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A B S T R A C T

Alzheimer's Disease (AD) is characterized by a cascade of biomarkers becoming abnormal, the pathophysiology of
which is very complex and largely unknown. Event-based modeling (EBM) is a data-driven technique to estimate the
sequence in which biomarkers for a disease become abnormal based on cross-sectional data. It can help in un-
derstanding the dynamics of disease progression and facilitate early diagnosis and prognosis by staging patients. In
this work we propose a novel discriminative approach to EBM, which is shown to be more accurate than existing
state-of-the-art EBM methods. The method first estimates for each subject an approximate ordering of events.
Subsequently, the central ordering over all subjects is estimated by fitting a generalized Mallows model to these
approximate subject-specific orderings based on a novel probabilistic Kendall's Tau distance. We also introduce the
concept of relative distance between events which helps in creating a disease progression timeline. Subsequently, we
propose a method to stage subjects by placing them on the estimated disease progression timeline. We evaluated the
proposed method on Alzheimer's Disease Neuroimaging Initiative (ADNI) data and compared the results with
existing state-of-the-art EBM methods. We also performed extensive experiments on synthetic data simulating the
progression of Alzheimer's disease. The event orderings obtained on ADNI data seem plausible and are in agreement
with the current understanding of progression of AD. The proposed patient staging algorithm performed consistently
better than that of state-of-the-art EBM methods. Event orderings obtained in simulation experiments were more
accurate than those of other EBM methods and the estimated disease progression timeline was observed to correlate
with the timeline of actual disease progression. The results of these experiments are encouraging and suggest that
discriminative EBM is a promising approach to disease progression modeling.
1. Introduction

Dementia is considered a major global health problem as the number
of people living with dementia was estimated to be about 46.8 million in
2015. It is expected to increase to 131.5 million in 2050 (Prince et al.,
2015). Alzheimer's Disease (AD) is the most common form of dementia.
There is a gradual shift in the definition of AD from it being a
clinical-pathologic entity (based on clinical symptoms), to a biological
one based on neuropathologic change (change of imaging and
non-imaging biomarkers from normal to abnormal) (Jack et al., 2018).
The latter definition is more useful for understanding the mechanisms of
disease progression.
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Fig. 1. Illustration of the output expected in an EBM. The biomarker trajectories
shown here are hypothetical trajectories representing a change of biomarker
value from normal state. The dots on these trajectories are biomarker events as
defined in an EBM. Output of an EBM is the ordering of such events.
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self-modeling regression, whereas Cox regression was used in Sabuncu
et al. (2014). Rather than focussing only on a mean trajectory for the
entire population, Schmidt-Richberg et al. (2016) estimate percentile
curves based on quantile regression. Li et al. (2017); Schiratti et al.
(2015) estimate subject-specific trajectories using a mixed model. Lor-
enzi et al. (2017) provide a probabilistic estimate of biomarker trajec-
tories. While such models are useful for understanding disease
progression, their utility in identifying at-risk individuals is restricted.
This is due to the fact that selecting a cohort of at-risk individuals for
clinical trials based on a longitudinal dataset is not feasible (Marinescu
et al., 2018). The utility of these models in studying other forms of de-
mentia is also restricted because longitudinal data in large groups of
patients is often scarce.

To circumvent this problem, methods to infer the order in which
biomarkers become abnormal during disease progression using cross-
sectional data have been proposed (Fonteijn et al., 2012; Huang and
Alexander, 2012; Iturria-Medina et al., 2016). The model used in Itur-
ria-Medina et al. (2016) relies on stratification of patients into several
subgroups based on symptomatic staging, for inferring the aforemen-
tioned ordering. However, the problem with using symptomatic staging
is that it is very coarse and qualitative. The models used in Fonteijn et al.
(2012); Huang and Alexander (2012) are variants of Event-Based Models
(EBM). EBM algorithms neither rely on symptomatic staging nor on the
presence of longitudinal data for inferring the temporal ordering of
events, where an event is defined by a biomarker becoming abnormal.
Fig. 1 shows these biomarker events on hypothetical trajectories as ex-
pected in a typical neuropathologic change.

An important assumption made in Fonteijn et al. (2012) is that the
ordering of events is common for all the subjects in a dataset. AD is
known to be a heterogeneous disease with multiple disease subtypes. The
assumptions in Fonteijn's EBM may therefore be too restrictive. The as-
sumptions in Huang's EBM on the other hand are more realistic, as they
do assume that the disease is heterogeneous. However the algorithm does
not scale well to a large number of biomarkers (Venkatraghavan et al.,
2017).

To make EBM more scalable to large number of biomarkers and
subjects, as well as make it robust to variations in ordering, we propose a
novel approach to EBM, discriminative event-based model (DEBM), for
2 An earlier version of the model was presented at the IPMI conference
(Venkatraghavan et al., 2017). In the current manuscript, several methodolog-
ical improvements and extensions are presented, and the experimental evalua-
tion has been expanded substantially.
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estimating the ordering of events.2 We also introduce the concept of
relative distance between events which helps in creating a disease pro-
gression timeline. Subsequently, we propose a method to stage subjects
by placing them on the estimated disease progression timeline. The other
contributions of this paper include an optimization technique for
Gaussian mixture modeling that helps in accurate estimation of event
ordering in DEBM as well as improving the accuracies of other EBMs, and
a novel probabilistic distance metric between event orderings (probabi-
listic Kendall's Tau).

The remainder of the paper is organized as follows: An introduction to
the existing EBM models is given in Section 2. In Section 3, we propose
our novel method for estimating central ordering of events. We perform
extensive sets of experiments on ADNI data as well as on simulation data,
the details of which are in Section 4. Section 5 summarizes the results of
the experiments. Section 6 discusses the implications of these findings
followed by concluding remarks in Section 7.

2. Event-Based Models

EBM assumes monotonic increase or decrease of biomarker values
with increase in disease severity (with the exception of measurement
noise). It considers disease progression as a series of events, where each
event corresponds to a new biomarker becoming abnormal. Fonteijn's
EBM (Fonteijn et al., 2012) finds the ordering of events ðSÞ such that the
likelihood that a dataset was generated from subjects following this event
ordering is maximized. S is a set of integer indices of biomarkers, which
represents the order in which they become abnormal. Thus, disease
progression is defined by fESð1Þ;ESð2Þ;…;ESðNÞg, where N is the number of
biomarkers per subject in the dataset and ESðiÞ is the i-th event that is
associated with biomarker SðiÞ becoming abnormal.

In a cross-sectional dataset ðXÞ of M subjects, Xj denotes a measure-
ment of biomarkers for subject j 2 ½1;M�, consisting ofN scalar biomarker
values xj;i. Probabilistic formulation of an EBM, as proposed in Fonteijn
et al. (2012), can be given by argmaxSðpðSjXÞÞ, where can be written
using Bayes’ rule as:

pðSjXÞ ¼ pðSÞpðXjSÞ
pðXÞ (1)

An important assumption in Fonteijn et al. (2012) is that pðSÞ is
uniformly distributed. This makes inferring S, equivalent to the
maximum likelihood problem of maximizing pðXjSÞ3. This can be further
written in terms of Xj as follows:

pðXjSÞ ¼
YM

j¼1
p
�
Xj

��S� (2)

where pðXj
��SÞ can be written as:

p
�
Xj

��S� ¼ XN
k¼0

pðkjSÞp�Xj

��k; S� (3)

where pðkjSÞ is the prior probability of a subject being at position k of the
event ordering, which is assumed to be equal for each position. The k
which maximizes pðXj

��SÞ denotes subject j's disease stage. This method of
identifying disease severity for a subject results in discrete set of stages,
where the number of stages is one more than the number of biomarkers
used for creating the model. pðXj

��k; SÞ can be expressed as:
3 Fonteijn's EBM uses Markov Chain Monte Carlo (MCMC) sampling to esti-
mate the posterior distribution PðSjXÞ. Average position of events in all the
MCMC samples was used as a way for selecting the mean ordering by Fonteijn
et al. (2012) whereas further extensions of the work such as Young et al. (2014)
prefer the maximum likelihood solution.



Fig. 2. Overview of the steps in DEBM. A) Biomarkers measured from different
subjects are converted to probabilities of abnormality for individual biomarkers.
This is done by estimating normal and abnormal distributions using Gaussian
mixture modeling before classifying individual biomarkers using a Bayesian
classifier. B) Subject-specific orderings of biomarker abnormalities are inferred
from these probabilities which are then used to estimate the central ordering
and for creating the disease progression timeline. C) This is then used to stage
subjects based on disease severity.
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p
�
Xj

��k; S� ¼ k

i¼1
p
�
xj;SðiÞ

��ESðiÞ
�� N

i¼kþ1
p
�
xj;SðiÞ

��:ESðiÞ
�

(4)
4 Fonteijn et al. (2012) briefly mention the idea of capturing relative distance
Y Y
where pðxj;SðiÞ

��ESðiÞÞ is the likelihood of observing xj;SðiÞ in subject j,
conditioned on event i having already occurred. pðxj;SðiÞ

��:ESðiÞÞ, on the
other hand, computes a similar likelihood, given that event i has not
occurred.

With the assumption that all the biomarkers in the control population
are normal and that the biomarker values follow a Gaussian distribution,
pðxj;SðiÞ

��:ESðiÞÞ is computed. Abnormal biomarker values in the patient
population are assumed to follow a uniform distribution but not all
biomarkers of a patient could be assumed to be abnormal. For this reason,
the likelihoods were obtained using a mixture model of a Gaussian and a
uniform distribution, where only the parameters of the uniform distri-
bution were allowed to be optimized.

This method was modified in Young et al. (2014) to estimate the
optimal ordering in a sporadic AD dataset with significant proportions of
controls expected to have presymptomatic AD (Schott et al., 2010). A
Gaussian distribution was used to describe both the control and patient
population, and the mixture model allowed for optimization of param-
eters for the Gaussians describing both control and patient population.
The Gaussian mixture model was also used to incorporate more subjects
from the dataset with clinical diagnosis of mild cognitive impairment
(MCI).

After obtaining the central ordering Swhichmaximizes the likelihood
pðXjSÞ, staging of patients is done by finding a disease stage k for subject
j, such that pðXj

��k; SÞ is maximized.
The assumption that subjects follow a unique event ordering was

relaxed by Huang and Alexander (2012), who estimate a distribution of
event orderings with a central event ordering ðSÞ and a spread ðϕÞ as per a
generalized Mallows model (Fligner and Verducci, 1988) using an
expectation maximization algorithm. The E-step estimates the likelihood
of patients' biomarker value measurements following subject-specific
event order sj, given S and ϕ. In the M-step, S and ϕ are estimated
based on sj estimated in the E-step. This is done iteratively to maximize
the likelihood of generation of patients' data based on S and ϕ. Patient
staging in Huang's EBM is also a maximum likelihood estimate, but
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unlike Fonteijn's EBM, the staging is done on the subject-specific event
ordering sj.

In both Fonteijn's and Huang's EBM, relative distances between
events, that can be observed in Fig. 1, are not captured.4 Some events can
be closer to each other than others and using these relative distance
between events could help create a more informative disease progression
model.

3. Discriminative event-based model

Fonteijn's and Huang's EBM are generative models where the likeli-
hood pðXjSÞ is maximized. Huang's EBM also estimates subject-specific
ordering based on a generative approach. Here, we propose our novel
method for estimating central ordering of events ðSÞ, a discriminative
event-based model (DEBM).

The proposed framework is discriminative in nature, since we esti-
mate sj directly based on the posterior probabilities of individual bio-
markers becoming abnormal. We also introduce a new concept of relative
distance between events. This subsequently leads to a novel continuous
patient staging algorithm. Fig. 2 shows the different steps involved in our
approach.

In Section 3.1, we present the method to robustly estimate biomarker
distributions in pre-event and post-event classes, given a single cross-
sectional measurement of biomarkers. In Section 3.2, we present a way
for estimating sj, and we address the problem of estimating a disease
timeline from noisy estimates of sj. In Section 3.3, we present the
continuous patient staging method.
3.1. Biomarker progression

In this section, we propose a method to robustly convert xj;i to
pðEi

��xj;iÞ, which denotes the posterior probability of a biomarker mea-
surement being abnormal. Assuming a paradigm similar to that in pre-
vious EBM variants (Huang and Alexander, 2012; Young et al., 2014), the
probability density functions (PDF) of pre-event (pðxj;i

��:EiÞ) and
post-event (pðxj;i

��EiÞ) classes in the biomarkers are assumed to be repre-
sented by Gaussians, independently for each biomarker. There are two
reasons why constructing these PDFs is non-trivial. Firstly, the labels
(clinical diagnoses) for the subjects do not necessarily represent the true
labels of all the biomarkers extracted from the subject. Not all biomarkers
are abnormal for subjects with AD diagnosis, while some of the cogni-
tively normal (CN) subjects could have undiagnosed pre-symptomatic
conditions. Secondly, the clinical diagnosis can be non-binary and
include classes such as MCI, with significant number of biomarkers in
normal and abnormal classes.

In our approach we address these two issues independently. We make
an initial estimate of the PDFs using biomarkers from easily classifiable
CN and easily classifiable AD subjects and later refine the estimated PDF
using the entire dataset.

A Bayesian classifier is trained for each biomarker using CN and AD
subjects, based on the assumption that there are no biomarkers in the pre-
symptomatic stage for CN subjects and all the biomarkers are abnormal
for AD subjects. This classifier is subsequently applied to the training
data, and the predicted labels are compared with the clinical labels. The
misclassified data in the dataset could either be outliers in each class
resulting from our aforementioned assumption or could genuinely belong
to their respective classes and represent the tails of the true PDFs. Irre-
spective of the reason of misclassification, we remove them for initial
estimation of the PDFs. This procedure thus results, for each biomarker,
in a set of easily classifiable CN subjects (whose biomarker values
represent normal values) and easily classifiable AD subjects (whose
between events, but it was not validated or used in any of the experiments.



Figure 3. Overview of the steps involved in the proposed Gaussian Mixture
Model optimization strategy. A) Illustration of the initialization step for
Gaussian Mixture Model. Rejecting the tails of the Gaussian distribution in CN
and AD class is done to account for the fact that some of the CN subjects could be
in pre-symptomatic stage of disease progression and some of the biomarkers
could still be normal in AD subjects. B and C) This is followed by iterative
estimation of Gaussian parameter optimization and Mixing parameter
optimization.

5 The summation symbol in step 4 was missed accidentally in Venkatraghavan
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biomarker values represent abnormal values). This is shown in the top
part of Fig. 3.

As we use Gaussians to represent the PDFs, we calculate initial esti-
mates for mean and standard deviation for both normal ðμ:Ei ; σ:Ei Þ and
abnormal classes ðμEi ; σEi Þ based on ‘easy’ CN and ‘easy’ AD subjects for
each biomarker i. As these means and standard deviations are estimated
based on truncated Gaussians, these are biased estimates. The initial
estimates of standard deviations are always smaller than the expected
unbiased estimates whereas the initial estimates of means are under-
estimated for Gaussians with smaller means (as compared to the other
class for corresponding biomarkers) and overestimated for Gaussians
with larger means.

We refine the initial estimates using a Gaussian mixture model
(GMM) and include all the available data, including MCI subjects and
previously misclassified cases. To obtain a robust GMM fit, a constrained
optimization method is used, with bounds on the means, standard de-
viations and mixing parameters, based on the aforementioned relation-
ship between the initial estimates and their corresponding expected
unbiased estimates. The objective function for optimization for
biomarker i is a summation of log-likelihoods, for all subjects:

Ci ¼
X
8j
logf

�
xj;i

�
(5)

where the likelihood function f ðxj;iÞ is computed as a function of mixing
parameters ðθEi ; θ:Ei Þ for the groups corresponding to post-event and pre-
event respectively and their corresponding Gaussian distributions ðμEi ;
σEi Þ and ðμ:Ei ;σ:Ei Þ:

f
�
xj;i

� ¼ θEi p
�
xj;i

��μEi ; σE
i

�þ θ:Ei p
�
xj;i

��μ:Ei ; σ:E
i

� ¼ θEi p
�
xj;i

��Ei

�þ θ:Ei p
�
xj;i

��:Ei

�
(6)

θEi and θ:Ei are selected such that θEi þ θ:Ei ¼ 1. The mixing parameters
and the Gaussian parameters are optimized alternately, until conver-
gence of the mixing parameters. The initialization and optimization
strategy in GMM is illustrated in Fig. 3.

The strategy of alternating between optimizing for mixing parameter
and optimizing for Gaussian parameters in combination with the
initialization strategy and the subsequent constraints is different from all
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previous versions of EBM and it will be shown in Section 5 that this re-
sults in more accurate central ordering of events in most cases.

3.2. Estimating a disease progression timeline

3.2.1. Estimating subject-specific orderings
The PDF thus obtained is used for classification of the biomarkers

using a Bayesian classifier, where the mixing parameters (θEi and θ:Ei ) are
used as the prior probabilities (pðEiÞ and pð:EiÞ respectively) when
estimating posterior probabilities for each biomarker. We assume these
posterior probabilities to be a measure of progression of a biomarker.
Thus, sj is established such that:

sj 3 p
�
Esjð1Þ

��xj;sjð1Þ� > p
�
Esjð2Þ

��xj;sjð2Þ� > … > p
�
EsjðNÞ

��xj;sjðNÞ� (7)

Missing biomarker values are implicitly handled in this definition of
sj, as sj only consists of events for which biomarkers are present for
subject j. The posterior probabilities in Equation (7) are influenced not
only by progression of the biomarker values to their abnormal states, but
also by inherent variability in normal and abnormal biomarker values
across subjects, and by measurement noise. Disentangling measurement
noise and inherent variability in normal biomarker values from pro-
gression of the biomarker to its abnormal state can only be done based on
longitudinal data. This makes sj a noisy estimate.

3.2.2. Estimating a central ordering
Since the event ordering for each subject is estimated independently,

any heterogeneity in disease progression is captured in the estimates of sj.
The central event ordering ðSÞ is the mean of the subject-specific esti-
mates of sj. To describe the distribution of sj, we make use of a general-
ized Mallows model. The generalizedMallows model is parameterized by
a central (‘mean’) ordering as well as spread parameters (analogous to
the standard deviation in a normal distribution). The central ordering is
defined as the ordering that minimizes the sum of distances to all subject-
wise orderings sj. To measure distance between orderings, an often used
measure is Kendall's Tau distance (Huang and Alexander, 2012). Ken-
dall's Tau distance between a subject specific event ordering ðsjÞ and
central ordering ðSÞ can be defined as:

K
�
S; sj

� ¼ XN�1

i¼1

Vi

�
S; sj

�
(8)

where ViðS; sjÞ is the number of adjacent swaps needed so that event at
position i is the same in sj and S. In case of missing biomarkers, KðS; sjÞ is
computed for a subset of S consisting only of the events corresponding to
the available biomarkers for subject j.

Since the estimates of sj are based on rankings of posterior proba-
bilities, it would be desirable to penalize certain swaps more than others,
based on how close the posterior probabilities are to each other. To this
end, we introduce a probabilistic Kendall's Tau distance, which penalizes
each swap based on the difference in posterior probabilities of the cor-
responding events.

bK�
S; sj

� ¼ XN�1

i¼1

bV i

�
S; sj

�
(9)

bV i8i 2 ½1;N � 1� is computed sequentially using the following
algorithm5:

Algorithm 1. Probabilistic Kendall Tau distance between Subject-
specific event orderings and central event ordering
et al. (2017).
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Where pa is shortened notation for pðEsjðaÞ
���xj;sjðaÞÞ.

This variant of Kendall's Tau distance is quite close to the weighted
Kendall's Tau distance defined in the permutation space introduced in
Kumar and Vassilvitskii (2010). The difference stems from the fact that
since the probabilistic Kendall's Tau distance is between individual es-
timates and a central-ordering, the penalization of each swap is weighted
asymmetrically as bV iðS; sjÞ 6¼ bV iðsj;SÞ.

The optimum S is the one that minimizes
P
8j
bKðS; sjÞ. However,

computing a global optimum S based on subject-wise orderings is NP-
hard. Thus getting a good initial estimate of S is important to ensure
the estimated S is not a suboptimal local optimum. In our implementation
the initial estimate of S is based on ordering θ:Ei . The motivation for this
is discussed in Section 3.3. S was further optimized based on the algo-
rithm introduced by Fligner and Verducci (1988) to estimate the central
ordering.

3.2.3. Estimating event centers
The S that has been derived in this manner, is an estimate of the

sequence in which the biomarkers become abnormal during the pro-
gression of a disease. However, it falls short of being a disease timeline,
because it does not provide information about the proximity of consec-
utive events. To address this issue, we estimate distances between events
by computing the cost of adjacent swaps in the event ordering, as
measured by summation of probabilistic Kendall's Tau distance over all
subjects.

Γiþ1;i ¼
X
8j

bK�
Siþ1;i; sj

�� bK�
S; sj

�
(10)

where Siþ1;i is identical to S except for the swap between events at lo-
cations i and iþ 1, and Γiþ1;i is the cost of the swap. This represents the
cost for the central ordering to be Siþ1;i instead of S. We hypothesize that
the closer the events iþ 1 and i are to each other, the lower the swapping
cost would be. Hence we consider these costs to be proportional to dis-
tance between events in terms of biomarker progression.

To estimate the distance of the first biomarker being abnormal
(event) in S to a hypothetical disease-free individual, we introduce a
pseudo-event which becomes abnormal at the beginning of the disease
timeline and hence is abnormal for all the subjects in the database i.e.
pðE0

��xj;0Þ ¼ 1 8j. Similarly, we introduce another pseudo-event which
becomes abnormal at the end of the disease timeline and hence is normal
for all the subjects in the database i.e. pðENþ1

��xj;Nþ1Þ ¼ 0 8j. We scale
Γiþ1;i8i 2 ½0;N� such that

P
Γiþ1;i ¼ 1. Event center ðλkÞ of event k in S for

k > 0, is computed as follows:

λk ¼
Xk�1

i¼0

Γiþ1;i (11)

In fact, the concept of event centers can also be extended to Fonteijn's
EBM by computing the cost of adjacent swaps in the event ordering as the
difference in log-likelihoods as follows:

Γiþ1;i ¼ logðpðXjSÞÞ � logðpðX��Siþ1;iÞÞ (12)

Extension of this concept to Huang's EBM is not straightforward and is
beyond this paper's scope.

The set of event centers λ1;2;…;N , will henceforth be referred to as Λ.
This results in a disease timeline, with S giving information about the
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order of progression of biomarkers and Λ giving information about the
event centers in this timeline.

3.3. Patient staging

Once the central ordering of events ðSÞ and event centers ðΛÞ have
been determined, we propose a patient staging algorithmwhere a patient
stage ðϒjÞ is interpreted as an expectation of λk with respect to the con-
ditional distribution pðk��S;XjÞ. Thus, ϒj can be written as given below:

ϒj ¼
PN

k¼1λkp
�
k
��S;Xj

�
PN

k¼1p
�
k
��S;Xj

� (13)

Multiplying pðS;XjÞ in both numerator and denominator and using the
chain rule of probability results in:

ϒj ¼
PN

k¼1λkp
�
k; S;Xj

�
PN

k¼1p
�
k; S;Xj

� (14)

Using chain rule of probability, we can write pðk; S;XjÞ as:

p
�
k; S;Xj

� ¼ p
�
Xj

��k; S�pðk; SÞ (15)

If we assume a uniform distribution of pðkjSÞ and pðSÞ as in Fonteijn
et al. (2012), pðk; S;XjÞ becomes equal to pðXj

��k; SÞ, which was used for
patient staging in Fonteijn's EBM as discussed in Section 2. However we
use prior knowledge in order to define a more informative distribution
pðk;SÞ:

pðk; SÞ ¼
Qk

i¼1θ
E
SðiÞ

QN
i¼kþ1θ

:E
SðiÞ

Z
(16)

where Z is a normalizing factor, chosen so as to make this a probability.
This choice of pðk; SÞ can be justified because biomarkers which become
abnormal earlier in the disease process are more likely to have a higher
value of θEi than the biomarkers which become abnormal later. Hence it is
far more likely to have a central-ordering based on ascending values of
θ:Ei than an ordering with ascending values of θEi . It should be noted that,
the choice of pðk; SÞ is not unique. For example, it could also be any n-th
power of the above equation 8n > 0. Thus, from Equation (15), 16 and 4,
we get:

p
�
k; S;Xj

�
∝
Yk

i¼1
p
�
xj;SðiÞ

��ESðiÞ
�
θESðiÞ �

YN

i¼kþ1
p
�
xj;SðiÞ

��:ESðiÞ
�
θ:ESðiÞ (17)

Using the above value of pðk; S;XjÞ in Equation (14), results in
continuous patient stages.

4. Experiments

This section describes the experiments performed to benchmark the
accuracy of the proposed DEBM algorithm and compare it with state-of-
the-art EBM methods. The EBM methods used for comparison in these
experiments are Huang's EBM (Huang and Alexander, 2012) and the
variant of Fonteijn's EBM that is suited for AD disease progression
modeling (Young et al., 2014). The source code for DEBM and Fonteijn's
EBM, with different mixture modeling techniques and patient staging
techniques discussed in this paper have been made publicly available
online under the GPL 3.0 license: https://github.com/88vikram/pyebm/
. The source code for Huang's EBM used in our experiments was provided
by the authors of the method.

For brevity, Fonteijn's EBM and Huang's EBM will henceforth be
referred to as FEBM and HEBM, respectively. The mixture model used
with an EBM model (as the one described in Section 3.1) will be denoted
by a subscript. For example, FEBM with the Gaussian mixture model
proposed in Young et al. (2014) will be referred to as FEBMay. The
Gaussian mixture model optimization techniques in Huang and Alex-
ander (2012), Venkatraghavan et al. (2017) and the one introduced in

https://github.com/88vikram/pyebm/


Table 1
Demographics for the whole population.

Demographics

Diagnosis n Sex M/F Age [yrs.] Edu. [yrs.]

CN 417 209=208 74:76� 5:72 16:28� 2:73
SMC 106 44=62 72:20� 5:53 16:76� 2:51
MCI 872 515=357 73:00� 7:61 15:90� 2:83
AD 342 189=153 75:02� 7:78 15:17� 2:98

Table 2
Demographics for the homogeneous subset of subjects.

Demographics

Diagnosis n Sex M/F Age [yrs.] Edu. [yrs.]

CN 160 83=77 73:56� 5:81 16:38� 2:66
MCI 414 249=165 73:20� 7:11 16:01� 2:79
AD 216 125=91 74:36� 8:06 15:45� 2:94

Table 3
Abbreviations used in Figs. 5 and 6 along with their full names
(Hammers et al., 2003).

Abbreviation Full name

L Left
R Right
PHA Parahippocampalis et Ambiens
Med. Medial
Inf. Inferior
Sup. Superior
Temp. Temporal
Pos. Posterior
Lat. Lateral
Ant. Anterior
OT Occipitotemporal
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this paper will be denoted with subscripts ‘jh’, ‘vv1’ and ‘vv2’
respectively.6

Data used in the experiments were obtained from the Alzheimers
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu)7.
We begin with the details of the experiments performed on ADNI data to
estimate the event ordering in Section 4.1. Since the ground-truth event
ordering is unknown for clinical datasets, we resort to using the ability of
patient staging to classify AD and CN subjects, as an indirect way of
measuring the reliability of the event ordering. We also measure the
accuracy of event ordering and relative distance between events more
directly by performing extensive experiments on synthetic data simu-
lating the progression of AD. The details of these experiments are given in
Section 4.2.
Cent. Central
Mid. Middle
Rem. Remainder
Occ. Occipital
PS Pre-subgenual
4.1. ADNI data

We considered 1737 subjects from ADNI 1, Go and 2 (417 CN, 106
with Significant Memory Concern (SMC), 872 MCI and 342 AD subjects)
who had a structural MRI (T1w) scan at baseline. Study subject de-
mographics are summarized in Table 1. The T1w scans were non-
uniformity corrected using the N3 algorithm (Tustison et al., 2010).
This was followed by multi-atlas brain extraction using the method
described in Bron et al. (2014). Multi-atlas segmentation was performed
(Hammers et al., 2003; Gousias et al., 2008) using the structural MRI
scans to obtain a region-labeling for 83 brain regions in each subject
using a set of 30 atlases. Probabilistic tissue segmentations were obtained
for white matter, gray matter (GM), and cerebrospinal fluid on the T1w
image using the unified tissue segmentation method (Ashburner and
Friston, 2005) of SPM8 (Statistical Parametric Mapping, London, UK).
The probabilistic GM segmentation was then combined with region la-
beling to obtain GM volumes in the extracted regions. We also down-
loaded CSF (A β1�42 (ABETA), TAU and p-TAU) and cognitive score
(MMSE, ADAS-Cog) values from the ADNI database, making the total
number of features equal to 88.

The features TAU and p-TAU were transformed to logarithmic scales
to make the distributions less skewed. GM volumes of segmented regions
were regressed with age, sex and intra-cranial volume (ICV) and the ef-
fects of these factors were subsequently corrected for, before being used
as biomarkers. The effect of age and sex was regressed out of CSF based
features, whereas effects of age, sex and education was regressed out of
cognitive scores.
6 Mixture model ‘ay’ optimizes for Gaussian and mixing parameters together.
Initialization of Gaussian parameters for optimization is done without rejecting
the overlapping part of Gaussians in CN and AD classes. ‘vv1’ also optimizes for
Gaussian and mixing parameters together (although with much stricter bounds)
but the initialization of Gaussian parameters is similar to the one in this paper.
‘jh’ couples mixture modeling with estimation of subject-specific ordering to
estimate a combined optimum solution.
7 The ADNI was launched in 2003 as a public-private partnership, led by

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimers disease (AD). For up-to-date
information, see www.adni-info.org.
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We retained 52 biomarkers (GM volume based biomarkers of 47 re-
gions, 3 CSF and 2 cognitive scores) having significant differences be-
tween CN and AD subjects using Student's t-test with p < 0:005, after
Bonferroni correction. These biomarker values were used to perform
Experiments 1 and 2.

Experiment 1(a): A subset of 7 biomarkers including the 3 CSF fea-
tures, MMSE score, ADAS-Cog score, gray matter volume of the hippo-
campus (combined volume of left and right hippocampi) and gray matter
volume in whole brain was created. Event ordering of these 7 biomarkers
was inferred using DEBM. We studied the positional variance of central
ordering and variance of event centers inferred by DEBM by creating 100
bootstrapped samples of the data.

Experiment 1(b): The Biomarkers were ranked based on their
aforementioned p-value and the above experiment was repeated with top
25 and top 50 biomarkers to investigate if the event-centers estimated for
the subset of Biomarkers used in Experiment 1(a), remain comparable to
the ones estimated in Experiment 1(a).

Experiment 2: As an indirect way of measuring the accuracy of the
estimated event ordering, we use patient staging based on the estimated
event orderings as a way to classify CN and AD subjects in the database.
10-fold cross validation was used for this purpose. AUC measures were
used to measure the performance of these classifications and thus indi-
rectly hint at the reliability of the event ordering based on which the
corresponding patient staging were performed.

We used varying number of biomarkers (ranked based on their p-
value) ranging from 5 to 50 in steps of 5 for this experiment. We used the
methods FEBMay, HEBMjh, DEBMvv1 and DEBMvv2 for inferring the
ordering. Patient staging was done based on the methods described in
their respective papers. Since the earlier version of DEBM (Venka-
traghavan et al., 2017) had not introduced a patient staging method, we
use the patient staging method described in this paper for evaluating the
method.

Experiment 3(a): To study disease progression in a homogeneous
population showing signs of typical AD progression, Experiment 1(a) was
repeated with a subset of subjects, selected based on their CSF ABETA
values. For this experiment, we selected ABETA positive MCI and AD
subjects (ABETA< 192 pg/ml) and ABETA negative CN subjects (ABETA

http://adni.loni.usc.edu
http://www.adni-info.org
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>¼ 192 pg/ml). This cut-off was chosen according to the results of Shaw
et al. (2009). Moreover, we excluded all SMC subjects and subjects with
missing ABETA biomarker values. This subset of subjects will henceforth
be referred to as the ‘homogeneous subset’. Demographics for the ho-
mogeneous subset are summarized in Table 2. We excluded ABETA
biomarker when inferring the event ordering using DEBM.

Experiment 3(b): We retained 49 biomarkers (GM volume based
biomarkers of 45 regions, 2 CSF biomarkers excluding ABETA and 2
cognitive scores) having significant differences between CN and AD
subjects in the homogeneous subset using Student's t-test with p < 0:05,
after Bonferroni correction. The biomarkers were ranked based on their
aforementioned p-value and the above experiment was repeated with top
24 and top 49 biomarkers, to investigate if the event-centers estimated
for the subset of biomarkers used in Experiment 3(a), remain comparable
to the ones estimated in Experiment 3(a).
4.2. Simulation data

We used the framework developed by Young et al. (2015a) for
simulating cross-sectional data consisting of scalar biomarker values for
CN, MCI and AD subjects. In this framework, disease progression in a
subject is modeled by a cascade of biomarkers becoming abnormal and
individual biomarker trajectories are represented by a sigmoid. The
equation for generating biomarker values for different subjects is given
below:

xj;iðΨÞ ¼ Ri

1þ exp
�� ρi

�
Ψ� ξj;i

��þ βj;i (18)

Ψ denotes disease stage of a subject which we take to be a random var-
iable distributed uniformly throughout the disease timeline. ρi signifies
the rate of progression of a biomarker, which we take to be equal for all
subjects. ξj;i denotes the disease stage at which the biomarker becomes
abnormal. βj;i denotes the value of the biomarker when the subject is
normal and Ri denotes the range of the sigmoidal trajectory of the
biomarker, which we take to be equal for all subjects.

In our experiments, βj;i and ξj;i 8j are assumed to be random variables
with Normal distribution ℕðμβi ;Σβi Þ and ℕðμξi ;Σξi Þ respectively. μβi is
equal to the mean value of the corresponding biomarker in the CN group
of the selected ADNI data. Ri is equal to the difference between the mean
values of the biomarker in the CN and AD groups of the selected ADNI
data. Σβi represents the variability of biomarker values in the CN group.
We consider a relative scale for Σβi , where 1 refers to the observed
variation among the CN subjects in ADNI data. Variation in ξj;i is
controlled by Σξi and results in variation in ordering among subjects in
population and could be seen as a parameter controlling the disease
heterogeneity within a simulated population. Σξi 8i is varied in multiples
of Δξ, where Δξ is the average difference between adjacent μξi . μξi refers
to the event centers of various biomarkers. The set of μξi8i will collec-
tively be referred to as Λgt and they will be used to assess the accuracy of
estimated event centers ðλiÞ.

The parameters in the simulation framework that could have an effect
on the performance of EBMs are Σβi , μξi , Σξi , and ρi. Apart from this, the
number of subjects ðMÞ and the number of biomarkers ðNÞ in the dataset
could also have an effect on the performance of EBMs. Using this simu-
lation framework, we study the effect of the aforementioned parameters
on the ability of different variants of EBM algorithms to accurately infer
the ground-truth central ordering in the population. Change in μβi results
only in a translational effect on biomarker values and change in Ri results
only in a scaling effect on biomarker values. These factors do not affect
the performance of the EBMs and hence were not evaluated in our ex-
periments.

Performance of an EBM method can be measured using error in
estimation of either S or Λ. Error in estimating S ðεSÞ will henceforth be
referred to as ‘ordering error’ whereas the error in estimating Λ ðεΛÞ will
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henceforth be referred to as ‘event-center error’. εS is computed using the
following equation:

εS ¼
K
�
S; Sgt

��
N
2

� (19)

where Sgt is the ground truth ordering. εS is effectively a normalized
Kendall's Tau distance between S and Sgt . The normalization factor for�
N
2

�
, was chosen to make the accuracy measure interpretable for

different number of biomarkers.
For comparing Λ and Λgt , Λ were scaled and translated such that the

mean and standard deviation of Λ were equal to that of Λgt . This is done
because we are only interested in evaluating the errors in estimating
relative distance between events and not the absolute position of event-
centers. The choice of scale in event-centers are arbitrary and the chosen
scale for the estimated event-centers was based on pseudo-events, which
need not necessarily coincide with the simulation framework's ground-
truth event-centers.

εΛ ¼
X
8i

�����λsti � μξi

����� (20)

where λsti is the scaled and translated version of λi.
As mentioned before, the factors that can have an effect on the per-

formance of EBMs are Σβi , μξi , Σξi , ρi, M and N. In each of the following 5
experiments, a few of these factors were varied while the others were set
to their default values. The default value for Σβi was taken to be 1 as this
corresponds to the observed variation among CN subjects in ADNI. μξi
were spaced equidistantly, i.e., μξiþ1

� μξi ¼ 1=ðNþ 1Þ. As the actual
variation in event centers among different subjects is not known in a
clinical dataset, the default value of Σξi was taken to be 2Δξ. For the sake
of simplicity of notation Δξ will be omitted henceforth, and the values of
Σξi are implicitly in multiples of Δξ. ρi was considered to be equal for all
biomarkers by default. The default values for M and N were 1737 and 7
respectively, mimicking the dataset used in Experiment 1(a). For each
simulation setting, 50 repetitions of simulation data were created and
used for benchmarking the performance of EBMs on synthetic data.

Experiment 4: The first simulation experiment was performed to
study the effect of Σβ 2 ½0:2; 1:8� and Σξ 2 ½0;4�, varying one at a time
while keeping the other at its mean value. The εS of FEBMay, FEBMvv2,
HEBMjh, HEBMvv2, DEBMvv1 and DEBMvv2 were determined.

Experiment 5: The above experiment was repeated for DEBMvv2 and
FEBMvv2 and the εΛ were measured for the two methods.

Experiment 6: This experiment was performed to study the effect of a
non-uniform distribution of μξi . Σβ and Σξ combinations of ð0:6;1Þ, ð1:0;
2Þ, ð1:4;3Þ and ð1:8;4Þ were tested to study their effect in non-uniformly
spaced biomarkers. εS of DEBMvv2, FEBMvv2 and HEBMvv2 were
measured. Additionally, εΛ of DEBMvv2 and FEBMvv2 were measured. To
also study the effect of unequal rates of progression of biomarkers (ρi),
the above experiment was performed once with equal ρi for all bio-
markers and once when they were unequal. The experiment with unequal
biomarker rates had the same mean biomarker progression rate as the
experiment with equal biomarker rates. The progression rates of different
biomarkers has been included as supplementary material (Fig. S1).

Experiment 7: This experiment was performed to study the influence
of the number of subjects ðMÞ.Mwas varied from 100 to 2100 in steps of
200. εS of DEBMvv2, FEBMvv2 and HEBMvv2 were measured. DEBMvv2 and
FEBMvv2 were also assessed based on εΛ.

Experiment 8: This experiment was performed to study the influence
of the number of biomarkers ðNÞ. Nwas varied from 7 to 52 in steps of 5.
In each random generation of a dataset, we randomly selected (with
replacement) the biomarkers to be used in the iteration. This was done to
study the effect of N on the EBMmodels and separate it from the effect of



Fig. 4. Experiment 1(a): DEBMvv2 with 7 Events. The positional variance diagram (left) shows the uncertainty in estimating the central event ordering. The event-
center variance diagram (right) shows the standard error of estimated event centers. These were measured by 100 repetitions of bootstrapping.

Fig. 5. Experiment 1(b): DEBMvv2 with 25
Events. The positional variance diagram (left)
shows the uncertainty in estimating the central
event ordering and the event-center variance di-
agram (right) shows the standard error of esti-
mated event centers. These were measured by
100 repetitions of bootstrapping. The event cen-
ters of the biomarkers used in Fig. 4 are marked
in red. Table 3 shows the full forms of the ab-
breviations used in the y-axis labels. Fig. 7 maps
the colors used for y-axis labels to different lobes
in the brain.
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adding weaker biomarkers. εS of DEBMvv2, FEBMvv2 and HEBMvv2 were
measured. DEBMvv2 and FEBMvv2 were also assessed based on εΛ.

5. Results

5.1. ADNI data

Experiment 1: Fig. 4 shows the positional variance and event-center
variance obtained using DEBMvv2 with 7 events. The Gaussian mixture
model parameters for every biomarker have been tabulated in the sup-
plementary material, Table S1.

It can be seen from Fig. 4 (left) that CSF-based biomarkers ABETA
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becomes abnormal before MMSE and CSF-based p-TAU. This is followed
by ADAS13, Hippocampal volume, TAU and whole brain volume events.
However Fig. 4 (right) shows that the event centers for MMSE, ADAS13,
p-TAU are close to each other and so are the event-centers of TAU and
hippocampus volume. The event associated with the TAU biomarker
seems closer to the whole brain volume event as they are in positions 6
and 7 of Fig. 4 (left). However, the centers of these two events are quite
far apart in Fig. 4 (right) and the p-TAU event (position 2) is closer to the
TAU event than whole brain volume event.

As the number of biomarkers increases, the variation in the positions
also increases considerably, as seen in Fig. 5 (left) and 6 (left). The event
centers of the biomarkers used in Experiment 1(a) remain fairly



Fig. 6. Experiment 1(b): DEBMvv2 with 50 Events. Positional variance diagram (left) shows the uncertainty in estimating the central event ordering and event center
variance diagram (right) shows the standard error of estimated event-centers. These were measured by 100 repetitions of bootstrapping. The event-centers of the
biomarkers used in Fig. 4 are marked in red, whereas the ones used in Fig. 5 are marked in blue. Table 3 shows the full forms of the abbreviations used in the y-axis
labels. Fig. 7 maps the colors used for y-axis labels to different lobes in the brain.
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consistent (�0:05) in Experiment 1(b). It can also be seen that bio-
markers with lower p-values (biomarkers included in the model with 50
biomarkers and not in the model with 25 biomarkers), have larger
variance in their event-center estimation.

Experiment 2: Fig. 8 (a) shows the mean AUC when using patient
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stages for classifying CN versus AD subjects using DEBM and other var-
iants of EBMmethods. It can be observed that the AUC of all the methods
decreases as the number of events increases. The proposed method
DEBMvv2 followed by the proposed patient staging algorithm out-
performs all the existing EBM variants consistently.



Fig. 7. Legend for the colors used in Fig. 5 and 6. The colors map different
biomarker labels to lobes in the brain.

Fig. 8. Experiment 2: In (a) we see the variation of AUC with respect the
number of biomarkers used for building the model using DEBM, when the ob-
tained patient stages were used for classification of CN versus AD subjects. The
AUC measure was obtained using 10-fold cross-validation. In (b) we see the
frequency of occurrence of subjects in different disease stages, when the most
significant 25 features were given as input to DEBMvv2 for inferring the ordering
as well as for patient staging.
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Fig. 8 (b) shows the distribution of patient stages for the whole
population when the most significant 25 features were given as input to
DEBMvv2. This graph shows a peak at disease stage 0 dominated by CN
and MCI non-converters, which shows that these subjects are not pro-
gressing towards AD. The non-zero lower disease stages are dominated
by CN subjects and MCI non-converters, whereas MCI converters8 and
the subjects with AD have higher disease stages.

Experiment 3: Fig. 9 shows the positional variance and event-center
8 MCI converters are subjects who convert to AD within 3 years of baseline
measurement.
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variance obtained using DEBMvv2 with 6 events, in the homogeneous
subset of subjects. It can be seen from Fig. 9 that in the homogeneous
subset of subjects, p-TAU event occurs before ADAS13 and MMSE events
as opposed to p-TAU event occurring after ADAS13 andMMSE in Fig. 4. It
can also be seen from Fig. 9 that the TAU event precedes Hippocampus
volume event as opposed to Hippocampus event preceding the TAU event
in Fig. 4.

The results of Experiment 3(b) with 24 and 49 have been included as
supplementary material (Figs. S2 and S3).
5.2. Simulation data

Experiment 4: Fig. 10 shows the ordering errors of DEBM, FEBM and
HEBM models with different mixture models as Σβ and Σξ increase. The
error-bars depict mean and standard deviation of the errors obtained in
50 repetitions of simulations. It can be seen that the proposed optimi-
zation technique improves the performance of all three EBMmodels. The
change is particularly evident when comparing the performance of
FEBMvv2 and FEBMay.

It can also be seen that FEBMvv2 performs slightly better than
DEBMvv2 when Σξ is low, but as Σξ increases, the performance of FEBMvv2
degrades significantly. The performance of HEBM is almost always worse
than its FEBM or DEBM counterpart.

Experiment 5: Fig. 11 (a) and (b) shows the event-center errors in
DEBMvv2 and FEBMvv2 as the variability in population ðΣβÞ and disease
heterogeneity ðΣξÞ increases respectively. It should be noted from
Figs. 10(b) and Figure 11 (b) that, even when the FEBMvv2 gets the
ordering more accurately than DEBMvv2 in cases of low Σξ, the event-
center estimation of DEBMvv2 is on par with or better than its FEBM
counterpart.

Fig. 11 (c) shows the estimated event-center locations for Σβ ¼ 1:0
and Σξ ¼ 2 and the ground truth event-centers.

Experiment 6: Fig. 12 (a) shows the ordering errors of DEBMvv2,
FEBMvv2 and HEBMvv2 as Σβ and Σξ increase, when the ground-truth
event centers (μξi ) are non-uniformly spaced. The spacing of μξi can be
observed in Fig. 12 (b), where the ground truth event-centers as well as
the estimated event-centers of DEBMvv2 and FEBMvv2 are shown for Σβ ¼
1:0 and Σξ ¼ 2. It can be observed that the estimated event-centers for
DEBMvv2 are much closer to the ground-truth event centers than those of
FEBMvv2 and also have a much lower variance over different iterations of
simulations.

Fig. 12 (c) shows the ordering errors as Σβ and Σξ increases, when μξi
is non-uniformly spaced and ρi is not identical for all biomarkers. It
should also be noted that the mean of ρi over all i has not changed be-
tween (a) and (c). The variation of errors in (c) is quite similar to the one
in (a). This shows that performance of EBM methods that are reported in
other experiments (where ρi is equal for all biomarkers) can be expected
to not deteriorate in the more realistic scenario of ρi not being equal for
all biomarkers. The event-center variance for Σβ ¼ 1:0 and Σξ ¼ 2 for the
case of unequal ρi is very similar to (b) and has been included as sup-
plementary material (Fig. S4).

Experiment 7: Fig. 13 shows the mean ordering errors of DEBMvv2,
FEBMvv2 and HEBMvv2 as a function of number of subjects in the dataset
on one vertical axis and shows the mean event-center errors of DEBMvv2
and FEBMvv2 on the other vertical axis. As expected, the models perform
better as the number of subjects increases. DEBMvv2 is slightly better at
inferring the central ordering than FEBMvv2 when the number of subjects
is very low, but FEBMvv2 outperforms DEBMvv2 when the number of
subjects is higher. However, when the accuracy of event centers are
considered, DEBMvv2 consistently outperforms FEBMvv2.

Experiment 8: Fig. 14 shows the mean ordering errors of DEBMvv2,
FEBMvv2 and HEBMvv2 as a function of the number of events (bio-
markers) in the dataset on one vertical axis and shows the mean event-
center errors of DEBMvv2 and FEBMvv2 on the other vertical axis. The
biomarkers were selected randomly after replacement so that the chances



Fig. 9. Experiment 3(a): DEBMvv2 with 6 Events, in the homogeneous subset of subjects. The positional variance diagram (left) shows the uncertainty in estimating the
central event ordering. The event-center variance diagram (right) shows the standard error of estimated event centers. These were measured by 100 repetitions of
bootstrapping.
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of selecting a bad biomarker remain equal as the number of events in-
creases. It can be noted that the errors of the EBM models increase as the
number of events increases initially, even when the average quality of
biomarkers remains the same. However the errors stabilize beyond a
certain point and do not increase any more.

6. Discussion

We proposed a novel discriminative EBM framework to estimate the
ordering in which biomarkers become abnormal during disease pro-
gression, based on a cross-sectional dataset. The proposed framework
outperforms state-of-the-art EBM techniques in estimating the event
ordering. We also introduced the concept of relative distance between
event-centers, which enables creating a disease progression timeline.
This in turn led to the development of a new continuous patient staging
mechanism. In addition to the framework, we also proposed a novel
probabilistic Kendall's Tau distance metric and a robust biomarker dis-
tribution estimation algorithm. In this section, we discuss different as-
pects of the proposed algorithm.
6.1. Event centers

Event-centers capture relative distance between events. This helps in
creating the disease progression timeline from an ordering of events. If an
event (Event A) leads to another event (Event B), this would be observed
as event-center for A occurring before event-center for B. However EBMs
cannot assess causality, and cannot distinguish the aforementioned case
from the case when Event B is caused by some external factor which
happened to occur after Event A.

Event centers are an intrinsic property of the biomarker used, for the
selected population. This was observed in Experiment 1(b) where the
event-centers estimated using DEBMvv2 remained fairly consistent
ð�0:05Þ across models using different number of biomarkers.

The estimated disease progression timeline can be used for inferring
progression of the disease, with the event centers being synonymous to
milestones of progression. A strict quantization of position in ordering of
events (as reported in Oxtoby and Alexander (2017); Venkatraghavan
et al. (2017); Young et al. (2015a); Young et al. (2014); Fonteijn et al.
(2012)) in the positional variance diagram can sometimes be
non-intuitive in terms of inferring actual progression of the disease. This
was seen in Experiment 1, where the event center variance diagram
showed that the TAU event (at position 6) was closer to the p-TAU event
(at position 2) than the whole brain event (position 7).

The approach of scaling the event-centers between ½0;1� has its ad-
vantages and disadvantages. The advantage of such a scaling is that
models built on different biomarkers, but within the same population,
remain comparable. For example, a model built with CSF and MRI based
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biomarkers can be compared with a model built on MRI based bio-
markers alone, as the event-centers of MRI based biomarkers would
approximately be the same. On the other hand, the position of the first
event relies heavily on the number of ‘true’ controls in the dataset (CN
subjects who are not in an early asymptomatic stage of the disease). This
is the result of introducing pseudo-events for scaling the events-centers.

Comparison of the event centers across different datasets with
different number of controls (albeit with the same biomarkers) can be
done in three ways. Event-centers can be scaled and translated such that
the mean and standard deviation of event centers computed across
different datasets are the same (similar to the comparisons between
estimated and ground-truth event centers in this paper). Alternately, the
event center of the first biomarker can be set as 0 and the event center of
the last biomarker can be set to 1, before comparison. Lastly, in a dataset
where controls (i.e., subjects whose biomarker values are all normal) can
be easily identified, it would be better to exclude them for event-center
computation.

The estimated event centers have a good correlation with the
groundtruth disease timeline. This can be seen in the simulation exper-
iments with and without uniform spacing of events (Experiments 5 and
6). It must however be noted that, the disease stages Ψ of the simulated
subjects were distributed uniformly throughout the disease timeline. If
the distribution is not uniform, we expect it to have an effect on the
estimation of event centers. Analyzing the exact effect of such non-
uniform distributions on the estimation of event centers and ways to
estimate event centers invariant to the distribution of subjects on the
disease timeline could be an interesting extension of the current work.

Experiment 6 also showed that different biomarkers having different
rates of progression does not degrade the performance of EBMmodels, as
long as the mean rate of progression is the same. We did not perform an
experiment to benchmark the accuracies by changing the mean rates of
progression of biomarkers. This experiment was already performed in
Young et al. (2015b) and it was observed that FEBM ordering error de-
creases as the mean rates of progression increase.

FEBM assumes that the disease is homogeneous, as it expects all the
subjects in the dataset to follow the same ordering. When the variability
of ordering in different subjects is low, FEBM with the proposed mixture
model ‘vv2’ outperforms DEBM with the proposed mixture model. This
can be seen in the results of Experiments 4, 6 and 7. When the assumption
becomes too restrictive, DEBM with the proposed mixture model out-
performs FEBM. Even when the assumption holds true, estimation of
event-centers with DEBM is more accurate than with FEBM.
6.2. Patient staging

Existing patient staging algorithms discretize the patient stages based
on event position, whereas the patient staging algorithm introduced in



Fig. 10. Experiment 4: Ordering errors of DEBMvv1, DEBMvv2, FEBMay,
FEBMvv2, HEBMjh and HEBMvv2 for 50 repetitions of simulations. Figure (a)
shows the ordering error as a function of variability in population (Σβ).
Figure (a) shows the ordering error as a function of variation in ordering (Σξ).
Error bars in (a) and (b) represent standard deviations over the 50 repetitions.
Figure (c) shows the legend for the plots in (a) and (b).

Fig. 11. Experiment 5: Figures (a) and (b) show the event-center errors of
DEBMvv2 and FEBMvv2 as a function of Σβ and Σξ respectively. Figure (c) shows
the estimated event-center locations for both methods as well as the ground-
truth event centers. Error bars in (a), (b) and (c) represent standard deviation
over 50 repetitions of simulation.
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this paper takes relative distance between events into consideration
while staging new subjects. This makes patient stages more useful for
diagnosis and prognosis as they correlate more with the actual disease
progression timeline. Discrete patient stages without considering the
event centers could diminish the prognosis value of the obtained stages.

The cross-validation experiment on ADNI data (Experiment 2)
showed that the CN and AD subjects are well separated after patient
staging and that the AUC of the proposedmethod is better than that of the
state-of-the-art EBM techniques. It also showed that MCI converters and
non-converters are well separated after patient staging, without explicitly
training the model to achieve this.

It must however be noted that even though heterogeneity of the
disease was considered while inferring the central ordering, it was not
considered for patient staging. Inferring multiple central orderings cor-
responding to different disease subtypes (Young et al., 2015a) and
529



Fig. 12. Experiment 6: Figures (a) and (c) show the ordering errors of DEBMvv2,
FEBMvv2 and HEBMvv2 when μξi are not uniformly distributed. Σβ and Σξ in-
crease as we move from left to right. Figure (a) shows the errors in the case
when ρi are identical for all the biomarkers whereas (c) shows the errors when ρi
are different. Figure (b) shows the non-uniform μξi as well as the estimated
event-centers by DEBMvv2 and FEBMvv2 for the case of ρi being equal. Error bars
in (a), (b) and (c) represent standard deviation over 50 repetitions of simulation.

Fig. 13. Experiment 7: Ordering errors of DEBMvv2, FEBMvv2 and HEBMvv2 as a
function of number of subjects ðMÞ in the dataset. It also shows the event-center
errors of DEBMvv2 and FEBMvv2 as a function of M.

Fig. 14. Experiment 8: Ordering errors of DEBMvv2, FEBMvv2 and HEBMvv2 as a
function of number of events ðNÞ in the dataset. It also shows the event-center
errors of DEBMvv2 and FEBMvv2 as a function of N.
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staging patients on one of these central orderings may help us overcome
this drawback. Patient staging with respect to subject-specific orderings
(as done in HEBM) can also be considered when extending DEBM for
longitudinal data, where the subject-specific orderings might be esti-
mated with higher confidence.
6.3. Scalability of Event-Based Models

Understanding the progression of several imaging and non-imaging
biomarkers after disease onset is important for assessing the severity of
the disease. Hence it is desirable to have a model scalable to a large
number of biomarkers. FEBM and DEBM are scalable to large number of
events, whereas HEBM is not. This was seen in the simulation experiment
on varying number of events (Experiment 8), where the errors of FEBM
and DEBM increased asymptotically with increasing number of events.
The ordering errors of HEBM reached 0.5 for large number of events,
which is equivalent to random prediction.

In Experiment 7, we observed that the errors of the EBMs decrease
with increasing number of subjects in the dataset. We hence expect
FEBM, DEBM and HEBMvv2 to be scalable to a large number of subjects.
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The performance of HEBMjh is seen to be consistently worse than
FEBMay in Experiment 4. This is in contrast with the findings of Ven-
katraghavan et al. (2017), where HEBMjh performed better than FEBMay
when the number of biomarkers used were 7, while it performed worse
when the number of biomarkers used were 42. One of the key differences
between the experiment performed in Venkatraghavan et al. (2017) and
Experiment 4 is the number of subjects in the simulation dataset. While
the previous study considered 509 subjects, Experiment 4 considered
1737 subjects. HEBMjh jointly estimates the subject-specific orderings of
all the subjects and the mixture model to represent the biomarkers in
different diagnostic groups. We think that while the joint estimation was
good for low number of subjects, increasing the number of subjects had
an adverse effect on the convergence of the algorithm. Hence HEBMjh is
not scalable to a large number of subjects.

We decoupled the mixture model and estimation of subject-specific
orderings in HEBMvv2 (Experiments 4, 6, 7 and 8). This made HEBM
more scalable as it improved the results in Experiment 4 with 1737
subjects, but the decoupling had an adverse effect on the algorithm when
the number of subjects was low, as seen in Experiment 7, where HEBMvv2
performs worse than FEBMvv2 even when the number of subjects was
low.

FEBM and HEBM are generative approaches for estimating the central
ordering. Our results suggest that HEBM is not very scalable. Although
FEBM is scalable, the assumptions made in FEBM are too restrictive for
heterogeneous disease such as AD. DEBM is a discriminative approach to
event-based modeling, which is both scalable and can robustly estimate
central ordering even when the disease is heterogeneous.

6.4. The mixture model

The optimization technique for the Gaussian mixture model that is
presented in this paper decouples the optimization of Gaussian parame-
ters and mixing parameters. When the Gaussians of the pre-event and
post-event classes are highly overlapping, the optimum mixing param-
eter changes a lot even for small changes in the Gaussian parameters. By
decoupling the optimizations for Gaussian parameters and mixing pa-
rameters, we get more stable mixing parameters. This helps in improving
the accuracy of all EBMs. This was observed in Experiment 4.

6.5. The importance of good biomarkers

Quality of biomarkers plays a huge role in the accuracy of the EBMs.
This was seen in Experiment 8, where the mean error value for 7 bio-
markers was considerably higher than the mean error value with the
same number of biomarkers in Experiment 5 (for the same Σβ and Σξ

parameters). The observed difference can be explained by the choice of
the biomarkers used in those experiments. While the biomarkers chosen
in Experiment 8 was at random, the ones chosen in Experiment 5 were
the 7 best biomarkers.

6.6. Interpretation of model results on ADNI

Experiment 1ðaÞ showed that CSF biomarker ABETA is the first
biomarker to become abnormal, followed by MMSE, p-TAU and ADAS13.
However, Experiment 3ðaÞ showed that in the homogeneous subset of
subjects showing signs of typical AD progression (with ABETA positive
subjects in MCI and AD, and with ABETA negative CN subjects) p-TAU
becomes abnormal before cognitive biomarkers of ADAS13 and MMSE,
which is in agreement with Jack's hypothetical model (Jack Jr. et al.,
2013). The earlier position of MMSE in Experiment 1 as compared to
Experiment 3 can be attributed to the inclusion of SMC subjects as well,
who need not necessarily be progressing towards AD. The ordering of
p-TAU becoming abnormal before ADAS13 which is then followed by
Hippoccampus was also observed by Donohue et al. (2014) in ABETA
positive subjects.

ADAS13 and MMSE are seen to become abnormal quite early in the
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disease progression timeline in Experiments 1 and 3. This is in agreement
with other studies on prodromal Alzheimer's Disease (Amieva et al.,
2005, 2008). Cognitive biomarkers becoming abnormal before abnor-
mality in Hippocampus and other structural biomarkers, as seen in Ex-
periments 1 and 3, could be due to the fact that the region-based volumes
from structural MRI may not be sensitive enough to detect mild structural
changes.

The event centers of Hippocampus volume and TAU are quite close to
each other in both Experiment 1ðaÞ and 3ðaÞ, which is also in agreement
with the current understanding of the disease (de Souza et al., 2012).

Fig. 5 shows that abnormality in the anterior temporal lobe precedes
that of the posterior temporal lobe. This was also observed by Schiratti
et al. (2015), where the anterior temporal lobe had a higher averaged
acceleration factor than the posterior temporal lobe, in a study on AD
patients and stable controls.

Nucleus accumbens right and left are the first biomarkers to become
abnormal as seen in Fig. 6. This was also observed by Young et al. (2018)
in one of the subtypes of AD identified in their work. However, the large
standard error of the event centers for the events before ABETA suggests
that the exact position of those events are unreliable. Experiment 1ðbÞ
showed that weak biomarkers (biomarkers excluded in Fig. 5, but
included in Fig. 6) could lead to greater uncertainty in event centers. This
can be explained by the fact that weak biomarkers are the ones where
there is a lot of overlap between the Gaussians of pre-event and
post-event classes. Small variation in the sampling population during
bootstrapping leads to large changes in the parameters estimated in the
mixture modeling step of the algorithm. It also showed that majority of
the early structural biomarkers are from Temporal lobe, followed by
Central structures, Frontal lobe, Parietal lobe and Occipital lobe.

7. Conclusion

We proposed a new framework for event-based modeling, called
discriminative event-based modeling (DEBM), which includes a new
optimization strategy for Gaussianmixturemodeling, a new paradigm for
inferring the mean ordering, a way for estimating the proximity of events
in the order to create a disease progression timeline, and a new way of
staging patients that uses these relative proximities of events while
placing new subjects on the estimated timeline. The source code for
DEBM and FEBM was made publicly available online under the GPL 3.0
license: https://github.com/88vikram/pyebm/.

We applied the DEBM framework to a set of 1737 subjects from the
baseline ADNI measurement, and also performed an extensive set of
simulation experiments verifying the technical validity of DEBM. The
experiment on ADNI data illustrated a number of advantages of the new
approach. Firstly, we showed that strict quantization of position in
ordering of events in the positional variance diagram can sometimes be
non-intuitive in terms of inferring actual progression of a disease. Sec-
ondly, we showed that the patient staging based on the proposed
approach separates CN and AD group of subjects much better than the
previous EBMmodels. Thirdly, we showed that the patient staging can be
used to identify individuals at-risk of developing AD as the MCI con-
verters and non-converters were well-separated. Staging patients based
on the estimated disease progression timeline can thus make computer-
aided diagnosis and prognosis more explainable. The results of these
experiments are encouraging and suggest that DEBM is a promising
approach to disease progression modeling.
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