polarizing
desert and vegetation surface covers. By inspection of Figures 6.1 and 6.5 we do not observe an
intersection point in the end cases of the vegetated and desert surface cover, whereas for the ocean
planet end case (Figure 6.2) an intersection point was also found. We conclude the following:

• The polarizing vegetation has an effect on the daily variations in and strength of 𝐹, especially at
865 𝑛𝑚 for phases smaller than quadrature. For 𝑄 the vegetation model only induces significant
variations for 𝜆 = 550 𝑛𝑚.

• The polarizing desert induces additional variability on 𝐹 that decrease with shorter 𝜆 and for larger
𝛼. For 𝑄 we observed an increase in daily variations at all 𝜆 for phase angles in a large region
around quadrature.

• Trees (2018) showed that if an exoplanet is completely covered by a (frozen) ocean, then an
intersection point in 𝑄 may be found, providing that the cloud fraction is less than 100% and/or
the surface pressure is not well beyond that of Earth. Our model includes an Earth-like cloud
cover that varies diurnally as well as an inhomogeneous surface cover. Under the influence of
these inhomogeneities we are still able to retrieve a clear intersection point in 𝑄, which showed
to be solely caused by the presence of an ocean. In a similar fashion we also found the inter-
section point in 𝑃𝑙, again caused by presence of an ocean, which shows large correspondence at
crescent phases to that of Figure 7.20 in Trees (2018). Lastly, Trees (2018) showed that without
considering clouds an intersection point can also be found in 𝐹 for a homogeneous ocean planet.
In Appendix F, Figure F.2, we provide a simulation of Model 2, except that all cloud layers are
considered as pure gas layers. More specifically, for our inhomogeneous surface cover we still
obtain not only an intersection point in 𝑄 and 𝑃𝑙 but also in 𝐹, in the absence of clouds. By
inspection of the end cases in Figure 6.2 we find the same for an ocean planet. However, due
to the highly reflecting clouds at crescent phases and for long 𝜆 (Section 4.2.2) this intersection
point in 𝐹 can not be unambiguously linked to the presence of the ocean. Also, Cowan et al.
(2012) showed that highly reflecting poles can increase the flux at crescent phases, acting as a
false positive for the detection of a glint. However, in 𝑄 the clouds did not cause such an inter-
section point and for the ice/snow covers it is reasonable to expect that the surface reflection is
not highly polarizing (Peltoniemi et al. 2009). Hence, the intersection point in 𝑄 might provide
us with an unambiguous signature of ocean on an Earth-like exoplanet.

• Other than retrieving the presence of a liquid water ocean on an Earth-like exoplanet, the position
of the intersection point in 𝐹 and 𝑄 might provide us with an estimation of the cloud fraction.
Trees (2018) showed that for an idealized homogeneous ocean planet an increasing cloud fraction
causes a shift of the intersection point to smaller and larger 𝛼 for 𝐹 and 𝑄, respectively. By
inspection of Figure 6.10 we retrieve: 𝛼።፧፭፞፫፬፞፜፭,ፅ ≈ 120∘ and 𝛼።፧፭፞፫፬፞፜፭,ፐ ≈ 136∘. Assessing now
Figure 7.28a and 7.29a in Trees (2018) allows us to retrieve a cloud fraction in both cases of
65 − 70%, agreeing well to the annual mean of MODIS observations that we used: 68% (see
Section 3.3.2).
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Figure 6.13: Similar to Figure 6.10, except without considering ocean surface cover in the planetary model, i.e. the surface
model are Lambertian with an albedo of 0. For every parameter we provide the absolute difference with respect to the ”full”

planetary model provided in Figure 6.10.



7
Modeling Earthshine data

As we already know and have seen from our simulations is that polarimetry can be a strong asset to
the characterization of terrestrial Earth-like exoplanets. We have seen that by including polarization
in our measurements one can see strong indications of ocean bodies on Earth-like exoplanets as well
as the presence of liquid water clouds. Up until know the only direct polarimetry observations from
Earth have been made by the Polarization and Directionality of the Earth’s Reflectances (POLDER)
instrument (Deschamps et al. 1994). This instrument, however, is mounted on a satellite in low-Earth-
orbit and can thus not provide representative results of a full disk-resolved or unresolved as observed
from afar. Efforts are being made to design an instrument, called the Lunar Observatory for Unresolved
Polarimetry of Earth (LOUPE), that will use the Moon as a platform to retrieve the spectropolarimetric
signals of Earth (Karalidi, Stam, Snik, Bagnulo, Sparks and Keller 2012). In the mean time several
observations of Earthshine have been made to retrieve photometric signals from Earth (Qiu et al.
2003). Spectropolarimetric signals of such kind have only recently been made by Sterzik et al. (2012)
that show some interesting possible bio signatures from Earths spectrum. In this Chapter we will focus
on the attempt to approach the observations made by Sterzik et al. (2012).
We start this chapter by a description of how Earthshine observations are retrieved (Section 7.1).
Secondly, we will present the measurements that are retrieved by Sterzik et al. (2012) and earlier
attempts to approximate this data (Section 7.2). In Section 7.3 we will present the model that will be
used to simulate the Earthshine measurements, which will be presented in the last section, Section 7.4.

7.1. Observing Earth with Earthshine
Earthshine measurements are retrieved by observing the night side of the Moon from the night side
of Earth. This side of the Moon is illuminated by the reflection of sunlight reflected on the day side of
Earth, more clearly shown in the left panel of Figure 7.1. In the right panel one can clearly see the
Earthshine visible on the ”dark side” of the Moon. This method does have its limitations as one is not
able to observe large phases Earth, because the night side of the Earth in view of the Moon is very
small. Also, one needs a global system of observations telescopes which for the required precision is
not achievable. Furthermore, we are dealing with a non isotropic Lunar surface, which one can easily
conclude from the several craters on the Lunar surface and the darker surface features.

7.2. Polarization measurements from Earthshine
The spectropolarimetric results that are obtained with the Earthshine method are retrieved on the
25th of April 2011 on 09h00 UTC and the 10th of June 2011 on 01h00 UTC. These measurements are
obtained with the Focal Reducer/Low-dispersion Spectrograph (FORS) that is mounted at the VLT based
in Chile (Sterzik et al. 2012). The fraction of polarization 𝑃ፐ obtained at these two epochs are provided
in Figure 7.2. The red curves in these two panels represent the observed fraction of polarization 𝑃ፐ,
and the green curve represents the observed fraction of polarization 𝑃ፔ, which will not be assessed
in this research. The inset in the two plots show the variations of 𝑃ፐ1 that are extracted from the

1In the remainder of this section we will refer to ፏᑈ as ፏ፬.
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Figure 7.1: Left panel: Sun-Earth-Moon system with the illustration of Earthshine from the Moon (Sterzik et al. 2015). Right
panel: Visible Earthshine on Moon at crescent phase.

continuum, i.e. the residual 𝛿𝑃. This is achieved by fitting a fourth order polynomial to the data and
subtracting this from the signal between 530 and 910 𝑛𝑚. The two major peaks in the residual show
clearly the 𝑂ኼ A-band at 760 𝑛𝑚. The horizontal black lines in this residual show two representative
wavelength passband regions for which the NDVI is calculated. From the lower panel of Figure 7.2
one can see the land distribution for the two epochs. From these land distributions we can clearly
see a large portion of vegetated (greenish) areas on April 25th as compared to June 10th. According
to Sterzik et al. (2012) this major difference in the fraction of vegetated regions causes a dip in the
observed signal, or a strengthening of the NDVI, which one can clearly see from the plots in Figure 7.2.
For a more detailed discussion on the present features in the observations one can consult Sterzik et al.
(2012). The black solid, dashed and dotted lines represent simulations that use the weighted quasi-
homogeneous disk integrated approximation of Stam (2008a). The different weights are provided in
Table 7.1. We can see that these simulations approximate the blueish/green part of the spectrum
fairly well, but from 500 𝑚𝑢 on wards the estimation becomes increasingly worse. The exact model
parameters of these simulations can be retrieved from Sterzik et al. (2012). For April the simulation with
the largest clear ocean portion provides the highest fraction of Pl on the entire spectrum. Simulating
clouded vegetation and a higher fraction of clouded ocean provides the worst fit, especially for the blue
region of the spectrum. When introducing some clear vegetation, the degree of polarization remains
approximately the same as the first case, but agrees well to the observed data in the far blue. For June
we see that for a high fraction of clouded ocean we see a large disagreement in the far blue/greenish
spectrum. When introducing some clear vegetation the overall agreement with the data increases, but
only by a small portion. The best fit is obtained by modeling a large fraction of the ocean as clear. As

Table 7.1: Model parameters of the simulations by Sterzik et al. (2012) used to approximate the observed Earthshine data.
These simulations are based on the Quasi-homogeneous model by Stam (2008a). This table is fully taken from Sterzik et al.

(2012).

Date/Model Clouded Clear Clouded Clear
ocean (%) ocean (%) vegetation (%) vegetation (%)

April/Solid 48 40 0 12
April/Dashed 60 30 10 0
April/Dotted 44 56 0 0
June/Solid 40 60 0 0
June/Dashed 30 60 0 10
June/Dotted 27 73 0 0

mentioned in the previous section, the lunar surface depolarizes the signal. Although large ambiguities
are presented in the spectral dependence and magnitude of this depolarization factor an estimation by
Sterzik et al. (2012) is used, which is normalized at 550 𝑛𝑚 and varies linearly according to

𝑑𝑒𝑝𝑜𝑙 = 3.3𝜆/550 (7.1)

So, to account for this depolarization and to be able to adequately compare our results with the obser-
vations and simulations we will have to divide our signal by this depolarization factor. The geometric



7.3. The Earth model 119

Figure 7.2: Upper left panel: Fraction of polarization ፏᑈ measured from Earthshine on April 25th 2011 at 09h00 UTC,
represented by the red curve. From these measurements the continuum is subtracted by fitting a fourth order polynomial,
producing the inset in the plot. The green line represents ፏᑌ, which is on the same scale as the residuals. The triangles and
diamond represent estimates based on POLDER and estimates from Dollfus, respectively. The black lines represent simulations
with approximate Earth-like models. For more information about these estimates one can consult Sterzik et al. (2012). Upper
right panel: Similar to the right panel, only for Earthshine retrieved on June 10th 2011 01h00 UTC. (Sterzik et al. 2012) Bottom
left panel: simulated land cover on April 25th. Bottom right panel: simulated land cover on Jun 10th. Both land covers are

discretized according to the IGBP classification (Section 3.2).

angles that we will be using are summarized in Table 7.2, which are based on the latitudinal and
longitudinal position of the sub Lunar and sub Solar point on the Earth’s surface. Because we will
only have to compute one geometry per observations, we can use our full range of wavelengths:
350, 443, 500, 550, 670, 750 and 865 𝑛𝑚.

Table 7.2: Summary of used geometrical angles for the two Earthshine epochs

April 25th 2011 June 10th 2011
Sub Solar longitude (∘) 44.517 -195.167
Sub Solar latitude (∘) 13.133 22.967
Sub Lunar longitude (∘) -38.783 -93.783
Sub Lunar latitude (∘) -14.933 -5.383
Phase angle (∘) 87 258
Input Obliquity (∘) -14.933 -5.383
Input Longitude (∘) -38.783 -93.783
Rotation (∘) 14.427 20.720

7.3. The Earth model
The model that we will be using for the simulation of Earthshine data are very similar to that described
in Chapter 6, but with a small addition. In summary, we will use the detailed cloud models that are
described in Chapter 3 in combination with the polarized surfaces presented in Chapter 6. Additionally,
we will use the scattering coefficients that we used to approximate a polarizing desert surface, to model
dust aerosols in our atmosphere. These particles are modeled solely above clear sky pixels, so we will
not model cloud layers in combination with dust aerosols layers. As one can read from Chapter 6, the
polarizing desert surface were fitted to correspond to Aster spectral data for desert soil, by changing
the single scattering albedo (SSA). These fitted SSA will also be used to approximate the wavelength
dependent aerosol particles. In Table 7.3 the SSA’s are listed for the corresponding wavelengths.
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To be able to model these dust aerosols in a local atmosphere, we require the optical thickness

Table 7.3: Fitted Single Scattering Albedos (SSA’s) to approximate dust aerosols with empirically obtained scattering
coefficients by Moreno et al. (2006). The scattering coefficients were fitted to Lambertian Equivalent Reflectance (LER) albedos

from Aster Spectral Database.

Wavelength [፧፦] SSA [-] LER [-] Model albedo [-]
350 0.235 0.010604 0.010613
443 0.6103 0.05319 0.053186
500 0.7384 0.091416 0.091430
550 0.82353778 0.139387 0.139390
670 0.89436 0.215352 0.215391
750 0.91375 0.248771 0.248747
865 0.9279 0.279383 0.279351

of that layer and its vertical position. The optical thickness is obtained from MODIS data. The MODIS
data that we will be using is the ”AOD_550_Dark_Target_Deep_Blue_Combined_Mean_Mean” data set
from the data product ”MYD08-D”, the same as that used in Chapter 3. In this data set the optical
thickness values are retrieved at 𝜆 = 550𝑛𝑚, so we will scale the optical thickness similarly to the cloud
optical thickness (Equation 3.4):

𝜏∗(𝜆∗) = 𝜎∗፞፱፭
𝜎፞፱፭

𝜏(𝜆) (7.2)

where the asterisk denotes the desired optical thickness at a corresponding wavelength. The file
that was fitted to aerosols observations did not include real valued scattering properties, so by use
of Mie calculations extinction coefficients for 𝜆 = 442, 443, 550, 663, 670, 850 and 865 𝑛𝑚. The Mie
calculations were performed by Dr. D. M. Stam. These Mie calculations are based on a fitted size
distribution and measured refractive index by Moreno et al. (2006). Figure 1 in Moreno et al. (2006)
shows the Log-Normal two parameter distribution with 𝑅 = 0.113 𝜇𝑚 (geometric mean radius) and
𝜎 = 2.517 (standard deviation) and the measured size distribution. Although there can be seen some
small disagreement we find that the approximation is sufficient for the current discussion. For the
refractive index, Moreno et al. (2006) uses a constant index for 442 and 633 nm: 𝑛፫ = 1.62+0.00001𝑖.
To verify if this assumption is also valid for the ultra-violet and near-infrared domain, we assessed the
JPDOC Database of Optical Constants. Sources like Pollack et al. (1994) confirm that the rock type
”Olivine S” can be assumed constant for our entire wavelength domain. The last step now is to inter-
and extrapolate the data to allow for calculations on all our wavelengths. We observed the data and
found that it is certainly not a linear-like relation. In this regard, we fitted a 3rd order polynomial to the
data, shown in Figure 7.3. In order to adequately model the aerosol optical depth with a reasonable
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Figure 7.3: Red crosses indicates the data from Mie calculations by Dr. Daphne Stam. The black line is the result of a fitted 3rd
order polynomial.

computation time and storage, we will again use a discretization. To provide such a discretization we will
firstly look at the abundance distribution. To adequately represent the distribution we fitted 200 of the
most commonly used continuous statistical distributions to the empirical data (Kotz 1994), from which
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we obtained a Noncentral t-distribution. From this distribution we can define confidence intervals, from
which we strive to cover 95% of the data. The distribution and the confidence interval are shown in
Figure 7.4. This distribution and histogram show that the highest abundance is located at ∼ 0.1 optical
thickness. 95% of this data lies between 0.05 − 0.53 optical thickness. Secondly, we will look at the

Figure 7.4: Histogram and fitted PDF to the aerosol optical thickness. A confidence interval of ዃ኿% is provided for the PDF.

distribution of the mean aerosol optical thickness as function of latitude. This is especially import as the
dust aerosols are mainly located near the approximate latitude interval of 0−50 degrees (Ginoux et al.
2001). Also, in this case we are mostly interested in the region surrounding the Saharan Desert as we
will only model the dates on which the Earthshine measurements were retrieved of which we saw that
April 25th 2011 fully includes the Saharan Desert, whereas July 10th 2011 only contains a large portion
of the Pacific Ocean and the North and South American continents. If we look at Figure 7.5, one can
see that for the region of 0∘ − 50∘ longitude the mean optical depth varies between ∼ 0.15 − 0.25.
Considering both the abundance of the full set of data and the latitudinal dependence we will use
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Figure 7.5: Left panel: Latitudinal dependence of mean aerosol optical depth, derived from monthly global data of 2011
entirely. Right panel: Latitudinal dependence of mean aerosol optical depth, derived from monthly data of 2011 entirely only

for the region of ኺ∘ ዅ ኿ኺ∘ longitude.

the three bins provided in Table 7.4. The Aqua/MODIS Aerosol Optical Depth Daily L3 Global 1 Deg.
CMG dataset was acquired from the Level-1 and Atmosphere Archive & Distribution System (LAADS)
Distributed Active Archive Center (DAAC), located in the Goddard Space Flight Center in Greenbelt,
Maryland (https://ladsweb.nascom.nasa.gov/). To include the observation of these aerosols

https://ladsweb.nascom.nasa.gov/
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Table 7.4: Discretization bins of the aerosol optical thickness with associated bin values.

Bin number 1 2 3
Bin boundaries 0<AOT≦ 0.1875 0.1875<AOT≦0.2625 0.2625<AOT
Bin values 0.15 0.225 0.3

in our Earth-like model we need to make some assumptions. MODIS only computes aerosol properties
for clear sky pixels, and thus not for cloudy pixels (Levy et al. 2013).

1. L3 aerosols are only considered for clear sky pixels.

2. For a L3 pixel with AOT>0 the full clear sky L3 pixel is replaced by one with an aerosol layer.

3. AOT values are averaged by an arithmetic mean over the pixels that fall into our disk pixels.

4. The total disk pixel is approximated by a weighted summation, including clear sky, aerosol and
cloud reflection matrices.

The total disk pixel TOA reflection is computed with (analogously to Equation 3.3)

R፭፨፭ = R(𝜏፜፥፝)
∑ፍ።዆ኻ 𝐹𝑐𝑙𝑑።

𝑁 + R(𝜏ኺ)(1 −
∑ፍ።዆ኻ 𝐹𝑐𝑙𝑑።

𝑁 − 𝑁ፚ፞፫፨
𝑁፜፥፞ፚ፫

) + R(𝜏ፚ፞፫፨)(
𝑁ፚ፞፫፨
𝑁፜፥፞ፚ፫

) (7.3)

where R፭፨፭ is the total reflection of the pixel, R(𝜏፜፥፝ፓ ) is the reflection of the cloudy part of the pixel,
R(𝜏ኺ) the reflection of the clear part of the pixel, R(𝜏ፚ፞፫፨ኺ ) the reflection of the aerosol part of the pixel,
∑ፍ።዆ኻ 𝐹𝑐𝑙𝑑። the total fraction of only cloud pixels and 𝑁 is the total number of pixels (cloudy and clear),
𝑁ፚ፞፫፨ the number of L3 pixels that have AOT>0 and 𝑁፜፥፞ፚ፫ the number of clear L3 pixels. 𝑁ፚ፞፫፨ can
thus never exceed 𝑁፜፥፞ፚ፫.

The last parameter, the aerosol top pressure, is not a dataset in MODIS. To keep the computations
simple we will use one top pressure. According to Ginoux et al. (2001), decreases the amount of dust
aerosols rapidly with height. They found in their simulations that the highest abundance of dust is
located near ∼ 800 𝑚𝑏. We will also use an aerosol top pressure (ATP) of 800 𝑚𝑏 with a vertical
extend similar to our clouds of 100 𝑚𝑏.

7.4. Simulated Earthshine with the Earth model
In the attempt to approach the Earthshine data we will perform different simulations that consist of
various combinations of land cover models and atmospheric models. We will primarily distinguish two
types of simulations, one with a nominal cloud cover that we have used so far in all of the presented
simulations, but also a reduced cloud cover data set, i.e. the Retrieval Cloud Fraction (for more in-
formation about these data sets consult Section 3.3). We will first perform a simulation that utilizes
only Lambertian reflecting surfaces. In the subsequent three sections, we utilize the polarizing ocean
model, the polarizing ocean model plus polarizing desert model and lastly the polarizing ocean, desert
and vegetation models. For more information about these models one can consulted Chapter 6. In
the fifth section, we will include dust aerosols in our model in combination with the polarizing sur-
faces. In the last section we will conclude on the findings in the previous sections and discuss possible
shortcomings.

Lambertian surfaces
As a first order approximation we modeled our Earth-like exoplanet model with Lambertian surfaces, as
we have already done in Chapter 4 and 5. In Figure 7.6 one can see the simulations with nominal cloud
fraction in the upper two panels and that with reduced cloud fraction in the lower panels. In the two
left panels the simulation for April is provided. For the nominal cloud fraction these show to correspond
closely to two quasi-homogeneous simulations by Sterzik et al. (2012), but provides a slightly higher
fraction op polarization in the red. The approximation in this part of the spectral domain is, however,
still far to low. With reduced cloud cover we see a major increase in the blue part of the spectrum and
a slight increase in the red part. We have seen that clouds are generally highly depolarizing and have
a relatively high reflection. When smaller cloud fractions are used the degree of polarization will thus
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Figure 7.6: In this figure one can find the simulations of Earthshine for April 25th 2011 (left panels) and June 10th 2011 (right
panels). The simulations were performed with a nominal cloud cover (upper panels) and a reduced cloud cover (bottom
panels) (Section 3.3). The surfaces are approximated by Lambertian reflection. The red line represents the observed

Earthshine data, whereas the solid, dotted and dashed lines represent Quasi-homogeneous simulations.

increase. The behaviour is largest at blue wavelengths as Rayleigh scattering becomes very effective.
The simulations of June are provided in the right two panels. For the nominal cloud fractions we see
a large underestimation of 𝑃𝑠 in the blue and the red altogether, where even the quasi-homogeneous
simulations provide a better fit in the blue and green parts of the spectrum. For the reduced cloud
fractions we see a much better fit and approximate the blue/greenish part of the Earthshine well. In
the red part we see a major underestimation, but a slightly better fit than the quasi-homogeneous
simulations.

Lambertian+polarizing ocean surfaces
By adding a polarizing ocean surface to our model we already saw that the effect of the glint has major
influence on 𝐹 and in particular 𝑄 (Chapter 6). For both epochs, we expect a major effect for June. In
that configuration the fictive position of the glint is right on top of the ocean cover, whereas depending
on the wind speed this might only be partly true for April. From our simulations, presented in Figure
7.7, one can see that for our nominal cloud cover we see only small improvements for both epochs,
where the effect is largest for June. The simulations with reduced cloud fractions show a much larger
increase in 𝑃𝑠, especially for June. This difference between these simulations is devoted to the fact
that much less clouds cover the surface, and potentially the position of the glint; allowing for a major
increase in polarized flux 𝑄. For April we see that this causes an even bigger overestimation in the
blue, but a fairly good approximation in the red part of the spectrum. For June we see a similar effect
but with much better agreement to the Earthshine.

Lambertian+polarizing ocean and desert surfaces
In Chapter 6 we constructed a polarizing desert surface. The effect of this polarizing desert surface
as compared to a Lambertian equivalent is shown in Figure 7.8. In the right two panels we see that
this addition provides no significant improvement to our model in June. If one looks back to Figure 7.2
the cause can directly be observed. In June there is barely any land cover visible that we considered
as desert. Furthermore, the visible desert regions are located far from the center of the disk and
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Figure 7.7: Similar to Figure 7.6, but now we added a polarizing ocean surface to the clear and ”thin”-clouded (COT=5) pixels.

contribute little to the spectropolarimetric signal. For April we see a slightly higher contribution, but
again very small, even in the case of reduced cloud cover. This is mostly attributed to the fact that in
April the cloud cover above the Sahara Desert in both cases is very low to even completely clear.

All polarizing surfaces
From the disk-resolved cases in Chapter 4 and 6 we saw that vegetation has quite some influence on
the normalized reflected flux in the red wavelength region. In the Earthshine simulations, presented in
Figure 7.9, we see a significant contribution of this polarizing model for April, especially for the reduced
cloud cover run. We essentially see a tilting effect that we require to approximate the Earthshine
measurements better, where 𝑃𝑠 in the red part increases and in the blue spectral regions decrease.
For the nominal cloud cover we, however, do not see a significant improvement in the red part of the
spectrum. For the reduced cloud cover we now see a fairly accurate approximation in the red but a
majorly overestimated signal in the blue/green. For June the contributions are far less if one compares
them to April. This is again caused by the low amount of vegetated surface pixels and the fact that
they all lie far from the center of the disk. We see a similar rotation as in April, but with nominal cloud
cover the estimation maintains rather worse. For the reduced cloud cover, which showed already good
agreement, we keep an overestimation in the blue and a larger underestimation in the red.

All polarizing surface+dust aerosols
The effect of the rather experimental addition of dust aerosols in our model atmosphere are presented
in Figure 7.10. For both April and June with nominal cloud fraction we barely see the influence of
these aerosols. If we closely look at the greenish/blue part of the spectrum we see for both epochs
a decrease in 𝑃𝑠. For April we see a very good agreement in the blue of < 1%, but a ∼ 3 − 4%
disagreement in the red. The worst approximation is found for the simulation of June, where we find
a disagreement of ∼ 5− 6% in the blue and ∼ 6− 7% in the red. If we now look at the reduced cloud
fraction cases, an enhancement of the latter behaviour can be observed. In these cases we also see
a slight decrease in the red part of the spectrum. For June this provides for a good agreement in the
blue, but a rather weak agreement in the red were we are still off by ∼ 3 − 4%. For April we see an
overestimation of ∼ 6 − 7% at the blue and only ∼ 1% at the red part of the spectrum.
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Figure 7.8: Similar to Figure 7.7, but now we also added a polarizing desert surface to the clear and ”thin”-clouded (COT=5)
pixels.

Concluding remarks on the simulated Earthshine data
In the previous sections we have seen that we were not able to accurately agree with the retrieved
Earthshine data, despite the fact that we constructed a very comprehensive model. In conclusion, we
have seen that by adding the polarized surfaces for the ocean, desert and vegetation the overall agree-
ment with the Earthshine data increased. By adding dust aerosols, we observed a slight tilt, decreasing
the degree of polarization 𝑃𝑠 at the red wavelengths and increasing 𝑃𝑠 in the blue. Hence, the addition
of aerosols induces a slight decrease in the overall agreement. To further investigate the cause of this
disagreement, we will present some simulations for which we customized the cloud distribution for
both dates. All of the following simulations are performed without considering dust aerosols.

For comparison, we have plotted all cases in a single panel. In the left panel of Figure 7.11 we
simulated April 25th of 2011 and in the right panel June 10th of 2011. The simulation is made using
all polarizing surfaces without aerosols is labeled with ”Full model”.
Throughout this thesis we have showed that clouds generally depolarize reflected light. To get a feel for
what range of 𝑃𝑠 values we can physically model, an end case that simulates our land cover distribution
without clouds is computed. To clarify, we have considered clear sky models for the ocean, vegetation,
desert and ice cover pixels. From this simulation one can see that we basically overestimated the
Earthshine data for the entire spectral domain, which basically tells us that it is possible to approximate
the red part of the spectrum. Albeit, the overestimation for April is only minor, which tells us that under
real cloudy conditions full agreement with the Earthshine data might seem unrealistic. Contrarily, for
June we see a large overestimation, essentially telling us that by altering the cloud distribution even
more an overall agreement to the data might be possible. It has to be noted that in the previous
sections we already saw a much better agreement for June than for April at least when we used the
reduced cloud cover.
In the previous chapter we saw that the most dominant polarizing land cover type for all wavelengths
considered is the ocean, provided that no land cover masks the position of the glint. For the next
simulation we do not consider clouds for the ocean pixels only. This shows an overall decrease of 𝑃𝑠
and a close agreement in the red for April, but still a large disagreement at the blue. For June we still
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Figure 7.9: Similar to Figure 7.8, but now we also added a polarizing vegetation surface to the clear pixels.

see a large overestimation for the entire spectrum.
To be somewhat more realistic we will again include cloud over the ocean, except for a small portion
of pixels that form the highly reflecting part of the glint. We want to see the effect of the glint alone,
because we know that the dominant polarizing part of the ocean is the glint. The simulations show
that overestimation is completely gone for both epochs and that we again underestimate the Earth-
shine data with this configuration. On the one hand this might seem unexpected as we allowed the
extremely polarizing glint to radiate relatively easy through the exoplanet atmosphere, but the addition
of the highly reflecting cloud on top of the other ocean pixels has a dominant effect on 𝑃𝑠.
modeling an even larger clear sky region at the ocean glint shows to have little effect for April, because
the glint is partly ”masked” by the African continent. For June one can see a rotation towards the
Earthshine data, but again to small for a significant agreement.
The last case we will model is that of the extended clear region over the glint in combination with the
reduced cloud fraction data set. For both observations this shows significant agreement at the red part
of the spectrum, but especially a major overestimation at the blue region for April.

We have seen that we were able to approximate the Earthshine data at the near-infrared wavelengths
quite well by altering the distribution of the clouds. This shows that the exact distribution of the clouds
is quite dominant. The MODIS observations that we use are not retrieved exactly at the time of obser-
vation and thus might be the source of the initial disagreement in the previous sections. Although, we
have seen that for our most accurate simulations there was either an overestimation in the blue, an
underestimation in the red wavelengths or both. What we essentially want is a tilt towards higher 𝑃𝑠
in the red and towards lower 𝑃𝑠 in the blue wavelength region. This is both the case for the observed
data in April and June and might suggest that the approximate depolarizing factor of the Lunar surface
does not allow full agreement at all.
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Figure 7.10: Similar to Figure 7.9, but now we added aerosols to clear pixels according to MODIS data.
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Figure 7.11: Earthshine simulations with customized cloud covers. In the upper left and right panels we provide the different
cases for April 25th 2011 and June 10th 2011, respectively. In the lower panels we provided the customized cloud fraction
distributions for both epochs, from top to bottom for the glint, the extended glint and the extended glint in combination with
the reduced cloud fraction data set. For the lower panels yellow corresponds to a zero cloud fraction and red to a cloud fraction

of one.
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Discussion and Conclusions

The research objective was stated as follows:
The research objective is to retrieve spectropolarimetric signals from an Earth-like exoplanet
model in an edge-on configuration to be able to rationalize future disk integrated observations,
by use of a radiative transfer algorithm in combination with Earth observations.

In this research we provided simulations of (polarized) flux reflected from an edge-on Earth-like ex-
oplanet. The model that we implemented is based on daily varying MODIS data. More specifically,
the cloud layer in our plane parallel vertically inhomogenous local surface-atmosphere system varies
spatially and temporally. The invariant cloud layer is modeled by its cloud top pressure, cloud optical
thickness and cloud particle effective radius. The surface discretization is based on the most dominant
surface types: oceanic, vegetated, desert and ice/snow surfaces. The gaseous part of the model at-
mosphere is invariant and assumed to be in hydrostatic equilibrium. A discretization of the cloud data
sets allows us to model a horizontally inhomogeneous planetary disk that utilizes 36 different cloudy
models and one model with a pure gaseous atmosphere. Additionally, we utilized the ability to include
anisotropic polarizing surfaces, which model vegetated and oceanic land covers1. To account for the
desert surface, we constructed an anisotropic polarizing desert model from empirical data of ”Olivine-S”
dust particles. For the snow/ice surface pixels we continued to use a Lambertian reflecting surface.
The main conclusions are provided next.

The Earth-like model
By simulating our Earth-like model, with Lambertian surfaces for all land cover types, as resolved disks
we were able to retrieve the direct contribution of the surface and atmosphere to a disk-resolved signal.
These disks are computed at 𝜆 = 350, 550 and 865 𝑛𝑚 at the same sub-observer longitude. For longer
wavelengths, the contribution of surface reflection and reflection from the cloud layers become more
apparent in 𝐹 (total flux). The surface reflection does not contribute to the polarized fluxes 𝑄 and 𝑈
for all 𝜆. The sensitivity of 𝑃𝑙 (degree of polarization) to the surface reflection is thus induced solely
by 𝐹. The clouds only show strong affects on the disks of 𝑄 near full phase and 𝛼 = 40∘.

The sensitivity of polarized flux 𝑄 on scattering from clouds is caused by the micro-physical prop-
erties of the cloud particles considered. We model spherical liquid water particles to form our cloud
layer. Light beams which scatter once on these particles exhibit a high degree of reflection and po-
larization at certain scattering angles. Depending on the optical depth, vertical position and particle
effective radii, enhancements in the planetary phase curves appear, generally known as the glory near
full phase, the primary rainbow near 𝛼 ≈ 40∘, and the secondary rainbow near 𝛼 ≈ 56∘. By inspection
of the planetary phase curves at 𝜆 = 350, 443, 550, 670 and 865 𝑛𝑚 (Figure 4.12) we know that
these signatures decrease in strength and appearance for shorter 𝜆. 𝑄 provides a valuable tool to
retrieve the primary rainbow as it remains visible for all wavelengths considered. For 𝐹 and 𝑃𝑙 we
compared the strength of the primary rainbow to Karalidi, Stam and Hovenier (2012), showing that
the primary rainbow is much more apparent in our simulations, especially for 𝐹, because our cloud
1See Cheung (2018) and Trees (2018) for a full description of the vegetation and ocean-atmosphere model, respectively.
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layers are optically thicker and consist of particles with larger effective radii. On all phase curves, daily
variations are induced, because (1) we simulate the horizontally inhomogeneity of cloud and surface
covers and (2) the planet rotates around its own axis. 𝐹, 𝑃𝑙 and 𝑈 are most sensitive to these spatial
and temporal inhomogeneities, whereas in 𝑄 these are apparent at 350 𝑛𝑚 only. In 𝐹 we retrieved an
intersection point around 𝛼 = 120∘, where the phase curves at different 𝜆 alternate. This is caused by
the decreasing dominance of the gaseous atmosphere on top of the clouds at long 𝜆, allowing more
light to be reflected on the cloud layers. For 𝑃𝑙, 𝑄 and 𝑈 no such reversal is retrieved.
The seasonality in cloud observations of 2011 induce a region of variability that attains the same order
of relative magnitude, on the continuum of the planetary phase curves, as the daily variations. Hence,
any retrieval of seasonality in an exoplanetary atmosphere from these phase curves is ambiguous.
For all simulated planetary phase curves we retrieve very small values of 𝑈. There withal we were not
able to retrieve any dominant signature other than some unsubstantiated suggestions.

Retrieval of cloud variability
The daily variability induced on the planetary phase curves allowed us to apply the Discrete Fourier
Technique and the autocorrelation method to retrieve Earth’s rotation period. We showed that this
retrieval greatly depends on the level of noise in the photometric and polarimetric signal, the temporal
sampling and observation interval, i.e. the range of phases on which the methods are applied. Due to
time constraints we only considered the phase curve at 550 𝑛𝑚. Exploiting the ability to retrieve the
correlation at multiple consecutive rotation periods with the autocorrelation method, we found that the
presence of a temporally invariant cloud cover can be retrieved by comparing the autocorrelation at
multiple consecutive rotation periods from 𝑄 to that of 𝐹 and/or 𝑃𝑙.

The changing cloud cover provides different mean cloud parameters2 for any specific phase angle
and cloud observation. The question arose whether these changes are correlated to variability in 𝐹,
𝑃𝑙, 𝑄 and/or 𝑈. To investigate this, we simulated a large set of data points at 𝛼 = 40∘ and 𝛼 = 90∘.
First of all, we found that 𝑈 does not provide any significant correlation with any of the mean cloud
parameters. Also, surprisingly, we found that the cloud optical thickness has no correlation with any
of the Stokes parameters or 𝑃𝑙, although we found that in the resolved disks this parameter showed
significant dominance. For a set of 𝜆 on both phases we found significant correlations for the mean
cloud fraction, top pressure and particle effective radius. Using both phases simultaneously, we defined
a shape parameter. With this parameter we were able to reproduce the more idealized results from
Rossi and Stam (2017). Furthermore, we found the following pronounced correlations:

1. Cloud fraction is correlated to 𝐹 at 𝜆 = 350 𝑛𝑚;

2. Cloud fraction is correlated to 𝑃𝑙 at 𝜆 = 550 𝑛𝑚;

3. Cloud fraction is correlated to 𝑄 at 𝜆 = 550 and 865 𝑛𝑚;

4. cloud particle effective radius is correlated to 𝐹 at 𝜆 = 865;

5. cloud particle effective radius is correlated to 𝑃𝑙 at 𝜆 = 550 and 865 𝑛𝑚;

6. Cloud top pressure is correlated to 𝑃𝑙 at 𝜆 = 550 𝑛𝑚;

7. Cloud top pressure is correlated to 𝑄 at 𝜆 = 350 𝑛𝑚.
Extended Earth-like model
The Lambertian surface approximation completely depolarizes any reflected light. By implementation
of realistic anisotropic polarizing surface models we were able to simulate more realistic spectropo-
larimetric signals. We incorporate vegetation models for steppe and deciduous forests, a wind speed
dependent ocean model, for which we provide observations with a temporal resolution of 6 hours, and
a desert model fitted to the Entisol specimen.

From the disk-resolved simulations we retrieve a stronger distinction in 𝐹 between vegetated and
desert surface covers for all 𝜆 and phases. The polarized reflection of these two covers cause apparent
features of their spatial distribution in both 𝑄 and 𝑈. A major appearance of the specular reflection
2The mean is computed from of all visible and illuminated cloudy pixels.
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from the ocean cover, i.e. the glint, is retrieved for 𝐹, 𝑄 and 𝑃𝑙, being most apparent for 𝑄.

The dominance of this glint in the spectropolarimetric signals is also well retrieved in the planetary
phase curves. From the phase curves at different 𝜆 (Figure 6.10), we are able to unambiguously re-
trieve the presence of the ocean under the influence of (1) realistic ocean surface wind observations,
(2) the presence of an Earth-like cloud cover, and (3) the presence of continents. More specifically,
the specular reflection from the ocean causes an intersection point of the phase curves at different
wavelengths in 𝐹, 𝑃𝑙 and 𝑄. In particular, the intersection point in 𝑄 is found to be solely caused by
the presence of a ocean on an Earth-like exoplanet. Also, the locations of the intersection point in 𝐹
and 𝑄 allowed us to retrieve an estimate of the mean cloud fraction of 0.65 − 0.7, agreeing well to the
mean cloud fraction from MODIS data of 0.68.

Earthshine simulations
Using the Earth-like model with anisotropic polarizing surface, we have attempted to approximate the
observed Earthshine data on April 25th 2011 and June 10th 2011. In earlier attempts by Emde et al.
(2017); Sterzik et al. (2012), full agreement with the data was not found. In our model we also in-
corporate dust aerosols at a fixed vertical position and with an optical thickness according to MODIS
data. These aerosols are modeled with the scattering matrices from the anisotropic polarizing desert
model. Our simulations show moderate agreement for all 𝜆, which can be caused by (1) neglecting
the presence of other aerosols, such as maritime aerosols, or (2) the approximation of the correction
for the depolarizing behaviour of the Lunar surface.

Final remarks
Before we started this study the following research questions were set:

1. What is the spectropolarimetric signal for a resolved and unresolved Earth-like exoplanet?

(a) How does light reflect from an Earth-like exoplanet?

(b) How can an Earth-like exoplanet be modeled?

(c) Which features characterize Earth and how can these features be used in future exoplanet
characterization?

2. Which signatures from spectropolarimetric signals can be identified such that Earth-like exoplan-
ets can be characterized?

(a) Can Earth biomarkers be characterized in spectropolarimetric signals?

(b) Can spectropolarimetric signatures characterize exoplanet surfaces?

(c) Can spectropolarimetric signatures characterize exoplanet atmospheres?

(d) How can spectropolarimetry be used to identify planetary and orbital elements?

In Section 2.1 we provided a basic understanding of how light reflects from an Earth-like exoplanet (1a).
In this research we used the radiative transfer code PyMieDAP in combination with Earth observations
to construct and model an Earth-like exoplanet. The steps that were taken to introduce MODIS data
as input for PyMieDAP in order to construct a horizontally inhomogeneous planetary disk is provided in
Section 2.3 (1b). The construction of the actual planetary model from these observations is provided
in Chapter 3 (1c).
In Chapter 4 we showed that the red edge feature in vegetation is clearly visible in the disk-resolved
cases. From the phase curves, we could not retrieve any unambiguous signature related to this feature.
Also, we found that the primary rainbow can be retrieved confidently for the full spectral domain from
which we can potentially characterize the clouds in an exoplanet atmosphere. We were not able to re-
trieve an unambiguous signature of the gaseous atmosphere, because (1) it is spatially and temporally
invariant and (2) we did not consider absorption of the gaseous constituents. Induced by the partially
ocean covered exoplanet surface, an unambiguous intersection point is retrieved in the spectropolari-
metric signal 𝑄, whose position also provides an indication of the cloud cover (2a,b,c). In Chapter 5 we
provided estimates on the retrieval of the rotation rate in photometric as well as polarimetric signals
(1d).
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We have discussed the presence of spectropolarimetric signatures, which can potentially be directly
retrieved from, or aid in, the interpretation of future exoplanet observations. Moreover, in the design
of future telescopes the characteristics of these signatures may be considered. These signatures are
retrieved from photometric and polarimetric signals, which are created using a horizontally inhomoge-
neous model. This model allowed us to include the spatially variability in cloud and surface cover, for
example the appearance of the glint through the patchy cloud cover or its absence when continents are
in sight. Conclusively, utilizing a set of wavelengths could potentially allow one to retrieve information
about the presence, abundance and micro-physical properties of clouds in the gas atmosphere of, and
also the presence of an ocean cover on, an Earth-like exoplanet.
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Recommendations

The recommendations for future followup studies are itemized as follows:

• General optimization of the PyMieDAP code to allow one to increase the number of cloud types,
i.e. the discretization of the cloud observations. This will also allow the user to define more types
of surface cover, but we expect that this smaller discretization has little effect. Also, it would be
interesting to model the spatial and temporal variability of specific constituents in the gaseous
atmosphere, e.g. 𝑂ኽ. Such a study would be most effective if absorption of these constituents is
also considered.

• Recompute the Stokes vectors to include the circularly polarized fluxes. Muñoz (2015); Rossi
and Stam (2018) already provided simulations of circularly polarized fluxes, but no such analysis
has been provided for a large set of cloud types that spatially vary in time according to Earth
observations. For example, it might be possible to retrieve some effect of seasonality as this was
not unambiguously retrieved in our simulations.

• By modeling aerosols in our atmosphere, we slightly altered the spectral dependence of the
Earthshine simulation. It is interesting to construct more realistic models not only for Saharan
dust, but also for e.g. maritime aerosols, ice clouds, biomass burning, etc. and assessing their
effect on the spectropolarimetric signals. For ice clouds, however, a thorough analysis is already
provided by Karalidi, Stam and Hovenier (2012).

• Analyze the relations of Stokes vectors with mean cloud parameters by weighting them with the
position of the disk. By inspection of Equation 2.39 we know that the reflection of each pixels is
weighted by the incident and emission zenith angles. By accounting for the position of the pixels,
a better fit may be achieved. Furthermore, in the correlations found we did not take into account
the polarizing surfaces. By inspection of Figures 4.12 and 6.10 we expect that especially for 𝑄 at
𝛼 = 90∘ the surfaces will attain a dominant role. Hence, it is also recommended to include the
fractions of surface cover into this analysis.

• The planetary model that is constructed bases the surface cover distribution on annual MODIS
observations. To be able to retrieve the seasonal changes in this cover it is advised to include
observations of ice/snow and vegetation cover that vary on a shorter temporal scale.

• The retrieval of dynamic weather by use of the autocorrelation method showed some promising
results. However, due to time limitation we were only able to provided the results at 𝜆 = 550 𝑛𝑚.
In a further study it is advised to also take into account the ultra-violet and near-infrared spectral
region as the reflection from clouds and surface covers are influenced by the strong wavelength
dependence of the gaseous atmosphere. Furthermore, we provided that the temporal resolution
of, and noise levels in, the reflected signals have major effect on the positive retrieval of the
rotation period at 550 𝑛𝑚, but how are the retrievals at other wavelength affected? Moreover,
telescopes in the near and far future require certain integration times, limiting the temporal
resolution. In addition, a study into the expected rotation periods of exoplanets is required to
assess the applicability of such integration times.
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• The unambiguous signature of an ocean-atmosphere system in 𝑄 was first retrieved by Trees
(2018). By incorporating their ocean model in our planetary model we were able to retrieve
that signature under the influence of realistic ocean surface wind observations, the presence of
an Earth-like cloud cover and the presence of continents. Furthermore, they showed that this
signature is suppressed when the cloud cover is completely overcast and the surface pressure
attains ∼ 10 𝑏𝑎𝑟. From our point of view it is interesting to investigate to what extend the ocean
surface fraction can be lowered to still retrieve this signature, where not only the fraction of ocean
cover plays a role but also the spatial distribution as the ocean glint is per definition located on
the planetary scattering plane.

• A code to asses the feasibility of quasi homogeneous approximations (see e.g. Stam 2008a)
is already available. In a future study it would be interesting to investigate whether the large
inhomogeneities in the cloud and surface cover can be approximated well with a weighted sum
of horizontally homogeneous planet end cases. This quasi homogeneous approximation would
allow the user to significantly lower the computational effect.

• In our analysis the signatures of vegetated and desert land covers were not retrieved, which
is most definitely due to the less distinct anisotropy (polarized) reflection of these covers as
compared to for example an ocean cover. For vegetation we know that the red-edge enhancement
in the spectrum of total reflection is a very important biosignature (Berdyugina et al. 2016; Horler
et al. 1983). In previous studies this signature was found for total flux as well as for the degree
of polarization (Hamdani et al. 2006; Montañés-Rodríguez et al. 2006; Sterzik et al. 2012; Tinetti
et al. 2006). In a followup study it would be interesting to increase the spectral resolution,
at least around the red-edge, to assess whether this biosignature can also be retrieved from
spectropolarimetric signal of an Earth-like exoplanet.
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A
Modified PyMieDAP routine for

modeling Earth-like inhomogeneous
planetary disks

Figure A.1 shows a flowchart of the developed PyMieDAP Planet_pixels function. The principal input
objects are the Earth Observations, Input parameters and a Model Object. The Earth Observations
comprise of any observations that the user favors in the format that will subsequently be described.
The input parameters consist of those that define the geometry and type of exoplanet one wants to
model, but also what temporal resolution and interval one wants to observe or simply a single date
at a modified geometry. The core input parameters for the doubling-adding routine and Fourier file
construction can also be applied in this first instance. Before one can start computing disk resolved
or integrated Stokes elements a Model Object needs to be defined. In this Model Object one needs
to specify all parameters that will be constant in the Earth-like model, such as for example the mean
molecular mass or in case of a locally homogeneous surface, the surface reflection (a more detailed
description is provided in Section 2.2.1. This Model Object will at the same time be used to store all
data throughout the computation, including for example the Stokes elements, phase angles used, disk
geometrical properties, etc.
As part of the Planet_pixels function the following operations will be executed. Using the specified
planetary geometry the unmodified getgeos function is called to calculate all the relevant disk proper-
ties such as the number of visible and illuminated pixels, the pixel areas, the solar and emission zenith
angles, the azimuthal difference angles, the rotation 𝛽 for each pixel, and the coordinates for each
pixel. Using these parameters the extended Mask_Planet function can now calculate a specific mask
for each pixel that is based on Earth observations. In general the pixel models are distinct by surface
type and by cloud type. It thus depends on the users preference how many possible pixel models there
can be called by the Mask_planet function. The next step is to calculate the radiative transfer model for
each unique combination of observations. This can be computed beforehand or during a run, because
the Fourier files are stored and assigned an unique label. If a pixel model has not been calculated yet,
this needs to be handled by a new function in PyMieDAP. The Model_generator function does exactly
this by using the mie_code and compute_model functions that were already developed in PyMieDAP,
after which the generated Fourier file is read using the read_dap function. In case the Fourier file exists
the Fourier coefficients are immediately read by the read_dap function.
With the extended Planet_pixel function we can now obtain the resolved Stokes vector for an arbitrarily
amount of data points. Because the user also may want to analyze the disk integrated spectropolari-
metric signal, the plot_pixel PyMieDAP function is extended to do just that.
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Figure A.1: Flowchart of the general process with which an user of PyMieDAP can model an Earth-like exoplanet, based on
Earth Observations. Red boxes denote newly developed or extended functions. Blue boxes denote existing functions. The

remaining boxes denote decisions or input parameters.



B
Verification of coordinate conversion

The coordinate transformation used in themask_planet function is verified according to two verification
cases provided by Snyder (1987). In Table B.1 an initial obliquity and longitudinal position of (Φኺ, 𝜆ኺ) =
0∘ is used. In Tables B.2 and B.3 an initial obliquity and longitudinal position of (Φኺ, 𝜆ኺ) = (40∘, 0∘) is
used. For both cases: Radius of sphere = 1.0 .

Table B.1: Origin: (x,y)=0 at (ጓᎲ , ᎘Ꮂ) ዆ ኺ∘.

Theoretical values from Snyder (1987)
Long. ኺ∘ ኻኺ∘ ኼኺ∘ ኽኺ∘ ኾኺ∘ ኿ኺ∘ ዀኺ∘ ዁ኺ∘ ዂኺ∘ ዃኺ∘
Lat. y x
ዃኺ∘ 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ዂኺ∘ 0.9848 0.0000 0.0302 0.0594 0.0868 0.1116 0.1330 0.1504 0.1632 0.1710 0.1736
዁ኺ∘ 0.9397 0.0000 0.0594 0.1170 0.1710 0.2198 0.2620 0.2962 0.3214 0.3368 0.3420
ዀኺ∘ 0.8660 0.0000 0.0868 0.1710 0.2500 0.3214 0.3830 0.4330 0.4698 0.4924 0.5000
኿ኺ∘ 0.7660 0.0000 0.1116 0.2198 0.3214 0.4132 0.4924 0.5567 0.6040 0.6330 0.6428
ኾኺ∘ 0.6248 0.0000 0.1330 0.2620 0.3830 0.4924 0.5868 0.6634 0.7198 0.7544 0.7660
ኽኺ∘ 0.5000 0.0000 0.1504 0.2962 0.4330 0.5567 0.6634 0.7500 0.8138 0.8529 0.8660
ኼኺ∘ 0.3420 0.0000 0.1632 0.3214 0.4698 0.6040 0.7198 0.8138 0.8830 0.9254 0.9397
ኻኺ∘ 0.1736 0.0000 0.1710 0.3368 0.4924 0.6330 0.7544 0.8529 0.9254 0.9698 0.9848
ኺ∘ 0.0000 0.0000 0.1736 0.3420 0.5000 0.6428 0.7660 0.8660 0.9397 0.9848 1.0000

Results from mask_planet function
ዃኺ∘ 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ዂኺ∘ 0.9848 0.0000 0.0302 0.0594 0.0868 0.1116 0.1330 0.1504 0.1632 0.1710 0.1736
዁ኺ∘ 0.9397 0.0000 0.0594 0.1170 0.1710 0.2198 0.2620 0.2962 0.3214 0.3368 0.3420
ዀኺ∘ 0.8660 0.0000 0.0868 0.1710 0.2500 0.3214 0.3830 0.4330 0.4698 0.4924 0.5000
኿ኺ∘ 0.7660 0.0000 0.1116 0.2198 0.3214 0.4132 0.4924 0.5567 0.6040 0.6330 0.6428
ኾኺ∘ 0.6248 0.0000 0.1330 0.2620 0.3830 0.4924 0.5868 0.6634 0.7198 0.7544 0.7660
ኽኺ∘ 0.5000 0.0000 0.1504 0.2962 0.4330 0.5567 0.6634 0.7500 0.8138 0.8529 0.8660
ኼኺ∘ 0.3420 0.0000 0.1632 0.3214 0.4698 0.6040 0.7198 0.8138 0.8830 0.9254 0.9397
ኻኺ∘ 0.1736 0.0000 0.1710 0.3368 0.4924 0.6330 0.7544 0.8529 0.9254 0.9698 0.9848
ኺ∘ 0.0000 0.0000 0.1736 0.3420 0.5000 0.6428 0.7660 0.8660 0.9397 0.9848 1.0000
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Table B.2: Origin: (x,y)=0 at (ጓᎲ , ᎘Ꮂ) ዆ (ኾኺ∘ , ኺ∘).

Theoretical values from Snyder (1987)
Long. ኺ∘ ኻኺ∘ ኼኺ∘ ኽኺ∘ ኾኺ∘ ኿ኺ∘ ዀኺ∘ ዁ኺ∘ ዂኺ∘ ዃኺ∘
Lat.
ዃኺ∘ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660)
ዂኺ∘ 0.0000 0.0302 0.0594 0.0868 0.1116 0.1330 0.1504 0.1632 0.1710 0.1736

(0.6428) (0.6445) (0.6495) (0.6577) (0.6689) (0.6827) (0.6986) (0.7162) (0.7350) (0.7544)
዁ኺ∘ 0.0000 0.0594 0.1170 0.1710 0.2198 0.2620 0.2962 0.3214 0.3368 0.3420

(0.5000) (0.5033) (0.5133) (0.5295) (0.5514) (0.5785) (0.6099) (0.6447) (0.6817) (0.7198)
ዀኺ∘ 0.0000 0.0868 0.1710 0.2500 0.3214 0.3830 0.4330 0.4698 0.4924 0.5000

(0.3420) (0.3469) (0.3614) (0.3851) (0.4172) (0.4568) (0.5027) (0.5535) (0.6076) (0.6634)
኿ኺ∘ 0.0000 0.1116 0.2198 0.3214 0.4132 0.4924 0.5567 0.6040 0.6330 0.6428

(0.1736) (0.1799) (0.1986) (0.2290) (0.2703) (0.3212) (0.3802) (0.4455) (0.5151) (0.5868)
ኾኺ∘ 0.0000 0.1330 0.2620 0.3830 0.4924 0.5868 0.6634 0.7198 0.7544 0.7660

(0.0000) (0.0075) (0.0297) (0.0660) (0.1152) (0.0.1759) (0.2462) (0.3240) (0.4069) (0.4924)
ኽኺ∘ 0.0000 0.1504 0.2962 0.4330 0.5567 0.6634 0.7500 0.8138 0.8529 0.8660

(-0.1736) (-0.1652) (-0.1401) (-0.0991) (-0.0434) (0.0252) (0.1047) (0.1926) (0.2864) (0.3830)
ኼኺ∘ 0.0000 0.1632 0.3214 0.4698 0.6040 0.7198 0.8138 0.8830 0.9254 0.9397

(-0.3420) (-0.3328) (-0.3056) (-0.2611) (-0.2007) (-0.1263) (-0.0400) (0.0554) (0.1571) (0.2620)
ኻኺ∘ 0.0000 0.1710 0.3368 0.4924 0.6330 0.7544 0.8529 0.9254 0.9698 0.9848

(-0.5000) (-0.4904) (-0.4618) (-0.4152) (-0.3519) (-0.2739) (-0.1835) (-0.0835) (0.0231) (0.1330)
ኺ∘ 0.0000 0.1736 0.3420 0.5000 0.6428 0.7660 0.8660 0.9397 0.9848 1.0000

(-0.6428) (-0.6330) (-0.6040) (-0.5567) (-0.4924) (-0.4132) (-0.3214) (-0.2198) (-0.1116) (0.0000)
ዅኻኺ∘ 0.0000 0.1710 0.3368 0.4924 0.6330 0.7544 0.8529 0.9254 0.9698 –

(-0.7660) (-0.7564) (-0.7279) (-0.6812) (-0.6179) (-0.5399) (-0.4495) (-0.3495) (-0.2429) –
ዅኼኺ∘ 0.0000 0.1632 0.3214 0.4698 0.6040 0.7198 0.8138 0.8830 – –

(-0.8660) (-0.8568) (-0.8296) (-0.7851) (-0.7247) (-0.6503) (-0.5640) (-0.4686) – –
ዅኽኺ∘ 0.0000 0.1504 0.2962 0.4330 0.5567 0.6634 0.7500 – – –

(-0.9397) (-0.9312) (-0.9061) (-0.8651) (-0.8095) (-0.7408) (-0.6614) – – –
ዅኾኺ∘ 0.0000 0.1330 0.2620 0.3830 0.4924 – – – – –

(-0.9848) (-0.9773) (-0.9551) (-0.9188) (-0.8696) – – – – –
ዅ኿ኺ∘ 0.0000 – – – – – – – – –

(-1.0000) – – – – – – – – –
Results from mask_planet function

ዃኺ∘ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660)

ዂኺ∘ 0.0000 0.0302 0.0594 0.0868 0.1116 0.1330 0.1504 0.1632 0.1710 0.1736
(0.6428) (0.6445) (0.6495) (0.6577) (0.6689) (0.6827) (0.6986) (0.7162) (0.7350) (0.7544)

዁ኺ∘ 0.0000 0.0594 0.1170 0.1710 0.2198 0.2620 0.2962 0.3214 0.3368 0.3420
(0.5000) (0.5033) (0.5133) (0.5295) (0.5514) (0.5785) (0.6099) (0.6447) (0.6817) (0.7198)

ዀኺ∘ 0.0000 0.0868 0.1710 0.2500 0.3214 0.3830 0.4330 0.4698 0.4924 0.5000
(0.3420) (0.3469) (0.3614) (0.3851) (0.4172) (0.4568) (0.5027) (0.5535) (0.6076) (0.6634)

኿ኺ∘ 0.0000 0.1116 0.2198 0.3214 0.4132 0.4924 0.5567 0.6040 0.6330 0.6428
(0.1736) (0.1799) (0.1986) (0.2290) (0.2703) (0.3212) (0.3802) (0.4455) (0.5151) (0.5868)

ኾኺ∘ 0.0000 0.1330 0.2620 0.3830 0.4924 0.5868 0.6634 0.7198 0.7544 0.7660
(0.0000) (0.0075) (0.0297) (0.0660) (0.1152) (0.0.1759) (0.2462) (0.3240) (0.4069) (0.4924)

ኽኺ∘ 0.0000 0.1504 0.2962 0.4330 0.5567 0.6634 0.7500 0.8138 0.8529 0.8660
(-0.1736) (-0.1652) (-0.1401) (-0.0991) (-0.0434) (0.0252) (0.1047) (0.1926) (0.2864) (0.3830)

ኼኺ∘ 0.0000 0.1632 0.3214 0.4698 0.6040 0.7198 0.8138 0.8830 0.9254 0.9397
(-0.3420) (-0.3328) (-0.3056) (-0.2611) (-0.2007) (-0.1263) (-0.0400) (0.0554) (0.1571) (0.2620)

ኻኺ∘ 0.0000 0.1710 0.3368 0.4924 0.6330 0.7544 0.8529 0.9254 0.9698 0.9848
(-0.5000) (-0.4904) (-0.4618) (-0.4152) (-0.3519) (-0.2739) (-0.1835) (-0.0835) (0.0231) (0.1330)

ኺ∘ 0.0000 0.1736 0.3420 0.5000 0.6428 0.7660 0.8660 0.9397 0.9848 1.0000
(-0.6428) (-0.6330) (-0.6040) (-0.5567) (-0.4924) (-0.4132) (-0.3214) (-0.2198) (-0.1116) (0.0000)

ዅኻኺ∘ 0.0000 0.1710 0.3368 0.4924 0.6330 0.7544 0.8529 0.9254 0.9698 –
(-0.7660) (-0.7564) (-0.7279) (-0.6812) (-0.6179) (-0.5399) (-0.4495) (-0.3495) (-0.2429) –

ዅኼኺ∘ 0.0000 0.1632 0.3214 0.4698 0.6040 0.7198 0.8138 0.8830 – –
(-0.8660) (-0.8568) (-0.8296) (-0.7851) (-0.7247) (-0.6503) (-0.5640) (-0.4686) – –

ዅኽኺ∘ 0.0000 0.1504 0.2962 0.4330 0.5567 0.6634 0.7500 – – –
(-0.9397) (-0.9312) (-0.9061) (-0.8651) (-0.8095) (-0.7408) (-0.6614) – – –

ዅኾኺ∘ 0.0000 0.1330 0.2620 0.3830 0.4924 – – – – –
(-0.9848) (-0.9773) (-0.9551) (-0.9188) (-0.8696) – – – – –

ዅ኿ኺ∘ 0.0000 – – – – – – – – –
(-1.0000) – – – – – – – – –
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Table B.3: Continued: Origin: (x,y)=0 at (ጓᎲ , ᎘Ꮂ) ዆ (ኾኺ∘ , ኺ∘).

Theoretical values from Snyder (1987)
Long. ኻኺኺ∘ ኻኻኺ∘ ኻኼኺ∘ ኻኽኺ∘ ኻኾኺ∘ ኻ኿ኺ∘ ኻዀኺ∘ ኻ዁ኺ∘ ኻዂኺ∘
Lat.
ዃኺ∘ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

(0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) –
ዂኺ∘ 0.1710 0.1632 0.1504 0.1330 0.1116 0.0868 0.0594 0.0302 0.0000 –

(0.7738) (0.7926) (0.8102) (0.8262) (0.8399) (0.8511) (0.8593) (0.8643) (0.8660) –
዁ኺ∘ 0.3368 0.3214 0.2962 0.2620 0.2198 0.1710 0.1170 0.0594 0.0000 –

(0.7580) (0.7950) (0.8298) (0.8612) (0.8883) (0.9102) (0.9264) (0.9364) (0.9397) –
ዀኺ∘ 0.4924 0.4698 0.4330 0.3830 0.3214 0.2500 0.1710 0.0868 0.0000 –

(0.7192) (0.7733) (0.8241) (0.8700) (0.9096) (0.9417) (0.9654) (0.9799) (0.9848) –
኿ኺ∘ 0.6330 0.6040 0.5567 0.4924 0.4132 0.3214 0.2198 0.1116 0.0000 –

(0.6586) (0.7281) (0.7934) (0.8524) (0.9033) (0.9446) (0.9751) (0.9937) (1.0000) –
ኾኺ∘ 0.7544 0.7198 0.6634 0.5868 – – – – – –

(0.5779) (0.6608) (0.7386) (0.8089) – – – – – –
ኽኺ∘ 0.8529 0.8138 – – – – – – – –

(0.4797) (0.5734) – – – – – – – –
ኼኺ∘ 0.9254 – – – – – – – – –

(0.3669) – – – – – – – – –
Results from mask_planet function

ዃኺ∘ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –
(0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) (0.7660) –

ዂኺ∘ 0.1710 0.1632 0.1504 0.1330 0.1116 0.0868 0.0594 0.0302 0.0000 –
(0.7738) (0.7926) (0.8102) (0.8262) (0.8399) (0.8511) (0.8593) (0.8643) (0.8660) –

዁ኺ∘ 0.3368 0.3214 0.2962 0.2620 0.2198 0.1710 0.1170 0.0594 0.0000 –
(0.7580) (0.7950) (0.8298) (0.8612) (0.8883) (0.9102) (0.9264) (0.9364) (0.9397) –

ዀኺ∘ 0.4924 0.4698 0.4330 0.3830 0.3214 0.2500 0.1710 0.0868 0.0000 –
(0.7192) (0.7733) (0.8241) (0.8700) (0.9096) (0.9417) (0.9654) (0.9799) (0.9848) –

኿ኺ∘ 0.6330 0.6040 0.5567 0.4924 0.4132 0.3214 0.2198 0.1116 0.0000 –
(0.6586) (0.7281) (0.7934) (0.8524) (0.9033) (0.9446) (0.9751) (0.9937) (1.0000) –

ኾኺ∘ 0.7544 0.7198 0.6634 0.5868 – – – – – –
(0.5779) (0.6608) (0.7386) (0.8089) – – – – – –

ኽኺ∘ 0.8529 0.8138 – – – – – – – –
(0.4797) (0.5734) – – – – – – – –

ኼኺ∘ 0.9254 – – – – – – – – –
(0.3669) – – – – – – – – –





C
Reflected stokes parameters as
function of opacity and particle

effective radius

In Figure C.1 we have provided an illustration of the geometries that are used to calculate the top of
atmosphere (TOA) stokes elements. In Figure C.2-C.13 the TOA stokes elements are provided. In the
left panels these elements are plotted as function of opacity for four different particle effective radii.
In the right panel we provide the relations as function of the logarithmic of the opacity.
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150 C. Reflected stokes parameters as function of opacity and particle effective radius

Figure C.1: Position of the pixels that are used to computed the top of atmosphere reflection for the stokes parameters ፅ, ፐ
and ፔ as function of opacity and particle effective radius
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Figure C.2: Normalized reflected flux (upper panel) and polarized fluxes ፐ (middle panel) and U (lower panel) as function of
cloud optical thickness for four values of cloud particle effective radius. The computations are made for a pixel 0 as referred to
Figure C.1. The left panels show the cloud optical thickness on the x-axis and the right panels the logarithmic value of cloud

optical thickness.
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Figure C.3: Similar to Figure C.2, but for pixel 1.
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Figure C.4: Similar to Figure C.2, but for pixel 2.
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Figure C.5: Similar to Figure C.2, but for pixel 3.

0 5 10 15 20 25 30
τ

0.00

0.05

0.10

0.15

0.20

0.25

N
or
m
al
iz
ed

 re
fle

ct
ed

 fl
ux

Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= -180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

0.00

0.05

0.10

0.15

0.20

0.25

N
or
m
al
iz
ed

 re
fle

ct
ed

 fl
ux

Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= -180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

0 5 10 15 20 25 30
τ

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Q

1e−9 Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= -180.0

Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Q

1e−9 Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= -180.0

Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

0 5 10 15 20 25 30
τ

−0.5

0.0

0.5

1.0

1.5

2.0

U

1e−3 Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= -180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

−0.5

0.0

0.5

1.0

1.5

2.0

U

1e−3 Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= -180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

Figure C.6: Similar to Figure C.2, but for pixel 4.
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Figure C.7: Similar to Figure C.2, but for pixel 5.

0 5 10 15 20 25 30
τ

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

N
or
m
al
iz
ed

 re
fle

ct
ed

 fl
ux

Geometry: α=0 ∘ ∘ θ0= 52.24, θ= 52.24, ϕ−ϕ0= 180.0

Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

N
or
m
al
iz
ed

 re
fle

ct
ed

 fl
ux

Geometry: α=0 ∘ ∘ θ0= 52.24, θ= 52.24, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

0 5 10 15 20 25 30
τ

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

Q

1e−3Geometry: α=0 ∘ ∘ θ0= 52.24, θ= 52.24, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

Q

1e−3Geometry: α=0 ∘ ∘ θ0= 52.24, θ= 52.24, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

0 5 10 15 20 25 30
τ

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

U

1e−3Geometry: α=0 ∘ ∘ θ0= 52.24, θ= 52.24, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

U

1e−3Geometry: α=0 ∘ ∘ θ0= 52.24, θ= 52.24, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

Figure C.8: Similar to Figure C.2, but for pixel 6.



154 C. Reflected stokes parameters as function of opacity and particle effective radius

0 5 10 15 20 25 30
τ

0.00

0.05

0.10

0.15

0.20

0.25

N
or
m
al
iz
ed

 re
fle

ct
ed

 fl
ux

Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

0.00

0.05

0.10

0.15

0.20

0.25

N
or
m
al
iz
ed

 re
fle

ct
ed

 fl
ux

Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

0 5 10 15 20 25 30
τ

−6

−4

−2

0

2

Q

1e−10Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= 180.0

Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

−6

−4

−2

0

2

Q

1e−10Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= 180.0

Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

0 5 10 15 20 25 30
τ

−0.5

0.0

0.5

1.0

1.5

2.0

U

1e−3 Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25
Log10(τ)

−0.5

0.0

0.5

1.0

1.5

2.0

U

1e−3 Geometry: α=0 ∘ ∘ θ0= 20.7, θ= 20.7, ϕ−ϕ0= 180.0
Reff=8 μμ
Reff=12 μμ
Reff=16 μμ
Reff=20 μμ

Figure C.9: Similar to Figure C.2, but for pixel 7.
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Figure C.10: Similar to Figure C.2, but for pixel 8.
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Figure C.11: Similar to Figure C.2, but for pixel 9.
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Figure C.12: Similar to Figure C.2, but for pixel 10.
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Figure C.13: Similar to Figure C.2, but for pixel 11.



D
Polar plots cloudy pixel models
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158 D. Polar plots cloudy pixel models

Figure D.1: Polar plots representing the TOA reflection ፅ of a locally horizontally homogeneous, but vertically inhomogeneous
atmosphere. The atmosphere includes a layer of clouds. The upper left to the middle right panels correspond to solar zenith
angles of ᎕Ꮂ ዆ ኺ, ኼኺ, ኾኺ, ዀኺ and ዂ኿∘,respectively. In the bottom panel the polar plots for ᎘ ዆ ኽ኿ኺ, ኿኿ኺ and ዂዀ኿ ፧፦ are

provided.
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Figure D.2: Similar as Figure D.1, except for ፏ፥.



160 D. Polar plots cloudy pixel models

Figure D.3: Similar as Figure D.1, except for ፔ.



E
Mutual effect of two cloud

parameters on reflected light

In Section 5.2 we sawmultiple apparent correlations between cloud parameters and the different Stokes
elements. Some of these results appeared to be majorly influenced by other parameters, for example
in the relations between 𝑃𝑙 and CER at 865 𝑛𝑚 near the rainbow peak in Figure 5.7. In this plot we
saw a clear correlations between the mentioned parameters, but also regions with high abundances of
data points. In these cases we expect a major dependency on another cloud parameter. Similarly to
Section 5.2 we will not include any dependency on the cloud optical thickness as we did not retrieve
any apparent relationships. The colors that indicate the influence of a second cloud parameter in the
scatter plots are defined as: yellowish correspond to high values and blueish to low values. Also, the
interfering cloud parameter is provided on the y axis.

The relation between 𝐹 and CF showed to decrease with increasing wavelength at both phase an-
gles. In the corresponding panels in Figure E.1 we can see that especially at 𝛼 = 90∘ the interference
of CER is dominantly weakening the linear like relation. At the near-infrared CER becomes so dominant
that we see some division into three regions, corresponding to high, average and low effective sizes
of liquid water particles. For values near the rainbow peak we retrieve the same effect but much less
distinctively. The influence of CTP shows to be scattered in a non correlated way. Similarly, the corre-
lation between 𝐹 and CTP for every wavelength and both phases did not show any strong correlation
at all. For CER we saw that a strong correlation occurred only for long wavelength. In Figure E.1 one
retrieve that at short wavelength CF has large influence on the width of the distribution, essentially
disturbing any possible correlation. The same can be found at 550 𝑛𝑚, whereas for long wavelength
this influence is more scattered over all data points. CTP at both phases, for which we found no strong
correlations, shows to be clearly dominated by CF at short wavelength and by CER at long wavelength.

As mentioned in the introduction, we retrieved some correlations that clearly show the presence of an-
other dominating cloud parameter in 𝑃𝑙. The effect of CF was most pronounced for long wavelengths
and the rainbow phase. At 865 𝑛𝑚 we also saw again some division into regions of high abundant
data points. From Figure E.2 we can see that this is clearly caused by a strong relation of CER with 𝑃𝑙,
which strengthens for longer wavelengths. Also, similarly as for 𝐹, CTP shows no clear dominance in CF
induced correlations. The retrieved correlations for CER with 𝑃𝑙 show to be less affected by any other
cloud parameter, albeit showing a regions of high abundant data points. This is in return caused by
the variability in cloud fraction, but far less pronounced than for the correlations of 𝑃𝑙 with CF. Again,
CTP shows to have no dominance in these results and as we observe the scatter plots of 𝑃𝑙 versus
CTP we see that both CER and CF are clearly dominating the reflecting behaviour, whereas the former
shows to be again the strongest degenerescence.

The behaviour of 𝑄 showed to provide clear correlations for CF at the green and red wavelengths,
whereas we saw a clear behaviour for CTP in the blue. The correlations that were found did not
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Figure E.1: The influence of a second cloud parameter on the correlations of a single cloud parameter with ፅ. From top to
bottom we have provided several plots for ኽ኿ኺ, ኿኿ኺ and ዂዀ኿ ፧፦. In each sub figure we provided the relation of cloud

fraction, cloud particle effective radius and cloud top pressure from top to bottom, respectively. The interference of the cloud
fraction, cloud particle effective radius and cloud top pressure are provided for each row. The colors that indicate the influence
of a second particular cloud parameter in the scatter plots are defined as: yellowish to high values and blueish to low values.

Also, the interfering cloud parameter is provided on the y axis.
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Figure E.2: Similar to Figure E.1, except for ፏ፥.
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show any major presence of a dominating second cloud parameter, but we will show the dependencies
anyway. In Figure E.3 the degenerescence for all plots are provided. The correlations of 𝑄 with CF show
to be barely affected by CER or CTP at long wavelengths. We do, however, observe some agreement
with CF and CER in terms of decreasing 𝑄 with increasing parameter values. At short wavelength some
dominance from CTP is retrieved, not surprising as we already saw that CTP is strongly correlated at
this wavelength. For CER we see the same behaviour at the blue wavelength, but with a much more
degenerescence from CF for longer wavelengths. For CTP both CF and CER are dominantly present.
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Figure E.3: Similar to Figure E.1, except for ፐ.





F
Additional phase curves

Figure F.1 shows plots that are equivalent to that in Figure 4.6, except that we introduced anisotropic
polarizing surfaces to the planetary model. In Figure F.2 we used Model 2, except that all cloud
layers are considered as pure gas layers. We also provide the absolute difference with respect to our
”complete” Model 2. We show this figure to illustrate the effect of the polarizing surface models without
the (daily) variability of the clouds.
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168 F. Additional phase curves

Figure F.1: Phase curves computed at ᎘ ዆ ኿኿ኺ ፧፦. From top to bottom we provide ፅ, ፐ, ፔ and ፏ፥. All subplots show four
different cases: the planetary model (Earth-like), the planetary model without cloud layers and a homogeneous black surface
(Rayleigh scattering), the planetary model with a black homogeneous surface (Black surface Earth), and the planetary model

without cloud layers (No Earth clouds).
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Figure F.2: Similar to Figure 6.10, except without considering clouds in the planetary model. For every parameter we provide
the absolute difference with respect to the ”full” planetary model provided in Figure 6.10.





G
Position of glint on a homogeneous

ocean planet

Figures G.1 and G.2 show the vertical extend and position of the glint for 𝛼 = 90∘ and 135∘, respectively.
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172 G. Position of glint on a homogeneous ocean planet

Figure G.1: Spatial extend of the glint for ᎎ ዆ ዃኺ∘.



173

Figure G.2: Spatial extend of the glint for ᎎ ዆ ኻኽ኿∘.
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