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Abstract

The TU Delft has acquired a UAV LiDAR system and can be used to acquire an 3D point cloud of the
terrain below the system. It is of interest how such a flight mission would be best performed and what
the corresponding quality would be. Current free software provided limited data quality estimation and
mission planning support for the DJI Matrice 300 RTK and Yellowscan Mapper+ UAV LiDAR system.
For these reasons an open source flight planner tool has been created. This tool does require the DJI
Pilot 2 application and can for this reason only be used with DJI UAVs. It is optimized for the Yellowscan
Mapper+ LiDAR module, but can be used for other LiDAR systems. The tool allows the user to select
an polygon on a map, set a desired parameters for the flight, such as: the ground speed, the flying
height, the corner radius and the side lap percentage. With these parameters it estimates parameters,
such as: the point density and the flight time. This flight planner tool has been used in the field.

The quality of acquired data is important to understand to determine the feasibility of projects using the
system, and how the system should be used best. Two types of point cloud quality methods have been
performed: comparison of targets in the point cloud to GNSSmeasurements, referred to the target anal-
ysis, and based on comparisons to itself for different acquisition times on the same location, referred to
as the overlap analysis. For the target analysis an automatic, LiDAR intensity based method was de-
veloped, for determining target coordinates. Furthermore, target coordinates where detected manually
based on image projected RGB data in the point cloud. By comparing these target coordinates to the
reference GNSS target measurements, the combined GNSS and point cloud error can be estimated
separate from the target fitting errors. It was found that the combined point cloud and GNSS error is
likely larger than the fitting errors in up direction up to 70m flying height. This might allow for study of the
point cloud error in up direction, with this method. In horizontal direction the target fitting method errors
seem to dominate and the point cloud error can generally not be detected. Afterwards, the estimated
point cloud target and GNSS target coordinate differences where tested for a bias. A horizontal bias
was found, this bias might be caused by the point cloud or automatic target fitting method. A possible
explanation for this bias, might be the excessive vibrations that have been observed during the flight.
These vibrations have been studied and likely occurred due to an sub optimal damper setup on the
Yellowscan Mapper+ module. Therefore, the recommended damper setup for the Yellowscan Mapper+
to the DJI Matrice 300 RTK, is to use the provided green Yellowscan dampers with untight tie wraps.

The presented overlap method can be used when no other reference data is available. This method
divides the data in horizontal grid cells. The data in each grid cell is divided in time groups. For each
time group a PCA plane is fitted and used to estimate the height in the horizontal center of the grid
cell. By comparing heights between different time groups in the same grid cell, the height precision can
be studied. With this method two types of overlaps are found. Within flight strips and between flight
strips. The overlaps within flight strips seem to have a strong relation with the considered time differ-
ence length. This is likely caused by a combination of IMU and scan geometry errors. The overlaps
between flight strips do not seem to have such a relation. This is likely caused by a combination of
strip adjustment errors and possible GNSS errors. Because of the lack of relation, the average height
precision is estimated for all considered time differences. This was performed for grid cells classified
as grass and road separately and for 10m-100m UAV flying heights with 10m increments. The found
estimated standard deviations, up to a flying height of 70m, are generally below 17mm. It was found
that flights above 70m seemed to perform significantly worse. Furthermore, grass resulted in larger
estimated standard deviations than expected for low flights. This is likely caused by the ability of the
scanner to measure the 3D shape of the grass leafs for lower flying heights and not for larger flying
heights. As explained the PCA planes are fitted to the data. The variance of the data perpendicular to
these planes was studied for the scan range, across track and along track incidence angle. This study
seemed to indicate that the roughness of the grass can be measured below 60m flying height and is
not detected above.
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1
Introduction

The department of Geoscience and Remote Sensing at the TU Delft, recently acquired an Unmanned
Areal Vehicle (UAV) with LiDAR sensor. With such a UAV LiDAR system it has become possible to
acquire three dimensional point cloud data of the terrain below the UAV. Such data sets can be useful
for environmental monitoring. However the practices and methods to acquire good quality measure-
ments are not completely understood with this system. Therefore it is of interest to study how flight
plans should be created before a flight mission, how the flight should be performed and how to access
the quality of the obtained point clouds. The flight plan has significant effect on the resulting quality on
the resulting data. To analyse such relations it is important to have methods for assessing the point
cloud quality.

The aim of this research is to find a method on how good quality data can be acquired with a UAV
LiDAR system, and how this can be measured. Therefore the main question of this research is:

How to obtain and assess the quality of point clouds obtained by a UAV LiDAR system?

To answer this question, the following sub questions have been chosen:

What are contributing error sources to point cloud data acquired with a LiDAR UAV system?
When the quality of point cloud data acquired with a LiDAR UAV system is studied, it is important to
get insight in the processes that could effect this quality. When these processes are better understood,
this might allow to mitigate the impact of specific types of errors that could occur.

What are good metrics to evaluate quality of point clouds acquired with a LiDAR UAV system?
The quality of a point cloud can be defined in different ways. The considered point clouds are aquired
with a UAV LiDAR system and might therefore require specific quality metrics. Furthermore, the data
is for environmental monitoring which might effect the requried quality metrics as well.

How to obtain suitable quality metrics from the data?
When relevant quality metrics are determined, the method of obtaining these is of importance. These
methods might require the measurement of certain objects in the data, or using reference data to
compare the results.

Is the quality of the data as expected?
The quality metrics are calculated and studied. When the quality is not as expected, this might point to
a sub-optimal data acquisition method or processing errors.

What is a good flight plan and how is this performed?
To acquire point cloud data with the UAV LiDAR system, a method is required to fly a prepared flight
plan. Furthermore, the quality of the resulting data should be as expected, based on the flight param-
eters.

1
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Chapter 2, of this research, gives information how UAV LiDAR systems functions, how this data com-
pares to other measurement techniques and the different quality metrics are presented. In the next
chapter, the specifications of the used UAV LiDAR system are given. Chapter 4 presents a created
flight planner tool, specifically designed for the considered UAV LiDAR system in this study. Chapter 5
gives information about the acquired data sets during this study. Then, in chapter 6 the methods are
presented that can assess the quality of the acquired data. A particular problem with the UAV LiDAR
system is the damping of vibrations of the LIDAR instrument. Therefore a method to study these vibra-
tions is given in chapter 6 as well. In chapter 7, the results of these analysis are shown. Next, chapter
8 discusses the found results further and finally in chapter 9 conclusions and recommendations are
given.



2
Background

This chapter aims to provide a comprehensive understanding of the LiDAR UAV system. Furthermore,
this chapter will address the suitability of UAV LiDAR for various measurement scenarios. In addition,
the quality of data acquired by a UAV LiDAR system will be discussed.

2.1. What is a UAV LiDAR system
The UAV LiDAR system scans the terrain and objects below the UAV. The terrain and objects that
are scanned are called the measured surface. To achieve this, UAV LiDAR systems require four main
components: the LiDARmodule, the GNSSmodule, the IMU and the UAV. It is common to use an extra
camera module to provide an RGB value for each measurement. The LiDAR module calculates the
distance of points on the measured surface to the UAV, the direction of this measurement is stored as
well. The GNSS module is used to obtain the location of the LiDAR module in the required coordinate
system. The IMU is used to estimate the orientation and location of the LiDAR module and the UAV is
used to fly the system.

2.1.1. Point clouds
The measured data by the UAV LiDAR system is stored in a point cloud. This is a discrete set of points
in 3 dimensional space. These points together can show an object or area. Each point has a x, y and
z value and the points do not need to follow a specific pattern. This is different when compared to a
picture where all data is stored in square pixels that form a grid. Because of this fact, properties such as
the point density and distance between points can differ for different parts of a point cloud. An example
picture of a point cloud acquired with a UAV LiDAR system can be seen in Figure 2.1.

Figure 2.1: Picture of a point cloud of the innovation center in
Zegveld.

3



2.1. What is a UAV LiDAR system 4

2.1.2. LiDAR module
Light Detection and Ranging (LiDAR) systems send out a laser signal and measure the time it takes
to hit a target and for the signal to travel back to a detector. With the speed of light c is known, the
distance to the object (R) can be calculated with Equation 2.1. Air pressure, temperature and humidity
have influence on the speed of light during the measurement in geospatial environments. Refractive
index n in the equation, corrects for these effects. t is the travel time of the signal. It is divided by two,
as the signal reflects from the measured target and therefore travels the distance to the target twice.

R =
c

n

t

2
(2.1)

The measurement of travel time t can be achieved with continuous wave modulation or laser pulses.
Continuous wave modulation based LiDARs use amplitude and/or phase modulation of a continuous
light beam. By calculating the time shift of the signal that is send out with the measured reflected signal,
the distance to the target can be calculated. Amplitude Modulation Continuous Wave (AMCW) systems
can reach accurate distance measurements and are relatively low cost compared to pulse based Li-
DARs, but require a relatively long exposure for a single point [12]. Furthermore the operating range
of amplitude modulation techniques is generally shorter than for pulse based systems [36].

Pulse based LiDAR systems function by sending out a laser pulse. By measuring the time it takes
for the reflected pulse to come back to the LiDAR, the travel time and therefore the target distance
can be calculated. The following methods will be discussed: discrete linear LiDARs, Full Waveform
Digitization (FWD) linear LiDARs, Multi-spectral LiDARs and photon counting LiDARs.

Discrete linear LiDARs have dominated a large part of the last 20 years [15]. These systems func-
tion by transmitting a laser pulse to a known direction, the pulse is reflected andmeasured by the LiDAR.
Afterwards the next pulse is sent out and the process is repeated. The time between the pulses is called
the pulse repetition time (trep). Figure 2.2 shows the functioning of such a system in schematized form.
In modern devices a trep of 2.5µs (400kHz) is possible. This leads to a maximum scan range of around
375 meters. For longer ranges a lower trep is required. The time it takes for the signal to reach full inten-
sity is the pulse rise time (tr). The duration of the pulse is called the pulse width (tp). When objects with
a different range to the LiDAR are illuminated by a single laser pulse, multiple echoes can be recorded.
This allows the LiDAR to detect multiple reflections of the signal in vegetation. An example of this is
shown in Figure 2.2. In this figure both the tree and the house result in a measured intensity peak.
This allows for the detection of both objects. A pulse width of 1 − 5ns are typical values that can be
reached. This results in a range resolution of about 0.15-0.75 cm. Echoes can be distinguished from
each other if the distance between them is more than half the length of the pulse [36]. This results in a
range resolution of around 0.075 - 0.475 cm. If objects are closer together than this distance, both will
influence the same range measurement and cannot easily be resolved. The range accuracy is much
smaller than the range resolution, with typical values in the order of millimeters [36]. However, this
requires a good understanding of the detection and discretization methods of the received echo’s.

With discrete linear LiDARs, there are multiple detection methods for discretizing the reflected sig-
nal. Here the time of flight of the reflected signal is found and echoes are resolved. Examples are peak
detection and constant fraction detection [36]. Peak detection estimates the range to a target by finding
the peaks in the echo signal. If one echo consists of multiple peaks, it can cause difficulties. Constant
fraction detection uses the intensity fraction of the signal to the maximum amplitude of the signal. If the
signal passes this value a range is estimated. The measured targets with a detection method are then
stored directly by the LiDAR. Often the reflected intensity of the targets is stored as well.

FWD LiDARs function similar to discrete linear LiDARs, but they do not convert the measured signal
in discrete ranges to a target. Instead they store the complete digitised waveform for each target. Some
systems store all sent out pulses as well [33]. These waveforms contain additional information about
the physical backscattering characteristics and structure of the target [16]. Furthermore, this makes it
possible to use different target detection methods of the full waveform for specific applications. This
additional information can be used to filter and classify measured points (e.g. ground, vegetation, etc)
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Figure 2.2: Schematised functioning of a pulse based LiDAR. The LiDAR pulse is shown at four different moments in time.
First the pulse is sent out and is shown in gray at moment 1. Gray indicates the signal has not been reflected back. The signal

first reaches a tree and partially scatters back, the rest of the signal reflects back from the house at moment 2. The blue
reflection is from the house and the green reflection is from the tree. As the tree scatters the signal at multiple locations, the
reflected signal is longer but has a lower intensity. At moment 3 the reflected signal travels back to the LiDAR module, and at
moment 4 the signal is detected. The detected signal is visualised in the small schematised intensity plot. The green part

originates from the tree and the blue part from the house.

[33]) and has been demonstrated to be useful for radiometric calibration of airborne laser scan data [37].

These linear LiDARs require around 250-500 photons to do a reliable echo detection. Photon count-
ing LiDARs however only requires one or few photons [17]. This allows to increase the range and
coverage significantly compared to linear LiDAR, while keeping a high point density. This method is
used by the IceSat 2 satellite to measure the earth surface [39]. Current airborne laser scanning us-
ing these methods fly around 2000-10000 meter high, while linear LiDAR has a maximum altitude of
around 1 kilometer [32]. Disadvantages of the photon counting technique include increased noise [17],
no possibility of multiple returns [32], not able to capture low area targets such as wires [32], not all
implementations can measure intensity [15].

The point cloud acquired by LiDAR, consists of 3D locations of points and in some cases intensity
data. However, for certain use cases it might be beneficial to estimate an RGB value for each mea-
surement. This can be achieved with an additional camera module. When pictures are taken over the
same terrain as the point cloud data, the colors of the images can be projected to the individual points.
Multiple methods exist to perform this projection.

2.1.3. GNSS module
GNSS stands for Global Navigation Satellite System. GPS is an example of a GNSS, developed and
maintained by the U.S. department of Defence. By measuring the (one-way) travel time (using indepen-
dent clocks) of a signal from a satellite to the receiver, the so-called pseudo-range between the satellite
and the receiver is obtained. By combining information about the position of the GNSS satellites and
pseudo-ranges, the position of the receiver can be determined.

There are multiple processing methods to determine the position of the receiver. The most accurate
processingmethod of GNSS data for UAVs are Real-Time Kinematic (RTK), Post-Processing Kinematic
(PPK) and kinematic Precise Point Positioning (PPP).

RTK can reach centimeter accuracy in real time. It uses two special techniques to achieve this:
relative positioning and carrier phase measurements with integer ambiguity resolution. Relative posi-
tioning makes use of a reference, or base station. The UAV can in this context be referred to as the
rover. When this base station is sufficiently close to the rover (typically withing 20-30 km) the delay
of the GNSS signal trough the ionosphere and troposphere is very similar for the base station and the
rover as the GNSS satellites orbits around 20.000 km altitude. Furthermore, the satellite clock offsets
and the satellite orbit errors are similar for the base station and the rover. By taking the difference
between the base and rover range measurements, these errors can be eliminated. These differenced
range measurements can be used to estimate the baseline or vector between the base station and the
rover. RTK processing therefore does require a real time signal from the base station to the rover via
the internet or a radio signal.
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The signal GNSS satellites send out is a phase modulated signal. Standalone positioning demod-
ulates the signal and uses this information to estimate the range between the satellite and the rover.
This results typically in an accuracy of around 5-10 m [30]. Measurement of the carrier phase of the
signal allows for more precision, but does require the estimation of the amount of carrier wave cycles
between each satellite and the receivers; this is called integer ambiguity resolution. This amount of car-
rier wave cycles can also be called the carrier wave ambiguity. This ambiguity consists for a fraction of
a cycle at the satellite, a fraction of a cycle at the receiver and for an integer amount of whole cycles [30].
The fractional ambiguity at the satellite is equal for both the base station and the rover receiver and
is therefore eliminated by using relative positioning. The fractional ambiguity at the receiver is equal
for all tracked satellites. This can be eliminated by taking the difference of a reference satellite to all
other tracked satellites. This only leaves the integer ambiguity. This can be resolved with least-squares
estimation [30]. Together these techniques lead to centimeter accuracy after a few minutes.

PPK uses the same techniques as RTK and reaches the same precision, however it does not use a
real time signal from the base station. Therefore centimeter precision is not reached during the mission.
Only after, the GNSS signal is processed with base station information. This has the advantage it does
not require a real-time connection as with RTK. However when too many satellite signals are lost and
it is not possible to reach centimeter precision, no direct warning is given.

PPP can be used when there is no nearby base station. It uses a small and scattered network of
reference receivers around the globe. With these receivers, satellite orbit and satellite clock errors are
estimated. Furthermore, the ionosphere delay can be estimated with a model or eliminated by using
signals on different frequencies from the same satellite. As the satellite fractional ambiguity cannot be
resolved, integer ambiguity resolution is more difficult. However, ambiguities can still be estimated with
constant values. PPP has longer convergence times but can eventually reach centimeter accuracy [30].

2.1.4. IMU module
An IMU is an electronic device that can use accelerometers, gyroscopes and magnetometers to mea-
sure the specific force (g-force) and angular rate on the body. With these measurements the position,
orientation and velocity of the body can be estimated by using a previously known position, orienta-
tion and velocity (this process is called dead reckoning). This is done by integrating the acceleration
with respect to time from the previous position. This process is subject to cumulative errors, as small
measurement errors keep adding up. This results in drift as the actual position of the object and the
estimated position move further apart in time.

There are 2 main types of IMUs, stable platform systems and strap down systems [38]. Stable
platform systems keep the accelerometer sensors aligned with the global frame using gimbals, while
the tracked object moves. This results in relatively straight forward velocity and position estimation, but
requires a larger and intricate mechanical system. Most current IMUs are strapdown systems. Here
the sensors are mounted rigidly to the tracked object. To find the orientation of the device in the global
frame, gyroscope signals are used to find the orientation of the object.

The main types of gyroscopes are mechanical, optical or MEMs. Mechanical gyroscopes consist of
a spinning wheel mounted on gimbals. The spinning wheel will resist orientation changes. By measur-
ing the angle of the gimbals, the orientation of the object can be found in the global frame. Mechanical
gyroscopes are accurate and measure orientation directly, in contrast to optical and MEMs Gyroscopes.
However mechanical gyroscopes contain moving parts that cause friction and drift. Furthermore they
are expensive and heavy, and therefore not suitable for use in UAVs.

Optical gyroscopes use light to determine the angular velocity of the object. A fiber optic gyroscope
sends 2 light beams in a fiber coil in opposite directions. When the fiber coil experiences rotation in the
same plane as the coil, the light beam traveling with the rotation will have a travel a longer path than
the light beam against the rotation. This is the Sagnac effect. The beams are then combined and will
interfere. This will result in a certain intensity. This intensity is used to determine the angular velocity.
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Optical gyroscopes have no moving parts, but the accuracy is largely dependent on the travel length
of the light. Larger lengths will result in higher accuracies but will take up more room.

Microelectromechanical systems (MEMS) are microscopic systems that consists of a combination
of electronic, mechanical or chemical parts. Most MEMS gyroscopes use a vibrating mechanical part to
measure angular velocity [22]. These gyroscopes measure the Coriolis effect. When the support of the
vibrating part rotates (the sensor), the vibrating part tends to maintain its vibration in the original plane.
This results in a force that can be measured and is used to determine the angular velocity. MEMS are
less accurate than mechanical and optical gyroscopes, but they are cheap to produce, small and light
weight.

There are 2 main types of accelerometers, this are mechanical and solid state devices [38]. Me-
chanical accelerometers use a mass suspended by springs. Acceleration of the sensor will result in
displacement in opposite direction of the mass compared to the rest of the sensor. By measuring the
displacement, knowing the spring force-displacement relation and the fact that the force acting on the
mass is given by Newton’s second law, the linear acceleration can be calculated.

Different types of solid-state accelerometers exist. Surface accoustic wave accelerometers are an
example. These sensors use a cantilever beam that is resonated with accoustic waves over the surface
of the beam. When the sensor accelerates the cantilever beam deforms (caused by its inertia). This
changes the properties of the surface of the cantilever. This in turn, influences the accoustic surface
waves over the beam. By measuring this change, the linear accereration can be estimated [26]. MEMS
accelerometers can both use mechanical and solid state methods to estimate linear acceleration. The
advantages are similar to gyroscope MEMS. They are cheaper, smaller and lighter, but less accurate
than the other sensors.

GNSS location data and IMU data combine well, as GNSS data does not experience drift and IMU
data can be used when satellite signals become limited or unavailable. Furthermore the GNSS and
IMU data can be processed together to achieve the best estimated track the object follows [13]. The
combination of IMU and GNSS data can make it possible for UAV systems to use less accurate, but
smaller and cheaper MEMs sensors for the IMU [24].

2.2. Comparison with other techniques
There are multiple techniques that can provide similar data as collected with the LiDAR UAV system.
However, each technique has its own advantages and best fitting application. The technique that is
most similar is the photogrammetry UAV system.

2.2.1. Photogrammetry UAV system
Photogrammetry UAV systems create the most similar data to LiDAR UAV systems. These systems
function similar, however photogrammetry systems use a camera instead of a LiDAR to create a point
cloud. This functions by making overlapping pictures. In this overlap, locations of the same objects (e.g.
roadmarks, corners of houses, etc.) are found in the different images. This are called tie points. The
coordinates of some of these points are measured with a ground survey. This are called ground control
points. By using the location of tie- and ground control points in individual images (x and y distance in
the image) and the approximate location and direction the pictures were taken, the global coordinates
for the tie- and ground control points can be calculated. Then, with a technique called dense matching,
the global location of almost all pixels in the overlapping images can be found.

A difference between photogrammetry and LiDAR UAV systems is the fact that photogrammetry
systems do not require a complex and expensive LiDAR, but does require computational intensive
post processing. Another difference is that on very homogeneous images (e.g. flat sandy beach, flat
snow fields, etc.) it can be difficult to find tie points. This can lead to not being able to process the data.
Furthermore, as discussed in subsection 2.1.2, most LiDARs can penetrate vegetation to a certain ex-
tent and measure multiple points inside vegetation. Photogrammetry generally uses tie points that are
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found on the outside of the vegetation.

2.2.2. Satellite and manned aircraft LiDAR missions
Satellites and manned aircraft can be used to measure the earth surface with LiDAR. A LiDAR satellites
that is currently functioning is ICESat2. ICESat2 has an orbit inclination of 92 degrees and therefore
covers almost the complete globe. The data has a 91 day exact repeat orbit and the LiDAR signal foot-
print is around 17 meters. It measures points in 6 parallel strips of points in the along track direction.
[21]. These parameters show the large coverage and constant temporal resolution (without considering
clouds), but also the not flexible repeat times and large footprint of the LiDAR.

Manned aircraft LiDAR missions are more flexible and will result in a denser point cloud than satel-
lite data. Furthermore, the precision of manned aircraft LiDAR mission data can still be comparable
to LiDAR UAV data. But LiDAR UAV data promises higher point densities and smaller laser footprint
sizes. The coverage of manned aircraft LiDAR missions is however significantly higher and therefore
this method better suited for large areas (multiple square kilometers).

2.2.3. Terrestrial Laser Scanning
Terrestrial Lasers Scanning (TLS) is a technique that uses a LiDAR placed on the ground to acquire
a point cloud. Stationary TLS do not require GNSS and IMU information and have less weight restric-
tions than a UAV LiDAR system. Therefore stationary TLS can achieve higher quality data then a UAV
LiDAR system. However, the scan coverage of this method is limited as the data is acquired from
stationary positions. By scanning from multiple locations and combining point clouds the coverage can
be extended, nevertheless UAV LiDAR systems reach much faster a higher coverage.

In addition, mobile TLS can be achieved by incorporating the LiDAR in a platform such as a car,
train or handheld device. Each different LiDAR implementation results in a different coverage and point
cloud quality. Therefore all implementations will have their own use case. In general, TLS scanning
takes place at a lower altitude than that of a UAV’s flight height. This results in a different viewpoint
between both techniques. Therefore the data can complement each other by filling in missing data.

2.2.4. Field campaigns
Field campaigns that use techniques such as leveling, tachymetry and GNSS measurements are capa-
ble of reaching very high precisions and accuracies, but generally have a low spatial coverage. Further-
more field campaigns are generally expensive. For certain projects they are required, however projects
that require lower precisions and accuracies might be more economic with a LiDAR UAV system.

2.3. UAV LiDAR data quality
The quality of a point cloud is a complex subject. It is a collective term that can be interpreted in dif-
ferent ways. In general point clouds with a high quality are precise, accurate, complete and have a
high resolution. The quality of a point cloud depends on both the quality of the individual points and the
distribution of the points in both space and time.

In this report the focus will be on geometric quality of the points, therefore the intensity data quality
is not researched. RGB data quality is based on the LiDAR data and projected pictures. This report
does not focus on this quality. Objective quality metrics will be used, as subjective metrics are mainly
important for point cloud interaction with humans [7]. Additionally, no quality metrics that incorporate
machine learning are studied, to keep a clear insight in how and what effects influence in the calculated
quality metrics.

Below first the terms accuracy, precision and relative precision will be explained, as this are use-
ful terms when discussing data quality. Then multiple quality metrics will be discussed. Next, effects
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Figure 2.3: Different point based quality metrics visualised in 2D. These metrics are similar to the 3D metrics. In this figure the
nearest neighbour points of the reference point cloud (R) and considered point cloud (C) are given. NR is the estimated

normal vector of the reference point cloud point and NC the estimated normal vector of the considered point cloud. The left box
shows the point-to-point metric. This is the length of the D1 vector, when the Euclidean distance is considered. The middle box
shows the point-to-plane metric. This is the length of the D2 vector. Right box shows the angle αR,C on which the angular

dissimilarity is based.

influencing the data quality will be considered. Afterwards, the Principle Component Analysis (PCA)
algorithm is introduced as this can be used to study the quality of groups of points.

2.3.1. Accuracy, precision and relative precision
Accuracy is the value for how close a measurement is to the true value. An example is the determining
the vertical accuracy of measurements. When a flat, horizontal surface is measured with the exact
same UAV LiDAR measurement setup, the mean vertical height measured might differ from the actual
height of the surface. This difference is the accuracy and can be seen as bias in the data. Precision is re-
lated to the spread of the measurements around the average value. In the same example as before, the
standard deviation of the vertical measured points gives a value for the precision of the measurements.

Relative precision can give information about precision between points. When two points have the
same terrain height, the measured height difference between the points gives the relative precision.
The relation between the relative precision and parameters as distance and time between points can
be studied. As points close in distance or time likely experience partially similar errors, the relative
precision can be smaller than points further in distance or time.

2.3.2. Objective geometric quality metrics
Multiple types of quality metrics exist. In this report the point density and quality metrics based on refer-
ence data are considered. There exist multiple objective geometric quality metrics that use reference
data. This reference data can be for example a high quality reference point cloud, few locations mea-
sured by GNSS or even overlapping data of the same point cloud. Overlapping data quality comparison
will be further discussed in subsection 2.3.3. This report focuses on point based metrics. Intensively
used point based metrics are: point-to-point, point-to-plane, plane-to-plane [1] [31]. These methods are
visualised in Figure 2.3. All point based methods, assume the nearest neighbour points of the consid-
ered point cloud and the reference point cloud measure on average the same point. The point-to-point
method uses the distance between nearest neighbour points of the considered point cloud with the
reference point cloud as quality metric. This can be the Euclidean distance or a different distance such
as L1, or the distance in a single specific direction. The other two methods require estimated surface
normal vectors for the points in the reference point cloud for point-to-plane, and for both point clouds for
plane-to-plane. The point-to-plane method projects the vector between nearest-neighbor points of the
different point clouds, on the normal vector of the reference point. The plane-to-plane metric is based
on the angular dissimilarity between the normal vectors of the nearest-neighbor points of the different
point clouds.

These discussed point-based quality metrics based on reference data can be used for all individual
data points. However by using groups of points to estimate objects, it might be possible to reach
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better precision of the object location than using the individual measurements due to the increased
redundancy. Assuming individual measurements have the same expected value, are uncorrelated and
have standard deviation (σ), then the standard deviation (σx̄) is give by Equation 2.2. When a perfect
plane ismeasured by uncorrelatedmeasurements with equal standard deviation, the standard deviation
of the mean value of all measurements in normal direction to this plane should be σx̄. In reality not all
measurements might be uncorrelated, have the same standard deviation or a measure a perfect plane,
still the σx̄ should be lower than for individual measurements when these conditions are approximated.
Therefore in certain situations quality metrics based on a groups of measurements might be preferred.
Subsection 2.3.4 presents a method how such a plane could be fitted.

σx̄ =
σ√
n

(2.2)

2.3.3. Overlapping data based objective geometric quality metrics
Using overlapping measurements in a point cloud can be used to study the relative quality between
these measurements. Several studies have been performed that make use of this [3] [11]. [3] presents
an interesting method were points with overlapping LiDAR footprints are compared. These overlapping
points are called identical points. Only identical points with a normal vector close to up direction have
been considered. With this method the height differences between the identical points were studied.
By making use of the mean the data was studied for biases. With the standard deviation of this data
the precision of the data was found. Furthermore, correlation was searched for height differences and
the geometric attributes: range and incidence angle.

A different interesting approach is relative quality analysis is given by [11]. In this study the quality
of overlapping flight strips is assessed. Flight strips are straight lines of LiDAR data that are acquired
in one flight line by the UAV. This is further discussed in chapter 4. The assessment is performed with
the following method. First, only overlap areas between strips are selected. Then a random point is
selected. A square with a size set by the user is placed with the selected random point in the middle. All
points inside the square of the overlapping point clouds are studied. For these points, per point cloud,
statistical computations are performed. This are: average height, standard deviations, xz- and yz mo-
ments and other desired parameters. This is performed k times. Here, k is the ratio of total number of
points in the overlap area to the number of points in the sample square. Special care should be given to
setting the size of the sample square. Using multiple sizes, to a certain degree, random, systematic and
locally systematic errors can be separated [11]. Random errors into the average height can become
negligible with a sufficiently large surface and larger surfaces may even out local systematic errors [11].

In this report a new overlapping data based method is proposed. The method can be found in sec-
tion 6.2. This method combines part of the techniques described above. The proposed method both
studies overlap within flight strips and between them as the method described by [3]. Furthermore no
normal vectors have to be estimated for each point of interest. The proposed method does not compare
overlapping individual points, but compares sets of points as described by [11]. The used features for
sets of points are based on PCA. The proposed method studies calculated differences in height for
different time lags. These time lag based differences might be caused by GNSS, IMU errors. Further-
more, an additional analysis is proposed using the calculated PCA features on the scan geometry in
section 6.3. This method is however not based on overlapping data.

2.3.4. Fitting planes with Principal Component Analysis (PCA)
PCA can be used to calculate orthogonal vectors called principal components of an n dimensional
dataset. These vectors are calculated such that the first principal component (N1) gives the direction of
the greatest variance in the data, the second principal component (N2) gives the orthogonal direction of
the second greatest variance in the data and so on [8]. These principal components are eigenvectors
of the data set’s covariance matrix. The corresponding eigenvalues (λ) give the variance of the data
in these directions. Furthermore the mean location of the data set is calculated, this can be seen as
the starting point of the calculated principal components. There exist many applications for PCA, such
as dimensionality reduction, data compression and feature extraction [10]. However in this report the
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Figure 2.4: Example of plane fitting to LiDAR data using PCA. This figure shows the found eigenvectors by PCA. The LiDAR
measurements are of an IGRS’s retroflective plate (explained further in subsection 3.3.2) and of the Zegveld 06-12-2022

dataset for 10m fly height and flight strip 5 (additional information about this flight is found in chapter 5).

focus will be on only a specific case of feature extraction. This is fitting a plane to 3D point cloud data.

When three dimensional point cloud data is available for a plane, PCA can be used to find the ori-
entation of the plane and variance of the measurements perpendicular to this plane. The maximum
variance of measurements of a plane will be parallel with the plane. The exact rotation of this maxi-
mum variance depends on how far the spread of the the measurements is in all directions of the plane.
Therefore the found N1 and N2 will be parallel to the plane that is fitted. The orthogonal direction to
these two vectors is N3 and this is the vector perpendicular to the fitted plane. The corresponding
eigenvalue λ3 gives the variance of data in this direction. An example of this is visualised in Figure 2.4.

2.3.5. Effects influencing the data quality
The quality of a individual point measurements is dependent on four major factors [29]: instrumental
characteristics, material characteristics, atmospheric characteristics and scan geometry. Instrumental
characteristics depend on the hardware, calibration and settings of the instrument. Material character-
istics of the measured target, influence the backscattering of the LiDAR signal. The atmosphere can
attenuate the LiDAR signal, and therefore influence the measurement. The scan geometry influences
the measurement as well. Longer distances causes more attenuation of the LiDAR signal, and larger
incidence angles to the surface cause an increased footprint size of the LiDAR signal. This increases
the noise in the measurement as well.



3
System description

The LiDAR UAV system that is used in this research is the Yellowscan Mapper Plus combined with
the DJI Matrice 300 RTK. Figure 3.1 shows this system. The components in these systems will be
discussed in more detail below.

3.1. Yellowscan Mapper+
The Yellowscan Mapper plus is a self contained lightweight LiDAR system and is shown in Figure 3.2.
The system consists of the Livox AVIA laser scanner, the Applanix APX-15 UAV board with IMU and
GNSS module and Trimble AV18 GNSS antenna. These components will be discussed below in more
detail. There is an option to include a camera module to color the LiDAR data. This system is self
contained and can therefore be attached to most UAVs with enough lift capacity. Furthermore, the data
can be processed with dedicated software.

3.1.1. Complete Yellowscan Mapper+
Useful specifications of the Yellowscan Mapper Plus are shown in Table 3.2. The system can be flown
with Yellowscan batteries. This powers the system for typically 1 hour. When used with the DJI Matrice
300 RTK UAV, the UAV batteries can also be used to power the system. The accuracy and precision
in Table 3.2 are defined by Yellowscan as described in the caption.

Special care should be given to the lever arm of components to the optical center of the Yellowscan
Mapper+. The lever arms are the relative location of measurements of components to the optical phase
center of the Yellowscan Mapper+. These distances are given in a local reference system of the UAV

Figure 3.1: Complete LiDAR UAV system. Figure 3.2: Yellowscan Mapper+.
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Table 3.1: Lever arms of components to the optical center of the Livox Avia sensor in the reference system of the Mapper+.
The given Primary GNSS Lever arms show the distance of the optical center to the antenna phase center on the DJI Matrice

300 RTK. The IMU Lever Arm gives the distance to the reference point on the IMU board (Applanix APX-15 UAV).

Reference system of Yellowscan Mapper+ to IMU Lever Arm [m] to Primary GNSS Lever arm [m]
X (Positive to the front of the Mapper+) 0.049 0.030
Y (Positive to the right side of the Mapper+ -0.001 -0.085
Z (Positive in down direction of the Mapper+) -0.045 -0.367

Table 3.2: Yellowscan Mapper Plus specifications [40]. 1: The method for measuring precision used by Yellowscan is given in
subsection 3.1.1. 2: The method for measuring accuracy used by Yellowscan is given in subsection 3.1.1.

Weight without batteries 1.1 kg
Weight including batteries 1.3 kg
Size (without camera module) L 149 x W 104 x H 128 mm
Size (with camera module) L 227 x W 104 x H 128 mm
Precision1 25 mm
Accuracy2 30 mm
Scanner Horizontal / Vertical 70.4° / 4.5°
Scanning mode Repetitive scan pattern
Point rate 240,000 /s
Operating temperature -10 to +35°C
GNSS-Intertial solution Applanix APX-15 UAV
Maximum altitude level 4000 m
Environment protection IPW55

LiDAR system. The lever arms to the antenna phase center and IMU center are given in Table 3.1.
These values should be entered correctly in the APX15 board and in the PosPac Software.

Furthermore the system should perform a calibration pattern for the IMU, beginning and ending a
flight. The calibration pattern that is recommended by Yellowscan consists of a forward, backward,
forward, U-turn pattern. To provide enough acceleration to calibrate the IMU a speed above 10 m/s
should be reached. During calibration the LiDAR system should face forward and in case of wind,
should be performed parallel to the wind direction [40].

Accuracy and precision as defined by Yellowscan
Accuracy and precision have a static definition as defined in subsection 2.3.1. However these values
can be estimated using multiple methods. The methods for estimating the precision and accuracy from
the data by Yellowscan are as follows. ”Precision, accounts for the variation in successive measure-
ments taken on the same target. Here precision value is obtained by averaging the precision from
3 flight levels @60, 90 and 120mAGL. At each flight level, the precision is considered as the mean
value of absolute elevation differences between 2 flight lines recorded in opposite directions over a
nadir-located 40m² hard surface area” [40]. ”Accuracy is the degree of conformity of a measured posi-
tion to its actual (true) value. Here accuracy value is obtained by averaging the accuracy from 3 flight
levels @ 60, 90 and 120mAGL. At each flight level, the accuracy is considered as the RMSE value of
the elevation differences between targets and the point cloud extracted from 2 flight lines recorded in
opposite directions. Validation targets are located within a 40m wide corridor centered along the flight
line axis” [40].

3.1.2. Livox Avia laser scanner
The Livox Avia is a discrete linear LiDAR and is shown in Figure 3.3. The specifications can be found
in Table 3.3. This specific LiDAR is a solid-state LiDAR [20]. These LiDARs do not require high quality
spinning mechanical components as used conventionally [20]. Instead solid-state technology is used.
This typically reduces the Field Of View (FOV) of the LiDAR, but allows for a lower production cost [20].
However, this sensor managed to keep the FOV relatively large.
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Figure 3.3: Livox Avia LiDAR [14]. Figure 3.4: Trimble Applanix APX-15 UAV [5].

Figure 3.5: Non-repetitive pattern Livox Avia for short
timespan [14]. Figure 3.6: Repetitive pattern Livox Avia [14].

The LiDAR has a wavelength of 905 nm. This is in the near infrared part of the electromagnetic
spectrum. This wavelength is used in the vast majority of the current LiDARs. An advantage of this
wavelength is that the solar spectrum has a minima around 905 nm caused by the absorption of water
vapor. This minimizes solar background noise in this wavelength [23]. This however also influences
the signal of the LiDAR itself [23], but for relatively short distances this effect can be overcome. A draw-
back of this wavelength is the that the human eye is sensitive to it. Therefore the maximum allowed
power of the LiDAR to make it eye-save is limited [23]. The Livox Avia is eye-save.

As shown in Table 3.3, the maximum range that can be measured depends on the ambient light
conditions. An illuminance of 100 klx corresponds to direct sunlight. Furthermore, a higher backscatter
reflectivity of the target increases the detection range of the LiDAR.

Furthermore, the Livox Avia has an build in IMU. That can be used for estimating the orientation of
the module. The Yellowscan Mapper+ allows for access to the raw Livox Avia data. Livox has a free
to download viewer that can be used to study this data. However this IMU is likely not used by the
Yellowscan Mapper+.

The FOV of the LiDAR is determined by the chosen scanning pattern and has two different modes
as shown in Figure 3.5 and 3.6. These images correspond to a scanner at rest, facing forward (as a
terrestrial scanner). The non-repetitive pattern has a FOV of 70.4◦ horizontal and 77.2◦ vertical. This
would translate for a nadir looking scanner in the Yellowcan Mapper+ to a FOV of 70.4◦ across track
and 77.2◦ along track. However, the Yellowscan Mapper+ does not yet support this scan pattern. The
figure shows the coverage for a short timespan. For longer timespans, the scan pattern will fill an in-
creased amount of gaps in the pattern, until the final coverage approximates a circle. The coverage of
the FOV appoaches 100% in 0.8 s [14]. This scan pattern does result in a higher point density closer to
the center of the scan pattern. The repetitive pattern has a FOV of 70.4◦ horizontal (across track) and
4.5◦ - 6.8 ◦ vertical (along track). The repeat cycle is about 0.1 s [14]. This pattern is standard in the
Yellowscan Mapper plus. Based on the beam divergence, the resulting size and shape of the footprint
has been visualised in Figure 3.7 and Figure 3.8.

3.1.3. Applanix APX-15 UAV board
The Applanix APX-15 UAV is a single board that combines GNSS and IMU processing. Figure 3.4
shows this board. The board supports 336 channels, including multiple GPS, GLONASS, BeiDou and
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Figure 3.7: Footprint size dependent on measurement height,
based on beam divergence. Measurement is performed in

nadir direction on a flat terrain.

Figure 3.8: Footprint shape, based on beam divergence and
pointing error, based on angular precision. Measurement is

performed in nadir direction on a flat terrain.

Wavelength 905 nm
Laser Wavelength < 0.0003%

Point Rate
240,000 points/s (first or strongest return)
480,000 points/s (dual return)
720,000 points/s (triple return)

Amount of returns Maximum of 3 returns
Repetative pattern cycle time About 0.1 s

Detection Range (ambient illuminance = 100 klx)
190 m (10% reflectivity)
230 m (20% reflectivity)
320 m (80% reflectivity)

Detection Range (ambient ambient illuminance = 0 klx)
190 m (10% reflectivity)
260 m (20% reflectivity)
450 m (80% reflectivity)

Field of view

Non-repetitive scanning pattern:
70.4◦ (horizontal) x 77.2◦ (vertical)
Repetitive scanning pattern:
70.4◦ (horizontal) x 4.5-6.8◦ (vertical)

Range precision (1σ 20m) <2 cm
Angular precision (1σ) <0.05◦
Beam divergence 0.28◦ (vertical) x 0.03 (horizontal)
False Alarm Ratio (100 klx) 0.0003%
Noise 40 cm omnidirectional <45 dBA
Dimensions 91 x 61.2 x 64.8 mm
Weight 498 g
Build-in IMU model BMI08

Table 3.3: Livox AVIA specifications [14]
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SPS RTK PP-RTX PP
Position (m) 1.5-3.0 0.02 - 0.05 0.03 - 0.06 0.02 - 0.05
Velocity (m/s) 0.05 0.02 0.015 0.015
Roll & Pitch 0.04 0.03 0.025 0.025
True Heading 0.30 0.18 0.08 0.080

Table 3.4: Performance Applanix APX-15 UAV [5]

Sensor APS-C Type Exmor CMOS
Resolution 20.4 MP
Width x Height x Depth 74 x 69 x 52 mm
Weight 158 g
Power consumption 2.2 W

Table 3.5: Specifications of the Sony UMC-10RC camera. [28]

Galileo channels. The processing that is used is Applanix IN-Fusion+TM It is based on a Kalman filter
[24]. Because of the combination of GNSS and IMU data, less accurate, but smaller and cheaperMEMS
sensors can be used for the IMU. This board is standard connected to a Trimble AV18 GNSS antenna
in this system, but different antennas can be configured. The antenna phase center of the Trimble
AV18 GNSS antenna is 3.2 cm above the antenna reference point at the bottom of the antenna.

3.1.4. Camera module
The used camera is a Sony UMC-10RC with a Sony α E16mm F2.8 lens. Specifications of the camera
and lens can be found in Table 3.5 and Table 3.6 for the camera and lens respectively. Parameters
of the this camera can be controlled with the CONFIG.TXT file on the USB stick in the Yellowscan
Mapper+. Here the CAM_INIT_HEIGHT [m], CAM_TRIG_CONFIG TIME [s] and CAM_AUTO_ISO [-]
can be set. CAM_INIT_HEIGHT describes the flying height at which the camera should focus on the
ground, the ISO and aperture should be set. CAM_TRIG_CONFIG TIME is the time interval between
consecutive pictures. This value should be larger than 1 s. CAM_AUTO_ISO is on when set to 1. The
ISO will be set for each image. This can be useful when luminosity is variable during the flight. As this
takes time to auto set the ISO, the CAM_AUTO_ISO should be larger than 2.0 s when this function is
used.

3.1.5. Software and Data
The software Applanix PosPac and CloudStation are provided by Yellowscan to process the LiDAR
data. The Livox Viewer program can be used to view the raw LiDAR data acquired by the Livox Avia
sensor. For each program the output data is described.

Applanix PosPac
Applanix PosPac is software created by the company Trimble. It is used to post-process the GNSS/IMU
data of the Applanix APX-15 UAV board. This data can be processed together with a local reference
station. The software provides two outputs that are required for processing the LiDAR data in the
software CloudStation. This are the Smoothed Best Estimate of Trajectory (SBET) file and a text file
for georeferencing the taken pictures. The SBET file describes the location of the UAV during the flight
in a coordinate system that can be chosen. The data consists of the following columns:

• Time [s]

Minimum focus distance 0.24 m
Maximum magnification ratio 0.078x
focal length 49 mm
Weight 67 g

Table 3.6: Specifications of the Sony α E16mm F2.8 lens. [27]
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• Distance [m]
• Easting, northing, ellipsoid height [m]
• Latitude, longitude [degrees]
• Roll, pitch, heading [degrees]
• East, north and up velocity [m/s]
• East, north and height standard deviation [degrees]
• Roll, pitch and heading standard deviation [degrees]

CloudStation
CloudStation is software created by Yellowscan. The discussed features are of the current software,
but additions are regularly added. This software can process the raw data with or without SBET (esti-
mated with Applanix PosPac). However the quality of the data is significantly lower without the use of
the SBET file. Furthermore, the software requires a LiDAR and camera calibration file that is unique
for each Yellowscan Mapper+.

The software allows for first selecting the flight strips the user would like to process. Afterwards it is
possible to perform strip adjustment on, classify ground, colorize and create a DTM of the point cloud.
The point cloud can then be exported in las, laz or text files. Las and Laz files without classified ground
points contain the following information for each point:

• Position in the chosen export coordinate system
• Red, green, blue [-]: Each color is given in an unsigned 16 bit integer and therefore is in the range
(0-65535).

• Return number [-]: Integer in the range (1-3).
• Number of returns [-]: Integer in the range (1-3).
• Scan angle: Range is (-390, +390)
• GPS time [s]

Furthermore, a text file with the trajectory of the UAV is exported as well. This text file contains the
following information:

• X, y, z [m]
• Time [s]
• Roll Pitch Heading [degrees]
• Standard deviation of x, y and z [m]
• Standard deviation of roll, pitch and heading [degrees]

Livox Viewer
The Livox Viewer can be used to visualise the raw LiDAR data and export the data in csv or las format.
Below the information that is stored for each point in the raw Livox data can be found. Furthermore,
it is interesting to note that the settings for the Livox Avia that Yellowscan uses do not store the raw
spherical coordinates of each measured point.

• X, y, z coordinates [m]: These points are in the Livox Avia coordinate system and rounded to
millimeters.

• Timestamp [ns]
• Return number: The Livox Avia can measure up to three returns for each sent out LiDAR pulse.
• Tag information: This data contains additional information of the detected point. It indicates high,
medium or low confidence in the point. This confidence is checked for 3 categories: 1. Rain, fog,
dust and other tiny particles, 2. Glue points between adjacent objects and 3. other.

• Reflectivity [-]: A value in the range of 0 to 255. When the value is between 0 and 150, reflectivity
is within the range of 0 to 100% of the Lambertian reflection model. When the value is between
151 and 255 the object should have retroflection properties [14]

• Error code: Gives information about the status of the Livox Avia sensor.
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Table 3.7: DJI Matrice 300 RTK specifications [34].

Weight (with batteries) Approx. 6.3 kg

RTK Positioning accuracy <1.0cm (Horizontal)
<1.5cm (Vertical)

Max Flight Time 55 min
Service Ceiling Above Sea Level 5000 m
Max Wind Resistance 15 m/s
Max Flight Time 55 min
GNSS GPS+GLONASS+BeiDou+Galileo
Environment protection IP45
Operating Temperature -20°C to 50°C

3.2. DJI Matrice 300 RTK
The DJI Matrice is a commercial UAV platform and can be seen in Figure 3.1. Specification of the UAV
can be found in Table 3.7. The Yellowscan Mapper+ can be installed on the DJI Matrice 300 RTK, by
making use of the DJI SkyPort at the bottom of the UAV.

The DJI Matrice needs to be slightly modified to use the Yellowscan Mapper+. A holder for the
antenna of the Mapper+ needs to be installed by reinserting a screw in the UAV. Furthermore the
dampers of the DJI SkyPort can be changed with multiple setups. These dampers can be seen in
Figure 6.16. The possible damper setups will be further discussed in subsection 6.4.1.

3.2.1. Performing area based flight plans
Flying prepared area based flight plans with this UAV is possible using multiple methods. The most
common ways are to use the DJI pilot 2 app that is standard installed on the controller of the UAV. A dif-
ferent method is to use a third party flight planner such as UgCS. Both options will be discussed below.
The DJI pilot 2 app allows for planning of area based flight plans, but are based specifications of DJI
supported sensors, such as the Zenmuse L2 LiDAR. These sensors however require a slightly different
flight planning than the Yellowscan Mapper+. Therefore this option is not further considered. An addi-
tional feature of the DJI pilot 2 app, is that it allows the import of specifically created flight missions. By
making use of their Application Programming Interface (API), missions with the desired requirements
can be created that can then be flown by making use the the DJI pilot 2 app.

Third party software might have direct support for the Yellowscan Mapper+, such as the UgCS flight
planner. These flight planners include options, such as automatic IMU calibration and terrain following.
However, are not free-of-charge. With terrain following the fly height of the UAV is changing based on
the terrain height. In this way a relatively constant fly height above ground level might be achieved.
This feature is useful in terrains with significant terrain elevation changes. With all options considered,
there has been chosen to design a dedicated flight planner tool that is based on the Yellowscan Map-
per+. This tool will result in a flight mission file that can be imported by the DJI pilot 2 application. The
final tool is presented in section 4.3.

3.3. Reference GNSS receiver
A reference GNSS receiver is required for the Yellowscan Mapper+ to process the results with PPK as
explained in subsection 2.1.3. In this report, two different reference stations have been used: a Mosaic
base station and an Integrated Geodetic Reference Station (IGRS). Both will be further elaborated on
below.

3.3.1. Mosaic base station
The Mosaic Go base station is shown in Figure 3.9. This is the reference GNSS receiver that is used
when there is no data available of a stationary reference station. There are two options:

• Set up above a known control point. This requires carefull centering above the control point and
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Figure 3.9: Mosaic base station. Figure 3.10: Zegveld IGRS [18].

measurement of antenna height.
• Set up without using known points. In this case the GNSS data itself is used to compute the
position of the reference station. This requires additional processing using data from other GNSS
Continuously Operating Reference Stations (CORS) with known coordinates, or a network PPK
post-positioning service , or a PPP post processing service.

3.3.2. IGRS
IGRS are stations that are designed to collocate seven geodetic techniques: GNSS, InSAR, leveling,
airborne laser scanning, photogrammetry, tachymetry and relative gravimetry. The IGRS in Zegveld is
shown in Figure 3.10. For this research, GNSS and airborne laser scanning are of most importance.
GNSS is measured at IGRS by the antenna at the top. For airborne laser scanning, the IGRS has a
retroreflective horizontal plate. This plate will result in high intensity detected returns of the airborne
laser scanning. As the relative location of the GNSS antenna to the retroflective horizontal plate is
known, the coordinates of the plate measurement in the LiDAR data can be compared to the coordi-
nates of the plate known by the GNSS measurement.



4
Flight planner tool

For each UAV LiDAR survey the UAV must be instructed where to fly and at which altitude. This set
of instructions is called the ”flight plan”. As discussed in subsection 3.2.1, it was decided to create a
dedicated flight planner tool to create such a flight plan. This tool is created for the DJI Matrice 300
RTK with Yellowscan Mapper+ system but can be used with other LiDAR systems in combination with
the DJI Matrice 300 RTK. This tool is created based on the DJI Pilot 2 application API. In this chapter
flight planning information is discussed. Afterwards, the the requirements for the flight planner tool will
be given. Then, the tool will be presented. As the tool has been used in practice, next an evaluation is
given. The tool is made in python, and the code can be found on GitHub1.

4.1. Flight planning for a UAV LiDAR system
The flight plan used during point cloud acquisition influences the scan geometry and the point density.
Because of this, the flight plan has a significant effect on the quality of the resulting point cloud (de-
scribed in subsection 2.3.5). The flight plan must be composed by the user and therefore is of special
interest. First the types of flight plans will be discussed. Then the parameters that can be changed for
the flight plan will be elaborated on.

4.1.1. Types of flight plans
Flight plans can be roughly divided in four different types [2]. The first type is area based. This area
can be defined by a rectangle or polygon. The second type, are vertical flights for high objects. This
can be flights that scan steep mountain surfaces, the walls of quarries or the sides of tall buildings. The
third type are corridor flights that can scan objects such as railways, roads and power lines. The final
type of flight are free mapping flights, that are flown manually. This results generally in less uniform
data. The rest of this thesis only considers area based flights as these are common for environmental
monitoring. Furthermore it is assumed the LiDAR is pointed in nadir direction.

4.1.2. Parameters for an area based flight plan
As explained above, the input for an area based flight is a rectangle or polygon of which data should
be acquired. This is the region of interest for an environmental monitoring flight. The most basic area
based flight plan consists of parallel flight lines over the region of interest with a certain perpendicu-
lar distance between them (D). The measured LiDAR data corresponding to such a flight line will be
referred to as a flight strip in this report. A top view of such a flight plan is shown in Figure 4.1, with
parameters shown below.

• Fly height (H)
• Fly speed (v)

1Link to GitHub page containing the created flight planner tool: https://github.com/Marijn-22/dji_flight_planner.git
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Figure 4.1: Schematic showing the parameters for a basic area based flight plan. The dark gray polygon is the region of
interest for the flight and the black continuous line shows the flight path of the UAV.

• Distance between flight lines (D)
• Length flight lines (L)
• Maximum radius smooth corners (Rs)
• Heading of the flight lines in the polygon (Ψ)
• Estimated flight time (T̂ )
• Buffer to region of interest (B)
• Offset perpendicular to flight lines (F )

Buffer and offset parameters
The offset and buffer parameter allow for more control over the flight trajectory. The buffer parameter
(B) can be used to perform turns outside the region of interest. This results in straight flight lines over
the region of interest. Furthermore, it can be used to make the scanned region with straight flight lines
larger than the original area of interest. This can be useful to optimize the region of interest. The offset
parameter (F ) can be used to translate flight lines perpendicular to the flight direction. This option might
for example be useful when it is required to fly directly over a certain object with a flight line. The value
is a factor to the distance between flight lines in the same direction (2 ·D) and can vary between 0 and
0.5. The 0 value corresponds to 0m offset, the 0.5 value corresponds to Dm offset.

The flight plan parameters have strong relations to the resulting data quality based on relations
between these parameters, the scanner specifications and the region of interest.

Distance between flight lines
The distance between flight lines (D) depends on the across track field of view (ϕacross), the fly height
(H) and desired overlap (O) between strips. If a flat terrain is considered, the distance (D) can be
calculated with Equation 4.2. The side lap is in this case a value between 0 and 1 for 0% and 100%
overlap respectively.

Flight time
The estimated flight time depends on fly speed, distance between flight lines and the radius chosen
for smooth corners. To simplify the calculation, in this report the flight distance decrease caused by
smooth corners is not considered. The flight time is estimated by summing the length of all flight lines
and flown distances between flight lines and dividing this by the fly speed as shown in Equation 4.1.
Here, Li is the length of the ith individual flight line, Di the perpendicular distance between the ith and
(i+ 1)th flight lines and n the amount of flight lines.
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T̂ =

∑n
i=1 Li

∑n−1
i=1 Di

v
(4.1)

Point density
With the fly speed, fly height, across track field of view and number of LiDAR points scanned per sec-
ond, an estimate can be made of the point density (ρ̂) as shown in Equation 4.3. In this equation, PPS
is the amount of Points Per Second scanned by the LiDAR.

D = 2 · tan (ϕacross/2) ·H · (1−O) (4.2)

ρ̂ =
PPS

v · 2 · tan (ϕacross/2) ·H
(4.3)

Additional relations to data quality
Further relations between scanner specifications, the flight plan and resulting data quality might exist.
An example is a limit to the length of flight lines. Long flight lines, flown with low speed can result in sig-
nificant IMU drift. As discussed in subsection 2.1.4, the IMU and GNSS data are combined to acquire
a best estimate for the LiDAR location and orientation. The heading of the UAV is not only determined
by the IMU, but by the relative position of consecutive GNSS measurements as well. In this way the
biases originating from the IMU data can be limited, but might still result in a less precise and accurate
LiDAR location and orientation estimation. This could reduce the quality of the data. Furthermore the
region of interest could have effect on the flight plan. The scan geometry to certain objects could be
more favorable, with for example a different flight line heading. Furthermore, the wind direction can
influence the average orientation of the UAV and therefore the orientation of the LiDAR. This can have
an effect on the scan pattern measured by the UAV. These effects have been recognised but are not
further researched in this study.

Based on the found relations, multiple combinations of parameters can be used as input to plan an
area based flight. The most relevant combination depends on the use case and is further discussed in
section 4.2.

4.1.3. Additions to the basic area based flight plan
Additional flight lines can be added to the basic area based flight plan above for multiple reasons. One
is to improve strip adjustment. These types of algorithms will search for features in both flight strips of
overlapping LiDAR data. Then the distance between the corresponding features in the different flight
strips is attempted to be minimised. Strip adjustment in CloudStation is based on such a method [6].
As in the basic area based flight plan only consecutive flight strips overlap, the strip adjustment opti-
mization is only based on sort time steps. Therefore, errors between flight strips further in time might
accumulate. By performing an additional flight strip crossing all flight strips of a basic area based flight,
errors further in time can be considered as well. This likely improves the resulting strip adjustment.

A second method for acquiring better quality data compared to the basic area based flight plan in-
volves two scans of the entire region of interest. This is achieved by performing two basic area based
flight plans with perpendicular flight lines over the area of interest. This creates a grid flight line pattern
and will be referred to as a grid flight. Not only does this method likely improve the strip adjustment
result, it can also lead to more homogeneous data. This might be the case as the footprint size is
asymmetric in across and along track direction. A further advantage is improved point density and a
multiple scan geometries for the complete area of interest. Furthermore, the coverage of the data might
improve. This is due to the distinct scan geometry of both flights. This can cause LiDAR shadows to
occur on different locations. Therefore both flights might fill in missing data in the other flight.
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4.2. Requirements for the flight planner
The flight planner tool has multiple requirements. First the flight planner should allow the user to se-
lect its own region of interest. This can be achieved by drawing a polygon on a map. Furthermore, it
should be possible to perform a grid flight and to add a crossing fight line to the basic area based flight
plan, as both discussed in subsection 4.1.3. Additionally, it was decided the tool is not required to per-
form automatic IMU calibration. This can be flown by the pilot manually before and after a performed
planned flight and significantly simplifies the flight plan. A different important question is which flight
plan parameters should be given as input, and which variables should be estimated based on these
parameters, as there are certain relations between these parameters. This has been mentioned in sub-
section 4.1.2. For this reason it has been decided to develop the tool for two different input parameters.
The first version of input parameter is not depending on specifications of the Yellowscan Mapper+ and
therefore allows flight planning for different kind of sensors as well. The second version is based on
specifications of the Yellowscan Mapper+. Both versions will be discussed below.

4.2.1. Fully customizable flight plan
This version of input parameters, allows for direct control of the flight plan and does not depend on
specifications of a LiDAR scanner. Therefore the flight plan can be fully customised and even used for
other sensors then the Yellowscan Mapper+. The selected input parameters are listed below. Based on
this, new parameters are estimated. The estimated flight time (T̂ ) and complete distance flown during
the mission are calculated as discussed in subsection 4.1.2. These parameters are not dependent on
the LiDAR scanner specifications. The estimated side lap (Ô) and point density (ρ̂) assume the Yellows-
canMapper+ is used. The formulas used for calculating these parameters are given in subsection 4.1.2.

Input parameters:

• Heading of flight lines in the region of interest (Ψ)
• Offset of flight lines in the region of interest (F )
• Buffer of the region of interest (B)
• Maximum radius smooth corners (Rs)
• Distance between flight lines (D)
• Fly height above take off location (H)
• Ground speed (v)

Given estimated output parameters:

• Side lap (Ô)
• Point density (ρ̂)
• Flight time (T̂ )
• Complete distance flown during the mission

4.2.2. Yellowscan Mapper+ based flight plan
The YellowscanMapper+ based flight plan parameters are very similar to the input and estimated output
parameters of the fully customize flight plan option. The only difference is that the side lap (O) is given
as input and the estimated distance between flight lines (D̂) is given as output. This relation is based
on the side look angle of the Yellowscan Mapper+. This calculation is made with Equation 4.2. The
advantage of this is that it allows for quick planning of flights for a certain side lap value.

4.3. Flight planning for UAV LiDAR system
In this section the created flight planner tool will be presented. This tool has been created with python.
First the method for selecting a region of interest will be given. Then the input and output parameters of
the tool will be discussed. Themanual of this program is given in Appendix D. Furthermore an additional
manual of the combined DJI Matrice 300 RTK and Yellowscan Mapper+ system is given in Appendix
E. This manual describes how flights should be prepared, including weather effects. It describes how
a flight should be performed and what should be done in emergency. Furthermore, the method for
processing the data and known errors that can occur are discussed.
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Figure 4.2: Opening window of the DJI flight planner tool. Figure 4.3: Selecting region of interest in the DJI flight planner
tool.

4.3.1. Selecting a region of interest
The created DJI flight planner tool has an opening window as shown in Figure 4.2. The map shown
on the right side of the window can be interacted with and can be used to locate the region of interest.
When the region of interest in in view, it can be selected by clicking on the map and setting way points
as visualised in Figure 4.3. When the desired region of interest is selected, the green finished button on
the left side of the screen be by used to start setting the flight plan parameters. As shown in Figure 4.2
and 4.3, both a categorical map and a satellite background can be used to select the region of interest.

4.3.2. Input and output parameters of the DJI flight planner tool
Figure 4.4 shows the DJI flight planner window when the flight parameter settings can be set. The
shown window in the figure shows the desired flight parameters for the mode that is based on the
across track field of view angle of the Yellowscan Mapper+. The mode can be changed to the flight
based parameters mode by using selecting the standard option in the ”Set Mode” menu on the top
left on the screen. The flight parameters that have been discussed in subsection 4.2.1 and 4.2.2 for
the flight parameters and Yellowscan Mapper+ specifications respectively, can be set in the ”Flight
parameters” menu. The corresponding estimated flight parameters corresponding the set mode are
given in the ”Flight info” menu.

4.4. Evaluation
The tool has been used by multiple users and generally performed well. When used, it is important
the mission radius in the DJI 2 pilot app is set large enough. When the mission requires the UAV
to fly further than this radius from the controller the mission cannot be performed. Furthermore, the
created tool is open source but does not yet include all options as some payed alternatives. The current
limitations to the tool are given below.

• Currently only functioning in the Netherlands, due to certain coordinate transformation
• No option to limit flight lines in a certain area, for example to not fly over the sea
• Polygons far from a convex hull can lead to wrong flight plans
• Require internet connection to use
• No terrain following implemented
• Not possible to set different fly heights and speeds per waypoint (it is possible to adjust this in the
DJI Pilot 2 application)
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• No automatic IMU calibration is implemented
• No estimation of optimal flight line length

Figure 4.4: Setting flight parameters in the DJI flight planner tool.



5
Data description

UAV LiDAR data has been acquired at 3 different locations in the Netherlands: Zegveld, Springert and
Waarde. In the province Utrecht, at Zegveld near the Nieuwkoopse plassen, a flat meadow area has
been scanned. In the province Zeeland, near Ouddorp, the Springert dune area has been scanned. In
the province Zeeland, near Waarde a tidal flats area has been scanned. First the general pattern of
time stamps and scanning geometry is discussed in section 5.1 and the data sets that are obtained by
each flight in section 5.2. Then in section 5.3 to 5.5 the individual data sets are presented.

5.1. GPS time, scans cycles and takes
The processed point cloud has all the features as explained in subsection 3.1.5. The GPS time and
scan pattern of the data will be further studied here. The results in this section are found in acquired
data and therefore do not originate from a manual.

5.1.1. GPS time
By studying the data, it was found each point in the data has an individual GPS time. The time step
between consecutive points was studied. For this the median time difference between consecutive
points for all flight lines of the 10m height and 100m height Zegveld flight at 06-12-2022 (discussed
further in section 5.3) was calculated. For each flight strip the same median time step of 4.167µs was
found. Themean time steps found per flight strip did differ. This likely originates from data gaps, caused
by failed measurements. This would results in longer mean time steps. Furthermore, multiple returns
in a single LiDAR pulse measurement might lead to a different time step. However, only a few locations
with multiple returns are found in the Zegveld data and therefore this effect is not further considered.

5.1.2. Take
By making use of the scan angle for each data point in the data (as described in subsection 3.1.5),
the points with maximum scan angle can be found. These points are located furthest from the UAV
in across track direction (on one side, the other side has a negative scan angle). By finding the time
differences between consecutive maximum scan angles, a single measurement cycle is found in the
data. This will be referred to as a take. Multiple takes are visualised in Figure 5.1, for both the 10m and
100m fly height data. To find the time duration of a take, for all flight lines of the 10m height and 100m
height Zegveld flight at 06-12-2022 (discussed further in section 5.3) the median take time duration was
calculated. The resulting median time durations are very similar, by taking the mean of these values
the time duration of a single take was estimated to be 7.613ms.

As visible in Figure 5.1, a take consists of six similar shapes, called sweeps, next to each other in
along track direction. The points in a take are measured alternating between these six sweeps. First
a point is measured on the top most sweep. Then the point is measured in the sweep below, on the
same location in the pattern as the top most sweep. This continues until the bottom sweep is reached.
Then the next point in the top most sweep is measured. Here the cycle starts again and continues.

26
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5.1.3. Scan cycle
As found in the manual, a full scan cycle of the repetitive scan pattern of the Livox Avia scanner is
about 0.1s [14]. Therefore a full scan cycle consists of multiple takes, likely 13 (4.167 · 10−3 = 0.099s).
In Figure 5.1 takes are plotted in blue and orange with 14 takes in between. Therefore the these takes
should be in the same location in scan cycle. Still a difference in location can be detected between
these takes. This is likely caused by the flight speed of the UAV. The zoomed in graph in Figure 5.1
includes the takes between the blue and orange take in gray. When the gray footprints are studied, it
seems the these points measure locations between the blue and orange take in across track direction.
Due to movement of the UAV forward, the values are likely spread in along track direction. By repeating
this test with a stationary LiDAR these hypothesis could be confirmed.

Another interesting effect that can be observed in Figure 5.1 is the fact that the takes are not com-
plete for 100m fly height. The figure shows data gaps around 117490 m and 117560 m in X direction.
These data gaps are caused by the terrain. On these locations ditches filled with water are positioned.
The water causes the laser pulse to reflect in a specular manner and the small amount of backscatter
to the LiDAR was not enough to measure the water surface on these locations.

Figure 5.1: Take pattern of Zegveld flight at 06-12-2022. During the flight the UAV along track direction was aligned with the
y-axis. The size of the points corresponds to the minimum footprint at these locations. The footprint size was calculated by
multiplying the distance of the point to the LiDAR by the along and across track beam divergence. This method however
assumes the measured surface is perpendicular to the LiDAR beam. When the complete ground surface would be flat, the

footprint sizes would increase when not measured completely in nadir direction.

5.2. Introduction to data set information
For all performed flights the same information is provided in this chapter. For each location the scan
that covered the largest amount of area is shown in a figure. Furthermore for each day a flight has
been performed an information table and wind estimation figure are plotted.
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The point cloud data shown in the figures, was processed with PosPac and CloudStation. The tra-
jectory of the UAV during the flight is shown in the figures as well. In CloudStation flight lines should
be selected that are used for processing. Data acquired outside these selected flight lines is not con-
sidered. The flight lines are the straight lines in the UAV trajectory. These flight lines are the colored
parts of the UAV trajectory shown in the images. When multiple flights where performed on the same
height and location, each flight was given a flight number. In the information table per flight day this
has been shown with F1, F2 or F3 for flight number one, two or three respectively.

Furthermore the information table indicates which GNSS reference station was used to process the
flight trajectory. Two different reference stations have been used. The Mosaic Go, when no closeby
reference station was available and therefore an mobile reference station was required. The other used
reference station is the IGRS station. This station was available at Zegveld.

The estimated wind speed figures, show the estimated average, maximum wind speeds and wind
direction during the flights, made by the KNMI at the nearest measurement station. The wind is mea-
sured at a height of 10 meter. The average wind speed is the averaged wind speed for the hour in
question. The maximum wind speed is highest wind gust measured for each hour. The wind direction
is estimated by taking the average wind direction of the last 10 minutes of each hour [9].

5.3. Veenweiden innovation center Zegveld
The area that has been scanned in Zegveld is part of the Veenweide Innovation Center. The innovation
center is focused on peat research. The data acquired during the flight that covered the largest area
at Zegveld is shown in Figure 5.2. The flight path of the UAV is shown in this figure as well. As can be
seen, the area that was scanned on this location consisted mainly of meadows. Other objects that can
be found in the scan are trees, driveways made of concrete plates, multiple measurement instruments
and ditches between the meadows. Flights have been performed on this location at two different dates.
The data acquired at 04-10-2022 was the first flight performed with the UAV LiDAR system and a
practise flight. The flight at 40m was flown manually. The flight at 80m was a waypoint mission created
manually, without the flight planner tool. The flight at 06-12-2022 was created with the flight planner
tool. This flight scanned a small area at 10 different heights over an IGRS station. The goal of this
flight was to study the effect of fly height. Information about the flights can be found in Table 5.1 and
Table 5.2. Figures 5.3 and 5.4 give information about the wind conditions of the nearest KNMI station
during the flights.

Figure 5.2: Data acquired at the 80 meter height flight at 04-10-2022. The flight path the the UAV is shown in gray. The data
has been acquired with 5 individual flight line, of which 3 parallel. Each flight line has been given a distinct color.
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Table 5.1: Information Zegveld flight 04-10-2023. The flight at 40 meters height was flown by hand. The flight at 80 meters was
flown with a DJI Pilot waypoint mission. The waypoints were set by hand and therefore flight strips might not be completely

parallel.

Fly height 40m 80m
General
Date of acquisition 04-10-2022
Time of acquisition
(local time) 13:58-14:04 14:16-14:26

Format of the data .laz
Coordinate system RD with NAP heights
Size of the files 137 MB 240 MB
GNSS reference station IGRS station Zegveld
Flight characteristics
Amount of flights 1 1
Amount of flight strips 7 5
Maximum flight strip
length [m] 132 247

Median flight strip
length [m] 74 202

Speed [m/s] 5-12 10
Sidelap [%] - Around 40
Grid flight No No
Weather
Precipitation None
Data characteristics
Amount of points
[number points] 15,716,541 27,556,937

Scanner suspension

Type dampers Black (DJI dampers),
no extra safety.

Tight tie wraps No.

Figure 5.3: Average and maximum wind speed and corresponding directions of the closest KNMI measurement station to the
innovation center at Zegveld.
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Table 5.2: Information Zegveld flight 06-12-2022. This mission was flown over the IGRS station in Zegveld and was flown on
10 different heights.

Fly height 10m 20m 30m 40m 50m 60m 70m 80m 90m 100m
General
Date of acquisition 06-12-2022
Time of acquisition 15:03-15:30
Format of the data .laz
Coordinate system RD NAP
Size of the files [MB] 92 52.5 23.9 26.7 38.4 39.5 37.2 57.4 34.2 34.1
GNSS reference station IGRS station Zegveld
Flight plan characteristics
Amount of flights 1
Amount of flight strips 7 4 2 2 2 2 2 2 2 2
Speed [m/s] 5
Sidelap [%] 50
Weather
Precipitation None, to very little.
Data characteristics
Amount of points

[million points]
12.4 6.9 3.6 3.6 5.2 5.5 5.3 8.3 5.1 5.1

Scanner suspension
Type dampers Green, no extra safety
Tight tie wraps No

Figure 5.4: Average and maximum wind speed and corresponding directions of the closest KNMI measurement station to the
innovation center at Zegveld.

5.4. Dunes Springert
At Springert, a dune area and part of a beach has been scanned. The point cloud from the 70 meter
height flight can be seen in figure Figure 5.5. The terrain is slightly hilly and the dunes consist different
types of vegetation, including trees. The flights at this locations have been planned with created the
flight planner tool. This area has been measured at 3 different heights as shown in Table 5.3. The 30
meter flight has been flown in a grid pattern with perpendicular flight lines. This flight was performed
to get the highest possible resolution data over a small area. The flight was not performed lower, due
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to the height difference in this area. Furthermore a flights with a height of 50m and 70m have been
performed. The goal of these flights was to scan a larger area with heights the Yellowscan Mapper+ is
typically used at. The different heights allow for comparison between the datasets. The estimated wind
conditions can be found in Figure 5.6. During all flights performed at this location, excessive oscillations
have been observed. These oscillations not observed during flights at other locations. This is related
to tight tie wraps in the scanner suspension. This is further investigated in the vibration analysis in
chapter 6 and 7.

Figure 5.5: Springert data acquired at the 70 meter height flight.

Figure 5.6: Average and maximum wind speed and corresponding directions of the closest KNMI measurement station to the
Springert dunes.

5.5. Tidal flats near Waarde
The data acquired over the tidal flats near Waarde will be refered to in this report as the Waarde data.
As the data was acquired over a tidal flat, the measurements have been made during low tide. However
during the measurements the water rose. This is can be seen in the data when the 70m and the 50m
height flight are compared. Most data is acquired above the tidal flats, however parts of the flight are
above water. As water behaves more like a specular scatterer than the tidal flat terrain, a significant
portion of the light is scattered away from the LiDAR sensor. Especially for larger angles from nadir
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Table 5.3: Information Springert dunes flights at 15-03-2023.

Fly height 30m 50m 70m
General
Date of acquisition 15-03-2023

Time of acquisition
(local time)

F1: 12:16-12:26
F2: 10:48-11:13
F3: 10:13-10:41

11:20-11:40 11:46-12:11

Format of the data .laz
Coordinate system RD with NAP heights

Size of the files

Total: 5.53 GB
F1: 807 MB
F2: 2.28 GB
F3: 2.45 GB

1.52 GB 2.03 GB

GNSS reference station Mosaic Go
Flight characteristics
Amount of flights 3 1 1

Amount of flight strips
F1: 6
F2: 15
F3: 20

24 18

Speed [m/s] 5 10 10

Sidelap [%]
F1: 50
F2: 30
F3: 50

30 30

Grid flight

Yes,
F1 & F3: Perpendicular
to the beach
F2: Parallel to the beach

No, perpendicular
to the beach

No, perpendicular
to the beach

Weather
Precipitation None
Data characteristics

Amount of points
[number points]

Total: 701,721,622

F1: 95,898,679
F2: 289,569,331
F3: 316,253,612

182,527,607 235,938,227

Scanner suspension
Type dampers Green.
Tight tie wraps Yes.

direction. On this location a grid pattern flight has been performed on 20 meters. More flight information
can be found in Table 5.4, and Figure 5.8 gives additional estimated wind information during the flights.
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Table 5.4: Information on data of tidal flats near Waarde

Fly height 20m 50m 70m
General
Date of acquisition 11-04-2023
Time of acquisition
(local time)

F1: 13:23-13:47
F2: 15:25-15:47 14:58-15:21 12:50-13:16

Format of the data .laz
Coordinate system RD with NAP heights

Size of the files
Total: 3.33 GB
F1: 1.70 GB
F2: 1.62 GB

1.13 GB 1.15 GB

GNSS reference station Mosaic Go
Flight characteristics
Amount of flights 2 1 1

Amount of flight strips F1: 24
F2: 17 22 29

Maximum flight strip
length [m]

F1: 235
F2: 314 698 792

Median flight strip
length [m]

F1: 224
F2: 310 360 304

Speed [m/s] 5 7.5 10

Sidelap [%] F1: 50
F2: 50 50 50

Grid flight

Yes,
F1: Perpendicular
to the beach
F2: Parallel to the beach

No, perpendicular
to the beach

No, perpendicular
to the beach

Weather
Precipitation None
Data characteristics

Amount of points
[number points]

Total: 488,235,220
F1: 248,448,597
F2: 239,786,623

157,213,741 146,164,833

Scanner suspension
Type dampers Green.
Tight tie wraps No.

Figure 5.7: Data of tidal flats near Waarde, acquired at the 70 meter height flight.
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Figure 5.8: Average and maximum wind speed and corresponding directions of the closest KNMI measurement station near
the tidal flats.



6
Methodology

This report consists of four methods to assess the quality of UAV LiDAR data. Each method will be dis-
cussed individually. First a method is presented based on targets in the point cloud data and reference
GNSS measurements of these targets in section 6.1. Then, a new method to study data quality based
on overlapping data is presented in section 6.2. In section 6.3, the effect of scan geometry is studied.
Afterwards, in section 6.4, possible causes of vibrations in the Yellowscan Mapper+ are researched.

6.1. Target based quality analysis
Targets where measured by the UAV LiDAR system in the Springert data. These targets are placed
in the terrain for photogrammetry UAV flights, but are visible in the acquired UAV LiDAR point clouds
as well. The targets have been measured with a GNSS rover as well. In this section, methods are
presented to detect the location of the targets in the point cloud data. With the estimated target locations
from the point cloud data and the available measured GNSS target locations, multiple methods are
used to assess the quality of the point cloud. These methods are further discussed in section 7.1. In
this section, first the targets in the Springert data will be studied. Then, in subsection 6.1.2, methods
for detecting targets in point cloud data are discussed. Section 6.1.3 presents an automatic target
detection method and subsection 6.1.4 describes how targets are manually detected in the point cloud
data.

6.1.1. Targets in Springert data
The targets in the Springert data are flat square plates with sides measuring 0.5 meters. Each target’s
surface comprises four triangles, two red and two white, converging at the center of the target, as
shown in Figure 6.2. The Springert area has a total of 11 of such targets. The positions of the targets

Figure 6.1: Locations of the targets and coverage of the
different flights performed at Springert.

Figure 6.2: Picture of target 5 and 6. Target 6 has the GNSS
reference station positioned on top. This picture was taken on

a different date then the point cloud acquisition.

35
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Figure 6.3: Automatic and manual target fitting detection results for target 5 with 30m flying height data.

are visualised in Figure 6.1. The coverages of the performed flights is given in this figure as well. The
data of all flights acquired at 30m height are studied together in this chapter. This data set includes
only targets 2 to 9. The flights performed at 50m and 70m include all targets. The center coordinates
of all targets were determined with a GNSS rover, these measurements can be found in Appendix A.
Furthermore, the reference GNSS receiver used to process the UAV LiDAR flight was placed on target
6. This influences the measurements of this target.

6.1.2. Detecting targets in point clouds
There are various methods for determining the positions of targets in the point cloud data. In this study
an automatic method and manual fitting method is employed to estimate the horizontal center of the
targets. The automatic method utilizes the higher measured LiDAR intensity of the photogrammetry
targets then their surroundings. The exact method is discussed in subsection 6.1.3. By visually inspect-
ing the results of the automatic method in RGB data, it was found the method did not always resulted
in the optimal location. Therefore manual target detection based on RGB point cloud data, has been
used to detect the horizontal positions of the targets as well. With the horizontal position estimated by
both methods, all points expected to measure the target can be found. With this information the height
of the targets is estimated. The height at the target center is estimated by fitting a plane using PCA to
the expected target points. By calculating the height of the plane at the center of the target, the height
of the target is estimated.

6.1.3. Automatic target detection
Figure 6.4 shows the flow diagram of the method applied to detect targets automatically in the point
cloud. The steps will be further discussed below. The automatic method begins by utilizing the GNSS
measured locations of all targets. These locations are used to select all points in the point cloud within
a distance of less than 0.50 meters from the GNSS coordinates. Given the typical centimeter-level
accuracy of GNSS and of the point cloud data, the actual target is expected to be within this data set.
Since the targets are positioned horizontally, only the top-view data of the points are used for initial
target center detection. The resulting automatic target fit for target 5, for 30m flying height is given in
Figures 6.3a and 6.3b for intensity and RGB data respectively.

Next, the target’s shape (a square with sides of 0.5 meters) is centered in the data. The location
and orientation of the target are then optimized through iterations to finally estimate the target’s loca-
tion. This optimization process involves two types of iterations: translation iterations for estimating the
location of the center and rotation iterations for estimating the rotation of the target.

The translation iteration initially moves the target shape to eight different positions, each at a fixed
step size from the original location and the directions are spread around this original location. The
intensities of all points within the new target locations are summed, and the location with the highest
intensity sum is compared to the intensity sum of the original location. If the new intensity sum is higher,
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Figure 6.4: This flow diagram gives an overview of the
automatic target detection method.

Figure 6.5: This flow diagram gives an overview of the overlap
method.

it becomes the new target location, and the iteration repeats; otherwise, the iteration stops.

The rotation iteration involves rotating the target location by positive and negative angles at a set
step size. The points within the square but outside the inner circle of the square, affected by the rotation
of the square, are located. Again, the intensity of these points is summed, and the highest intensity
sum is compared to the original intensity sum, determining whether the iteration continues or stops.

By testing multiple parameters it was found that capping the maximum intensity to a value of 4000
improved the results. This made sure the method does not only consider the most high intensity points,
but the slightly lower intensity points on the border of the target are considered as well. Furthermore
the different types of iteration were performed multiple times. The iterations were performed per target
as shown in Figure 6.4. Additionally, the maximum number of iterations of a single step was set to 1000.

6.1.4. Manual target detection
As can be seen in Figure 5.5, there is a color gradient in the RGB data of the 70m flying height Springert
point cloud. This gradient made it significantly more difficult to locate the target center manually. To
overcome this issue, histogrammatching against a reference target (for all heights target 9 was chosen)
was performed. With histogram matching the Cumulative Distribution Function (CDF) for each band



6.2. Overlap analysis 38

Figure 6.6: Visualization of method for dividing the point cloud over a grid.

(in this case RGB) is transformed for one image to match a reference image. This method can make
a over- or underexposed image, match a reference image. To make histogram matching possible for
point cloud data, a temporary image for each target was made where each pixel represented a point
in the point cloud. With this new RGB data, manually the target shape was moved to the best location.
The target location that matched the RGB data best was chosen as horizontal target center.

6.2. Overlap analysis
The overlap analysis method first divides acquired UAV LiDAR point cloud data in horizontal square
grid cells. Each grid cell is measured multiple times, called epochs, by the UAV LiDAR system. This
results in overlapping data with time differences. These time differences will be referred to as time
lags. Multiple types of overlaps can occur. There can be overlaps within a single flight strip for short
time lags and between different flight strips for longer time lags. By analysing these overlaps multiple
types of errors can be studied. For this method, each epoch consists of a short time interval. Two
epochs can be compared by estimating PCA features for each epoch and calculating certain PCA
feature differences. This assumes the terrain in the grid cell can be approximated with a plane. For
this reason each grid cell is classified. Only relatively flat classes are considered in this analysis. For
this analysis the Zegveld data set from 06-12-2022 will be used. This data set contains relatively flat
grass and road areas. Therefore the grid cell classification will focus on these classes. The data set
contains data from flying heights 10m to 100m with 10m increments. This is important, as the flying
height influences optimal values for the grid size and epoch time length, which are input parameters for
the overlap analysis method. Figure 6.5 shows the flow diagram of the overlap method. Each separate
step in this figure will be discussed in a separate subsection below.

6.2.1. Grid data
In this step the point cloud data is split into a horizontal grid, as schematized in Figure 6.6. To perform
this step a grid size should be chosen. The grid size should be large enough to contain enough points to
allow for fitting planes per grid cell as will be described further below. However, the grid cell should not
be too large, as local surface deformations might be filtered out. A different effect that should be taken
into consideration is the footprint size of the LiDAR. As discussed in subsection 3.1.2, the footprint size
in along track direction of the LiDAR considered in this study is around 0.5m at a flying height of 100m.
Therefore points close to the edge of the grid cell can be influenced by the terrain surrounding the grid
cell. Because of these reasons, the optimal grid size parameter is linked to the scanned terrain types,
footprint size and point density.

The considered dataset includes the relatively flat terrain classes grass and road. The grass has a
roughness caused by the varying grass heights and ground surface roughness. It is assumed the grass
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can be considered flat when around 1m2 is considered. This should filter out the grass terrain rough-
ness, while keeping local surface deformations in the data over larger distances than 1m. As grass grid
cells are likely on average mostly surrounded by other grass grid cells, the effect of the footprint size
is likely limited. This is the case as the points which have a partial footprint overlap with a different cell,
still measure the same terrain type. The larger footprint size will however result in smoothing of the
measured terrain roughness. Therefore, the maximum footprint size of 0.5m is at 100m flying height is
still expected to result in useful data for a grid size of 1m by 1m. Furthermore the considered data was
acquired with flying heights ranging from 10m to 100m. With the Yellowscan Mapper+ user manual
[40], the point density is estimated around 3402-340points/m2 for 10m and 100m respectively. This
number will however by divided in separate epochs. For each epoch PCA features will be calculated
and this analysis uses a minimum number of 30 points per epoch. The 3402-340points/m2 should re-
sult in multiple valid epochs per grid cell. For these reasons the grid size of 1m by 1m is used for the
rest of the analysis.

6.2.2. Classify grid cells
This step classifies the grid cells in different terrain types. This allows for studying these classes sepa-
rately. The calculated features per grid cell are based on the assumption that the measurements can
be estimated with a plane. The classification will separate the data in the classes: road, grass, trees,
water, shrubs and undefined. The classes road, grass and water can be best estimated by a plane.
The water however often results in low quality measurements and is therefore not considered and only
the road and grass classes are further analysed.

The flow diagram describing the classification of the grid cells is given in Figure 6.7. The method
uses k-means clustering to perform the classification. This algorithm is an unsupervised machine learn-
ing algorithm that can be used to group data based on multiple features. The amount of groups (k) that
are searched for and the features should be chosen by the user. In this case, three different features
are used: maximum height difference in a grid cell, mean intensity value in a grid cell and the square
root of the third eigenvalue of PCA performed on all data in the grid cell. The calculation of these fea-
tures is shown in the dark gray box in Figure 6.7. Afterwards, these features are linearly scaled from 0
to 1, using the minimum and maximum values per feature (min-max normalization). The normalization
is performed, so that all features are considered equal in the k-means classification, as the relative
importance of individual features is unknown. Then the k-means classification is performed to detect:
road, grass, trees, water, shrubs and undefined, with road and grass as most important classes. Multi-
ple numbers of clusters (k) will be tested, and the number separating the classes visually best will be
chosen. All found clusters will be divided in the classes: road, grass, trees, water, shrubs and unde-
fined. This classification method will not result in perfect classification. However as most grid cells are
classified correctly and studied as a group, statistics of the data should still be relevant.

6.2.3. Calculate PCA based features
For the classification PCA was performed on all data in a grid cell. In this subsection, to analyse the
overlapping data, PCA is repeated for the data per epoch so that overlapping epochs can be compared.
The time length (dt) of an epoch is an important input parameter. A too short time length could result
in too few measurements per epoch in a grid cell to estimate a relatively robust plane. A time length
that is too long could result in missing temporal effects that occur on a short time scale. In this case a
time length of 0.1s is chosen. Furthermore, a minimum amount of points per epoch has been chosen
as requirement for calculating the PCA features. In this case a minimum of 30 points was chosen. This
limit was set, as lower point counts per epoch will likely result in a more unstable fit of the plane. Im-
portant calculated PCA features per epoch are visualised in Figure 6.9. These are the mean location
of the points (XPCA = (x̄, ȳ, z̄)), the third eigenvector (N3 = (xN3

, yN3
, zN3

)) and the third eigenvalue
(λ3). Using the mean location and the third eigenvector the height of the PCA plane at the center of the
grid cell is calculated using Equation 6.1. In this equation, xc and yc give the horizontal center of the
considered grid cell.
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Figure 6.7: Flow diagram of the grid classification. Figure 6.8: PCA features calculation flow chart.

Ĥc =
x̄ · xN3

+ ȳ · yN3
+ z̄ · zN3

− xN3
· xc − yN3

· yc
zN3

(6.1)

Implemented method PCA features
Figure 6.8 shows the flow diagram, containing the steps for calculating the explained PCA features for
all grid cells and time steps. The outputs are the plane direction (N3), the estimated height in the middle
of the grid cell (Ĥc) and the square root of the third eigenvalue (

√
λ3). These features are calculated

for all grid cells and time epochs.

The exact method how the time epochs are calculated is as follows. First, all point cloud data in
a grid cell is considered. The point with the lowest time value is considered as the starting point. All
point cloud data is then binned in time epochs from this starting point with time length dt. Then for each
epoch, the mean time of the data points is calculated. These mean times are the epoch values that are
considered in this analysis.

Errors of PCA plane fit
Multiple effects can result in a poor estimation of the terrain with the method explained above. First,
it should be recognised the fitted plane by PCA models the average terrain in the grid cell, but does
not describe the actual terrain perfectly. Figure 6.10 illustrates this. The ground surface might not be
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Figure 6.9: 2D side view of grid cell (R7,C5) in Figure 6.6, with
measurements taken at tE3. The PCA plane is assumed

parallel with the y axis. This figure gives an visualisation of the
PCA features.

Figure 6.10: 2D side view intersection of grid cell (R7,C5) in
Figure 6.6, with measurements taken at tE3. The PCA plane is

assumed parallel with the y axis. This figure gives an
visualisation of the PCA terrain error.

a perfect plane and therefore an error occurs that will be referred to as the terrain error. However, the
LiDAR measurements contain errors measuring the ground surface as well. Therefore the fitted PCA
plane consists of both a terrain error and LiDAR measurement error. The third eigenvalue (λ3) gives
the variance perpendicular to the estimated plane. This variance is influenced by the measurement
errors and the terrain error. The measurement errors mainly consist of random error, scan geometry
based errors and time based errors (caused by the GNSS or IMU). The terrain error is depends on the
terrain roughness.

A further effect that might influence the fitted plane, is the distribution of the measured points in the
grid cell. Locations where only a limited part of the grid cell is measured might find a different fitted
plane compared to when the whole grid cell would have been scanned. An example would be the plane
found with only the left three measurements in Figure 6.10. This plane would be close to horizontal and
different then when all points are considered. This effect might occur on the edges of the scan pattern
when only part of a grid cell is in view of the LiDAR. An additional possible error source depends on the
plane orientation to vertical, as Equation 6.1 is used to estimate the height at the horizontal grid cell
center. A vertical PCA plane will result in this equation in a division by zero and therefore an calculation
error will occur.

6.2.4. Calculate time lag dependent features
During this processing step the estimated height difference (dĤc,tEi

,tEj
) at the center of the grid cell is

calculated with Equation 6.2. This calculation uses the estimated grid cell center height of the lowest
time epoch as reference value. The corresponding time lag between the epochs is calculated with
Equation 6.3. Figure 6.11 shows estimated height difference visually. As shown in Figure 6.12, more
then two epochs can occur in a grid cell. In this case all possible height differences which result in a
positive time lag are calculated.

dĤc,tEi
,tEj

= Ĥc,tEj
− Ĥc,tEi

, for all data pairs in cell with tEi < tEj (6.2)

Tlag,tEi
,tEj

= tEj − tEi (6.3)

All estimated PCA planes of the same grid cell are based on measurements of the same ground sur-
face. Therefore, with perfect measurements the calculated height difference should be close to 0. As
this feature is calculated for different time lags, the error increase for different time lags can be studied.
As the height difference feature (dĤc,tEi

,tEj
) is calculated with a linear relation, and the measurements

are uncorrelated, the variance can be estimated with Equation 6.4. In this equation, ξ represents the
angle of the PCA plane to the normal vector in z direction (nz). This variance consists of the compo-
nent perpendicular to the plane and an additional variance increase when both estimated planes are
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Figure 6.11: 2D side view intersection of grid cell (R7,C5) in
Figure 6.6, with visualisation of the relative PCA features for
epoch 1 and 3. The PCA planes are assumed parallel with the

y axis

Figure 6.12: 2D side view intersection of grid cell (R7,C5) in
Figure 6.6, with fitted PCA planes for each available epochs.

The PCA planes are assumed parallel with the y axis

not horizontally aligned. This part will grow to infinity when a plane is estimated to be vertically aligned.
This indicates the height differences should be calculated with PCA planes that are not rotated too far
from horizontal.
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6.2.5. Analysis of height differences
The input of this processing step are the calculated height differences. In this step, the data is analysed
per terrain class (road and grass). This is achieved by combining the calculated height differences for
all grid cells of the considered class. This results in a large number of height differences and corre-
sponding time lags. By binning the data for a certain time lag step size and calculating metrics per bin,
the behavior of the data can be studied.

Binned median and MAD of height difference
For each bin the median and Median Absolute Deviation (MAD) are computed. The binned median
height difference gives an indication of the average height difference relation with increasing time lag.
The median is less affected by outliers than the mean and has therefore been selected. The median
value can be positive and negative and therefore can study possible biases in the data. An example
is given when the binned median would not be equal to zero on average. When the LiDAR would not
be calibrated well, the estimated heights in front of the LiDAR UAV system might be estimated as too
high and the estimated heights behind the UAV system might be too low. Due to the front looking an-
gle, overlap between these locations in the same flight strip (for small time lags) might then result in a
negative median value for these small time lags.

The MAD gives an indication of the spread of measurements (precision), just as the variance and
the standard deviation. However the MAD is more robust, as the median is used instead of the mean.
This value can give an indication of precision decrease for longer time lags. Two MAD versions are
calculated with Equations 6.6 and 6.7. MADm uses the median value per bin as reference. This is
useful when the median per bin has a clear relation to the time lag. However when no clear relation is
found, and the assumption is made the height bias will on average not deviate from 0 for different time
lags, MAD0 might be a better option.
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MADm = median(|dĤi −median(dĤ)|) (6.6)

MAD0 = median(|dĤi − 0|) (6.7)

Variogram
The variogram is commonly used for Kriging and then studies the variance relation with increasing dis-
tances. In this case the variance relation is studied with increasing time lags. The variogram method
is less robust than MADm and MAD0. The variogram requires the signal to be intrinsically stationary.
This indicates the signal should have second-order stationary increments. These signals can have
linear trends and infinite variance. Furthermore the variogram does not require knowledge about the
mean of the process [25]. The general procedure for estimating the variogram consists of four main
steps: detrending, computation of the variogram cloud, binning of the variogram cloud and fitting the
theoretical variogram model.

Often the data is first detrended. This should only be applied when the trend can be estimated reli-
ably. Detrending is not required but does make analysing the results easier. In this study no detrending
has been performed. Then the variogram cloud is computed. This is achieved by plotting dĤ2

c,tEi
,tEj

(it was chosen not to divide by 2 to allow for clearer comparison with the MAD results) against the
previously calculated Tlag,tEi

,tEj
. This variogram cloud is binned, with bin size ∆tv. The range of bin

i is given in Equation 6.9. For each bin, the mean of all calculated height differences in the bin is
calculated using Equation 6.8. These values correspond to the middle of the bin as can be calculated
with Equation 6.10. These calculated values give the sample variogram and are used to fit a variogram
model to the data.
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(6.8)

Bi = (∆tv · i,∆tv · (i+ 1)] (6.9)

tv,i = ∆tv(i−
1

2
) (6.10)

For fitting a variogram model, first a cutoff value is chosen. Data with time lags larger than this
value is not considered when fitting the variogram. For larger time lags often less data is available, this
might lead to a less stable result. The cutoff value assures a minimum amount of data points is used to
estimate the sample variogram points (mean bin values). This makes it easier to interpret the sample
variogram and fit a variogram model to the data. The cutoff value is determined by plotting the number
of pairs of observations per bin. In this histogram the time lag at which the number of data pairs starts
to decrease rapidly is generally a good cutoff value. When the overall trend of the sample variogram
does not change too much, a larger cutoff value could be chosen. With the resulting sample variogram,
a variogram model is chosen. To allow for better comparison with the MAD values, square root the
sample variogram values are taken to acquire the same unit.

Along track scan angle change
With the proposed method, data from multiple flying heights is considered. For different flying heights
with the same fly speed, the scan geometry changes differently for the same time lag in along track
direction. Therefore the MAD values and variance values are not only plotted for time lags, but with
Equation 6.11 the time lags are calculated to the average along track angle change. This way it was
attempted to get more insight in the data.

ϵalong = arctan(dt · v
h

) (6.11)
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Figure 6.13: Overview relative scan geometry quality method.
It builds on the overlap analysis. Only the right most column

contains new blocks.

Figure 6.14: Scan geometry features: range (R) and ialong
visualised in 2D. iacross is calculated in a similar manner as

ialong, but in the across track and z direction plane.

6.3. Scan geometry analysis
This method evaluates the influence of scan geometry on the data. It builds upon overlap analysis
presented in section 6.2. A flow diagram of the processing steps is given in Figure 6.13. The acquired
point cloud data is again split in horizontal grid cells. The data in each grid cell is divided in time epochs.
For the data of each epoch a plane is fitted with PCA. The square root of the third eigenvalue (

√
λ3,

estimated standard deviation perpendicular to the fitted plane) is used as quality metric and will be
referred to as noise level. The noise level mainly consists of a terrain error, constant random measure-
ment error and a scan geometry error as discussed in subsection 6.2.3. For each PCA plane, the scan
geometry features: along track incidence angle (ialong), across track incidence angle (iacross) and range
(||R||) are calculated. These features are visualised in Figure 6.14. With this data, two different analy-
sis are performed. First the distribution of the median number of points per fitted PCA plane, number of
PCA planes and median noise level over the scan pattern is studied. Second, the relation between the
noise level and along track incidence angle, across track incidence angle and range will be individually
examined. As each terrain type might influence the noise level in a unique manner, the data is studied
per class.

The analysis will be conducted using the same data set as the overlap analysis. This is the Zegveld
data acquired at 06-12-2023. This data set was selected due to its relatively flat terrain surfaces, and
data availability of different flight heights. As the same data set was chosen, the features calculated for
the overlap chapter can be used. All overlap analysis parameters are kept the same (grid size is 1m x
1m, epoch time length for PCA fitting is 0.1s, minimum of 30 points in epoch). The classes road and
grass will be again analysed separately.

6.3.1. Calculate scan geometry features
The scan geometry features that will be calculated are the along track incidence angle (ialong), the
across track incidence angle (iacross) and the range (||R||) as illustrated in Figure 6.14. All features re-
quire theR vector. This vector is calculated for all fitted PCA planes. The vector starts at the estimated
LiDAR location closest in time to the mean time of the fitted PCA plane and stops at the estimated
PCA plane height in the center of the grid cell. The length of this vector gives the range. The smallest
angle between this vector and theN3 vector of this plane in along track and across track direction gives
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Figure 6.15: Scan geometry feature calculation flow chart.

the incidence angle in along track and across track direction respectively. These angles are calculated
Equations 6.12 and 6.13 for the along track incidence angle and Equations 6.14 and 6.15 for the across
track incidence angle.
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6.3.2. Analyse scan geometry features
The scan geometry features are studied in two parts, first the distribution of features in the scan pattern
is examined. Then the relation between the noise level and along track incidence angle, across track
incidence angle and range will be studied separately.

Distribution of features in the scan pattern
First the distribution of features in the scan pattern is studied. Here, the across and along track in-
cidence angles are plotted against each other. This figure is binned in 2D. With color, the values of
certain features are visualised per bin. This gives information in the distribution of the features over
the scan pattern. The features that are studied are: the median amount of points per fitted PCA plane,
the number of PCA planes and the median noise level. The median amount of points per PCA plane
feature combined with the number of PCA planes feature gives an indication how densely the terrain
is scanned over the scan pattern. The number of PCA planes per bin gives an indication by how many
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values the noise level is estimated for each scan incidence angle. The median noise level value offers
insight in locations in the scan pattern which might have better or worse precision than average.

Relation individual scan geometry features with the noise level
The relation between the noise level and along track incidence angle, across track incidence angle and
range will be examined separately, with a similar method as performed in section 6.2. Per class all
calculated values will be binned for the scan geometry features and the median noise level per bin will
be calculated. A larger bin size will smooth the data further, but might cause relevant signals in the
data to be lost. Furthermore, the minimum amount of points per bin when calculating the median is set
to 30. This is implemented to limit group medians that are based on a small data number and therefore
shows erratic behavior.

6.4. Vibration analysis
As discussed in section 5.4, excessive vibrations of the Yellowscan Mapper+ have been observed dur-
ing the flights at Springert dunes. These vibrations will be compared for different damper setups using
periodograms that are created using IMUmeasurements. Furthermore, other processes that influcence
the vibration data will be explored. First the different damping setups are given, then the available IMU
data is discussed. Then the method for calculating periodograms is given based on acceleration mea-
surements of the IMU data.

6.4.1. Damper setups
As shown in chapter 5, four different damping setups have been used during the performed flights. The
green damper setup with untight tie wraps is shown in Figure 6.16. The first flights in Zegveld were
flown with the black dampers provided by DJI. There dampers however, did not support the weight
of the Yellowscan Mapper well and elongated significantly. Therefore the rest of the flights were per-
formed with the stiffer green dampers provided by Yellowscan. The black dampers of DJI will not be
considered in this chapter.

As described in chapter 5, the green dampers could be extra secured with tie wraps to hold the
Mapper+ should the dampers detached. This resulted in three different used flight setups. The flights
during the second day at Zegveld had no tie wraps, the flights at Springert dunes had tight tie wraps and
the flight at Waarde had untight tie wraps. During the Springert flight, strong vibrations were observed
of the Yellowscan Mapper+ below the UAV. As a possible cause, it was suspected that the newly fitted
tie wraps were attached too tight and could impede the proper working of the dampers. Therefore,
before the next flight at Waarde, the tie wraps were re-attached in such a way (untight) that the work
of the dampers was not impeded.

Figure 6.16: Setup with green dampers and untight tie wraps.
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6.4.2. Available IMU data and time series analysis
To analyse the vibrations of the scanner, the IMU recordings of the flight have been used. The exported
acceleration data provides measurements in three dimensions: across-track, along-track, and up, with
the units expressed in gravitational acceleration (g). To convert the accelerations to the units of meters
per second squared (ms−2), each acceleration is multiplied by the gravitational acceleration constant,
g = 9.80665ms−2. It is important to note that the up-direction acceleration has been adjusted to account
for gravity, resulting in an average value of approximately 0ms−2. Angular accelerations were available
but have not been studied. It was assumed the oscillation of the Mapper+ would have been mainly
occurred in displacements and not in rotations. However, angular accelerations might be of interest
for further research. First these raw acceleration measurements are studied and compared between
flights.

6.4.3. Power Spectral Density analysis
To gain further insight in the system’s vibration, the acceleration time series were analyzed in the fre-
quency domain. This was achieved by estimating the Power Spectral Density (PSD). This represents
the frequency spectrum of the auto-correlation function and is commonly used to study random signals.
The PSD provides information regarding the distribution of power over the frequency domain.

Required periodogram assumptions
The PSD can be estimated with the periodogram. The periodogram can be calculated with the Fourier
transform of a signal. The calculated power is then normalised to power per Hertz. This allows for
comparing signals in the frequency domain with different lengths in the time domain. In this report, all
periodograms are presented as one-sided. This indicates only the positive side of the frequency spec-
trum is shown. The negative side is for the periodograms in this report the positive side mirrored on
the y-axis. To ensure the same area under the one sided periodogram as the two sided periodogram,
the found powers at all frequencies are multiplied by a factor 2. The smallest frequency that can be
distinguished by the periodogram is the Nyquist frequency. This is half the sample frequency (100Hz),
which results in a Nyquist frequency of 50Hz. Frequencies higher than the Nyquist frequency will be
aliased. This results in a folding of the frequency around the Nyquist frequency to to a value lower than
the Nyquist frequency.

The resolution of the periodogram depends on the total time the signal is measured. A longer signal
will result in a finer spectral resolution of the signal. Zero values can be added on the end of a shorter
signal before calculating the periodogram. This is called zero padding the signal. This will however
not result in an ability to increase the spectral resolution. However the signal is calculated on new
analysis frequencies, and shows the original fitted function in spectral domain on these new analysis
frequencies. This can be used to get the data lengths of a power of 2 and speeds up the calculation.
Furthermore, zero padding can be used to get a better visualisation of the underlying Fourier transform
and makes it possible to change the analysis frequencies.

For a periodogram to be valid the signal needs to be Wide-Sense Stationary (WSS). This indicates
the signal has a stationary mean and autocorrelation for the infinite signal. If one realisation of a pro-
cess is used to calculate the periodogram, the process must be ergodic in mean and autocorrelation.
Ergodic signals have the converging statistical characteristics per ensemble (time section) to the the
infinite (time) series. Signals with an ergodic mean, should have a stationary mean as shown in Equa-
tion 6.16 for the random signal x(t) with τ each possible time lag. WSS fulfils this criteria directly.
Furthermore the ensemble mean should converge to the mean of the infinate process. This is de-
scribed in Equation 6.17. For a WSS process to be ergodic in autocorrelation the process should fulfill
Equation 6.18. This indicates the ensemble autocorrelation should converge to the autocorrelation of
the full process.

E[x(t)] = E[x(t+ τ)] (6.16)

E[|
∫ ∞
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E[| lim
T→∞
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x(s+ τ)x(s)ds−Rx(τ)|2] = 0 (6.18)

The studied signal consists of multiple processes. As the combined signal should be WSS and
ergodic in mean and autocorrelation, the individual processes should be studied as well. For the com-
bined process to be WSS the component processes should have a stationary (statistical property does
not change over time) mean, variance and covariances. WSS processes already have a stationary
mean and variance. When component processes are independent, covariances are equal to 0 and
therefore stationary and the required condition is reached. However dependent signals can have a
stationary covariance as well. This requires the component signals to have stationary variances and a
stationary relationship over time. This indicates signals will influence each other, but have a consistent
response for the whole process. The resulting covariance will be stationary as well.

Autocovariance can be seen as the not normalized autocorrelation. When signals are independent,
zero in mean and ergodic in autocorrelation, the autocovariances of both signals can be added to
achieve the autocovariance of the combined signal. This can then be normalized (using the variances
of the combined signal) to acquire the new autocorrelation. The independence of the signals and zero
mean of the signals causes the cross-correlation to be zero. Therefore the autocorrelation will be er-
godic for the combined signal.

To determine if these assumptions are reached, the different components of the signal are deter-
mined. The IMU acceleration measurements of a complete laser scan flight consists off:

• accelerations in the flight path by the UAV
• accelerations caused by wind (expected random signal)
• accelerations flight corrections by the UAV
• accelerations caused by oscillation of the sensor
• noise from the acceleration sensor

The analysis will first focus on the accelerations resulting from the flight trajectory of the UAV. This
component of the IMU signal is not WSS, since the mean acceleration varies during turns. Moreover,
turns also affect the autocorrelation of the signal. Additionally, this component is not ergodic in mean
and autocorrelation as as the mean and auto-covariance of accelerations can differ for chosen ensem-
bles of the complete flight. To overcome these issues, only IMU data acquired during flight lines will
be considered in the rest of this chapter. During flight lines, the UAV system attempts to maintain a
constant speed. Therefore the accelerations caused by the flight path component will be 0 during each
flight line. As a result, the flight lines data can be assumed to be WSS and ergodic in mean and auto-
covariance and have a zero mean.

A constant wind (even when not corrected for by the UAV) will not result in additional accelerations.
However wind gusts will accelerate or decelerate the UAV. For this chapter it is assumed the wind con-
ditions stay the same for each individual flight, but is probably not true. Therefore the wind direction,
speed and frequency of wind gusts should be the same for each flight line and all flight lines during one
flight. As the mean and variance wind accelerations and behaviour of the wind acceleration relative
in time stays constant during the whole flight, the wind is a WSS process. The flight path correction
signal brings the UAV back to the flight path after a wind gust. This process is a direct to the WSS wind
signal and attempts to cancel this effect. Therefore this process is WSS as well. As the wind and path
correction accelerations are dependent on each other, the combined signal is not required to be WSS.
However as discussed before, when signals have a stationary relationship over time, the covariance
will be stationary as well. For this reason the combined wind and flight path correction acceleration
signals will be WSS in time.

As ergodic wind conditions were assumed and the flight path correction accelerations are a reaction,
the flight path conditions are also assumed to be ergodic. However both processes are dependent as
discussed above, therefore the mean and autocorrelation of the combined process is not required to
be ergodic in mean and autocorrelation. As the wind and flight correction acceleration signal is should
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have an estimated zero mean for the whole duration of the process and should converge in mean
square sense to 0, the combined signal is ergodic in mean. As the wind and flight correction combined
signal should have the same same lag dependent behaviour for the infinite signal under ergodic mean
and autocorrelation wind conditions, the combined signal should be ergodic in autocorrelation as well.

Oscillation of the sensor depends on two main factors. The Mapper+ has a natural frequency that
is dependent on the weight of the Mapper+ and the stiffness of the dampers. The system tends to
oscillate in this frequency when no outside force drives vibrations. The second factor is the driven oscil-
lation caused by outside forcing. This causes vibrations to remain in a system as the natural frequency
caused by displacement of the system dampens out eventually. This can be called the steady state
solution. Then the driven oscillation have a component near a natural frequency of the system, the
system will resonate. The vibrations will increase until the damping force is large enough to balance
the oscillation. It is assumed the vibrations during flight lines are in steady-state and therefore will stay
the same for the whole duration of the flight line. Therefore the mean acceleration and autocorrelation
should stay the same for the complete duration of each flight line. Therefore the system is WSS. Fur-
thermore the variance of the system stays stationary for the entire flight line. It is assumed the mean
and autocorrelation of the process converge in mean square sense to the mean and autocorrelation of
the infinite signal. Under these assumptions the process is ergodic in mean and autocorrelation. Fur-
thermore the mean of the signal will be zero as the vibrations will cause the same amount of positive
and negative vibrations.

The noise of the sensor is assumed to be WSS, ergodic in mean and autocovariance, have a zero
mean and stationary variance. This is a reasonable assumption as it is assumed the sensor noise
will not introduce a bias in the data. Furthermore it is likely the noise of the sensor does not depend
on the absolute time, but might contain relative time lag effects that stay constant (autocovariance is
stationary).

The processes described above will together result in aWSS and ergodic in mean and autcorrelation
signal, under the assumptions that have been made.

Mean and mean Welch periodogram
For all available data, the mean and mean Welch periodogram are calculated per location and flying
height, to get more insight and compare signals better. First the mean periodogram will be explained.
First, the data was zero padded to a rounded value larger than the data length of the longest flight line
of the considered location. This way the periodogram is calculated for each flight line on the same
frequencies. This allows for averaging the values. The variance of the mean periodogram should de-
crease with the amount of periodograms that are averaged. The used periodograms are calculated
with a rectangular window.

Furthermore, the Welch periodogram has been calculated for each flight line. The Welch peri-
odogram uses overlapping segments (often 50%, this is used by all flights in this chapter as well)
of the signal of length M (needs to be set by the user). Longer segments will result in a higher spectral
resolution and high variance, shorter segments will result in a lower spectral resolution with lower vari-
ance. For each segment the periodogram is calculated with a Hann window. Afterwards, the data is
averaged. As explained, the variance reduces with the amount of periodograms averaged. However,
as segments of the signal are used to calculate the periodogram and not the complete signal, the spec-
tral resolution will be lower. Finally the mean Welch periodogram is calculated by calculating the mean
over all available individual flights strips per location and flying height. This again reduces the variance
of the result. The resulting mean periodograms and mean Welch periodograms will be compared for
the different locations and flying heights.
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Results

In this chapter, the results of the different performed quality analysis methods are given. Section 7.1
gives the results of the performed target analysis. This analysis detects targets in point cloud data
and compares the found coordinates to GNSS measured coordinates of the same targets. The results
of the overlap analysis are given in section 7.2. Section 7.2 gives the results of the overlap analysis.
Section 7.3 presents the results of the scan geometry analysis. Here the effect of the incidence scan
angle and scan range is studied. In section 7.4, observed vibrations of the LiDARmodule are examined.
The final subsection of each method consists of the main conclusions.

7.1. Target analysis results
All targets have been detected in the point cloud data with the automatic and manual method described
in section 6.1. With the estimated target coordinates and GNSS measured target coordinates, multiple
quality assessments are performed. First the performance of the automatic and manual target fitting
methods is analysed in subsection 7.1.1, based on visual data. Then separate error sources that in-
fluence the data are studied in detail in subsection 7.1.2. Afterwards, the data is tested for biases in
subsection 7.1.3. Next, the relative precision relation with horizontal distance is investigated in subsec-
tion 7.1.4. In subsection 7.1.5, the data is tested for rotational biases.

7.1.1. Visual target detection performance and point density
Here the automatic and manual target detection results are visually analysed to see if the methods find
the targets as expected. All automatically and manually estimated target coordinates and GNSS target
coordinates can be found in Appendix A. This appendix also includes figures showing the estimated
target locations with intensity and RGB data. As the performance of the methods is influenced by the
point density, first the average target point density is calculated for all flown height. Then the visual
performance of the automatic and manual methods is studied.

Target point density
The estimated point density per target is based on the number of points in a radius of 0.5 meter of
the GNSS measured target coordinate. This includes all the points shown in the target Figures 6.3,
7.2 and 7.3. By dividing the total number of points found by the area of a circle with a 0.5m radius,
the point density (ρ) per m2 is estimated. Per flying height, the mean point density is calculated and
given by the red line in Figure 7.1. For better understanding, the average distance between the points
when homogeneously spread over a flat surface is estimated. To estimate this, the assumption was
made the points are positioned on a flat horizontal surface in a hexagonal lattice. This is the densest of
all possible circle packings [4]. With these assumptions, the average nearest neighbour distance can
be estimated with Equation 7.1. In this equation, D is the nearest neighbour distance between points
and ρ the point density. The estimated average distance between points is given by the blue line in
Figure 7.1.

50
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Figure 7.1: Measured target density for multiple flying heights in red. The blue data represents the estimated average nearest
neighbour distance.

D =

√
2√
3ρ

(7.1)

As shown in Figure 7.1, the targets at the 30m height flight have a much larger point density than
the targets at the 50m and 70m flying height. There are multiple reasons for this. First the larger flying
height result larger terrain coverage by the LiDAR compared to a lower flight with the same LiDAR
scan angles. As the same number of points are scanned per second, the point density will be lower
for larger flying heights. Furthermore, the flight ground speed was 5m/s for the 30m height flight and
10m/s for the 50m and 70m height flights. This results in lower point density for the larger heights as
well. Additionally, only the 30m flight was flown in grid pattern opposed to the 50m and 70m height
flights. Therefore the full area was scanned twice for the 30m height data and increased the point
density. This resulted in a estimated point density of around 3500 points/m2, and therefore around
800 points per measured target (with target area of 0.25m2). The corresponding estimated average
point distance is less than 2cm. The 30m and 70m height flights both have an estimated point density
below 500 points/m2, and therefore on average less than 125 points per target. For these heights, the
estimated average point distance is larger than 5cm.

To estimate the horizontal coordinates of targets, both the automatic and manual target detection
methods rely on measurements near the edges of the targets. Points acquired both on and immediately
adjacent to the target provide the delineation of the target boundaries. Now an example will be given
where the across track horizontal position of a target aligned with a flight line is of interest. In this case
two straight borders of 0.5m length, between the target and the surroundings are used to estimate the
position. With a flying height of 30m, the average point distance is around 2cm. In this case each
border will have around 25 crossing pairs of points, and a target in total around 50 crossing pairs. Of
these pairs one point is outside of the target and one within. Each crossing pair again has on average
2cm distance. This performance is much better than the 50m and 70m flying height data. This data
will have less than 10 crossing pairs with a crossing pair distance of more than 5cm.

Visual performance automatic target detection
The figures in Appendix A show the automatic fit results for each target with intensity data. Based on this,
most targets seem to be located correctly with the automatic target detection method. The precision
however seems to vary significantly between the different flying heights. For 30m, the automatic target
detection method detected all targets with possibly cm level precision. The worst fit seemed to be target
5, this target was possibly partially covered with sand as shown in Figure 6.3. The results of the 50m
and 70m flying height data showed a much lower precision. This is likely caused by the much lower
density and lower intensity contrast for some targets. The targets in the 50m and 70m flying height
data seem to have a range of point densities for individual targets. The lower point densities seem to
correspond to higher measured intensities in the center of the target and higher point densities seem
to correspond to lower measured intensities in the center of the target. An example of this is can be
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found in Figures 7.2a and 7.3a. For target 2, the point density is much lower than for target 6, however
the intensity contrast of points on the target and next to it, seems better for target 2 then for target 6.
This effect is likely caused by scan geometry. Smaller incidence angles of the LiDAR pulse likely result
in stronger back scatter of the target, and therefore increased intensity. The larger incidence angles,
the back scattered signal of the target is likely lower. Furthermore, the point density seems to increase
at the across track edges of the scan pattern (Figure 5.1) and will result in more points at larger across
track incidence angles. The Figures 6.3, 7.2 and 7.3 show the lower precision of the automatic fitted
targets for the 70m flying height compared to the 30m flying height. The automatic target fitting results
of the 50m flying height data are comparable to the 70m flying height data.

Figure 7.2: Target 2 for 70m flying height. The automatic fitted target result is given with intensity and RGB data in figure a and
b respectively. Figure c gives the manual fitted result.

Figure 7.3: Target 6 for 70m flying height. The automatic fitted target result is given with intensity and RGB data in figure a and
b respectively. Figure c gives the manual fitted result.

Visual performance manual target detection
The figures in Appendix A show the manual target fitted results for each target with RGB data. Based
on this, on average targets seem to be located correctly with the manual target detection method. The
precision however seems to again vary significantly between the different flying heights. For the 30m
data, the method performed well. Target 5, that was likely partial covered by sand, did not effect the
manual fit as this could be accounted for as shown in Figure 6.3. For this data again centimeter precision
based on the RGB data might be reached. The manual target fitting resulted in lower precision for the
50m and 70m flight height data. For the 50m and 70m flight height data the complete target shape,
with two white and two red triangles meeting in the center, could not always be detected. This led to
attempting to fit most red and white points as possible in the target shape and estimating the center
with this method. Results of this are shown in Figures 7.2c and 7.3c.
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Intensity and RGB point cloud data
The automatic and manual target fitting data, are based on different data. The automatic method uses
intensity data, which is directly measured by the LiDAR sensor. The manual method makes use of
the RGB data, which is acquired by projecting pictures to the point cloud data. This projection might
result in an additional error source when the quality of the LiDAR instrument is of interest. Figure 6.3a-
c seems to show a slight offset between the optimal intensity and RGB based target location. Such
offsets are found visually, for some targets in the 50m (targets 3,6,8 and 9) and 70m (targets 7 and
9) flying height data. In subsection 7.1.2 the influence of the separate error components in the fitted
target coordinates is studied in more detail.

7.1.2. Error components analysis
The estimated coordinates of the targets in the point cloud consist of multiple linearly related and un-
correlated sources. This includes the true target location and multiple error sources. In this subsection
the variance and expectation of separate error sources is studied. The reference GNSS receiver for
the UAV LiDAR point cloud acquisition was located on target 6. Therefore the receiver influences the
measurements of this target and especially the estimated height. Therefore this target is filtered out of
the data when considering the estimated target heights.

Method
The error sources of the automatic fitted target coordinates are a point cloud error (εpc) and automatic
target fit error component (εauto), as shown for target number i in Equation 7.2. The manual fitted target
coordinate error sources are again a point cloud error (εpc) and a manual fit error component (εmanual),
as given in Equation 7.3. The GNSS measured target coordinate error consists of a GNSS error com-
ponent (εGNSS) as depicted in Equation 7.4.

Xpc,auto,i = Xtrue,i + εpc,i + εauto,i (7.2)

Xpc,manual,i = Xtrue,i + εpc,i + εmanual,i (7.3)

XGNSS,i = Xtrue,i + εGNSS,i (7.4)

By calculating the coordinate differences between the different methods for the same target, only
the error components remain in the data. The differences between the automatic method and GNSS
coordinates can be calculated with Equation 7.5. The differences between the manual method and
GNSS coordinates can be calculated with Equation 7.6 and the differences between the automatic
method and the manual method estimated coordinates can be calculated with Equation 7.7. All shown
differences, result in a different combination of error components. This is performed in along track
across track and vertical direction.

∆Xauto,GNSS,i = Xpc,auto,i −XGNSS,i = εpc − εGNSS + εauto (7.5)

∆Xmanual,GNSS,i = Xpc,manual,i −XGNSS,i = εpc − εGNSS + εmanual (7.6)

∆Xauto,manual,i = Xpc,auto,i −Xpc,manual,i = εauto + εmanual (7.7)

With Equations 7.8 and 7.9, respectively the expectation and variance of the coordinate differences
calculated in Equations 7.5, 7.6 and 7.7 can be found. In Equations 7.8 and 7.9, the i subscript indicates
the target number that is considered and n indicates the total number of target coordinate differences
considered.

Ê[∆X] =
1

n

n∑
i=1

∆Xi (7.8)
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V̂ar(∆X) =
1

n− 1

n∑
i=1

(∆Xi − Ê[∆X]) (7.9)

As the error components found in Equations 7.5, 7.6 and 7.7 are linear related and uncorrelated,
the combined variance consists of the sum of the individual components. This can be written as Equa-
tion 7.10.  Var(∆Xauto,GNSS)

Var(∆Xmanual,GNSS)
Var(∆Xauto,manual)

 =

1 1 0
1 0 1
0 1 1

Var(εpc) + Var(εGNSS)
Var(εauto)
Var(εmanual)

 (7.10)

Equation 7.10 can be rewritten to Equation 7.11. This allows for the estimation of the variances of
the combined point cloud and GNSS error, the automatic fitting error and the manual fitting error. By
plotting the estimated variances of the different error sources for multiple flying heights, the effect of
flying height on the error sources can be estimated. This can be performed for along track, along track
and up direction.Var(εpc) + Var(εGNSS)

Var(εauto)
Var(εmanual)

 =

 0.5 0.5 −0.5
0.5 −0.5 0.5
−0.5 0.5 0.5

 Var(∆Xauto,GNSS)
Var(∆Xmanual,GNSS)
Var(∆Xauto,manual)

 (7.11)

The error components found in Equations 7.5, 7.6 and 7.7 are linear related and uncorrelated. This
allows for modeling the expectations of the individual error components as shown in Equation 7.12.
However, opposed to the variance model shown in Equation 7.10, the square matrix in the center of
Equation 7.12 cannot be inverted. This is caused by the fact that the determinant of the matrix is zero,
as the matrix is linearly dependent. Therefore, in current form this equation cannot be used to estimate
the expectations of the individual error components. E[∆Xauto,GNSS]

E[∆Xmanual,GNSS]
E[∆Xauto,manual]

 =

1 1 0
1 0 1
0 1 −1

E[εpc]− E[εGNSS]
E[εauto]
E[εmanual]

 (7.12)

To solve Equation 7.12, the one of the rows in the right most vector should be known or assumed.
First option is the difference between the point cloud and GNSS error expectation. However the exact
errors in the point cloud data are unknown and of interest for study. Second option is to set the ex-
pectation of the automatic fitting method to a known value. The automatic fitting method is based on
intensity data, and therefore uses the same LiDAR data that was used to position the points in the point
cloud. This supports the possible assumption E[εauto] = 0. The third option is to set the expectation of
the manual fitting method. However the manual fitting method is based on RGB data. The RGB data
in the point cloud is based on projected pictures and therefore might add an additional error source
with possible bias to the expectation of the manual target fitting method. This might be of interest to
study, but no value can be assumed for this variable. Therefore is was chosen to make the assumption:
E[εauto] = 0. This was used to formulate Equation 7.13.[

E[∆Xauto,GNSS]
E[∆Xmanual,GNSS]

]
=

[
1 0
−1 1

] [
E[εpc]− E[εGNSS]

E[εmanual]

]
(7.13)

Equation 7.13 can be rewritten to Equation 7.14. With this new equation, the expectation of the point
cloud error relative to the GNSS target measurement error, and the expectation of the manual target
fitting method can be studied. Like the expected variance calculation for the different error sources, the
estimated expectations for the different error sources will be calculated for multiple flying heights, and
for along track, along track and up direction.[

E[εpc]− E[εGNSS]
E[εmanual]

]
=

[
1 0
−1 1

] [
E[∆Xauto,GNSS]
E[∆Xmanual,GNSS]

]
(7.14)
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Results
First all calculated coordinate differences are plotted in Figure 7.4. This allows for studying the behavior
of the data. A first observation is that the data has lower variance, for 50m and 70m flying height in
up direction than the along track and across track direction. An additional observed effect is the large
∆Xauto,manual value for 70m height in along track direction with a value just below 0.30m. This value
corresponds to target number 7 and is seen as outlier. This target has been filtered out of all calculated
coordinate differences in the 70m along track data for the rest of the analysis. The resulting estimated
standard deviations are given in Figure 7.5a-c and the resulting estimated expectations are given in
Figure 7.6a-c. The calculated estimated expectation and standard deviation values of∆Xauto,GNSS and
∆Xmanual,GNSS are given in Table 7.2.

Figure 7.4: All calculated coordinate differences in along track, across track and up direction. The coordinate differences are
calculated for the 30m, 50m, and 70m height flights.

Analysis of the variances of the coordinate differences and estimated error components shown in
Figure 7.5, is given in the bullet points below:

• Overall the standard deviations of the calculated coordinate differences∆Xauto,GNSS and∆Xmanual,GNSS
seem to increase with flying height as expected, as found in Figure 7.5a-c. The errors in these
differences depend on the point cloud error, GNSS target measurement error and fitting method
error, as shown in Equations 7.5 and 7.5. As the point cloud error and fitting error likely increase
with flying height, the estimated standard deviation would increase as well. The estimated stan-
dard deviations increase faster for along track and across track than up direction. This is likely
caused by the different target center detection methods. In along track and across track direc-
tion, the horizontal automatic and manual target method is performed. This method relies on
detecting the border of the targets, and seems to perform worse for larger flying heights quickly.
This method is based on around 10-50 crossing data points pairs depending on flying height (de-
scribed in subsection 7.1.1). The up direction fit uses a fitted plane based on around 125-800
points per target depending on flying heights (described in subsection 7.1.1). This might explain
the larger standard deviation increase for along and across track than up direction.

• Figures 7.5a and 7.5b show a large estimated standard deviation for ∆Xauto,manual. This might
indicate a horizontal bias between the automatic fitted target location and manual fitted target
location, as this would increase the estimated standard deviation. Therefore, this might indicate
a bias between the horizontal intensity and RGB point cloud data. Figure 7.5c shows a low
estimated standard deviation for ∆Xauto,manual and indicates a much better agreement between
the different target fitting methods in up direction.

• Due to the asymmetric footprint of the LiDAR, a lower standard deviation would have been ex-
pected in across track direction than along track direction. When Figures 7.5a and 7.5b are
compared, this is not the case. The across track standard deviation is even slightly higher. In
these figures the 30m flying height data is not considered due to the grid flight that was performed
at this height and along track and across track directions are interchangeable. A possible partial
explanation for this, when a horizontal flat terrain is assumed, is that the across track incidence
angle with the terrain will be on average larger than in along track direction. This is due to the
field of view and scan pattern of the LiDAR. This larger across track incidence angle will widen
the footprint in this direction more than in along track direction. This effect has been found to
increase the across track footprint size with around 22% more than when only distance would be
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taken into account. Therefore it increases 22% more than the along track angle. Still the across
track footprint size is much smaller than the along track footprint size at 70m flying height and
maximum across track incidence angle (35.2◦). Here the footprint is estimated to have an along
track size of 41.9cm and across track size of 5.5cm. As this effect is small, likely other effects
influence the estimated standard deviation of ∆Xauto,GNSS as well.

• In Figures 7.5d-f, the different error components are estimated. Figure 7.5d shows negative esti-
mated standard deviation at the 30m flying height for the point cloud with GNSS error. This cannot
occur in reality but follows from the used estimation method. It indicates the estimated standard
deviation of this component is much lower than the other components at this height. At 50m flying
height the estimated standard deviation for this error component seems very low as well. This,
as the standard deviation of just the GNSS error component in horizontal direction is expected
to be around 10mm. This would indicate a very small point cloud error and is deemed unlikely.
The particular behavior of these data points might result from the relatively large coordinate dif-
ferences in ∆Xauto,manual for this direction and flying height. This can be seen in Equation 7.11.
These large coordinate differences might be caused by large differences in target coordinates in
the intensity data and the RGB data. The error decomposition shows in Figure 7.5d the much
larger estimated standard deviation for the automatic and manual fitting method errors than for
the point cloud with GNSS errors. In across track direction trends align better with the expected
results, as shown in Figure 7.5e. The standard deviation of the point cloud and GNSS errors
shows a linear increase with flying height. As the GNSS error standard deviation stays constant,
the increase is likely caused by the errors within the point cloud. The standard deviation of the
auto fitting method is estimated to increase with height as well. The lower point density and larger
foot print sizes might explain this. The standard deviation of the manual fitting method does in-
crease overall, but seems lower than expected at 50m flying height. The deviation is however
small and might be attributed to chance. Figure 7.5f shows a large estimated standard deviation
of the point cloud and GNSS errors, compared to the other components. This indicates errors
of the target detection are expected to be lower than the errors in the point cloud combined with
GNSS data. Therefore errors in the point cloud might be possible for study. The standard de-
viation of the automatic fitting errors is estimated to be negative. This again indicates the low
standard deviation of this method compared to the other methods.

Figure 7.5: The estimated standard deviations of the coordinate differences are given here in figures a-c, per flying height and
direction. Figures d-f give the estimated standard deviations of the decomposed error components. It is important to note
negative standard deviations are plotted, but are not possible in reality. This is caused by the performed method. The

calculation for standard deviation took the square root of the absolute variance. The sign of the original variance was added
with: a =

ˆV ar(ε)

| ˆV ar(ε)|
.
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Analysis of the expectations of the coordinate differences and estimated error components shown
in Figure 7.6, is given in the bullet points below:

• When Figures 7.6a-c are studied, it can be seen the expectations of∆Xauto,GNSS and∆Xmanual, GNSS
are generally within 30mm. This is the specified accuracy by Yellowscan. Only the 50m flying
height in along track direction forXauto,GNSS seems to fall outside. This might indicate a bias in the
intensity data in the point cloud. For the rest of the data points the performance of the automatic
and manual fitting methods seem similar.

• The estimated expectation of ∆Xauto,manual for 30m and 50m flying height in along track direction
(Figure 7.6a) is larger then the corresponding estimated standard deviations (Figure 7.5a). This
again points to possible biases between the intensity and RGB based fitted targets in the along
track direction for 30m and 50m flying height. This partially helps explain the negative estimated
standard deviation of the point cloud and GNSS error, for 30m flying height in along track direction
in Figure 7.5d.

• Estimated expectations in across track an up direction in Figures 7.6b-c seem to show overall an
increase in expectation in absolute sense, but all fall within the estimated corresponding standard
deviations. This behavior is as expected and corresponds to the overall increasing estimated
standard deviations with flying height.

• Figures 7.6d-f show the estimated expectations of separate error components. As shown in the
figures, the estimated automatic fit error expectation was set to 0. In up direction, as shown
in Figure 7.6f, the estimated manual fitting error expectation for all flying heights is in absolute
sense consistently lower then the expectation for the point cloud and GNSS error component.
This indicates the point cloud and GNSS error component is likely larger than the manual fitting
method and can therefore be studied more clearly. In along track and up direction, the absolute
value of the estimated expectation of the manual fitting method is comparable and some times
even larger to the expectation of the point cloud and GNSS error component. This indicates, the
fitted targets in along and across track direction are on average, as much influenced by the point
cloud and GNSS error as by the manual fitting error. This makes studying the point cloud error
in these directions more complicated. An additional interesting effect, is the large peak for the
estimated expectation of the point cloud and GNSS error in along track direction for 50m flying
height (Figure 7.6d). As the automatic fitting expection is assumed to be 0. The large value for the
automatic fitted error expectation in along track for 50m flying height (Figure 7.6a) is assumed to
be fully caused by the point cloud and GNSS error. However, it might be possible for the automatic
target fitting error in this case, to be large as well.

Partial conclusions
Observations in Figures 7.5f and 7.6f show that in up direction, the estimated precision and accuracy
of the error component containing the point cloud error relatively large, compared to the automatic and
manual fitting errors. Therefore the point cloud error might dominate the the behavior of the metrics and
might allows for studying of this behavior. For this both the manual and automatic target fitting methods
seem to lead to this result. The horizontal (along and across track) estimated absolute accuracy and
precision of the error components including the point cloud error, seem of comparable size or smaller
than the estimated accuracy and precision of the automatic and manual target fitting methods, as found
in Figures 7.5d,e and 7.6d,e. Therefore, study of the point cloud error in horizontal direction seems not
easily performed. An exception in the large estimated expectation of the error component containing
the point cloud error, found for 50m flying height in Figure 7.6d. This might point to a bias in the data.
In general, the estimated horizontal target locations, found with the manual and automatic target fitting
methods, do not seem good enough to study point cloud errors in horizontal direction. The horizontal
location does seem good enough, to allow for an estimate of the height of the target with an accuracy
and precision that might be dominated by point cloud errors. An effect that might play a role, is that the
terrain surrounding the targets is likely relatively flat. Therefore, small horizontal target locating errors,
might not strongly affect the found height results.

∆Xauto,manual gives the differences between the intensity based automatic fitted targets and the RGB
based manual fitted targets. The estimated expectation of these differences is relatively large in along
track direction for the 30m and 50m flying height data in Figure 7.6a. This might point to a possible
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horizontal bias between the RGB and intensity data. A large bias, would result in a relatively large esti-
mated standard deviation. This is observed in along and across track direction in Figures 7.5a,b as well.

In up direction the automatic and automatic target fitting methods seem to behave similarly, with
slightly higher precision and accuracy for the automatic method. For precision this is seen in Figure 7.5f.
For accuracy, Figure 7.6c, indicates this as in Figure 7.6f the assumption is made the accuracy is perfect.
In horizontal direction, the estimated precision is generally comparable or better for the automatic target
detection method. Only the 30m and 50m flying height data in across track direction (Figure 7.5e)
performs slightly worse. The horizontal accuracy is generally comparable. Only the 50m flying height
data in along track direction (Figure 7.6a) seemsmuch larger for the automatic method. This error might
indicate a bias in the data, but is not yet completely understood. Generally the automatic and manual
target fitting methods perform very similar. However the automatic method is preferred to evaluate
the point cloud quality, as this method uses intensity data which is directly measured by the LiDAR.
Opposed to the manual data which uses the projected RGB data.

Figure 7.6: The estimated expectations of the coordinate differences are given here in figures a-c, per flying height and
direction. Figures d-f give the estimated expectations of the decomposed error components. To allow for this, the expectation

of the automatic error fitting method was assumed to be equal to 0m.

7.1.3. Accuracy analysis
In this subsection, the accuracy of the point cloud data is studied and tested for a bias. First the method
for detecting a bias will be given. Afterwards the results will be analysed.

Method
The coordinate differences between the targets fitted in the point cloud data and GNSS targets mea-
surements are tested for a bias using a one sample t-test. This test can be used when the tested
measurements follow a normal distribution and the mean of the data is tested. The mean of coordinate
differences ∆Xauto,GNSS and ∆Xmanual,GNSS are tested. The error components influencing the expec-
tations are given in Equation 7.12. When it is assumed the expectation of the automatic and manual
fitting errors are 0m, the expectation of the coordinate differences gives the average distance between
the GNSS and point cloud data. As the coordinate reference system of the GNSS in the UAV LiDAR
system and the GNSS rover used for measuring the target locations is very likely the same, it is as-
sumed no bias caused by the GNSS measurements is present in found distances between the GNSS
directly measured target location and point cloud data. Furthermore, the test can be used for low sam-
ple sizes (typically <30 samples). This is relevant as the data to be tested has between 7 and 11 data
points are available, depending on the tested direction (along, across, up) and flying height. To check if
the tested data could follow a normal distribution, the Shapiro-Wilk test is performed. Finally the t-test
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is performed. These 3 steps are further explained below.

The Shapiro-Wilk test is used to test the data for normality, as this is appropriate for small sample
sizes [19]. A python implementation (scipy.stats.shapiro [35]) of the Shapiro-Wilk test was used to
check the data for normality. The null hypothesis for this test is that the data is normally distributed,
the alternative hypothesis is that it is not. In this case α = 0.05 was used. The α value determines the
probability (in this case 5%) the null hypothesis is true but the test rejected the null hypothesis. This is
also called a type 1 error. With this value 95% of the time, when the null hypothesis is true, the correct
conclusion is found and the null hypothesis is accepted.

When the data has been accepted as normally distributed, the one sample t-test is performed to de-
tect biases in the data. The target coordinate differences of the point cloud and GNSS data are tested
with a null hypothesis where the mean is equal to zero. When this is accepted this would correspond to
no detected biases. The alternative hypothesis is chosen with a mean not equal to zero. This is shown
in Equation 7.15. Again an α value of 0.05 is chosen. In the following equations, n is the number of
measurements. The test statistic (T ) of this test is calculated as shown in Equation 7.16. In this equa-
tion V̂ar(∆X) is the estimated variance and is calculated as shown in Equation 7.9. µ is equal to 0m in
this equation. Ê[∆X] is the estimated mean of the measurements. The test statistic is then checked for
the statements in Equation 7.17. If this statement is true the null hypothesis is rejected and the data is
assumed to have a bias. The t values in these statements are found by using the t-distribution for n−1
degrees of freedom and and right tail probability α/2. Here the α value is divided by 2 as is both biases
larger and smaller than 0m are considered. To get more insight in the data, Equation 7.16 is substi-
tuted into Equation 7.17 and rewritten to Equation 7.18. This way, Ê[∆Xauto,GNSS] and Ê[∆Xauto,GNSS],
as calculated in subsection 7.1.2 can be directly compared to the critical values of the t-test. This is the
case, as the µ is 0 for the null hypothesis. If these previously calculated expectations are in absolute
sense smaller than the corresponding critical values, the null hypothesis are accepted and no biases
are assumed.

H0 : µ = 0m and H1 : µ ̸= 0m (7.15)

T =
Ê[∆X]− µ√
V̂ar(∆X)/

√
n

(7.16)

T ≤ −tn−1,α/2 or T ≥ tn−1,α/2 (7.17)

Ê[∆X]− µ ≤
−tn−1,α/2 ·

√
V̂ar(∆X)

√
n

or Ê[∆X]− µ ≥
tn−1,α/2 ·

√
V̂ar(∆X)

√
n

(7.18)

Results
First the same targets are filtered out the analysis as for the error component analysis in subsec-
tion 7.1.2. This are the 7th for along track data at 70m flying height and the 6th target in up direction. All
data was first checked for normality using the Shapiro-Wilk test. The data was not disproven to follow
a normal distribution by the Shapiro-Wilk test. The results of the t-test are given below.

Table 7.1 shows the found critical values for the t-test, and Table 7.2 the estimated mean and stan-
dard deviations (these are the same values as shown in Figures 7.5a-c and 7.6a-c). Table 7.2 shows
estimated means that reject the null hypothesis in red. The background colors white to black indicate
how close the value is to the critical value. With white indicating the largest possible difference. As
can be seen, the mean value of the 50m flying height automatic target fitting method, rejects the null
hypothesis and therefore it is assumed there is a bias in this data. This corresponds to the large ex-
pectation peaks found in Figures 7.6a and 7.6d for automatic fitting and GNSS coordinate difference
and point cloud GNSS error respectively. This bias might originate from the point cloud error or the
automatic target fitting error. As the automatic target fitting method seems to perform well in all other
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Table 7.1: Critical values for the estimated expectations of ∆Xauto,GNSS and ∆Xmanual,GNSS.

30 m 50m 70m

Critical values for Ê[∆Xauto,GNSS]
[mm]

along 16.4 22.5 34.6
across 25.0 28.7 39.6
up 27.1 19.8 23.6

Critical values for Ê[∆Xmanual,GNSS]
[mm]

along 26.5 28.3 50.4
across 20.1 24.0 42.9
up 28.9 20.8 25.5

Table 7.2: Estimated means and standard deviations of ∆Xauto,GNSS and ∆Xmanual,GNSS. Colored cells indicate difference to
the critical values of the performed t-test. Cells are colored red when the null hypothesis is rejected. The cell color white to gray
indicate the normalized difference between the estimates expectation and the critical value. White indicates a large absolute

difference and black no difference.

mean standard deviation
flying height 30m 50m 70m 30m 50m 70m

along 10.9 60.9 -0.9 19.7 33.5 50.7
across 3.2 -12.2 -7.3 29.9 42.7 59.0∆Xauto,GNSS

[mm] up -1.6 -17.0 -11.6 31.4 29.0 34.7
along -25.6 10.7 28.1 31.6 42.1 74.0
across -2.1 0.5 23.8 24.0 35.8 63.8∆Xmanual,GNSS

[mm] up -1.4 -17.9 -14.9 33.4 30.4 37.4

directions, it is assumed the bias originates from the point cloud intensity data. A possible explanation
for this are the strong vibrations of the LiDAR sensor that were observed during the flight.

For the manual fitted coordinate differences with GNSS no biases are assumed. The value for 30m
flying height in along direction is however very close to the critical value (96.6%). However this value
still accepts the null hypothesis. Furthermore, it should be noted that even when the null hypothesis is
not rejected there might still be biases in the data. By using different methods such as larger or more
targets, denser point clouds or more accurate reference GNSS locations, present smaller biases might
still be found in the data.

7.1.4. Relative precision analysis
In this subsection the relative precision of the target locations is studied. First the method will be
explained and afterwards the results are analysed. For this analysis only the automatic fitted, and
reference GNSS target coordinates are considered. Only automatic fitted targets are considered as
this gives a more direct understanding of the LiDAR point cloud quality.

Method
The relative precision will be studied with Equation 7.19. In this equation the relative target coordinate
difference between target i and j is calculated. This method will consider all unique target combina-
tions. As the precision is studied, the order of the coordinates difference is not of importance and
the absolute value is taken. This relation is studied in the along, across track an up direction sepa-
rately. In this method, the relative precision as a function of horizontal distance between targets is
studied. This horizontal distance is calculated using Equation 7.20, with ∆alongGNSS,i,j the along track
and ∆acrossGNSS,i,j the across track GNSS measured target distance between targets i and j.

|∆Xrel,i,j| = |∆Xauto,GNSS,i −∆Xauto,GNSS,j| (7.19)

Dh =
√
∆along2GNSS,i,j +∆across2GNSS,i,j (7.20)

Results
In this analysis, target 6 is filtered out in up direction analysis and target 7 in along track direction for 70m
flying height, as explained before. Figure 7.7 shows the absolute relative coordinate difference plotted
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against the horizontal Cartesian distance between the considered targets. A first observation is the
smaller maximum distance between targets for the 30m flying height data. This is caused by the smaller
scanned region by this flight, and therefore not all targets are scanned. The 50m and 70m flights include
all targets. For each flight at a higher elevation, the measured relative coordinate differences seem on
average to increase in size. Only in up direction this effect seems less pronounced. This is likely
caused by the increasing estimated coordinate difference standard deviations (

√
ˆV ar(∆Xauto,GNSS) in

Figure 7.5a-c) for larger flying heights and the more limited increase of the standard deviations in up
direction. Further possible relations cannot clearly be found in the data. Therefore the relation of
relative precision with increasing horizontal distance seem not clearly distinguishable.

Figure 7.7: Absolute relative coordinate differences plotted against the horizontal Carthesian distance between GNSS targets.
Each plot gives the data for a different flying height.

7.1.5. Rotational bias analysis
In this subsection, the data is studied for a rotational bias. First the method is given and afterwards the
results are analysed. In this subsection only the automatic fitted targets are compared. Only automatic
fitted targets are considered as this gives a more direct understanding of the LiDAR point cloud quality.

Method
The Kabsch algorithm will be used to estimate the optimal rotation of the automatic fitted point cloud
based target coordinates to the reference GNSS coordinates. This algorithm minimizes the root mean
squared deviation between the two coordinate sets. Before the algorithm is perform both data sets
are first moved to the center of gravity. This was performed by subtracting the average coordinate
positions from both the point cloud based data and the GNSS coordinates. This translates both data
sets to have a center of gravity in the 0 point. The python implementation of the Kabsch algorithm
was used to calculate these rotations (scipy.spatial.transform.Rotation.align_vectors [35]). To study
the improvement of the data, the coordinate differences between the automatic fitted targets in the
point cloud and GNSS measurements (∆Xauto,GNSS) are calculated before and after Kabsch rotations
have been performed on the automatic fitted target coordinates. Additionally, the effect of the rotation
at a distance of 100 meter is calculated with δw100 = 100 · tan (γ). Here γ is the calculated Kabsch
rotation.

Results
For this analysis the target 6 is filtered out of the data, as this target includes the reference GNSS
receiver in the point cloud data. At the 70m flying height, again target 7 is filtered out, as it was deemed
an outlier in earlier analysis. Table 7.3 gives the found Kabsch rotations. The rotations are given in
Euler angles around the axis in order: along track, across track then up. The Euler angle rotations re-
quire a specific order and therefore determining the translation directions per coordinate are not easily
summarized. The translation sizes per Euler angle however, can be studied more straightforward with
δw100. As can be seen in Table 7.3, the largest found angles are for 30m and 50m flying height, with
a maximum estimated single displacement of 4.5cm and 2.2cm at 100m distance. As the maximum
distance between targets is around 300m for 30m flying height, the maximum displacement difference
is around 13.5cm. The maximum target distance for 50m is around 800m, and results in a maximum
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Table 7.3: Rotation Euler angles found with the Kabsch algorithm. With δw100 = 100∙ tan(γ), where γ is the calculated rotation
angle, the perpendicular displacement of the angles is calculated at a distance of 100m. The calculated angles are around the

along, across and up direction vectors.

flying height 30m 50m 70m
angles [◦] w100[mm] angles [◦] w100 [mm] angles [◦] w100 [mm]

along 2.55 · 10−2 44.5 −1.05 · 10−3 -1.83 2.69 · 10−3 4.70
across 2.50 · 10−3 4.36 −1.27 · 10−2 -22.1 −7.75 · 10−5 -0.135
up −1.33 · 10−3 -2.32 −6.82 · 10−4 -1.19 1.38 · 10−3 2.41

displacement difference of around 17.6cm. The larger target distance might result in more stable so-
lution and might partially explain the smaller displacements for 30m flying height. At 70m flying height
the estimated angles are smaller and result in estimated single displacements below centimeter level
at 100m distance. Table 7.4 shows the estimated standard deviations of ∆Xauto,GNSS, before and after
rotation of the automatic target locations. This gives an indication of the improvement by the performed
rotation. For each flying height the estimated standard deviation shows the largest improvement (stan-
dard deviation improvement of 1.3-5.3cm) in up direction. This might indicate a possible small rotation
error in the data around an axis aligned with the horizontal plane, but the results are not conclusive.

7.1.6. Conclusions target analysis
In this section it has been shown, targets of 0.5m by 0.5m can be detected in the point cloud data based
on the intensity data and the RGB data. The target detection based on intensity data was automatised
and is referred to as the automatic method. The target detection based on RGB data was performed
manually. Furthermore the targets have been detected in data sets acquired at 30m, 50m, and 70m
flying height. The 50m and 70m flying height data, was observed to have a low point density. This did
seem to affect the target detection and for this reason larger targets, or higher point densities (for ex-
ample by flying over the same areamultiple times or using a lower fly speed) would have been preferred.

By comparing the point cloud target locations with the GNSS measured target locations, the preci-
sion and accuracy of these coordinate differences was estimated. By splitting the estimated precision
and accuracy over multiple error components, it was found that with this method the point cloud error
can generally only be studied in up direction. But for all available fly heights. In horizontal direction, the
target detection performed well enough to allow for the analysis in up direction. However, the method
was not suited to study the point cloud errors in this direction, as other error components are too large.
An effect that might play a role, is that the terrain surrounding the targets is likely relatively flat. There-
fore, small horizontal target locating errors, might not strongly affect the found height results.

A one sample t-test was performed on the calculated target coordinate differences to detect pos-
sible biases in the data. This test did detect a bias with a 95% confidence level for the 50m flying
height data in along track direction for the automatic target fitting method. As given above, generally
the point cloud error can likely not be detected in along track direction, however it might be the case,
much larger errors occurred during this flight. It is not yet completely understood why this might have
occurred. A possible explanation are the excessive vibrations that have been observed during the flight,
which might have resulted in the detected bias.

Furthermore, during the analysis indications have been found of a bias between RGB and intensity
data. This might be interesting for future research. Additionally, as the automatic and manual target
fitting methods seemed to perform overall similarly, the intensity based automatic target fitting method
is preferred to study the point cloud quality. This is preferred, as the intensity data is directly measured
by the LiDAR and no possible additional bias in the data is introduced.

-

7.2. Overlap analysis
In this section the results from the overlap analysis are presented. First the classification results are
analysed. Then the binned median, MAD values and the variogram are studied for the Zegveld data
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Table 7.4: The estimated standard deviation of the data before and after rotation by Kabsch rotation improvement. Both data
sets have been translated to the same center of gravity before performing Kabsch algorithm, to acquire the same rotation
center. The fact that target 6 is not considered for all data, and target 7 is not considered for the 70m flying height, leads to

differences between the non rotated values and values in Table 7.2.

flying height 30m 50m 70m
not rotated rotated not rotated rotated not rotated rotated

Estimated
standard deviation
[mm]

along 18.0 18.7 31.8 31.6 52.6 52.6
across 27.2 26.4 42.3 42.3 57.7 57.2
up 31.4 26.1 29.0 27.7 34.9 32.4

(acquired at 06-12-2023) for all available flying heights. Of these metrics, first the binned median and
MAD values are analysed for a single flying height. Then the binned median and MAD values are
studied for all flying heights. Finally the variograms will be studied.

7.2.1. Classification
The performance of the road and grass classification of the grid cells on the point cloud data is important
as it can influence the results of the overlap analysis significantly. Figure 7.8 shows the classification
for the 10m flying height and 100m flying height data set. The results of the minimum and maximum
flying height are given to study the largest classification performance differences based on flying height.
The classification is however performed for of all flying heights. The results can be found in Appendix B.

A first difference that can be observed in Figure 7.8, is the scanned area. For the 100m flying
height a much larger area is scanned. This is observed in Table 7.5 as well. This table shows the total
number of grid cells for all flying heights and the corresponding increase in grid cells for higher flights.
Which is a result from the larger scanned area. A second difference between the flights is the fewer
detected classes for the 100m flying height data. This might caused by the combination of factors. The
classification is based on the maximum height difference in a grid cell, average intensity per grid cell
and the square root of the third eigenvalue of the PCA fitted on all data in the grid cell (

√
λ3). For larger

flying heights, the larger footprint size might result in lower intensity resolution and therefore affect the
average grid cell intensity. Furthermore the larger footprint size measures a larger area of the terrain.
This can result in a more averaged out intensity and measurement location, which in turn can result
in a more averaged out

√
λ3 value. Furthermore, the 100m flight consists of only 2 flights strips, while

the 10m flight of 7 flight strips. This results in a much larger point density for the 10m flying height
data. This again influences the found

√
λ3 value. These effects likely result in less average intensity

and
√
λ3 differences between the grid cells and therefore less classes can be found for larger fly heights.

The road and grass classification are of most importance for the overlap analysis. The classification
into grass cells seems to perform quite well for all fly heights as shown in Figure 7.8. The road class
performs less well. When the 10m flying height result is observed in Figure 7.8, a confusion between
road and grass is found in locations of ditches. The water has a low amount of reflections and mea-
surement points but is flat, this might explain the confusion partially. For this reason, this might not
effect the results of the rest of the analysis strongly. When the 100m flying height result is observed
in Figure 7.8, it can be seen, roads are found. However locations such as in the left most corner are
observed as well. In this location, grass and road seem to be classified next to each other. This does
not have a hard surface as the road class should classify, but this area likely has on average a more
flat surface then the grass surrounding it. Areas such as this do influence the road class results, but
as still relatively flat surfaces are classified as road the rest of the analysis might not be strongly affected.

Classified grass grid cells are much more abundant then road grid cells when Figure 7.8 and Ta-
ble 7.5 are observed. A greater number of grid cells might result in more averaging of random errors.
Therefore, the much larger amount of grass grid cells might lead to more stable overlap analysis results
for the grass than road class.
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Figure 7.8: Classification results for flying heights 10m and 100m.

Table 7.5: Number of grid cells per class and flying height.

flying height 10m 20m 30m 40m 50m 60m 70m 80m 90m 100m
Number of
road grid cells 334 426 488 693 1160 1518 1785 3544 2634 3142

Number of
grass grid cells 1320 2050 2252 3724 6885 8979 11782 17144 15212 19872

Total number
of grid cells 2211 3075 3241 5042 8813 11540 14500 22523 18858 24243

7.2.2. Overlapping data for 50m flying height
As explained in section 6.2, first the point cloud data is divided over an horizontal grid (1m by 1m). For
short time intervals (called an epoch and is in this case equal to 0.1 seconds) the height in the center
of the grid cell is estimated with PCA. The height differences between different epochs (time lags) in
the same grid cell form the basis of the Figures 7.9 and 7.10. In these figures, the density of the height
differences (∆h) is plotted as a function of the time lag, together with the median and MAD of the height
differences, using 0.1s data bins. The figures give the results of the road and grass classified data re-
spectively for 50m flying height consisting of two flight strips.

The median and MAD are used to study the average behavior of the height differences. The MAD0

and MADm provide robust information about the spread of data points around the 0 and median value
per bin respectively and the median of the height differences provides robust information about the
average height value per bin. These parameters are discussed in more detain in subsection 6.2.5.

Two different types of overlap occur in Figures 7.9 and 7.10, this are overlaps within flight strips
and between flight strips. Overlaps within flight strips occur as the same grid cell is measured multiple
times (with larger time lags than 0.1s) during a single flight strip. This is mainly caused by the scan
pattern with a front and back looking along track scan angle of around 2.25◦. The flight strip duration
of the 50m flying height data was found to be around 11s and the time between the flight strips around
12s. Therefore overlaps with a time lag smaller than 11s are within a single flight strip, and above 12s
are between flight strips. This corresponds well to the data shown in the figures. The figures show a
large amount of data for 0s-4s time lag and corresponds to overlaps within a single flight strip. The
time lag range 4s-11s does not contain overlap measurements. This indicates a value of around 4s is
the maximum time lag which results in overlapping data for a single flight strip with 50m flying height.
The time lag range 12s-35s contains a significant number of overlaps in Figures 7.9 and 7.10. These
measurements are between the different flight strips.

The two overlap types show interesting effects. A first observation is a much larger number of
overlaps within flight strips than between flight strips. This can be partially explained by the low num-
ber of flight strips considered. Only two flight strips with an overlap of 50% are studied with this data.
Therefore about half of the scanned area can contain overlaps between flight strips, while data over-
laps within flight strips can occur on each scanned location. This likely influences the robustness of
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Figure 7.9: This figure is based on estimated height differences within road classified grid cells for different time lags. The top
plot gives the density of the found measurements in 2D hexagonal bins. A bin should have at least 5 measurements before it is

given a color. The figure is given an y-limit of -10cm to 10cm. This does cutoff a relatively low amount of measurements
outside of these values in the visualisation, however this data is considered in further calculations. The data is binned per 0.1s
time lag as well. The amount of points per bin are shown in the bottom plot. Per bin with more than 30 height differences, using

all height difference measurements, the median ∆h, MAD0 and MADm are calculated and shown.

the median and MAD values of the height differences. These values seem to behave in a relatively
smooth manner for the overlaps within flight strips, especially for the lower time lags. For road, median
height difference seems to stay close to 0 and for grass seems to decrease with a relatively constant
rate. The MAD values both seem to increase in this range for longer time lags. This might point to an
increasing IMU error with increasing time lag. The range of 0-4s is likely too small to contain a large
GNSS error.

The median and MAD values behave more erratic for the overlaps between flight strips. This effect
is best visible in Figure 7.9 for the road classified data, caused by the relatively low amount of grid
cells, as discussed in subsection 7.2.1. In this figure, for time lags with relatively high data density,
such as 23s, the median height difference is close to 0 as would be expected. On locations with lower
point densities, the amount of data might be too small for averaging out random errors. This could
lead to the observed median height differences further from 0m. Examples of this occur in the ranges
13s-19s and 25s-28s. Figure 7.10 shows the larger data density for the grass classified data, and more
stable median height differences for overlaps between strips. A further interesting observation is that
the density peak around 23s in the road data corresponds to a density valley in the grass data. This is
a result over only considering one overlap between 2 flight strips. This this time lag corresponds to the
time between a flight over a road located perpendicular to the flight line. Therefore during this time a
significant amount of road data is found, but only a low number of grass grid cells are measured. Fur-
thermore, the median and MAD values of the height differences do not seem to show a clear relation
with time lag for both the road and grass classified data. A possible explanation for this, is that the
error in this data might be largely dependent on the strip adjustment. This is not dependent on the time
lag and might therefore result in a relatively constant error. A different possible explanation is that the
maximumGNSS and IMU error is reached and for this reason stays constant for these longer time lags.

7.2.3. Overlaps between flight strips for multiple flying heights
Figures 7.11 and 7.12 show the same binned median and binned MAD0 and MADm for height differ-
ences as discussed in subsection 7.2.2, but for all available flying heights. Both figures show again
overlaps within flight strips, for the range 0s-3s, and overlaps between strips, for the range 5s-53s. In
this subsection, the errors between flight strips will be analysed. In subsection 7.2.4, the errors within
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Figure 7.10: This figure is based on estimated height differences within grass classified grid cells for different time lags. The
top plot gives the density of the found measurements in 2D hexagonal bins. A bin should have at least 5 measurements before
it is given a color. The figure is given an y-limit of -10cm to 10cm. This does cutoff a relatively low amount of measurements
outside of these values in the visualisation, however this data is considered in further calculations. The data is binned per 0.1s
time lag as well. The amount of points per bin are shown in the bottom plot. Each bin should contain at least 30 points before

the median height difference and MAD values are calculated and shown.

flight strips will be analysed. It is important to note, the 10m and 20m flying height data consists of
7 and 4 flight strips respectively. The rest of the flying heights consist of only 2 flight strips. For this
reason the data in the overlaps between flight strips might be more smoothed by the additional flight
strips for the 10m and 20m flying height data. Furthermore, for the performed flights, consecutive flight
lines where flown in opposite direction with an sidelap of 50%. When only two flight lines are used, this
does result in overlaps that are both scanned in the same across track side (right or left) of the UAV.
For this reason at least three flight lines would be preferable for future flights implementing this method.

First the median height differences of the road and grass classified data will be analysed for the
overlaps between flight strips as shown in Figures 7.11c and 7.12c for range 5s-53s. In this data multi-
ple effects can be observed. A first observation is that the data does not seem to have a strong relation
with time lag. The measurements do vary significantly but mostly stay around 0m. A second observa-
tion is the more erratic behavior of the signals for the road data than the grass data. A third observation
is the effect of fly height seems different for both the road and grass classified data. For both data sets
the signals seem centered around 0m. However for the road data, the size of the absolute deviation
from 0m, seems linked to the fly height. With larger fly heights resulting in larger deviations. For the
grass data this seems only the case for the larger fly heights of around 70m flying height and up. A
fourth observation is that most flights result in a maximum absolute deviation of about 25mm from 0.
This is mainly not the case for the flights above 70m, for the grass classified data. These flights also
seem not completely around 0m. But have a positive height difference average value.

A possible explanation for the lack of relation between the time lag and median height differences
was given in subsection 7.2.2. This might be the result of a dominant strip adjustment error, which is
likely not time lag dependent. It might as well be the case, the maximum GNSS and IMU error have
been reached for this time lag. Therefore, no further change is found for larger time lags. A possible
explanation for the less erratic behavior for the grass data, might be the larger amount of grass grid cells
available. The road data consists of a small number and therefore might not average out all random
errors per time lag bin. Multiple possible explanation exist for the absolute deviation increase around
0m of the signals for larger flying heights for the road class. First, the scan quality per measured point
decreases with distance (and therefore larger flying heights), as caused by effects such as footprint
size increase. Furthermore, lower fly height result in higher point densities and therefore fit the PCA
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plane with lower variance. The reason this effect does not show clearly in the grass data is likely the
result of the terrain error. As grass is not a perfect plane, lower fly height (with small footprint size)
might measure between the grass leafs the ground surface and the the leafs itself on other locations.
This might result in an additional deviation from 0m. Larger fly heights measure the average of a larger
terrain area and are less affected by this. A possible explanation for larger absolute deviations from
0m for the flying heights larger than 70m for grass data, might be a combination of effects. It is likely
the quality of the measurements degrades significantly for this distance and effects such as the larger
footprint size, and random pointing errors increase the deviation size significantly. It is interesting to
note, this seems to affect the grass data more then the road data. Therefore effect such as the reflec-
tion intensity might as well play a role. As most deviations seem positive for the considered flight, a
systematic error seems to occur. This error is however not easily explained.

The MAD results given in Figures 7.11a-b and 7.12a-b will be analysed for overlaps between flight
strips. The MAD0 and MADm give both values for the spread of the data. As the median height
difference was found to average 0m for most flights, the value of both parameters is generally very
comparable. The MAD signals show similar effects as the median height difference. Again, no clear
relation between time lag and MAD is found as the values stay relatively constant. The grass data
seems to behave more smooth than the road data and the fly height seems to have an effect on the
MAD values in similar manner as the median height difference data. The flights flights above 70m for
the grass classified data, with overall positive median height differences, seem to behave differently for
the MAD0 and MADm as expected. The MAD0 values are much larger as the median height difference
is not subtracted from the data. The same data, does not seem larger than expected in the MADm data,
compared to the other flights. This points to the fact a systematic bias seems to occur between the
flight strips, but the variance of the measurements does not seem affected by this bias. An interesting
additional observation of 7.12a-b, is the large variance found for 10m flying height data around 28s. A
likely explanation is that the 10m flying height data consisted of 7 flight lines. With 50% sidelap, the data
might not only contain overlaps between consecutive flight strips, but could also include a restricted
number of overlaps where one flight strip is skipped in between. These overlaps would occur at the
across track edges of the scan pattern. This might result in not completely scanned grid cells and is
scanned with an unfavorable scan geometry by both flight lines. This could result in the observed signal.

As the data did not seem to be affected by time lag significantly, it was decided to combine all results
of overlaps between flight strips per class and flying height. It was chosen to use the mean of all MAD0

values for overlaps between flight strips. This value was then scaled with 1.4826, to estimate the
standard deviation. With this scaling, it is assumed the data is normally distributed. The MAD0 value
was chosen as basis, as this is affected by both systematic and random errors. Thus the resulting metric
will indicate a precision decrease for both error types. The metric is calculated with Equation 7.21. In
this equation

∑m
j=1MAD0,between,j is MAD0 of bin j, while only overlaps between strips are considered.

m is the amount of bins that do contain a value. This calculation is performed per class and flying
height. The values are divided by

√
2, as MAD0 is a value for the height difference between two planes.

However, now the precision of one plane is of interest. The square root of two is taken, as the standard
deviation is estimated and not the variance. In this calculation only bins with more than 30 data values
are considered.

σ̂H,class = 1.4826
1√
2

∑m
j=1MAD0,between,j

m
(7.21)

The result of this is given in Table 7.6. The values in this table given an estimation of the height
precision, a 1m by 1m plane can be fitted to the data per class and flying height. The values in this table
show behavior related to the discussed MAD0 signals. The road estimated height precision’s for road
show an overall decrease of precision for larger flying heights. The value at 60m flying height seem to
fall outside this overall trend. A possible explanation for the high precision found for 60m flying height,
is the amount of road grid cells. This is much larger than for the lower flying heights. Therefore random
effects might be averaged out more, and a relatively high quality is found. For the results of the grass
classified data, an initial increase in estimated precision is found from 10m to 30m flying height. This is
likely the result of the grass terrain error as explained before. A further observation is that the precision
seems to decrease above 70m flying height rapidly.
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Table 7.6: Estimated standard deviations the mean height for a plane of 1m by 1m for both the road and grass classified data,
and multiple flying heights. The UAV ground speed was 5m/s for all flying heights.

flying height 10m 20m 30m 40m 50m 60m 70m 80m 90m 100m
σ̂H,road [mm] 13.0 11.8 14.1 15.1 17.1 11.4 16.6 22.9 23.2 29.7
σ̂H,grass [mm] 21.3 15.7 8.66 10.2 12.2 13.8 15.6 20.1 20.7 29.6

7.2.4. Overlaps within flight strips for multiple flying heights
In this subsection, the overlaps within flight strips are studied in the time lag range 0s-4s. Unlike the
overlaps between flight strips, this data does seem to have a correlation with the time lag, as observed
by the increase in deviation from 0m in Figures 7.11a-c and 7.12a-c. These median height differences
per bin of these overlaps will first be studied with Figures 7.11c and 7.12c. Then the precision will be
studied with MAD0 and the variogram.

The median height differences for overlaps within flight strips show an overall downward trend for
increasing time lag in Figures 7.11c and 7.12c. This effect seems less strong for grass classified data
and longer time lags. However, the longer time lags consist of less measurements and have a much
larger variance, as indicated by 7.12a. Therefore, the values for larger time lags are considered less
important and it is expected the downward trend is not caused by random data. Furthermore, the
downward trend does not seem to affect the 10m and 20m flying height data, which even seem to
have an upward trend. Still the overall downward trend seems to occur and is studied in more detail.
This downward trend indicates earlier estimated heights in the center of grid cells, will on average be
higher then compared to later estimated heights. The longest time lags within flight lines occur by first
measuring a grid cell as far as possible in front of the UAV (in along track direction) and comparing
this with the measurements of the same grid cell, but measured as far as possible behind the UAV.
This seems to suggest measurements in front of the UAV will have a systematic bias to data mea-
sured behind the UAV (in along track direction). The reason for this is not completely understood. A
possible explanation is that the IMU underestimates the pitch angle of the UAV. This might cause data
in front of the UAV to be measured higher and data behind the UAV to be measured lower than in reality.

The precision of the height differences for overlaps within flight strips is studied with the MAD0 and
variogram. The MAD0 was chosen as this metric is robust and is both influenced by systematic and
random errors. The variogram was chosen as this is a proven method and might provide confirmation
of effects, or provide additional insight. The variogram is however not robust. For this reason, found
absolute height differences larger than 1m, where filtered out of the data before the variogram was
computed. Height differences larger than 1m are likely caused by outliers as this should not occur on
flat road or grass grid cells. Furthermore, the cutoff values for determining the sample variogram are
given in Appendix C. The square root is taken of the found sample variogram to acquire a value in the
same unit as the MAD0, to allow for easier comparison. This will be refered to as the variogram for
the rest of this subsection. To the found sample variogram, a quadratic function is given to estimate
the behavior of the variogram. The resulting MAD0 and variogram data is given in Figures 7.13a,c and
7.14a,c for grass and road data respectively. As the error in this data might not only depend on the
time lag, but on the changing along track scan geometry as well. To achieve more insight, the data
is transformed for each flying height to a consistently changing along track scan angle change with
Equation 6.11. This resulted in the Figures 7.13b,d and 7.14b,d.

As observed the MAD0 and variogram behave very differently. The variogram was expected to
have larger values, as the standard deviation is always larger than the MAD value. However, the dif-
ferent shape between both data sets is not explained by this. First, the MAD0 data will be analysed.
A first observation is that larger fly heights in general seem to result in larger MAD0 values in Figures
7.13a and 7.14a. For the road data the 10m height flight seems larger than expected and for grass,
the 10m and 20m data seems larger than expected. A second observation is that for the road class,
an overall linear increase seems to exist for larger time lags. In general, flights nearing the edges of
their maximum time lag seem to deviate from this relation. For the grass classified data, overall linear
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Figure 7.11: This figure gives the MADm, MAD0 and median of all height differences in a bin for subplots a, b and c
respectively. The resulting values are connected by lines. For each feature, a bin size of 0.1s was used and only data classified
as road is considered. Each subplot contains flying heights of 10-100m with 10m increments. Each bin should contain at least

30 data points before the median of the height differences and MAD values are calculated and shown.
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Figure 7.12: This figure gives the MADm, MAD0 and median of all height differences in a bin for subplots a, b and c
respectively. The resulting values are connected by lines. For each feature, a bin size of 0.1s was used and only data classified
as grass is considered. Each subplot contains flying heights of 10-100m with 10m increments. Each bin should contain at least

30 data points before the median of the height differences and MAD values are calculated and shown.
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relations seem to exist, but slightly different for all flying heights. With larger flying heights resulting
in an overall steeper linear increase. A third observation, is that differences between flights seem to
increase when the data is transformed to the consistent along track angle in Figures 7.13b and 7.14b.
This transformation seems to order the flying heights even better than the original time lag data (10m
and 20m flying height data is located below higher flights).

A possible explanation for the larger MAD0 values for the larger flying heights is that the measure-
ment precision might decrease for larger flights. This is caused by effects such as increasing footprint
size. The different behavior for the 10m road data, might be a result of the low road grid cell number
for this flight. The higher then expected data for the 10m and 20m data in Figure 7.14a might again be
caused by the terrain error caused by the non-flat nature of grass. A possible explanation for the similar
linear increase of MAD0 values for larger time lags in the road class data, is a time lag based error. The
most likely reason is an error caused by IMU, as the time lags are small. GNSS based errors would
likely occur for larger time lags. That the flight data, nearing the edges of their maximum time lags,
seems to deviate further from the data, might indicate other error sources dominate in these regions.
The different linear relations shown in Figure 7.14a, for each flight might be caused by the behavior of
the grass class with a non flat terrain. A possible explanation for the increased differences between
different flying heights when transformed to consistent along track angle, is that the flying heights are
effected by the scan angle by different amounts. The larger flying heights seem to be more affected
by the scan angle than the lower flying heights. This can be seen with by the generally steeper MAD0

increase in Figures 7.13b and 7.14b for larger flying heights. The reason the scan angle might affect
the result is that grid cells scanned for a relatively large incidence angle before and behind the UAV
have been scanned twice with unfavorable scan geometry. This might result in an estimated height
difference with a low precision. This effect is stronger for longer time lags and larger along track scan
angles. For these reasons the data seems both influenced by scan angle and a time lag based error
which likely results from the IMU.

The variogram results for the road class data, as shown in Figure 7.13c,d, deviate relatively far from
the MAD0 results. This might be caused by the non-robust nature of the variogram, and the relatively
low number of road grid cells. For the road class data, the variogram does not seem to reach a max-
imum error. For the grass class, maximum errors do seem to be reached, but for different locations
for different flying heights as seen in Figure 7.14c. This figure also shows a very distinct behavior for
the 10m-30m flying height data. This data is likely most affected by the grass class terrain error and
therefore likely results in the much larger values than the other flights.

7.2.5. Conclusions overlap analysis
In this analysis estimated height differences between overlapping data has been studied. Two different
types of estimated height differences overlaps have been found. Overlaps between flight strips and
overlaps within flight strips. Estimated height differences in overlaps between flight strips did not seem
dependent on time lag and centered around 0m. For this reason, all data was combined for all available
time lags to acquire a combined quality metric for all available fly heights and classes. These results
are given in Table 7.6. This table seemed to indicate the the data quality decreases significantly for
fly heights above 70m. For the rest of the lower flying heights, the estimated standard deviation the
average height of a plane of 1m by 1m can be measured was better than 17mm, with a UAV ground
speed of 5m/s.

For overlaps within flight strips a systematic bias was found, which increases for larger time lags.
This bias estimated terrain before the UAV higher than behind the UAV. The reason for this bias is not
yet understood. Furthermore the precision of the overlaps within flight strips did seem dependent on the
time lag and changing scan geometry for longer time lags. The time lag dependency likely originates
largely from the IMU. The changing scan geometry error seems to affect larger fly heights stronger than
lower fly heights.

The overlap analysis can be improved further. A first problem was the low number of road grid
cells. This did seem to affect the results and therefore it is recommended to use larger numbers of
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Figure 7.13: Analysis of height differences between overlaps within flight strips for road classified data. Subplots a and c show
the relation between the MAD0 and square root of the variogram for the height differences per bin, respectively. Again both

subplots used a bin size of 0.1s.

grid cells per class. The grass classified data did seem to function as expected. Furthermore, it is rec-
ommended to perform at least 3 flight strips instead of the 2 in this analysis. This will provide a more
balanced overlaps, as in this case only overlaps between data on one side of the scanner is used (for
example scanned two times on the right side of the scanner). The sidelap of 50% is recommended. The
detected systematic bias in the overlap within flight strips is of interest for further research. However
it is not recommended to use the variogram data, as this did not seem to provide clearer information
than the MAD0 results. Furthermore splitting the effect of IMU errors and scan geometry change errors
might be interesting.

7.3. Scan geometry analysis
The results of the scan geometry analysis are presented in this section. As discussed in section 6.3,
this analysis consists of two parts. The analysis of distribution of features in the scan pattern and the
relation between the scan geometry features and the noise level , with is defined as the square root of
the third eigenvalue of PCA (

√
λ3).

Furthermore, the Yellowscan Mapper+ has a maximum along track field of view of 4.5 ◦ and across
track field of view of 70.4◦. When the UAV would fly completely horizontal and the ground would be
horizontal and flat, a maximum along track angle of 2.25◦ and across track angle of 35.2◦ would be
observed respectively. Therefore, measured angles above this value could be caused by non zero roll,
yaw or pitch angles of the UAV, non-horizontal terrain and by errors estimating the terrain with a PCA
plane.
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Figure 7.14: Analysis of height differences between overlaps within flight strips for road classified data. Subplots a and c show
the relation between the MAD0 and square root of the variogram for the height differences per bin, respectively. Again both

subplots used a bin size of 0.1s.

7.3.1. Distribution of features in scan pattern
To get a better understanding on the data quality for different locations in the scan pattern, three fea-
tures will be studied with a density plot with across and along track incidence angle. These features are
the median number of points per fitted PCA plane, number of PCA planes and the median noise level.
The figures only show values for absolute across and along track incidence angles. In this section
grass data is considered. This was chosen as this class consist of significantly more grid cells then the
road class. This allows for a studying the data in a more robust manner.

Figure 7.15 shows the median number of points per fitted PCA plane per bin. As shown the 10m
height data has more than 2000 measurements per fitted PCA plane. This number rapidly decreases
for higher flying heights. However, most flying heights seem to have a peak in median number of points
around 45 degrees across track incidence angle. This might indicate a higher point density at the edges
of the the scan pattern in across track direction.

Figure 7.16 shows the number of PCA planes per bin. These values seem much more comparable
between the different flying heights than the median number of points per fitted PCA plane. An interest-
ing effect is that the average along track incidence angle (ialong) seems to be around 5 degrees instead
of 0 degrees as expected when the UAV would fly completely horizontally and the surface would be
horizontal. This could point to an average UAV pitch angle of around 5 degrees. As observed for an
along track incidence angle of around 0 degrees, a relatively low amount of PCA planes is measured
for each flight. A different effect that can be observed is the density in across track direction. The data
for flying heights 60-100m seems to have two distinct peaks around 25 degrees and 45 degrees. An
explanation might be a non zero roll angle of the UAV. This could lead to measurements on one side
of the UAV to have a lower angle maximum scan angle and on the other side a larger maximum scan
angle. As the scan pattern could have a larger point density on the across track edges of the data (due
to the scan pattern), both peaks might indicate the maximum scan angle for both the left and right side
of the UAV in across track direction.
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Figure 7.15: Median number of points per fitted PCA plane per bin for grass data. The values above the individual plots
indicate the corresponding flying height.

Figure 7.16: Number of PCA planes per bin for grass data. The values above the individual plots indicate the corresponding
flying height.

Figure 7.17 shows the median noise level of PCA planes per bin for grass data. A first effect that
is observed is the high noise level measured for large along track incidence angles. These high val-
ues are likely at the edge of the scan pattern. A possible explanation for this is the unfavorable scan
geometry that might result in a high variance in the scanned points. This might then result in the high
estimated noise level.

7.3.2. Relation separate scan geometry features with the noise level
Here the relation of the along and across incidence angle and range with the noise level is studied. For
the incidence angles a bin size of 2.0◦ was chosen, while a bin size of 0.20 m is used for range. First
all data in the road class will be studied and afterwards the data classified as grass. The advantage
of the road class data is that the scanned terrain should be relatively flat. This should limit the terrain
error in the data. However, this class only contains a limited amount of grid cells. Grass grid cells are
much more abundant in the data. These grid cells should however have a larger terrain error.

Figure 7.17: Median noise level of PCA planes per bin for grass data. The values above the individual plots indicate the
corresponding flying height.
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Figure 7.18: Estimated median noise level (
√
λ3) relations with binned scan geometry features. All graphs consider the road

class data. Graph a has a binned along track incidence angle per 2◦. Graph b has a binned across track incidence angle per
2◦ and graph c has a binned range per 0.20m. In graph a and b the gray vertical lines indicate the bin size.

Moreover, this analysis studies the scan geometry features separately, however there might be a
correlation between the data. Larger incidence angles likely correspond to larger ranges on average.
This should be kept in mind when analysing the data. Furthermore, the chosen grid cell size and chang-
ing point density for different flying heights affect the noise level, as is discussed in subsection 6.2.3.

Along track incidence angle for road class
Figure 7.18a shows the relation between between the noise level and the along track incidence angle.
Multiple effects can be observed in this figure. First effect that can be observed is that all flights between
10◦ and 18◦ show a sharp increase in error for larger incidence angles. Furthermore, lower flights seem
to have an overall lower noise level, especially for along track angles around 0-18◦. Additionally, flights
at 10m-40m flying height seem to show a slight decrease in noise level for low incidence angles of 0-7◦.

A possible explanation for the noise level increase between 10-18◦ is the lower PCA fitting density
for large incidence angles as can be observed in Figure 7.16. The measurements have unfavorable
scan geometry (caused by the large incidence angle) and are likely only measured during wind gusts
causing the UAV to pitch further, or on steep slopes. The low data amount available for large along
track incidence angles and likely unfavorable scan geometry might result in the more erratic behavior
and larger median noise level values above 10-18◦. A possible explanation for the larger noise level
for larger flying heights around 0-18◦ is the increasing range of the measurement. This results in
a more diverged LiDAR beam and larger footprint size and therefore decreases the precision of the
measurements. The reason for the decrease in noise level for low flights between 0-7◦ is not easily
explained. A partial explanation might be the very limited amount of road grid cells for the low flying
heights (10-30m) which might increase the variance of the estimated mean and result in higher noise
level values. A different possible reason is that less PCA planes seem to be fitted around 0◦ along
track with an increase to 5◦ and decrease after as seen in Figure 7.16. This lower amount of amount
of data might cause the increase in noise level for the low angles.
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Across track incidence angle for road class
Figure 7.18b shows the relation between the noise level and the across track incidence angle. As can be
seen, the noise level relation with across track angle, stays relatively constant for much larger incidence
angles than in along track direction. This is the case in the range from 0 to around 40◦. Furthermore it
seems there is a small divergence of noise level in this range. Lower flying heights seem to achieve a
slightly lower noise level for larger incidence angles. For high flying heights, this effect seems opposite.
Furthermore, for low flying heights the studied relation seems more erratic than for the higher flying
heights and on average the noise level seems lower for lower flying heights. For across track angles
larger than 40◦ only data from a limited amount of flights is available and seems to increase significantly.

A reason the data from 0◦ to around 40◦ might behave differently than for larger incidence angles,
could be the fact that the Yellowscan Mapper+ has a side look angle of 35.2 degrees. The last 5 de-
grees might be explained by a slight rotation of the UAV caused by wind and the fact the terrain might
not be completely horizontal. Measured data above 40 degrees might be caused by wind gusts (rota-
tion the UAV), steep parts of the road (should not occur in the data), grid cells wrongly classified as
road, and grid cells fitted poorly by a PCA plane. For this range, the data from flying heights 30-100m
seems to increase for larger incidence angles. This is as expected due to an more unfavorable scan
geometry and increasing footprint size. An increasing range and therefore LiDAR footprint size can
explain the on average higher noise level for larger flying heights. However the seeming decrease in
noise level for larger across track incidences angles for lower flying heights, is not explained easily. A
possible reason is an increase in point density on the edges of the scan pattern that seems to have
been observed in Figure 7.16. This could result in better fits of the PCA planes on for larger across
track incidence angles and lower noise level. A possible explanation for the more erratic behavior of
the lower flying height data than for the higher flying heights, is the fact that there are less road grid
cells in the lower flying heights data, as observed in Table 7.5. Therefore the calculated median might
be less stable.

Measurement range for road class
Figure 7.18c shows the relation between the noise level and the scan range. Overall, the noise level
seems to have a linear increase with range. Furthermore it seems, more erratic behavior occurs for
lower flying heights of 20m and 30m than for higher flying heights.

The increase in noise level with range is expected, as the footprint size will increase with range.
Furthermore, the more erratic behavior for the lower flying heights could possibly be explained by the
fewer road grid cells in the lower flying heights data.

Along track incidence angle for the grass classified data
Figure 7.19a shows the relation between the noise level and the along track incidence angle for data of
grass classified grid cells. Multiple similar effects to the road data can be observed. Again a sharp in-
crease is observed, now around 17-20◦ (instead of 10-18◦). This is slightly later than for the road class.
Just as the road data, this might be caused by a low number of measurements for larger along track
angles, and values larger than this increase as seen as lower quality. A possible reason for the later
and sharper increase might be a combination of the fact that grass grid cells backscatter the LiDAR
pulse differently than road, and more grid cells are available for road. Grass has a more 3D structure
than road (which is flat). This might cause a LiDAR pulse to have more backscatter area when mea-
suring a grass grid cell under a steep angle.

Differences of the noise level behavior between the road and grass data for along track angles has
been observed as well. First is a continuous slight decrease in noise level is observed for most flights
in the 0-20 degree range. Secondly, the noise level is not increasing on average for larger fly heights
in the 0-20 degree range. A possible explanation for the slight decrease in noise level for larger angles,
is again the grass 3D structure. As only the top of the grass might be visible under a steep angle, the
measurements are all from the top off the grass. This results in a relatively flat plane. From directly
above the grass, the measurements might reach the ground between the leafs and measure the top
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Figure 7.19: Estimated median noise level (
√
λ3) relations with binned scan geometry features. All graphs consider the grid

cell data classified as grass. Graph a has a binned along track incidence angle per 2◦. Graph b has a binned across track
incidence angle per 2◦ and graph c has a binned scan range per 0.20m. In graph a and b the gray vertical lines indicate the bin

size.

of the leafs as well. This might result in an additional terrain error, and therefore noise level, for lower
along track angles. A possible explanation for the larger noise level for lower flight then expected, might
be related to this. As lower flights will result in lower LiDAR footprint sizes, more detail of the grass
can be measured. Therefore measurement might be taken between the leafs of the ground surface
and other measurements might only detect the top of leafs. This results in a larger noise level, caused
by the larger terrain error. The higher flights have larger footprints and therefore might not measure
individual grass leafs and a more flat terrain is measured. This explains the decrease in noise level to
around 60m flying height. At larger heights, again the scan error starts to dominate, partially caused
by the larger footprint size and therefore lower precision. This explains the increase in noise level for
flights higher than 60m.

Across track incidence angle for the grass classified data
Figure 7.19b shows the relation between the noise level and the across track incidence angle. The
data shows similarities with the road classified data. First, more smooth signal seems to exist in the
range 0-40 degree than for larger across track incidence angles. This is again likely the result of the
side look angle of the LiDAR with an additional 5 degrees caused by possibly a slight rotation of the
UAV as the result of wind and the fact the terrain might not be completely horizontal. Second, data
above 40 degrees is more erratic and likely caused by wind gusts (rotation the UAV), steep parts of the
grass, grid cells wrongly classified as grass, and grid cells fitted poorly by a PCA plane. The data has
similarities with the previously discussed along track angle for grass. The more smooth behavior then
the road class in the 0-40 degree range (just as the 0-20 degree range in along track), and the larger
noise levels for lower flights then expected, can be explained with the same affects as discussed for
the grass along track noise level relation.

Measurement range for the grass classified data
Figure 7.19c shows the relation between the noise level and the scan range. First the overall shape
of the data is discussed. This overall shape is very different then the road result and seems to follow
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an quadratic like shape with its minimum around a range of 60m. The on average largest noise level
values are found for the lowest and highest measured ranges of 10m and 130m respectively. Secondly
the shape of the measurements per flying height will be discussed. As observed, for most flying heights
the lowest measured range is has a much larger value then expected. Then measurements seem to
perform a smooth curve that becomes almost horizontal and finally seem to perform a wavy pattern
with increasing range. This wavy pattern is angled down for lower flying heights (10-50m) and upward
for higher flying heights (80-100m).

The observed overall shape of the noise level with scan range behavior for grass is different from
the road data. These differences are likely caused by the different terrains. The low flying height (and
therefore low range) measurements, have a small footprint and measure individual grass leafs or grass
patches. This results in more measured terrain roughness and a larger value for the noise level. In
the minimum of the overall parabola shape (around 60m), the footprint size is large enough the terrain
roughness is measured by each measured point. Afterwards the error goes up again. This is likely
caused by the increasing footprint size, just as was the case for the road class.

The small scale oscillations seem also relevant, as they behave comparable for the different flying
heights. The initial peak at the lowest range per flying height is likely measured in nadir direction. In
this direction LiDAR pulses might travel between the grass leafs and reach the ground surface, as dis-
cussed before. Other pulses might only measure the top of the grass. This could explain the peak value
of the noise level. The overall shape of the individual flight measurements seems to change angle for
different flying heights. The angle seems to point steep down for increasing range for low flying heights.
This might be the case as the larger scan angle (larger distance) allows measurements to scan less
deep into grass. This decreases the noise level value. However, from a range around 60m the grass
roughness seems to have less effect on the angle of the overall measurements. From here the noise
level becomes larger for higher ranges as expected, due to the increase in footprint size. The figure
for grass is less erratic then for road. This is likely due to the larger number of grass grid cells which
results in a more constant median estimate. Despite the more erratic behavior, it seems some parts
of the road data, show a similar wavy pattern as the grass class. This effect might be due to the scan
pattern, with changing scan angles.

7.3.3. Conclusions scan geometry analysis
In this analysis multiple effects are found. First, it was found the scan pattern seems to have the largest
point density near the across track edges. Furthermore, the scanned area per flight line can likely be
influenced the wind. The UAV counter acts the wind by rotating and rotates the LiDAR as well. This
resulted in an across track field of view of around 25 degrees on one side perpendicular to the flight
track, and around 45 degrees on the other side. Furthermore, it was found the roughness of grass
affects the noise level to a fly height of around 60m. For flights higher than 60m, the grass roughness
cannot easily be detected anymore, due to the larger footprint size.

7.4. Vibration analysis
In this section the results of the vibration analysis are presented. First the raw acceleration time series
data, measured by the IMU is studied. Then the calculated periodogram, average periodograms and
average welch periodograms are studied for processes and outliers that are shown. As the Waarde
flights were performed with an optimal damper setup and significant wind was present during the mea-
surements, this data set is used to study the wind effect on the periodogram data. As the Springert
data was acquired with observed excessive oscillations to the Yellowscan Mapper+, this data is studied
with extra attention. Finally the periodogram data between the different locations and damper setups
is compared.

7.4.1. Time series
The exported IMU data is given in along-track, across-track, up-direction and combined absolute ac-
celeration, with a sample rate of 0.01s. The data is given in along-track, across-track, up-direction
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and combined absolute acceleration. Figure 7.21 shows an example of this data for the 30 m height
Springert flight. The corresponding flight path and wind direction is shown in Figure 7.20. For compari-
son, the IMU data of the 20m height Waarde flight, flown with untight tie wraps, is shown in Figure 7.22.
These flights were chosen for comparison due to their similar flight parameters. The wind conditions
are comparable, as indicated in Figure 5.6 and Figure 5.8, with the Springert flight having an estimated
average wind speed of 2.9 m/s and the Waarde flight having an estimated average wind speed of 4.0
m/s. Both flights were flown with a ground speed of 5 m/s and 50% sidelap. Parameters that differ
between the flights are a flying height of 20m and 30m for Springert and Waarde respectively and
the different damper setup. The time series figures show large accelerations at the start and end of
the flight (and therefore time series). These are caused by the take off, landing and IMU calibration
of the system. These segments will not be further analysed in this section. In the time series images,
flight lines are indicated with a vertical green and red line. These indicate the start and end respectively.

The Springert data will be investigated first. This flight was flown with green dampers and tight
tie wraps. During this flight significant oscillations were observed of the Yellowscan Mapper+. In Fig-
ure 7.21 the accelerations in along track and up direction seem partially correlated, as both signals
exhibit lower amplitudes at specific times. Furthermore, both signals display significantly larger magni-
tudes compared to the across-track direction. This indicates the Mapper+ experienced larger amplitude
oscillations in along-track and up direction, than the across track direction. Additionally, the magnitude
of all the shown accelerations during flight lines seems to consistently decrease towards the end of the
flight. The wind however seems to increase during the flight, as can be seen in Figure 5.6. However,
this wind data is only an estimate made every hour at 16.9 km from the flight location. Therefore local
conditions could differ. A possible explanation for the decrease in magnitude is that the increased wind
dampens the oscillations of the Mapper+.

Another interesting observation is the presence of turns in the across track signal. The accelerations
in the across track signal show a reoccurring positive and negative average acceleration between flight
lines. This effect is caused by the alternating positive and negative turns made by the UAV between
flight lines. Notably, these turn effects in across track direction are filtered out quite well. However,
in along track and up direction, larger than average magnitude accelerations are often present in the
flight lines after a turn. This effect can be observed in Figure 7.22 as well. It seems the flight line is
started when the turn is completed in the across track direction. However the accelerations in along
track (speed) and up direction (height) need some additional time to reach the lower acceleration stan-
dard deviation of a flight line. Therefore it might be beneficial to start a flight line later after a turn. This
might decrease the effect of oscillations on the data.

Another interesting effect can be observed in the across track and less clearly in along track direc-
tion in Figure 7.21. The standard deviation of each flight line seems to alternate between a higher and
lower value. This is likely caused by wind as alternating flight lines are flown in opposite direction. It
seems the flight lines that are flown sharper up wind have lower magnitudes accelerations in across
and along track direction.

Figure 7.22 shows the acceleration time series at Waarde. Here the green dampers were used
in combination with untight tie wraps. Despite the slightly higher wind speed at Waarde during the
flights, the standard deviation of accelerations during flight lines is much lower than at Springert. The
mean 3D accelerations at Waarde are 0.371 ms−2 compared to 0.852 ms−2 at Springert. The largest
improvements of accelerations are in along track and up direction. In these directions the signal now
shows a clear distinction between accelerations during flight lines and between flight lines. Flight line
3, shows an acceleration peak in the middle of the flight line in all directions. It is likely here the UAV
lost connection to the controller shortly, came to a halt, reconnected and continued with the flight line
(or a very strong wind gust but this is not likely). The hovering however could not have persisted long
as it was not clearly visible in the processed flight trajectory. During other Waarde flights, this occurred
a few more times. However others stops were longer and clearly visible in the processed trajectory file.

The Waarde data, acquired with the damper setup with untight tie wraps, showed on average much
lower vibrations during flight lines. This resulted in a much better distinction in behavior between flight
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lines and turns than the Springert data. For now, the flight line start and end time selection was per-
formed using an initial automatic result from the CloudStation software, which was ’optimized’ manually.
However, the relatively clear acceleration magnitude differences between turns and flight lines show
that this was not performed optimally. This can be seen by the strong vibrations that are still present
shortly after the start of most flight lines. These facts together, indicate that an automatic start and end
time of flight lines detection based on IMU data, might be possible and could even perform better then
when this would be done manually.

Figure 7.20: Springert flight path for 30 meters flying height and flight number 3.
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Figure 7.21: Acceleration time series for flight number 3, at 30m flying height for the Springert dunes. The green vertical lines
indicate the start of a flight line and the red vertical lines the end. The blue graph is a line but seems a colored area as the lines

are very close together.



7.4. Vibration analysis 82

Figure 7.22: Acceleration time series for flight number 2, at 20m flying height for the Waarde tidal flats. The green vertical lines
indicate the start of a flight line and the red vertical lines the end. The blue graph is a line but seems a colored area as the lines

are very close together.

7.4.2. Periodogram analysis
In this subsection the periodograms of individual flight lines, mean periodograms and mean Welch
periodograms are calculated and studied for the Zegveld, Springert and Waarde location for multiple
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Table 7.7: Amount of points used for calculating the periodogram and Welch periodogram. The amount of periodogram data
point values were rounded to a number large enough to contain the longest flight line. The Welch periodogram amount of
points was chosen by iterating and finding a trade off between larger amounts with higher spectral resolution, but higher

variance as well and smaller amounts with lower spectral resolution, but with lower variance.

Longest flight
line duration [s]

Total amount periodogram
time series data points
with zero padding

Total amount of Welch
periodogram time series data
points with zero padding

Zegveld 12.4 2000 300
Springert 98.6 10000 800
Waarde 80.3 10000 800

flying heights. As described in subsection 6.4.3, first a number of time measurments was determined
that is larger than for the longest flight line in the data. The data of all flight lines was zero padded to
these values to allow for the calculation of the mean periodogram and mean Welch periodogram, as
the periodogram values are then calculated for the same frequencies. The used data number for both
the periodograms and Welch periodograms for the different locations is presented in Table 7.7.

Figure 7.23 shows the individual, averaged and averagedWelch acceleration periodograms in along
track direction of the 30m height, for flight number 3 at Springert. As expected the variance is much
higher for the individual periodograms then for the averaged and averaged Welch periodograms. The
individual periodograms seem to follow a consistent pattern. However one periodogram has much
higher power density at the lower frequencies. This is the last flight line. When this flight line is in-
spected in Figure 7.21 it can be seen the last flight line is much shorter than the other flight lines, 9s
compared to the average of 64s of this flight. The signal is however zero padded to 100 seconds. The
shorter signal lowers the spectral resolution significantly. This likely causes the signal to deviate this
far from the mean. As the mean is sensitive to outliers the average periodogram seems to be impacted
significantly at these lower frequencies. The Welch periodogram uses part of signals of 8 seconds at
Springert and therefore is not affected by the lower spectral resolution. Furthermore the signal seems
to have a very steep rise at the 0 frequency. As the mean was subtracted from the signal before the
periodogram was calculated, the 0 frequency starts at 0. This explains the step from 0Hz. This effect
can be seen at all the other averaged periodograms. The Welch periodogram does not have this effect
as the whole signal might have zero mean, but short time series might still have a non-zero mean.
Therefore here the Welch periodogram does not show this behavior 0Hz.

The rest of Figure 7.23 shows that the mean periodogram, and the mean Welch periodogram cap-
ture the shape of the individual flight lines well. This was checked for the along-track, across-track, up
direction for all the different flights at Zegveld, Springert and Waarde, and on these other graphs the
general shape of the flight lines is captured as well, except for a few periodogram outliers in graphs likely
caused by short flight lines as well. Therefore in the rest of this section only the average periodogram
and the average Welch periodograms will be used for further analysis. Furthermore, the Zegveld flight
lines were of short duration in comparison to the other flights. This results in a lower spectral resolution
of the Zegveld periodograms. Zegveld flights also often contain only two flight lines. Therefore, less
data is averaged when calculating the average periodogram and average Welch periodogram.
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Figure 7.23: Average, Welch and individual one-sided acceleration periodograms in along track direction, with 30m flying
height and flight number 3 at the Springert dunes.

Figure 7.24: Average and Welch one-sided acceleration periodograms for Waarde in along track direction.
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Figure 7.25: Average and Welch one-sided acceleration periodograms for Waarde in across track direction.

Figure 7.26: Average and Welch one-sided acceleration periodograms for Waarde in up direction.
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Figure 7.27: Average and Welch one-sided acceleration amplitude periodograms for Waarde in 3D.

7.4.3. Wind effect
Figures 7.24 to 7.27 show the averaged acceleration periodograms for each flight at Waarde in along,
across track, up direction and absolute acceleration amplitude respectively. Wind conditions varied
significantly during between flights at waarde. This can be seen in Figure 5.8 the estimated average
wind speed is larger for the 70 m and 20m flight number 1 flight (estimated around 7.9 m/s and 7.4 m/s),
than for the 50m and 20m flight number 2 flight (estimated around 4.0 m/s and 4.0 m/s). This effect
is visible as well when the periodograms of the different flights are compared. The periodograms of
the flights behave overall quite similar, but vary at some frequencies as well and this is likely caused
by wind. In along, across track and up direction the different flights behave quite differently around
40-50Hz (repeat time 0.025-0.020 s). Around 44 Hz a peak can be seen in all directions for the 70
meter flight with the 20 meter flight with number 1 as second highest (flights with highest wind speeds).
Therefore this might be caused by the higher wind speed. Overall the behavior varies a lot in this
range. Another reason that could contribute to this is the fact that these frequencies are close to the
Nyquist frequency. Therefore these frequencies might be influenced more by aliasing than the lower
frequencies. Frequencies higher than 50Hz will fold back around 50Hz. Therefore frequencies around
50-60Hz will also influence these graphs.

Figure 7.24, seems to indicate the flights behave quite similarly from 0-30Hz for the different wind
speeds. Mainly flight 20m number 2 seems slightly lower, likely caused by the lower wind. Between
0-40Hz the size of the amplitude seems to be ordered from high wind to low wind. However the sep-
aration between the graphs is low. Figure 7.25 seems to show the shape of the periodogram is quite
similar between the flights from 0 to 40 Hz. However the power between 20-40Hz seems lower for
lower wind. The separation of the different wind speeds is quite distinct here. This might be caused
by the orientation of the wind to the flight lines. The wind was orientated mostly from the side and
therefore likely influenced the across track periodogram the most. For Figure 7.26 the behavior seems
consistent for the different flights in the 0-40Hz interval. Mainly the 20 meter flight number 2 is lower
than the other averaged periodograms. This flight likely was flown with even lower wind speeds than
the 50 meter flight. Also the lower flying height might have caused lower wind speeds.

Figure 7.27 shows the power of the absolute acceleration amplitude in 3D. As only the amplitude
is considered direction information of the power is lost. Therefore when the acceleration stays of the
same magnitude but changes direction, this will not result in a signal in this plot. This rotation will
however be visible in the along, across track and up direction periodograms. Therefore peaks found in
along, across track and up direction with the same frequency and are underrepresented in Figure 7.27
and point to rotation of the system. This plot has a overall decrease from higher to lower frequencies
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with peaks every 5 Hz. These peaks can also be found in the along, across track and up direction peri-
odograms. These peaks are likely caused by a vibration induced by the Livox Avia LiDAR scanner. In
Table 3.3 can be found that the repeat time of the scanner, when it uses the repetitive pattern, is about
0.1 seconds, resulting in 10 Hz. The second undertone is then found at 10

2 = 5Hz. The overtones
can be found at multiples of 10Hz. This explains the peaks around 20,30,40,50 Hz. Then the second
undertone combined with the overtones, can explain the peaks at 15,25,35,45 Hz.

7.4.4. Springert data analysis
The averaged periodograms of Springert flights are shown in Figure 7.28 and Figure 7.29 for accel-
eration power in along and 3D direction. These figures give a noticeable differences between the
average Waarde periodograms outside from their different shapes. The first difference is that the av-
erage periodograms between 40-50Hz seem much more stable (Zegveld flight shows stable behavior
in this region as well). This is likely caused by the more stable wind conditions during the flight than at
Waarde. Another interesting behavior can be spotted at the periodogram around 13 Hz in Figure 7.28.
Here, the acceleration power in along track direction behaves differently around 13Hz for flight number
1 at 30m, than the other flights. This flight seems to have a smaller peak compared to the other flights
in the figure. This peak shape can be observed for this flight in 3D magnitude around 3, 8, 18, 23 and
26 Hz in Figure 7.29. For this reason it is suspected these peaks are the result of a similar effect. A
possible explanation is the different wind direction and wind speed for flight number 1 at 30m height.
This flight seems to have relatively low wind speeds, as shown in Figure 5.6. The wind direction di-
rection seems to have changed to South South East, while wind direction of the other flight was likely
orientated between South and South South West direction.

Figure 7.28: Average and Welch one-sided acceleration amplitude periodograms for Springert in along track direction.
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Figure 7.29: Average and Welch one-sided acceleration amplitude periodograms for Springert in 3D direction.

7.4.5. Comparison between different locations and damper setups
In this subsection all the averaged periodograms per location are compared. The average could be
taken as most conditions did not differ significant when flown at the same location. However wind
did differ significant for the Waarde flight. Therefore it should be kept in mind that all wind effects
have been averaged. Figure 7.30 shows the resulting averaged periodograms per location. In this fig-
ure, the Zegveld and Waarde periodograms follow each other quite well. This was expected as these
flights have the same damper configuration. Mainly at the higher frequencies, around 40-50Hz the
periodograms at the different locations differ significantly. This is likely caused by wind as seen in sub-
section 7.4.3. The Springert flight does behave very differently. As the largest difference of this flight
is the damper setup. It is expected the different shape is mostly caused by the tight tie wrap damper
setup. Overall, the Springert flight data seems to have larger acceleration power than the Zegveld and
Waarde data. The Springert signal has a similarly shaped peak around 13 Hz in the along, across track
and up direction. This is likely the natural frequency of the Mapper+ with the tight tie wraps. The peak
however does seem less significant in the 3D space plot. This points to a shape of the oscillation that
does not go trough the 0 point. Therefore the oscillation of the Mapper+ is likely an oval shape around
13 Hz. The second overtone is around 26 Hz. This frequency is much more pronounced in the 3D
acceleration power plot. This indicates this frequency does go through zero. This could be seen as
smaller oscillations in the oval main oscillation. Furthermore the driven oscillation around 25Hz caused
by the Livox Avia scanner (combination of second overtone around 20Hz and second undertone of
5Hz) helps increase the oscillation round 26 Hz. The peaks at 3, 8, 18, 23 Hz that were found already
in subsection 7.4.4 and can be seen in the 3D power acceleration amplitude in Figure 7.30 seem cen-
tered around the 13 Hz peak. 3 Hz and 23 Hz are 10 Hz lower and higher than the central peak. 8
Hz and 26 Hz are 5 Hz lower and higher than the central peak. This is likely caused by a combina-
tion of the natural frequency with second undertone of 5 Hz and 10 Hz caused by the Livox Avia sensor.

Furthermore the natural frequency of the Zegveld and Waarde flight will differ from the Springert
flight as the stiffness of the system differs caused by the tie wraps. As the dampers where pulled tight
by the tie wraps for the Springert data, the stiffness should have been higher. A lower stiffness should
cause the natural frequency to move to a lower frequency. The across, along track and up direction
seem to show a slight peak around 8 Hz for Zegveld and Waarde. Around the second overtone at 16
Hz new peaks can be found in the along and across track direction. This peak is however close to the
15 Hz driving frequency and likely therefore extra enhanced in amplitude.
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Figure 7.30: Averaged one-sided acceleration periodograms for the Zegveld, Springert and Waarde location. The results are
given in along track direction, across track direction, up direction and as 3D magnitude in the subplots a, b, c and d respectively.

7.4.6. Conclusions vibration analysis
It seems, the Yellowscan Mapper+ damper setup has an effect on the measured vibrations of the LiDAR
module. Average acceleration power periodograms have been calculated for flights with dampers with
untight tie wraps, and flights with tight tie wraps. The tight tie wraps seemed to result in a larger overall
acceleration power than the flights with untight tie wraps. For this reason, it is recommended to use
untight tie wraps for future flights.

Furthermore, interesting frequencies have been detected. For flights with, tight and untight tie wraps,
the frequencies with the largest power seemed to have been located on different locations. With tight
tie wraps, the natural frequency of the system seems to be located around 13Hz, but likely depends
on the tightness of the tie wraps. With untight tie wraps the natural frequency of the system seems to
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be located around 8Hz. Additionally the driving frequency of the LiDAR is likely located around 10Hz.
Every 5Hz in the studied averaged periodograms, until 40Hz, seems to have a power peak likely the
result of overtones and undertones of the 10Hz driving frequency.

Moreover, it seemed stronger wind might increase the overall measured vibration power, however
the exact influence depends likely on the wind to the flight line orientation and possibly other effects
(such as wind gusts).

Additionally, it might be interesting to detect the start and end times of flight lines with the IMU
acceleration data. The data flown with the untight tie wraps, seemed to show relatively large magnitude
differences between the turns and the flight lines. It also seemed the case, the flight lines might have
started too early after a corner. Because of this, relatively strong accelerations where still found at the
start of some flight lines.



8
Discussion

Section 8.1 will discuss similarities and differences between quality metrics calculated with the overlap
and target analysis and the quality metrics provided by Yellowscan. In section 8.2 possible improve-
ments to the overlap analysis will be given. Afterwards, found flight planning rules of thumb and esti-
mated quality metrics by the flight planner tool will be discussed in section 8.3.

8.1. Quality comparison
In this section, the found quality of the different quality assessment methods is compared to each other
and the values provided by Yellowscan. First the accuracy values will be compared in subsection 8.1.1.
Afterwards, the precision values will be compared in subsection 8.1.2. In subsection 8.1.3, then the
effect of vibrations on the data quality will be discussed.

8.1.1. Accuracy comparison
Accuracy values were found by comparing the point cloud data to GNSS measurements. For this rea-
son, only the target analysis results and Yellowscan metrics estimate this.

As indicated by the error component analysis (subsection 7.1.2) in the target analysis, the target
method can mainly study combined point cloud and GNSS errors in up direction. Figure 7.5d, show
that this error component dominates. Figure 7.5c, seems to show that the standard deviation is around
37-39mm for 30-70m flying height. Figure 7.6c, seem to show that possible biases stay within 20mm.
This is still within the found standard deviations around 0m. Accuracy of the Yellowscan Mapper+ as
defined by Yellowscan is as follows: ”Accuracy is the degree of conformity of a measured position to
its actual (true) value. Here accuracy value is obtained by averaging the accuracy from 3 flight levels
@ 60, 90 and 120mAGL [Above Ground Level]. At each flight level, the accuracy is considered as the
RMSE value of the elevation differences between targets and the point cloud extracted from 2 flight
lines recorded in opposite directions. Validation targets are located within a 40m wide corridor centered
along the flight line axis” [40]. The provided value is 30mm. This definition considers the up direction as
well. The target results do not seem to disprove the accuracy value provided by Yellowscan. However
considerable differences between the accuracy estimation methods exist.

The differences that likely have the most impact on the results are the flying heights and the target
sizes. The flying heights are on average significantly higher for the Yellowscan value. This likely results
in larger estimated accuracy values. The target sizes have significant effect as well. The exact sizes of
the Yellowscan targets are not known, but the target sizes in the target analysis are only 0.5m by 0.5m.
This did seem to affect the point density strongly for the 50m and 70m flying height. Larger target sizes
might allow for more measurements per target and more measurements with full footprint areas over
the targets. For this reason, the estimated accuracies might be more robust.
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Furthermore, the target analysis did seem to indicate a horizontal bias with 95% confidence level in
one of the tested data sets. As this did not occur for the other data sets, it is expected to be a special
case. The reason for this bias is not completely understood. However, during the flights used for the
target analysis, significant vibrations have been observed and studied. These likely originated from a
sub optimal damper setup. When the different flights are studied, it is observed that this flight (50m
flying height) contained the most vibration power in along track and 3D magnitude, especially in the
0-25Hz range, compared to the other flights. This can is shown in Figures 7.28 and 7.29. For this
reason a possible explanation for this bias, are the additional vibrations.

8.1.2. Precision comparison
The precision is studied by the target analysis and the overlap analysis. Furthermore, Yellowscan de-
fined is as follows: ”Precision, accounts for the variation in successive measurements taken on the
same target. Here precision value is obtained by averaging the precision from 3 flight levels @60, 90
and 120mAGL [Above Ground Level]. At each flight level, the precision is considered as the mean
value of absolute elevation differences between 2 flight lines recorded in opposite directions over a
nadir-located 40m² hard surface area” [40]. A value of 25mm is given for the considered LiDAR scan-
ner.

The target analysis estimates the vertical standard deviation around 37-39mm for 30-70m flying
height, as shown in Figure 7.5c. This is considerably larger then the provided Yellowscan value, even
for lower average flying heights. A possible explanation is that the target analysis standard deviation,
likely contains a significant additional GNSS precision component. This component originates from
the reference GNSS measurement of the target locations. The overlap analysis precision estimations
are much closer to the value provided by Yellowscan, and given in Table 7.6. In this table the vertical
precision estimation was calculated for road and grass. As the road is flat, this are likely the values best
compared to the Yellowscan value. The precision was estimated for 10m to 100m flying height with
increments of 10m. The 60m and 100m flying height estimated precision’s are 11.4mm and 23.2mm.
As no value is available for 120m flying height, the precision can not be averaged over the 60m, 90m
and 120m flying height. But it is likely the resulting value would be very close.

8.1.3. Vibrations and dampers
With the performed vibration analysis, it was found that the flights at Springert contained significantly
more vibrations, which were likely caused by the damper setup with tight tie wraps opposed to untight
tie wraps for the other flights. This data was analysed with the target analysis. In this analysis, for one
flight in one direction a bias was detected. In the other two flights, no biases where detected. This bias
possibly was caused by these vibrations. However, targets could still be detected in the data to allow
for this target analysis, and for the other two flights, no biases where detected. For these reasons it
seems, the damper set up, and therefore the excessive vibrations, might have effect on the resulting
data quality. However, the data still could be used to detect targets and for this reason could still be
useful for applications that do not require the highest possible accuracy and precision possible.

8.2. Possible improvements overlap analysis
The performed overlap analysis might be improved in multiple ways. In subsection 8.2.1, provides
suggestions how the overlap analysis can be performed on new locations and how the results might
be improved. Subsection 8.2.2 gives suggestions for new features that might provide additional quality
information.

8.2.1. Recommended future approach
When this method is performed for future analysis, some recommendations are given to possibly allow
for better results. First, it is recommended to fly with 50% side lap. This was performed during this
analysis as well. It makes sure, most parts of the area are scanned twice and provides a large number
of overlaps between flight strips. Furthermore, it results in an even spread of scan geometry. When,
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for example, only 30% side lap would be used, almost all overlaps between flight strips have a non
optimal scan geometry. Second, at least 3 flight strips are recommended. In this report, often only two
flight strips have been used. This resulted in strip overlaps only measured by one (across track) side
of the LiDAR scanner. For example, the right side of a flight line is scanned by the UAV. After the flight
strip, the UAV makes a u-turn to the right and starts the next flight line in opposite direction. The right
side of the LiDAR, scans then the same area, which results in the overlapping data. Only when a third
flight strip is added, overlaps on the left side of the scanner are considered as well.

Furthermore, it is recommended to use enough grid cells of the relevant classes. In the overlap
and scan geometry analysis it was found, the road class did not consist of enough grid cells to reach
the preferred robustness. The grass, did seem to reach the desired robustness. Furthermore, it is
expected that more grid cells are required at larger heights, as the precision of the individual measure-
ments decreases. It is found that a number of 334 grid cells is too few and 1320 grid cells perform
well for 10m flying height. For 100m flying height, 3142 grid cells seem too few while 19872 seems to
perform well. More values can be found in Table 7.5. With this information it is recommended to use
around 1300 to 18000 grid cells, and therefore around 1300m2 and 18000m2, for 10m and 100m flying
height respectively per class of interest. Fewer grid cells might still result in useful quality metrics, but
depends on the use case.

In this report, the grass and road class grid cells are studied. These classes have been classified
with k-means using the maximum height difference, average LiDAR intensity and third eigenvalue of a
fitted PCA plane per grid cell. This method seemed to work on this data set. However, other data sets
might require additional features for differentiating between classes. Even other classification methods
can be used, such as random forest classification. Different classification methods can be used in
combination with the rest of the presented overlap analysis.

8.2.2. Additional time lag features
In the overlap analysis, the point cloud data is split in a horizontal grid and divided in time epochs per grid
cell. Per epoch, a PCA plane is fitted. By comparing the PCA planes between epochs for positive time
lags per grid cell, the quality relation with time lags can be studied. Currently, only the vertical height
differences between the PCA planes at the center of the grid cells are used as quality metric. However,
other features are possible. Two such features are presented, that might be useful for further research.
This are the angle difference (αtEi

,tEj
) and homogeneity (htEi

,tEj
). The angle difference is visualised

in Figure 6.11. In this figure variables used to calculate the homogeneity are shown as well. The angle
difference is calculated with Equation 8.1. This feature is the minimum angle difference between the
fitted PCA planes. This feature might especially be useful to detect PCA planes that do not represent
the grid cell well (outliers). This can be done by finding planes that have large angles compared to
most other planes in the grid cell. This could be caused by effects explained subsection 6.2.3. The
homogeneity can be calculated with Equation 8.2, and is a factor between 0 and 1. As the terrain that
is measured, should stay similar for all epochs per grid cell, a similar third eigenvalue is expected for
all fitted planes in the grid cell. This is the case as the terrain error and measurement error should stay
similar. When a very large value is found, the third eigenvalues of the fitted PCA planes deviate far.
This might point to effects, such as: scan geometry changes, terrain changes and poorly fitted PCA
planes (for detecting outliers).
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8.3. Data quality and flight parameters
In this section rules of thumb between the data quality and the flight parameters will be discussed in
subsection 8.3.1. In subsection 8.3.2, the estimated point density and flight time are compared to ac-
quired data.

8.3.1. Flight planning
For flight planning multiple rules of thumb where used, which follow mainly from the Yellowscan flight
training. First, flights are generally performed with ground speeds between 5m/s-10m/s. However, it is
dependent on the flight line length as well. Lower flight speeds might result in more IMU drift for long
flight lines. Faster flight speeds might result in lower measurement quality. Furthermore, most flights
are performed with a side lap of 30% to 50% to allow for strip adjustment. Additionally, above a flight
height of 70m, the data quality seems to go down quickly. This has been confirmed with the overlap
analysis in this report. Moreover, smooth corners make the IMU likely perform better than turns that
occur on a stationary position. At the Zegveld data set acquired at 6-12-2022, first a turn radius of 1m
was used. This proved too small. It is therefore recommended to use a turn radius of around 30m or
as large as possible. For future research, it might be interesting to determine the optimal or maximum
flight line length in combination with ground speed.

Figure 8.1: Estimated and found point densities for multiple fly heights. The black line shows the estimated flight strip point
density, the blue line the found flight strip point density and the orange line gives the found total point density. This is higher

then the strip density caused by side lap.

8.3.2. Estimated output parameters of the flight planner tool
In this subsection the estimated flight time and estimated point density, by the flight planner tool are
evaluated. The estimated flight time by the flight planner tool performs well. However, this time does
not include the flight from the take-off point to the start of the mission and the flight from the end point to
the landing location. This, and the required IMU calibration, result in a slightly longer actual flight time
with the UAV. It was found a mission of around 21-23 minutes in the flight planner tool, could be flown
with one UAV battery set that also powers the YellowscanMapper+. Wind however might lower this this.

The estimated point density by the flight planner tool was validated with the Zegveld data acquired
at 6-12-2022. This data set was flown for 10m to 100m height with 10m height increments. To validate
the estimated point density per flight strip of the flight planner tool, this was calculated in the acquired
data for each flying height. The total flight density per height is calculated as well. Side lap between
flight lines will cause differences. The point density is calculated by only considering the data in the
horizontal plane (height information is not considered). Then for each point, the total amount of points
in a horizontal radius of

√
1
π = rsquare meter counted. Each point will thus have a corresponding point
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density calculated. This was performed for all points in the data per flight strip, and for all points in
the data per fly height. For all points, the median point density per flight strip and fly height was found.
Then the mean of the median point densities per fly height was used to estimate the flight strip point
density per fly height. These results are visualised in Figure 8.1. As shown, the estimated strip density
and calculated strip density are very similar.



9
Conclusions and recommendations

9.1. Conclusions
Here, the main question of this report is given. This question will be answered by answering the sub
questions below.

How to obtain and assess the quality of point clouds obtained by a UAV LiDAR system?

What are contributing error sources to point cloud data acquired with a LiDAR UAV system?
The geometric quality of a single point measurement with a UAV LiDAR system is dependent on four
major factors [29]: instrumental characteristics, material characteristics, atmospheric characteristics
and scan geometry. The instrumental characteristics are dependent on the instrument, which consits of
the LiDAR module, GNSS module and IMU module. The considered LiDAR, is a discrete linear LiDAR.
These sensors have a certain pointing error, range measurement error and pulse repetition time that all
effect the accuracy and precision of the resulting measured points. Furthermore, the LiDAR has a beam
divergence and therefore increased footprint size for longer ranges. This effects both the measured
intensity and the area of the terrain that is scanned by one point. The IMU and GNSSmodules, together
estimate the orientation and location of the LiDAR module. The IMU data has high data frequency, but
experiences drift. The GNSS data has a lower measurement frequency but does not experience drift.
Therefore, these sensors complement each other. Furthermore, strip adjustment can affect the resting
data quality. Additionally, different materials might have different back scatter behavior and therefore
influences the data quality as well. Furthermore, atmospheric attenuation might occur and affect the
LiDAR signal. Scan geometry has also effect on the point quality. For larger incidence angles, the
footprint size of the LiDAR signal on the terrain will increase. This will result in more noise in the
resulting measurements.

What are good metrics to evaluate quality of point clouds acquired with a LiDAR UAV system?
There exist multiple ways to study the quality of a point cloud, here the focus is on the geometric
quality of the point cloud. Therefore assessing the quality of the intensity and RGB measurements
was not a goal of the study. Furthermore it was chosen to use objective quality metrics instead of
subjective metrics, as subjective metrics are mainly important for point cloud interaction with humans
[7]. Furthermore, no machine learning based quality metrics were considered, to allow for clear insight
in the effects that influence the chosen quality metrics. Accuracy and precision are the chosen metrics
for studying the geometric quality of the point clouds.

How to obtain suitable quality metrics from the data?
Accuracy requires comparison of the point cloud data to ground truth data. For this, GNSS measure-
ments of targets are used. This method is referred to as the target analysis. The target coordinates
can be located in the point cloud data as well. This was performed automatically, based on intensity
data, and manually, based on RGB data. For each target, the coordinate differences of the estimated
locations in the point cloud and the measured GNSS locations, can be calculated. These coordinate
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differences can be studied in multiple ways. First, the coordinate differences can be used to estimate
a separate automatic target fitting, manual target fitting and combined point cloud and GNSS error
component. The variance (precision) and expectation (accuracy) of these error components can be
estimated. Furthermore, biases can be detected by performing a t-test on the coordinate differences.

The height precision can also be estimated when no reference data is available, using the proposed
overlap analysis. This analysis divides the point cloud data in a horizontal grid. Per grid cell, the data is
divided in time epochs. Per time epoch, the height in the center of the grid cell is estimated, by making
use of an PCA plane. By calculating the height differences for all epoch combinations that result in a
positive time lag, the height precision can be studied. In this data, two types of overlaps have been
found. This are overlaps within a flight strip and overlaps between flight strips. The overlaps between
flight strips can be averaged for all available time lags, as there seems to be no relation between these
variables. This can give an estimate for the height precision of a close to horizontal 1m by 1m estimated
PCA plane to the data.

By researching the square root of the third eigenvalue of all fitted PCA planes for the scan range,
along track and across track incidence angle, the terrain error and scan error for different scan ge-
ometries can be studied. Some terrain types are not completely flat, such as grass. In this case, a
difference between the actual terrain and estimated PCA plane might occur, due to terrain roughness.
This difference is referred to as the terrain error.

Is the quality of the data as expected?
The estimated accuracy of the target analysis does not disprove the accuracy provided by Yellowscan.
However, the target analysis and Yellowscan use a different methods to estimate the accuracy. Target
analysis estimates possible biases to stay within 20mm, with 37-39mm standard deviation for 30m to
70m flying height. Yellowscan estimates 30mm for an average of 60m, 90m and 120m flying height.
Using a one sample t-test, the target analysis seems to have detected a bias in horizontal direction. It
is expected to be a special case, as such biases where not detected for the other flights. A possible
explanation for this bias, is the excessive vibrations of the LiDARmodule that where observed during all
target analysis flights. The flight where the bias occurred, seemed to have the largest vibration power
of these flights, especially in the 0-25Hz range.

The estimated height precisions for a 1m by 1m plane by the overlap analysis are given in Table 7.6
for both road and grass classified data. The values are given from 10m to 100m flying height with 10m
increments. This table was calculated with a relatively low amount of road grid cells. Therefore roads
will likely be measured with a better precision in reality then shown in this table. The table seems to
show a strong precision decrease for flying heights larger than 70m. Height estimating standard devi-
ations seem to stay below 17mm, for flying heights lower than 70m. Yellowscan estimates a standard
deviation of 25mm, but uses the average of 60m, 90m and 120m flying height. The estimated precision,
found with the overlap analysis, would likely be similar when the same heights would be used. The
height precision estimated by the target analysis is much larger and likely caused by additional GNSS
precision errors in the data as coordinate differences are used. Furthermore, the scan geometry seems
able to detect a grass terrain error, for flights of equal and lower flying heights of 60m. At these lower
heights, grass also seems to appear flatter for larger incidence angles. At these larger incidence an-
gles, the ground surface can likely not be scanned thought the leafs. This likely causes this effect.

As discussed, vibrations were observed during the target analysis flights. This was likely caused
by tight tie wraps around the LiDAR dampers. The flights performed with untight tie wraps, seemed to
have a different frequency, and on average lower frequency spectrum. For this reason, the untight tie
wraps are recommended.

What is a good flight plan and how is this performed?
In this report a flight planner tool is developed to perform area based LiDAR UAV flights. This tool
is open source, but requires the DJI Pilot 2 application and can be used in combination with other
LiDARs. A good flight plan differs, and depends on the required use case. However the following
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rules of thumb can be used for this system. It is recommended to use a side lap of 30-50% to allow
for strip adjustment. Flying heights equal and below 70m seem to have significantly better estimated
height precision by the overlap analysis. Therefore, it is recommended to use a maximum flying height
of 70m. Furthermore, a ground speed of 5-10m/s is recommended. Rounded corners likely improve
IMU behavior and recommended to be set to a radius of around 30m or larger. Generally a lower flight
will result in better quality data, but will have a much lower coverage. Furthermore, grid flights can be
performed to achieve more homogeneous data. Additionally, the estimated point density per flight strip
in the flight planner tool seems to match the calculated value in reality. Furthermore, Table 7.6 can be
used to get an indication of the height precision reached of a 1m by 1m flat plane for 10-100m flying
heights with 10m increments and for both the road and grass class. Moreover, it is recommended to
use untight tie wraps for the Yellowscan Mapper+ dampers. However, the complete relation between
a flight plan and resulting point cloud quality is not fully understood and requires additional research.

9.2. Recommendations
Target analysis
A first recommendation, is to perform the target analysis without the excessive vibrations, as these were
present in this study. Furthermore, larger targets than (0.5m by 0.5m) are recommended, especially
for larger flying heights. In this analysis, it was found that horizontal point cloud errors could not easily
be detected. By using targets with more high and low intensity borders, the horizontal location of the
target might be detected better and possibly horizontal analysis of the data would become feasible.
Furthermore, it might be useful to measure the target coordinates more precisely with GNSS as the
current GNSS precision might limit the study of point cloud errors. This might be possible by using
static GNSS for multiple hours on targets. It might even be useful to then perform leveling between
targets to get a good height estimation of the target coordinates.

Overlap analysis
Possible improvements, for performing this analysis on a new location are suggested in subsection 8.2.1.
There it is suggested to use a minimum of 3 flight lines, and to make sure the terrain classes of interest
have a large enough area. For possible improvement of the overlap analysis, two new features are
suggested in subsection 8.2.2. This are the angle difference between PCA planes, which might be use-
ful to detect outliers, and the homogeneity feature. This feature might be able to study scan geometry
errors and terrain changes between measurements.

Scan geometry analysis
This analysis is recommend to use when more insight in the terrain types is required. It might by
interesting to perform the analysis on different terrain types, or with more grid cells on road classified
data.

Vibration analysis
With the vibration analysis, it might be interesting to study the effect of wind on the LiDAR module
vibrations. Furthermore, it might be interesting to use the acceleration time series to detect start and
end times of flight lines automatically. This might be possible, as large magnitude differences seemed
to exist between the flight lines and the turns between the flight lines. This might even perform better
then selecting the flight lines manually, as large vibrations seemed to still be present at the start of
some manually selected flight lines.

Flight plan parameters quality relation
In this thesis, mainly the flying height parameter has been studied in relation to data quality. However,
it might be interesting to study the flying speed relation to data quality as well. Furthermore, the relation
between flight speed and flight line length might be of interest, as the low flying speeds and long
flight lines might result in IMU errors. Additionally, it might be interesting to study the strip adjustment
performance with different side lap percentages, with flying a basic area based flight plan compared
to a grid based flight plan or with an additional crossing flight line. Moreover, it might be interesting to
study the detection level of objects in different directions, due to the asymmetric footprints, for multiple
fly heights.
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A
Targets Springert

In this appendix the GNSS measured locations of the target locations in the Springert data are given.
Furthermore the estimated target locations in based on the 30m, 50m and 70m fly height data are given.
These estimations are made with the automatic method and manually performed method discussed in
??. Table A.1 gives the GNSS measured location of the targets. The Tables A.2, A.4 and A.6 give the
estimated locations of the targets based on the automatic detection method and on the 30m, 50m and
70m fly height data respectively. The Tables A.3, A.5 and A.7 give the estimated locations of the targets
based on the manual detection method and on the 30m, 50m and 70m fly height data respectively.
Figures A.1 to A.9, give the corresponding estimated target locations visualised in the point cloud data.
All coordinates are given in the Rijksdriehoeks (RD) coordinate system with NAP heights.

Table A.1: Reference target locations Springert, measured with GNSS by surveyer.

Target number X [m] Y [m] Z (NAP) [m]
1 49859.364 423739.492 12.5520
2 49804.787 424082.846 5.9150
3 49746.342 424074.435 9.1880
4 49764.448 424181.205 4.9020
5 49699.296 424203.464 9.8160
6 49702.192 424202.920 9.5620
7 49741.114 424309.413 4.3340
8 49726.372 424332.477 4.9150
9 49634.950 424349.216 9.2270
10 49544.458 424574.147 9.6980
11 49568.294 424626.321 9.9510

Table A.2: Automatic fitted targets. Fly height = 30m.

target est_x [m] est_y [m] est_z [m] est_angle [◦] amount_points
2 49804.793 424082.847 5.885948876 30.5 2841
3 49746.337 424074.441 9.160580631 -3 3137
4 49764.414 424181.215 4.957632821 21 2049
5 49699.291 424203.494 9.803906479 39.5 3141
6 49702.214 424202.967 9.554335669 47.5 2914
7 49741.092 424309.387 4.358998718 -23.5 4033
8 49726.407 424332.477 4.912920034 -18 2184
9 49634.899 424349.221 9.205684333 39 2190
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Figure A.1: Automatic fitted targets 30m fly height. Figure A.2: Manual fitted targets 30m fly height.
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Figure A.3: Intensity data of automatic fitted targets 30m fly
height.
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Figure A.4: Intensity data of automatic fitted targets 50m fly
height.
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Figure A.5: Automatic fitted targets 50m fly height. Figure A.6: Manual fitted targets 50m fly height.
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Figure A.7: Automatic fitted targets 70m fly height. Figure A.8: Manual fitted targets 70m fly height.
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Table A.3: Manually fitted targets. Fly height = 30m.

target est_x [m] est_y [m] est_z [m] est_angle [◦] amount_points
2 49804.808 424082.852 5.8862575049305645 33.5 2841
3 49746.367 424074.406 9.156845389924433 -3.2 3137
4 49764.454 424181.135 4.961388532553578 28.99 2049
5 49699.281 424203.409 9.806088545088377 43.5 3141
6 49702.204 424202.902 9.557322924433166 43 2914
7 49741.152 424309.367 4.3604814763852815 -16.499 4033
8 49726.402 424332.487 4.912693063439198 -18.49 2184
9 49634.919 424349.231 9.203353564325452 34 2190

Table A.4: Automatic fitted targets. Fly height = 50m.

target est_x [m] est_y [m] est_z [m] est_angle [◦] amount_points
1 49859.335 423739.451 12.567054745777218 -60 229
2 49804.677 424082.896 5.861060642061812 10.0 204
3 49746.261 424074.449 9.13292320563212 29 436
4 49764.428 424181.265 4.9296425645004325 30 490
5 49699.236 424203.409 9.776162311147514 35.0 219
6 49702.106 424202.851 9.533986740956703 45.0 195
7 49741.104 424309.363 4.348306776565233 70.0 183
8 49726.272 424332.432 4.897250793997684 -0.0 475
9 49634.900 424349.226 9.211631880987406 11 480
10 49544.403 424574.148 9.666347452169965 19.5 512
11 49568.223 424626.322 9.937890860953864 -30 211

Table A.5: Manually fitted targets. Fly height = 50m.

target est_x [m] est_y [m] est_z [m] est_angle [◦] amount_points
1 49859.415 423739.471 12.568808427662528 -55 229
2 49804.752 424082.876 5.862624168852512 33 204
3 49746.341 424074.409 9.126486804 2 436
4 49764.433 424181.260 4.929942142 29.5 490
5 49699.286 424203.449 9.772365166784908 50 219
6 49702.216 424202.951 9.52295083 42 195
7 49741.114 424309.353 4.348067306317337 68 183
8 49726.382 424332.442 4.900766977539615 -18 475
9 49634.975 424349.251 9.204017967 35 480
10 49544.393 424574.143 9.666749231820127 21.7 512
11 49568.203 424626.282 9.939579727 -28 211

Table A.6: Automatic fitted targets. Fly height = 70m.

target est_x [m] est_y [m] est_z [m] est_angle [◦] amount_points
1 49859.264 423739.592 12.59365480106855 35 155
2 49804.867 424082.806 5.855980569941653 0 137
3 49746.352 424074.425 9.145213506 5 402
4 49764.458 424181.160 4.936119108995293 90 299
5 49699.340 424203.505 9.809257823 39 457
6 49702.202 424202.98 9.562192964738532 -10 504
7 49741.279 424309.393 4.353106174854583 -55 262
8 49726.367 424332.422 4.9044379160922835 10 149
9 49634.875 424349.181 9.178707177 35 316
10 49544.518 424574.132 9.684680954988355 50 184
11 49568.254 424626.311 9.920750065166603 110 160
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Table A.7: Manually fitted targets. Fly height = 70m.

target est_x [m] est_y [m] est_z [m] est_angle [◦] amount_points
1 49859.254 423739.572 12.593426153887766 25 155
2 49804.927 424082.926 5.854622803852795 45 137
3 49746.342 424074.375 9.143751963270763 2 402
4 49764.438 424181.23 4.934162146022295 119 299
5 49699.351 424203.503 9.808865579 37 457
6 49702.272 424202.979 9.560386773461195 -14 504
7 49741.009 424309.323 4.3484133576595525 -50 262
8 49726.372 424332.432 4.903892648087085 12 149
9 49634.995 424349.341 9.156999674201943 37 316
10 49544.508 424574.142 9.685480056447847 54 184
11 49568.204 424626.411 9.919471427908192 106 160
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Figure A.9: Intensity data of automatic fitted targets 70m fly height.



B
Classification results

This appendix includes the performed classification for all fly heights of the Zegveld 06-12-2022 data.
The results of this classification are used in both the overlap analysis and the scan geometry analysis
in the main report. Figure B.1 gives the legend corresponding to Figures B.2 to B.11.

Figure B.1: Legend for the classified grid cells.

Figure B.2: Classified data 10m fly height.

Figure B.3: Classified data 20m fly height.
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Figure B.4: Classified data 30m fly height.

Figure B.5: Classified data 40m fly height.

Figure B.6: Classified data 50m fly height. Figure B.7: Classified data 60m fly height.

Figure B.8: Classified data 70m fly height.

Figure B.9: Classified data 80m fly height.
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Figure B.10: Classified data 90m fly height. Figure B.11: Classified data 100m fly height.



C
Variogram cut-off values

In this appendix the cut-off value chosen for determining the variograms is discussed. The cut-off value
needs to be chosen by the user, based on the criteria presented in subsection 6.2.5. The figures used
to choose the cutoff value are shown for 10m-100m fly height for both the road and grass classified
data are shown in Figures C.1-C.20. The resulting cut-off values are presented as well in Table C.1.
Furthermore, two other limits are set when the sample variogram was calculated. As the variogram
data is significantly influenced by outliers. Height differences larger than 1m have not been considered.
Furthermore at least 30 data points need to be in a bin before the sample variogram value is calculated.

Table C.1: Cut-off values of the sample variograms, for all considered fly heights and the road and grass classified data.

fly height 10m 20m 30m 40m 50m 60m 70m 80m 90m 100m
Cut-off value
road grid cells
[s]

0.55 0.75 1.05 1.15 1.35 1.85 1.95 1.95 1.75 1.75

Cut-off value
grass grid cells
[s]

0.55 0.95 1.15 1.55 1.85 1.55 2.25 2.15 2.55 2.25

Figure C.1: Sample variogram, including cutoff value for 10m
fly height and road class.

Figure C.2: Sample variogram, including cutoff value for 10m
fly height and road class.
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Figure C.3: Sample variogram, including cutoff value for 10m
fly height and road class.

Figure C.4: Sample variogram, including cutoff value for 10m
fly height and road class.

Figure C.5: Sample variogram, including cutoff value for 10m
fly height and road class.

Figure C.6: Sample variogram, including cutoff value for 10m
fly height and road class.

Figure C.7: Sample variogram, including cutoff value for 10m
fly height and road class.

Figure C.8: Sample variogram, including cutoff value for 10m
fly height and road class.
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Figure C.9: Sample variogram, including cutoff value for 10m
fly height and road class.

Figure C.10: Sample variogram, including cutoff value for 10m
fly height and road class.

Figure C.11: Sample variogram, including cutoff value for 10m
fly height and grass class.

Figure C.12: Sample variogram, including cutoff value for 10m
fly height and grass class.

Figure C.13: Sample variogram, including cutoff value for 10m
fly height and grass class.

Figure C.14: Sample variogram, including cutoff value for 10m
fly height and grass class.
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Figure C.15: Sample variogram, including cutoff value for 10m
fly height and grass class.

Figure C.16: Sample variogram, including cutoff value for 10m
fly height and grass class.

Figure C.17: Sample variogram, including cutoff value for 10m
fly height and grass class.

Figure C.18: Sample variogram, including cutoff value for 10m
fly height and grass class.

Figure C.19: Sample variogram, including cutoff value for 10m
fly height and grass class.

Figure C.20: Sample variogram, including cutoff value for 10m
fly height and grass class.
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Manual DJI flight planner  
Introduction 
The DJI flight planner python program has been developed to plan flight missions for the DJI Matrice 300 

RTK. It has specifically been developed in combination with the Yellowscan Mapper+ LiDAR module, 

however different LiDAR systems should be able to use the software as well.  

This manual first explains all the python packages that are required, explains how the software should be 

started and how the software should be used. Known errors of the program are listed at the end.  

If you have feedback or ideas how to improve the software, you can email: 

M.O.N.Brandwijk@student.tudelft.nl.  

1. How to install the required python packages 

Option 1: Using the .yml file to create an python virtual environment in conda 
When Anaconda is installed on the computer the following method can be used to create an virtual 

environment to run the flight planner using the environments.yml file.  

1. First open the Anaconda prompt. This can be done in windows by searching: Anaconda prompt 

and opening this. 

2. Use the following code to install the virtual environment with the correct dependencies. The 

environment.yml file should be the path (or relative path) to the location you stored the file. 

     conda env create --name flight_planner --file=environments.yml 

3. Activate the environment using: 

  conda activate flight_planner 

4. When you are finished and no longer require the program you can remove the virtual 

environment using: 

  conda deactivate flight_planner 

     conda remove --name flight_planner --all 

Option 2: Creating your own virtual environment with the following packages and python 

version. The packages can be installed with pip. 
 

python==3.10.9 

dash==2.8.1 

dash-leaflet==0.1.23 

dash-extensions==0.1.11 

dash-bootstrap-components==1.3.1 

pyproj==3.6.0 

shapely==1.8.1 

numpy==1.25.2 
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2. How to run the software 
The following steps should be taken to run the software: 

1. Open a terminal with the correct virtual environment activated. 

2. Use the cd command to navigate to the folder dji_flight_planner/flightplanner in the terminal. 

This is important as some part of the code uses a relative path, which does not function when 

this step is omitted. 

cd own_path_to_flightplanner_folder 

3. Run the program using: 

python main_application.py 

4. Click the link that appears in the terminal to open the DJI flight planner program. Or go to an 

internet browser and use the following html: http://127.0.0.1:7781/ . 

5. The program should now appear as Figure 1 in an internet browser. 

6. Shut down the program by using ctrl+c in the terminal.  

3. How to use the software 
Using the software can be done in two steps. First the area of interest needs to be chosen. Then the flight 

parameters can be set. 

Selecting an area of interest 
When opening the software, the screen should resemble Figure 1. In this window you can draw an 

polygon over the area of interest. The software will help determine a flight plan in the next step over this 

area with the preferred flight parameters. The interactive map on the right side of the screen can be used 

to move to the area of interest. By pressing the hexagon symbol on the left top side of the map, the 

polygon draw functionality will be started. By clicking with the mouse pointer on the preferred corners of 

a polygon and finally on the starting position, a polygon over the area of interest will be created. An 

example of a polygon in the software is shown in Figure 2. The layer symbol on the right top of the map 

can be used to view the map as google satellite layer. When the polygon is as desired, the green 

“Finished” button can be clicked on the left side of the screen. This will start the next step of the flight 

planning. 

Current limitations to the polygon: 

- Currently the flight planning tool only works in the Netherlands (this is caused by certain 

coordinate conversions). 

- Polygons that deviate far from a convex hull might create bad unrealistic flight plans. This can 

however be seen in the following step. 
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Setting flight parameters 
The setting of flight parameters window will look similar to Figure 3. The buttons on the left side of the 

screen can be used to set the preferred flight parameters. When the preferred flight parameters are 

selected, the flight plan can be downloaded using the download button on the bottom left of the screen. 

The base filename of the downloaded mission can be changed with the text box in the left bottom corner.  

Furthermore, it is possible to download multiple different flight plans and perform them close after each 

other. For example, two flights with similar parameters but with orthogonal flight lines can be used to 

perform a “grid” flight.  

Set mode 
The set mode option on the top left side screen can be used to use different flight parameters as input for 

the flight plan. In Standard mode the distance between flight lines needs to be set in meters. In 

Yellowscan Mapper+ mode, the UAV LiDAR parameters, height and overlap parameters are used to 

calculate the corresponding distance between flight lines.  

Flight info 
The flight info on the left side of the screen, gives estimates of flight characteristics of the flight that is 

shown on screen. It should be noted that the estimated point density has not been validated yet. 

Furthermore, the estimated flight time is of significant importance. The UAV LiDAR system has a flight 

time of around 23 minutes per battery set. Therefore it is convenient to limit the flight time of a flight 

plan to this time. However it is possible to partially fly a mission, change to a new battery set and 

continue the mission. 

Flight parameters 

• Angle [⁰]: Range (0⁰, 360⁰). The angle the flight lines make to North in degrees. 

• Offset [-]: Range (0, 0.5). This value moves the flight lines perpendicular to itself over the 

polygon of interest. The amount of shift is the fraction of the distance between flight lines.  

Figure 1: Opening window Figure 2: Selecting area of interest. 
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• Buffer [m]: Range (0m, 20m). Polygon of interest is increased with this size in all directions. 

This parameter can make sure the turns are performed outside the region of interest.  

• Damping [m]: Range (0.2m, 50m). Maximum radius of the turns. When the this value is to 

large for the radius of the turn, the maximum radius possible for the turn is selected. 

• Height [m]: Range (0m, 300m). Height of the UAV LiDAR system above the take off location. 

The minimum height depends on the take-off location and objects in the area of interest. 

With the current UAV license a maximum height of 120 meters above the ground is allowed.  

• Speed [m/s]: Range (0.1 m/s, 15 m/s). The speed the mission is flown. For most purposes a 

value between 5 m/s and 10 m/s is chosen. A too low value will cause the IMU to drift 

significantly. A too high value will lower the point density. 

• Overlap [-]: Range (0, 0.5). Fraction of overlap between two adjacent flight lines.  

• Distance flight lines [m]: Range (0m, 120m). Distance between flight lines.  

 

Figure 3: Choosing flight parameters 
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Current limitations of the flight planning: 

- When flight parameters are given as input that should not be a possible combination 

according to the software the original flight parameters are not updated. 

- When flight lines are set to be very close, the corner radius between flight lines becomes 

very small. This has not yet been tested, but will likely cause the speed of the UAV to lower 

significantly in the corner and result in a not smooth corner. This might lower the IMU 

accuracy slightly 

4. Known errors 
• Red border around flight parameters: This red border is caused by values that should not be 

allowed by the step size of the number box of the parameter. However, the value that is drawn in 

the map corresponds to the final flight plan that is downloaded. Therefore, if the flight plan on 

the map looks as desired, this should not cause a problem in the downloaded flight plan.  

• Map of the flight parameter window will not load: This error occurs when during the first step 

the polygon has been drawn and “Finished” is pressed. The second window that opens has in this 

case a not functioning map. Usually this can be fixed by reloading the webpage and drawing the 

polygon again. This error is caused by the fact that the second interactive leaflet map is hidden 

and only later revealed. When this leaflet map is not loaded before it is hidden it will not 

function. This error cannot be easily fixed with another method. 
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1 Introduction 

1.1 Overview of the manual 
This document is serves as a combined information resource, so information can be quickly found. It is as 

complete as possible, however it does not replace the required flight course and reading the manuals of 

all the components of the system. Furthermore, some countries might have additional requirements for 

flying with a UAV that should be checked if applicable. 

The manuals below can provide more detailed information. These files should be saved in the same 

folder as this document: 

• DJI Matrice 300 RTK (UAV) 

- M300_RTK_User_Manual_EN.pdf 

- M300_Maintenance_manual.pdf 

- M300_battery_manual.pdf 

• Yellowscan information (LiDAR module) 

- YellowScan Mapper+ User Manual v 2202.pdf 

- POSPac User Manual for YellowScan - v8.7.pdf 

- CloudStation - User Manual - v2.4.pdf 

• Reference GNSS receiver 

- Mosaic base station hookup.pdf 

This manual is structured as follows: Chapter 1 gives information how a flight can be prepared and what 

factors should be considered. Chapter 2 explains how the UAV LiDAR system should be used to acquire 

data. Chapter 3 will explain how the acquired data can be processed and Chapter 4 will provide solutions 

to problems that can occur.  

1.2 The UAV LiDAR system 
The UAV LiDAR system consists of 2 main components. This are the DJI Matrice 300 RTK UAV and the 

Yellowscan Mapper+ LiDAR module.  The figure below shows the combined system. The connector 

between the UAV and the Yellowscan Mapper+ is called the Skyport.  

 

Figure 1: DJI Matrice 300 RTK with Yellowscan Mapper+. 
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1.3 DJI Matrice 300 RTK  
The DJI Matrice 300 RTK is industrial UAV. It has options for obstacle detection, is compatible with 

multiple sensors and has a flight time of up to 55 minutes in ideal flight conditions. However, a payload 

and weather conditions can lower this. 

To accommodate the Yellowscan Mapper+ module, the DJI Matrice 300 RTK has undergone slight 

modifications. The original black dampers have been replaced with stiffer green dampers provided by 

Yellowscan. These green dampers are visible in the accompanying picture and have been secured with 

tyraps for added safety in case they come loose. It is essential to ensure that the tyraps are not too tight, 

as this could impede the dampers' function and cause significant oscillations in the Yellowscan Mapper+. 

Furthermore an antenna holder has been placed on the UAV. On this holder the Yellowscan Mapper+ 

antenna can be screwed. The Yellowscan Mapper+ manual gives information how this antenna holder 

should be (de)installed.  

 

 

 

 

 

 

 

Figure 2: Shows the dampers of the DJI SkyPort.  

1.4 Yellowscan Mapper+  
The Yellowscan Mapper+ is a lightweight LiDAR system. This system can function on itself and can 

therefore be attached to most UAVs with enough lift capacity. The system includes the option to attach a 

camera module to color the LiDAR data. Furthermore, the data can be processed with dedicated 

software. 

1.4.1 Micro-SD, USB and control options 
The Yellowscan Mapper+ has a micro-SD and USB where the acquired data is stored. The micro-SD card 

is located in the camera module. This micro-SD will store the taken images. It should have enough data 

for the next flight. Special care should be given to the orientation of the micro-SD card. It should be 

inserted as the pictogram indicates on the camera module.  

The USB should have enough storage before the start of the flight. This USB will store the acquired LiDAR 

data and the GNSS-IMU data. Furthermore, this USB contains a file CONFIG.txt. With this file LiDAR and 

camera settings can be controlled. The Yellowscan Mapper+ manual gives information how to set the 

correct values.  
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2 Flight preparation 

2.1 Safety precautions and regulations 
The UAV system does not have a Cx label and is therefore a legacy drone. As the weight is above 2 kg the 

UAV system falls under subcategory A3. 

Pilot responsibilities: 

• Mission captain,  main responsible for the flight and takes charge. 

• Responsible for the use of the UAV in the air (read the manual of the UAV before flying). 

• Makes sure to be able to check the status of the UAV and how to use the functions. 

• Makes sure weather during the flight meets the minimum requirements. 

• Required to make sure the system is flightworthy with the correct mass and balance. 

Crew is normally two to four people. Before the flight the pilot has a short meeting  and can have the 

following structure: 

• Captain and main responsible. 

• Observer: Observes continuously the airspace in all directions. Focusses on other air traffic such 

as UAV’s, birds or manned aviation. The observer warns the pilot in time. 

• Crew- member: Can cordon off an area, keep public on a distance and protect expensive 

equipment. 

• Customer. 

You are only an mission involved person when you explicitly gave personal to be a part of the UAV 

operation. You also should have gotten clear instructions on safety in case of a emergency operation. All 

other people are non-mission involved. 

Rules for operators: 

You are an operator when you operate from a company and/or ask for compensation for your flights.  

• When flying for a company, it is required by law to keep a logbook of flights. This is required so 

the correct maintenance can be performed. The logbook should contain the following: 

Which UAV, location, start time, end time, potential incidents or special situations during the flight. 

• It is required by law to have a professional WA insurance 

General rules: 

• The minimum distance to railways should be 25 meter horizonal. 

• The closest horizontal distance allowed is 50 m to highways, and roads with a maximum speed of 

80 km/s or higher.  

• It is prohibited to fly within a distance of 150 meters to vital objects. Examples are nuclear 

reactors and certain infrastructure.  

• UAVs always give way to airplanes, helicopters, gliders, air balloons and airships. 
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• A UAV coming from the right has right of way. 

• When two UAV near each other frontal then both UAV should turn to the right.  

• Legal required documentation must be available when flying (in this case: pilot license, 

identification and insurance information). 

Rules Open category 

• The UAV can be flown in the open category.  

• In this category you always fly Visual Line of Sight (VLOS). There is no maximum distance but the 

drone must stay visible. You are not allowed to fly through clouds.  

• Maximum flight height of 120 meter above the ground.  

• Flying in uncontrolled airspace. 

• These UAVs must be below 25 kg. 

• Only allowed to fly during daylight. 

Rules A3: 

• Keep a minimal distance of 30 meters to unexpected, not mission involved people.  

• It is not allowed to fly over buildings. 

• Keep a minimum distance of 150 m to residential areas, shops, industry and recreational areas. 

• Not allowed to fly in low flight areas.  

2.2 Emergency procedures 
Below different incidents during flight are listed: 

• When an almost collision occurs with another aircraft (AIRPROX) 

• An accident or almost accident occurs with the UAV 

• Damage to the UAV occurs 

• A fly away occurs (uncontrollable UAV flew away) 

When such an incident occurs the zoning of a controlled airfield the local air traffic control needs to be 

contacted immediately. 

It is required by law to notify the Inspectie Leefomgeving en Transport (ILT) when an incident occurs, 

especially when it is a serious accident. 

Example emergency situations: 

1. A group of birds or aircraft flies in the direction of the UAV 

• Descend with the UAV 

• Afterwards decide the next step 

2. Loss of link 

• The UAV should be programmed to perform a Return to Home (RTH) action when the link 

with the controller is lost. 

3. Fly Away 

• Note your heading, height, speed and battery percentage 

• Notify police 

• Notify local air traffic control 
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• Inform ILT 

2.3 Battery and power management 
Both the UAV and the scanner require a power source. Battery and power management details 

concerning these two systems are elaborated on below. 

2.3.1 DJI Matrice 300 RTK power: 
The DJI Matrice 300 RTK uses batteries to acquire power. The most important points are listed below 

concerning the charging, flying and storing of the batteries. For more information please consult the DJI 

Matrice 300 RTK manual and the Intelligent Flight Battery Safety Guidelines. Note that the batteries 

should not be drained completely and that it might be required to charge the batteries after a flight, if 

the system will not be used for some time.  

2.3.1.1 Charging: 

• The batteries are charged in the Battery Station.  

• The battery station charges first the two batteries with the highest charge left.  

• Do not charge the battery often in low temperature environments as this will shorten the 

lifespan of the battery.  

• It takes around 60 minutes to charge 1 battery completely and 30 minutes to charge the battery 

from 20% to 90%. 

2.3.1.2 Flying: 

• Use the batteries in pairs. The pairs are labeled with stickers as A, B, C and D. 

• Fly outside until a charge of 20% to 30% is left.  

• Hot swapping batteries is possible, so the batteries can be changed without turning the UAV off. 

This is done by first changing the first battery. Then after 3 seconds the other one can be 

changed.  

• Cold weather will negatively affect the performance of the battery. 

2.3.1.3 Storage: 

• It is recommended to store the batteries in the Battery Station.  

• Even when the battery is not used still power will be consumed. Every 5 days the battery level 

will decrease with about 1%. When the battery power is too low it will damage the battery. This 

will remove the warranty and limit the performance. Table 1 below, shows the maximum 

allowed storage time for different charge percentages.  

• Remove battery from UAV when storing it for an extended period of time.  

• Discharge the batteries to 40% - 60 % is they will not be used for at least 10 days. This can be set 

in the DJI pilot app. They have this already set.  

• Discharge the battery before shipping to guarantee safety.  
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Table 1: Maximum storage days for different battery percentages. Data acquired from the DJI Matrice 300 RTK Intelligent Flight 
Battery Safety Guidelines1  

Battery level Maximum storage days 

0 12 

5 36 

10 60 

15 86 

20 110 

25 135 

30 160 

 

2.3.2 Yellowscan Mapper+ power: 
The Yellowscan Mapper + has to different methods to acquire power. It can be powered by its own 

batteries or it can be powered by the UAV batteries. For long time storage the power can also be 

completely disconnected. These methods have their own use cases. To change the powering mode, the 

camera module should be detached from the LiDAR module. For instructions on how to do this correctly, 

please refer to the YellowScan Mapper+ manual.  

2.3.2.1 Yellowscan battery powered mode: 

Using the Yellowscan battery the system can function for about 1 hour. It has the advantage of making 

the system completely self-reliant. Furthermore this mode does not use UAV battery power. Therefore 

the UAV might fly longer. However the battery does add about 200 grams weight to the system. 

2.3.2.2 UAV battery powered mode: 

When the UAV has a SkyPort / Gremsy connection (such as the DJI Matrice 300 RTK), the Yellowscan 

Mapper+ can be powered by the UAV. Advantages of this method include: the weight of the Yellowcan 

battery is not added to the system and by hot-swapping the UAV batteries longer acquisitions can be 

more quick. However the Yellowscan Mapper+ should always write the data, turned off and only then 

the UAV should be turned off. If the Yellowscan Mapper+ has not written the data and the UAV is turned 

off, the data of the acquisition is lost. Furthermore, it should be avoided to put Yellowscan batteries in 

the system when it is powered by the UAV batteries. 

2.4 Weather conditions 
Weather conditions will influence the measurements of the system and even make it impossible to fly. 

The most important weather conditions are precipitation, wind and solar wind. These will be elaborated 

below. Furthermore the temperature should be between -20 ⁰C and 50 ⁰C for the DJI Matrice 300 RTK 

and between -10 to +35 for the Yellowscan Mapper+. Depending on your flight license it might be 

required for it to be during daylight.  

2.4.1 Precipitation 
The DJI Matrice 300 RTK has a IP45 rating. This indicates the UAV is protected against spraying water 

from any direction. However after long term use this  protection can lower. For the drone to reach this 

protection the frame-arms need to be folded out and all covers for the different ports need to be 

 
1 DJI. (2023). Matrice 300 RTK: Intelligent Flight Battery Safety Guidelines. https://enterprise.dji.com/matrice-
300/downloads 
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installed correctly. Furthermore the DJI Matrice 300 RTK manual indicates the UAV should not be used in 

extreme weather events such as snow, or mist.  

DJI gives the following information: 

• DO NOT FLY when the rain intensity is more than 100 mm/24 hour 

• Do not fold the frame arms in the rain. 

• Make sure battery ports and surfaces are dry when installed and stored. 

• Make sure the battery is completely dry before it is charged. 

• Dry the UAV before storing. 

The Yellowscan Mapper+ has a IPW55 rating . This indicates the scanner is protected against spraying 

water from any direction. The W in this rating  indicates that the scanner should be protected against 

weather conditions such as humidity, rain and condensation to a certain extent.  

2.4.2 Wind 
The DJI Matrice 300 RTK has the following specifications. The maximum climbing speed is 6 m/s, the 

maximum lowering speed is 5-7 m/s and the maximum horizontal speed is 23 m/s. Furthermore, DJI 

indicates the maximum allowed windspeed is 15 m/s. Yellowscan recommends calm weather with a 

windspeed below 20 km/h (5.6 m/s or 3 bft). Furthermore, the UAV uses more power flying against the 

wind. Therefore take this into account in the flight planning.  

This indicates the UAV should be able to fly with wind gusts up to 6 bft. The flight course indicates that 

above 5 bft it is not responsible to fly. Therefore it is recommended to fly with maximum predicted 

wind gusts of 4-5 bft. This can already result in warnings during the flight. However 3bft is preferable. 

2.4.3 Solar wind: 
Solar wind can influence the GNSS signal. The kp-index gives information about the predicted solar 

activity. It is recommended not to fly with a kp-index of 5 or higher.  

2.4.4 Tools for prediction:  
Recommended tools for predicting the weather are: 

• Windy (windspeed and direction): https://www.windy.com/ 

• KNMI (windspeed and direction): https://www.knmi.nl/nederland-nu/weer/waarschuwingen-en-

verwachtingen/weer-en-klimaatpluim 

• Buienrader (local precipitation for coming hours): https://www.buienradar.nl/  

• UAV Forecast (kp-index): https://www.uavforecast.com/  

• Airports have weather stations. The current weather (METAR) and weather prediction (TAF) can 

be found. 

Windy allows for selecting a location on a map and comparing predicted windspeed of multiple weather 

models for this position. However this can only be done for free 6 days in advance. KNMI uses the 

ECMWF model and gives predictions for 14 days in advance. However this is only available for 8 weather 

stations in the Netherlands.  

2.5 Site assessment 
The flight area needs to be checked for the following things: 
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• Zonering (no-fly zones and areas with flight limitations) 

• Obstacles (windmills, masts, etc) 

• Buildings and critical infrastructure (harbour, industry, etc) 

• Traffic (roads and waterways). 

• On the earth’s poles the GNSS and compass will not work (DJI manual) 

• Local magnetic fields (and large metal structures) can negatively affect the accuracy of the 

compass and GNSS-system of the UAV. 

• Check height of terrain and suitable takeoff location.  

• Presence of not mission involved people 

Tools to perform this check: 

• Google Maps and Street View 

• ICAO air traffic map 

A flight preparation on paper is recommended but not required by law. 

2.6 GNSS and IMU  
Prior to conducting a mission, it is recommended to perform a GNSS check to ensure accurate satellite 

positioning. This can be done using the PosPac program, and the manual provides instructions on how to 

do so. 

The DJI Mattrice 300 RTK can be flown using RTK for flight patterns accurate to a few centimeters. This 

option requires a live connection to an NTRIP service, as relying solely on GNSS signals may result in less 

accurate flight patterns with potential offsets of several meters. However, even with GNSS, functions 

such as RTH (Return To Home) should still function. 

Furthermore the DJI Mattrice 300 RTK can be flown with RTK. With this option the flight pattern flown 

should be accurate to a few centimeters. This however does require a live connection to a NTRIP service. 

Flying with using just the GNSS signals will result in a less accurate flight pattern. An offset of about 1.5 

meter is horizontally expected as can be found in the specifications. With the Vision System enabled this 

should lower to 0.3 m. Functions such as RTH (return to home) should still function. 

To achieve the highest quality LiDAR data, post-processed kinematic (PPK) should be used. This 

technique requires reference GNSS data from a nearby GNSS station (within 15-20 kilometers). Multiple 

options exist for obtaining this data: 

• The preferred option is to use an existing reference GNSS network if one is sufficiently nearby. 

For example, in the Netherlands, the http://gnss1.tudelft.nl/dpga/ option is available. 

• Another option is to install your own reference station if an existing one is not nearby. An 

example is the Mosaic-Go basestation. Consult the corresponding manual to learn about its 

operation. 

• A virtual reference station can also be created near the mission location, utilizing a network of 

GNSS receivers surrounding the area to estimate the data. This often requires a membership.  

2.6.1 IMU callibration Yellowscan Mapper+ 
For the best IMU performance an IMU initialization figure should be flown at the beginning and end of 

the flight. The recommended pattern is: 
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• Forward: straight line, around 30 meters with strong acceleration (0 to >10 m/s) 

• Backward: straight line around 30 meters with strong acceleration (0 to >10 m/s) 

• Forward: straight line, around 30 meters with strong acceleration (0 to >10 m/s) 

• U-turn 

In case of wind the figure should be flown parallel to the wind direction. Furthermore smooth turns are 

recommended, the UAV should always fly forwards, long straight lines (above 1km) and very low speeds 

should be avoided.  

2.7 Flight route planning 
There are multiple ways a flight route can be planned. Multiple options are given to plan a flight below. 

However note that this is only the most relevant software at this time. There are other options that 

could be used. The current recommended way is to make use of the created DJI flight planner software. 

Flight parameters such as the flight height, flight speed and overlap between scan lines have influence 

on the resulting data and should be chosen carefully with the goal of the data in mind. In preplanned 

routes make sure the UAV is set to Return To Home (RTH) when connection is lost.  

2.7.1 DJI Pilot 2 
This is the standard ‘free’ software that is delivered with the UAV. This software is updated frequently. 

However missions can only be planned in the DJI Pilot 2 app that is on the UAV controller. With this 

software it is possible to make the following types of missions: 

• Waypoint: With this mission type the user can place different waypoints in the area of interest. 

The UAV will fly to these locations. For each waypoint, different parameters can be set. These 

parameters include: the flying speed, height and actions such as hover for a certain time or 

rotate the UAV.  

• Mapping: With a mapping mission an polygon can be drawn and a DJI supported payload can be 

chosen. The software will then create an appropriate flight plan. DJI Pilot 2 mapping missions do 

not support the Yellowscan Mapper+. However a mission can be made for the Zenmuse L1 Lidar 

that is supported. This flight plan could then be used to fly the Yellowscan Mapper +. However 

this mission is not very customizable and has a different IMU calibration pattern than 

recommended by Yellowscan. 

• Line: A line mission can be used to create a mission over a long stretched object such as a road. 

However the same limitations apply as to the Mapping mission as the Yellowscan Mapper+ is not 

supported by the DJI Pilot 2 app.  

2.7.1.1 Disadvantages: 

• No dedicated support for the Yellowscan Mapper+. 

• Not possible to create a mission on desktop or laptop. 

• Does not support correct IMU calibration for the Yellowscan Mapper+. 

• Not customizable 

2.7.1.2 Advantages: 

• Free. 

• Possible to use in different countries. 
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2.7.2 DJI flight planner (Recommended) 
The DJI flight planner was created as fully customizable and free alternative to UgCS. It is based on the 

DJI Pilot 2 app. The program will provide a .kmz file when the flight has been planned. This file can be 

transferred to the DJI Matrice 300 RTK controller by making use of a USB stick. As the program does not 

currently support IMU support, the IMU calibration should be flown by hand and immediately after, the 

flight mission should be started on the DJI Matrice 300 RTK controller.  The tool is made in python, and 

the code can be found on GitHub 2. 

2.7.2.1 Disadvantages: 

• Currently only possible to use in the Netherlands. 

• Currently no support for terrain following mode (might be an issue in hilly or mountainous 

areas). 

• Currently no support for IMU calibration. 

2.7.2.2 Advantages: 

• Dedicated support for the Yellowscan Mapper+. 

• Possible to create a mission on desktop or laptop. 

• Customizable. 

• Supports smooth corners. 

• Free. 

2.7.3 UgCS 
UgCS is paid software but does support a significant amount of features. The software does support the 

DJI Matrice 300 RTK and  Yellowscan Mapper+, has the recommended IMU calibration by Yellowscan, has 

a terrain following option, can be used in multiple countries and has smooth corner support. This is also 

the recommended software by Yellowscan. Website: https://www.ugcs.com/ 

2.7.3.1 Disadvantages: 

• Paid service 

• Not customizable 

2.7.3.2 Advantages: 

• Dedicated support for the Yellowscan Mapper + 

• IMU calibration possible 

• Possible to create a mission on desktop or laptop 

• Possible to use in different countries 

• Software has a terrain following mode 

2.7.4 Free flight 
It is conceivable that problems with the GNSS or compass signal make it impossible for the UAV to fly a 

preplanned route (for example at the Earth’s poles or caused by a solar storm). Then it is still possible to 

fly the UAV manual. An other situation where this might be of use is when unexpected situations can 

occur and the pilot wants to be able to keep full control. Manual flight is an option with the Yellowscan 

Mapper+ if required, however preplanned flights will likely result in more consistent data.  

 
2 Link to GitHub page containing the created flight planner tool: https://github.com/Marijn-22/dji_flight_planner.git 
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2.7.4.1 Disadvantages: 

• Requires good flying skills of the pilot. 

• Difficult to fly completely straight and with the same speed to get consistent data.  

• Difficult to estimate distances and keep similar distances between flight lines to get consistent 

data. 

2.7.4.2 Advantages: 

• Complete control over the flight. 

• Can always be performed. 

2.8 Flight preparation check list 
Special attention should be given to the following points: 

• It is advised to read the flight checklist in Appendix A 

• Make sure to charge the UAV batteries at least 2 days prior to the flight, as the batteries can drain 

themselves if left unused for too long. 

• Have all the required flight plans been created? 

• Does the area of interest meets all applicable UAV regulations and requirements. 

• Does the NTRIP service cover the area of interest? 

• Is there a GNSS station sufficiently close to perform PPK or is it required to bring a reference GNSS 

receiver yourself.  

• Confirm that both the UAV and Yellowscan Mapper+ are fully functional and complete before the 

flight. 

• Confirm the Yellowscan Mapper+ is set in the correct power mode.  

• Ensure that there is sufficient storage available on both the USB and SD-card. 

• Confirm that all necessary documents are available and up-to-date. 

• Make sure to have all required additional materials (such as landing pad, pilons, GNSS receiver, tools 

to switch Yellowscan Mapper+ power mode, etc.) readily available. 

• Use PosPac to assess the quality of the GNSS constellation before the flight if deemed necessary. 
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3 Data acquisition 

3.1 Setup of the system 
1. Connect the landing legs to the UAV and secure them by turning the plastic lock. 

2. Place the UAV on the landing pad with its front facing the wind or away from you. Do not stand 

downwind from the UAV. 

3. Unfold DJI Matrice 300 RTK arms and secure them by turning the plastic lock. 

4. Connect the Yellowscan Mapper+ with the skyport. For this both the plastic protection caps on 

the scanner and the UAV should be removed. The Yellowscan Mapper+ should be twisted while 

the connector button the UAV is pressed to connect the UAV. The Yellowscan Mapper+ should 

be in line with the UAV and the red dots on the DJI skyport should line up. 

5. Carefully, install the Yellowscan antenna to the DJI Matrice 300 RTK. The connection should be 

hand tight. Too tight might damage the connectors. 

6. Carefully, install the Yellowscan antenna cable to the Yellowscan Mapper+. The connection 

should be hand tight. Too tight might damage the connectors.  

7. Remove lens of the camera and open the visor of the LiDAR module. 

3.2 Performing the LiDAR scan 
Follow steps in the checklist that is given in Appendix A. Special attention should be given to the 

following points: 

• Light indicators on the Yellowscan Mapper+ 

• Logbook 

3.2.1 Light indicators on the Yellowscan Mapper+ 
The Yellowscan Mapper+ has multiple service lights that indicate the status of the system. Below the 

normal functioning of the system is explained. For more complex problems you are referred to the 

Yellowscan Mapper+ manual.  

Press Yellowscan button long (4 s): Power up the system and open the visor and take of the lens cap. 

• Power LED: Green except battery power lower than 33% 

• Status LED: Orange when in synchronization phase, green after few minutes of reception. First 

the status led will blink orange. When the light is still orange the mission can already be started. 

• Logging LED: Flashed first red to check if the USB drive is connected with enough storage, then 

green. 

• Camera LED: First orange then green if the SD card is detected.  

Press Yellowscan butten short: Start the mission. 

• Power LED: Should be green. 

• Status LED: Should be still orange or still green. 

• Logging LED: Flashes when the acquisition starts. 

• Camera LED: Blinks green and orange awaiting the UAV to reach the set height in the 

CONFIG.TXT file on the USB.  

Perform the measurements and land the system. 
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Press the Yellowscan button short: Stop the mission 

• Power LED: Should be green. 

• Status LED: Should be still green. 

• Logging LED: Should flash rapidly, indicating the recording is stored on the USB.  

• Camera LED: Should be green. 

Press Yellowscan button long (4 s) when logging LED stops flashing. To power down the system. 

3.2.2 Logbook  
When flying for a company it is required to keep a logbook to be able to perform the required 

maintenance.  Currently the logbook is updated manually in an excel file. However, the DJI Matrice 300 

RTK should also keep a logbook automatically. If this is confirmed and all required information per flight 

is stored, no manual logbooks update are required. 

Quality control and data verification 

If the system is not performing as expected and there is doubt the system is working. It is best to check if 

the Yellowscan Mapper+ USB has data after a flight. It is possible to directly load the data on the 

Yellowscan Mapper+ USB in the Cloudstation software to get an impression of the quality of the data.  
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4 Processing software usage 

4.1 File structure 
Here the recommended file structure will be explained to process the data. An example of this structure 

is shown on the figure below.  

The YS-20221004-137336_export folder should contain the processed point cloud. This could also be an 

export of two flights processed together. This has been separated from the raw data as this allows for 

compression (using a zip file) of the raw data file if desired while keeping the point cloud data available. 

The data is stored in .laz files as this uses significantly less storage as .las files. It should be clear what the 

coordinate system of the data is. This can be done by placing the data in separate folders with the name 

of the coordinate system or in another way. Furthermore, it is recommended to make screenshots or 

renders of the complete dataset and to store these here as well.  

The YS-20221004-rinex file should contain all the RINEX files for the corresponding day. This data can be 

used to process all data of this day. Each flight performed by the Yellowscan Mapper+ should have a 

separate folder in the Yellowscan USB. These are named such as the YS-20221004-13736 folder in Figure 

3. All flights corresponding to the project should be stored here. All the data originally in the YS-

20221004-13736 folder should be moved to the 00_raw folder. The 02_pp folder will contain processed 

data from Pospac. The 02_foto folder should contain all the images taken for the corresponding flight. 

These files should be manually selected of the Yellowscan micro-SD card and copied to this folder. The 

images can be found relatively easy as the last images are of the ground of each mission when the UAV 

system has landed. The photoID_file.dat file in this folder will be created with Pospac.    

When all data is processed, the flight data folders (such as YS-20221004-13736) in the raw_data folder 

can be zipped to limit the file size that needs to be stored. 

 

Figure 3: Recommended file structure. The green files are raw data that is acquired during the flight. The 

red folders should be created. The black files are should be created while processing the data. 
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4.2 Metadata 
The metadata.txt file should contain information that is relevant to the acquired data. Examples are 

special situations that might have occurred during the flight such as the mission was stopped half way 

caused by sudden rain. It should also contain the which flights together should form a single mission and 

therefore should be processed together. Flight characteristics (e.g. fly height, speed and strip overlap) 

should be given here. Figure 4 gives an example of a metadata file.  

 

 

Figure 4: Example metadata.txt file. 

4.3 Processing software usage 
Two different software programs are required to process the data as suggested by Yellowscan. These 

programs are: Pospac and CloudStation. Pospac is used to process the trajectory of the UAV by using 

GNSS and IMU data. This estimate is stored in the Smooted Best Estimate for Trajectory (SBET) file. This 

file can then be loaded in Cloudstation. CloudStation then combines this data with the LiDAR data to 

acquire a point cloud. This manual will only explain how data can be processed that make use of a GNSS 

reference station from the Dutch Permanent GNSS Array (DPGA) (site: http://gnss1.tudelft.nl/dpga/) or 

the Septentrio Mosaic-GO receiver temporary reference station. The final point cloud will be in RD 

coordinates with NAP height.  

The Yellowscan Mapper+ has a Livox Avia LiDAR sensor. By using the software of the Livox Avia, the raw 

measurement data can be explored. For further information of these software programs, please refer to 

the respective manuals. 

4.3.1 PosPac 

4.3.1.1 Flight planning 

It is good practice to check if a good satellite positioning is predicted before a mission is flown. This can 

be done in the PosPac program. For this, please refer to the Yellowscan PosPac manual. 
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4.3.1.2 Processing of the data steps 

First, it should be checked if the correct IMU-GNSS arms to the LiDAR used in the software. This can be 

checked using the Yellowscan Mapper+ manual. When the TU Delft project template is used, the lever 

arms should directly be correct. Figure 5, shows the correct lever arms. 

 

Figure 5. Correct lever arms for the Yellowscan Mapper+ in combination with the DJI Matrice 300 RTK. 

The following general steps should be performed in PosPac to process the data. More details can be 

found in the Yellowscan PosPac manual.  

1. Start new project and choose TU Delft template  

2. Save the PosPac project in the 01_pp folder 

3. Drag and drop T04 file into the program 

4. Use import button and import all relevant Rinex files 

5. Right click basestation and click coordinate manager 

6. Change coordinate system and reference coordinate as specified and apply changes 

• Using reference IGRS station use etrf2000 with grs80 ellipse:  

Fill in the IGRS station coordinate (such as N51'47''47.49673 E3'51"38.53386  h = 

53.4947 m) and use corresponding coordinate system etrf2000 with grs80 ellipse. Check 

if the correct antenna and antenna height has been selected.  

• Using reference Mosaic base station with NetPos solution: 

The Mosaic antenna is not supported by PosPac. Therefore, the Manufacturer should be 

set to ‘Unknown’ and Type to ‘Unknown External’. The following steps depend on how 

the location of the receiver was estimated by NetPos. If the bottom of the antenna 

location was used the following steps should be taken. Then the APC distance to bottom 

of the antenna can be filled in with 55 mm (distance L1 frequency is 58 mm and distance 

L2 frequency is 53 mm). Then fill in NetPos coordinate (such as N51'47''47.49673 
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E3'51"38.53386  h = 53.4947 m) and use corresponding coordinate system etrf2000 with 

grs80 ellipse.  

• Using reference Mosaic base station above reference bolt: 

This method is largely the same as using the reference Mosaic base station with the 

NetPos solution. However the known coordinate of the bolt will be at a lower height 

than the receiver from the reference station. Therefore the antenna height should be 

from the APC point to the bolt. This results in 55 mm combined with bottom of antenna 

to reference bolt height that should have been measured.  

7. Right click the basestation and click set base station 

8. Run the GNSS-Inertial processor  

9. Go to project settings and change export coordinate system 

10. First click default on and off so the correct UTM zone is found 

11. Then export in ETRF00 and click ok 

12. Use export button in menu to export sbet. And save it in the 01_pp folder 

13. Export in the 01_pp folder 

Additional steps for camera processing 

1. Project settings -> camera tab -> Lever arms, boresight and photoID 
2. Click edit/create photoID file 
3. Load photos 
4. Check images are ordered logically 
5. Remove first event by clicking the exclude button of the first event, but keep all images 
6. The most right column should now contain images.  
7. Export photoID file in 02_photo_folder 
8. Click ok 2 times. 
9. Check event locations become white in the software. 

4.3.1.3 Quality check 

Export quality reports of the processed data. This can be done with the following steps: 

1. Reports-> QC Report  

2. Export report in folder 01_pp as pdf. 

Yellowscan recommends to check the following plots in the Smooth Performance Metrics, Reference 

Frame3: 

• RMS XY less than 0.02 m. 

• RMS Z less than 0.03 m. 

• Error RMS for Roll and Pitch around 2 arc-min on straight lines. 

• Error RMS for Roll and Pitch around 5 arc-min during curves. 

• Amplitude for heading error less than 20 arc-min. 

4.3.2 CloudStation 
Processing steps: 

• Drag and drop the .ys file from the 00_raw folder into the program. 

 
3 Yellowscan. (2021). Applanix POSPac UAV/MMS User Manual for YellowScan LiDAR solutions. 
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• Edit selected flightlines if required 

o Click on the drawn line and edit the slider on the bottom of the screen and save 

• Link sbet 

• Change name 

• Process data 

• Perform strip adjustment 

• Perform colorization if required 

o Median option often performs best 

• Make screenshot so data can be easily found later and save it in the 03_exports folder 

• Export the data 

o Export in epsg:7930 (etrf2000 in cartesian coordinates) 

o Save one file per strip as laz 1.4  

o Save in folder 03_exports 

4.4 Python code 
The python script ‘las_from_epsg7930_to_rd.py’ can be used to transform the coordinates from 

epsg:7930 (etrf2000 in cartesian coordinates) to RD coordinates with NAP height. This code can be found 

on GitHub4. Furthermore, different flight strips can be combined with the lasmerge script of lastools. This 

script is free to use, however not all scrips of lastools are free. 

 

  

 
4 Github code can be found here: https://github.com/Marijn-22/basic_laz_functions  
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5 Maintenance, Problems and their solutions 

5.1 Maintenance 

5.1.1 Yellowscan Mapper+ 
Yellowscan recommends to perform a calibration flight yearly to check if the IMU and scanner are 

aligned well. This can be done by flying over a not completely flat area containing 3D objects, flying 

certain pattern at a height of around 60 meters. This flight data should be send to Yellowscan to check 

the calibration. The Yellowscan Mapper + manual provides additional information on this topic. 

5.1.2 DJI Matrice 300 RTK 
The DJI Matrice 300 RTK has a Health and Management System (HMS) in the DJI Pilot 2 app. This HMS 

gives the health condition of each module or the DJI Matrice 300 RTK. Furthermore, the batteries are 

rated for 200 cycles and DJI does not recommend using them after. Additional maintenance information 

can be found in the DJI Matrice 300 RTK Maintenance manual.  

5.2 Troubleshooting 
In this chapter, encountered problems are given and their solutions. It is further noted the Yellowscan 

Mapper+ manual has a Troubleshooting chapter and a Log File chapter which explains warning messages 

in the log file.  

5.2.1 Problems DJI controller 

Error When the final button on the controller is pressed to upload a flight plan to the UAV. The 
following error is given: Failed to upload flight mission: Invalid mission radius (-2030).  

Problem(s) The maximum allowed distance from the UAV to the controller (mission radius) is set 

with a too small distance for the chosen flight plan. 

Solution(s) - Set the maximum allowed distance from UAV to the controller large enough.  
- Change the flight plan with a closer flight plan.  
- Move to a location closer to the center of the flight plan. 

 

 

 

 

 

 

 

 

 

Figure 6: Invalid mission radius error on the UAV controller.  
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5.2.2 Problems Yellowscan Mapper+ 

1. Error System starts normally, however when the startup is complete the camera indicator light 

is still red. The system will not start a measurement in this state. 

Problem(s) Multiple problems can cause this. The most likely is the fact that the camera micro-SD 

cannot be red by the system. 

Solution(s) Possible solutions: 
- Micro-SD card might be backwards inserted in the camera module of the 

Yellowscan Mapper+. The micro-SD card must be inserted as the pictogram next 
to the micro-SD slot indicates.  

- Removing the camera module.  

 

Figure 7: Indication how micro-SD card should be connected.  

Error System cannot be easily connected or disconnected from the DJI Matrice 300 RTK 

Problem(s) SkyPort connection might be stuck. 

Solution(s)  Best is to always carefully connect and disconnect the Yellowscan Mapper+ with DJI 
Matrice 300 RTK by pressing the ‘connect’ button on the DJI Matrice 300 RTK SkyPort. 
This should prevent this situation from occurring.  
 
The figure below shows how the connection should look like when nothing is connected. 
If the middle connector is rotated with respect to this image, the disconnect button 
should be pressed and the middle connector should be rotated to the shown position.  
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Figure 8: DJI SkyPort in correct position.  
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6 Appendix A: Flight checklist UAV Yellowscan Mapper+  
1. Documents 

• Do you have all the required documentation? 

• Did you think in advance about the flights you want to perform? 
 

EU Drone licence A1-A3/ A2 Check 

Copy of liability insurance policy UAV Check 

Copy ID / passport / drivers license Check 

Flight plan – not required by law  Check 

ICAO Aviation map Netherlands Check 

 
2. Equipment 

• Do you have all components with you to perform the flight? 

• Do you have tools with you to reduce the risks of (unnecessary) incidents? 

 

UAV Check 

Remote controller(s) Check 

Battery’s Controller Check 

Battery’s UAV Check 

Battery safebags Check 

Mobile phone Check 

Windmeter Check 

Orange vests, pylons, barrier tape Check 

First aid kit Check 

Sun glasses Check 

Food and water Check 

Enough storage USB Yellowscan Check 

Enough storage SD-card Yellowscan Check 

USB card with relevant flight plans Check 

If required reference GNSS receiver Check 

If required reference GNSS receiver - Tripod Check 

If required reference GNSS receiver - Battery Check 
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If required reference GNSS receiver – Enough 
storage 

Check 

Laptop  Check 

 

3.Flight location 

• Are you entitled (under existing laws and regulations) to fly on the spot? 
• Do the weather conditions meet the minimum requirements ? 
• Have you thought about basic safety aspects? 

 

Airspace Class G 

NOTAMs Check 

Visibility At least 
1500 meter 

Wind speed Maximum 5 
bft 

KP index from 5 risky 

Take off / Landing spot Clear of 
obstacles 

Alternative Take off / Landing spot Check 

Nearby obstacles Check 

Public, traffic, other air traffic Check 

Roads, (contiguous) buildings, nature Check 

Flight path after take-off Check 

If required set up reference GNSS receiver Check 

 
NOTAMs contain messages for all airspace users. Here flight restrictions can be shared. They can be 
found at https://metar-taf.com/  
 
4. Briefing  
 

• Meeting to be able to lead your team as captain. 
 

Crew Flight details  
/ task 
distribution 

Communication: who, what, where and how Check 

Emergency procedure(s) Check 
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I.M.S.A.F.E. Check 

 Mobile phones Mute 

 
I.M.S.A.F.E. has the following meaning: 

• Illness: Have you had any recent illnesses that could affect your ability to fly? 

• Medication: Are you currently taking any medications that could impair your ability to fly 
safely? 

• Stress: Are you experiencing any unusual psychological pressure or anxiety that could 
make it difficult to travel? 

• Alcohol: Have you consumed any alcohol in the past eight hours? Are you currently 
hungover? 

• Fatigue: Are you feeling tired or not adequately rested? 

• Emotions: Are you upset about anything that could affect your ability to travel safely? 

 
5. Pre-flight check 
 

• Do the critical parts of the UAS (on site) function properly? 

 

UAV  Completely 
unfolded 
and 
powered on 

Yellowscan Mapper+ with correct USB and SD-
card inserted. 

Secured 
under UAV 
and 
powered on 

Radio controller - antennas Unfolded 

Radio controller - sticks Full 
movement 
free 

Radio controller - battery  At least 90% 
full 

Frame No damage 

Propellers No damage, 
smooth, 
secured 

Engines Smooth 
rotation 

Other components Secured 
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Battery UAV At least 90% 
full, secured 

Center of gravity UAS Within limits 

 
Checklist 1 to 5 has to be completed only once per operation. 
 

 
 
6. Start 
 

• Can you take off in GPS mode? 
 

Flight mode switch All modes 
available 

GPS signal stability Minimum 
four 
 satellites 

Yellowscan Mapper+ lights indicate it has power, 
enough storage, camera functions correctly and if 
the GNSS signal is sufficient. The lights should be 
still orange or green. (No lights should be blinking 
or red) 

Check 

 
7. Before take off 
 

• Is it safe to take off? 
 

Flight location Take off / 
Landing spot 

Flight location UAV pointing 
in wind 
direction 
 or away from 
flight crew. 

Flight mode GPS 

Signal strength control Good (not 
weak) 

Battery UAS voltage Check 

Start Yellowscan Mapper+ measurement by 
pressing the button shortly  

Check 

Area safe for take off Check / 
Observer 
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8. Take off 
 

Start engines Normal noise 
at idle 

Take off  To max. 2 
meters Above 
Ground Level 
(AGL) 

 
9. After Take off 
 

Control response UAV Normal in all 
directions 

GPS signal stability Check if 
necessary 

 
10. Before landing 
 

Take off / Landing spot Free from 
obstacles 

Flight mode GPS 

 
11. After Landing 
 

Engines Off 

Turn secure battery lever open (makes sure the 
UAV will not start turning the engines) 

Check 

Press Yellowscan Mapper+ button shortly to store 
the data on the USB. 

Write light 
should start 
blinking green 
on the 
Mapper+ 

Press Yellowscan Mapper+ button long (4 
seconds) to turn it off.  

All lights 
should turn off 
on the 
Mapper+ 

Only now turn off UAV if Yellowscan Mapper+ was 
powered by the UAV batteries.  
(Data could be lost otherwise!) 

Check 

UAV No damage 

 
From here you can change batteries and go back to checklist point 6 or to point 12 to shut down. 
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12.  Shutdown 
 

UAV / Radio controllers (off) and batteries in safe 
bag 

Check 

Enter flight in the logbook Check 

Evaluate the flight together Check 

If required store reference GNSS receiver  
(should have been in the same place 2h or 3h to 
estimate the location with sufficient accuracy)  

Check 
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7 Appendix B: Information system components 

7.1 DJI Matrice 300 RTK: 

7.1.1 Serial number:  
The serial number can be found on the drone as can be seen on the image. 

Serial number: 1ZNBJCC00C002S 

7.1.2 Insurance: 
The drone is WA insured by the TU Delft.  

7.1.3 Exploitant number:  
Drones above 250 grams are in the Netherlands required by law to have a 

visible exploitant number. There is a company wide exploitant number for the 

drones of the TU Delft. The last three characters should not be on the drone. So a sticker with: 

NLD7s8le73czwuyb should be on the drone. 

Exploitant number: NLD7s8le73czwuyb-pdv 

7.2 Yellowscan Mapper+ 
Figure X shows relevant specifications of the Yellowscan Mapper+. Furthermore, the camera and the 

LiDAR module of the Yellowscan Mapper+ have been calibrated. These files are should be stored in the 

same folder as this document.  

 

Figure 10: Information Yellowscan Mapper+. 

 

 

Figure 9: Serial 
number UAV 
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