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Abstract

The free energy principle is a recent theory that originates from the neuroscience. It provides
a unified framework that combines action perception and learning in the human brain. This
research aims to implement the perception aspect of the free energy principle into robotics.
This is achieved via the dynamic expectation maximisation (DEM) algorithm. DEM is derived
from the free energy principle and provides a novel solution for state and input observation for
LTI systems under the influence of coloured noise. This thesis provides an overview of how the
DEM observer is derived from the free energy principle. Thereafter, an experimental design is
presented in which data is collected to validate the performance of DEM on experimental data.
The data is collected from a quadcopter drone flying in wind conditions. A detailed overview of
the DEM observer settings is presented and motivated.
This research shows that because of its use of generalized coordinates DEM is able to leverage
the coloured nature of the noise for better state estimation. This is demonstrated by the fact
that DEM obtains a higher state estimation accuracy than other coloured noise state observers,
such as state augmentation and SMIKF. Moreover, in input estimation, DEM is able to obtain
similar results as an unknown input observer. Finally, the accuracy vs complexity trade off of
DEM is highlighted.
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Chapter 1: Introduction

Robots are becoming more common in the modern world, automating human labor and assisting
in a wide variety of daily human tasks, for example delivery drones. However, in many fields hu-
mans still outperform robots. Using more efficient inference mechanisms in the brain, a human
can adapt faster to new environments and anticipate better in unexpected conditions. A recent
theory in neurosciences aims to provide a common theory that combines action, perception and
learning in the human brain. This theory is the free energy principle (FEP) as presented by
Karl Friston [1]. The FEP states that biological systems survive by minimizing the information
entropy in the brain, in other words, minimize the surprise. The surprise is caused by a combi-
nation of the brain’s model of the environment, what to expect, and the brain’s sensory input,
what the brain perceives. Using principles from Bayesian learning, the free energy provides an
upper bound on the surprise, meaning that biological systems are constantly minimizing the free
energy [2]. By minimizing the free energy humans are capable of efficient action, perception,
anticipation and adaptation in their environment, features that would also be beneficial to the
development of new robots.
To this end, new research is currently focused on implementing the principles of the FEP in
robot control theory. This thesis focuses on one vital aspect of the robot control loop, state and
input observation. For smooth and effective operation and control, a robot needs to monitor
not only its working environment, but also its internal states. State and input observation is
used to determine the robot’s internal states while mitigating noise disturbances, and among
other things, is used for action selection and fault detection. Dynamic expectation maximisation
(DEM) is derived from the FEP and focuses on its perception aspect, providing a new solution
to parameter, hyperparameter, state, and input estimation [3]. Moreover, because DEM op-
erates in generalized coordinates, it is capable of leveraging temporal correlations in the noise
disturbances for better estimation. Using these features from DEM, a novel state and input
observer for linear time invariant (LTI) systems with coloured noise was recently presented and
tested in [4]. In this research, the new observer was tested on simulated systems with coloured
noise and has shown to outperform the more conventional Kalman filter.
After testing DEM’s capabilities on simulated data, this thesis aims to provide an experimental
conformation of these results. Moreover, instead of benchmarking the DEM state observer to
only the Kalman filter, this research aims to expand the list of benchmarks with state observers
that are capable of dealing with coloured noise. In order to validate the performance of DEM on
experimental data an experiment is required, in which an LTI system is influenced by coloured
noise. In a previous thesis such an experiment was already designed [5]. In the experiment a
quadrotor drone was tasked to hover in wind, provided by a blower. The aim was to provide the
system with a coloured noise disturbance caused by the wind. The data that was collected from
these experiments is used in this thesis to validate the experimental design for DEM and to test
DEM’s state and input estimation capabilities. Moreover, the goal is to present the results so
that they can be published in a paper. Therefore, the main goal of the thesis is:

Use experimental data to validate DEM state and input estimation performance
for a system under the influence of coloured noise and present the results in a pub-
lishable paper.

To accomplish the main goal, five sub-goals ave been defined:
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CHAPTER 1. INTRODUCTION

Validate that the experimental data agrees with the noise and model assumptions in the DEM
framework, such as the Laplace assumption and the coloured noise model.

Provide experimental validation of the usefulness of generalized coordinates in state estimation
for coloured noise.

Test DEM state and input estimation on experimental data and compare its estimation accuracy
against conventional observers for coloured noise such as state augmentation, SMIKF and an
unknown input observer.

Demonstrate the influence of priors in the accuracy vs complexity trade of of DEM.

With these goals in mind, the data from the experiments were used to obtain the thesis re-
sults. The results have been submitted in the form of a paper [6]. This thesis highlights the
underlying theory of DEM state estimation and describes the process of obtaining the results
from the data. The thesis is built up in several chapters. First, in chapter 2, the problem of
state and input observation in LTI systems is formulated. After that, the works that preceded
the paper and the thesis will be summarized in chapter 3. These consist of the previous works
on DEM state estimation for LTI systems and a summary of the literature study into different
state observers for coloured noise. In chapter 4, the theory and preliminaries from the paper
will be revisited and explained more thoroughly. This includes an elaboration on DEM for LTI
systems and how this is derived from the FEP. Furthermore, the benchmarks will be briefly
explained. After these chapters, the core of the thesis consists of the experimental setup, of
which mainly the data processing is important, and the explanation of the different parameters
that are used in the observers. In chapter 6 the motivation for the observer settings as chosen
in the paper will be motivated. In chapter 7 the results, as given in the paper, will be presented
together with some additional results and expanded graphs. Finally, the conclusion of the thesis
is presented alongside the recommendations for future research.
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Chapter 2: Problem Statement

In this research the main goal is to perform state and input estimation for LTI systems influenced
by coloured noise. Therefore, the drone’s dynamics are modelled as an LTI system by the state
space equations in equation 2.1.

ẋ = Ax +Bv + w, y = Cx + z. (2.1)

In the equation, A, B and C are the constant system matrices that represent the drone’s dy-
namics and map the states to the system’s output. x contains the hidden states, v is the input
and y represents the output. The process and measurement noises are represented by w and z,
respectively. The state space system is represented in a block scheme in figure 2.1 below.

Figure 2.1: A block scheme representing the state space system as used for the drone model.

The process noise has a direct influence on the system’s hidden states, and is of the same
dimension as x. Process noise is often caused by modelling errors in the system or by an
unmodelled external dynamic system acting on the drone. The measurement noise, which is of
the same dimension as y, is added to the measurements and is often caused by faults in the
measurement equipment and the measurement resolution. In the experiments, the goal is to
introduce a large coloured noise disturbance in the form of wind. Therefore, in this research,
the noises are assumed as coloured. The goal of DEM is to estimate the hidden states x and
the inputs v despite the influence of the process and measurement noises, w and z.
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Chapter 3: Related Work

3.1 Free Energy Principle

The FEP is a framework, that finds its origin in neuroscience and proposes a model based
inference scheme, explaining action, perception and learning in the brain [2]. It unifies multiple
brain theories by introducing the free energy quantity in a mathematical environment, enabling
a bridge between neuroscience and robotics [1]. The FEP states that, in order to exist in their
environment, biological systems resist their natural tendency to disorder [7]. In neuroscience,
this signifies that the brain tries to minimize its information entropy, or surprise. The brain can
minimize surprise by interacting with its environment, either through perception and learning,
or action. The perception and learning aspects of the FEP are described in the DEM algorithm
and allow for a transition from neuroscience to state, parameter and hyperparameter estimation
in control systems. The parameter estimation capabilities of DEM were tested in [8], while DEM
was transformed to a state and input observer for LTI systems influenced by coloured noise in
[3, 4].

3.2 State observers for coloured noise

In literature, noise is often modelled as white noise [9], for which the optimal solution is the
Kalman filter [10]. However, when the white noise assumption is violated, the Kalman filter is no
longer optimal. To accommodate fair comparison in benchmarking, DEM should be compared
to other state observers for coloured noise. Therefore, prior to this thesis, a literature research
was performed into the different state observation methods for coloured noise [11]. This section
will provide a short overview of the literature review, while in chapter 4, the theory behind the
benchmarks will be shortly revisited.

The goal of the literature research was to find the most accurate state observer for LTI systems
under the influence of coloured noise, thereby providing an overview of the different solutions
for coloured noise state estimation in literature. This resulted in the list of methods as given
below:

• State Augmentation
The state augmentation (SA) method, models the process noise as additional states by
expending the state space system with the coloured portions of the noise. By eliminating
the coloured portion of the noise, the system is transformed to an equivalent higher order
system influenced by white noise. Therefore, the Kalman filter can be used for state
estimation on the higher order model [12].

• Measurement Differencing
Measurement differencing uses multiple subsequent measurements to eliminate the coloured
fraction of the measurement noise in a system, resulting in a system under the influence
of white noise. An altered version of the Kalman filter can be used for state estimation on
the system with its new pseudo measurements [13].

• Second Moment Information Kalman Filter
In SMIKF, the Kalman filter covariance update equations are expanded to accommodate
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CHAPTER 3. RELATED WORK

for the time correlation in the noise. This transforms the Kalman filter into an observer
capable of dealing with coloured noise [14].

• Adaptive Kalman Filtering
In adaptive Kalman filtering the Kalman filter’s covariance matrices are constantly up-
dated using the latest measurements. This results in better state estimation because noise
modelling errors are mitigated [15].

Based on the literature study, SA and SMIKF are chosen as the benchmarks. The main reason
is the fact that, because of the wind in the experimental setup, the process noise is the dominant
noise factor. SA and SMIKF were the only two methods that are inherently capable of handling
coloured process noise. Measurement differencing only affects coloured measurement noise and
adaptive Kalman filtering only mitigates the unmodelled coloured noise by constantly updating
the covariance matrices. So in conclusion, SA and SMIKF will be used to benchmark DEM.
Finally the Kalman filter will also be added as a benchmark to include a white noise state
observer as baseline.
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Chapter 4: Theory

This chapter will discuss the theory that is used throughout the thesis. First, the different noise
models that can be used to model the process and measurement noise will be highlighted. After
that, the fundamentals of DEM and how it originates from the FEP will be elaborated. Finally,
the principles of the state estimation benchmarks will be explained.

4.1 Noise Modelling

The state observers in this research assume three different types of noise. The Kalman filter
assumes random white noise, SA and SMIKF assume auto regressive (AR) noise and DEM
assumes Gaussian convoluted noise. The working principles of each of the observers is built
upon these noise assumptions and determines the observer design. Therefore, the three noise
types will be highlighted in this section.

White Noise

When noise is white noise it means that the noise is a random noise signal. This means that
while the noise is zero mean and has a determined variance, the signal at each timestep is
completely independent from the signal in any previous timestep. This means there is no
temporal correlation in the noise. Throughout this thesis, noise colour will often be determined
via its autocorrelation. In the case of white noise the autocorrelation immediately drops to zero.
For visualisation, a white noise signal and its autocorrelation are plotted in figure 4.1.
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Figure 4.1: A simulated example of white noise together with its autocorrelation function.

It can be clearly observed from the figure that the autocorrelation immediately drops to zero,
indicating that the noise is white.

Gaussian Convoluted Noise

In contrast to white noise, Gaussian convoluted noise does contain a degree of temporal cor-
relation between its samples and is therefore coloured. In the rest of this thesis, Gaussian
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CHAPTER 4. THEORY

convoluted noise will be referred to as Gaussian noise for brevity. Gaussian noise is obtained
when convoluting white noise, with zero mean and a given variance, with a Gaussian kernel of
the form:

K(t) =
1√
2πσ

exp(−1

2
(
t

σ
)2) (4.1)

This convolution smooths the white noise and results in a coloured noise signal. The degree of
smoothness, or colour, is dictated by the noise’s smoothness value σ from equation 4.1. The t
in the equation represents the time. A visualisation of a Gaussian noise signal is given in figure
4.2 below.
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Figure 4.2: A simulated example of Gaussian convoluted noise together with its autocorrelation
function.

From the figure it can be clearly observed that in contrast to the white noise in figure 4.1, the
noise appears as a more predictable signal. Moreover, in the case of the Gaussian noise, the
autocorrelation follows a slowly decaying Gaussian curve, indicating that the noise is coloured.
The coloured Gaussian noise is the noise model that is used in DEM.

Auto Regressive Noise

Auto regressive (AR) noise is formed by shaping a white noise through a linear system. In the
discrete domain this is governed by equation 4.2.

wk+1 =

m−1∑
i=0

φiwk−i + ωk (4.2)

Here, wk represents the noise, m the order of the AR model and φ the AR coefficients. ω is
a white noise signal, that has zero mean and a given variance, that is shaped through the AR
system. The degree of colour in the AR noise is determined by the AR coefficients φ, that link
the current noise sample to previous samples. An AR noise signal and the autocorrelation of
the signal have been visualized in the figure below.
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Figure 4.3: A simulated example of Auto regressive noise together with its autocorrelation
function.

Similar to the Gaussian noise it can be observed that the signal does not appear as random as
the white noise signal. The autocorrelation in the figure is slowly decaying as well, which means
that the noise is coloured. In this figure, the AR model is a first order AR model where φ = 0.96.
This means that the autocorrelation is decreasing with a factor of 0.96 for each step. Both the
SA and SMIKF benchmarks use an AR model to model coloured noise. The AR coefficients
from the modelled noise are used in the observer designs of both benchmarks.

4.2 Dynamic Expectation Maximisation

As discussed in section 3.1, DEM describes the perception and learning aspects of the FEP. This
section will briefly explain how DEM is derived from the FEP and how this results in a state
and input observer for coloured noise, based on the theory from [3, 4].

4.2.1 Variational Free Energy

As previously stated, when considering the perception aspect of the FEP, the brain minimizes
the surprise it experiences by minimizing the entropy between its model of the environment
and its sensory input. The model of the environment is given as m and the internal states are
described by ϑ. ϑ consists of the system’s states, inputs, parameters and hyperparameters. This
research focuses on just the states and inputs. The sensory data from the environment is depicted
with y. In essence, the brain has to determine ϑ based on m and y. In Bayesian inference this
is described by the posterior density p(ϑ|y,m). However, calculating the posterior density is
intractable. Therefore, in the brain, the posterior density is approximated by the recognition
density q(ϑ). A measure of similarity between the two probability densities is provided by the
Kullback-Leibler divergence DKL as given in equation 4.3.

DKL(q(ϑ)||p(ϑ|y,m)) = 〈ln q(ϑ)〉q(ϑ) − 〈ln p(ϑ|y,m)〉q(ϑ) (4.3)

Where the angle brackets denote the expected value under a given density. The equation can
be simplified to:

DKL(q(ϑ)||p(ϑ|y,m)) = 〈ln q(ϑ)〉q(ϑ) − 〈ln p(y, ϑ)〉q(ϑ) + ln(p(y|m)) (4.4)
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CHAPTER 4. THEORY

Rearranging the terms leads to an expression for the free energy as given in equation 4.5.

ln(p(y|m)) = F +Dkl(q(ϑ)||p(ϑ|y,m))

F = G+H = 〈ln p(y, ϑ)〉q(ϑ) − 〈ln q(ϑ)〉q(ϑ)

(4.5)

In this equation, F is the free energy and ln(p(y|m)) is the log-evidence of the model. G is
the expectation of the internal energy U = ln p(y, ϑ) and H is the entropy of the recognition
density. Because ln(p(y|m)) is independent of q(ϑ) and the DKL is always positive by definition,
minimizing the DKL between the posterior and the recognition density is equivalent to maxi-
mizing the free energy F . The problem of matching the recognition density q(ϑ) to the posterior
density p(ϑ|y,m)) has now changed to maximizing the free energy F . Moreover, because only
the states and inputs are considered, the term H becomes independent of the parameters ϑ [3].
Therefore, maximizing F is equivalent to maximizing the expectation of the internal energy also
called the variational free energy (VFE), which is given as V (ϑ) = 〈U(ϑ, y)〉q(ϑ). In DEM, the
VFE is maximized by performing a gradient ascent over the VFE for the parameters ϑ, which
in this research consists of the state and inputs.

In summary, the problem of obtaining the intractable posterior density is now simplified to an
optimisation problem in the form of a gradient ascent over the VFE.

4.2.2 Generative model

In the FEP, the brain’s model of the environment is also called the generative model. In the
case of the drone, the generative model is the state space model that describes its dynamics.
However, in the FEP framework this model is slightly altered by the incorporation of general-
ized coordinates. The use of generalized coordinates also provides DEM with one of its main
strengths, the capability to deal with coloured noise. With generalized coordinates, not only
the hidden states but also their derivatives are modelled. This means the dynamics are not only
modelled for a single state space system as depicted in chapter 2, but also for the derivatives
of the states, inputs, outputs and the noise. The generative model in generalized coordinates is
modelled as follows:

x′ = Ax+Bv + w

x′′ = Ax′ +Bv′ + w′

...

y = Cx+ z

ẏ = Cx′ + z′

...

(4.6)

In these equations the ′ operator denotes the derivative of the variable. The system can be
compactly written, by use of the tilde operator, as:

˙̃x =Dxx̃ = Ãx̃+ B̃ṽ + w̃ ỹ = C̃x̃+ z̃

where Dx =


0 1

0 1
. .

0 1
0


(p+1)×(p+1)

⊗ In×n
(4.7)

In this equation, Dx represents the shift matrix, which performs the derivative operation on
the generalized state vector x̃. The matrix Dv does the same for the inputs and is of size
r(d+ 1)× r(d+ 1). p and d represent the embedding order for the hidden states and the input
respectively, whereby the embedding order determines the amount of derivatives per state. The
generalized system matrices, Ã, B̃, and C̃ are of the form:

Ã = Ip+1 ⊗A, B̃ = Ip+1 ⊗B, C̃ = Ip+1 ⊗ C (4.8)
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CHAPTER 4. THEORY

These equations transform the system matrices from the state space system in equation 2.1 to
generalized system matrices. In equations 4.7 and 4.8, I denotes the identity matrix and ⊗
the Kronecker tensor product. The result of a system in generalized coordinates is that more
dynamic information is considered in state and input estimation. This includes the derivative
information of the noise. This gives DEM its capability of leveraging coloured noise for better
state and input estimation. Highlighting the usefulness of generalized coordinates is also one of
the main goals of this research.

4.2.3 Noise modeling

To accommodate the use of generalized coordinates the derivatives of the noise have to be well
defined. As discussed in section 4.2.3, the noise in the FEP is modelled as Gaussian noise.
By modelling the noise as Gaussian noise, it is possible to obtain the covariance for all noise
derivatives. This is accomplished through the use of the temporal precision matrix S(σ2) as
given in equation 4.9, where precision is defined as the inverse of the noise variance.

S(σ2) =


1 0 − 1

2σ2 ..
0 1

2σ2 0 ..
− 1

2σ2 0 3
4σ4 ..

.. .. .. ..


−1

(p+1)×(p+1)

(4.9)

in this matrix the value σ is the aforementioned smoothness value that determines the degree of
colour in the noise. Using S, the generalized precision matrices for the noise can be defined as:

Π̃w = S ⊗Πw, Π̃z = S ⊗Πz, Π̃v = S ⊗Πv (4.10)

4.2.4 Generalized output

The generalized output ỹ from equation 4.7 is often unobtainable in practical applications since
it is often impossible to measure all derivatives of a system’s output. This obstacle is overcome
by using multiple discrete measurements ŷ to calculate the generalized outputs, using a Taylor
expansion as described in equation 4.11.

ŷ =


. . .

y(t− dt)
y(t)

y(t+ dt)
. . .


m(p+1)

= (E ⊗ Im)ỹ (4.11)

Where E is calculated as:

Eij =
[(i− ceil(p+1

2 ))dt]j−1

(j − 1)!
(4.12)

Here, i and j are integers from 1 to p + 1 and ceil denotes that the value between brackets is
rounded up to the first integer. In DEM, the generalized output is calculated by reversing the
Taylor-expansion, resulting in the following pre-processing step:

ỹ = (E−1 ⊗ Im)ŷ (4.13)

The same principle is used to embed the higher orders of the generalized input ṽ. So by using
equation 4.13 it is possible to obtain the higher order derivatives of the inputs and outputs, at
the cost of a time-delay.
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4.2.5 DEM for LTI systems

As discussed in section 4.2.1 DEM performs a gradient ascent over the VFE. Since this research
focuses on state and input estimation, the parameters ϑ consist of the states and inputs, denoted
by X = [x̃ ṽ]T . For X, the gradient ascent takes the following form [4]:

Ẋ = kV (t)X +DX (4.14)

In this equation, V (t)X is the derivative of V (t) with respect to X and D is the shift matrix
containing both Dx and Dv. The VFE, V (t), is obtained by using the Laplace assumption for
the internal energy U(y, ϑ).

Laplace Approximation

The Laplace approximation is used to provide a way to calculate the internal energy and thereby
provides an expression for the VFE. As discussed in section 4.2.1 the internal energy is given as
U = ln p(ỹ, ϑ). This can be expanded to: [8]

ln p(ỹ, ϑ) = ln p(ỹ, x̃, ṽ) = ln p(y|x̃, ṽ) + ln p(x̃|ṽ) + ln p(ṽ) (4.15)

The Laplace approximation is used to approximate these probability density functions as Gaus-
sian distributions. These are given in the three equations below:

p(ỹ|x̃, ṽ) =
1√

(2π)ny(p+1)|Σ̃z|
e−

1
2

(ỹ−C̃x̃)T Π̃z(ỹ−C̃x̃) (4.16)

p(x̃|ṽ) =
1√

(2π)nx(p+1)|Σ̃w|
e−

1
2

(Dxx̃−Ãx̃−B̃ṽ)T Π̃w(Dxx̃−Ãx̃−B̃ṽ), (4.17)

p(ṽ) =
1√

(2π)nv(p+1)|Σ̃v|
e−

1
2

(ṽ−ηṽ)TΠṽ(ṽ−ηṽ), (4.18)

In these equations ny, nx and nv are the dimensions of the output, state and input vectors
respectively. Σ̃ denotes the generalized covariance matrix for each of the noises respectively.
Here Σ̃ is the inverse of the precision matrix given in section 4.2.3. Finally, ηṽ is introduced as
the prior on the inputs. Because the internal energy consists of the natural logarithms of each
of these equations, the exponential will disappear from the equations. Moreover, because the
VFE is differentiated in equation 4.14, the constant terms in front of the exponential drop out.
Therefore, the Laplace approximation transforms the VFE into a comprehensive definition when
considering DEM state and input estimation for LTI systems, given in the equation below:

V (t) = −1

2
ε̃T Π̃ε̃ (4.19)

Where ε̃ is the error between the sensory input and the generative model, given as:

ε̃ =

 ỹ − C̃x̃
ṽ − ηṽ

Dxx̃− Ãx̃− B̃ṽ

 (4.20)

The derivative of V with regard to X is:

V (t)X = −ε̃TXΠ̃ε̃ (4.21)
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Where ε̃X is given as:

ε̃X =

 −C̃ O
O I

Dx − Ã −B̃

 (4.22)

By substituting these equations into equation 4.14, the linear state and input observer that
results is: [4]

Ẋ =

[
˙̃x
˙̃v

]
=

[
A1

A2

] [
x̃
ṽ

]
+

[
B1

B2

] [
ỹ
−ηṽ

]
and Y = X, (4.23)

where Y is the output of the observer and,

A1 =
[
Dx O

]
− kx

[
C̃T Π̃zC̃ +DT

a Π̃wDa −DT
a Π̃wB̃

]
A2 =

[
O Dv

]
− kv

[
−B̃T Π̃wDa B̃T Π̃wB̃ + Π̃v

]
With,Da = Dx − Ã

B1 = kx
[
C̃T Π̃z O

]
, B2 = kv

[
O −Π̃v

]
This is the DEM state and input observer for LTI systems under the influence of coloured noise.
The observer was already tested on simulated systems [4], where it was compared to the Kalman
filter. Throughout the rest of this thesis, this observer will be tested on experimental data and
compared to other benchmarks for coloured noise.

4.3 Observer Benchmarks

This section will briefly highlight the theory behind the three benchmark state observers that
are used to test DEM.

Kalman Filter

One of the most widely used state observers is the Kalman filter [10]. The Kalman filter uses the
LTI system from equation 2.1 in combination with a white noise model to obtain an estimate for
the hidden states. The covariance matrices of the process and measurement noise are denoted
by Q and R respectively. The observer determines the states by a weighted average between a
prior prediction of the estimate x̂− and the systems output y. The weighted average is dictated
by the Kalman gain K which is calculated from the prior covariance P−. The Kalman gain is
obtained by minimizing the covariance of the squared error of the posteriori value. The result
of minimizing the square of the error for the Kalman gain, is that the Kalman filter provides
the optimal solution [16].

The result is a state observer consisting of two steps, a predict step and an update step. The
algorithm can be initiated after providing the priors for Q, R, x̂0 and P0. The equations are
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presented in the formulas below [17]:

Predict step:

x̂−k+1 = Ax̂k +Buk

P−k+1 = APkA
T +Q

Update step:

Kk = P−k C
T (CP−k C

T +R)−1

x̂k = x̂−k +Kk(yk − Cx̂−k )

Pk = (I −KkC)P−k

(4.24)

This is the conventional Kalman filter for state observation. As discussed, this filter is optimal
if the white noise assumption is correct. However, most practical applications do not satisfy the
white noise model assumption.

State Augmentation

The Kalman filter is often adapted to coloured process noise with the state augmentation (SA)
method [16, 12, 14]. In this method, the coloured noise is modelled by an AR system as described
in section 4.2.3. If the process noise is modeled as in equation 4.2 the AR coefficients can be
incorporated into the system matrix A, thereby transforming the system to an equivalent system
with a larger state vector. The state vector is now expanded to also track the coloured portion

of the noise, modelled by the AR coefficients. The state vector now becomes xa =
[
x w

]T
.

The system is then expended to:[
xk+1

wk+1

]
=

[
A I
0 φ

] [
xk
wk

]
+

[
0
ωk

]
(4.25)

And the measurement is given as:

yk =
[
C 0

] [xk
wk

]
+ zk (4.26)

This means that, in essence, the system has been transformed into an equivalent higher order
LTI system under the influence of Gaussian white noise ω, of the form:

xak+1 = Aaxak + ωak

yk = Caxak

with

xa =

[
x
w

]
Aa =

[
A I
0 φ

]
ωa =

[
0
ω

]
Ca =

[
C 0

] (4.27)

The process noise covariance matrix then becomes:

Qa =

[
O O
O Q

]
(4.28)

Where Q is the original covariance matrix of the process noise. Because the new system is only
subjected to white noise, it is now possible to use the conventional Kalman filter. When the AR
model is of higher order, the same principle is used to add more states to the system. When
augmenting the system with the measurement noise, the result is that the measurement noise
covariance R becomes zero. This results in ill-conditioned Kalman filter equations. However, in
this research the experimental setup ensures the measurement noise is of much smaller magnitude
than the process noise, mitigating this problem.
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SMIKF

Apart from SA, the literature research also provided the second moment information Kalman
filter (SMIKF) as a viable option for state estimation for systems influenced by coloured noise.
For this research, only the variant of SMIKF that models coloured process noise is implemented.
The main principle behind SMIKF is that the temporal correlation of the noise is included in the
Kalman filter’s covariance calculation. With SMIKF, this correlation is modelled by a first order
AR noise model in which the colour is governed by the AR parameter φ. Using this definition
of the process noise, the predict step for the covariance evolves into equation 4.29 below.

P−k = E[x̃kx̃
T
k ]

= E[(A(xk−1 − x̂−k−1) + wk)(...
T )]

= AE[(xk−1 − x̂−k−1)(xk−1 − x̂−k−1)T ]AT +AE[x̂k−1wk] + E[wkx̂
T
k−1]AT + E[wkw

T
k ]

P−k = APk−1A
T +APx̂k−1w + Pwx̂k−1

AT + Pw

(4.29)

The covariances between the noise and the hidden states are defined in the following equations:

Px̂k−1w = (I −Kk−1C)Pwk−1wk

Pwx̂k−1
= P Tx̂wk−1

(4.30)

Where Kk−1 is the Kalman gain of the previous timestep and Pwk−1wk is the covariance between
the noise in the current timestep and the noise in the previous timestep given by equation 4.31
below.

Pwk−1wk = φPwk−1
(4.31)

Pwk−1
is the variance of the process noise at the previous time-step. Finally Pwk is given as the

noise variance at the current timestep.

Pw = φ2Pwk−1
+Q (4.32)

These equations redefine the predict step of the Kalman filter for a model with coloured process
noise. Since only the coloured process noise is considered for this research, the update equations
of the Kalman filter remain unchanged.

4.4 Overview of the Theory

In this chapter, the preliminaries and the theory of this research have been elaborated. First,
the three different noise models that are used by DEM and its benchmarks were discussed, which
consisted of white noise, Gaussian noise and AR noise. Second, a short overview of how the
DEM state and input observer is derived from the FEP was given. By making use of generalized
coordinates and the Laplace approximation, the result is a gradient ascent over the variational
free energy for the states and inputs and a state and input observer for LTI systems under
the influence of coloured noise. In section 4.3, the observers that will be used to benchmark
DEM for state estimation, the Kalman filter, SA and SMIKF, were briefly highlighted. One
final benchmark that is missing is the unknown input observer (UIO) that is used for input
estimation. This benchmark was implemented in [4] and originated from [18]. In this research
this implementation is used to provide insight into the input estimation accuracy of DEM.
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This chapter presents an overview of the experiments in this research. First, the setup of the
experiments and measurements is explained. Second, the selection of the drone’s dynamic model
is motivated. Finally, the data selection and preparation are elaborated.

5.1 Experimental Setup

The goal of the experiment was to obtain data from a quadrotor drone, which could be analyzed
and used for state and input estimation. The drone that was used for these experiments is a
Parrot AR.drone 2.0, shown in figure 5.1a. The data was obtained from the experiments as
performed in [5]. This section will provide a short overview of the setup of these experiments.

(a) A picture of the AR drone 2.0 and a
space saving alignment.

(b) The lab setup with the drone and the
blower.

Figure 5.1: Pictures of the drone and the lab setup.

In the experiments, the drone was tasked to keep a constant position while hovering in the air.
While keeping a constant position and orientation, the drone’s movements were measured both
by the motion capture OptiTrack system and by its own internal IMU. The OptiTrack system was
capable of recording accurate position and orientation measurements, while the IMU recorded
angular velocity and acceleration. A blower was placed in the y direction of the drone in order
to provide the wind influence to the system. A picture of the lab setup is given in figure 5.1b.
With this setup nine experiments were conducted. Five experiments were conducted in which
the drone was hovering in wind conditions, supplied by the blower, and four experiments were
conducted while there was no wind. The data from these experiments, both the OptiTrack data
and the data internally recorded in the drone, was saved in ROS bag-files.

5.2 Model Selection

The goal of the drone’s model selection is to provide a simple dynamic model which accommo-
dates a large coloured noise influence. Therefore, an LTI white box model was selected. The
linearized white box model results in unmodelled dynamics of the nonlinear drone system which,
along with the wind influence, will be assumed as part of the coloured noise. Since the roll angle
around the x-axis is perpendicular to the wind direction, this angle experiences the largest wind
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disturbance. Therefore, the system will be limited to the roll angle and roll rate, φ and φ̇. A
linearized state-space model for the drone’s roll angle and rate is given in equation 5.1.

[
φ̇

φ̈

]
=

[
0 1
0 0

] [
φ

φ̇

]
+

[
0 0 0 0
cBφ
Ixx

− cBφ
Ixx

− cBφ
Ixx

cBφ
Ixx

]
pwm1

pwm2

pwm3

pwm4

 ,
y =

[
1 0

] [φ
φ̇

] (5.1)

In this equation, the pwm values are the motor Pulse Width Modulation values that are applied
to the drone as input. Ixx is the drone’s moment of inertia around the x-axis and cBφ is a thrust
coefficient that models the relation between the pwm values and the thrust, generated by the
drone’s rotors. In this experiment, the value for cBφ/Ixx is 0.3748.
In order to perform the noise analysis for the experiments, the process noise has to be isolated. In
this research this is possible because of the small magnitude of the measurement noise compared
to the process noise. The following formula is used to determine the process noise that acts on
the drone:

wk = xk+1 −Adxk −Bdvk (5.2)

In this equation, wk is the process noise vector, Ad and Bd are the discretized system matrices
and xk and vk are the discrete measurements of the states and inputs.

5.3 Data Selection and preparation

The data is extracted from the ROS bags in Matlab. The data consists of several topics that
were recorded from ROS. The OptiTrack data contains the OptiTrack positions and orientations,
the NavData contains the linear velocities and the pwm motor values for the system’s input.
Finally, the IMU data contains the angular velocities. In Matlab, the data is formatted into
data files, that can be used in the state and input observers, in the following steps.

• Because the OptiTrack system starts recording earlier than the drone, the first step is to
link the correct OptiTrack start time to the start time of the drone.

• The second step is to select the correct time frames for each of the wind modes. This is
accomplished by visually inspecting the data and cutting out the correct intervals, based
on a combination of orientation, rotation, velocity and wind speed.

• The OptiTrack is recorded in 120 Hz while the Ardrone data is recorded in 200 Hz. There-
fore, the 200 Hz data is interpolated so that both datasets have the same timestep of
0.0083.

• After this step, the data is converted to the correct units, degrees to radians.

• The measurement data now contains the following quantities from the data.

OptiTrack Position x y z

NavData Linear Velocity ẋ ẏ ż

OptiTrack Orientation φ θ ψ

IMU Angular Velocity φ̇ θ̇ ψ̇

NavData Motor PWM values v
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• The data for all 9 experiments was then cut to the length of the shortest experiment, so all
experiments would be equal in length. Therefore, all experiments were cut to 10 seconds,
or 1200 samples.

• In order to accommodate for more accurate input estimation, the inputs are normalized by
dividing them by a normalizing constant and multiplying the B-matrix with said constant.
Here the constant is given as:

Cv =
1

max(v)−min(v)
(5.3)

Moreover, since the input values contained a non-zero mean, because the rotors have to
counter gravity, the mean was subtracted from the inputs. This did not effect the current
system, since only the roll angles are examined and not the z position or velocity.

• Since the model is restricted to only the roll angle, φ and φ̇ are isolated from the data.

• The model, as discussed in section 5.2, is added to the data files.

The result is nine data files of 1200 samples, consisting of the roll angle and rate, φ and φ̇,
the input v the timestep dt = 0.0083, and the drone’s model in the form of the A, B and C
matrices. In the new data files v and B have been normalized. These data files are subsequently
used to tune the observers, analyze the noise, and perform state and input estimation. The
ninth experiment is used to tune the observers and the other eight, four with wind and four
withoutwind, are used to obtain the results.
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This chapter motivates the different settings of the DEM state and input observer. Moreover,
the settings of the other benchmarks are briefly discussed. The DEM setup can be schematically
represented by figure 6.1.

Figure 6.1: A schematic representation of DEM state and input estimation for a drone flying in
wind conditions, including all quantities and signals.

The quantities that have to be supplied to the DEM observer, prior to state and input estimation
are ηṽ, P ṽ, Ã, B̃, C̃, σ, d and p. The generalized system matrices are calculated using the white
box model matrices as given in section 5.2, and equation 4.8. The rest of the settings will be
explained in the sections below.

6.1 Input Priors

The input prior ηṽ determines the prior beliefs on the inputs. For state estimation it is assumed
that the inputs are known so the priors are set to the measured inputs. For input estimation,
only the first input is estimated. This means that the priors for the second, third and forth
input remain unchanged. For input estimation, the prior for the first input is set to an incorrect
value of either 0.5 or 1.
The precision on the input priors P ṽ determines the weight DEM gives to the priors. So when the
precision is very high, DEM will focus on following the prior instead of exploration. Intuitively,
a higher precision means more certainty on the prior. For state estimation, the correct priors are
supplied to DEM, so the precision is set to a high value of e8 for all inputs. When performing
input estimation on the first input, its precision is lowered to 1. The prior precisions on the
input are converted to generalized precision matrices using the temporal correlation matrix from
equation 4.9.
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6.2 Smoothness Value

One requirement for DEM state and input estimation is that the noise smoothness value σ has
to be known a priori and supplied to the DEM observer. Therefore, the ninth experiment was
used to fit a smoothness value to the noise that is used in the calculation of the temporal corre-
lation matrix S(σ2) throughout the experiments. Two different methods are used to obtain the
smoothness value for the experiments. In the first method, the autocorrelation of the process
noises w1 and w2 is calculated and compared to a range of autocorrelations for generated Gaus-
sian convoluted noise. Based on the SSE between the two autocorrelations, the best smoothness
value is selected for the noise. The second method was to run the DEM state estimation al-
gorithm for a varying smoothness value and obtain the best smoothness value based on state
estimation SSE.

Fitting by autocorrelation

First, the autocorrelation of the process noise was compared to the autocorrelations of a range
of simulated Gaussian noise signals. The SSE’s between the autocorrelations are reported in
figure 6.2 below.
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Figure 6.2: The autocorrelation SSE between the process noise and the simulated Gaussian
noise with varying σ.

From the figure it can be observed that the SSE of w1 converges to zero for lower s-values. w2

appears to have an optimal value around 0.05. In order to provide a more decisive result a
genetic algorithm was used to optimize the SSE between autocorrelations for the value σ. This
resulted in a value of 0.0041 for w1 and a value of 0.0394 for w2. The autocorrelation functions
of the noises, generated with these smoothness values, are presented in figure 6.3 alongside the
autocorrelation functions of the process noise.

Department of Cognitive Robotics 3mE Page 22 of 38



CHAPTER 6. OBSERVER TUNING

0 20 40 60 80 100

Lags

-0.2

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e

la
ti
o

n

(a) Autocorrelation functions of the pro-
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(b) Autocorrelation functions of the pro-
cess noise w2 and the best fit.

Figure 6.3: The results of the optimisation based on autocorrelation SSE fits.

Optimizing for DEM SSE

Next to the fit based on autocorrelation, the smoothness value was also tested based on the
DEM state estimation performance. DEM state estimation was performed for a varying s-value
and the resulting SSE’s have been reported in figure 6.4. The Kalman filter SSE is added for
comparison.
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Figure 6.4: The state estimation SSE for DEM and the Kalman filter with varying s-value and
a minimum at 0.006.

From the figure it can be observed that DEM outperforms the Kalman filter for a range of
s-values up to 0.01. The optimal state estimation performance was recorded at 0.006, which is
also close to the optimal value for w1 from the previous section.
Combining the results of the two sections, the value of σ is set to 0.006 for the remainder of the
experiments. The main reason is the fact that this value provided the best state estimation SSE.
Moreover, the value can not be increased above 0.1 as figure 6.4 shows DEM becomes unstable
after that value.

6.3 Noise Precisions

This section discusses how the noise precisions are determined.
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Measurement Noise

In order to determine the standard deviation of the measurement noise, the OptiTrack measure-
ment of φ is examined while the drone is stationary. The signal is visualized in figure 6.5. The
standard deviation of the signal indicated between the dotted lines is 8.12× 10−9.
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Figure 6.5: The standard deviation of the measurement noise is determined from static mea-
surements from OptiTrack.

Process Noise

As discussed in section 5.2, equation 5.2 is used to isolate the noise from the signals. Prior to
state estimation the noise w is used to calculate the noise precisions for each experiment. The
calculated noise precisions Pwcalc1 and Pwcalc2 are supplied to the observers for each experiment.
This allows for the observers to operate at optimal settings and allows for fair comparison
between DEM and the benchmarks, since the benchmarks are supplied the fitted AR models of
the noise for each experiment.

6.4 Embedding Order

The embedding orders of the states and inputs, p and d, are set to 6 and 2 respectively. The
main reason for this choice is to remain consistent with the previous literature [3, 4, 5].

6.5 Input Estimation Tuning

For input estimation the observer settings are slightly different than the settings for state es-
timation. The two main differences are the C matrix of the LTI system and the process noise
precision Πw.
Because DEM is benchmarked against UIO, the system has to comply to the observer require-
ments of UIO. With the state space system as presented in equation 5.1 these observability
requirements are not met [19]. The requirement that has to be met is: rank(CE) = rank(E),
where E is the part of B that models the unknown inputs. When estimating only the first input
E becomes [0;

cBφ
Ixx

], so:

rank(
[
1 0

] [ 0
cBφ
Ixx

]
) = 0 6= rank(E)
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Therefore, for input estimation benchmarking the C matrix is changed to the identity matrix.
This makes the system fully observable and satisfies the observability requirement of UIO.
After changing the C matrix, the second alteration to the observer settings is the process noise
precision matrix Πw. In order to allow for exploration in input estimation, Πw is changed to a
fixed value of e3.

6.6 Benchmark Tuning

For the benchmarks SA and SMIKF the AR constants of the noise are required. These are
obtained using the Matlab function for AR fitting prior to state estimation. To reflect the
p = 6 setting of DEM, SA is supplied with a sixth order AR noise model. SMIKF can only be
implemented for a first order AR model.

6.7 Overview of the Observer Settings

In the previous sections it was discussed how all observer settings were selected. a more com-
prehensible overview of the settings is given below:

State Estimation
For state estimation the priors on the input are given as:

ηṽ = v, P ṽ =


e8 0 0 0
0 e8 0 0
0 0 e8 0
0 0 0 e8

 , Π̃v = S(σ2)⊗ P ṽ

The system matrices are:

Ã = Ip+1⊗
[
0 1
0 0

]
, B̃ = Ip+1⊗

[
0 0 0 0

0.3748 −0.3748 −0.3748 0.3748

]
, C̃ = Ip+1⊗

[
1 0

]
The smoothness value and the embedding orders are selected as given below:

σ = 0.006, d = 2, p = 6

Finally, the noise precisions are given as:

Π̃w = S(σ2)⊗
[
Pwcalc1 0

0 Pwcalc2

]
, Π̃z = S(σ2)⊗ 8.12× 10−9

Input Estimation
The quantities that are changes for input estimation compared to state estimation are given as
follows:

ηṽ1 = 1, P ṽ =


1 0 0 0
0 e8 0 0
0 0 e8 0
0 0 0 e8

 , Π̃v = S(σ2)⊗ P ṽ

C̃ = Ip+1 ⊗
[
1 0
0 1

]
, Π̃w = S(σ2)⊗

[
e3 0
0 e3

]
The data as collected in chapter 5 together with the settings in this chapter are used to test
DEM in state and input estimation. The results are presented in the next chapter.
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Chapter 7: Results

After preparing the data and tuning the observers, this chapter provides an overview of the
results that were obtained from the experiments. The first eight experiments, four with wind
and four without wind, were considered in the analysis. The aim is to satisfy the goals as stated
in chapter 1. The results are divided into three sections, noise analysis, state estimation, and
input estimation. In the noise analysis, it will be examined if the noise assumptions of the
FEP and DEM are satisfied. In the state estimation section, DEM will be compared to the
benchmarks SA and SMIKF and the usefulness of generalized coordinates will be highlighted.
In the input estimation section, DEM will be compared to UIO based on the estimation of the
first input of the system. Finally, the accuracy vs complexity trade off of DEM is presented.

7.1 Noise Analysis

For the noise analysis section, 400 samples were examined for each experiment. The noise was
isolated as discussed in section 5.2. The standard deviation of the measurement noise was al-
ready determined in section 6.3. However, the standard deviations of the states and process
noises are calculated for each experiment. For both the experiments with and without wind the
averages are reported in table 7.1.

φ φ̇ wφ wφ̇
Without wind 0.00615 0.0444 0.000427 0.0258

With wind 0.0505 0.280 0.000934 0.0612

Table 7.1: The standard deviations of the states, φ and φ̇, and the process noises, wφ and wφ̇,
for the experiments with and without wind.

From the table it can be observed that introducing wind to the system does indeed cause a
disturbance to the states and the noise. Moreover, since the measurement noise was determined
to be 8.12 × 10−9, the process noise is much larger in magnitude than the measurement noise.
Therefore, equation 5.2 holds.

Noise Colour

One of the core features of this research is testing DEM as a state observer for coloured noise.
Therefore, the autocorrelations of the noise were examined to determine whether the noise is
indeed coloured. The autocorrelation functions of the noise for both the experiments with and
without wind are presented in figure 7.1.

In the figures, it can be observed that none of the process noise autocorrelations immediately
drops to zero, as would be expected for a white noise autocorrelation function. Moreover, the
process noise on the unobserved state φ̇ is clearly more coloured than the process noise on φ.
This is mainly caused by the fact that φ is directly observed. Finally, the noise has a more
Gaussian character for the experiments in wind conditions, while the noise in the experiments
for hovering without wind follows a sinusoidal pattern. This indicates that introducing wind to
the system results in coloured Gaussian process noise, as assumed in the FEP.
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Figure 7.1: The autocorrelation functions of the process noise.

Validity of the Laplace Assumption

As stated in section 4.2, the Laplace assumption provides a vital link in the bridge from neuro-
science and the FEP to DEM for LTI systems. Therefore, an important step in benchmarking
DEM on experimental data is to verify that the noises follow a Gaussian distribution. In figure
7.2 the histograms of the process noises wφ and wφ̇ are presented for the experiments without
and the experiments with wind. A Gaussian fit is added for reference.

As can be observed from the figures, the noise follows a Gaussian distribution for both wφ
and wφ̇ for all experiments. This accommodates use of the Laplace assumption in the current
experimental setup.
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Figure 7.2: The process noise from the experiments for with and without wind conditions.

7.2 State Estimation and Benchmarking

In this section, the capabilities of DEM’s state estimation will be examined and compared to
the benchmarks, KF, SA and SMIKF. Moreover, the impact of generalized coordinates on state
estimation accuracy will be examined. The observers are tuned as described in section 6.7. The
experiments are divided into 5 segments of 2 seconds to accommodate for outlier detection,
which can occur in some experiments when one of the benchmarks becomes unstable, thereby
distorting the results.

State Estimates

DEM is benchmarked against the Kalman filter, SA and SMIKF based of the estimation accu-
racy of the hidden state φ̇. The accuracy is measured in terms of the sum of squared errors
(SSE) between the estimate of φ̇ and the measured state. An example of the state estimations is
depicted in figure 7.3a, where the real state, the DEM estimate, and the benchmark estimates are
plotted together. It can be observed that, although all state observers follow the trend, the DEM
and SA estimates represent the real state the closest. The mean SSE in state estimation of all
experiments and all segments, for the experiments with and without wind, is given in figure 7.3b.

From figure 7.3b it can be observed that, although SA outperforms DEM for the experiments
without wind, DEM outperforms all other benchmarks for the experiments with wind.
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Figure 7.3: The state estimation results of DEM and the benchmarks.

Free Energy Curve

As explained in section 4.2, DEM performs a gradient over the VFE. To demonstrate this aspect
of DEM, the state φ̇ was arbitrarily varied for each timestep. After embedding the states, using
equation 4.13, the free energy was calculated for each state, for each timestep. The result is a
free energy curve that moves through time. Independent of calculating the free energy curves,
DEM state estimation was performed and the free energy of the estimated states was calculated.
The two results have been combined in figure 7.4.

Figure 7.4: Visualisation of the VFE gradient ascent of DEM in state estimation.

The figure shows that, over time, the DEM state estimate lies on top of the free energy manifold.
This visually demonstrates the VFE gradient ascent of DEM.
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Role of Generalized Coordinates

One of the main strengths of DEM, its capability of dealing with coloured noise, comes from
its use of generalized coordinates. To emphasize this characteristic of DEM, state estimation is
performed for varying orders of generalized coordinates p. The performance is measured based
on state estimation SSE. The results are given in figure 7.5. For this figure, only the experiments
under wind conditions have been examined. The datapoints consist of the mean and standard
deviations of the SSE for all experiments with wind.
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Figure 7.5: SSE drops exponentially with p.

In the figure, an exponential trend can be observed, validating the importance of generalized
coordinates in coloured noise handling on experimental data.

7.3 Input Estimation

Besides state estimation, DEM is also capable of input estimation. To highlight the capabilities
of DEM input estimation, DEM will be compared to an unknown input observer (UIO) [18]. For
the input estimation section, the observer settings have been changed as described in section
6.7. Moreover, in order to provide more insight into the input estimation behaviour of DEM, a
simulation with randomized systems has been conducted. Finally, the unique ability of DEM to
balance between accuracy and complexity is highlighted.

DEM vs UIO

For input estimation, only the first of the input pwm values is estimated. An example of input
estimation for DEM and UIO is given in figure 7.6a. It can be observed that both DEM and
UIO follow the trend, but do not completely coincide with the measured input. An interesting
observation is that they do coincide with each other. The input estimation SSE for all experi-
ments for both DEM and UIO are displayed in the bar graph in figure 7.6b.

From figure 7.6 it can be observed that DEM and UIO obtained similar performance for the ex-
periments in wind conditions, demonstrating the input estimation capabilities of DEM. However,
it is also evident that UIO slightly outperforms DEM.
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Figure 7.6: The results of DEM input estimation compared to UIO.

Input Estimation Simulation

The fact that in the previous section DEM is outperformed by UIO is in contrast with the
simulation results of [4]. Therefore, DEM and UIO have been compared on randomized systems
with similar noise settings to the experiments with wind. In the simulation, 20 systems were
randomly selected with the same dimensions as the state space system from the drone as used
in this section, 2 states, 4 inputs and 2 outputs, with C = [1 0; 0 1]. The noise was generated
by convoluting a white noise signal with a Gaussian kernel as described in section 4.2.3. The
process noise w was simulated with a smoothness value of σ = 0.1 and a standard deviation of
σw = exp(−4). The measurement noise z was simulated with a smoothness value of σ = 0.01
and a standard deviation of σz = exp(−16). For these settings the first input was estimated for
20 systems and the SSE was calculated for both DEM and UIO. The results are shown in figure
7.7a.

From figure 7.7a it can be observed that DEM and UIO perform very similar, with UIO out-
performing DEM in some cases, as encountered in the previous section. However, the same
simulation was performed while changing the smoothness value of the measurement noise to
σ = 0.1. This provided the system with a more coloured measurement noise and allowed for
DEM to stably operate with a higher smoothness value, which is now also set to 0.1. The re-
sulting SSEs are presented in figure 7.7b. From this figure it can be observed that DEM now
outperforms UIO in 85% of the simulated systems.

For further investigation the estimated inputs from the simulation were also plotted. Each
figure contains the input estimation of eight simulated systems, which are shown in 7.8 and 7.9
below.
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Figure 7.7: The results of DEM and UIO input estimation on simulated systems with different
measurement noise smoothness values.
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Figure 7.8: The input estimation of DEM and UIO for eight random systems with generated
measurement noise with σ = 0.01.

Department of Cognitive Robotics 3mE Page 32 of 38



CHAPTER 7. RESULTS

0 5 10

0

0.1

0.2

1

0 5 10

0

0.1

0.2

2

0 5 10

-0.1
0

0.1
0.2

3

0 5 10

0

0.1

0.2

4

0 5 10

-0.1
0

0.1
0.2

5

0 5 10

0

0.1

0.2

6

0 5 10

0
0.1
0.2
0.3

7

0 5 10

0

0.1

0.2

0.3
8

Figure 7.9: The input estimation of DEM and UIO for eight random systems with generated
measurement noise with σ = 0.1.

From these figures it can be observed that for a smoothness value of 0.01, six out of eight of the
input estimates of DEM and UIO converge to the exact same estimated input. For a smoothness
value of 0.1, this is only the case for one of the systems. This indicates that when DEM assumes
noise that is less coloured, it behaves the same as UIO. When DEM considers more coloured
noise, it can leverage the noise colour to increase its input estimation performance. In the current
experimental setup, DEM was slightly outperformed by UIO because the smoothness value is
chosen as a small value of 0.006 and can not be increased too much as indicated in section 6.2.
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Accuracy v/s complexity

One of DEM’s abilities is to moderate between accuracy and complexity in estimation. In input
estimation the accuracy vs complexity trade off is dictated by the input priors ηṽ and P ṽ. For a
high complexity DEM focuses on the priors and tries to follow them as closely as possible. This
is accomplished with a high prior precision. A high accuracy indicates that the DEM estimate
is very close to the real input. This is accomplished by either supplying DEM with the correct
prior or lowering the precision to allow DEM to explore. The trade off is visualized in figure
7.10a, where an incorrect prior is supplied to DEM and different input estimation results are
obtained for different values of Pv.
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Figure 7.10: The results of DEM and UIO input estimation on simulated systems with different
measurement noise smoothness values.

It can be observed from figure 7.10a that for a high precision DEM has a high complexity and
focuses on the prior. For a lower precision, DEM starts to move towards the measured input,
thereby increasing its accuracy. The accuracy vs complexity trade off is also demonstrated in
figure 7.10b. In this figure, the states and inputs are estimated for a varying precision Pv for all
experiments in wind conditions. It can be observed that for a high precision DEM has a high
complexity and a low accuracy. When the precision on the priors in lowered, DEM moves to a
low complexity and a high accuracy, indicated by the state and input estimation SSE.
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Chapter 8: Conclusion and Recommendations

This section will restate the main goals of the thesis, provide a quick overview of the method,
and briefly present the results. Finally, two suggestions for future work will be proposed.

8.1 Conclusion

Originating from neuroscience, the free energy principle proposes a theory that explains action,
perception, and learning in the human brain. The FEP states that the brain is constantly
minimizing its entropy, or ”surprise”. The surprise is caused by a combination of the genera-
tive model in the brain and the sensory input from the environment. The free energy quantity
functions as an upper bound on this surprise. Therefore, in the FEP framework, the brain is
constantly minimizing the free energy. This provides a theory that explains the efficiency of the
human brain, while providing a mathematical description of the process. In recent studies, this
math has been converted to control theory in robotics, with the aim of developing more efficient
robots.
The perception aspect of the FEP is described in the dynamic expectation maximisation algo-
rithm. Operating within the FEP framework, DEM is capable of parameter, hyperparameter,
state and input estimation by performing a gradient ascent over the free energy. This thesis
focuses on the state and input estimation capabilities of DEM. Because of DEM’s use of gener-
alized coordinates, DEM is able to leverage the coloured nature of noise for more accurate state
and input estimation. Here generalized coordinates signify that the higher order derivatives of
the system’s states are also considered in estimation. Moreover, by making use of the Laplace
assumption and the Gaussian nature of the noise, DEM is converted to a state and input ob-
server for LTI systems. The result is a novel state and input observer for LTI system under the
influence of coloured noise.
In recent studies, DEM has shown to outperform the Kalman filter in simulation and on exper-
imental data. This research aimed to extend on these studies and use the experimental data to
validate the performance of DEM in robotics. Furthermore, this thesis aimed to expand the list
of state estimation benchmarks to state observers for coloured noise, to accommodate for fair
comparison. Next to state observation, DEM input estimation was tested on experimental data.
On top of the thesis, the goal was to combine the research of the previous studies and the thesis
into a publishable paper. Therefore the main goal of the thesis was summarized was:

Use experimental data to validate DEM state and input estimation performance
for a system under the influence of coloured noise and present the results in a pub-
lishable paper.

The main goal was supported by the following sub-goals:

Validate that the experimental data agrees with the noise and model assumptions in the DEM
framework, such as the Laplace assumption and the coloured noise model.

Provide experimental validation of the usefulness of generalized coordinates in state estimation
for coloured noise.

Test DEM state and input estimation on experimental data and compare its estimation accuracy
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against conventional observers for coloured noise such as state augmentation, SMIKF and an
unknown input observer.

Demonstrate the influence of priors in the accuracy vs complexity trade off of DEM.

The experiment consists of a quadcopter drone flying in wind conditions. Using a blower,
the wind conditions can be regulated. The drones movements were monitored using a 3D mo-
tion capture system. A total of nine experiments were carried out, four without wind and five
with wind. The data from the experiments was prepared in Matlab, resulting in 9 experiments
of 10 seconds. The ninth experiment was used to tune the DEM observer a well as the other
benchmarks. The other eight experiments were used to obtain the results.

The results show that the noise is indeed coloured and follows a Gaussian distribution. This
means the use of the Laplace assumption in the derivation of the DEM observer for LTI systems
is valid. Furhtermore, this indicates that the experiment complies with the noise assumptions
of DEM. The state estimation results demonstrate that, in the wind conditions from the exper-
iments, DEM outperforms the other state observers for coloured noise. Moreover, it is observed
that the use of generalized coordinates increases the accuracy of DEM state estimation. This
indicates that DEM uses generalized coordinates to leverage the coloured nature of the noise
for better state estimation and proves the usefulness of generalized coordinates in robotics. In
input estimation, DEM was able to obtain similar performance compared to an unknown input
observer. Finally, the DEM accuracy vs complexity trade off was demonstrated. With these
results the main- and sub-goals of the thesis have been satisfied. The result is an experimental
setup that validates the performance of DEM, as a state observer for LTI systems influenced by
coloured noise, and the use generalized coordinates in the field of robotics.

8.2 Recommendations

One of the main problems that arose when testing DEM on experimental data, was the fact
that, unlike with simulated data, the smoothness value of the noise is unknown and needs to
be calculated and supplied to the observer prior to estimation. Moreover, the smoothness value
for all three portions of the noise, wφ, wφ̇ and z, are different. In its current form, DEM uses
one value for all types of noise. Because this value is not optimal for all noises, this deteriorates
DEM’s performance. For practical applications, it would be beneficial to develop a method that
enables different smoothness values for different noise levels.

The second consideration is the time delay that is introduced into the state observer by the
reverse Taylor expansion. Because the outputs have to be embedded using both past and future
measurements a delay is introduced into the algorithm. This is a disadvantage when implement-
ing DEM into an online control scheme for robots. Therefore, a different embedding approach
is needed to avoid a delay in online state estimation and control.
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