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Summary

The removal of space debris from the most commercial and densely populated areas of space is one of the
challenges for the space industry in the upcoming years. The need for Active Debris Removal (ADR) was
identified by two NASA scientists, D.J. Kessler and B.G. Cour-Palais [33], who found that, under the right cir-
cumstances, a collision between two objects in space could trigger a chain reaction. Such a chain reaction
would exponentially increase the amount of space debris in already highly populated regions, and render
these regions nearly useless. Removal of space debris is thus required in the future and this research con-
tributes to the realisation of this goal. Multiple independent studies have found the inactive Envisat satellite
the single most risk-inducing piece of space debris ([41], [95], [65]) and have identified it as useful target for
the first ADR missions.

A critical part of ADR missions is the ability to perform a safe rendezvous with the debris that is to be
removed from orbit. The rendezvous problem is represented with two satellites, called target and chaser.
The target is the debris to be removed, and is assumed completely passive and uncooperative. The chaser
spacecraft is fully operational and controllable. One of the key enabling technologies for ADR missions is the
capability of the chaser satellite to perform rendezvous with the target autonomously [99], where autonomy
is defined as the absence of human-in-the-loop. Autonomous rendezvous with an uncooperative target re-
quires the chaser satellite to receive (near) real-time information of the relative pose, where the word pose
refers to the position and orientation/attitude of the spacecraft. This information is obtained from a set of
on-board navigation sensors with the capability to provide this information.

A type of navigation system that has been presented as a promising solution is the so-called vision-based
system, which uses solely monocular cameras [10]. These systems show a capability to deliver fast pose so-
lutions under low power and mass requirements, which is valuable given the need for (near) real-time pose
estimation and the limited amount of available processing power in orbit. However, although the develop-
ment and performance of vision-based systems has received a lot of attention from the perspective of navi-
gation, their impact on guidance and control has been neglected. This work therefore aims to investigate the
influence of vision-based navigation systems on the performance of guidance systems, centred around the
following question:

How does the performance of a vision-based pose estimation system influence the ability of the
guidance system to calculate a collision-free and fuel-efficient rendezvous trajectory toward a freely
tumbling and uncooperative target satellite?

In order to assess this question a rendezvous process is set up, consisting of three separate phases. The
first phase consists of a passively safe, closed orbit around the target for the purpose of observation and
characterisation of the target dynamics. In the second phase a nonlinear guidance algorithm is selected,
based on a polynomial parameterization of the Clohessy-Wiltshire-Hill (CWH) equations, which is used to
optimise a rendezvous trajectory for fuel consumption. This near-optimal trajectory ends at the intersection
of the target spin-axis with the target Keep-out-sphere (KOS), the location of which is estimated by forward-
integrating the target attitude dynamics over the remaining manoeuvre time. The trajectory is re-evaluated
in an iterative process, allowing the optimality of the trajectory to be re-evaluated for the current chaser
position and estimated final conditions. Finally, the third phase of the trajectory approaches the target along
the spin-axis, up to a distance of 5 meters. During this phase the rotational dynamics of the chaser are also
synchronised with those of the target, effectively cancelling the relative rotation between chaser and target.
The final approach and docking, as well as the far-range rendezvous, fall outside the scope of this research.

Artificially generated measurements are used, rather than a real pose estimation system. This means that
the performance of the pose estimation system is completely dependent on the accuracy that is manually
assigned to the measurements, which has both benefits and drawbacks. This approach allows to assess the
robustness of the guidance system with respect to errors, and allows to introduce many different scenarios
in order to explore the limits and set requirements on the minimal performance of (vision-based) navigation
systems, from the perspective of guidance. The main drawback of this approach is the necessity to make as-
sumptions about the relationship between physical parameters, such as inter-satellite distance, illumination
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xx Summary

and relative attitude, and the accuracy of the measurements, on the topic of which little research is available.

This research is split into three main parts, the first part of which is concerned with the performance of
the guidance system in situations where the performance of the pose estimation system is decreased. Sub-
sequently, the second part of the research is concerned with finding strategies for recognition and mitigation
of these undesirable scenarios. The third part of the research is focused on the design of trajectories where
the lighting conditions of the vision-based system are optimised, preventing undesirable scenarios as much
as possible.

In the first part of the research, multiple scenarios are defined, first of all scenarios with a low to mod-
erate measurement error that last over a long period of time. Such scenarios would be encountered under
sub-optimal lighting conditions or with difficult image backgrounds, and are therefore useful for analysis.
A second set of scenarios is constructed with a high level of measurement error, only lasting for relatively
short periods of time. Such scenarios would be encountered during periods of difficult/ambiguous relative
attitudes or for short periods of shadowing. The length of these periods is varied, as is their occurrence at
the beginning, middle or end of the optimal trajectory. Furthermore, the influences of position and attitude
measurement errors are evaluated separately to isolate their influence on the guidance system.

From this assessment of the performance of the guidance system, under influence of the vision-based
system, a number of undesirable scenarios are selected that require further attention. As such, the second
part of the research is concerned with finding strategies that allow the recognition of these undesirable pe-
riods. This recognition, and subsequently mitigation, is required to allow the guidance system to calculate a
collision-free and fuel-efficient trajectory despite the decreased performance of the pose estimation system.

The scenarios that were evaluated in the first phase are divided into two categories. A first category con-
tains scenarios that can be recognised by the navigation system itself, and a second category contains failures
that the navigation system does not recognise. In the scenarios from the first category the state covariance,
tracked within the navigation Kalman Filter, can be used to recognise the decreased performance of the pose
estimation system. In these cases the measurement feedback is a good reflection of the true accuracy, or sim-
ply put, if the measurements are not accurate they are correctly perceived as such. The second category is
more difficult, as in these scenarios the measurement feedback is not a good reflection of their true accuracy.
Simply put, in these scenarios the measurements are not accurate and contain a high degree of error, but are
considered to be accurate by the pose estimation system. This overvaluation of the measurements causes
problems in the navigation filter, eventually causing a divergence of the state estimate.

Furthermore, the second phase of the research is also concerned with the integration of the target atti-
tude dynamics. This process is required to estimate the final conditions for the optimal trajectory, however,
is proven to be very sensitive to error. Especially when longer integration times are considered, the integra-
tion process is unreliable and a different strategy is desirable. Therefore the formulation of a more robust
method for estimating the desired final state is attempted. This new method should ideally increase both the
robustness of the estimate, as well as its accuracy.

Parallel to the investigation of mitigation strategies, the third and final part of this research focuses on
designing a trajectory where the lighting conditions of the vision-based system are optimised. This type of
trajectory planning should reduce the need for mitigation and allow for optimal illumination, improving the
camera images which are dependent on the passive collection of light. The trajectory design is performed
using the properties of sun-synchronous orbits, together with a Relative Orbital Element (ROE) state param-
eterization.

This approach requires a number of assumptions about the relation between the orientation of the sun
and the accuracy of the measurements. The trajectory planning is therefore evaluated based on the assump-
tion that the angle between the camera boresight axis and the sun vector is the main driver of measurement
accuracy. The magnitude of this angle can be easily calculated and evaluated for a multitude of scenarios.
Its value can be assessed for the closed, relative orbit in the first phase of the rendezvous, which allows to
find a single best orientation for this relative orbit. Similarly, optimal configurations of the second and third
phases of the rendezvous may be discovered, allowing to evaluate the performance of the GNC system for
these optimal conditions.



1
Introduction

This chapter introduces the context of the research. Section 1.1 provides some background information and
motivation for the subject of this work. Next, Section 1.2 introduces the scope of the research and presents
the formal research questions of this thesis work. Finally, Section 1.3 provides an outline of the structure of
this work.

1.1. Background
Already as early as 1978, the need for Active Debris Removal (ADR) was identified by two NASA scientists, D.J.
Kessler and B.G. Cour-Palais [33]. Analysing the collision probability of space objects they concluded that,
under the right circumstances, a chain reaction could be triggered exponentially increasing the amount of
space debris in the most densely populated areas of space. Figure 1.1 shows the expected number of space
debris in Low Earth Orbit (LEO), which is the most densely populated region in space. The total spacecraft
mass is still growing every year, and is expected to grow very rapidly when no ADR is performed [43].

Figure 1.1: Predicted growth of space debris in the LEO environment for three different scenarios. In the first scenario no debris is
actively removed from orbit, in the second scenario two pieces of debris are removed yearly and in the third scenario this is increased to
five pieces yearly (credit: [43] - NASA Orbital Debris Program Office).

Based on their research, presented in Figure 1.1, Liou, Johnson and Hill conclude that it will be required to
remove 5 large objects per year from the LEO environment to keep it stable and usable [42]. This report,
written in 2010, assumes the beginning of debris removal in 2020. However, ADR has not commenced and
launch traffic is still increasing at a dazzling rate.

1
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Various classifications of orbital debris have been proposed over the years, in an attempt to identify the
most promising targets for ADR missions. Using the collision risk as most important metric, Wiedemann [95]
identifies the Envisat as the most dangerous piece of space debris. The sudden loss of this satellite in 2012
has led to this large and heavy satellite being still in its nominal orbit, while all ability to control the satellite
was lost. Envisat is considered a useful first target for future ADR missions and, consequently, this research.

Autonomy
Autonomous rendezvous, or simply autonomy, has been identified as an enabling technology for future space
missions in the field of Active Debris Removal (ADR) and On-Orbit Servicing (OOS) [99]. In this context au-
tonomy is defined as the absence of human-in-the-loop control. It has been employed in many different
missions in the past, such as the space shuttle missions (i.e. Challenger, Discovery) [29] and, more recently,
on the PRISMA mission [28], in the context of Formation Flying (FF). Autonomy is also presented as a key ele-
ment for future missions such as the ESA Clean space initiative [97] or the DEOS mission [68] by the German
DLR.

An important distinction must be made in the required level of autonomy, based on the target satellite
being either cooperative or uncooperative. A clear example of cooperative rendezvous is found in case of
the space shuttle missions (i.e. Challenger, Discovery). The intended rendezvous target of these missions,
the International Space Station (ISS), actively assisted the rendezvous process by providing range measure-
ments, lights and grappling hardware [29, 99] and passively through high-contrast markings on its surface
[85]. Contrarily, targets for ADR are usually passive pieces of debris and provide no cooperation during ren-
dezvous. Rendezvous and docking with a fully uncooperative target has not yet been demonstrated, however,
the PRISMA mission [15, 28] has demonstrated the ability to autonomously perform close-proximity oper-
ations based on on-board relative navigation. This research limits itself to applications with uncooperative
targets, as the Envisat is the intended target and completely uncooperative.

Relative Navigation
Autonomous rendezvous with an uncooperative target requires the chaser satellite to carry a set of navigation
sensors that provide real-time information of the relative pose. The word pose refers to the complete set of
position, velocity, attitude and rotation. In this context, vision based systems should be preferred over Radio
Frequency (RF) systems [10]. Such systems have been proposed in numerous different ways, using both active
and passive devices. Active devices require power to function (i.e. LIDAR) while passive devices passively
acquire radiation (i.e. monocular cameras).

Navigation systems based on solely monocular cameras are currently under active investigation ([44, 54,
61]), since these systems have a capability for delivering fast pose solutions under low power and mass re-
quirements [72]. This capability is valuable given the need for (near) real-time pose estimation and the lim-
ited amount of available processing power in orbit. The main drawback of these systems is the lack of range
information from monocular cameras [67], resulting in research into systems that use stereo cameras or LI-
DAR, sometimes in combination with one or more monocular cameras ([57, 90]). Other solutions for this
range ambiguity are found in the application of 3D wire-frame models [10] and the development of more
sophisticated image processing (IP) algorithms [34] and even application of neural networks [59, 70].

1.2. Scope of the research
The development and performance of vision-based systems has received much attention from the perspec-
tive of navigation. Vision-based navigation systems are under active investigation [10, 57] and even compe-
titions are started to aid in their development [34]. However, the satellite ability to rendezvous safely and
perform efficiently is not solely dependent on the navigation system. Rather, this ability is the result of the
performance of the Guidance, Navigation and Control (GNC) system as a whole. Within the GNC system the
navigation estimates the current state of the satellite, which the guidance system uses to calculate a desired
future state, to which the satellite is controlled by the control system.

Whereas vision-based navigation is a widely researched topic, vision-based guidance and control is not.
Few authors specifically discuss guidance strategies in combination with vision-based navigation. Barbee et
al. [1] present vision-based guidance strategies for satellites in Geosynchronous Earth Orbit (GEO), which
has different lighting conditions and longer illuminated times compared to LEO. Furthermore, the authors
assume a sensor suite, complete with infrared cameras and range finders, and accurate performance is simply
assumed. Volpe et al. [90, 91] present the most relevant work on the subject, evaluating GNC performance
for a vision-based system, however, their evaluation is limited to a nominal performance of the navigation
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system, not testing limiting cases. More importantly, their research ignores some of the most challenging
tasks of the guidance system such as accurately estimating the future state of a rotating target satellite.

Research Questions

This work therefore aims to investigate the influence of vision-based navigation systems on the performance
of guidance systems. It does not aim to investigate vision-based navigation, nor does it aim to assess or
improve the performance of such systems in any way. The research is centred around the guidance system
and its purpose is to answer the following main question:

How does the performance of a vision-based pose estimation system influence the ability of guid-
ance to calculate a collision-free and fuel-efficient rendezvous trajectory toward a freely tumbling
and uncooperative target satellite?

To aid in finding the answer to this question, three sets of research questions are formulated to investigate a
number of specific cases that explore the limits of navigation performance.

First, it is important to assess the performance of a guidance system with respect to the performance of a
vision-based pose estimation system. The aim is to establish a possible correlation between the accuracy of
the pose estimate and the ability of the guidance system to accomplish the tasks it is given, such as estimating
the desired final state, or calculating an efficient and safe trajectory. The following questions are formulated
for this purpose:

1. How is the performance of the guidance system affected when the performance of the pose estimation
system decreases?

1.1. What is the influence of the magnitude of the pose estimation error?

1.2. How is guidance affected when pose estimation performance is decreased over extended periods
of time?

1.3. How is guidance affected when the decreased performance of the pose estimation system is lim-
ited to a single part of the pose (i.e. either position or attitude)?

Second, when a correlation is found, actionable strategies should be investigated to improve the performance
of the guidance system in situations where the pose estimation system might fail to provide an accurate es-
timate. This starts with the recognition of such situation and identification of other data that is available
on-board. The following questions aid in this investigation:

2. How can the guidance system mitigate periods in which the performance of the pose estimation system
is decreased, and ensure a collision-free and fuel-efficient trajectory during these periods?

2.1. How can the guidance system identify periods of decreased performance of the pose estimation
system?

2.2. What data can the guidance system alternatively use during periods of decreased performance of
the pose estimation system?

2.3. What strategies can be implemented such that the effect of the decreased performance is min-
imised?

Thirdly, in parallel with the investigation of mitigation strategies, it is interesting to explore methods of trajec-
tory planning that would reduce the need for such mitigation in the first place. Cameras are passive sensors,
as discussed earlier, and depend on the passive collection of radiation. This makes their performance highly
dependent on illumination conditions and image background. Also a camera can only register objects in its
Field-of-View (FoV) and needs to be carefully pointed at all times. The following questions are formulated to
aid in this exploration:

3. How can trajectory planning aid in minimising the expected occurrence of periods where performance
of the pose estimation system is decreased?

3.1. How can illumination conditions be integrated in the trajectory planning?

3.2. Are any specific parts of the trajectory sensitive to illumination conditions?
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1.3. Thesis outline
In order to provide further details about the research, Chapter 2 describes the context and further narrows
the scope of the research, defining the intended target and trajectory, as well as outlining the currently avail-
able state-of-the-art guidance systems. Subsequently, Chapter 3 provides some useful background theory,
before the research methodology and general assumptions are introduced in Chapter 4. The complete GNC
framework is described in Chapter 5, outlining all three subsystems.

The main part of this work consists of Chapters 6 to 8, which each aim to answer a set of questions from
Section 1.2. Chapter 6 presents the results from the evaluation of the first set of questions, as it assesses the
performance of the guidance system in various situations with high pose error. The second set of questions
is discussed in Chapter 7, which presents an overview of available strategies for improving the guidance per-
formance, and discusses their effect. Finally, Chapter 8 aims to answer the third set of questions. It describes
how the illumination conditions may be used in trajectory planning and how this impacts the guidance sys-
tem. The conclusions of the research are presented in Chapter 9, along with answers to the research questions
and recommendations for further research.



2
Research Framework

This chapter provides the context for the research. First, Section 2.1 specifies which parts of the rendezvous
trajectory are within the scope of this work and which parts are not. Since the Envisat is the intended target,
the physical properties of this satellite are presented in Section 2.2, along with the expected orbital properties
and attitude dynamics. Next, the chaser baseline is presented in Section 2.3, discussing its physical proper-
ties. Finally, Section 2.4 concludes the chapter with an overview of the general structure of vision-based GNC
systems. This includes a short outline of pose estimation systems and their expected performance, as well as
a discussion about the currently available state-of-the-art guidance systems.

2.1. Rendezvous
The rendezvous problem is represented using two satellites, called target and chaser. Different names for
these two satellites can be found, such as chief/deputy [14] or client/servicer [37], sometimes used inter-
changeably. In this work the satellite being approached (Envisat) is always referenced as target, while the
approaching satellite is always referenced as chaser. The complete rendezvous consists of a variety of ma-
noeuvres, depending on the distance to the object with which rendezvous is desired. An overview of a typical
rendezvous procedure is shown in Figure 2.1.

Figure 2.1: Schematic overview of the rendezvous process. The image is representative of rendezvous with the ISS. [48]

This work only considers close-range rendezvous, as cameras can only be used as tool for relative navigation
at close distances, also depending on the size of the target. If the inter-satellite distance is too large, no
spacecraft features can be distinguished in the images and pose estimation is not possible [57]. During the
initial phase of the mission, the chaser is assumed to be in a passively safe, closed orbit around the target.
This is consistent with P1 in Figure 2.1. The complete trajectory consists of:

• Phase 1: Passive observation The first phase consists of taking measurements from a passively save
orbit. This allows for convergence of the navigation filter, as well as proper characterisation of the
target rotational motion. In Figure 2.1 this means that the satellite stays in P1 for a complete orbital
period.

5
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• Phase 2: Optimal trajectory The second phase consist of a (near-)optimal trajectory that synchronises
the chaser satellite with the spin-axis of the target. This synchronisation means that the desired posi-
tion of the chaser, at the end of the manoeuvre, is at the intersection of the spin-axis vector with the
Keep-Out-Sphere (KOS) of the target. In Figure 2.1 this means that the satellite travels from P1 to P2.

• Phase 3: Approach along spin-axis The third and final phase uses a forced motion approach to follow
the spin-axis while decreasing the inter-satellite distance. In Figure 2.1 this means that the satellite
moves from P2 to P3. This happens along an approximately straight line when no nutation is present, or
along a spiral when a wobbling motion is expected. Furthermore, the chaser synchronises its rotation
with the target, bringing the relative rotation to 0.

In the case of Envisat, the virtual point P3 in Figure 2.1 is set at a distance of 5 meters from the satellite.
Around this distance it is likely that pose estimation will need to be exchanged for a different method of
relative navigation, such as feature tracking, which is outside the scope of this research. Both P1 and P3

most likely require a shift in GNC methods, marking them as valid begin and end points for the close-range
rendezvous process in this research. Everything before P1 (i.e. far-range rendezvous) and after P3 (i.e. final
approach and docking) is considered outside the scope of this research.

2.2. Envisat
The Envisat has been identified as the single most risk-inducing piece of space debris in multiple indepen-
dent studies [41, 65, 95]. As Schaub et al. [65] notice, the reasons for removing Envisat from orbit are both
technical and political. If the Envisat were to collide with another object, in the worst case another opera-
tional satellite, it could cause a massive debris field in the highly commercial sun-synchronous orbit regime.
This would make the orbit useless to satellites and the political consequences would be severe.

2.2.1. Physical properties and coordinate system
The Envisat is a satellite with mass 7828kg [87] and plays a key role in this work. Its shape and dimensions
are shown in Figure 2.2, as well as its body-fixed coordinate system. This coordinate system is centred in the
Centre of Mass (CoM), with the positive x-axis pointing in the direction of the solar panel and the positive
z-axis pointing in the direction of the Ka-band antenna, away from the ASAR-antenna. The y-axis completes
a right-handed system. The exact orientation of the solar panel is likely to be different from the one presented
in Figure 2.2 due to almost a decade of uncontrolled motion and the possibility of small debris impacts. Such
impacts might affect the overall Envisat physical and rotational properties, meaning that room for uncer-
tainty must always be present.

The location of the CoM is defined as [87]

xcom =−3.905

ycom =−0.009

zcom =+0.003

These values are referenced to the geometrical centre of the Launch Adapter Ring (LAR, Figure 2.2). It is un-
likely that these measures are fully accurate, after the satellite has been in an uncontrolled state for several
years. The inertia of Envisat around its principal axes is stated in Table 2.1 along with the expected uncertain-
ties.

Table 2.1: Envisat inertia with expected uncertainties [87]. The expected uncertainties stated here account for approximately 2% of the
total satellite inertia.

Nominal Uncertainty

Jtarget =
17023 397.1 −2171

397.1 124826 344.2
−2171 344.2 129122

kg ·m2 d Jtarget =±
350 100 250

100 3000 150
250 150 3000

kg ·m2
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Figure 2.2: Envisat model and dimensions [17].

Finally, the assumed solar radiation and drag area for Envisat, as well as its radiation and drag coefficients
are presented in Table 2.2. These values are used to integrate the dynamics of the satellite inside the high-
fidelity model.

Table 2.2: Assumed Envisat radiation and drag parameters. Subscript t is adopted for ’target’.

Property Abbreviation Value Unit

Solar radiation area ASR,t 110.5 m2

Drag area ADR,t 62.5 m2

Radiation coefficient Cr,t 1.0 -
Drag coefficient Cd ,t 2.2 -

2.2.2. Orbital parameters
Because the satellite was suddenly lost in 2012, no highly accurate orbital parameters are available. The
North American Aerospace Defense Command (NORAD) keeps a database, Celestrak, with recent Two-Line
Elements (TLE’s), from which the extraction of the orbital parameters is possible. Recent TLE observations
from NORAD indicate the following orbital parameters (Keplerian elements) for Envisat, presented in Ta-
ble 2.3. These parameters show that Envisat is located in a polar, retrograde (inclination > 90 deg) and near
circular (eccentricity ≈ 0) orbit. The altitude of this near-circular orbit is approximately 772 km, with perigee
and apogee height estimated to be less than 20km apart [17]. The resulting orbital period is approximately
6030 seconds. Finally, this orbit is sun-synchronous and thus the angle with respect to the sun-vector, an
important indicator for lighting conditions, is similar at all times.
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Table 2.3: Envisat Orbital parameters on 19 September 2020. [11]

Orbital parameter Value Unit

Semi-major axis 7143.16 km
Inclination 98.18 deg

Right Ascension of the ascending node (Ω) 147.84 deg
Eccentricity 0.0013 -

Argument of perigee (ω) 88.50 deg
Mean anomaly (M) 291.29 deg

2.2.3. Attitude dynamics
In order to perform a successful rendezvous and docking manoeuvre with any target satellite, it is necessary
to classify the expected attitude dynamics [87]. This becomes even more important as the final approach
towards Envisat is envisioned along its spin-axis [8], with several mission concepts having been designed
around this approach [4, 24]. As a result, the orientation of the spin-axis fully determines the lighting condi-
tions on the final approach. For these reasons it is important to model realistic attitude dynamics, to validate
the performance of a vision-based guidance architecture.

Studies agree that the Envisat is spinning with a main rotational rate somewhere between 2.5-5 degrees
per second, gradually slowing down, and that the spin axis is around the Z-axis (Figure 2.2) [6, 87]. Multiple
extensive studies of the Envisat rotation were performed around 2013, after the loss of the satellite. Kucharski
et al. [36] used Satellite Laser Ranging (SLR) to determine the orbital and rotational properties of Envisat
and found an inertial period of 134.7 s, consistent with a rotational velocity of 2.67 deg/s. A second study,
performed by ESA [87], used Inverse Synthetic Aperture Radar (ISAR) observations and found an average ro-
tational velocity of 3.5 deg/s. The attitude states, derived independently from ISAR and SLR data, are in good
agreement qualitatively, but quantitatively different, most likely due to different assumptions [87]. These two
studies both agreed on a likely configuration of the spin-axis, which was found to be inertially stable, mak-
ing an angle of 61.86deg with the nadir vector and 90.69 deg with the along-track vector [36], as visualised in
Figure 2.3.

Figure 2.3: Orientation of Envisat. (Left) During the mission, i.e., nadir stabilized. (Right) After May 2013, the satellite spins in the
Counter Clockwise (CCW) direction about the spin axis S. Vectors: radial R, normal to the orbital plane N, along-track AT, and nadir n; a
ground track of the polar orbit is marked. [36]

Note that the spin-axis orientation adopted by Kucharski et al. [36] in Figure 2.3 is opposite from the one
in this work, shown in Figure 2.2. The spin-axis in this work is defined along the +z-axis in Figure 2.2 and
the rotation shall be modelled in a clockwise direction around this axis. The above orientation is used as a
reference throughout this research, however, the data from different studies is not completely in agreement.
This was recently quantified by Sagnières and Sharf [64] in 2019, whose study used various assumptions to
construct multiple simulations of the Envisat attitude dynamics. These simulations were compared to the
available data from seven studies to identify the most likely scenario of the attitude dynamics.

Sagnières and Sharf [64] present a total of three conclusions. First, the Envisat is subject to precession
and this precession moves with the orbital plane. Second, there is a revolution of the angular momentum
vector around the orbit normal and, third, a ’wobbling’ motion is found of the spin-axis around the angular
momentum vector due to the asymmetrical inertia matrix (Table 2.1). Furthermore, a decrease in the angular
velocity is found, indicating a possible future increase of the nutation amplitude with respect to the main
rotation. This motion is represented schematically in Figure 2.4.
The precession was found to be present in the inertial frame, and concerns the angle between the Envisat
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Figure 2.4: Schematic of angular motions experienced by Envisat [64]. h is the angular momentum vector and ω the instantaneous
spin-axis.

angular momentum vector h and the X-axis of the inertial frame (pointing in the direction of the vernal
equinox). This precession is attributed to the gravity gradient torque and has a period of approximately one
year, meaning that the precession of the spin-axis is equal to the precession of a sun-synchronous orbit. This
thus ensures that the orientation of h with respect to the orbit is stable, especially over short time intervals.

The revolution of the angular momentum vector around the orbit normal was found to have a period of
several days, and is thought to be decreasing. This revolution is the nutation described in Figure 2.4, and
concerns the angle between angular momentum h and Earth Rotation Axis Z . The angle of h with the orbit
normal is stable at approximately 28-30 degrees, while the angle between h and Z changes between approx-
imately 50 and 110 degrees. The relatively long period of this motion, together with the very slow precession
justifies the modelling of the spin-axis orientation as constant in an Earth-centred inertial frame over short
instances of time such as one or two orbital periods.

In terms of lighting conditions, this nutation is very beneficial. The precession ensures that the spin-axis
remains at the same angle with the orbital plane which, due to the sun-synchronous orbit, is at constant
angle with the solar rays. In the absence of the nutation, the spin-axis would experience these same, constant
lighting conditions. However, in the presence of a nutation, the lighting condition change over the course of
these days, as the spin-axis revolves around N. This means that more, and less, favourable conditions for the
approach exist, as a range of scenarios with different lighting conditions is created as a consequence of the
nutation. Furthermore, considering the period of the nutation it is reasonable to assume constant lighting
conditions for short periods of time such as a single orbital period (≈ 6000s), or a short manoeuvre (≈ 2000s).

Finally, the wobbling motion of the spin-axis was found to be increasing due to the decrease of the main
rotational velocity. This decrease removes some of the spin stabilisation, consequently increasing the tum-
bling motion. It is therefore of high importance to evaluate the performance of the guidance architecture for
a significant amount of tumbling to properly assess the performance in this situation.

The conclusions from Sagnières and Sharf [64] justify the selection of several scenarios, required to vali-
date the vision-based guidance architecture for a wide range of possible scenarios. It is decided to evaluate
scenarios with the spin-axis at 0, 15 and 30 degree tilt-angles with the orbit normal, since those were all found
to be in agreement with the measurements [64]. For the main rotation a worst case scenario is adopted, where
the spin rate is 3.5 deg/s around the Z-axis. Furthermore, as both measurements and simulations indicate
significant wobbling, non-zero rotations around the other two axes are implemented, similar to [86], where
the spin rates around X and Y were set to 0.5 deg/s. Adopting these rotations introduces significant wob-
bling, thus adding an additional challenge for the vision-based system. The adopted rotational properties are
summarised in Table 2.4.
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Table 2.4: Envisat rotational properties

Property Value Unit

Spin-axis +z-axis (Figure 2.2) -
Main rotation 3.5 deg/s
Minor rotation 0.5 deg/s
Angle with N 0, 15, 30 deg

2.3. Chaser baseline
The chaser design is a modified version of the Eurostar3000 platform used by Airbus, presented at an ESA
symposium in 2014 [25]. The chaser baseline design is shown in Figure 2.5 and several assumptions are listed
in Table 2.5. The design of the chaser is based on the CDF study for the e.Deorbit mission, by ESA in 2013
[4, 17].

Figure 2.5: Chaser baseline design [4] including the orientation of the Chaser Body-fixed Frame (CBF) coordinate system.

Table 2.5: Chaser technical specifications. [4, 25].

Mass
Dry mass 762 kg
Propellant mass 826 kg

Sensors

Absolute
navigation

3x Star tracker
2x Sun sensor
2x IMU
2x GPS receiver

Relative
navigation

2x Far field camera
1x Near field camera

Actuators
Reactions wheels 4x (Max.) 40 Nm

Thrusters
12x 22 N (6-axis)
12x 22 N (redundant)

The selected chaser design for this research is a design that uses a robotic arm to fix itself to the Envisat for
the purpose of deorbiting, as opposed to a design that uses a net. As declared previously, the approach and
final docking will occur along the Envisat position Z-axis, reaching a final position as visualised in Figure 2.6.
Although the approach and docking is outside the scope of this research, the definition of the reference frames
in Figure 2.2 and Figure 2.5, yields a parallel alignment of the X-axes and anti-parallel alignment of the Y - and
Z-axes for the desired alignment described in Figure 2.6. This also requires the camera to be aligned with the
chaser +Z-axis.

The best estimate of the inertia matrix for the chaser is taken from the e.deorbit symposium at ESA from
2014 [25] and is set to
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Figure 2.6: Intended docking configuration at the Envisat +Z-axis.

Jchaser =
1673 130 54

130 2040 25
54 25 2574

kg ·m2

Finally, the assumed solar radiation and drag area for the chaser, as well as its radiation and drag coef-
ficients are presented in Table 2.6. These values are used to integrate the dynamics of the chaser inside the
real-world model.

Table 2.6: Assumed Chaser radiation and drag parameters. Subscript c is adopted for ’chaser’.

Property Abbreviation Value Unit

Solar radiation area ASR,c 5.5 m2

Drag area ADR,c 4.0 m2

Radiation coefficient Cr,c 1.1 -
Drag coefficient Cd ,c 2.0 -

2.4. Vision-based GNC
The top-level flow of a general vision-based GNC system is outlined in Figure 2.7. This shows how state infor-
mation flows between systems and what top level tasks are performed by each system. Two points of interac-
tion with the real-world are shown, through the camera and actuators, and a distinction is made between the
measurement module and other GNC functions. This distinction is made to, again, indicate that this system
is outside the scope of this research. In no way this presumes that the measurement module is not part of the
spacecraft GNC, which it is. In this research however, the measurements are artificially generated, which is
further discussed in Chapter 5. A short description of the function of each system in Figure 2.7 is provided.

Navigation Filter

The navigation system estimates the current spacecraft state, XN AV , along with an estimate of the state co-
variance, PSt ate , which is an indication of the accuracy of the state, made by the navigation system itself. The
navigation uses a Kalman Filter, which always runs a prediction step. Whenever measurements are available
(when t = k · tmeas , with k = 0,1,2. . . ), the predicted state can be corrected using the measurement Zk and
its measurement covariance Rz . The measurement contains information about the relative position and rel-
ative attitude. Measurements may be rejected, resulting in the filter only performing a prediction step. The
navigation system is described in more detail in Section 5.2.

Guidance

The task of the guidance system is to provide a desired state, XGU I , which the spacecraft must reach in the
future. The system calculates a reference trajectory and a reference attitude for the spacecraft to follow, using



12 2. Research Framework

Figure 2.7: Top-level flow of a general vision-based GNC system. The system completes an iterative loop, starting with measurements,
obtained from the real world using a monocular camera. These measurements come in the form of images, which are processed in the
measurement module and converted to a relative position and attitude, which together form the pose measurement Zk . This measure-
ments is then provided to the navigation filter, which uses it to estimate the current relative state of the chaser. This relative state is used
by the guidance system to calculate a desired subsequent state, which is passed to the control system, together with the current relative
state. The control system calculates the control effort from the difference between these two states and uses its actuators to influence
the real world, upon which a new measurement may be attempted and the iterative loop restarted.

the current estimated state XN AV . In the case of rendezvous, this involves making an estimate of the future
state of the target, which is a challenging task. The reference trajectory, unlike the reference attitude, does
not necessarily need to be recomputed at every step. It might be more beneficial to set an update interval tup ,
only updating the reference trajectory at integer multiples of this update interval (t = k · tup ). The guidance
system is described in more detail in Section 5.1

Control

The control system controls the satellite, such that it reaches the desired reference state, defined by the guid-
ance system, as quickly or efficiently as possible. The control system receives both the currently estimated
state XN AV from navigation, as well as the desired state XGU I from guidance, and uses both to calculate the
required control effort to turn the current state into the desired state. This control effort is performed by the
actuators in the real world environment, allowing the spacecraft to reach a new state. The control system is
described in more detail in Section 5.3.

Measurement module

The measurement module provides the navigation system with recent information from the real world envi-
ronment. As this system is outside the scope of the research it requires some more attention at this moment,
as understanding its challenges and expected performance is crucial to correctly model the artificial mea-
surements.



2.4. Vision-based GNC 13

2.4.1. Monocular, model-based pose estimation
Pose estimation is performed using a single monocular camera. The challenge with using a single monocular
camera lies in the lack of range observability. This problem can be at least partially solved by using a 3D
wire-frame model to assist in the pose estimation, matching the 3D model with features in the 2D image and
solving for the full relative pose [10]. Pose estimation methods that do not use a 3D model are also available
and can potentially be applied to a wider range of targets of unknown shape [57]. This research, however,
limits itself to the model-based pose estimation methods.

Pose Estimation Theory
In the case of model-based pose estimation, the high level architecture looks as in Figure 2.8. The system
receives a 2D image and 3D model as inputs, after which the images are processed and features of the satellite
are extracted. These features are then matched with the corresponding parts of the 3D model.

Figure 2.8: Process flow for the model-based pose estimation process [10].

The processing of these features can happen in different ways. Pasqualetto-Cassinis et al. [10] highlight
that, in general, key-point detection methods are preferred due to their stability with respect to perspective,
scale and illumination changes. However edge/corner detector have shown increased robustness for images
with Earth in the background [75] as well as for images where the target is only partially visible [38].

Highly simplifying the process, it can be reasoned that the pose estimation system extracts a number of
features from the 2D images and cross-references these with the 3D model to construct the pose estimate.
The pose estimation process is schematically represented in Figure 2.9.
This process aims to determine the position of the Centre of Mass (CoM) of the target spacecraft (tC ), as well
as the target orientation with respect to the camera frame C (RBC ). This process is described by the following
two equations, the so-called Perspective-n-Points (PnP) problem [10]:

r C = RBC q B + tC (2.1)

p = (ui , vi ) =
(

xC

zC
fx +Cx ,

yC

zC
fy +Cy

)
(2.2)

where tC represents the relative position of the CoM of the target in the camera frame (see Figure 2.9), RBC

is a rotation matrix, p is a point in the image plane, q B is a point in the 3D model, expressed in the body-
fixed frame of the target, fx and fy are the camera focal lengths and Cx and Cy are the principal points of the
image. The pose estimate is passed to the navigation filter as Zk , along with an estimate of the measurement
covariance. Both are used by the filter to estimate the relative state of the two spacecraft.

The pose estimation process only provides the relative position and attitude of the two spacecraft. The
navigation filter will need to estimate the relative velocity and rotation from the measurements through inte-
gration over time.

Estimation Error
Since the measurements in this research are generated artificially, it is crucial to understand the expected
behaviour of the pose estimation system. In order to realistically model measurement error, the errors caused
by the pose estimation architecture should be understood first. Extensive research into the availability and
capability of pose estimation systems has been performed by Opromolla et al. [57] and Pasqualetto-Cassinis
et al. [10], from which a summary of the expected performance of current pose estimation systems can be
made.
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Figure 2.9: Schematic representation of the pose estimation problem using a monocular image [75].

Table 2.7 summarises the findings from this research and shows the expected performance of several
pose estimation architectures. It shows the error for measuring both the relative position (||ET ||) and attitude
(||ER ||). The final columns present the robustness with respect to Earth in the background, the robustness
with respect to target symmetry and the validation methods used in validating the performance.

As Table 2.7 shows, most authors have not validated the pose estimation architecture with actual space
imagery, but rather with synthetic images, which sometimes leads to the omission of the reflectivity of ac-
tual space materials [10]. Since space imagery is characterised by lighting conditions that are continuously
changing and highly dependent on the orientation of the two spacecraft, adverse lighting conditions can
easily decrease the expected accuracy of the pose estimate.

Pasqualetto-Cassinis et al. [10] also assessed the validation of pose estimation systems with respect to
Earth in the background of the image and with respect to symmetry of the target spacecraft. A lack of vali-
dation was found for most architectures, meaning that the pose estimate could easily become less accurate
under these specific conditions.

The results in Table 2.7 should therefore be interpreted as the nominal performance, or an estimate of the
highest achievable accuracy of currently available pose estimation systems. The pose estimation error will,
however, likely increase when the camera is presented with undesirable viewing and/or lighting conditions.
Vision-based guidance systems should thus show sufficient robustness to situations where pose estimation
error is increased due to undesirable viewing or lighting conditions. Furthermore, it should aid in the creation
of desirable conditions whenever possible.

2.4.2. State-of-the-art Guidance
In the formulation of a guidance law both translational guidance and rotational guidance should be consid-
ered. In general, two approaches are possible for the formulation of guidance laws. In the first approach only
a final desired state is defined and the spacecraft is free to follow an optimal trajectory to this final destina-
tion. This is intended for phase 2 of the rendezvous process, between P1 and P2 (see Section 2.1). Contrary
to this is the second approach, where the spacecraft is forced to follow a predefined reference at every step.
This is intended for phase 3 of the rendezvous process, when following the spin-axis between P2 and P3 (see
Section 2.1). In the first approach the guidance is required to estimate a final state as well as calculate an op-
timal trajectory. In the second approach the guidance is only required to estimate the desired state, however,
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Table 2.7: Overview of current state-of-the-art pose estimation accuracy. ([10]). When multiple numbers are shown these indicate
different scenario’s or algorithms that were analysed.

Source:
Tested
Range

||ET || (m) ||ER || (deg)
Robust

w.r.t.
Earth

Robust
w.r.t.

Symmetry

Method
of

Validation*

[75] ∼ 10m 0.23 / 0.3 2.7 / 8.1 Semi Yes ASI
[54] 180m - 30 m 2.02 / 2.77 3.65 / 5.64 NA NA LP, -, -

30m - 3m 0.28 / 0.51 5.02 / 5.51 NA NA LP, -, -
[19] 5m - 1m 0.03 1.95 NA NA SI, RCM, NMR
[44] 40m - 5m 0.03 0.6 NA Yes SI, ICM, NMR
[22] ∼ 10m 0.2 11.2 NA No ASI
[72] ∼ 10m 0.1 0.66 - - -
[76] ∼ 5m 0.32 0.76 - NA SI, NCM, NMR
[61] ≤ 30m 0.38 1.47 NA Yes -

*NA = Not found, - = No information
ASI = Actual Space Imagery, SI = Synthetic Images, LP = Lab Pictures
RCM = Realistic Camera Model, ICM = Ideal Camera Model, NCM = No Camera Model
NMR = No Materials Reflectivity

this action has to be performed at every step rather than only once.
Translational guidance thus follows an optimal trajectory in phase 2, between P1 and P2, and a fixed

trajectory in phase 3, between P2 and P3. Rotational guidance is required to follow a fixed reference in both
phases, as the camera shall be pointed at the target CoM at all times. Additionally the chaser is required to
synchronise its rotation with the target rotation in phase 3, between P2 and P3. Defining this desired state
is the task of the guidance system, while following this reference is related to the control system rather than
the guidance system. The estimate of a desired state at every step is highly dependent on the accuracy of the
pose estimate, and an elaborate discussion on the calculation of reference state in these cases can be found
in Section 5.1. Only the optimal translational guidance, required between P1 and P2 is further discussed here,
to provide an overview of available solutions.

Optimal Translational Guidance
Throughout the past 50 years many approaches to the translational guidance problem have been consid-
ered. The best-known methods are perhaps the traditional V-bar and R-bar approach, adopted in multiple
of the space-shuttle missions (i.e. Discovery, Challenger) [29]. These approaches are however inadequate
when considering scenarios with time-varying constraints (i.e. in the case of tumbling space debris) and are
non-optimal [77]. Therefore alternative techniques have been developed, and a list of the currently available
state-of-the-art solutions is provided by Starek et al. [81]. Three most promising methodologies, respectively
Model Predictive Control (MPC), Artificial Potential Functions (APF) and Spacecraft Motion Planning (SMP)
are summarised shortly.

Model Predictive Control:

This type of guidance law is based on the repeated evaluation of the Optimal Control Problem (OCP). In
general, an optimal trajectory is defined by the minimisation of a cost function, using the current state and
the final desired state as constraints to the problem. This requires expressing the final state as a function of
all previous states and control inputs, i.e. like Breger et al. [9]:

xfinal = A
t f
t0

x0 +Γt

 u0
...

ut−1

 (2.3)

where xfinal is the desired final spacecraft state, A
t f
t0

is the State Transition Matrix from t0 to t f , ut represents
the control input at time t and Γt is a convolution matrix (see [9] for more detail). Using this definition, a cost
function J∗, aimed at finding the optimal sequence of control inputs ui such that the total control effort is
minimised, can be written as
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J∗ = mi n
u0···uN−1

N−1∑
i=0

||ui || (2.4)

Although this example uses a linear state representation, non-linear state representations are in no way ex-
cluded from this formulation. Once the optimal control effort has been established, the chaser can be con-
trolled to a new position where the optimal trajectory may be re-evaluated based on the new state, iteratively
solving the OCP at every step. This approach lends itself very well to vision-based systems, as it allows for
the OCP to be continuously re-evaluated with new estimates of the target state. As accuracy is expected to
increase over time, when more data becomes available, an increasingly optimal trajectory is expected.

Artificial Potential Functions:

This method is based upon the definition of a function that fills the space around the target with artificial
potentials, guiding the spacecraft from regions of high potential to regions of low potential, similar to "a ball
moving from a hill to a valley" [98]. The potential assigned to the goal-state should be such that the global
minimum is defined at the target. An example potential is provided by Zhang et al. [98]:

ϕt = 1

2
∆xT

v Pv∆xv + 1

2
∆xT

p Pp∆xp (2.5)

where P represents a set of tunable potential functions (see Zhang et al. [98] for more detail). The motion
within such a potential field can easily be constrained by defining regions of high potential Ψo . The system
potential function is simply the sum of all potential functions:

φ=ϕ+
N∑

i=0
Ψo (2.6)

This approach offers an easy implementation of path constraints, but requires proper tuning of the potential
generating functions (Pv ,Pp ,Ψo) to function correctly. The largest drawback of this method is that it tends
to converge to local minima [63]. Another significant problem with the use of potential functions is that an
artificial potential force cannot always prevent the chaser from entering regions of high potential when real
dynamics are involved [98]. This compromises the safety of the satellite, which is never acceptable.

Spacecraft Motion Planning:

Motion planning is sometimes viewed as a sub-set of MPC and uses algorithms to generate sequences of
decisions that safely guide the chaser towards the target. As an example, Biggs and Horri [7] use motion
planning to compute optimal rotational guidance using the following kinematic constraint function:

dR(t )

d t
= R(t ) (v A +ΩA2 +Ω3 A3) (2.7)

where one axis is constrained to spin at a fixed rate v , R represents the spacecraft orientation and A forms
a basis for Lie algebra (see Biggs and Horri [7] for more detail). When aiming to minimise this function, the
authors define a subset of allowable and smooth motions by defining the optimal angular velocities (Ω∗

1 ,Ω∗
2 )

and quaternion components (q∗
0 , q∗

1 , q∗
2 , q∗

3 ) as functions of three parameters (r,c,β), available for optimiza-
tion. Using this subset allows the definition of two cost functions J1 and J2

J1(t ,r,c,β) = [
(q0(t ,r,c)−q f 0)2 + (q1(t ,r,c)−q f 1)2 + (q2(t ,r,c,β)−q f 2)2 + (q3(t ,r,c,β)−q f 3)2] (2.8a)

J2 =
∫ t f

0
= ||u(t ,r,c,β)||d t (2.8b)

where q f 0, q f 1, q f 2, q f 3 correspond to the final rotational orientation and u represents the control effort.
These two functions are then combined in a total weighed cost function J which is minimised in the time
domain.

The idea is computationally advantageous, but simply solving Equation (2.7) would require an infinite
sample set to be able to guarantee an existing solution. Biggs and Horri [7] define a subset which is guaranteed
to yield feasible solutions, but such a subset is generally hard to define. Due to this, motion planning has seen
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very little application in spacecraft control systems, as feasible plans are more highly regarded than optimal
plans [81].

When the drawbacks of both the artificial potential and motion planning methods are considered, com-
promising either the safety of the spacecraft or feasibility of solutions, the MPC approach is selected as most
viable candidate algorithm for this research. Mainly its characteristic to re-evaluate the optimal control prob-
lem is of high value when considering vision-based systems. A discussion on the exact problem formulation
in terms of dynamics, cost function and constraints is presented in Section 5.1.





3
Theoretical Background

This chapter outlines the theoretical background of the thesis. First, Section 3.1 provides an overview of ref-
erence frames. Second, Section 3.2 provides a short note on orbital perturbations, after which a discussion of
the translational dynamics follows in Section 3.3, considering both Cartesian and Orbital Element state pa-
rameterizations. The chapter is concluded with a discussion on attitude dynamics, presented in Section 3.4.

3.1. Reference Frames
In order to model the dynamics of the spacecraft it is necessary to define the reference frames in which their
motion is represented. This section shortly introduces the reference frames that are exploited and discusses
their relationship, as well as conversions between frames.

3.1.1. Definitions
The first frame is an inertial frame, which is useful to represent a full-force model for the integration of true
dynamics. Next two body-centred reference frames are introduced, one for each spacecraft, which are use-
ful to define satellite properties. Finally, the RTN or Hill frame is introduced, which is especially useful to
represent relative motion during the rendezvous process in a comprehensive and intuitive way.

• Inertial (ECI): The inertial frame is the Earth Centered Inertial (ECI) frame which has axes pointing to
the vernal-equinox (X-axis) and the Earth’s north pole (Z-axis). The Y -axis completes the right handed
system and lies in the Earth’s equatorial plane. The ECI frame is visualised by ~X ,~Y and ~Z in Figure 3.1
and, as indicated previously, is especially useful for representing the true, disturbed, non-linear satellite
motion.

• Body-fixed (CBF/TBF): The second set of frames is fixed with respect to the body features of the space-
craft. For the chaser it is convenient to align the body fixed axes with the camera axes, as one less rota-
tion is required to go from the camera frame to the orbital frame. For the target, the axes are defined by
a 3D model of the target body.

– Chaser Body-Fixed Frame (CBF): The CBF frame is fixed to the CoM of the chaser spacecraft. The
Z-axis of this frame is aligned with the camera boresight axis. It might be the case that, in reality,
the camera frame is not perfectly aligned with CBF. In this case an additional coordinate system
will have to be employed to describe the camera frame, but in this work it is assumed that the two
coincide. The X and Y axes form a plane perpendicular to this first axis and are oriented as shown
in Figure 2.5. As a convention, the Y -axis of the CBF frame is pointed downward in the images
taken by the camera, with the X-axis pointed to the right.

– Target Body-fixed Frame (TBF): This frame is fixed to the target’s CoM. It is defined to assist in
describing the relative attitude and angular motion of the target. The axes are defined by the 3D
model as shown in Figure 2.2.

• Orbital/Hill Frame (RTN): The final frame is the Hill or Orbital Frame. This frame is centred in the
target’s CoM and has axes pointing outward along the orbital radius (R-axis) and parallel to the orbital
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Figure 3.1: Relation of ECI and RTN frames [46].

momentum vector (N-axis), with the final axis (T-axis) completing a right-handed system. In the case
of (near-)circular orbits, (T) is tangential to the orbit radius and aligned with the velocity vector V. This
frame is also called the Radial-Tangential-Normal (RTN) frame and is referenced as such in this work.
It is used to represent the relative motion between the chaser and target satellites. The RTN frame is
visualised by ~R,~T and ~N in Figure 3.1.

3.1.2. ECI to RTN
A relative vector in the ECI frame, r I

12 in Figure 3.2, can be transformed into a relative vector in the RTN frame,
r R

12 in Figure 3.2 by using the following relation [96]

r RT N
12 = [C ]r EC I

12 (3.1)

ṙ RT N
12 = [Ċ ]r EC I

12 + [C ]ṙ EC I
12 (3.2)

where [C ] is a 3x3 rotation matrix and [Ċ ] is its derivative. The matrix [C ] is defined as

[C ] =
eR X eRY eR Z

eT X eT Y eT Z

eN X eN Y eN Z

=
eR

eT

eN

 (3.3)

Since [C ] is a rotation matrix, the inverse rotation from RTN to ECI can simply be computed using [C T ]. The
components eR ,eT ,eN are defined as

eR = rEC I

||rEC I ||
(3.4)

eN = h

||h|| =
rEC I ×vEC I

||rEC I ×vEC I ||
(3.5)

eT = eR ×eN (3.6)

with h the orbital momentum vector. Using the chain rule, the derivatives of these vectors, required for [Ċ ],
are computed as
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Figure 3.2: Relative vectors in the ECI and RTN frames [96].

d

d t
eR = 1

||rEC I || [v − (eR ·v )eR ] (3.7)

d

d t
eT =

[
d

d t
(eR )×eN

]
+

[
d

d t
(eN )×eR

]
(3.8)

d

d t
eN = 1

||h||
[
ḣ − (eN · ḣ)eN

]= 1

||h|| [(r ×a)− (eN · (r ×××a))eN ] = 0 (3.9)

This assumes that the satellites move under two-body motion, where r ||a and no acceleration outside of the
orbital plane is experienced.

3.2. Perturbations
Before looking at available models, it should be clear what perturbations have to be included, as the choice
of model depends on this. The rendezvous process is expected to be shorter than 2000 seconds (see Sec-
tion 4.2), which is a relatively short timescale when considering the effect of perturbations. Most publications
that consider a similar rendezvous scenario, simply neglect perturbations [9, 83, 90], assuming unperturbed
dynamics. This can easily be justified by considering that the effect of relative perturbations decreases signif-
icantly with decreasing inter-satellite separation, as shown in Figure 3.3. In LEO, this means that differential
drag and J2 are usually considered.

Guffanti et al. [30] show that, for LEO, contributions of solar radiation pressure, third body accelerations
and higher order gravitational perturbations (J3 and higher) can be safely ignored, as errors are at cm-level
even after 10 complete orbits. The largest contribution of error is due to the J2 effect, causing errors of 190 m
over a period of 10 orbits. This error grows approximately linearly and could already cause errors of several
meters in the time span allocated for rendezvous. However, this work considers a combination of linear
models with measurements, which are connected to the real world and used to correct the propagation step
of linear models. This approach only requires the assumption of linearization to be valid over very short time
spans between measurements, in the order of seconds, which it is proven to be [30].

A final note on the inclusion of drag is provided by Sullivan et al. [82], who indicate that this perturbation
is usually extremely difficult to model accurately and that in certain scenarios it might be more beneficial to
discard the modelling of drag. Including it would only decrease the model accuracy, due to the uncertainty
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Figure 3.3: Relative accelerations in the LEO environment due to multiple sources, for various inter-satellite distances [14].

by which atmospheric density models are characterised. For the above reasons, no non-linear perturbations
are included and only the first order spherical Earth is considered.

3.3. Translational Dynamics
The section provides an overview of the translational dynamics, used to model the satellite motion. First of
all the full-force model is discussed, used to integrate the true, non-linear motion of the satellite. Second, two
different representations of relative motion, Cartesian and Orbital Elements, are discussed and their specific
uses highlighted. Lastly a short review is given of relative dynamics, using the Clohessy-Wiltshire equations.

3.3.1. High Precision Model
The guidance and navigation system both employ linear models to approximate the dynamics. A high preci-
sion simulation of the true satellite dynamics is therefore required for validation of these models. Use is made
of an existing MATLAB high precision integrator by Mahooti [49] which uses an implicit Runge-Kutte (Radau
IIa) integration method [93] with variable order. This architecture solves the equation of motion

r̈ = m ·a (3.10)

= m · (ash +asun +amoon +apl anet s +asol r ad +ad r ag +ar el
)

(3.11)

where m represents the mass of the satellite and the total acceleration vector a is comprised of the following
set of accelerations

ash Spherical harmonic acceleration for an elastic Earth up to degree
and order 70 (m = n = 70). Including tides for solid Earth and ocean.

asun Point mass acceleration of the sun.

amoon Point mass acceleration of the moon.

apl anet s Point mass acceleration for all planets in the solar system, including Pluto.

asol r ad Acceleration due to solar radiation pressure.
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adr ag Acceleration due to atmospheric drag, using the JB2008 atmospheric model.

ar el Acceleration due to the effects of special relativity.

This high precision model was already validated by the author, using true Envisat DORIS Doppler data. Its
accuracy was found to be better than σ3D

RMS = 3m over a period of 24 hours, with cm-level accuracy over a
period of several hours. The absolute chaser and target states are integrated in the ECI frame with the high
precision model.

3.3.2. Cartesian State Representation
The Cartesian parameterization is a commonly used form of the state vector, describing the position and
velocity of the satellite as translational coordinates along three orthogonal axis, usually labelled X, Y and Z.
The state vector in this case is written as

X̄ =



rx

ry

rz

ṙx = vx

ṙy = vy

ṙz = vz

 (3.12)

where rx ,ry ,rz represent the position in three dimensional space and vx , vy , vz represent the velocity along
the same axis. This state vector is composed of rectilinear elements and can either be used to describe abso-
lute positions in the ECI frame or relative positions in the RTN frame.

The relative motion uses a linearised model to describe the dynamics. Under the assumption of an un-
perturbed and near-circular reference orbit, a linear model of the relative dynamics is found in the Clohessy-
Wiltshire-Hill (CWH) equations [12]. Formulated in the target-centred RTN frame, Equation (3.13) describes
the motion of the chaser with respect to the target:

ẍ = 3n2x +2nẏ +ux (3.13a)

ÿ =−2nẋ +uy (3.13b)

z̈ =−n2z +uz (3.13c)

with n the mean orbital motion and u = (ux ,uy ,uz )T the control vector. The validity of these equations is
limited to near-circular orbits, and inter-satellite distances much smaller than the orbital radius. Due to the
lack of perturbations in the model, it is only accurate over short time periods. Conveniently, the navigation
filter is updated with measurements regularly, meaning that the linear model should be valid over the time
span between two measurements. A State Transition Matrix (STM) for these equations can be formulated to
achieve a closed-form solution. Without perturbations or control forces this STM can be written as [16]:

X̄ t = A(t , t0)X̄0 +B ū (3.14a)

A =



4−3cosnt 0 0 1
n sinnt 2

n (1−cosnt 0
6(sinnt −nt ) 1 0 − 2

n (1−cosnt 1
n (4sinnt −3nt ) 0

0 0 cosnt 0 0 1
n sinnt

3n sinnt 0 0 cosnt 2sinnt 0
−6n(1−cosnt ) 0 0 −2sinnt 4cosnt −3 0

0 0 −n sinnt 0 0 cosnt

 (3.14b)

where A is the STM, X̄ t represents the relative state at time t , u are the control forces in the RTN frame and n
is the mean orbital motion. For completion:

B =



0 0 0
0 0 0
0 0 0
1
m 0 0
0 1

m 0
0 0 1

m

 (3.15)
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3.3.3. Relative Orbital Elements
The orbit may also be parameterized in the form of orbital elements. The absolute state of the satellite in the
ECI frame can be described using a set of modified Kepler elementsα [14]:

α=



a
u
ex

ey

ix

i y

=



a
ω+M
e cosω
e sinω

i
Ω

 (3.16)

This formulation is a modified version of the classical Kepler elements and introduces the relative eccentricity
vector e = (ex ,ey )T and mean argument of latitude u, which are helpful in avoiding the singularities in e,ω
and M found for near-circular orbits.

Contrary to the Cartesian parameterization, where Equation (3.12) could be used to describe both abso-
lute and relative states, modelling the relative state of the target with respect to the chaser requires a new
set of elements called the Relative Orbital Elements (ROE), introduced by D’Amico [20] to model the relative
motion of two satellites in low earth orbit. The formulation of the ROE is based on the parameterization in
Equation (3.16) and given as:

δα=



δa
δλ

δex

δey

δix

δi y

=



(at −a)/a
(ut −u)+ (Ωt −Ω)cos i

ext −ex

eyt −ey

it − i
(Ωt −Ω)sin i

 (3.17)

The subscript t is introduced to indicate properties belonging to the target satellite, while the properties
without subscript belong to the chaser satellite. The parameters δa and δλ represent the (dimensionless)
relative semi-major axis and relative mean longitude between the target and chaser spacecraft.

The other four elements present the relative eccentricity and inclination vectors, which could alterna-
tively be written in polar representation as [14]:

δe =
(
δex

δey

)
= δe

(
cosϕ
sinϕ

)
(3.18)

δi =
(
δix

δi y

)
= δi

(
cosϑ
sinϑ

)
(3.19)

where δe and δi are the magnitude of respectively the relative eccentricity and relative inclination vectors.
These properties have no physical meaning and are not the same as the arithmetic differences between ec-
centricity and inclination. The angles ϕ and ϑ are called relative perigee and relative ascending node. Al-
though the parameters in Equation (3.17) carry no physical significance, when multiplied with the chaser
semi-major axis a, the resulting elements aδa describe physical properties of the resulting relative orbit as
shown in Figure 3.4.
The anglesϕ and ϑ deserve a more in-depth examination due to their usefulness in determining the position
of the spacecraft on the relative orbit. Making use of the polar representation of δe and δi , Equation (3.20)
can be derived [14], expressing the chaser position components in the target RTN frame as function of the
angles ϕ and ϑ:

δrr /a = δa −δe cos(u −ϕ)

δrt /a = δλ− 3

2
δa ·u +2δe sin(u −ϕ)

δrn/a =+δi sin(u −ϑ)

(3.20)

where δrr ,δrt and δrn represent the relative separations along the R, T and N axes. For the case where δa =
δλ = 0, these equations show that whenever the argument of latitude u is equal to the relative perigee ϕ, the
chaser is directly ’below’ the target satellite. This is visualised in Figure 3.5, where this moment is highlighted.
Similarly, the motion along the N-axis is described by angle u −ϑ. The consequence of this definition is that,
when designing relative orbits, it grants the ability to choose an ideal ’starting-point’ with respect to u.
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Figure 3.4: Representation of the relative orbit through the use of the ROE (Equation (3.17)) [27].

Figure 3.5: Projection of the relative orbit on the R-T plane (left) and the R-N plane (right) for orbits with δa = 0 [79].

3.3.4. Passively Safe Relative Orbits
Defining a passively safe relative orbit is useful, as it permits the chaser to safely observed the target, giving
the navigation filter time to converge without spending any fuel. Passively safe orbits are defined from the
concept of e/i-vector separation, first introduced by Eckstein et al. [23] for safe collocation of satellites in
geostationary orbit and applied by D’Amico [14] for satellites in the LEO orbit regime.

This concept is based on the principle that the error in determining the along-track separation of two
satellites is usually higher than the error in the other two directions. This is in part due to the coupling be-
tween semi-major axis and orbital period [14], and predictions of the relative motion are therefore sensitive
to both errors from orbit determination and manoeuvres.

Parallel alignment of δe and δi implies the equality of the phase angles ϕ and ϑ [14]. As can be deduced
from Equation (3.20) and Figure 3.5, u = ϕ+kπ (with k an integer) marks the positions of maximum radial
separation and u =ϕ+ (k + 1

2 )π marks the minimum separation in radial direction (= 0m). Setting ϕ = ϑ+kπ
(parallel or anti-parallel alignment) ensures that when δrr vanishes, δrn is at a maximum, while setting ϕ
= ϑ+ (k + 1

2 )π (orthogonal alignment) causes separations in radial (δrr ) and cross-track (δrn) directions to
jointly vanish. If along-track position uncertainties are large, this can impose serious risk, therefore safety is
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achieved from the parallel or anti-parallel alignment of the relative eccentricity and inclination vector [23].
Figure 3.6 shows the relative orbits for parallel and orthogonal e/i-vectors.

Figure 3.6: The concept of e/i-vector separation. The relative orbits are characterised by parallel (left) and orthogonal (right) e/i-vectors.
[53]

3.4. Attitude Dynamics
First, the theory of Euler angles and quaternions is discussed, as they are commonly used representations
for attitude, both having advantages and flaws that need to be considered. Next, the conversions between
sets of attitude representations are described before moving to the kinematics and dynamics associated with
rotations in different reference frames.

3.4.1. Euler Angles
The Euler angle representation is the most intuitive way of representing attitude and rotation. Three axis are
chosen (usually pitch, roll and yaw) and the rotations are represented with angles (θ,ϕ,ψ) around these axes.
Usually intrinsic rotation are applied, meaning the next rotation is around the new axis from the previous
rotation and not around the original, as shown in Figure 3.7. The kinematics are simply represented as the
change of these angles (θ̇,ϕ̇,ψ̇).

Figure 3.7: Euler angle x-y’-x" sequence of intrinsic rotations.

In the Euler angle representation, dynamics are modelled as subsequent rotations around the three axes.
The problem with this is the occurrence of a phenomenon called ’gimbal lock’. The Euler angle system can
be represented as a virtual gimbal with three circles. When two of the virtual circles are aligned, a degree
of freedom is lost and thus a degree of control is lost. This is highly undesirable in any situation, making
the Euler angles unsuitable for adoption in control systems. However, Euler angles are very intuitive and
therefore are an excellent way to verify the correct performance of less intuitive attitude representations,
such as quaternions.
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3.4.2. Quaternions
In order to address the gimbal lock problem with Euler angles, the quaternion system was developed. It fol-
lows from Euler’s rotational theorem [58] that every representation of 3D space exploiting only 3 variables
displays singularities. As such the quaternion system is composed of four variables and a quaternion is de-
fined as:

q ≡
[

q0

q13

]
q13 ≡

q1

q2

q3

= n̂si n

(
θ

2

)
q0 = cos

(
θ

2

)
(3.21)

where n̂ is the axis of rotation and θ is the rotation angle around this axis. For quaternions that represent
rotations, the norm of the quaternion should always equal 1 [88]:

q2
0 +q T

13q13 = 1 (3.22)

For unit quaternions the quaternion inverse q−1 is equal to the quaternion conjugate q∗ which is defined as:

q∗∗∗=
[

q0

−q13

]
(3.23)

Since the quaternion exists of four parameters instead of three, it is free of the ’gimbal lock’ problem
found in Euler angles, but instead suffers from over-determination [88], meaning that different quaternions
can represent the same rotation. A property of quaternions is therefore that when multiplied by a scalar,
the same rotation is still represented. By defining attitude quaternions to have a unit norm, this is only a
problem in the case of -1/1. This requires an additional check to be built into the algorithm processing the
quaternions. This check uses of the following quaternion property

q ⊗q−1 = [+1, 0]

−q ⊗q−1 = [−1, 0]
(3.24)

where ⊗ represents the quaternion product, also called the Hamilton product. Using Equation (3.24) a check
can be performed to see if the quaternion has flipped (i.e. been multiplied with -1). This is done by comparing

δq1 = [1 0]− (+++q ⊗q−1) and

δq2 = [1 0]− (−−−q ⊗q−1)
If δq2 < δq1 the quaternion has ’flipped’ and should be manually ’flipped back’, by multiplying with -1, to
ensure smoothness in the quaternion.

Quaternions are used to describe the attitude of one frame with respect to another and are always labelled
accordingly. This following convention is used:

q B
A ⊗v A ⊗ (

q B
A

)−1 = vB (3.25)

where q B
A describes the relative attitude of frame A with respect to frame B, v A is a vector in frame A and vB

is a vector in frame B. The ’attitude of frame A with respect to frame B’ describes the required rotation to go
from frame A to frame B. The relative attitude of the target with respect to the chaser is calculated as their
quaternion product

qC B F
T B F = q RT N

T B F ⊗qC B F
RT N (3.26)

where T BF , C BF and RT N are the coordinate frames as discussed in Section 3.1.1. In reality the rela-
tive quaternion qC BF

T BF is directly computed from the camera pseudo-measurements as in Equations (2.1)
and (2.2) and qC BF

RT N is retrievable from the attitude determination system of the chaser spacecraft. Using
Equation (3.26) it is possible to compute qRT N

T BF . This is a useful parameter, as it describes the orientation of
the target with respect to the RTN frame. This quaternion is used to convert the target rotation from the body
frame to the RTN frame, where it might be used by the guidance system (see Equation (5.9c)). In a simulated
environment however, Equation (3.26) may be used to calculate qC BF

T BF from the chaser and target separate
orientations.
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3.4.3. Modified Rodrigues Parameters
The Modified Rodrigues Parameters (MRP) build on the quaternion representation and again use a total of
3 parameters to represent an object in 3D space. Therefore, according to Euler’s rotation theorem [58], this
method is no longer over-determined at the cost of displaying singularities. The definition can be directly
traced back to quaternions and can best be seen as a mapping of quaternions onto a 3D sphere [88]. Using the
two parts of the quaternion q0, q13 the definition of the Rodrigues Parameters (Equation (3.27)) and Modified
Rodrigues Parameters (Equation (3.28)) follows:

r p = q13

q0
= n̂ tan

(
θ

2

)
(3.27)

σ= q13

1+q0
= n̂ tan

(
θ

4

)
(3.28)

The difference in the two formulations is found in the location of the singularity, existing at angles of ±180o

(Equation (3.27), q0 = 0) and ±360o (Equation (3.28), q0 = −1). Due to the location of the singularity MRP
allow for turning larger angles without encountering singularities. For this reason the MRP is almost always
preferred over the ’normal’ Rodriguez Parameters.

3.4.4. Conversions
This section discusses the conversion between quaternions and Euler angles, which aid in intuitive verifica-
tion of the rotations. The conversion from quaternion to MRP is evident from the definition of the MRP in
Equation (3.28). The way in which Euler angles are related to the quaternions depends on the specific se-
quence of the rotations. From Equation (3.21) it can be observed that the quaternion is related to a rotation
angle θ and a spin axis n̂. This means that for rotations around the X-, Y - or Z- axis (respectively [1 0 0], [0 1
0], [0 0 1]), the quaternion consists of two numbers (cos(θ/2),sin(θ/2)) and two zeros. Consider that

qtot al = q3 ⊗q2 ⊗q1 (3.29)

where qtot al represents the rotation by q1 followed by q2 followed by q3. From this it follows that rotation
around X with θ, followed by rotation around Y with ϕ, followed by rotation around Z with ψ results in the
following quaternion

qθ,ϕ,ψ =


cosψ/2

0
0

sinψ/2

 ·


cosϕ/2

0
sinϕ/2

0

 ·


cosθ/2
sinθ/2

0
0

 (3.30)

Similarly, extracting the Euler angles from the quaternion also depends on the particular sequence of rota-
tions. MATLAB offers a complete framework for performing these conversions in the Aerospace Toolbox.

The quaternion rotation as described in Equation (3.25) can also be performed using a direct cosine ma-
trix R as

RB
A v A = vB (3.31)

where RB
A is equivalent to qB

A and can be found from qB
A as

RB
A =

 q2
0 +q2

1 −q2
2 −q2

3 2(q1q2 −q0q3) 2(q1q3 +q0q2)
2(q1q2 +q0q3) q2

0 −q2
1 +q2

2 −q2
3 2(q2q3 −q0q1)

2(q1q3 −q0q2) 2(q2q3 +q0q1) q2
0 −q2

1 −q2
2 +q2

3

 (3.32)

3.4.5. Kinematics and Dynamics
For clarity it is repeated that any quaternion q represents an attitude, or rotation from one frame to another,
and is not expressed in either of those frames. Quaternion q B

A thus represents a rotation from frame A to B,
but is expressed in neither frame. For rotations this is quite different, as any rotation ω is expressed both
with respect to a set of axes and within a set of axes. Rotation ωA/B

A represents the rotation of axis system A
with respect to B (superscript) and is expressed in system A (subscript). The following equations apply when
considering rotations in multiple systems:
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ωA/B
A =−ωB/A

A

ωA/B
B = q B

A ·ωA/B
A · (q B

A

)−1 = RB
A ·ωA/B

A

(3.33)

which are useful when considering the kinematics of quaternions. For the quaternion representation, the
kinematics can be modelled as

q̇ = 1

2
Ωq (3.34a)

Ω=


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ωR 0

 (3.34b)

where ω = (ω1,ω2,ω3) is the corresponding rotation rate of the satellite in the chosen reference frame. The
corresponding rotation for q B

A isωA/B
B [78]. For MRP the kinematics are modelled as [13]:

σ̇= 1

4
{(1−σTσ)I3×3 +2[σ×]+2σσT }ω (3.35a)

[σ×] ≡
 0 −σ3 σ2

σ3 0 −σ1

−σ2 σ1 0

 (3.35b)

The dynamics for both quaternions and MRPs, under the assumption of a rigid body, are described by Euler’s
equation [88], valid for rotations around the principle axis of the body:

ω̇= J−1 · ((−−−ω× Jω)+Td +Tc ) (3.36)

where J is the satellite inertia matrix, Td represent the disturbance torques and Tc the control torques. Three
significant causes of disturbance torques include gravity, solar pressure and drag. The influence of solar
radiation was found to be very small due to the orientation of the Envisat solar panel [64]. Furthermore, drag
is highly dependent on instantaneous conditions, and including it is as likely to make the model worse as
opposed to making it better [35]. Therefore only the gravity gradient torque is modelled and Euler’s equation
becomes:

ω̇= J−1 · ((−−−ω× Jω)+ (
3n2

Or bi t · r × J r
)+Tc

)
(3.37)

where 3n2 · r × J r represents the gravity gradient term, in which n is the orbital mean motion (=
√
µ/a3) and

r represents the vector pointing towards Earth in the body frame. This vector can be calculated at any instant
using

r = q T B F
RT N ·

−1
0
0

 · (q T B F
RT N

)−1
(3.38)

since [−1 0 0] in the RTN plane points in negative radial direction (towards Earth) by definition.





4
Methodology

This chapter is concerned with the methodology of the research. Section 4.1 shortly discusses the assump-
tions that were adopted in this research, followed by an examination of the expected rendezvous scenario
and intended reference trajectory in Section 4.2. Section 4.3 outlines several of the expected scenarios that
are likely encountered by the chaser spacecraft camera. Finally, the chapter is concluded in Section 4.4 with
a list of metrics, used to evaluate the performance of the GNC system in this research.

4.1. General Assumptions
The analysis in this thesis requires a number of assumptions, which may be divided into three categories,
’Guidance and Navigation’, ’Initial conditions’ and ’Final conditions’.

4.1.1. Guidance and Navigation

In this first category fall assumptions about inputs to the guidance and navigation algorithm. These mainly
concern time and covariance parameters. The assumptions for guidance can be summarised as

• Trajectories shall always be safe. Trajectories that include collisions are not considered in this analysis
unless for a specific reason which is explicitly stated.

• Guidance shall be updated at intervals of length tup . At this update new information from the naviga-
tion system is received and the OCP is re-evaluated (see Section 2.4).

The assumptions on navigation mainly concern the setup of the measurements, along with the filter covari-
ances used to estimate the current chaser state. These assumptions can be summarised as

• The measurements shall have a noise that is characterised by a normal distribution N (µ,σ2) with zero
mean (µ = 0) and a standard deviation as in Table 4.1. Since no elaborate research on the real-world per-
formance of pose estimation systems is available, the values are loosely based on research by Sharma
and D’Amico [22, 70, 72] and a survey by Cassinis et al. [10].

• Measurements shall be taken at an interval of ∆tmeas = 1 seconds. This time interval is identified as a
crucial parameter by Volpe et al. [91], who conclude that setting the interval too low prevents a good
observability of the relative motion, as the displacement of features on the image plane between two
frames is not large enough. Setting it too high would instead impact the tracking of features, and reduce
the number of guaranteed matches with the model. Volpe et al. [91] select a value of ∆tmeas = 2 s,
however, their main rotation is assumed to have a magnitude of 0.721 deg/s, which is much lower than
the expected main rotation of Envisat (= 3.5 deg/s) adopted in this research (see Section 2.2). Therefore
a value of 1 s is assumed more realistic for the faster spin rate.
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Table 4.1: Levels of measurement accuracy. Provided numbers are 1-σ values used, to generate the measurements from a standard
deviation N (µ,σ) with µ = 0. Standard deviations σr and σq represent position and attitude respectively.

Level of
Accuracy

Abbreviation
σr

(m)
σq

(deg)

High 1 High1 0.05 0.50
High 2 High2 0.10 1.00

Moderate 1 Mod1 0.50 3.00
Moderate 2 Mod2 1.00 4.00
Moderate 3 Mod3 1.50 5.00

Low / Fail Low 5.00 15.00

• Measurements taken during a period decreased performance of the pose estimation system are as-
sumed to have a standard deviation of

σpos = 5 m

σatt = 15 deg

These values are considered large enough to prevent any useful information for the navigation filter,
which is the intended effect of the period of decreased pose estimation performance.

• Measurement feedback, under nominal operation conditions, is provided in the form of measurement
covariance. The value of this covariance is equal to σ2. Exceptions to this are presented in Section 4.3,
as scenarios may arise where the feedback is not statistically accurate.

4.1.2. Initial Conditions
The initial conditions for all scenarios are as summarised in Table 4.2, unless specifically stated otherwise.

Table 4.2: Initial conditions. r and v describe the relative state of target and chaser, while q and ω describe the target initial attitude and
rotation.

Parameter Value Unit

r0 (-34.454, 82.729, 46.329) m
v0 (0.045, 0.072, 0.039) m/s
q0 (0.911; -0.244; -0.086, -0.322) -
w0 (0.5, 0.5, 3.5) deg/s

This is consistent with a position on a closed relative orbit defined by the ROE: aδa = aδλ = 0, aδe = 50, aδi =
60 with phase angles ϕ,ϑ = 0o (see Section 3.3.3) and argument of longitude u = 42 degrees. Furthermore, q0

is consistent with a tilt angle between spin-axis and orbit normal of 30 degrees (see Section 2.2).

4.1.3. Final Conditions
The final position of the optimal manoeuvre in phase 2 of the rendezvous process (see Section 4.2) shall be
at the intersection of the target spin-axis with its KOS. As such, an estimate of the location of the spin-axis at
t f is required, where t f is the final time at the end of the optimal manoeuvre. This estimate shall be made
using Equation (3.37), assuming uncertainties of the inertia matrix J as inTable 2.1. The current navigation
estimate ofωT BF /RT N

T BF and q RT N
T BF shall be used as initial conditions for the intrgration of Equation (3.37).

4.2. Reference Trajectory
The intended reference trajectory was already shortly highlighted in Section 2.1 and is further elaborated
upon in this section to clarify some assumptions, definitions and constraints. Section 2.1 described the tra-
jectory, consisting of three parts. For each part a short description is provided, stating the guidance methods
that are expected to be used during the respective phases.

• PHASE 1: Passive Observation, no translational guidance, pointing only. The first phase consists of
observing the target from a passively safe orbit, such as discussed in Section 3.3.4. This phase allows the
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navigation filter to converge, such that it can supply more accurate data about the attitude dynamics of
the target in the RTN frame. One full orbit is assigned for this phase, to accommodate filter convergence
and the target dynamics.

During this manoeuvre the camera on the chaser satellite should be continuously pointed at the tar-
get satellite, requiring a form of forced attitude guidance. No translational guidance is applied in this
phase, as the orbit is passively safe and closed.

• PHASE 2: Alignment with spin-axis, optimal guidance, pointing only. The second phase consists of
aligning the position of the chaser satellite with the spin-axis of the target satellite. The starting point
of this phase is the position of the satellite on the closed orbit from phase 1 and the final point is the
expected intersection of the spin-axis with the target KOS at t f , the end of the optimal manoeuvre.

This phase starts with a short period of observation of 150 seconds, to provide time for the navigation
filter to converge after the eclipse period during which no measurements were possible. Subsequently,
the optimal guidance algorithm, discussed in Section 5.1, is used to calculate a fuel efficient trajectory
for aligning the chaser with the target spin-axis at a distance determined by the KOS. This trajectory is
updated with new information every tup seconds. Similar to phase 1, the camera should be continu-
ously pointed at the target satellite. As discussed in Section 2.1 this phase ends on the KOS of Envisat.
The KOS radius will be discussed in Section 5.1.2 and Section 5.1.6, and its value is set to 25 m.

The total time for the optimal manoeuvre is restricted to the illuminated time in a single orbit which, in
the case of the Envisat, is approximately 4000 seconds, approximately two thirds of the orbital period.
According to Volpe [89] the optimal manoeuvre time for a similar scenario lies around 0.22T - 0.25T ,
where T represents the orbital period. With T at 6030 seconds, a total manoeuvre time of 1300-1500
seconds is calculated, and a value of 1500 s is selected for the total manoeuvre time in phase 2.

• PHASE 3: Approach along spin-axis, forced guidance, pointing and synchronisation. In this final
phase the chaser approaches the Envisat along the spin-axis, as determined by ESA [5]. During this
phase the chaser satellite is guided by forced guidance, where the path of the satellite is determined
from the rotation of the target, as will be shown in Section 5.1.7. To minimise the risk of collision the
approach velocity is constrained to a constant value of 5 cm/s during this phase.

This phase shall end at a distance of 5 meters from the CoM of the target. At this point the chaser
satellite is at a distance of 3.7 meters of the target. The final approach requires a different approach to
navigation (feature tracking instead of pose estimation) and likely incorporates different guidance and
control algorithms that can safely control the spacecraft when the robotic arm [5] is deployed. As the
chaser shall cover a distance of 20 meters towards the target with a relative imposed velocity of 5 cm/s,
the forced manoeuvre is expected to last approximately 400 seconds.

The entire approach is thus expected to last less than 2000 seconds, as the optimal manoeuvre lasts 1500
seconds and the forced approach is expected to last 400 seconds, together occupying 1900 seconds. The
reference trajectory described above is visualised in Figure 4.1.

4.3. Typical Error
In a real scenario the measurement errors are influenced by the inter-satellite distance, position of the camera
with respect to the sun and the background of images [10]. This means that trajectories that exhibit a constant
measurement accuracy are not likely, but nevertheless they are useful as means of analysis. Using a constant
measurement accuracy allows to clarify the effects of error magnitude on the navigation and guidance sys-
tems. Unless specified otherwise, the measurement standard deviation, σr /σq , is constant, both during the
nominal part of the trajectory as well as during the periods of failure (see Table 4.1). This section discusses
the magnitude of typical errors. The words ’failure’ and ’decreased performance’ are used interchangeably
and both refer to a decrease of the accuracy in the pose measurements.

4.3.1. Short periods of high error
The first subset of scenarios that is likely to be encountered is a set where the measurement error is very
high over a short period of time. This could be caused by particular situations in which the reflection of sun-
light on the target is such that it creates a lot of noise in the images. Other examples are found in difficult or
ambiguous orientations of the target spacecraft with respect to the camera, or partial visibility of the target,
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Figure 4.1: Reference trajectory with three phases. Time difference between t0 and t1 exceeds one orbital period.

both creating difficulties for the pose estimation system. All these situations are linked to specific orienta-
tions of the target with respect to the camera. This means that, considering the relatively fast rotation of 3.5
deg/s, these situations are expected to only last for a short amount of time, as the rotation would cause these
undesirable orientations to disappear rapidly.

Sharma and D’Amico [73] show that, although pose estimation architectures provide an excellent mean
error value and achieve sub-meter and sub-degree accuracy, scenarios can be found where no pose estimate
is available or where the pose estimate fails to converge. In such special cases the measurement errors easily
exceed 5m in position and 30 degrees in attitude. Kisantal et al. [34] report similar findings from a competi-
tion with 50 teams, where excellent mean values are achieved, however, errors are easily increased for special
scenarios.

The subset of scenarios with high errors shall therefore be applied over short periods of 30-120 seconds.
Furthermore these periods shall be introduced at different instants at the beginning, middle and end of the
manoeuvre to evaluate the robustness of the guidance algorithm with respect to these periods of decreased
performance. As specified in Table 4.1, σr /σq in these periods of failure have a value of 5 m and 15◦ respec-
tively.

Measurement feedback
The measurements of a real pose estimation system are supplied with a feedback metric, the measurement
covariance. The measurement covariance, in a nominal case, takes the value of the square of the standard de-
viation, however, the pose estimation will not always provide an accurate measure of the covariance. There-
fore, three types of feedback are considered, which are named ’true’, ’optimistic’ and ’pessimistic’ feedback.
As no quantitative data about this feedback measure was found, the numbers presented for optimistic and
pessimistic feedback are based on assumptions.

True feedback

The first type of feedback is called ’true feedback’ and represents the statistically perfect feedback. This means
that when the artificial measurement is generated with a standard deviation of σ = 1.5 m, the measurement
covariance that is returned by the pose estimation system has a value of σ2 = 2.25m.

Pessimistic feedback

In addition to the true feedback, cases might arise where the measurement covariance is either too high or too
low. In the first case the measurements are undervalued and the navigation thinks that the measurement is
less accurate than it is in reality. This will be called ’pessimistic feedback’. Using the same example as before,
when an artificial measurement is generated from a statistical distribution with standard deviationσ = 1.5 m,
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the pessimistic measurement covariance that is returned by the pose estimation system has a value of (5∼15
σ)2 > σ2.

Optimistic feedback

In some scenarios the opposite happens, and measurements are overvalued. This means that the measure-
ment is thought to be accurate while, in reality, the measurement is not accurate at all. This will be called
’optimistic feedback’. Again using the same example of an artificial measurement with σ = 1.5m, the opti-
mistic measurement covariance that is returned by the pose estimation system has a value of (0.1∼0.5 σ)2 <
σ2.

This overvaluation of measurements is not expected to happen for more than 1 or 2 images at a time.
For this reason the previously determined period of 30-120 s is reduced to a very short period of 1-3 s for the
optimistic feedback case.

How the optimistic and pessimistic type of feedback may be caused in a real-world scenario is demonstrated
by Sharma and D’Amico [70, 74], shown in Figures 4.2 and 4.3. These figures show that probabilities are
assigned to possible poses. In specific cases, there is a possibility for the pose estimation to be considered
high confidence while, in reality, the agreement between the model and the target is bad, demonstrated in
Figure 4.2. In other cases the pose estimation is considered low confidence while, in reality, the agreement
between the model and the actual orientation is very good, demonstrated in Figure 4.3.

Figure 4.2: A montage of a few images with high confidence pose solutions [74]. From the images it becomes clear that the fitted model
(red) does not always match the satellite orientation well. However, in both cases the pose estimation system has assigned a high confi-
dence pose estimate, as a single orientation is identified as the most probable orientation (pose label) with a high probability. This might
lead to the system overvaluing the measurements, resulting in optimistic feedback.

4.3.2. Long periods of moderate error
The second subset of scenarios is composed, including those scenarios where the measurement error is con-
sistently at a moderate level over a longer period of time. This could be caused by situations where a specific
undesirable orientation of the target and chaser spacecraft is maintained for an extended period of time. Ex-
amples of such situations may be found when Earth is in the background of the image for a long time, or
when the sun is in front of the camera, rather than behind it. These situations, even though they should be
avoided whenever possible, are sometimes imposed through the geometry of the mission and should there-
fore be carefully analysed to evaluate their effects on the guidance algorithm. An example of a situation that
is imposed by the mission geometry is when the spin-axis would be aligned with the +r-direction of the RTN
frame. This alignment would cause Earth to be in the background of the images for a relatively long period of
time in phase 3, as the orientation of the spin-axis can not be influenced.

Sharma et al. [75] show that in many of these cases a high confidence pose estimate is not available and
a low confidence estimate is the best that can be achieved. The authors report error values with a norm of
approximately 1 m for position and 5 to 10 deg for attitude. These errors were reported for cases where Earth
was in the background or cases in which the camera experienced sub-optimal lighting conditions.



36 4. Methodology

Figure 4.3: A montage of a few images with low confidence pose solutions [70]. The images show that the fitted model (green) is in
relatively good agreement with the satellite orientation. However, in both cases the pose estimation system fails to identify a single
orientation (attitude class) that matches the model and low probability is assigned to the full range of possible orientations. This results
in the system undervaluing the measurements, resulting in pessimistic feedback.

The errors in this subset of scenarios are characterised by a zero mean and standard deviation as de-
scribed by the moderate cases in Table 4.1. These errors shall be applied over the length of the entire ma-
noeuvre to evaluate the robustness of the guidance algorithm with respect to these errors.

4.4. Performance Metrics
This section shortly discusses the metrics used to measure the performance of the guidance system as well as
that of the GNC system as a whole.

4.4.1. Delta V
The ∆V is separated into open-loop and closed-loop ∆V , where the open-loop ∆V represents the estimate
made by the guidance system, while the closed-loop ∆V resembles the total control effort in the simulated
real-world environment. Open-loop ∆V is representative of the performance of the guidance system, while
closed-loop ∆V measures the overall performance of the entire GNC architecture, being more dependent on
navigation and control than on guidance.

Open-loop∆V is computed using an integral. This integral can be evaluated for t0 → t f , which represents
the estimate total ∆V for the trajectory, and is the classical definition of open-loop ∆V . However, the integral
can also be evaluated over a shorter interval t → (t + tup ). In this context, tup is the time interval at which the
guidance algorithm re-evaluates the near-optimal trajectory to make a new estimate. This evaluation over a
period of length tup is named piece-wise ∆V , as it is evaluated over a small piece of the optimal trajectory.

Closed-loop ∆V does not have this distinction. The control effort is calculated at every step based on the
current difference between the estimated navigation state and the desired guidance state. The closed-loop
∆V can be summed over any time interval to obtain an estimate of the total. The most important difference
between the closed-loop and open-loop ∆V values is that the open-loop value presents a prediction, while
the closed-loop value reports a result.

4.4.2. Errors
Three types of errors are identified as useful metrics for analysing the performance of the GNC system. These
are schematically represented in Figure 4.4.

Guidance Error

The guidance error is defined as the vector norm of the 3D difference between the true chaser state and
the desired, guided, spacecraft state. This metric shows the ability of the control system to follow the reference
trajectory plotted by the guidance system, as well as the reference attitude. The lower the guidance error, the
closer the chaser follows the intended trajectory and the closer it is to a truly optimal trajectory. The guidance
error is a direct result of the navigation error and the ability of the controller.

Navigation Error

The navigation error is defined as the vector norm of the 3D difference between the true spacecraft state
and the estimated spacecraft state provided by navigation. Although this error is part of the navigation system
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Figure 4.4: Types of error to be analysed. The total final position is built of three components: the navigation error, the control error and
the estimation error. The estimation error is a measure of how accurately the guidance system estimates the final desired state using
Equation (5.9) and is caused by errors in the estimation of target rotation and inertia.

only, which is not the focus of this work, this metric is very useful for visualising the source of specific errors.
As the navigation is the only system receiving input from the real-world, the accuracy of the state estimate
can often be directly linked to the performance of the complete GNC system.

Control Error

The control error defines how well the controller is able to align the navigation state with the guidance
state. If the control error is zero, this means that the difference between the satellite on-board, estimated,
navigation state and the desired guidance state is zero. This is the case when the guidance trajectory is up-
dated at t = tup . At this update, the current navigation state is used as a set of initial state constraints, from
which a near-optimal trajectory is calculated.

Final position error
The final position error is defined as the norm of the 3D difference between the intended final state and

the true final state. As can be seen in Figure 4.4, this error is the sum of the guidance error and an estimation
error. The guidance system tries to make an estimate of the intended final state using integration of the
currently estimated target attitude dynamics over the remaining manoeuvre time, a process that necessarily
introduces some error due to uncertainties in ω and J . The final position error can thus be visualised as the
sum of two components. First, the error that the guidance system makes in estimating the correct final state
and, second, the guidance error at t f . These two components could theoretically be in the same or opposite
direction, either reinforcing or counteracting each other.

The estimation error on the final state, as in Figure 4.4, is also used as a performance metric. This metric
is a good indicator of expected guidance performance, although its complexity requires a more elaborate
examination, which is provided in Chapter 7.
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The GNC Framework

5.1. Guidance
The guidance laws applied in this work are of the type ’Model Predictive Control’ [81], as introduced in Sec-
tion 2.4. This type of guidance law is based on the repeated evaluation of the Optimal Control Problem (OCP),
with the current state as initial conditions for the OCP. In this type of guidance a cost function is minimised
and the chaser is controlled to follow a resulting optimal trajectory. Once the control effort has been estab-
lished and a new position is reached, the optimal trajectory is re-evaluated and the OCP is solved again, re-
peating the process. This approach lends itself very well to pose estimation, as the navigation state is contin-
uously refined through the processing of new images, allowing more optimal trajectories. The OCP approach
can be mathematically exploited through either a linear or a non-linear method.

5.1.1. Algorithm Selection
This section discusses the selection and working principles of the guidance algorithm. The choice for a non-
linear model is discussed, presenting a short comparison between linear and nonlinear models along with a
short analysis of how both models work, what the benefits and drawbacks are and why a nonlinear method
was selected as most viable option.

Linear guidance: Theory
Linear methods usually contain a degree of simplicity which allows these methods to be used for a wide
range of problem to produce general solutions. Despite the fact that linear mathematics produces simpler
computations than non-linear mathematics, and the theory of linear mathematics is richer, there are com-
putationally efficient solutions for both linear and non-linear problems. The choice for linear optimization is
usually made due to its simple formulation and analysis and not because of the computational effort [47].

A linear guidance method, suitable for optimal rendezvous, is demonstrated by Breger et al. [9]. It defines
the final state as a linear combination of all earlier states and control inputs. Mathematically this means that
motion is defined by a linear system written as

xk+1 = Ak
k+1xk +Bk uk (5.1)

where k represents the instant in time, x represents the state, Ak
k+1 is the STM from Equation (3.14), Bk is the

system response to inputs (Equation (3.15)) and uk is the control/perturbing input. This way any future state
xk is simply a linear combination of the A,B and u matrices and can be written as [9]

xk = A0
k +Γk

 u0
...

uk−1

 (5.2)

where Γk is a convolution matrix, defined as

Γk = [
A0

k−1Bk A0
k−2Bk · · · A0

1Bk Bk
]

(5.3)
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An example cost function J can be formulated as

J =
N−1∑
i=0

||ui ||1 (5.4)

If the aim is to minimise the fuel consumption, which is proportional to the control effort ∆V, this cost func-
tion can be minimised and the optimal control is given by the set of values for ui that minimise this cost
function

J∗ = mi n
u0···uN−1

N−1∑
i=0

||ui ||1 (5.5)

Nonlinear guidance: Theory
The demonstration of a non-linear method, suitable for the intended optimal rendezvous, is performed by
Ventura et al. [86], using the CWH equations Equation (3.13) as a basis. These equations are reorganised to
define the control effort as

ux = ẍ −3n2x −2nẏ (5.6a)

uy = ÿ +2nẋ (5.6b)

uz = z̈ +n2z (5.6c)

The trajectory components x, y, z are parameterized as polynomials which, according to Ventura et al.
[86], are both light in terms of computational effort and approach the shape of optimal trajectories very well
compared to other parameterization such as B-splines, Hermite polynomials or Bezier curves. The param-
eterization should have at least 5 free coefficients, to allow constraining the trajectory with the initial and
final position and velocity and retaining one free parameter for optimization [86]. This sets the minimal poly-
nomial degree N = 4. On the other hand, to avoid oscillations at the edges of the time interval, typical of
high-order polynomials, the order should be limited to N ≤ 8 [45]. The trajectory components are defined as

x(t ) =
N∑

j=0
αx, j t j (5.7a)

y(t ) =
N∑

j=0
αy, j t j (5.7b)

z(t ) =
N∑

j=0
αz, j t j (5.7c)

where t represents the time, α represents the parameters of the trajectory and 4 ≤ N ≤ 8. Derivatives of these
functions are easily obtained to find ẋ, ẏ , ż and ẍ, ÿ , z̈. All these can then be substituted into Equation (5.6) to
express the control effort in each direction as a function of the coefficients α.

The cost function is defined as an integral over the total manoeuvre time to find the total control effort.
The cost function J is defined as:

J = min
∫ t f

t0

√
u2

x +u2
y +u2

z (5.8)

Choice for Non-linear Guidance
Linear methods usually offer a simplicity in the definition of the problem [47], along with possible computa-
tional benefits. However, multiple formulations of objectives and constraints in 3D space are such that the
linear problem might not be simply defined at all.

When the cost function in Equation (5.5) is examined, it can be observed that the absolute value or 1-
norm of the control effort is analysed. This is, however, not a linear property and requires a re-formulation of
the problem. The introduction of a set of modified parameters and additional constraints is required, which
allows the optimization problem to be rewritten in the following way [92]:
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Linear:

min |u|→ min u′

u < u′

−u < u′

Non-linear:

mi n|u|

where u′ is a newly introduced shadow parameter which is substituted for the real control effort in the op-
timization process. Every step of the optimization process thus requires twice the amount of variables and
produces six (two in every thrust direction) inequality constraints. This tends to slow the linear optimization
algorithm significantly when the size of the problem is increased [50]. Non-linear methods do not suffer from
this problem as both the 1-norm, as well as the 2-norm, can be directly incorporated into the algorithm as
non-linear properties.

Another drawback of the linear method is in the formulation of the safety constraint. This constraint is
defined by a spherical region around the target, which is nonlinear. This again requires a re-formulation of the
constraint in the linear case. The equivalent of the sphere in a linear setting is a cube, which can be defined
around the target as a series of planes. Breger et al. [9] apply the so-called ’Big M’ method to constrain the
state to lie outside a region through the use of binary variables [66]

Linear:

~xt ≤ b̄t +M yt

‖yt‖1 ≤ m −1

Non-linear:

||~xt || ≤ b̄t

where m is the length of yt , ~xt is the chaser state at instant t, bt is the constraint value, yt is a vector whose
elements are either 0 or 1 and M is a large number on the scale of x . This method works by relaxing, at most,
all but 1 of the avoidance constraints. This effectively means that the algorithm checks that at least one of
variables x, y or z is larger than a reference value (e.g. rKOS ), ensuring collision avoidance.

The consequence of this method is that it requires the additional optimization of binary vector yt , adding
three additional parameters to the optimization at each time step. Another consideration to be made is that
the linear method is more restrictive than its nonlinear equivalent, as a cube rules out a larger amount of the
3D space compared to a sphere. As linear optimization algorithms usually approach their constraint bound-
aries and find solutions that lie on these boundaries [39] this is considered a degradation of the optimality of
the algorithm.

A minor drawback of the non-linear method is that the optimization of the trajectory is aimed at opti-
mising the 3 · (N +1) scalar parameters that define the shape of the trajectory and is thus decoupled from the
physical parameters x, y, z. Also the constraints are not automatically evaluated at each time step, but rather
the time steps at which the constraints shall be evaluated must be determined prior to the optimization pro-
cess. The choice of this time step influences the computational efficiency of the optimization process, as it
determines the total amount of constraint evaluations that are performed.

Considering the drawbacks of the linear method listed above and the small differences in computational
efficiency between linear and nonlinear methods [47], the choice was made to employ a nonlinear guidance
algorithm, based on the algorithm presented by Ventura et al. [86].

5.1.2. Constraints
The manoeuvre in phase 2 is limited by a number of constraints, which need to be considered in the opti-
mization. Three types of constraints can be listed, from different sources:

Initial and final state
The first set of constraints stems from the initial (measured) and final (desired/calculated) state of the chaser
spacecraft. The need for these constraints is obvious, as the trajectory has to start from the initial position
of the chaser, with the corresponding velocity, both which are fully determined by the position on the closed
orbit or phase 1. The trajectory also has to end at a specific position relative to the target, aligned with the
target spin-axis, again with a corresponding velocity, both which are defined by the rotational motion of the
target. These constraints can be written in general form as
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r (t0) = r0 (5.9a)

ṙ (t0) = ṙ0 (5.9b)

r (t f ) = r f = rKOS ·
ω f

|ω f |
(5.9c)

ṙ (t f ) = ṙ f = r f ×ω f (5.9d)

where r (t ) is the relative position vector at time t , t0 and t f represent the initial and final time of the opti-
mal manoeuvre, rKOS is the radius of the Keep-Out-Sphere and ω f is the rotation ωT BF /RT N

RT N (t f ). The third
sub-equation from Equation (5.9) imposes that the final position is located along the target spin-axis. This
results in a total of 12 constraints, which need to be adapted to fit the formulation of the optimization. The
formulation of these constraints immediately raises the need for an accurate estimation of the final rotational
motion of the target spacecraft.

As already shortly discussed in Section 5.1.1, these constraints are imposed by fixing the values of four
coefficients, α...,0,α...,1,α...,N−1,α...,N in each of the three sub-equations of Equation (5.7). For the coefficients
in x this results in [86]:

αx,0 = x0 (5.10a)

αx,1 = ẋ0 (5.10b)

αx,N =
x f −

∑N−1
j=0 αx, j t j

f

t N
f

(5.10c)

αx,N−1 =
ẋ f −

∑N−2
j=0 jαx, j t j−1

f −Nαx,N t N−1
f

(N −1)t N−2
f

(5.10d)

where N is the degree of parameterization and the subscript . . . f references to the value at the end of the
optimal manoeuvre. Similarly the coefficients for y and z can be calculated.

Thrust
The thrust constraint is the result of the physical limitations of the thrusters on board of the chaser spacecraft.
For obvious reasons these can only deliver a finite amount of thrust, which is limited by the specifications of
the selected thruster. The constraint can be expressed simply as

−umax ≤ u ≤ umax →
√

u2 ≤
√

u2
max (5.11)

where u represents the control thrust. This assumes symmetric thruster configuration and an equal amount
of thrust possible in all directions, both positive and negative. Based on the ESA baseline for the Clean Space
Initiative the chaser spacecraft will receive 12 (+12 redundant) 22N thrusters, meaning a total of 44N of thrust
in each direction nominally [4].

Safety
The third subset of constraints can be obtained from the need for safety during the rendezvous operation.
Safety during the optimization can be achieved in two ways. The first is by defining a classical Keep Out
Sphere (KOS), which defines a single region (sphere) around the target. Second, a Keep Out Coat (KOC)
around the target vehicle might be used, which defines multiple regions around the target body that should
be avoided. Both have clear advantages and disadvantages:

Keep Out Coat

Following the approach by Volpe et al. [90] the KOC can defined mathematically as a superellipsoid

h(x) =
( x −xc

a

)n1 +
( y − yc

b

)n2 +
( z − zc

c

)n3 −1 (5.12)

where xc , yc and zc are the coordinates of the ellipsoid centre, a,b and c are the semi-lengths of the ellipsoid
axes and n1,n2 and n3 describe a degree of curvature along that axes. This function returns zero if evaluated
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on the surface of the ellipsoid and a negative or positive number if evaluated respectively inside or outside the
solid. The safety zone can be completely adapted to the target’s shape and multiple ellipsoids can be defined
to cover different parts of the target body. A single function l (x) can be obtained by multiplying the functions
of all different hyper-ellipsoids. By imposing that for every point on the trajectory this functions returns a
positive value, it is ensured that the chaser never enters the KOC and thus safety is ensured.

Keep Out Sphere

The Keep Out Sphere is more easily defined and is simply a sphere with radius rKOS centred in the target CoM.
This sphere is mathematically formulated as

x2 + y2 + z2 = r 2
KOS (5.13)

and by imposing that the chaser position r = (x, y, z) is always outside of this sphere, safety is assured. This
sphere shall have a radius >19 meters, since the tip of the solar panel is approximately 19m from the CoM. A
visualisation of the KOS and KOC is presented in Figure 5.1.

Figure 5.1: KOS with radius 25m versus KOC with n1 = n2 = n3 = 4 (see Equation (5.12)). The KOC parameters a,b,c and xc ,yc ,zc were
chosen such that the KOC is at a distance of 0.5 m around the Envisat body.

Trade-off KOS and KOC

Whereas the KOS assumes a fixed final distance from the target (equal to the radius of the sphere) the KOC
allows the shape to be completely adapted to the target body, which allows the safety surface to be defined
at as little as 1∼3 meter from the target body. The choice for KOC or KOS is therefore particularly relevant
in the phase of the approach when the optimal guidance is used. If the spacecraft is delivered to a location
closer to the target in the second phase, a lesser amount of forced motion is required in the subsequent final
phase. Since forced motion is not optimal, considering that it completely ignores natural orbital dynamics,
any reduction of the final distance to the target at the end of the optimal trajectory thus reduces the total∆V ,
as will be shown in Section 5.1.6.

There is however a drawback in the choice for KOC. Since the ellipsoid is tailored to the target body it
needs to be defined in the target body frame. The constraint is formulated as

h
(
RT BF

RT N~x(t )
)> 0 (5.14)

with the function h() as in Equation (5.12). RT BF
RT N is the rotation matrix from the RTN frame to the target

body-fixed frame and x(t ) is the chaser state at time t . As becomes immediately clear from Equation (5.14),
accurate knowledge of the target attitude is required for all future times up to the final time t f . Consider-
ing the accuracy of the attitude estimation discussed in Section 2.4.1, uncertainties in estimated rotations
and uncertainties in the estimate of the target inertia, it is highly unrealistic to assume an accurate attitude
estimate over an extended period of time.
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Since Envisat extends approximately 19 meters from its CoM to the tip of its solar panel, attitude uncer-
tainties of merely 10 degrees would already cause the estimated location of the tip of the solar panel to contain
an error of 3 meters. Considering that expected attitude uncertainties could easily exceed 10 degrees, the KOC
is considered unsafe and would introduce significant risk of collision. In space, usually safe missions are pre-
ferred over optimal missions, and for this reason the KOC is discarded as a safety constraint, considering the
current capabilities of pose estimation systems. Instead, a KOS is selected with a radius of 25 meters, allowing
a 5m uncertainty in the position error, which is not expected to occur at this distance. It also allows for some
tolerance in the final position estimate of the guidance algorithm. The KOS only requires an estimate of the
CoM of the target, which is usually of high accuracy, as explained in Section 2.4.1.

5.1.3. Dependence on initial conditions
In order to demonstrate the volatility of the optimization with respect to the initial conditions, Figure 5.2
shows the result of 100 optimisations for the initial conditions described by Table 4.2, to a final Cartesian
state X f = [0.5 24.98 0.5 0 0 0]. For each run a small amount of uniformly distributed random noise with a
magnitude of 1 or 10 cm (position) and 1 or 10 mm/s (velocity) was added to the initial conditions.
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(a) Magnitude of random noise: 1 cm, 1 mm/s.
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(b) Magnitude of random noise: 10cm, 1 cm/s

Figure 5.2: Open-loop ∆V values for 100 runs of an optimization process. The initial and final conditions for all runs are the same, but
have a small amount of random noise.

Figure 5.2 shows that the vast majority of the runs obtains a satisfactory value for the open-loop ∆V and,
therefore, a near-optimal trajectory. However, a small portion of runs fails to converge correctly, for the spe-
cific combination of initial and final conditions. The magnitude of the noise makes little difference, except
that Figure 5.2 suggests that there is better agreement on the optimal value for smaller magnitude. This fail-
ure to converge results in an unacceptable ∆V value, sometimes more than 300% of the optimal value. In
order to prevent the satellite from following this trajectory, a mitigation strategy must be implemented.

In order to prevent such a failure to converge from happening, the trajectory shall be evaluated at least
3-5 times shortly before the approach, when situated in the passively safe observation orbit. This process
will provide a baseline value for the expected open-loop ∆V and prevent the satellite from following a non-
optimal trajectory. When starting the manoeuvre, the ∆V of the current trajectory should be compared to
the baseline and if the value is within ±10% of the baseline, the approach may be initiated. This margin
ensures the rejection of truly non-optimal trajectories, while allowing some margin for the near-optimality of
the optimization process and navigation errors.

Ventura et al. [86] show that the optimisation procedure is a computationally expensive process and
therefore it is undesirable to evaluate the trajectory 3-5 times at every trajectory update. Instead, the ex-
pected open-loop ∆V for the current estimate shall be compared to the previous estimate. Theoretically, as
the spacecraft gradually gets closer to the target, the expected remaining open-loop ∆V should always de-
crease. If the expected ∆V therefore increases by more than 10% after the update, compared to before the
update, the new estimate shall be rejected and the satellite shall continue to follow the previously estimated
reference trajectory. Again this margin will ensure rejection of truly non-optimal trajectories, while allowing
some margin for near-optimality and navigation errors.
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5.1.4. Degree of Parameterization
As discussed in Section 5.1.1, the degree of parameterization, N , should be between 4 and 8. The perfor-
mance of the algorithm in terms of optimality (∆V ) and computing time is assessed for different degrees of
parameterization N = 4, 5, 6 and 7. The performance was evaluated for a total of 13 different runs with initial
points on a reference orbit with ROE (Section 3.3.3) aδα = [0 0 -40 0 -50 0], equally spaced over intervals of
500 seconds. The final conditions were fixed in a point along the target spin-axis at 25m from the target and
the same for all trajectories. The results are presented in Figure 5.3.
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Figure 5.3: Performance for 13 different scenarios for 4 degrees of parameterization N = 4,5,6,7. t f = 1000s.

First of all, Figure 5.3 shows that the optimal ∆V is correlated with the initial position. Second, more rele-
vant to this analysis, the results show that the degree of parameterization, together with the total manoeuvre
time, plays a large role in the ability of the guidance to converge. When examining Figure 5.3b it can be seen
that there are no clear differences between the curves for N = 4, 5, 6 and 7, which hints at a failure to converge
for the higher values of N . Only the curves of N = 4 and N = 5 show a clear distinction, where the run time
for N = 5 is slightly larger than for N = 4. This lack of convergence for the cases where N = 6,7 is most likely
related to MATLAB’s floating-point accuracy (eps), which is fixed at eps = 2−52 or eps = 2.2204e−16.

It was shown in Section 5.1.2 that the parameters α...,N ,α...,N−1 are fixed by the final conditions. The
restricting elements for the convergence are then the coefficients α...,N−2, which are multiplied with t N−2

f .

If the value of t N−2
f is too large, the algorithm is unable to take sufficiently small steps of α...,N−2 to provide

convergence. It is easy to make an estimate of the required floating point accuracy for α...,N−2 by looking at
the values of t N−2

f . Table 5.1 shows the value of t N−2
f for N = 4, 5, 6 and 7, from which it can be observed that

especially for N = 6,7 the value for t N−2
f is so large that it is almost the same magnitude as 1/eps ≈ 4.5e15. At

this point the step size for optimization becomes an issue for the algorithm and it often fails to converge as
could be observed in Figure 5.3.

Table 5.1: t N−2
f for t f = 200, 500, 1000, 1500 and 4 ≤ N ≤ 7.

N -2
t f

200 500 1000 1500

2 4.0e4 2.5e5 1.0e6 2.3e6

3 8.0e6 1.3e8 1.0e9 3.4e9

4 1.6e9 6.3e10 1.0e12 5.1e12

5 3.2e11 3.1e13 1.0e15 7.5e15

If the step size is indeed the problem, the algorithm should be able to converge better for smaller ma-
noeuvre times t f , which was also assessed. The results are presented in Figure 5.4.

From Figure 5.4 it can be observed that for lower t f indeed the higher degrees of parameterization are
better able to converge. A clear distinction is present in the run times of the curves with N = 4, 5 and 6, with
Figure 5.4b showing a clear increase in the run time from N = 4 to N = 5 to N = 6. The case with N = 7 still
shows a run time that hints at a lack of convergence, which is further supported by the ∆V values in the case
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Figure 5.4: ∆V and runtime for 13 scenarios and 4 degrees of parameterization N = 4,5,6,7. t f = 150s.

of N = 7, which are worse than for N = 4.
The conclusions that can be drawn from Figures 5.3 and 5.4 are twofold. The first is that the algorithm

performance in terms of ∆V can improve significantly when moving from N = 4 to N = 5. The increase in
efficient from N = 4 to N = 5 can be witnessed both in Figure 5.3a as well as Figure 5.4a, especially for specific
ranges of the initial conditions (Cases # 1 - 5).

The second conclusion is that for very low values of t f the parameterization with N = 6 does not offer
clear benefits over N = 5, while the parameterization with N = 7 still fails to converge in the first place. From
Figure 5.4a it becomes clear that increasing N to 6 does not further improve the ∆V by much, despite that
Figure 5.4b indicates that the runs have converged properly. The computational effort required for the eval-
uation however still increases when moving to N = 6, also visible in Figure 5.4. The lack of convergence for
the case where N = 7 might be partially caused by the tendency of higher order polynomials to exhibit large
oscillations near the constraint boundaries, which was listed by Liu et al. [45] as the main reason to keep N <
8.

Considering both these conclusions it is decided to employ a parameterization of degree N = 5 in this the-
sis work, similar to Ventura et al. [86] and Volpe and Circi [90]. This also allows to keep using the manoeuvre
time of 1500 seconds established in Section 4.2.

5.1.5. Update interval
The parameter tup was introduced in Figure 2.7 and represents the interval at which guidance uses the in-
formation from navigation to recompute the OCP described by Equation (5.8). This interval, at which the
guidance estimate is updated and the trajectory is re-evaluated, has already been analysed by Volpe et al.
[90], whose findings are summarised in Table 5.2. The parameter tup represents the time between two guid-
ance updates.

Table 5.2: Final, mean and maximum guidance errors and ∆V for different trajectory update times [90]. The case where tup = 0 implies
that the trajectory is only calculated once, at the beginning of the manoeuvre.

tup (s) Final error (m) Mean error (m) Maximum error (m) ∆V

0 0.250 0.748 1.061 0.261
20 0.088 0.170 0.302 0.356
40 0.092 0.170 0.380 0.338
60 0.077 0.200 0.437 0.337
80 0.205 0.235 0.547 0.328
100 0.281 0.276 0.664 0.328

Table 5.2 shows that decreasing the time between updates yields a higher accuracy (lower error) and slightly
increases ∆V . It can also be noticed that the accuracy does not increase anymore for update times smaller
than 60 seconds. Although the actual error values highly depend on the accuracy achieved by the navigation
system, a clear trend can be derived. Opposed to Volpe et al. [90], the optimal manoeuvre of phase 2 is not the
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end of the total approach. Because of this, position errors can still be corrected in the subsequent phase and
therefore the efficiency (∆V ) is valued higher than the final error. Because of this it is decided to employ an
update time tup of 100 seconds. This allows the guidance to be efficient and safe whilst relieving the chaser
of some computational effort.

5.1.6. Distance to Target
A final consideration for the guidance algorithm is the final distance to the target. In ESA’s original mission
design a KOS with 50m radius was considered [17]. This would require the chaser to synchronise with the
target spin-axis at a distance of 50m and approach the target from there. This is however far from an optimal
solution in terms of efficiency. Figure 5.5 shows the optimal, forced-motion and total ∆V plotted against the
final distance of the optimal manoeuvre.
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Figure 5.5: Total approach ∆V for various final distances at the end of the optimal manoeuvre.

It becomes very clear from Figure 5.5 that a final position as close to the target is desired. The ∆V of the final
forced-motion approach along the spin-axis seems to increase steadily when the distance of this approach
increases. This causes the total ∆V to be almost completely determined by ∆V f or ced for values of RKOS >
20m.

From the viewpoint of efficiency the KOC would thus be valued over the KOS, as discussed in Section 5.1.2
and confirmed by Figure 5.5, provided that the accuracy of the target attitude estimation for future time steps
is high enough. Since this is not the case, the KOS is selected and the radius of the KOS is a driving factor
in the efficiency of the manoeuvre. As discussed previously in Section 5.1.2 a value > 19m is required at all
times. Considering the accuracy of the pose estimation and a margin for safety, a value of 25m is selected for
the KOS and the guidance shall aim at a point 25 meters from the Envisat CoM.

5.1.7. Phase 3 Forced Guidance
The final part of the rendezvous trajectory, outlined in Section 4.2, is the third phase which requires the chaser
to approach the target along the spin-axis. The rotational velocity of the targetωT BF /RT N

RT N is estimated by the
navigation filter and can be used by the guidance to calculate the desired position, similar to the third sub-
equation of Equation (5.9), using current distance r (t ) in the equation instead of rKOS.

In this phase the distance towards the target is evaluated at every step. Next a desired relative velocity
is selected, in the case of this thesis Vr el = 0.05m/s or 5 cm/s. This is deemed a safe velocity for approach,
small enough to avoid collision. Also it is sufficiently larger than the magnitude of the error on the navigation
velocity estimate, enabling the navigation filter to provide a good estimate of the difference between the
current en desired velocities. The desired state at any time t , where the start of phase 3 is t = 0, is calculated
using
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{
rt = (||r0||−Vr el ·δtp3

) · ωt ar
||ωt ar ||

vt = (ωt ar × rt )−Vr el · ωt ar
||ωt ar ||

(5.15)

whereωtar isωT BF /RT N
RT N and δtp3 is the time that has passed since the start of the third phase

5.1.8. Attitude Guidance
Finally, the attitude of the spacecraft needs to be properly guided throughout the entire manoeuvre. In the
first two phases the attitude guidance is limited to pointing the camera towards the target CoM, while the
third phase also requires the rotational motion to be synchronised with the target. The following two sec-
tions outline the calculation of the reference attitude, made by the guidance system, for both cases, while the
control laws to follow these reference orientations are presented in Section 5.3.

Camera pointing
During the first two phases the pointing of the chaser camera towards the target CoM should be ensured at
all times, to allow the camera to take images, required for generating the pose estimate. This can be achieved
simply by using the information about the relative position. If r = (x, y, z) is the relative position between
the chaser and target in the target RTN-frame, then the required rotation matrix to point the camera (aligned
with the +z axis of the chaser body frame) towards the target CoM, while pointing the +y-axis of the CBF frame
’down’ in the image frame, can be written as

RCam = RC BF
RT N = RC BF

RT N = R2(ψ)R1(ϕ) (5.16a)

R2 =
cos(ψ) −si n(ψ) 0

si n(ψ) cos(ψ) 0
0 0 1

 (5.16b)

R1 =
1 0 0

0 cos(ϕ) −si n(ϕ)
0 si n(ϕ) cos(ϕ)

 (5.16c)

with ϕ and ψ the relative azimuth and elevation angles of ρ. Those are computed as

ϕ= arcsin

(
z

||r ||
)
−90o (5.17a)

ψ= arctan
( y

x

)
−90o (5.17b)

RCam, which functions as RC BF
RT N , can then be used to define qC BF

RT N , which is in turn to be controlled by the
attitude controller presented in Section 5.3. In order to mitigate the singularity present in this control law, the
desired rotations of the chaser body can additionally defined as [90]:

ωC BF /RT N
C BF = RC BF

RT N ·
0

0
ψ̇

+R1(ϕ)

ϕ̇0
0

 (5.18)

where ϕ̇ and ψ̇ are computed as derivatives of Equation (5.17)

ϕ̇= żρ− zρ̇√
ρ4 −ρ2z2

(5.19a)

ψ̇= ẏ x − y ẋ

x2 + y2 (5.19b)

Near the singularity of the control law, ωC BF /RT N
C BF can be used instead of qC BF

RT N by using Equation (3.36) to

compute the torque from the difference between the current and desired value of ωC BF /RT N
C BF . This is suffi-

ciently accurate for the short time interval over which the singularity is expected to occur.
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Figure 5.6: The rotation synchronisation process, showing the target rotation (top,red) and chaser rotation (bottom, green). The chaser
holds a non-rotating state until the target reference axes are aligned with the chaser’s. When this point is detected, the chaser increases
its rotation to match that of the target.

Synchronising rotation

During the third phase the rotational motion of the chaser should be aligned with the spinning of the target.
The synchronisation consists of two separate phases. First a ’hold phase’, in which the chaser waits for the
target to reach a specific reference state before initiating the ’synchronisation phase’ in which the chaser
increases its own rotation to match the target rotation. This process is visually demonstrated in Figure 5.6.

As explained in Section 2.3, the synchronisation means a parallel alignment of the x-axes and anti-parallel
alignment of the y- and z-axes of the CBF and TBF system. This means a change of variables with respect to
the control law in phase 2, where only the camera was pointed. Rather than using qC BF

RT N as a reference, a
change of variables is implemented and instead q T BF

C BF is used as a reference.

This results in a required relative quaternion q T BF
C BF = [0 0 1 0], which is the unit quaternion representing

a y-axis rotation with a 180o angle. As will be shown in Section 5.3 the selected attitude controller contains a
singularity at q0 = 0 and therefore a new coordinate system, CCBF, is introduced. This CCBF system is simply
the result of a rotation of the CBF coordinate system around its own y-axis with an angle of 180o . By using
this simple convention, the desired relative quaternion becomes q T BF

CC BF = [1 0 0 0], the identity quaternion,
staying far away from the control law singularity. The current value of q T BF

CC BF can be calculated from qC BF
RT N ,

estimated by the ADCS system on the chaser, q RT N
T BF , estimated by the navigation filter, and qCC BF

C BF = [0 0 1
0]. The detection point in Figure 5.6 is detected by evaluating δq , which is the multiplication of the current
q T BF

CC BF with the inverse of the desired value ([1 0 0 0]). Whenδq has reached a minimum and starts to increase,
the chaser immediately takes action and the synchronisation process is set in motion.

The benefit of this approach is that it allows for a specific final relative orientation, which is convenient
in the case of robotic capture. Any value for q T BF

CC BF can be selected, as long as camera pointing is considered
and q0 6= 0. The main downside of this method is that the camera is not pointed perfectly at the target as
the spin-axis is not perfectly aligned with the Envisat z-axis, while the camera is aligned with the CBF z-axis.
As long as the main rotation is much larger than the wobbling amplitude, which is predicted for Envisat (see
Section 2.2), this is not expected to be a problem.
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5.2. Navigation
5.2.1. Artificial Measurements
In a pose estimation framework the relative position and attitude are directly obtained from the images or via
pseudo-measurements, obtained from the images, as outlined in Section 2.4.1. Relative velocity and rotation
are estimated from position and attitude over time. Due to the lack of availability of a pose estimation system,
no real pose estimation is used in this work, and instead the measurements are artificially generated. There-
fore, an attempt shall be made to resemble a real-world scenario as closely as possible. When considering a
nominally operating pose estimation system, measurement noise is mainly dependent on three aspects:

• Distance to the target

• Camera orientation

• Lighting/viewing conditions

each of which is discussed separately. Measurement errors will be referred to by εr for position and εq for
rotation.

Distance to target
The distance to the target is an important parameter when considering vision-based pose estimation sys-
tems. For an object with a fixed size, the distance fully defines how large the object is in the image frame. If
the object is too small the pose estimation process will yield unsatisfactory results, as shapes are not clearly
distinguishable. Similarly the accuracy of the pose estimate decreases if the object is too large, and only par-
tially visible. At this point the edges and corners cannot be fully detected anymore and fall outside of the
image.

The most reliable estimate of the relationship between target size, distance to target and error magnitude
was created by Sharma and D’Amico [22], obtained through validation with images from the PRISMA mission.
Their estimate of this relationship is visualised in Figure 5.7, which expresses the expected error as a function
of the ratio of inter-satellite distance and target size.
In Figure 5.7, three methods were presented by the authors, respectively Newton-Raphson (N-R), POSIT and
ePnP. The N-R method was found to be slow, the POSIT method less robust to Gaussian noise and the ePnP
method unreliable at large inter-satellite distances [71]. All three methods thus have their own deficiencies,
and the choice is made to select the least accurate method as a reference. When the expected error of the ePnP
is approximated by a linear model, a slope of approximately 3/45 can be extracted, as shown by the lines that
were drawn in Figure 5.7. This means a 3%, or 3o , error for a distance/size ratio of 45. In this respect, the size
of the Envisat satellite is a clear advantage. Since the orientation of the solar panel is unknown, the size of
Envisat without the solar panel (10 m) is used in the calculation of measurement error. A quick calculation
then provides the expected error for selected inter-satellite distances, summarised in Table 5.3.

Table 5.3: Initial guess of expected pose estimation error, based on Envisat body size (10m) and Figure 5.7.

Distance (m) 1σ (m) 1σ (o)

10 0.01 0.07
25 0.04 0.17
50 0.17 0.33

100 0.67 0.67
150 1.50 1.00
250 4.18 1.67
500 16.65 3.33

The estimation in Table 5.3 follows a somewhat parabolic distribution for position. The estimated error for
attitude, however, is rather optimistic. Considering a camera field-of-view of 25∼30 degrees, the maximum
virtual width of the image plane is calculated by

wv = di s · tan(30o)

where wv is the virtual width of the image and di s is the inter-satellite distance. At a distance of 100 meters,
the image plane would represent a width of 60m, of which the Envisat would only fill a relatively small part
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Figure 5.7: Expected accuracy for three different image processing algorithms, respectively Newton-Raphson (green), POSIT (red) and
ePnP (blue) [71]. The orange diagonal line represents a line with slope 3/45 and serves as a linear estimate of the performance of the
worst performing method, ePnP (blue).

considering its dimensions (see Section 2.2). At a distance of 500m the image width would represent 290
meters and Envisat would be only be several pixels on the image. The possibility to perform a highly accurate
attitude estimation (in the order of 3o , as suggested by Table 5.3) would be highly unlikely. This is confirmed
by attitude errors found in studies by Sharma et al. [70, 72], which show that when the spacecraft fills a
considerable part of the image, it would still be optimistic to assume only 3.33 degrees of error.

Using the same reasoning, and considering the same field-of-view of 25∼30 degrees, features of the En-
visat body would start disappearing from the image as soon as the inter-satellite distance decreases beyond
approximately 20 meters. This leads to the formulation of a quadratic formula to describe the expected error.
For position {

r > 20m σr = 16.65
5002 · r 2

r ≤ 20m σr = 0.5
152 · (r −20)2 + 16.65

5002 ·202 (5.20)

and for attitude {
r > 20m σq = 30

2502 · r 2

r ≤ 20m σq = 5
152 · (r −20)2 + 30

2502 ·202 (5.21)

The resulting expected errors, modelled using Equations (5.20) and (5.21), are presented in Table 5.4. These
errors are considered more representative for real-world scenarios under nominal viewing conditions.

Lighting conditions
Second, the noise level in the camera can be modelled according to the lighting conditions, which are almost
fully determined by the sun. As there have been no clear results published on this topic, several assumptions
are required for modelling the behaviour of noise under various sun condition. The following assumptions
are made:

• The angle of the sun-vector with the camera boresight vector (sun-camera angle) is the largest indicator
of the noise. For small values of this angle the light source is positioned directly behind the camera.
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Table 5.4: Modelled pose estimation error based on Envisat size and Figure 5.7.

Distance (m) 1σ (m) 1σ (o)

5 0.53 5.19
10 0.25 2.41
25 0.04 0.30
50 0.17 1.20

100 0.67 4.80
150 1.49 10.80
250 4.16 30.00
500 16.65 120.00

When this angle increases, the probability increases that one or more surfaces on the target spacecraft
are completely shaded and not (completely) visible to the camera. This is expected to increase the
overall noise level since it could easily lead to ambiguities in the pose estimation process as discussed
in [22]. The greater the sun-camera angle, the larger the probability of the spacecraft being partially or
completely shaded, decreasing the expected accuracy of the pose estimation. The sun-camera angle is
mathematically defined as the following dot product

χcam = r̂Sun · r̂Rel (5.22)

whereχcam is the sun-camera angle, defined by the dot product of r̂Sun, the sun unit vector in the orbital
frame, with r̂Rel, the unit vector describing the position of the chaser with respect to the target in the
orbital frame.

• The behaviour of the error level follows a sinusoidal curve. The magnitude of the error is expected to fol-
low a sinusoidal pattern. The error is expected to only slowly develop for small sun-camera angles, and
increase more rapidly when angles are around 90o . At 90o , the sun orientation changes from ’behind’
the camera to ’in front of’ the camera, which is expected to cause significant additional shadowing on
the target. When the sun-camera angle is already large, additional growth is not expected to introduce
more error. This behaviour is consistent with the development of a standard sine wave from -90 to +90◦.

• No additional noise is expected when the sun-camera angle < 1/2 FoV angle. When the sun-camera
angle is smaller than half of the camera Field-of-View (FoV) angle, the sun is in an ideal position and
no additional noise is expected. Therefore, noise is modelled with a standard deviation of zero in this
range.

• The camera is unable to provide images when sun-angle > (180-FoV angle). At this point the sun could
enter directly into the camera field of view. This is highly undesirable as the intensity of direct sunlight
could potentially damage hardware in the camera. Therefore, the camera shall enter a protective mode
in which it is unable to provide any measurements. Such situations should be avoided, since all ability
for relative navigation is lost.

These assumptions lead to the following algebraic formulation of the normalised sun-noise magnitude
χ< FoV

2 σsun = 0
FoV

2 ≤χ≤ 180−FoV σsun(χ) = 0.5 · sin
(

2π
c1

·χ+ c2

)
+0.5

χ> 180−FoV σsun = 1

(5.23)

where χ again represents the sun-camera angle and c1,c2 are two coefficients that ensure

σsun(
FoV

2
) = 0

σsun(180−FoV ) = 1

Figure 5.8 shows the expected, normalised, standard deviation (1σ) of the noise, with respect to the sun-
camera angle, based on the assumptions. Several sun-camera angles are highlighted, such as the 90o , which
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has a normalised 1σ value of ∼0.6, meaning that at an angle of 90o , 60% of the total sun-noise is added to the
measurements.
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Figure 5.8: Expected normalised magnitude of the error introduced by the sun-camera angle. FoV is assumed to be 30◦.

This only leaves the modelling of the total sun noise. The total position sun-noise is assumed 3 meters (1σ).
This is enough to theoretically place an object at the other side of Envisat. This assumption is slightly con-
servative, since position errors would usually be expected at sub-meter level, especially close to the target,
however, it is consistent with currently expected worst-case errors from pose estimation systems [21, 22, 72].
The attitude noise is decided to be 20 degrees (1σ), which similarly is consistent with the expected errors.

Camera orientation
Finally, it is a property of monocular cameras that noise in the boresight direction is always larger than the
noise perpendicular to this direction, due to the depth ambiguity that arises when using a single monocular
camera [56]. A realistic error model has to consider this ambiguity, and appropriately scale the noise that is
introduced onto the measurements.

It is necessary to first define the direction of the camera axis. The guidance law requires the camera to
point at the target, determining the orientation of the chaser in the RTN frame, qC BF

RT N . Since the camera
boresight axis is assumed to be aligned with the CBF z-axis (see Section 2.3), the noise can be modelled in the
CBF frame using the z-axis as boresight axis. The errors can be translated to the RTN-frame using qC BF

RT N .
There is no clear data available about the noise ratio between boresight axis and the other two axes.

Therefore, the assumption is made that error along/around the boresight axis is three times larger than
along/around the other two axes. Based on research by Sharma and D’Amico [70, 72] this ratio of 3/1 is a
conservative estimate, as ratios as small as 10/1 are reported in some cases, while a ration of 3/1 preserves
larger errors in the directions perpendicular to the boresight axis.

The boresight factor is included as a final step. To preserve the magnitude ofσt , a boresight model is used
that multiplies σt with vector

bc =
0.3

0.3
0.9

→ |bc | = 0.995. (5.24)

Since |bc | ≈ 1, the total noise around the three axes of the CBF-frame, σC BF , defined by

σCBF =σt ·bc (5.25)

has the same magnitude as the original σt . The total noise level σt is determined from the distance to the
target and the lighting conditions.
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This depth ambiguity is not expected to affect the noise on the attitude measurements. During the pose
estimation process a 3D model is used to fit points on the image, which is expected to cancel any orientation
bias. This is confirmed by Sharma and D’Amico [72], who report attitude errors of similar magnitude around
all axes.

Total noise
The total noise is calculated from a Gaussian distribution, N (µ,σ), with zero mean (µ = 0). The total standard
deviation of the noise σt is computed using

σt,CBF =
(√

σ2
distance +σ2

sun

)
·bc (5.26)

where σdistance is calculated from Equation (5.20) (position) or Equation (5.21) (attitude), σsun is calculated
from Equation (5.23) multiplied with a factor 3 (position) or 20 (attitude), as previously discussed, and bc as in
Equation (5.24). Figure 5.9 shows the total obtained 1σ values of the artificial measurements for both position
and attitude. The total sigma value, σt is referred to as σr when position measurements are concerned and
σq when attitude is concerned.

Figure 5.9: Color plot of total 1σ measurement noise σt for combined influences of inter-satellite distance and sun-camera angle for
position (left) and attitude (right).

Position

The standard deviation around the three axes of the CBF-frame is calculated by applying Equation (5.25). The
elements of the measurement error vector ηCBF are found from a Gaussian distribution

ηCBF,i ∈ N (0,σCBF,i ) i = 1,2,3

Finally, the vector containing the measurement errors in the RTN-frame, ηRTN, is found as in Equation (3.25)

ηRTN = q RTN
CBF ⊗ηCBF ⊗

(
q RTN

CBF

)−1
(5.27)

Attitude

Using the total noise and a random axis of rotation n̂, an error quaternion can be defined from Equation (3.21).
The axis n̂ is a unit vector, defined using uniformly distributed random values on the interval [-1 1]. The angle
of rotation θ is found from a Gaussian distribution:

θ ∈ N (0,σt)

The error quaternion is calculated by inserting θ, n̂ in Equation (3.21), and the resulting error quaternion is
called qη.
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The measurement
The measurements Zk are computed as:

Zk =
[

rtrue +ηRTN

qtrue ⊗qη.

]
(5.28)

5.2.2. Navigation Filter
The navigation filter used in this work is based upon the work of Tweddle and Saenz-Otero [85] and uses
the CWH equations (Equation (3.13)) and a linearized form of Euler’s rotational equation (Equation (3.36)),
making use of the Modified Rodriguez Parameters (MRP) (Section 3.4.3) to find a suitable linearization point.
The CWH equations are inserted into a Multiplicative Extended Kalman Filter (MEKF) to estimate the state
from measurements and internal propagation.

The MEKF uses two sets of variables, both the quaternions discussed in Section 3.4.2 and the MRP’s from
Section 3.4.3. The MRP representation is used in the filter since quaternions are overdetermined and causes
a divergence of the Kalman Filter [85]. The quaternion is therefore kept as reference, while the MRP’s are
used as a three-element "error" parameterization, used in the propagation and update step. A final reset step
is introduced where the quaternion is update with the "error" MRP’s and the MRP’s are reset to [0 0 0] [85],
avoiding the singularity at 360o (see Section 3.4.3). The filter relies on the general Kalman filter equations,
which are given by the following equations:

A priori state estimate:

x̂k|k−1 =Φk x̂k−1|k−1 +Bk uk +Ws (5.29)

Pk|k−1 =Φk Pk−1|k−1Φ
T
k +ΓQΓT (5.30)

Measurement:

ỹk = zk −Hk x̂k|k−1 (5.31)

Kalman Gain:

Kk = Pk|k−1H T
k

(
Hk Pk|k−1H T

k +Rk
)−1

(5.32)

A posteriori state estimate:

x̂k|k = x̂k|k−1 +Kk ỹk (5.33)

Pk|k = (I −Kk Hk )Pk|k−1 (5.34)

where x represents the state, P the state covariance, Ws is a noise vector, the diagonal elements of Q represent
the standard deviation of the noise in Ws , Γ is a STM associated with Ws , u is the control effort and H is the
Jacobian of the measurement z . The matrix Rk represents the measurement covariance. This measurement is
constructed of six elements, three position parameters and three MRP’s indicating the relative pose of target
with respect to the chaser. Additionally the relative quaternion is measured and inserted to the filter sepa-
rately. The filter calculates an error quaternion δq from the measured and expected quaternions, transforms
this error quaternion into MRP’s and uses the MRP’s in the measurement equation to update the filter. The
filter then uses the following equation:

ẋk =Φ(k)xk−1 +Γ(k)W (k) (5.35)

where the continuous time dynamics are propagated linearly for a discrete time step ∆t , assuming a piece-
wise constant process noise during the time step [85], and with:

xk =


rk

vk

ap,k

ωk

 (5.36)
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Φ=


ΦCW H ,1:3|1:3 ΦCW H ,1:3|4:6 03×3 03×3

ΦCW H ,4:6|1:3 ΦCW H ,4:6|4:6 03×3 03×3

03×3 03×3 e− 1
2 [ω×]∆t ∫ ∆t

0 e− 1
2 [ω×]τdτ

03×3 03×3 03×3 I3×3

 (5.37)

Γ=


1

2m I3×3∆t 2 03×3
1
m I3×3∆t 03×3

03×3 ∆t
∫ ∆t

0 e− 1
2 [ω×]τ J−1dτ

03×3 J−1∆t


[

Wv

Wω

]
(5.38)

where ΦCW H is the STM described by Equation (3.14), ap represents the MRP and Wv and Wω represent
the process noise which is thus assumed piecewise constant over ∆t . The state transition matrixΦ is solved
numerically at each time step.

5.2.3. Filter tuning
In order to achieve satisfactory results in the estimation of all state variables a proper tuning of process noises
Wv and Wω is required. The process noises Wv and Wω are included in the model to incorporate disturbance
forces applied to both spacecraft [85] and allow the v and ω of the model to be updated correctly. These
parameters can be considered tuning parameters as they strongly affect the convergence and overall accuracy
of the navigation solution. Too much noise means that the filter cannot reliably update ω, v and estimates
of these parameters will be noisy. Not enough process noise results in the filter being constrained and the
values forω, v being too ’stiff’ which eventually results in the filter diverging.

The proper tuning of the process noises Wv and Wω is thus of high importance to allow for accurate
estimation of both ω and v . Usually, a filter is tuned with process noise to account for accelerations that are
neglected in the linearisation process of dynamic models [80]. As can be seen in Equation (5.38), the process
noises Wv and Wω are scaled with respectively 1

m and J−1 before being added to the state. As a starting point
the following assumptions are made (see also Chapter 2)

∆t = 1 s

m = 8000 kg

J = diag(17000,125000,129000)

where m is the Envisat mass and J the Envisat inertia. The vectors Wv and Wω consist of three numbers taken
from a normal distribution N (µ,σ) with zero mean (µ = 0) and standard deviation σ = Qv /Qω. The value of
Qv /Qω is determined experimentally, however, an initial guess can be deduced through reasoning.

The expected translational accelerations are caused by orbital perturbations and the optimal value of Qv

should be determined accordingly. While phase 1 only contains orbital disturbances, phases 2 & 3 also con-
tain some control uncertainties, caused by using a linear controller and actuator uncertainties. To determine
a baseline value of Qv , the dominant neglected translational accelerations must be identified. Likewise, to
determine a baseline value for Qω, the rotational accelerations should be considered, which are derived from
the target attitude dynamics.

Translational noise Qv

The dominant accelerations are determined by disturbances. D’Amico [14] reports that, for near-circular
orbits in the LEO regime, the J2 effect is the dominant relative acceleration for small spacecraft separations.
For inter-satellite distances of 100 to 200 m, this relative acceleration has a magnitude of ∼ 10−7 m/s2 [14].
Scaled with Envisat mass m, this requires Qv to have a magnitude of ∼ 0.001 or 10−3. In order to investigate
the optimal value of Qv for phase 1, a range of 10 values around this expected value are evaluated.

Qv = 10−4, 5 ·10−4, 10−3, 5 ·10−3, 10−2, 5 ·10−2, 0.1, 0.5, 1, 2

Furthermore, measurements were generated using a constant standard deviation of 0.1 m over the entire
orbital period. The results are presented in Figure 5.10 and Table 5.5. This shows that when the value of Qv

is too small, the navigation is unable to update and a diverging behaviour can be experienced in the position
error, as shown in Figure 5.10a. If the value of Qv is too large the error at the end of the eclipse period grows
rapidly, as shown in Table 5.5.
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Figure 5.10: Phase 1 navigation position and velocity errors for 10 different tuning values of Qv

Table 5.5: Mean and maximum navigation error for a range of Qv values. The mean navigation error is evaluated during the illuminated
part of the trajectory, while the maximum error is found at the end of the eclipse period.

Qv Mean error Max error
(-) r (m) v (mm/s) r (m) v (mm/s)

10−4 0.1273 0.245 0.713 0.566
5* 10−4 0.1012 0.237 0.719 0.538

10−3 0.0823 0.225 0.703 0.525
5* 10−3 0.0385 0.169 0.787 0.929

0.01 0.0213 0.130 0.819 0.991
0.05 0.0137 0.155 0.936 0.958

0.1 0.0120 0.197 1.366 1.487
0.5 0.0207 0.712 4.461 4.950

1 0.0214 1.090 16.454 21.780
2 0.0261 1.825 18.751 30.979

Furthermore, Table 5.5 shows that the mean error follows a parabolic curve with respect to Qv , with its
minimum around Qv = 10−2, while the maximum error only increases. This shows that a high level of noise is
undesirable when no measurements are available.

Based on Figure 5.10 and Table 5.5, the optimal values of Qv are found to be 0.01 and 0.05, which is slightly
higher than the expected value of 10−3. When increasing the measurement noise, to a standard deviation of
1.5 m, these two values still emerge as the optimum. The larger value is selected due to its lower mean error
for r , and the value of 0.05 is used for Qv .

The additional accelerations from thrust uncertainties are found to make a small difference in the tuning
process. Analysis of multiple runs of phases 2 and 3, for a constant measurement standard deviation of 1.5 m,
show that the optimal value of Qv is found between 0.05 and 0.1, only slightly larger than the previous opti-
mum of Qv between 0.01 and 0.05. The selected value of Qv for phases 2 and 3 is 0.1. Furthermore, analysis of
phase 2 has shown that the convergence of the filter in the 150 s observation period (see Section 4.2) is slow.
This period was introduced to allow convergence of the navigation filter, following the eclipse period. The
value of Qv in this period was set to Qv = 0.05, equal to the optimal value found for phase 1 which, however,
has proven too small to provide a full convergence of the filter. This can be solved by temporarily increasing
the value of Qv in this period or by extending the length of this period. Due to the limited illuminated time in
a single orbit, an increase of Qv is preferred over an extension of this period of observation. Setting Qv = 0.5
temporarily ensures rapid convergence in this period.
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Rotational noise Qω

When integrating the rotational dynamics with Equation (3.37) an estimate can be made of the expected
rotational acceleration. The maximum ω̇ is found to be caused by the ’wobbling’ and has a value of 5.6·10−4

rad/s2. Scaled with the Envisat inertia J , assumed 125000, the value of Wω is required to have a magnitude of
∼ 69.91. In order to investigate the optimal value of Wω, again a range of 10 values around this expected value
are evaluated.

Qω = 1, 10, 50, 75, 100, 200, 350, 500, 1000, 2000

This analysis was performed using a constant measurement standard deviation of 5 degrees. Care should be
taken not to select a too large or too small value of Qω as too small values easily lead to filter divergence while
too large values introduce a lot of noise. This is confirmed by the results of the tuning, shown in Figure 5.11
and Table 5.6, as it becomes clear that the filter diverges for Qω = 1 and unacceptable levels of noise are
introduced onωwhen Qω = 2000.

0 2000 4000 6000

Time (s)

0

5

10

15

20

25

30

35

40

45

N
a

v
ig

a
ti
o

n
 e

rr
o

r 
(d

e
g

)

2000

1000

500

350

200

100

75

50

10

1

Q

(a) Attitude

0 2000 4000 6000

Time (s)

0

5

10

15

N
a

v
ig

a
ti
o

n
 e

rr
o

r 
(d

e
g

/s
)

2000

1000

500

350

200

100

75

50

10

1

Q

(b) Rotation

Figure 5.11: Phase 1 navigation attitude and rotation errors for 10 different tuning values of Qω.

Table 5.6: Mean and maximum navigation error for a range of Qω values. The mean navigation error is evaluated during the illuminated
part of the trajectory, while the maximum error is found during the eclipse period.

Qω Mean error Max error
(-) q (deg) ω (deg/s) q (deg) ω (deg/s)

1 107.9982 5.362724 327.4041 5.946357
10 15.51347 1.527722 289.7892 5.974087
50 3.122699 0.538501 124.4299 2.42978
75 2.707552 0.575727 241.0057 11.68573

100 2.619702 0.672417 161.6784 3.401487
200 2.663958 0.988386 237.137 18.66381
350 2.754959 1.411169 211.7378 47.88906
500 2.933641 1.845283 126.7429 6.650801

1000 3.264312 2.850042 294.3508 23.01274
2000 3.489709 4.510862 264.7546 21.1263

Based on Figure 5.11 and Table 5.6 the optimal value for Qω is found at 50 or 75. Whereas a further increase
in Qω does not affect the attitude error much, it causes the rotation error to increase to unacceptable mag-
nitudes. Since an increase from 50 to 75 still seems to improve the mean error on attitude, the value of 75 is
selected for Qω.
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Figure 5.12: True, estimated (navigation) and averaged (navigation + MMF) estimated values of rotationωRT N /T BF
T BF between t = 500 and

t = 1000. Navigation estimate provided by the filter using Qω = 75.

Furthermore, Figure 5.11 shows that the filter, regardless of tuning, has great difficulty estimating the rel-
ative rotation. The best achievable accuracy is around 0.5 deg/s, which is the magnitude of the secondary
rotations imposed around the x- and y-axes of Envisat (see Section 2.2). Therefore, the relative attitude esti-
mate should not be used during periods when no measurements are available. Also, this provides a challenge
for the guidance system in estimating the final conditions as in Section 5.1.2, since these are fully dependent
on the target rotational properties. Contrary to the position error, the attitude estimate quickly regains a high
accuracy after the eclipse period and no additional tuning of Qω is required in this period.

In an attempt to improve the accuracy of the estimate of ω, a moving mean filter (MMF) is employed.
This filter averages takes the mean over a sliding window of specified length. This is an excellent addition
to the MEKF, as the MEKF continuously readjusts ω to fit the measurements of q . This naturally causes
ω to move around the true value, sometimes preceding it and sometimes lagging behind it. A MMF filter
smoothens this behaviour and should result in a better estimate ofω over time. By applying a MMF that uses
20 elements backward and forward of the current value, the mean error can be reduced from 0.576 deg/s
to 0.347 deg/s, which is a significant reduction. Figure 5.12 illustrates how the rotation estimate is refined
by the MMF. Unfortunately, these settings cannot be used in real-time, as there are no 20 forward elements,
however, it can be very useful for on-board analysis and characterisation of the target dynamics. Also the
MMF estimate is used to smoothen the real-time estimate ofω in phase 3. Using a MMF with only backward
elements, the mean error could be reduced from 0.576 deg/s to 0.537 deg/s.

Final tuning parameters
The optimal values achieved from the tuning process are summarised in Table 5.7.

Table 5.7: Tuned navigation filter process noises.

Parameter Phase Value

1 0.05
Qv after eclipse 0.5

2,3 0.1

Qω all 75

5.3. Control
5.3.1. Actuators
The chaser spacecraft translational motion is assumed to be controlled through a set of 24 AOCS thrusters,
capable of delivering 22N of thrust each (see Section 2.3). The thrusters are positioned in pairs, aligned in all
6 directions (12 thrusters) plus a redundant set of 12 thrusters. This is according to the ESA baseline design
[6].
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The chaser spacecraft attitude motion is assumed to be controlled through a set of 4 control wheels (3
nominal + 1 redundant), aligned in a pyramid configuration tilted 53.736 degrees from the z-axis (angle β =
35.264 degrees), positioned between the positive and negative x- and y- axes (angle θ = 45 degrees), as shown
in Figure 5.13. The control wheels are assumed to be capable of delivering a maximum of 40 Nm torques
around all axis.

Figure 5.13: Reaction wheel pyramid configuration. [55]

Actuator uncertainties
Some uncertainty can be expected in the performance of the actuators in a real-world scenario. Therefore a
small level of uncertainty is introduced into the simulation, both on the magnitude and the direction of the
forces and torques. The following uncertainties are introduced [83]

• Magnitude: ±5%

• Direction: ±1o

Both are introduced as 3σ values in a Gaussian distribution, N (µ,σ).

5.3.2. Linear Quadratic Regulator
Both translational control and attitude control are based on the Linear Quadratic Regulator (LQR). The LQR is
a well defined control model within the control community but has seen no application in space missions as
of this day [32] although its use has been proposed in the design of new missions [62]. According to Jankovic
et al. [32] the LQR has a computational load that is similar to that of a PID controller. The LQR controller,
however, is much better equipped to deal with the optimisation process. The LQR uses a linear system model

xk+1 = Ak xk +Bk uk (5.39)

where xk is the state at time tk , Ak is the STM, Bk is the control matrix and uk is the control input. The
optimisation associated with the LQR then consists of finding the optimal gain matrix Kk such that a cost
function J is minimised [62]

J =
∫ k+1

k

(
xT

i Qxi +uT
i Rui

)
(5.40)

where Q and R are gain matrices containing only diagonal elements and control effort uk is defined as

uk = Kk xk (5.41)

The optimal gain matrix Kk is then calculated as [32]:

Kk =−(R +B T
k Pk+1Bk )−1B T

k Pk+1 Ak (5.42)
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with P that satisfies the so-called Riccati equation

Pk−1 =Q + AT
k Pk Ak − AT

k Pk Bk (R +B T
k Pk Bk )−1B T

k Pk Ak (5.43)

This process is available in MATLAB through the ’lqr’ command, which takes the A, B , Q and R matrices as
inputs. The matrices Q and R are to be tuned manually. Increasing the value of R results in the controller
becoming more efficient, at the cost of creating higher errors. Contrarily, if the value of Q is increased the
controller follows the reference state more accurately, at the cost of higher control effort.

Translational controller - Tuning
Thrust effort required for effective translational control can then be computed using Equation (3.14) (Matrix
A) and Equation (3.15) (Matrix B ). The gain matrix R = diagonal([1e11, 1e11, 1e11]) as proposed by Volpe and
Circi [90], leaving Q to be tuned manually. The gain matrix Q consists of 6 elements

Q =
[

I3×3 ·Qr,l qr 03×3

03×3 I3×3 ·Qv,l qr

]
(5.44)

where the subscript ()...,l qr is introduced to avoid confusion with the Qv of the navigation filter, tuned in
Section 5.2.3. The values of Qr,LQR and Qv,LQR are tuned experimentally. These values need to be tuned
separately for phases 2 and 3 (see Section 4.2), since the expected accelerations are higher for the forced
motion in phase 3, compared to the near-optimal motion in phase 2. The tuning runs were performed using
σr = 0.5 m, σq = 3.0 deg.

Phase 2

The results for the tuning of the LQR parameters Qr,l qr and Qv,l qr are presented in Figure 5.14 and Table 5.8.
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Figure 5.14: Cumulative closed-loop∆V (left) and mean 3D position guidance error averaged over increments of 100 seconds (right), for
the complete optimal manoeuvre, using different settings for LQR matrix Q (Equation (5.44)).

Table 5.8: Phase 2 Final position guidance error and closed-loop ∆V , using different settings for LQR matrix Q (Equation (5.44)).

Qr = 105 Qr = 106 Qr = 107

Qv Final error ∆V Qv Final error ∆V Qv Final error ∆V

105 1.145 0.260 106 0.427 0.351 107 0.331 0.493

106 1.760 0.276 107 0.583 0.346 108 0.298 0.492

107 1.813 0.271 108 0.594 0.328 109 0.404 0.495

From the data in Figure 5.14 and Table 5.8 it becomes clear that tuning of the LQR for phase 2 is a choice
between ∆V and remaining position error at the end of the manoeuvre. Both show that the effect of Qr is
much larger than Qv , both in determining the final ∆V as well as the remaining error. When examining
Table 5.8 it can be noted that, when moving from Qr = 105 to 106, the decrease in final position error, more
than 65% on average, weights against the increase in ∆V , which is, on average, merely 26%. However, when
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moving from Qr = 106 to 107 the decrease in final position error is much smaller, on average only 35%, while
the increase in ∆V becomes 45% on average. This leads to the selection of 106 as optimal value for Qr . As
the effect of Qv is only marginal compared to Qr its selection is less important and a value of 107 is selected,
following the example of Volpe et al. [91] and keeping Qv > Qr .

Furthermore, the right sub-figure of Figure 5.14b shows that the highest guidance errors are found at the
beginning and end of the trajectory. The performance of all settings is similar in the middle of the trajectory
and decreased performance of the lower Qr values can be found at the first and especially the last increments
of the optimal trajectory. This indicates that a variable tuning of the LQR filter might be more suitable to
optimise the total control effort. However, this research is aimed at developing feasible and robust guidance
algorithms for vision-based systems, which is unrelated to controller tuning. Therefore the investigation of
variable LQR tuning is left as a recommendation for further research.

Phase 3

The phase 3 trajectory is overall difficult to control. It is shaped as a spiral, making it incredibly difficult for
the controller to correctly follow the trajectory at large distances from the chaser, as the spiral is wider when
the separation between target and chaser is larger. This is demonstrated in Figure 5.15, showing the nominal
trajectory in red and several controlled trajectories for different settings of LQR matrix Q .

Figure 5.15: The phase 3 trajectory to be followed by the spacecraft (red), along with the trajectories achieved by the LQR controller for
different settings of matrix Q .

Additionally Figure 5.16 shows that indeed the guidance error decreases as the chaser gets closer to the tar-
get. It also becomes clear that the performance does not really improve when Qr = 108 → 109 → 1010. The
error decreases and increases in fashion that is consistent with the spiral found in Figure 5.15. When further
decreasing the value of Qr it can be observed that the controlled trajectory loses some of its spiral motion and
becomes more similar to a line. This results in higher guidance errors, but similar final position errors.
Finally, a significant increase in ∆V is found for the trajectories in phase 3, compared to phase 2, illustrated
in Table 5.9. Whereas the ∆V values for phase 2 were all smaller than 1 m/s, the ∆V values for phase 3 easily
exceed 4 m/s.
The trajectory of phase 3 might thus require some further consideration when planning the real mission to
remove Envisat from orbit. Approach along the spin-axis is especially costly when the secondary rotations
increase with respect to the main rotation, increasing the ’wobbling’ of the satellite due to its inertia. As
the satellite is expected to gradually slow down, which was explained in Section 2.2, this is a very realistic
scenario. Since the efficiency of the trajectory from a control aspect is unrelated to the vision-based focus of
this research it will not be further discussed. Instead a recommendation is made to re-asses this trajectory
when the Envisat attitude dynamics have been established with a higher reliability.
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Figure 5.16: Position guidance error for the phase 3 trajectories achieved by the LQR controller for different settings of matrix Q .

Table 5.9: Phase 3 final position guidance error and closed-loop ∆V , using different settings for LQR matrix Q .

Qr = 108 Qr = 109 Qr = 1010

Qv Final error ∆V Qv Final error ∆V Qv Final error ∆V

108 0.697 4.212 109 0.381 5.705 1010 0.397 8.616

109 0.495 4.179 1010 0.416 5.905 1011 0.437 8.822

1010 0.516 3.308 1011 0.418 4.270 1012 0.454 11.413

5.3.3. Attitude Controller
The attitude controller in this section is based on the quaternion-based control method presented by Navabi
and Hosseini [55]. This method uses a configuration of reaction wheels as presented in Figure 5.13. The
individual torques of the wheels are linked to the torques along the x-, y-, z-axis as

Tcx

Tc y

Tcz

=


p

3
3 −

p
3

3 −
p

3
3

p
3

3p
3

3

p
3

3 −
p

3
3 −

p
3

3p
3

3

p
3

3

p
3

3

p
3

3




Tw1

Tw2

Tw3

Tw4

= Lc


Tw1

Tw2

Tw3

Tw4

 (5.45)

where Tcx ,Tc y ,Tcz are the control torques and Tw1 up to Tw4 represent the torques generated by the reaction
wheels around their own spin axis. The attitude kinematics and dynamics are defined by Equation (3.34) and
Equation (3.36), creating the following non-linear system

ẋ = f (x)+ g (x) ·u

y = h(x)
(5.46)

with the state variable x defined as [q0 q1 q2 q3 ωx ωy ωz ]T . When using this definition f (x) and g (x) can be
written as

f (x) =
[ 1

2Ωq
J−1[−ω× (Jω+hw )+Te ]

]
(5.47)

g (x) =
[

04×3

J−1

]
(5.48)

where hw is the angular momentum of the wheels and Te is a vector of external torques such as the gravity
gradient. The output y of the system is [q1 q2 q3], using Equation (3.22) to find q0. Angular momentum hw is
related to control torque as
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ḣw =−Tc (5.49)

According to control theory a non-linear system can be converted to a linear one using Lie-derivatives in a
process called input-output linearization [31]. The current system can be converted to a linear system

ξ̇= Alξ+Blν

y =Clξ
(5.50)

with state variable ξ = [q1 q2 q3 q̇1 q̇2 q̇3] and

Al =
[

03×3 I3×3

03×3 03×3

]
Bl =

[
03×3

I3×3

]
Cl =

[
I3×3 03×3

]
. (5.51)

Then for the linear system described in Equation (5.50) the linear control vector ν can be calculated from

ν=−K

[
q −qd

q̇

]
(5.52)

where the gain matrix K is computed using the LQR method discussed in Section 5.3.2 and qd is the desired
reference quaternion, qd = [qd1 qd2 qd3]. Finally the linear control effort ν can be related to the non-linear
control effort u through

u = E−1(x) (ν−D(x)) (5.53)

with

E(x) =


q0
Jxx

−q3
Jy y

q2
Jzz

q3
Jxx

q0
Jy y

−q1
Jzz−q2

Jxx

q1
Jy y

q0
Jzz

 (5.54)

D(x) = 1

2

 0 ωz −ωy ωx q0 −q3 q2

−ωz 0 ωx ωy q3 q0 −q1

ωy −ωx 0 ωz −q2 q1 q0

 f (x) (5.55)

For the complete theory and an evaluation of the performance of this method the reader is referred to Navabi
and Hosseini [55]. Using the theory stated in this section the LQR controller can be employed to control the
attitude of the chaser spacecraft under all conditions. This linearization is only possible if the matrix E(x) is
non-singular, which means that q0 6= 0 [55]. The singularity at q0 = 0 is avoided by a change of variables, which
in the case of phase 2 is a switch from qC BF

RT N to ωC BF /RT N
C BF . In the third phase a change is made from qC BF

RT N to

q T BF
CC BF , using a new coordinate system CCBF. Both changes of variables were explained in Section 5.1.8.

Tuning
The controller is tuned separately for the pointing mode in phase 2 and the synchronisation mode in phase
3, outlined in Section 5.1.8. Since the attitude control law also uses a LQR controller, the tuning process is
similar to that of the translational controller. The diagonal values of the R matrix are set to 1000, same as
Navabi and Hosseini [55]. For the pointing law in phase 2 and the hold period of phase 3 the diagonal values
of the Q matrix, Qq and Qω (Qr / Qv in Equation (5.44)) are set to 5. This setting achieves sub-degree control
accuracy for the chaser pointing attitude.

For the synchronisation period of phase 3 the tuning of the controller is more difficult. The R matrix is left
untouched, and for the values in the Q matrix a number of candidates was selected. The results are presented
in Figure 5.17.
Figure 5.17 demonstrates the working of the attitude guidance outlined in Section 5.1.8. During the hold
phase the chaser is non-rotating and the attitude error is fully determined by the rotation of the target. The
error can be seen to be first increasing, then decreasing and reaching a minimum value at t ≈ 115. At this point
the control law is activated and the chaser slowly increases its rotation to match the target, which results in a
very small peak around t ≈ 130 before settling on a constant error around t ≈ 140.
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Figure 5.17: Attitude control error, achieved during tuning of Qq /Qω. The hold phase is present up to t ≈ 110, after which the control
mode is engaged and the rotation is synchronised, resulting in a low and constant attitude error.

Furthermore, Figure 5.17 shows that for relatively large values of Qq and Qω, almost the same magnitude
as R , the attitude control error still exceeds 5 degrees, while a value smaller than 5 degrees is considered
desirable to achieve successful docking according to Ventura et al. [86]. As measurement accuracy is around
2-3 degrees, the control error must be very small, however, even when Q is almost the same magnitude as R
this is very difficult to achieve with this controller. This raises the question if this control strategy is suitable
for this purpose.

Since the main concern of this research is to evaluate the influence of vision-based aspects, it is decided
to keep using the linear controller and use Qq = 600 and Qω = 800 in this research. The 7 degree control
error, achieved in this configuration, still allows influences of vision-based aspects on the control law to be
evaluated. However, for an actual mission a more suitable control strategy should be implemented, preferably
one that is better equipped to deal with the wobbling caused by inertia, as this is one of the main causes of
error. This could mean switching to a non-linear controller, or designing a controller that also accounts for ω
as a reference, such as the controller presented by Biggs and Horri [7]. Or it could mean a complete revision of
the reference attitude and rotation, where the wobbling motion is mitigated through a form of approximation
of linearization. Designing such a control strategy will be crucial to the success of an ADR mission to remove
Envisat.





6
GNC Sensitivity Analysis

The effect of the performance of pose estimation systems on the efficiency of a GNC architecture and its
ability to safely guide the satellite to its final desired position has not been previously investigated. Previous
studies usually build on a specific pose estimation system, designed by the authors, and simply report the
guidance system performance based on the performance of this specific pose estimation system [26, 91].
Other studies design a guidance system and assume a nominal and good performance of the pose estimation
system to verify the working of the guidance system [86, 90]. Earlier studies thus assume a specific pose
estimation system, under nominal performance. This chapters reverses this process, starting with a specific
guidance system and varying the performance of the pose estimation system to assess the sensitivity of the
guidance system with respect to these changes.

The chapter aims to analyse the effect of several specific scenarios, outlined in Chapter 4, on the perfor-
mance of the GNC architecture. First, Section 6.1 will analyse scenarios with long periods of moderate error,
exploring the impact of position and attitude errors separately and discussing their individual influences on
the guidance algorithm. Subsequently, Section 6.2 provides an extensive analysis on a range of plausible
scenarios, during which the pose estimation system fails to provide accurate measurements. Based on this
analysis, Section 6.3 presents some conclusions, which serve as an introduction to the strategies for improve-
ment discussed in Chapter 7.

The measurement accuracy, represented by a 1σ value (see Table 4.1), is kept constant over the course
of the entire trajectory. This creates a less realistic simulation, however, it allows to distinguish the effects
of measurement accuracy on the performance of the system, which is the main goal of this chapter. As the
performance of the guidance system is not directly dependent on the measurements, multiple performance
metrics (see Section 4.4) are required to provide a complete impression of the GNC performance. The navi-
gation error is an indication of how the measurements influence the performance of the navigation system.
The guidance error is a measure of the overall performance of the GNC system, as it measures how well the
spacecraft follows the intended trajectory in reality.

6.1. Long periods of moderate error
An overview of possibly failure scenarios was provided in Chapter 4, which separated error scenarios into
’long periods of moderate error’ and ’short periods of high error’. The definition of ’moderate accuracy’ was
provided in Table 4.1, where three levels of moderate accuracy, Mod1, Mod2 and Mod3, were introduced.
This section analyses the performance of the guidance system for these three levels of moderate accuracy,
together with the two levels of high accuracy High1 and High2, also presented in Table 4.1. The length of
the period is set to the total manoeuvre time, which is 1500 seconds, as decided in Section 4.2. The analysis
is performed for both phase 2 and phase 3 (see Section 4.2) separately. Furthermore, a distinction is made
between the effects of position and attitude errors.

6.1.1. Phase 2
The current position (and velocity) of the chaser, relative to the target, appear in two facets of the guidance
algorithm (see Section 5.1), respectively the initial conditions for the reference trajectory (Equation (5.9), lines

67
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1 and 2) and the attitude pointing law (Equations (5.17) and (5.19)). The attitude (and rotation) of the target
appear in the estimation of the final state (Equation (5.9), lines 3 and 4).

Position Error
The reference trajectory during phase 2 is influenced by the position error through the initial conditions, and
consequently at all guidance updates every tup (see Section 5.1.5). All error in the initial conditions is directly
transferred to the reference trajectory. The mean navigation error for position and attitude, as well as the
guidance error for position, are listed in Table 6.1, showing a slight increase in all these metrics.

Table 6.1: Navigation position and attitude error and guidance position error for five different levels of measurement accuracy. A slight
increase in all performance metrics may be noted. See Table 4.1 for the definitions of the level of measurement accuracy.

High1 High2 Mod1 Mod2 Mod3

Position
σp (m) 0.05 0.1 0.5 1.0 1.5
Nav pos error (m) 0.008 0.014 0.043 0.084 0.112
Gui pos error (m) 0.114 0.111 0.135 0.161 0.180

Attitude
σq (deg) 0.5 1.0 3.0 4.0 5.0
Nav att error (deg) 0.345 0.650 1.722 2.157 2.744

In the case of navigation errors, and without any failure periods, the mean value presented in Table 6.1
provides a good representation of the navigation error behaviour. In the case of guidance error however, the
mean values are a poor representation of the true behaviour of the guidance error, visualised in Figure 6.1.
This shows that the mean value is only achieved in the middle sections of the trajectory (t = 300-1200 s)
and thus only a good representation of this time frame. The final guidance error is consistently much larger
than the mean, reaching a magnitude of around 1 m, almost 500% larger than the mean errors reported in
Table 6.1.
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Figure 6.1: Guidance position errors for five levels of measurement accuracy. First of all, it may be noted that the behaviour of the
guidance error is similar for all levels of accuracy. Second, it can be seen that summarising this behaviour using the mean values in
Table 6.1 fails to accurately represent the situation, as mean values are around 0.1-0.2 m while the final guidance error is nearly 1 m in
magnitude.

Examining the ∆V values for the runs with five different levels of accuracy, presented in Figure 6.2, learns
that despite the differences in navigation and guidance error in Table 6.1, no significant differences in ∆V
can be observed. Furthermore, it can be seen from Figure 6.2 that the influence of individual cases on the
total ∆V is larger than the overall effect of measurement accuracy, which is an indication that the guidance
algorithm is not very sensitive to measurement accuracy, but rather robust.

Furthermore, Figure 6.2 shows a clear tendency towards higher ∆V expenditure near the beginning and
end of the trajectory. This is a likely aspect of optimal trajectories, since two-impulse transfers are frequently
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Figure 6.2: Comparison of open-loop and closed-loop ∆V magnitudes for different levels of measurement accuracy. It can be seen that
the accuracy of the measurements does not affect the efficiency of the trajectory, which means the guidance algorithm is robust with
respect to measurement accuracy. Also the differences between individual cases of the same measurement accuracy are larger than the
differences between the five levels of measurement accuracy.

found to be the most optimal in space. This behaviour also indicates that the controller is trying to correct
the increased guidance error near the beginning and end of the trajectory, shown in Figure 6.1.

The total open-loop and closed-loop∆V values, averaged over all runs of the same accuracy, are provided
in Table 6.2, together with the averaged final position error.

Table 6.2: Final position error and total∆V . Averaged over all runs. See Table 4.1 for the definitions of the level of measurement accuracy.

High_1 High_2 Mod_1 Mod_2 Mod_3

Final position error (m) 2.787 2.994 3.775 4.071 4.856
∆VOL (m/s) 0.261 0.260 0.275 0.218 0.218
∆VC L (m/s) 0.245 0.249 0.260 0.254 0.277

In a nominal situation, the closed-loop ∆V should not be allowed to be smaller than its open-loop coun-
terpart, as the closed-loop value necessarily contains the effects of unmodeled and non-optimal perturba-
tions. This is only possible if the final position is not accurately reached, exchanging control effort for an
increase in position error. This is related to the tendency of optimal trajectories towards highest ∆V at the
beginning and end of the trajectory. When this ∆V is not sufficiently accurately enforced, higher position
errors are inevitably created. This is an indication that the controller, or the tuning of the controller, might be
improved for future applications. Since this type of mitigation is unrelated to any vision-based aspects, it is
left as a recommendation.

In order to observe the differences between the levels of measurement accuracy, the difference between
open-loop and closed-loop ∆V of the individual runs should be considered. If this difference between pre-
diction and realisation is calculated and averaged over all runs, a small difference may be observed, as shown
in Figure 6.3, where a clear trend can be observed.
As could be expected, Figure 6.3 shows that the runs with higher standard deviations use more∆V compared
to the runs with lower standard deviations. This behaviour is easily explained by examining the control strat-
egy, which compares the current state estimate, made by navigation, to the guided reference state. When the
measurement error increases, the navigation error inevitably increases and the difference between the navi-
gated state and guided reference state becomes larger, as this difference has a lower limit at the value of the
navigation error. As a consequence the control effort, which is based on this difference, increases.

The position errors thus mainly decrease the optimality of the solutions, as higher measurement errors
result in high navigation errors, which results in the chaser being farther away from the calculated optimal
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Figure 6.3: Averaged differences between closed-loop and open-loop ∆V .

trajectory, ultimately resulting in an increase of the required control effort in following the calculated trajec-
tory, as shown in Figure 6.3.

Attitude error
When re-examining Figures 6.2 and 6.3 it must be noted that both figures show strange behaviour near the
end of the trajectory. The piece-wise ∆V shows a steep increase, while the difference between closed-loop
and open-loop ∆V even becomes negative. Also Table 6.2 shows that final ∆VC L < ∆VOL . This behaviour,
and resulting final position error, can be attributed to the volatility of the estimation of the final desired state,
stemming from uncertainties in the estimate target rotation.

The target rotational velocity vector at the end of the optimal manoeuvre in the orbital frame,
(
ωT BF /RT N

RT N

)
final

(or simply ω f i nal ), is estimated by taking its current value,
(
ωT BF /RT N

RT N

)
t , and integrating this value, together

with the current target attitude,
(
q RT N

T BF

)
t , over the remaining manoeuvre time tint = tfinal - t . This integration

is performed assuming perfect knowledge of the target inertia, however, still introduces significant error due
to uncertainties in the target attitude and rotation q andω, which are provided by the navigation filter.

The guidance algorithm is updated every tup = 100s, at which instant a new value forω f i nal is computed,
and thus a new value for r f i nal . To demonstrate the magnitude of the integration error, the 3D position error
of the final position estimate, for all consecutive estimates during the 1500 second manoeuvre, is presented
in Figure 6.4.
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Figure 6.4: 3D position error for the estimate of r f i nal at all consecutive guidance updates during a 1500 second manoeuvre. It can be
seen that the error is large compared to the guidance error in Figure 6.1 and no trends can be observed in the magnitude of this error.

Examining the behaviour of this estimate it becomes apparent that the final position error, obtained from
the estimate of ω f i nal , is much larger than the final guidance error (see Figure 6.1) and highly sensitive to
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small uncertainties in ωT BF /RT N
RT N . This sensitivity is likely caused by the relatively fast dynamics (3.5 deg/s),

combined with long integration times (100-1500 s). No trend in the magnitude of this error is found either.
If the estimated final position were plotted on a sphere with radius rKOS , it would likewise not show any
directional trend, but be randomly scattered around its true desired location.

The estimation error of the final position can, according to Figure 6.4, easily exceed 5 meters, and the
estimation ofω f i nal can thus be identified as the single greatest source of error introduced into the guidance
process. Not only does it vary in degree of error, it also varies in direction. Despite the fact that this is not
reflected in the ∆V , its impact on the final position is disproportional compared to the guidance error.

To further demonstrate the impact of this error, a comparison can be made using the true value ofω f i nal ,
rather than an integrated value. Table 6.3 shows the final position error when using the true value of ω f i nal

versus using the integration process. The difference between the two is large, as the final position error
achieves sub-meter accuracy when the true value is used, while producing 4 to 5 meters of error when the
integration is used.

Table 6.3: Final position error when using true final state versus estimate obtained from integration. See Table 4.1 for the definitions of
the level of measurement accuracy.

Mod2 Mod3 Mod2

Final state estimation Integrated Integrated True
Final position error 4.071 4.856 0.713

Two very important conclusions must be drawn from the analysis of attitude error. First, due to uncertainties
in attitude and rotation, the magnitude of the final position error grows large. Whereas imposing the true final
position allows the position error to remain at sub-meter level, this error exceeds 4 meters when using the
method of integration. Second, and perhaps more importantly, the error is spread over a wide range, which
means the error is not predictable. Unpredictability is always undesirable and thus a degree of mitigation is
desirable in this scenario. Achieving a more robust estimate for ω f i nal is therefore elaborately discussed in
Chapter 7.

6.1.2. Phase 3
Both the position (and velocity) of the chaser relative to the target, as well as the target rotation, appear in
the expression of the desired state for phase 3 (Equation (5.15)). Furthermore, the target attitude is required
in the execution of the attitude control law for synchronisation in phase 3 (in the calculation of q RT N

T BF , see
Section 5.1.8).

Position error
To investigate the effect of position errors in phase 3 the true target rotation is used to calculate the desired
position using Equation (5.15). This discards the influences of the attitude measurement errors and allows to
isolate the position error influences. Initial separation is set to 25m (KOS radius), final separation is set to 5m
and the desired relative velocity is set to 5 cm/s, making the nominal time span 400 seconds. The results are
summarised in Table 6.4.

Table 6.4: Final error, ∆V and duration for the forced motion of phase 3, averaged over 10 runs with outliers excluded. See Table 4.1 for
the definitions of the level of measurement accuracy.

High 1 High 2 Mod 1 Mod 2 Mod 3

Final error (m) 0.222 0.219 0.603 0.785 1.043
∆V (m/s) 4.394 4.381 4.743 5.154 5.461
Duration (s) 397 397 395 398 397

As expected, an increase in ∆V is found when the accuracy of the measurements decreases. The dura-
tion of the phase does not show significant differences. The most significant result is the average magnitude
of the final error, which exceeds 1m for the Mod2 and Mod3 cases. Although the errors are found to be al-
most completely parallel to the Envisat surface (i.e. the error component towards Envisat CoM is small) the
magnitude of this error is considered undesirable at a distance of 5 meters. These errors can be completely
attributed to the controller, since navigation errors are consistently smaller (≈ 0.2 m) than the position errors
reported in Table 6.4. Further increasing the values in Q would not be useful, as Section 5.3.2 has shown that
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further increasing Qr,l qr and Qv,l qr leads only to a moderate decrease of the final error, while significantly
increasing the total ∆V . The trajectory of phase 3 likely requires either a different control method capable of
better following the spiralling reference trajectory, or a different reference trajectory, which was also already
concluded in Section 5.3.2. Such methods are however unrelated to any vision-based aspects and not further
considered.

Attitude error
The error in estimating ωT BF /RT N

RT N plays a crucial part in this phase of the manoeuvre. As became clear in

Section 5.2.3, the estimation of ωT BF /RT N
RT N is the most difficult task of the navigation system, including a

high level of uncertainty. When directly using the ωT BF /RT N
RT N estimated by the filter, the noise in ω raises the

required control effort by a very large amount, which is why the choice was made to pass ωT BF /RT N
RT N through

a moving mean filter (MMF) (see Section 5.2.3,Figure 5.12). Employing theω after passing through the MMF
yields convergence but, as Table 6.5 shows, the cost of fuel is still high.

Table 6.5: Final position error, ∆V and duration for the forced motion manoeuvre in phase 3 when using ωT BF /RT N
RT N from the moving

mean filter. See Table 4.1 for the definitions of the level of measurement accuracy.

High 1 High 2 Mod 1 Mod 2 Mod 3

Final error (m) 0.534 0.505 0.799 1.192 1.783
∆V (m/s) 6.482 9.163 15.559 20.256 22.672
Duration (s) 397 397 394 399 396

Examining the values in Table 6.5 immediately results in the conclusion that these ∆V values cannot be
acceptable for this manoeuvre. The reason for this increase in∆V can be understood from Figure 6.5, showing
the reference trajectories available in phase 3, together with the true desired trajectory.

(a) (b) (c)

Figure 6.5: Reference trajectories used in phase 3, computed using the true rotation, only navigation (right) and navigation with addi-
tional moving mean filter for the high (right) and moderate (middle) levels of accuracy from Table 4.1. It may be observed that the quality
of the approximation of the true desired trajectory decreases when measurement accuracy decreases.

It can be seen in Figure 6.5 that the on-board reference trajectory, calculated from Equation (5.15) us-
ing the Nav+MMF estimate of ωT BF /RT N

RT N , becomes an increasingly worse approximation of the true desired
trajectory. This leads to a large increase in ∆V as was shown in Table 6.5, and it is clear that mitigation is
desirable to decrease the error onωT BF /RT N

RT N . This mitigation should aim at providing a smoother estimate of

ωT BF /RT N
RT N .

Furthermore, influence of the attitude error is found in the computation of the reference attitude, qCC BF
T BF ,

for the synchronisation of rotational motion in phase 3. However, as outlined in Section 5.1.8, the computa-
tion of this reference attitude is based on the target attitude and not its rotation. The attitude estimation error
is found to be similar to the value of σq in all cases. Tuning of the attitude controller has shown that it is very
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difficult to reach the same level of accuracy on the controlled attitude (see Section 5.3.3), and the achieved
control error stays of the same magnitude (≈ 7 deg), despite the changing level of measurement accuracy.

6.2. Short periods of high error
Scenarios of high error were outlined in Chapter 4. These scenarios are characterised by a severe decrease
in measurement accuracy over a short period of time, due to unforeseen circumstances such as bad relative
orientations, reflections, etc. When looking at these scenarios two factors are considered, respectively the
length of the error period and the occurrence of the error period at a specific time in the manoeuvre.

The length, or time-span, of the period is expected to be short. It is difficult to define with high certainty
what the length of such a period will be, as concluded in Chapter 4, and thus a small range is examined. The
choice is made to examine three different period lengths of 30, 60, 120 seconds respectively. The starting
times of the periods are determined randomly. The measurements during the nominal part of the trajectory
are generated with the Mod2 level of accuracy, σr = 1.0 m / σq = 4.0 deg, as presented in Table 4.1. During the
short periods of error the measurements from the camera are generated with the Low level of accuracy, σr =
5.0 m / σq = 15.0 deg, also described in Table 4.1.

6.2.1. Type of Feedback
Feedback, from the pose estimation system to the navigation system, might not always be accurate. There-
fore, an analysis is performed with failures occurring throughout the optimal trajectory, changing the type
of feedback provided by the pose estimation system. Three types of feedback were described in Chapter 4,
which are employed in the analysis of this section. First, true feedback, which means a statistically perfect
measurement feedback. Second, optimistic feedback, where the pose estimation system thinks the measure-
ments more accurate than they are in reality and, finally, pessimistic feedback, the opposite of optimistic
feedback, where the pose estimation system thinks the measurements less accurate than they are in reality.

True feedback
The resulting open-loop and closed-loop∆V values, obtained from this scenario, are presented in Figure 6.6,
together with the position guidance error and the attitude navigation error. It can be seen that the period of
failure hardly influences the total ∆V . When compared to the nominal cases without failure, in Figure 6.2,
similar behaviour and ∆V magnitude is found.

It can be concluded that when the feedback is true, the navigation position error is not influenced. Fig-
ure 6.6d shows that the navigation position error remains constant, with a magnitude that is consistent with
that reported in Table 6.1 for the Mod2 level. This is an indication that the estimated velocity is sufficiently ac-
curate for the Kalman Filter to accurately update the satellite state, allowing the chaser to remain completely
safe, despite the lack of accurate measurements. As a result, also the guidance error (Figure 6.6c) shows no
significant differences with respect to the case where no degraded performance of the pose estimation system
was present Figure 6.1.

Furthermore, Figures 6.6e and 6.6f shows that both the navigation attitude and rotation error are affected
by this failure. In the previous section the estimation errors on the final conditions were discussed, caused
by forward integration with small errors inω. If then this error is significantly increased, which is the case for
both attitude and rotation, the guidance system cannot make a reliable estimate of the final desired state dur-
ing these periods of decreased performance of the pose estimation system, and shall therefore not perform
trajectory updates within such a period.

The mean final position error for all runs is presented in Table 6.6. This shows that the final position error
is not affected by the length of the period, however, its magnitude is slightly increased when compared to
the average final position error achieved by the Mod2 runs in Table 6.1. The control effort, reflected in the
∆V values is of the same magnitude as in the runs where no periods of decreased performance of the pose
estimation system were introduced (Table 6.1).

Table 6.6: Final position error and ∆V for the true feedback scenario.

Period (s) 30 60 180

Final position error (m) 5.352 4.787 4.604
∆VOL (m/s) 0.252 0.267 0.234
∆VC L (m/s) 0.261 0.273 0.258
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Figure 6.6: True covariance feedback comparison of open-loop and closed-loop ∆V magnitudes and navigation and guidance error for
three different lengths of high error periods. Black lines indicate the start of the error period. When compared to Figures 6.1 and 6.2 it
can be noted that∆V and guidance errors are very similar. This is due to the navigation position error (d) hardly being affected, showing
no peaks and being of the same order as the values presented in Table 6.1. The navigation attitude (e) and rotation (f) error show a clear
increase in magnitude during the periods of failure.

Optimistic feedback
The resulting open-loop and closed-loop∆V values for this scenario are presented in Figure 6.7, together with
the guidance position error and the navigation position, attitude and rotation error. This shows a completely
different behaviour from the scenario with good feedback. Additionally, the final position error and total ∆V
for all optimistic feedback runs is provided in Table 6.7.

It can be seen in Figure 6.7 that the open-loop ∆V has only slightly increased, compared to the nominal
runs in Figure 6.2, while the closed-loop ∆V shows a significant increase in magnitude, showing multiple
peaks extending to values as large as 0.15 m/s (Figure 6.7b) whereas previously these were confined to 0.04-
0.08 m/s (Figure 6.6b). From Table 6.7 it becomes clear that the total open-loop ∆V is indeed similar to the
nominal cases (i.e. no periods of decreased performance of the pose estimation system) from Figure 6.2,
while the closed-loop ∆V shows an increase of approximately 100% compared to the same nominal cases.
Furthermore, Table 6.7 suggests that increasing the length of the periods where optimistic feedback is pro-
vided, results in a further increase of closed-loop ∆V .

The behaviour of the guidance and navigation position error may be explained by examining the feedback
process. Remember that the state covariance is the internal measure of accuracy in the Kalman Filter (see
Section 5.2.2). The behaviour of the state covariance for several randomly selected optimistic feedback runs is
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Figure 6.7: Optimistic covariance feedback comparison of open-loop and closed-loop∆V magnitudes and navigation and guidance error
for three different lengths of high error periods. Black lines indicate the start of the error period. When compared to Figure 6.6 it can be
noted that ∆VOL (a) is similar, but ∆VC L (b) is increased and shows higher peaks. Guidance position errors (c) are also increased, which
can be attributed to an increase in the navigation position error (d) being increased to a magnitude of multiple meters. The navigation
attitude (e) and rotation (f) error show a different behaviour compared to Figure 6.6, as errors are larger, but remain present only for
short periods of time.

presented in Figure 6.8, where it can be seen that it is reduced during this period, resulting in the filter thinking
it has become more accurate, rather than less accurate. The optimistic feedback has caused the navigation
filter to think that it is performing more accurately than before, while in reality a failure is occurring.

This behaviour is caused rather by the valuation of the measurement in the filter. Because the measure-
ments are thought to be accurate, the filter adapts the velocity and rotation to accommodate the position and
attitude obtained from the measurement. Accordingly it adapts the state covariance to be consistent with the
measurement that was thought to be accurate. However, as the measurement was not accurate in reality, this
leads to the creation of velocity error, and consequently position error, as well as a wrongful update of the
state covariance.

Especially the wrongful update of the state covariance presents an issue for the navigation filter, as it
fails to value the subsequent measurements correctly. At this point the state covariance, used to value the
internal propagation, overrules the measurement covariance, used to value the measurements, and the navi-
gation errors persist at a large magnitude, as can be observed in Figure 6.7d. Consequently the guidance error
(Figure 6.7c), which is an accumulation of navigation and control errors (see Section 4.4), persists at a large
magnitude.
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Table 6.7: Final position error and ∆V for the optimistic feedback scenario.

Period (s) 1 2 3

Final position error (m) 5.949 4.531 5.571
∆VOL (m/s) 0.211 0.209 0.293
∆VC L (m/s) 0.398 0.499 0.544
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Figure 6.8: Position state covariance, as evaluated withing the navigation filter, based on optimistic feedback. The instants at which
the period of decreased performance is imposed on the pose estimation system can be recognised by the sudden decreases in state
covariance.

This slow recovery of the navigation error can, however, not be completely attributed to the state covari-
ance, as it must be partially assigned to the tuning of the filter. The state noise Qv seems to be too tightly
tuned, such that it does not allow for enough noise to be introduced to change the velocity rapidly, such that
the position error may also be reduced rapidly. This theory is supported by the behaviour of the navigation at-
titude error (Figure 6.7e), which does not experience this problem and is returned to its nominal value rather
rapidly, despite suffering from a similar decrease in attitude state covariance upon the introduction of the
optimistic feedback.

It is clear that mitigation strategies against this scenario, should be put into place. These strategies should
focus on recognising periods where the measurement feedback is too optimistic, such that measurements
might be discarded despite the feedback telling the system that the measurement is of high quality.

These results function as an unmistakable warning, both for guidance as well as pose estimation systems.
If even a single measurement is valued too optimistically, without any possibility to discard this measure-
ment, the consequences for the total ∆V can be severe.

Pessimistic feedback
Finally, the resulting open-loop and closed-loop ∆V values for the pessimistic feedback scenario are pre-
sented in Figure 6.9, together with the guidance position error and the navigation position, attitude and rota-
tion error, showing many similarities with the true feedback scenario. Furthermore, the mean final position
error and average total ∆V for all cases are presented in Table 6.8.

Table 6.8: Final position error and ∆V for the pessimistic feedback scenario.

Period 30s 60s 120s

Final position error 4.038 4.770 4.630
∆VOL 0.271 0.261 0.265
∆VC L 0.284 0.252 0.270

By comparing Table 6.8 with Table 6.6 it can be concluded that providing true or pessimistic feedback does
not influence the final position error or total control effort. Similar to what was found for the true feedback
case, final position error is not influenced by the length of the period of decrease pose estimation perfor-
mance, neither is the ∆V .

Comparing the resulting∆V and error from the optimistic feedback case (Figure 6.7) with those presented
in Figure 6.9 for the pessimistic feedback case, it might be concluded that a pessimistic feedback representa-
tion results in lower ∆VC L as well as lower navigation and guidance errors. This is an indication that, when
estimating the measurement accuracy, pose estimation systems should prefer a conservative (pessimistic)
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(f) Navigation rotation error (3D-norm)

Figure 6.9: Pessimistic covariance feedback comparison of open-loop and closed-loop ∆V magnitudes and navigation and guidance
error for three different lengths of high error periods. Black lines indicate the start of the error period. It can be noted that both ∆VOL
(a) and ∆VC L (b) are very similar to the true feedback case (Figures 6.6a and 6.6b). Guidance position errors (c) are also similar and the
same can be said about the navigation position error (d). The navigation attitude (e) and rotation (f) error also show similar behaviour
compared to Figure 6.6, however, the magnitude of the errors during the periods of decreased pose estimation performance is increased.

estimation of the measurement accuracy, and assign a measurement covariance that presents the measure-
ment as less accurate than it is in reality, rather than more accurate.

Furthermore, Figure 6.9e shows that the attitude estimate is severely affected by this failure, as was found
also in the case of true feedback (Figure 6.6e). Due to the estimation error in the final conditions, caused
by forward integration with uncertainties in ω, the advice was issued not to perform trajectory updates dur-
ing these periods of decreased performance of the pose estimation system. Considering the severity of the
navigation attitude and rotation errors, respectively exceeding 60 deg (Figure 6.9e) and 4 deg/s (Figure 6.9f,
which is larger than the Envisat’s main rotation, it is likely that the trajectories calculated during this period
are characterised by high∆VOL , and are consequently rejected by the strategy presented in Section 5.1.3. This
is indeed observed in the data, however, a mitigation strategy is still desirable.

6.2.2. Placement of the error period
In this section only periods of decreased pose estimation performance are considered using true feedback.
The length of the periods is fixed to 60 seconds for all runs and nominal accuracy is set to the Mod2 level,σr =
1.0 m /σq = 4.0 deg (see Table 4.1). The periods in this analysis are strategically selected to be at the beginning,
middle and end of the trajectory. Additionally these periods are placed such that either a guidance update is
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performed in the middle of the period, or that a period is places completely in-between two updates of the
guidance trajectory.

More specifically, with tup = 100 s (see Section 5.1.5), failures are introduced during and after guidance
updates #3, 8 and 14 (total 15, first at t = 0 s), at t f 1 = 170, 670, 1270 seconds and t f 2 = 220, 720 and 1320
seconds. As guidance updates are performed every 100 seconds, the first set, t f 1, ensures that guidance is
updated in the middle of the 60 second period, while the second set, t f 2, ensures that no guidance updates
occur during the 60 second period. Five runs are evaluated for each scenario.

The resulting open-loop and closed-loop∆V values, as well as the navigation guidance error are all found
to be very similar to those reported before in Figure 6.6, as might be expected. Therefore these are not pre-
sented here to avoid repetition. This is confirmed by the data in Table 6.9, summarising the total final position
error and ∆V , the values in this table being very similar to Table 6.6.

Table 6.9: Final position error and ∆V for the scenarios with periods of decreased pose estimation performance occurring both at and
in-between guidance trajectory updates.

Begin Middle End

At guidance updates

Final position error 3.695 4.559 4.267
∆VOL 0.266 0.239 0.265
∆VC L 0.262 0.268 0.272

In-between guidance updates

Final position error 4.130 4.352 4.730
∆VOL 0.274 0.280 0.222
∆VC L 0.268 0.272 0.283

Furthermore, it is found that there is no observable correlation between the final ∆V magnitude and
failure at or in-between guidance updates. This is slightly curious, as theoretically the end of the trajectory
should thus be the worst time to enter a period of decreased performance. Failure at the beginning or middle
of the trajectory should allow sufficient time for corrections, arriving with the nominal amount of error. Fail-
ure at the end of the trajectory, however, would cause the forward integrated estimate of the final position to
be completely wrong, therefore inducing more ∆V or increasing the final position error. When further exam-
ined, this expected behaviour is already mitigated by the strategy outlined in Section 5.1.3 for rejecting newly
formed guidance trajectories. In fact, all of the trajectories that were calculated at t = 1300 when a period of
failure was introduced at this time were rejected by this strategy, preventing a possible excessive growth of
∆V .

It is however observed that navigation attitude error is significantly increased during period of decreased
pose estimation performance, shown in Figures 6.6e and 6.9e and also true here. This increase in error on the
estimation of attitude, and consequently rotation, has a significant influence on the correct estimation of the
trajectory by the guidance system, despite not being visible in the behaviour of the ∆V and guidance error.
In order to quantify the effect of the decreased performance of the pose estimation system on the ability of
the guidance system to calculate the final conditions correctly, a data analysis was performed, comparing
the average final position error obtained during periods of decreased pose estimation performance with the
same error obtained when this decrease in performance was not present. This analysis only considers the 3D
norm of the position error on the desired final position, calculated using Equation (5.9). The results of this
analysis are presented in Table 6.10.

It can be seen in Table 6.10 that, on average, the final position error is nearly doubled due to the influences
of decreased performance of the pose estimation system. Despite this behaviour not resulting in an increase
of control effort or guidance error, it is still undesirable and mitigation strategies should be put into place to
reduce either the occurrence of periods of decreased pose estimation performance, or their impact on the
estimation of the desired final conditions, or both. Let it be noted, finally, that this short analysis does not
do justice of the subtleties of the error in the estimate of the final desired position, as this error comes from
multiple sources in various degrees. As the final position estimation error has been identified as a large source
of error on multiple occasions in this chapter, a more detailed analysis of this error is provided in Chapter 7.
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Table 6.10: Results of data analysis on the quantification of final position error from decreased pose estimation performance. The largest
contribution of error comes from the pessimistic feedback case and, on average, the decreased performance of the pose estimation
system causes the final position error to nearly double (196%).

Begin Middle End
Average
estimation
error (m)

(%)
Average
estimation
error (m)

(%)
Average
estimation
error (m)

(%)

No failures (Mod2) 5.473 100.00 3.196 100.00 5.548 100.00
True feedback 6.353 116.09 6.586 206.05 9.903 178.52
Optimistic feedback 6.438 117.63 3.341 104.53 6.018 108.49
Pessimistic feedback 7.299 133.37 17.579 549.99 13.976 251.94
Total average 6.697 122.36 9.169 286.86 9.966 179.65 196.29%

6.3. Conclusions
The analysis in this chapter has shown the potential difficulties that could be experienced when guiding a
spacecraft for scenarios typical for vision-based systems. The conclusions that may be reached from it are
listed here.

First, as long as the navigation filter receives proper feedback about the accuracy of the measurements,
the GNC algorithm is able to perform correctly. When the measurements become inaccurate, a pessimistic
estimation of their accuracy is preferred to an optimistic one, however, both require a form of mitigation.
The different scenarios provide completely different challenges, as the forms of feedback result in different
responses from the GNC system, which require different methods to recognise and prevent failures.

Second, the most important conclusion of this chapter is the identification of the integration process,
used to predict the target attitude dynamics, as the largest source of error in the GNC system. Whereas the
guidance error is at a sub-meter level, the estimation error on the final desired position easily exceeds 4
meters due to an inaccurate prediction of the target’s rotational dynamics. Furthermore, the estimate is highly
sensitive to small uncertainties and is unpredictable when integrated over long time periods.

Third, there is a very low correlation between measurement accuracy and ∆V . Both the open-loop and
closed-loop ∆V are surprisingly robust with respect to measurement accuracy. Reasons for this could be
found in the optimisation process, which can not succeed in finding the absolute optimal trajectory most of
the time. This might be investigated in further research, as it is outside the scope of this research. Further-
more, no correlation is found between time of failure and ∆V either.

Finally, a tendency of the open-loop∆V to increase near the end of the trajectory could be observed. This
behaviour is also found when imposing true (constant) final conditions, implying that it is a property of the
most optimal trajectory.

In order to improve the GNC performance, several mitigation strategies should be explored, as well as
strategies for a more accurate prediction of the target attitude dynamics. Based on the conclusions found in
this chapter, these strategies should allow to

1. Recognise error periods and implement suitable strategies for mitigation of failure in these periods.
This will be discussed in Section 7.1.

2. Make a more accurate prediction of the target attitude dynamics, or at least a less sensitive prediction.
This will be discussed in Section 7.3.

Two recommendations for further research are made based on this chapter. First, a variable controller
tuning could be considered such that the the guidance error at the beginning and end of the trajectory can be
decreased. Second, the trajectory for phase 3 might require a redesign, as the controller has great difficulty to
correctly follow the spiral, burning a lot of valuable fuel in the process.





7
Strategies for Increased Robustness

This chapter provides a number of methods that aid in the recognition and mitigation of error within the
vision-based GNC system. The chapter starts by outlining two strategies for error recognition in Section 7.1.
These strategies are based on respectively the state covariance and comparison of the position navigation
estimate to a propagated state.

Section 7.2 continues with a quantification of the performance of the forward integration, used to deter-
mine the final desired state. The need for a more robust estimate of the target future rotation was established
in Chapter 6, but the sensitivity of the current solution should be explored first. This provides a basis for
comparison, as Section 7.3 presents a new method for estimation of the final desired state, based on curve
fitting, which should be both more robust and more accurate. This new method is compared to the integra-
tion method in Section 7.4. Finally, Section 7.4.1 shows the impact of both the new method, as well as the
strategies presented in Section 7.1, on the GNC algorithm.

7.1. Recognition and Mitigation
The first step to addressing the failure cases, which were identified in the previous chapter, is being able
to recognise moment of failure. Directly after recognition, a strategy must be implemented to mitigate the
undesirable behaviour that was recognised. The navigation architecture has the ability to recognise part of
these errors itself, using the state covariance matrix Pstate (see Section 5.2). This is however not sufficient
in all cases, as situations might occur where the state covariance is not a reliable metric. Examples of such
situations can be found in scenarios where the measurement feedback is inaccurate, as was discussed in
Section 6.2.1. For this reason a second method is considered, complementary to the feedback received from
Pstate. A method for error recognition based on the state covariance is outlined first, after which this second
method, based on a linearly propagated state, is discussed.

7.1.1. State covariance
An estimate of the state covariance is always present in a Kalman Filter and is updated with the state noise
and the measurement covariance, as explained in Section 5.2. The state noise was tuned in Section 5.2.3 and
remains constant. The measurement covariance is the feedback metric from the measurements, providing
an indication of the accuracy of the measurements. As this feedback is not always accurate, three types of
simulated feedback were proposed and outlined in Section 4.3.1, namely true, optimistic and pessimistic
feedback, where true feedback represents a statistically perfect representation of the measurement accuracy,
optimistic feedback presents the measurements as more accurate than they are in reality and pessimistic
feedback presents the measurements as less accurate than they actually are.

Behaviour
The behaviour of the state covariance for position and attitude is presented in Figures 7.1 to 7.3, for the three
scenarios analysed in Chapter 6 with true, optimistic and pessimistic measurement feedback respectively.
Only position and attitude covariance are shown, as the state covariance of velocity and rotation is a reflection
of the state covariance of position and attitude, only with a smaller magnitude.

81
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Figure 7.1: Position and attitude covariance for the failure periods with true feedback. The different colours represent the different
lengths of the failure periods, respectively 30 (blue), 60 (red) and 120 (yellow) seconds. Three instances of decreased performance of
the pose estimation system may be recognised from the triangular peaks (top) or the square peaks (bottom) in the covariance data.
Especially the behaviour of the attitude covariance lends itself excellently for detection, as it shows large differences between nominal
performance and decreased performance, whereas these differences are smaller for the position covariance.

Figure 7.2: Position and attitude covariance for the failure periods with pessimistic feedback. The different colours represent the different
lengths of the failure periods, respectively 30 (blue), 60 (red) and 120 (yellow) seconds. Three instances of decreased performance of the
pose estimation system may be recognised from the triangular peaks (top) or the square peaks (bottom) in the covariance data. It can be
observed that the behaviour of the covariance is similar to that of the true feedback case, however, the magnitude of the peaks, especially
in the attitude covariance, is increased.

Figure 7.3: Position and attitude covariance for the failure periods with optimistic feedback. The different colours represent the different
lengths of the failure periods, respectively 1 (blue), 2 (red) and 3 (yellow) seconds. Three instances of decreased performance of the
pose estimation system may be recognised from the steep sudden drops in the covariance data. It can be observed that the covariance
behaviour in this particular case is opposite the behaviour observed for the true and pessimistic feedback cases, where the covariance
showed peaks rather than drops.
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Using the case with true feedback (Figure 7.1) as example, it can be shown that the magnitude of Pstate

correctly reflects the actual navigation error in the case of nominal performance of the pose estimation sys-
tem. Observing from Figure 7.1, the total position covariance, Ppos, is approximately between 0.001 and 0.01
m2. Similarly, the total attitude covariance Patt has a value of approximately 3 deg2. This indicates a stan-
dard deviation, σ, between 0.01 and 0.1 m for position and 1.7 deg for attitude. The mean accuracy in these
cases was reported in Table 6.1 (Mod2 level) and found to be 0.084 m for position and 2.157 degrees, of which
Pstate is thus a good reflection. Furthermore, navigation position error was found to be smaller than 0.3 m
at all times (see Figure 6.6d) and navigation attitude error was found to be mainly smaller than 5 deg (see
Figure 6.6e), both of which are within a 3σ interval.

The estimate of the state covariance is only a good reflection of the true accuracy as long as the feedback
is consistent with the real accuracy of the measurements, however, a truly accurate feedback of the measure-
ment is not always possible. This can be observed for the cases of pessimistic and optimistic feedback, in
respectively Figures 7.2 and 7.3, which show that when the measurement covariance is not accurate, neither
is the state covariance. In the case of pessimistic feedback, navigation attitude errors were found in the or-
der of 40-60 deg (see Figure 6.9e) whereas the state covariance indicates errors of approximately 20 deg (400
deg2, see Figure 7.2). In the optimistic feedback scenario navigation position errors grow to several meters
(see Figure 6.7d), whereas the state covariance indicates that the measurement has become more accurate,
which was also highlighted in Section 6.2.1.

Recognition Strategy
Now that it is understood how the state covariance reflects the true system behaviour, recognition strategies
can be planned. Most importantly, the periods of failure can be recognised in Figures 7.1 to 7.3, which means
that the state covariance might be used as an indicator to track situations where mitigation is desirable. As
the behaviour of the state covariance in the true and pessimistic feedback cases is similar, a similar strategy
for recognition may be implemented. In these cases the state covariance experiences an increase, and a
threshold might be determined above which mitigation should be performed.

In the case of optimistic feedback, however, the state covariance shows opposite behaviour and decreases
rather than increases, requiring a different strategy. Setting a threshold value is not desirable in this case, as it
would of necessity, due to the behaviour of the state covariance, be an upper threshold, below which values
of the state covariance should be discarded. When values of the state covariance should, however, rightfully
move below this threshold, they should definitely not be rejected, which would require the formulation of
many exceptions. As such, a different method is formulated for the scenarios with optimistic feedback, which
is reported in Section 7.1.2. Below continues the description of a method for recognition of error based on
the state covariance metric, to be used in the cases of true and pessimistic feedback. The strategies presented
below are only suitable when state covariance increases, as they depend on a lower threshold.

It could be observed in Figures 7.1 and 7.2 that the attitude covariance is a more suitable metric, com-
pared to the position covariance, as its behaviour shows larger differences between nominal and decreased
performance. It was determined that the absolute magnitude of the attitude state covariance is not always
a reliable indicator, and therefore working with a threshold value on the magnitude is not always desirable.
Rather, the change in magnitude

∆|Patt| = |Patt|t −|Patt|t−∆t (7.1)

is first considered, where |Patt|t represents the norm of the attitude covariance (right-bottom in Figure 7.1) at
time t . |Patt| is chosen as a metric since it can be observed from Figures 7.1 and 7.2 that Patt shows only little
variations during nominal performance, while rapidly increasing when performance of the pose estimation
system is decreased. Therefore evaluating ∆|Patt| over small intervals of time ∆t should yield ≈ 0 during
nominal performance, being able to recognise periods of failure, as these would result in much larger values
of ∆|Patt|.

Approach 1: Threshold ∆P

One option is to select a suitable threshold value for ∆|Patt|, and employ a mitigation strategy whenever this
value is higher than the threshold. The first step in the selection of a suitable threshold value for ∆|Patt|
would be the selection of a suitable interval ∆t over which ∆|Patt| shall be evaluated. In order to evaluate this
strategy, the value of ∆|Patt| was computed for the attitude covariance presented in Figure 7.1, for a range of
∆t from 10 to 300, the results of which are presented in Figure 7.4.
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Figure 7.4: Computed values of ∆|Patt|, using Equation (7.1), over different time intervals ∆t between 10 and 300 s. The true periods
of decreased performance have been marked in red. It can be observed that when ∆t is too small the period is not entirely detected,
however, when ∆t is too large, subsequent periods might not be properly detected, as happens with the third period for ∆t = 300 s.

From Figure 7.4, two important issues arise when using this strategy. First, when the value of∆t is chosen
too small, the strategy is unable to detect the entire period. Second, when the value of ∆t is too large, this
strategy is unable to identify two periods of decreased performance when following each other closely. This
is demonstrated by the case with ∆t = 300 s in Figure 7.4. This strategy would thus require ∆t to be a good
reflection of the duration of the period of decreased performance of the pose estimation system. As this
duration is unknown and cannot be predicted beforehand, this is considered a large weakness of this method,
and this method should not be used.

Approach 2: Threshold ∆P + Logical

An alternative approach can be based on setting two threshold values, one positive and one negative. As
can be seen in Figure 7.4, the behaviour of ∆|Patt| is such that is is positive at the beginning of the period of
decreased performance and negative at the end of it, both in equal degree, which is a result of its calculation
using Equation (7.1). This property can however be used to advantage, exploiting it to define a beginning and
end of the trajectory. Rather than employing a mitigation strategy whenever∆|Patt| is above a defined thresh-
old value, a logical value LP is introduced, assuming the value of 1 as soon as ∆|Patt| passes the threshold
value, and remaining at a value of 1 until∆|Patt| passes the negative threshold value, only then returning to 0.
In this case the mitigation strategy shall be executed whenever LP = 1.

In this case a low value of ∆t should be selected, as the value of ∆t determines the minimum allowable
time between two periods of decreased performance for them both to be correctly detected. From this per-
spective ∆t should be as small as possible, however, from the perspective of a suitable threshold value this is
not the case. Figure 7.5 shows the computed value of ∆|Patt|, using Equation (7.1), for small values of ∆t .

It can be observed from Figure 7.5 that choosing a very small ∆t requires a low value for the threshold on
∆|Patt|, which could lead to erroneous detection of error periods. For this reason ∆t should not be chosen
too small. A suitable threshold value must be experimentally determined, based on which the minimal re-
quired∆t can be identified. Furthermore, it can be observed from Figure 7.5 that the left side of the ’waves’ is
continuous, indicating that detection time is only related the the threshold value and that an equal detection
time is achieved from any value of ∆t high enough to allow detection of the threshold.

A threshold value for ∆|Patt| of 5 deg2 is experimentally selected, resulting in a minimum value of ∆t = 3 s
to allow detection. Since during a nominal scenario the state covariance difference ∆|Patt| is expected to be
much smaller, 5 deg2 is considered a value with enough margin to not falsely identify a nominal situation as
a period of decreased performance. This value results in a proper and robust detection of the error periods,
as shown in Figure 7.6.
The detection of periods of decreased pose estimation performance with this method, for this particular
threshold, is possible with a small delay of approximately 3 s (see Figure 7.6). The calculated delay of 3 s
must be noted to be consistent with the simulation and its assumptions. The value of this parameter is re-
ality must be determined through experimentation. The correct detection that was shown in Figure 7.6 for
a single example run was reproduced over for all runs that have been analysed in Section 6.2.1 with true
and pessimistic feedback. Detection rate in the simulation was determined at 100%, but detection rate in a
real-world scenario will have to be established in future experiments.
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Figure 7.5: Computed values of∆|Patt|, using Equation (7.1), over different time intervals∆t between 2 and 20 s for t = 200-450. The true
period of decreased performance has been marked in red, and is consistent with the first red period in Figure 7.4. It can be observed that
when ∆t is too small a very small threshold would be required for detection.

Approach 3: Threshold P
A third method can be formulated considering the reason for the desired mitigation. It was established in

Chapter 6 that, in the cases of true and pessimistic feedback, the error in the estimation of the final desired
position was significantly increased during the periods of decreased performance. A method can then be
formulated that detects periods of decreased performance based on the rotation covariance, and the desire
to mitigate situations where the rotational error is too large.

It is, however, inconvenient to use the rotation state covariance |Prot|, as the differences in this parameter
are small. As an example, it is found that, during the same trajectory represented in Figure 7.1, |Prot| has a
magnitude of approximately 0.25 deg/s in the nominal part of the trajectory and 0.5 deg/s during the periods
of decreased performance. Instead of using |Prot|, |Patt| can be used to set a threshold value, as the two show
very similar behaviour, |Prot| being estimated from consecutive measurements of the attitude.

Finding a suitable threshold is difficult, since the value of |Patt| during nominal performance is dependent
on the measurement standard deviation σq . The estimation of the desired final conditions is dependent on
the navigation estimate of ω, the accuracy of which decreases when σt is increased. It was experimentally
determined that whenσq > 10 deg, the mean error onω exceeds 1 deg/s, which is considered unacceptable in
relation to the main rotation of 3.5 deg/s. Furthermore it was found that the value of |Patt| is a good reflection
of σq . This can be observed in Figure 7.1, right-bottom plot, where the value of |Patt| under nominal pose
estimation performance can be seen to have a value of approximately 3-4 degrees, while the measurements
were characterised by σq = 4 deg, being a good reflection of |Patt|. This was found to be true for a wide range
of scenario’s and σq . Since σq > 10 deg was determined as a limiting case, a threshold value of |Patt| = 10 deg2

is selected. The detection that was achieved with this method is presented in Figure 7.7.
Similar to ’Approach 2’, presented above, this method also achieves a 100% detection rate, and the results
from Figure 7.7 can be duplicated for all runs with true or pessimistic feedback. This third method has a
detection delay at the beginning of the period equal to 6 s, which is slightly larger than that of the second
method, however, the delay of detection at the end of the period is only 1 s, which is smaller than that of the
second methods.

This approach has the additional characteristic of always executing mitigation whenever expected accu-
racy is too low. Whereas the previous method using ∆P could theoretically still reach high values of P as
long as this would happen slowly (∆P < threshold), this method, using a threshold on P , always performs
mitigation when |Patt| exceeds the set threshold. This means that, depending on the measurement accuracy,
mitigation may be executed over extended periods of time, potentially also during periods of nominal perfor-
mance. Whether this is beneficial or unfavourable will need to be determined in future experiments with real
pose estimation systems.
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Figure 7.6: Detection of error periods using a threshold value |Patt| = 5 deg2. It may be observed that succesful detection is achieved for
all periods, marked in red. The behaviour of the detection at the beginning and end of the first period is highlighted, such that it can be
better observed that detection of both beginning and end are delayed by 3 seconds.
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Figure 7.7: Detection of error periods using |Patt| = 10 deg2 as threshold value. All periods are again correctly identified. With this
method, their beginning time is detected with a delay of 6 seconds, while the end time only eperiences a delay of 1 second in detection.

Conclusion

The first method, using a threshold on ∆P , rejecting the estimate whenever ∆P > threshold, was discarded
directly, as it required the estimate of ∆t , the period over which ∆P = Pt+∆t - Pt was evaluated, to be a good
reflection of the length of the period of decreased performance, as this length cannot be known beforehand.
The second method, using a threshold on ∆P in combination with a logical LP , as well as the third method,
using a threshold on P directly, both proved to work properly and both showed a detection rate of 100% in
the simulated trajectories.

The differences in these methods lie in the delay of detection, of both the beginning and end of periods of
decreased performance of the pose estimation system. It was found that the second method provided delays
of 3 s for both beginning and end, while the third method provided delays of 6 s and 1 s for beginning and
end respectively. Furthermore the third method might also perform mitigation during nominal performance
of the pose estimation system, when the measurement accuracy is too low to achieve a satisfactory accuracy
on the estimate of target rotation. Which method is preferable in a real situation needs to be investigated in
future experiments. In the analysis of the impact of the proposed mitigation strategies at the end of this chap-
ter (see Section 7.4.1), the third method for recognition is implemented, but similar results may be obtained
using the second method.
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Intended Mitigation
Finally, the type of mitigation for the recognition strategies presented in this section must be discussed. As
these strategies depended on the increase of state covariance, a strong indicator for a loss of accuracy in the
estimate of target dynamics, the desired mitigation is the rejection of the estimates of the navigation filter
for attitude and rotation. Since the state covariance is increased, no adequate measurements are available
and guidance shall be prevented from updating the trajectory based on estimations of the target attitude
dynamics made during this period. Preventing this update is especially relevant, as the optimal trajectory
uses an estimate of the current rotation to integrate the target attitude and calculate the final desired position
of the manoeuvre (see Section 5.1.2), which was shown in Section 6.1 to introduce most (>80%) of the total
error on the achieved final position.

When the periods of decreased performance of the pose estimation system exist for prolonged periods of
time, or if the measurement accuracy is not adequate for achieving a reliable estimate of the target attitude
dynamics, the manoeuvre should possibly be abandoned or a passively safe orbit should be adopted based
on the relative position and velocity measurements. Such situations should be further investigated with a real
pose estimation system in the GNC loop.

7.1.2. Linear Reference State:
The results from the previous section are not applicable in the case of optimistic feedback. In that case the
covariance behaviour is such that the magnitude of the state covariance decreases rather than increases,
while the navigation error increases and the guidance is unable to recover properly, as shown in Figure 6.7.
Therefore another method is required in addition to the two successful methods that were presented in the
previous section.

The Reference State
The proposed additional method compares the state vector that is estimated by the navigation system to a
reference state vector, which is propagated linearly from a past navigation state. This approach is suggested as
the navigation filter uses both a prediction step (state propagation) and an update step (measurements), see
Figure 2.7, and diverges because of the influence of the measurements during the update step. The reason for
this divergence was discussed in the section on optimistic feedback in Section 6.2.1. To remove this source
of error, a comparison can be made between the current state vector, estimated by the navigation system,
Xnav,t , and a linearly propagated state, Xprop,t , that does not include the update step nor any process noise.
The linearly propagated state is calculated from a past value of the navigation state, XNav,(t−∆t ), analogous to
Equation (5.2):

Xprop,t = XNav,(t−∆t ) +Γt−∆t

ut−∆t
...

ut−1

 (7.2)

where Γt−∆t is a convolution matrix, defined as in Equation (5.3), with A and B the linear CWH matrices
presented in Equation (3.14) and ut−i the control effort at time t − i . This propagation is only performed for
position, as attitude is less reliable when considering the larger uncertainties in the estimated target rotation
that were highlighted multiple times in Section 5.2.3 and Chapter 6.

Recognition Strategy
Whenever the difference between Xnav,t and Xprop,t becomes larger than a selected threshold value, a mitiga-
tion strategy should be adopted. This process is visually represented in Figure 7.8.

The process represented in Figure 7.8 is valid for the cases with optimistic feedback, described in Sec-
tion 6.2.1, and builds on the assumption that the linearly propagated state is a very good approximation of
the chaser’s actual position. A discussion about the validity of such approximation was already provided in
Section 3.2, and was found to be valid over short intervals ∆t .

Two parameters must be assessed in this analysis. First, a suitable value of ∆t can be selected. Second,
the threshold value placed on

∆X = |Xnav,t −Xprop,t | (7.3)

must be determined, where X represents a position vector, | . . . | is the vector norm and ∆X is a single
number, expressed in the unit of meters. The main difficulty lies in choosing a suitable time period ∆t over
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Figure 7.8: Visual overview of the process comparing the estimated state from navigation with a linearly propagated reference state.
Because the linearly propagated state is not updated with measurements it is not instantly affected by them, because, due to its definition
from XNav,(t−∆t ), it ’lags behind’ the navigation estimate and is only affected by all measurements up to t −∆t . Therefore it continues
to provide a more robust estimate of the chaser position for an interval ∆t after the failure. This overview is only valid for the cases with
optimistic feedback (see Section 6.2.1).

which the reference trajectory is to be propagated. If the value of ∆t is too large, a significant amount of
linearization error may be introduced and the propagated state loses its value as an accurate reference. How-
ever, if the value of∆t is too small, the difference between XProp,t and XNav,t may be too small to be observed,
in the case when the navigation filter diverges slowly. A good value for ∆t may be determined experimentally
and a number of candidates have been selected

∆t = 5,10,20,50,100

The threshold should be selected sufficiently larger than the expected differences between the navigated and
linearly propagated state. The results of preliminary analysis of ∆X are presented in Figure 7.9a. As it is clear
from Figure 7.9a that this parameter can be noisy in periods when no decreased performance of the pose
estimation system is found, the differentiated parameter d∆X /d t is also analysed, and the results of this
analysis are presented in Figure 7.9b.
From Figure 7.9 it can be observed that, when ∆t is too large, the error between the propagated state and
navigation estimate can easily exceed 1 meter even when no failure is present, which can be accounted to
linearization errors and control uncertainties (see Section 5.3). This is an undesirable property and given
an impression of a ’noisy’ propagated state. Therefore the analysis is adjusted to include the time derivative
of ∆X , rather than ∆X itself, as this time derivative shows a less noisy behaviour during periods of nominal
performance, remaining ≈ 0.

The magnitude of the peaks in Figure 7.9b can be observed to be unrelated to the value of ∆t , such that
error can be identified from all values of∆t equally well. This is likely related to the nature of the error, which
is caused by the optimistic feedback (see Section 4.3.1). Due to this feedback the measurements are valued
too highly, causing a high error over a very short period of time. This behaviour is outlined in more detail
in Section 6.2.1. This means that a low value for ∆t is an excellent choice, also considering that propagation
over short periods of time naturally results in smaller errors when compared to the navigation estimate, as
linearization errors compound over time. As could be observed in Figure 7.9b, errors in a nominal situation
are very small, and the threshold value for recognition can also be relatively low. When selecting ∆t = 5 s, the
value of d |Xprop −Xnav|/d t for nominal performance of the pose estimation system is in the order of 1 cm. A
threshold value of 10 cm is selected, as this is considered sufficient margin (1000%) compared to the nominal
performance. This combination of threshold and ∆t is sufficient for a 100% success rate in the recognition
of periods of decreased performance, with optimistic feedback, in all simulated runs. On some cases the
detection of the periods is found to be lagging 1 or 2 seconds behind the actual occurrence of the period.
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Figure 7.9: Position difference between the estimate of the navigation system and a linearly propagated reference, for a selection of
propagation times ∆t (see Equation (7.2)). Periods of decreased pose estimation performance are found at t = 241, 840 and 1201 s.
The left shows ∆X (Equation (7.3)) and the right its time difference d(∆X )/d t . It can be seen that the time difference is less noisy and
therefore a better candidate for introducing a threshold.

The validity of this combination of threshold and ∆t shall be verified in future experiments with real pose
estimation systems under realistic operating conditions.

Intended Mitigation
Contrary to the scenarios with true and pessimistic, where the decreased performance of the pose estimation
system is assumed over an extended period of time (60-120 s), scenarios with optimistic feedback are ex-
pected to last only 1-3 s (see Section 4.3.1), therefore a different method of mitigation is required. If a period
of decreased performance is recognised using this method, it indicates a failure of the navigation system. The
filter state Xnav,t shall thus be reset, by overriding it with a state that is not updated with the measurements
at time t . Both position and attitude shall be propagated from the previous estimate (Xnav,t−1) and the rela-
tive velocity and rotation shall be copied directly from this previous step, which should provide a reasonably
accurate estimation. Furthermore, the state covariance shall be replaced with the value that was identified
at the previous step (t-1). Performing this reset step also prevents the occurrence of the negative peaks that
could be observed in Figure 7.9b.

As explained previously, an optimistic feedback scenario is expected to occur only for a very short period
of time, as it would be caused by a single image or a short series of images providing a wrong pose estimate. If,
therefore, this filter reset is performed for periods longer than 30 seconds, there is likely some other problem
with the pose estimation system and the manoeuvre should be abandoned to ensure the safety of the chaser
spacecraft. Such situations, however, should be more closely studied with a real pose estimation system in
the GNC loop.

Finally, the accuracy of the propagated state could potentially be improved by including the J2 perturba-
tion in the CWH STM to decrease the linearization errors. The effects of this correction are, however, marginal
over the periods of length ∆t suggested here. It is found that the capacity of the above method to recognise
the periods of decreased performance is not increased by including the J2 perturbation.

7.1.3. Impact on Guidance
Two different methods of recognition were discussed. The first strategy was based on the state covariance,
and could be used with the true and pessimistic feedback cases. The second strategy used a linearly propa-
gated reference state and could be used in cases with optimistic feedback.
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State covariance method
A comparison of the control effort for the cases of true and pessimistic feedback with or without the imple-
mentation of the recognition strategy resulted in no significant differences. As could be seen previously in
Figure 7.7, the error periods are correctly recognised, however, the rejection of guidance updates in these pe-
riods does not significantly influence the total open- or closed-loop∆V . This is most likely due to the fact that
less efficient trajectory estimates are already rejected based on their ∆V value, as described in Section 5.1.3.

This conclusion is consistent with the analysis conducted in Section 6.1.1 concerning the attitude error,
where it was shown that using the true final state severely decreased the final guidance error, however, the
∆V was unaffected. It is still believed that keeping the recognition strategy and subsequently rejecting these
trajectories is the best choice, since the large final position error resulting from these periods of decreased
pose estimation performance, is under no circumstances desirable.

Reference state method
The resulting navigation error and state covariance from an evaluation of several runs with short periods of
decreased performance of the pose estimation system, with optimistic feedback, are presented in Figures 7.10
and 7.11. The only difference between these runs and those from Section 6.2.1 with optimistic feedback is the
active mitigation strategy.
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Figure 7.10: Navigation errors for 15 randomly selected runs with optimistic feedback periods and active mitigation. Black lines indicate
instances where periods of 3 s of decreased pose estimation performance with optimistic feedback are occurring. It may be observed
that none of the undesirable behaviour that was observed in Figure 6.7 remains and the navigation error is relatively constant despite
the occurring failures.
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Figure 7.11: Position and attitude state covariance for 15 randomly selected runs with mitigated failure periods and optimistic feedback.

When comparing Figure 7.10 with the navigation error that was presented in Figure 6.7, large differences may
be observed. Whereas previously the navigation position error grew to several meters after the occurrence
of a period of optimistic feedback, the navigation position error remains stable after the implementation of
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the recognition and mitigation strategy. The influence of the periods of optimistic feedback is not completely
negated, as still a slight increase in navigation error may be witnessed in some cases, however, despite this
increase the position navigation error stays well below 1 m.

Furthermore, as was outlined in Section 7.1, the state covariance of the filter is reset when the mitigation
takes place. This should result in a smoother state covariance, without the drops that could be observed in
Figure 7.3. Indeed Figure 7.11 shows that the state covariance is smoother than in the case without mitigation.
Still some small jumps occur and the covariance is not completely smooth, but the mitigation is nevertheless
successful, as the navigation error is not increased due to the periods of decreased pose estimation perfor-
mance, and shows no signs of failure.

7.2. Estimating Future Rotation: Integration

As discussed in Section 5.1.2, the guidance algorithm requires an estimate of the target rotation at time t f to
make an estimate of the desired final position of the manoeuvre (see Equation (5.9)). More specifically, this
required the rotation of the target body with respect to the RTN frame, represented in the RTN frame at time
t f ,ωT BF /RT N

RT N (t f ) (see Section 3.4.5).

Up to this point, the target rotation at time t f is estimated by integrating the current target rotation be-
tween t and t f using Euler’s equation, Equation (3.37). This integration has, up to this point, assumed perfect
knowledge of target inertia Jtar, which is not available in a real-world scenario. Despite the perfect knowledge
of Jtar, this integration process was identified as the main source of error in the guidance process in Chap-
ter 6, both in nominal situations as well as during periods of decreased performance of the pose estimation
system, during which its effect was increased (see Section 6.2.1).

A very limited analysis of the effects of this integration process was already provided in Section 6.2.2,
however, this did not provide a complete nor satisfactory analysis of the behaviour of this error. This section
shows the limitations of this method of integration in detail and explores its sensitivity to uncertainties found
in the target inertia Jtar, rotation ωT BF /RT N

T BF (t ) and attitude q RT N
T BF (t ). In order to ease reading, ωT BF /RT N

T BF (t f )

is expressed asω f andωT BF /RT N
T BF (t ) is expressed asω0.

All sensitivity analyses in this section have been performed using an initial attitude that places the spin-
axis in the R-T plane, at a 90o angle with the orbit normal. This was done to improve the presentation of the
results, which

7.2.1. Theory:

The theory of this method is well-known. The calculation of ωfinal is performed by integrating Euler’s equa-
tion, Equation (3.37), over the remaining time until the end of the manoeuvre. As Euler’s equation is valid
for rotations expressed in the body frame and with respect to an inertial frame, this equation can be used to
make an estimate ofωT BF /EC I

T BF for all times between t0 = tcurrent and t f = tfinal.

As becomes clear from Equation (3.37), the initiation of this integration process requires three parameters.
First and foremost it requires an estimate of the current rotation of the target with respect to an inertial frame,
represented around the principle axis of the target body (ωT BF /EC I

T BF ). Second, it requires the target inertia
matrix (Jtar), which in reality is not fully known and can only be estimated up to a certain degree of accuracy.
Third, it requires an estimate of the current attitude of the target spacecraft with respect to the RTN frame
q T BF

RT N , to be able to correctly evaluate the gravity gradient torques.

The navigation system does not provide these estimates directly, instead it only measures the relative
attitude of the target with respect to the camera, qC BF

T BF , and from this it estimates the corresponding rotation,

ωC BF /T BF
T BF , represented in the target body frame. The required rotation, ωT BF /EC I

T BF , can be found from the

estimation of ωC BF /T BF
T BF . Similarly q T BF

RT N can be found from qC BF
T BF . The process through which the desired

parameters may be extracted from the measured/estimated parameters is described by the following series
of equations, using Equation (3.33):
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q RT N
T BF = qC BF

T BF ⊗ (
qC BF

RT N

)−1
(7.4a)

ωT BF /C BF
RT N = q RT N

T BF ⊗ωC BF /T BF
T BF ⊗ (

q RT N
T BF

)−1
(7.4b)

ωT BF /RT N
RT N =ωT BF /C BF

RT N −ωRT N /C BF
RT N (7.4c)

ωT BF /RT N
T BF = (

q RT N
T BF

)−1 ⊗ωT BF /RT N
RT N ⊗q RT N

T BF (7.4d)

ωT BF /EC I
T BF =ωT BF /RT N

T BF + (
q RT N

T BF

)−1 ⊗ [0,0,nOr bi t ]⊗q RT N
T BF (7.4e)

where qC BF
RT N and ωRT N /C BF

RT N are obtained from the ADCS system on board of the chaser and are assumed to

be known with high accuracy. Having found both ωT BF /EC I
T BF and q T BF

RT N Euler’s equation (Equation (3.37)) can
be evaluated and a value forω f can be obtained.

7.2.2. Sensitivity to Rotation
When attempting this integration process, uncertainties are present in the initial rotation at time t0, ω0. In
order to analyse the sensitivity of the integration process to this uncertainty, random noise was added to
the true value of ω0. The ’noise level’ represents the maximum magnitude of the noise, which is uniformly
distributed between -εω and +εω, for six different noise levels

εω = 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 deg/s

As discussed previously in Section 5.1.2, the estimate of ω f is used to evaluated the desired final position
of the rendezvous trajectory, r f , according to Equation (5.9c). Equation (5.9c) can be used to calculate the
intersection of the spin-axis and the KOS at any specific point in time, allowing this analysis to consider
multiple integration times, respectively

tint = 100, 500, 1000 and 1500 s

The analysis in this section compares the state estimate of the 500 noisy runs, at the above integration times,
to the true desired state, that is obtained from Equation (5.9c) using the true rotation. A KOS radius of 25 m is
used (see Section 4.2).

Figure 7.12 show the true spin-axis location (red) and the estimated spin-axis from the 500 noisy runs for
short (100, 500 s) and long (1000, 1500 s) integration times respectively. Only a selection of three noise levels
is shown to provide an idea of the behaviour when uncertainties increase.
It can be observed from Figure 7.12 that both the level of noise on ω0 and the integration time significantly
influence the accuracy of the estimate. For short integration times and low level of noise onω0, the estimate
of the spin-axis is accurate and might even achieve sub-meter accuracy, however, when either uncertainty or
integration time is increased the error on the final desired position rapidly increases.

Table 7.1 shows the mean error and standard deviation of the position estimate average over all 500 runs.
Both the mean and the standard deviation of the error increase when increasing εω, as well as when increasing
time period of integration. This shows that whenever the estimate ofω, made in the navigation filter, contains
uncertainties as small as 0.1 deg/s, the estimation of the final conditions for the guidance algorithm exceeds
4 m when the integration time is long.

Table 7.1: Mean (µ) and standard deviation (σ) of position error obtained through integration with uncertainties inω0, for all integration
times and noise levels. It may be observed that higher errors are created both by increasing εω and by increasing integration time,
although the former has a larger impact.

εω (m)
t = 100 t = 200 t = 500 t = 1000 t = 1500

µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m)

0.1 0.635 0.340 1.282 0.756 1.665 1.006 1.810 0.832 3.997 1.888
0.2 1.271 0.673 2.499 1.421 2.932 1.555 2.729 1.436 4.746 2.011
0.4 2.518 1.296 4.476 2.445 3.734 2.053 3.595 1.789 5.387 2.517
0.6 3.757 1.899 5.722 2.682 4.155 2.295 3.922 2.219 6.098 3.104
0.8 4.796 2.452 6.412 3.117 4.655 2.738 4.770 2.673 6.692 3.576
1.0 5.954 3.100 6.813 3.572 5.510 3.272 5.217 3.181 7.002 4.101
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(a) Short integration times, 100 s (left) and 500 s (right).

(b) Long integration times, 1000 s (left) and 1500 s (right).

Figure 7.12: Position estimation error for short (top) and long (bottom) integration times, and three different noise levels εω. The red line
indicates the true orientation of the spin-axis and the red circles have a radius of 5m and 10m respectively, and serve as an indication of
the error magnitude. It may be observed that errors grow significantly when the uncertainty inω0 is increased.

Another observation that can be made from Figure 7.12 is that the estimations of the spin-axis location from
the 500 noisy runs are, in most cases, not centred around the true spin-axis, but seem to display a bias. As the
spin-axis orientation is constant in the inertial frame, it ’moves’ in the RTN frame, or rather the RTN frame
rotates with respect to the inertial. This can be observed in Figure 7.12, where the direction of motion of the
spin-axis may be observed from being pointed at +y/-x at t = 100, ’moving’ gradually to +x/-y.

The estimates at t = 500 s show a clear bias towards negative values of Z , whereas all estimates at t = 1500
s seem to ’lag behind’ the true spin-axis and show a clear bias towards positive values of Y . The direction of
this bias is continuously changing, while at some instants it disappears, which may be observed for t = 1000
s, as there seems to be no such bias at all.

This bias can most likely be attributed to the instantaneous direction of the wobbling motion of the spin-
axis, which the integration process fails to identify accurately. The bias is therefore unpredictable and de-
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pends on the combination of specific values of initial rotation ω0, initial attitude q0 and inertia matrix J .
Specific combinations of these parameters likely cause the estimate to diverge in a specific direction, how-
ever, as the uncertainties in these parameters cannot be known, this bias is remains unpredictable. As is clear
from Figure 7.12, the estimation error at an integration time of 1500 s, which represents the end of the optimal
manoeuvre, easily exceeds 5 m even for small εω, and could potentially increase to as much as 10 m for larger
values of εω.

These are unfavourable conclusions, as they mean that the magnitude of error on the estimate of the final
position, which is required for efficient guidance, is likely to be several meters from the true value. In par-
ticular, since an accuracy of 0.5◦/s is expected for ω0 (see Section 5.2.3), the error on the final position likely
exceeds 5 m, and could potentially exceed 10 m, which was already observed in the results of Section 6.1.1. It
can therefore be concluded that uncertainties in ω0 account for all present error, however, in a real scenario,
ω0 is merely one of three uncertain parameters used in this integration process.

7.2.3. Sensitivity to inertia errors
Up to this point a perfect knowledge of the target inertia was assumed, which is not attainable in a real-world
situation. Similar to the previous section, studying the sensitivity of the integration process toω0, this section
explores the sensitivity to uncertainties in the target inertia Jtar. An analysis of 500 noisy runs is performed,
where the noise is uniformly distributed and added to the true value of J prior to the integration. The true
value of Jtar was presented in Table 2.1. Integration is performed over the same integration times as before,
respectively

tint = 100, 500, 1000 and 1500s

Adding a realistic level of noise on the inertia matrix is not straightforward. When considering the inertia
matrix in an uncontrolled setting, the absolute values are not relevant, but rather the ratios of inertia should
be considered. This is easily demonstrated through the examination of Equation (3.36), after which it may be
concluded that all components in the equation, except disturbance torques (which were assumed negligible
over the course of a single orbit, see Section 3.2), are multiplied with J . Thus, dividing all elements by |J | has
no effect on the equation, showing that the absolute values are not relevant.

Therefore, when introducing noise, the inertia ratios have to be considered rather than the absolute val-
ues. Introducing -2% error on Jy y while introducing +2% error on Jzz results in the ratio of the two changing
4% (for elements of similar magnitude), which is not considered an accurate representation of a 2% inertia
error. Multiple better approaches are found, for example: Pesce et al. [60] use ratios of inertia k1 = Jxx /Jy y , k2

= Jy y /Jzz as metric, using a diagonal form of the inertia matrix. Furthermore, Benninghoff and Boge [2] use a
normalised inertia matrix J /|J |, including also products of inertia. Both papers investigate the accuracy that
can be achieved in estimating J of an unknown satellite, and report errors on the (dominant) diagonal terms
in the order of 0.01 - 0.06, or 1 to 6%. This is consistent with the reported uncertainty in the diagonal elements
of JEnvisat, reported by ESA and presented in Table 2.1. The off-diagonal products of inertia are likely prone to
larger uncertainties, considering that Envisat is presumably damaged due to years of uncontrolled orbiting.
For simplicity the magnitude of the error on all elements is considered equally large.

For introducing the uncertainties in Jtar the following approach is taken. First, one of the diagonal ele-
ments is randomly selected, to be used as reference. Second, the ratio with the other two diagonal elements
is calculated. Third, a uniformly distributed random noise with magnitude εJ (in %) is added to this ratio of
inertia. Fourth, the new, noisy, ratios of inertia are multiplied with the randomly selected reference element
of the first step to find the remaining two noisy values of inertia. An example of this procedure is provided
below:

1. Jy y is randomly selected from the set (Jxx , Jy y , Jzz ).

2. Ratios of inertia k1 = Jxx /Jy y and k2 = Jzz /Jy y are calculated.

3. Noise on k1 and k2 is introduced using -εJ < δki < +εJ , where ki ,new = ki + δki .

4. New inertia components are calculated Jxx,new = k1,new Jy y , Jzz,new = k2,new Jy y .

A similar approach is taken for the off-diagonal elements, where instead one is randomly selected from the
set (Jx y , Jxz , Jy z ) and the procedure is repeated. This method ensures that the inertia ratios stay within the
correct boundaries. Six different values for εJ were selected:
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εJ = 0.005 (0.5%), 0.01 (1%), 0.02 (2%), 0.04 (4%), 0.06 (6%) and 0.1 (10%)

The results of the analysis are presented in Figure 7.13, which shows the true location of the spin axis,
together with the estimates of the desired location on the KOS for the different noise levels on J for the four
selected integration times, similar to the previous section.

(a) Short integration times, 100 s (left) and 500 s (right).

(b) Long integration times, 1000 s (left) and 1500 s (right).

Figure 7.13: Position estimation error for short (top) and long (bottom) integration times, and three different noise levels εJ . The red line
indicates the true orientation of the spin-axis and the red circles have a radius of 5m and 10m respectively, and serve as an indication of
the error magnitude. It may be observed that a strong directional bias is present in the results and that the area over which the estimated
positions are spread remains similar when integration time is increased.

It can be observed from Figure 7.13 that already for small integration times the estimation error can poten-
tially exceed 10 m, and the ’stretch’ of the 500 noisy runs is similar for t = 100 s and t = 1500 s. This indicates
that the magnitude of εJ is the main contributor to the final error, whereas integration time has a much
smaller effect on the final error.

Additionally, a numerical overview of the achieved estimation errors is presented in Table 7.2. This shows



96 7. Strategies for Increased Robustness

that when both integration time and εJ are small, the estimate of the spin-axis is very accurate and sub-meter
accuracy can be achieved. The role of εJ , compared to integration time, becomes increasingly clear for larger
values of εJ , as it can be observed in Table 7.2 that for εJ = 4% or 6%, the mean and standard deviation of the
error stay at a rather constant level when the integration time is increased.

Table 7.2: Mean (µ) and Standard Deviation (σ) of error for estimating ω through integration with initial error in J , for different lengths
of time and different error magnitudes.

εJ %
t = 100 t = 200 t = 500 t = 1000 t = 1500

µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m)

0.5 0.689 0.172 0.437 0.268 1.852 1.593 2.700 2.037 3.635 2.096
1 1.017 0.543 1.141 1.255 2.384 1.839 2.759 2.034 3.715 2.085
2 2.028 1.796 2.320 2.061 2.842 1.971 2.971 2.074 3.630 2.077
4 4.466 3.637 2.945 2.417 3.384 2.664 3.641 2.619 3.307 2.159
6 5.672 3.971 2.786 2.366 3.900 2.766 4.214 3.062 3.769 2.770
10 6.641 3.829 3.378 3.779 4.524 3.327 5.056 3.766 4.509 3.441

Furthermore, it can be observed from Figure 7.13 that the error, caused by the inertia uncertainties, is
strongly biased in a specific direction. This direction is approximately along the Z/N-axis for t = 100 s it seems
to ’rotate’ towards the X/Y- (or R/T-) plane. When extending the integration time beyond 1500 s, this ’rotation’
of the bias continues in the expected direction and rotates away from the R/T-plane again.

The direction of this bias is most likely dependant on the current direction of motion of the spin-axis,
which is completely dependant on target wobbling, which, in turn, is completely dependant on theωt . Asωt

cannot be accurately known, or else there would be no need for this analysis, the bias cannot be compensated
for and presents some challenges regarding the accuracy of the integration.

Contrary to the data in Table 7.1, Table 7.2 shows that, when the uncertainties in J exceed a certain thresh-
old, in this case approximately 4%, the error does not grow with integration time. This results in position
errors exceeding 10 m in several cases for integration times as short as 100 s, with εJ only 4%. This is highly
undesirable, as 4% error is a very realistic level of uncertainty for the target inertia [2, 60]. As a consequence,
accurate estimation of the desired position would not be possible even for short integration times, unless a
highly accurate estimate of the target inertia is available, which is doubtful. The results of the analysis of un-
certainties in J thus provide further motive to find different methods for estimating the target future rotation.

7.2.4. Sensitivity to attitude errors
The third, and final, parameter, required in the integration of the target dynamics through Equation (3.37), is
the initial attitude q RT N

T BF (t0), or simply q0. Similar to the previous sections, the results of 500 noisy runs are
analysed, comparing the estimated intersection-point of the spin-axis and the KOS with its true value. The
noise is uniformly distributed and added to q0 prior to the integration.

Attitude uncertainty is expressed in degrees and is added to q0 by multiplying q0 with an error quaternion
δqε. The error quaternion qε is constructed by taking a random unit vector n̂ and angle α, after which Equa-
tion (3.21) is used to construct the error quaternion δqε. The noise level is thus determined by the magnitude
of α, distributed uniformly between -εα and +εα, for which the following values are selected:

εα = 0.1, 0.5, 1, 2, 5, and 10 deg

In this analysis it is assumed that perfect information is available about ω0 and Jtar. The results of this anal-
ysis, only for the long integration times, are presented in Figure 7.14, from which it may be observed that the
error caused by uncertainties in q0 is small, compared to the errors observed in the previous sections due to
uncertainties inω0 and J . Additionally, the numerical data from this analysis is available in Table 7.3.
The magnitude of the error from uncertainties in q0 does not change when integration time is increased, as
can be observed in Figure 7.14 and is confirmed through the data in Table 7.3. Furthermore, the error is a
good reflection of true error in the initial attitude q0, which may be demonstrated by further examining some
values from Table 7.3. The mean and standard deviation of the error for εα = 2 deg, respectivelyµ≈ 0.37 m and
σ≈ 0.24 m, result in a 99.7% confidence interval of 1.09 m (µ+3σ). A calculation shows that an error arc of 2◦
on a sphere with radius 25m results in an error of 25 · sin(2◦) ≈ 0.87 m, which is an accurate representation of
the error that was found. The error caused by uncertainties in q0 thus shows predictable behaviour, contrary
to the errors caused by uncertainties inω0 and J .



7.2. Estimating Future Rotation: Integration 97

Figure 7.14: Position estimation error for noise in the initial attitude, at 1000 seconds (left) and 1500 seconds (right) into the future.

Table 7.3: Mean (µ) and Standard Deviation (σ) of error for estimating ω through integration with initial error in q , for different lengths
of time and different error magnitudes.

α

(deg)
t = 100 t = 200 t = 500 t = 1000 t = 1500

µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m)

0.1 0.035 0.023 0.035 0.023 0.035 0.023 0.035 0.023 0.035 0.023
0.5 0.086 0.057 0.085 0.057 0.086 0.057 0.085 0.057 0.085 0.057
1 0.161 0.108 0.162 0.108 0.162 0.108 0.161 0.108 0.161 0.107
2 0.367 0.238 0.363 0.234 0.365 0.236 0.363 0.235 0.367 0.235
5 0.833 0.561 0.824 0.557 0.832 0.559 0.830 0.558 0.826 0.555
10 1.820 1.152 1.776 1.129 1.808 1.145 1.803 1.145 1.800 1.136

7.2.5. Sensitivity to combined errors
Finally, as both uncertainties in ω0 and J are expected to arise simultaneously, an analysis is made of the
combined error of noise in Jtar and ω0. Uncertainties in q0 are not considered in this analysis due to their
limited magnitude and predictable behaviour, demonstrated in the previous section.

The uncertainties are modelled as in Section 7.2.2 for ω0 and Section 7.2.3 for J . Similar to the previous
sections, an analysis is made of 500 noisy runs, comparing the estimates from these runs with the true values,
for the same five integration times as previously. The noise is included in J and ω0 prior to the integration.
Five different levels of uncertainty were used for J :

εJ = 0.5, 1, 2, 4 and 6 deg

consistent with the expected magnitude of inertia uncertainties presented in Section 7.2.3 ([60],[2]). Further-
more, three different levels of uncertainty were used forω0:

εω = 0.1, 0.5 and 1 deg/s

ranging from optimistic (0.1 deg/s) to expected (0.5 deg/s) to conservative (1.0 deg/s) uncertainty, as demon-
strated during the tuning of the navigation filter in Section 5.2.3.

The results of this combined uncertainty analysis are presented in Figure 7.15, showing only the cases with
low uncertainties, and Table 7.4, showing numerical results for all examined cases. These show the influences
of both J andω, as well as the effect of time. It becomes clear that for low errors over short integration times,
the integration method delivers reasonable results, with an error of approximately 1 m, however, when either
the level of error or the integration time increases, the accuracy of the estimated desired position is strongly
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deteriorated with mean (µ) and standard deviation (σ) of the estimation error exceeding respectively 5 m and
3 m in many cases.

(a) Position estimation error at 100 seconds (left) and 500 seconds (right) into the future. Combined noise on ω0 and J .

(b) Position estimation error at 1000 seconds (left) and 1500 seconds (right) into the future. Combined noise on ω0 and J .

Figure 7.15: Position estimation error for combined noise om ω0 and J of low magnitude.

From Figure 7.15 it can be observed that, for low integration time (t = 100 s), the narrow stretch of data
that was observed in Section 7.2.3 for uncertainties in J can be identified, however, in all other cases the
distribution of error is more similar to the one found in Section 7.2.2 for uncertainties in ω0. The strong
directional biases observed for εJ in Section 7.2.3 thus seem to mostly disappear in this combined analysis.
The biases that were found when further increasing the uncertainties are also similar to those observed in
Section 7.2.2 for uncertainties inω0.

The effects of uncertainties in J are visible only for short integration times and low values of εω, as may be
observed from the first five rows in Table 7.4 (εω = 0.1). Increasing εJ from 0.5% to 6% results in an increase
of µ and σ from 0.802 and 0.406 to 6.314 and 3.960 in the case of t = 100, and from 4.167 and 1.848 to 4.788
and 2.703 in the case of t = 1500. However, this strong effect disappears for t = 100 when εω is increased to 1
deg/s.

In terms of magnitude, εω and εJ are found to have a similar influence, as errors for εJ = 6% combined
with any εω are found to be of similar magnitude when compared to errors for εω = 1 deg/s combined with
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Table 7.4: Mean (µ) and Standard Deviation (σ) of error for estimating ω through integration with initial error in both J and ω0, for
different lengths of time and different error magnitudes.

εω (◦/s) εJ (%)
t = 100 t = 200 t = 500 t = 1000 t = 1500
µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m)

0.5 0.802 0.406 1.400 0.663 2.429 1.276 3.081 1.428 4.167 1.848
1 1.042 0.642 1.780 1.165 2.738 1.482 3.176 1.452 4.262 1.728

0.1 2 2.108 1.949 2.806 1.864 3.155 1.559 3.240 1.468 4.069 1.766
4 4.655 3.727 3.343 2.142 3.927 2.306 3.826 2.189 4.406 2.224
6 6.314 3.960 3.413 2.599 4.746 3.002 4.396 2.724 4.788 2.703

0.5 3.126 1.645 4.629 2.477 4.025 2.184 3.830 2.052 5.775 2.960
1 3.202 1.536 4.636 2.335 3.973 2.084 4.021 2.150 5.700 2.855

0.5 2 3.951 2.185 4.679 2.299 4.079 2.064 4.131 2.187 5.781 2.929
4 6.040 3.271 5.184 2.554 4.549 2.589 4.536 2.549 6.261 3.101
6 6.858 3.496 5.570 2.990 5.068 2.789 4.763 2.798 6.294 3.283

0.5 6.007 3.369 6.558 3.416 5.651 3.474 5.391 3.312 7.245 4.303
1 5.989 2.945 6.445 3.534 5.595 3.190 5.271 2.996 7.056 3.959

1 2 6.434 3.492 6.111 3.468 5.507 3.142 5.395 3.174 7.156 4.219
4 7.480 3.797 6.791 3.618 6.269 3.748 6.365 3.527 7.690 4.577
6 7.401 3.917 7.199 3.874 6.082 3.579 6.217 3.649 7.639 4.413

any εJ , as may be observed in Table 7.4, the errors from high εomeg a only very slightly exceeding those from
high εJ .

Furthermore, the influence of the uncertainties is higher than the influence of integration time, as errors
found for t = 100 with large values of εω,εJ are higher than those found for t = 1500 for low values of εω,εJ .
Especially increasing the uncertainty in ω0 for higher values of integration time results in a relatively large
increase in error, as may be observed from the final column of Table 7.4.

Finally, two main conclusions can be drawn from this analysis

• Errors increase significantly over longer periods of time, reaching an error. In the best case scenario, µ
≈ 4 m and σ ≈ 2 m for very small uncertainties inω0 and J .

• Considering realistic uncertainties in J (≈ 4%, see [2, 60]) and ω (≈ 0.5 deg/s, see Section 5.2.3), the
expected mean and standard deviation µ/σ of the error in the estimation of the intersection-point of
the spin-axis with the KOS is 6.04 m/3.27 m for t = 100 s and 6.261 m/3.10 m for t = 1500 s.

These conclusions imply that, in a real-world scenario, estimation errors could potentially reach 15m
(µ+3σ) in magnitude, even for short integration times, which would mean that the final position estimate of
the trajectory contains an error of 15m. This is highly undesirable and results in a need to explore different
methods that can provide a more accurate estimate ofω f .

7.3. Estimating Future Rotation: Curve fitting
The sensitivity analysis of the integration method has shown that the method is inadequate for accurately
estimating the desired chaser position in the presence of uncertainties. Therefore, a new method for estimat-
ing ω f i nal is formulated. This method requires the acquisition of a large number of measurements prior to
the approach, which is possible from a passively safe relative orbit around the target (see Section 4.2). These
measurements allow the characterisation of the target attitude dynamics and can be fitted by means of a least
squares regression analysis, which allows to formulate a function to estimate the future location of the spin-
axis in the RTN-frame. This method has its limitations, which are mainly related to the relative magnitude of
the rotations around the target principal axes, however, also has the potential to outperform the integration
method in terms of accuracy and robustness, as is shown below.

The fitting process occurs prior to the approach and one full orbital period is assigned for the acquisition
of measurements. The orbital period, Tor bi t , is approximately 6025 seconds, and, considering an eclipse
period of ≈ 1900 s [52], this leaves a period of approximately 4000 seconds for acquiring measurements upon
which the least squares regression may be performed. This analysis uses a spin-axis orientation that is aligned
with the orbital plane, which, however inconsistent with the expected orientation identified in Section 2.2,
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was chosen for the purpose of visualisation and in no way decreases the general applicability of the results
reported in this chapter, as is additionally demonstrated in Section 7.3.2.

7.3.1. Theory:
This method uses the theory of least squares as a method of regression to find a best fit for ω over the period
of one orbit. In essence the least-squares theory comes down to the following simple minimisation problem:

min
t1···tn

n∑
i=1

r 2
i (7.5)

where ri is a so-called residual, which is defined as

ri = yi − f (ti ,β) (7.6)

with yi a data point at time ti and f (ti ,β) the function value of the fitting function, used to make an esti-
mate of the data points. Least-squares problems can either be linear or non-linear, depending on the fitting
function f (ti ,β) which has to be carefully selected to match the expected system behaviour.

In the case ofω, or rotations in general, sinusoidal functions are an excellent choice due to their periodic
nature which excellently describes the movement of points undergoing a rotational motion. The general
sinusoidal function is described by

f (t ,β) =
N∑

k=1
βk,1 · sin

(
2π

βk,2
· t +βk,3

)
+β0 (7.7)

where parameters βk,1,βk,2,βk,3 represent respectively the amplitude, frequency and phase shift and β0 rep-
resents the mean (or vertical shift) of the function. Due to the non-linearity of sinusoidal functions and their
many local minima, such functions are difficult to use in least-squares regressions [69] and are unlikely to
yield good results without a good estimate of the initial conditions [40], with the frequency usually being the
most difficult parameter. The importance of a good estimate for the frequency of noisy signals is highlighted
by Tretter et al. [84].

These conclusions create the need for a discussion on the estimation of the initial parameters for the
least squares regression employing sinusoidal functions. At this point two fitting options can be separated
and should be treated separately. The first option, ’Option A’, is concerned with finding a fit for ωT BF /RT N

RT N to
directly find an estimate of the spin axis location. The second option, ’Option B’, is concerned with finding a
fit for ωT BF /RT N

T BF . Option B allows to find ωT BF /RT N
RT N by multiplying with q RT N

T BF (estimated from navigation),
or it can serve as an improvement over the moving mean filter estimate presented in Section 5.2.3. All fits
were computed using the ’cfit’ function from the MATLAB Curve Fitting toolbox.

Option A
In this analysis the non-periodic orbital disturbances, such as drag, are ignored, as they cause changes over
extended periods of times and are negligible over the course of a single orbit (see Section 3.2). The target is
considered in a state of uncontrolled motion, only influenced by the gravity-gradient torque. According to
Equation (3.37), the consequence of this assumption is that, for any combination of ω0, J , the orientation of
the rotational motion is periodically constant with respect to the inertial frame. It must be stressed that this
assumption is valid for the relatively short intervals (1-2 orbital periods, or ≈ 3h) discussed in this analysis,
but becomes invalid as longer intervals of time are considered.

Frequency and Period
This assumption can be exploited to define the periodicity of ω in the RTN frame. By definition the orbital
plane (R-T plane) is at constant inclination i with respect to the ECI frame, fixing the angle between the Z-
axis of the ECI frame and the N -axis of the RTN frame. This creates a periodic motion of the other two axes
with respect to each other, with a frequency equal to the orbital mean motion. This principle is illustrated
in Figure 7.16, which shows the spin-axis of the target spacecraft at a constant orientation with respect to
the inertial frame, aligned with the negative Y -axis. With respect to the RTN frame, the spin-axis is aligned
with the -R-axis when the target is on the left side of the image, and then over the course of the orbit, the
target travelling in counter-clockwise direction, the spin-axis is aligned with the -T, +R and +T directions
respectively, before again being aligned with the -R axis after one full orbital period.
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Figure 7.16: Rotation of the spacecraft in the ECI frame and the RTN frame. Direction of motion of the target in the orbit is counter-
clockwise. It may be observed that the spin-axis is continuously aligned with the -Y direction of the inertial frame I, while the RTN-frame
is rotating, causing the spin-axis to be aligned subsequently with -R/-T/+R/+T.

A sinusoidal function to estimate ωT BF /RT N
RT N can then be found from Equation (7.7) by setting degree N to 1

or 2. The main period, β1,2, should be set to TOrbit, whereas the secondary period, β2,2, is equal to the period
of the wobbling motion due to inertia. According to Wertz [94], the wobbling frequency Wn is calculated as

Wn =
√

(J11 − J33)(J22 − J33)

(J11 J22)
ωEC I ,3 (7.8)

where ωEC I ,3 > ωEC I ,1,ωEC I ,2. This frequency thus depends on the magnitude of the rotations around the
principal axes, as estimated by the navigation algorithm. The corresponding period is found using

Tn = 2π

Wn
(7.9)

with Wn in rad/s. The value of Tn in seconds may be used as an initial estimate for β2,2 in Equation (7.7).

Amplitude

The main amplitude, β1,1, is determined from the amplitude of the largest rotation around the principal axes
of the target body, while the secondary amplitude, β2,1, is determined from the second largest rotation. As
rotations around the three axes of the target are estimated by the navigation algorithm, an estimate of the
amplitude can be made using

βi ,1 =
max(ωpi ,nav)−min(ωpi ,nav)

2
(7.10)

where it is assumed that ωp1 À ωp2,ωp3 (with p1, p2, p3 the principal axes). This is considered a valid
assumption in the case of Envisat (see Section 2.2).

Vertical shift and phase shift

The vertical shift (β0) can simply be estimated from the mean of the set of measurements. The estimate for
phase shiftβk,3 is completely dependent on the attitude of the target with respect to the inertial frame and the
time at which measurements are initiated and can be estimated by finding the first zero-crossing with positive

derivative ∆ f (t ,β)
∆t from the set of measurements. These estimates form the starting point for regression.

Results

The results are presented in Figure 7.17 and Figure 7.18. An analysis is made using both order N =1 and
N =2 (see Equation (7.7)) and the method is evaluated for its performance in estimating ωT BF /RT N

RT N which
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defines the location of the spin-axis in the RTN-frame. Figure 7.17 shows the achieved fit ofωT BF /RT N
RT N , using

measurements of high accuracy (σq = 10−6 deg, see Section 5.2.1). Figure 7.18 shows the 3D position error
that is obtained from this method, when the fitted rotation is used to predict the intersection of the spin-
axis with the KOS to calculate the desired chaser state according to Equation (5.9c). Furthermore, a short
numerical summary of the results in provided in Table 7.5.
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Figure 7.17: Achieved fit of ωT BF /RT N
RT N with method A, using sinusoids of order N = 1 and N = 2. It may be observed that a good fit

is achieved, especially when N = 2, accounting for the period of the wobbling very well, however, not fully capturing the amplitude of
the wobbling. The method with N = 1 does not account for the wobbling motion, however, still achieves a satisfactory fit and is a good
representation of the general trend of ωT BF /RT N

RT N .
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Figure 7.18: Estimation error in meters for the estimation of spin axis location over time using method A, for sinusoids of order N = 1 and
N = 2. It can be seen that the error does not increase over time, contrary to the results from the integration method. The mean values of
the error achieved in the cases with N = 1 and N = 2 is similar, however, the maximum error as well as the spread of the error is larger for
N = 1.

When comparing the estimation error from Figure 7.18 with the errors obtained in the integration method
in Section 7.2, it becomes clear that this method has a lot of potential. Previously, integration errors for
combinations of realistic error in J and ω could easily exceed 10 meters (see Table 7.4), whereas Figure 7.18
shows a potential for error in the order of 2-4 meters. More importantly, contrary to the results presented in
Section 7.2, the error from this method does not grow over time.

Despite this method showing much potential, its robustness with respect to different scenarios must be
confirmed. Furthermore, the results in this section assumed highly accurate measurements (σq = 10−6 deg)
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Table 7.5: Summary of estimation error using method A, for sinusoids of order N = 1 and N = 2. It is clear that mean value of the error is
similar, but standard deviation becomes much smaller in the case of N = 2.

N = 1 N = 2

Min. Error (m) 0.043 0.379
Mean. Error (m) 1.846 1.621
Max. Error (m) 3.836 2.845
Error Std. (m) 1.341 0.631

in order to prove the feasibility of this method. Therefore the accuracy of this method for a more realistic level
of measurement noise must also be analysed.

Option B
Option B is concerned with fitting the value of ωT BF /RT N

T BF in the target body frame. In the case where ωp1 À
ωp2,ωp3 the main rotation is estimates using order N = 2, while the two rotations around principal axes p2, p3
of the body frame are estimated by a sinusoidal function or order N = 1 (see Equation (7.7)).

Frequency and Period

In this case the period β1,2 can be estimated by, first, finding local minima or maxima of the ωp2,ωp3, esti-
mated by the navigation filter, and, second, determining the time in-between their occurrences.

For the main rotation ωa1, a more accurate estimate can be made by using a sinusoidal function with
order N = 2. The secondary period β2,2 is nOr bi t , as this is the period of the disturbance caused by the gravity
gradient torque in Equation (3.37).

Amplitude, Vertical Shift and Phase Shift

Amplitude β1,1 can also be found from local minima and maxima according to Equation (7.10). No reliable
estimate for β2,1 can be found, and the only restriction for this parameter is β2,1 <β1,1.

The vertical shiftβ0 can again be estimated from the mean of the data set and phase shiftβ1,3 is dependent
on the target attitude and time of measurement, and can be estimated by finding the first zero-crossing with

positive derivative ∆ f (t ,β)
∆t , similar to ’Option A’. For β2,3 no reliable estimate is available and it can be set to a

random value to be changed by the regression process.

Results

Similar to option A, highly accurate measurements are employed (σt = 10−6 deg) to prove the feasibility of
this method. The results are presented in Figure 7.19 which shows the true and fittedωC BF /T BF

T BF .

Next, the capability of method B for estimating ωT BF /RT N
RT N is investigated. This requires the fitted values to

be converted to the RTN-frame. This conversion requires an estimate of q RT N
T BF at every future step, which is

obtained by evaluating Equation (3.34). Whereas the fitted model from Figure 7.19 is accurate, the estimate
of ωT BF /RT N

RT N that results from it is not. In fact, this method completely fails to correctly identify ωT BF /RT N
RT N

after a short period of time.
This failure is likely due to the fact that errors in the estimation ofωT BF /RT N

RT N compound from two sources.

Errors in the fitted value of ωT BF /RT N
T BF stack on each other, as was experienced with the integration method.

This yields an increasingly worse estimate of q RT N
T BF over time. Since an accurate value of q RT N

T BF is required to
transform ωT BF /RT N

T BF to ωT BF /RT N
RT N , this conversion quickly produces useless results. Since this method fails

even with highly accurate measurements, and it is decided to abandon method B for estimation ofωT BF /RT N
RT N .

In all subsequent sections only an analysis of method A is provided. Method B can however be employed
to improve the estimate of the instantaneous ωT BF /RT N

T BF , required in phase 3. This is further discussed in
Section 7.4.1.

7.3.2. Proof of general applicability
Since several scenarios are possible for the orientation of the spin-axis with respect to the orbital momentum
vector, as outlined in Table 2.4, the fitting method needs to be tested against all scenarios. In order to verify
the applicability of this method over a wide range of scenarios, tilt angles between the spin-axis and orbit
normal of 0, 45 and 90 degrees are considered. In the scenario where the spin-axis is aligned with the orbital
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Figure 7.19: Fitting ωT BF /RT N
T BF with method B, using sinusoids of order N = 2 for the main rotation and order N = 1 for the secondary

rotations. It may be observed that a highly accurate fit of ωT BF /RT N
T BF can be produced.

momentum vector (tilt angle 0o) the main rotation is around the Z-axis and stay there continuously. In a
scenario where the spin-axis is at a 45◦ tilt angle with the orbital momentum vector, the main rotation is
distributed between the Z-axis and the X- or Y-axis. The scenario with 90o tilt angle is used as reference in
this entire chapter and indicates the spin-axis being in the orbital plane. Verifying this method for these three
values proves its general applicability, as all other tilt angles are variations of the 45o case.

The results are presented in Figures 7.20 and 7.21, still using highly accurate measurements (σq = 10−6

deg). Furthermore, a numerical summary of the errors obtained from both scenarios is provided in Table 7.6.
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(a) Fitting ωT BF /RT N
RT N for spin-axis aligned with orbital momentum.
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(b) Estimation error in meters for the estimation of spin axis location over
time for spin-axis aligned with orbital momentum.

Figure 7.20: Curve fit and corresponing estimation error for ωT BF /RT N
RT N aligned with orbital momentum.

It may be observed that similar results are found from Figures 7.20 and 7.21, compared to Figure 7.18.
Furthermore, very similar numerical values may be noticed between Table 7.5 and Table 7.6. This is a strong
indication that the fitting method can be considered robust for a range of scenarios that is encountered dur-
ing the mission.
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(a) Fitting ωT BF /RT N
RT N for spin-axis at 45 degrees with respect to orbital mo-

mentum.
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(b) Estimation error in meters for the estimation of spin axis location over time
for spin-axis at 45 degrees with respect to orbital momentum.

Figure 7.21: Curve fit and corresponing estimation error for ωT BF /RT N
RT N at 45 degrees with orbital momentum.

Table 7.6: Position errors obtained from fitting ωT BF /RT N
RT N , using a spin-axis with tilt-angles 0◦ and 45◦. The standard deviation for the

case of N=1 is high due to the error not being normally distributed. Therefore a relatively large interval is required to capture 68.27% of
all data.

Tilt angle 0o Tilt angle 45o

N = 1 N = 2 N = 1 N = 2

Min. Error (m) 0.134 0.984 0.013 0.690
Mean. Error (m) 1.938 1.686 1.905 1.630
Max. Error (m) 3.725 2.353 3.869 2.627
Error Std. (m) 1.294 0.431 1.386 0.648

7.3.3. Sensitivity Analysis
The robustness of the fitting process must be analysed by evaluating its sensitivity with respect to several
important parameters. First, the robustness is assessed with respect to the initiation time of the curve fitting,
as the fitting process requires a minimal number of data points to be initiated. Second, the robustness of the
fitting process with respect to measurement errors must be assessed.

Initiation Time
The regression process described by Equation (7.5) computes all fitting parameters βk,i in Equation (7.7)
during an observation period prior to the actual approach, respectively magnitude, period, phase shift and
mean amplitude. This period of observation was determined to have the length of a full orbital period, ≈ 6029
s. In order to avoid errors due to small uncertainties in the orbital period, the fitting process is ’re-initiated’
after the eclipse. This means that rather than calculating the values of ω using the current fit at t > 6029 s,
e.g. f (6030,β), it is decided to calculate a new value for phase shift βk,3. This new value is calculated such
that the first measurement after the eclipse period is labelled t = 1. The other parameters β are simply copied
from the fit that was achieved during the period of observation.

Therefore, a satisfactory value of βk,3 must be determined prior to attempting the manoeuvre, such as to
be able to provide the best possible estimate of the future spin-axis orientation. Since the total illuminated
time on the orbit is ≈ 4000 seconds and the manoeuvre is 1500 seconds, the maximum allowable time for
convergence of the new fit is set to 2000 seconds, assuming a safety margin of 500 seconds for the manoeuvre.
However, taking the full 2000 seconds to converge is undesirable, as there would be little room for aborting
the manoeuvre near the end of it. Lower converge times would thus be desirable. The initiation time is the
time over which measurements are acquired after the eclipse period, before attempting the re-initiation of
the fit using those measurements.

An analysis is performed, testing the converge of the re-initiated fit for βk,3 over different initiation times.
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In this analysis the spin-axis of Envisat is aligned with the +y-/T-axis of the RTN-frame at t = 0. The orbit is
initiated such that the period of darkness is at the ’end’ of a simulated orbit, which has an orbital period of
Tor bi t = 6029s. Table 7.7 presents the achieved mean and maximum error of the fitting process, obtained over
a period of 2000 seconds, initiating the fit using different initiation times, starting at t = 0, directly after the
eclipse period.

Table 7.7: Overview of mean and maximum errors for fitting ωT BF /RT N
RT N for different initiation times, using sinusoids of order 1 and 2

over a period of 2000 seconds. For t = 0 up to t = 2000.

Initiation
Time (s)

Mean Error
(m)

Max Error
(m)

N=1 N=2 N=1 N=2
50 3.007 3.044 6.589 8.268

100 2.912 2.437 6.191 6.696
250 2.655 2.293 5.840 6.497
500 2.281 1.970 4.151 4.967

1000 2.240 1.766 3.686 3.348
1500 2.238 1.743 3.627 3.262
2000 2.238 1.717 3.639 3.033

It may be noticed that relatively long convergence times are required, as the mean error in Table 7.7 can be
observed to decrease until reaching a stable value after 1000 seconds. This is however highly dependant on
the attitude of the target at the time of the initiation, which can be shown by using the same set of initiation
times but changing the starting point of the initiation, allowing a different attitude of the target. If the fit
would have been initiated at t = 1000 s after the eclipse period, instead of directly after the eclipse period, the
required time for convergence would be much lower, as demonstrated in Table 7.8

Table 7.8: Overview of mean and maximum errors for fitting ωT BF /RT N
RT N for different initiation times, using sinusoids of order 1 and 2

over a period of 2000 seconds. For t = 1000 up to t = 3000.

Initiation
Time (s)

Mean Error
(m)

Max Error
(m)

N=1 N=2 N=1 N=2
50 2.327 25.894 4.242 49.923

100 2.252 1.840 3.817 4.013
250 2.243 1.784 3.694 3.684
500 2.241 1.770 3.657 3.484

1000 2.241 1.703 3.641 2.926
1500 2.242 1.723 3.669 3.101
2000 2.241 1.723 3.639 3.047

This results in an undesirable situation, as the attitude of the target is not a controllable value and a risk
is presented when the initiation time is too long. It is therefore decided to abandon the ’re-initiation’ of
the fit and instead calculate the expected rotation using the originally computed set of parameters, β, using
f (TOrbit + t ,β).

Measurement error
Lastly, it is important to confirm robustness of this process with respect to realistic measurement errors.
For this purpose the fits from the previous sections have been recomputed using a measurement standard
deviation of respectively

σq = 0.5, 1, 2 and 5 deg

and a mean of µq = 0 degrees. The results have been summarised in Table 7.9.
The most interesting conclusion that can be drawn from this test is the fact that the method with N = 2
loses its advantage over the method where N = 1 when measurement uncertainties grow. Whereas the higher
order method outperformed the lower order method in the earlier scenarios with high accuracy, it performs
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Table 7.9: Overview of mean and maximum fitting errors for different levels of measurement accuracy.

σq

(deg)
N = 1 N = 2

Mean
Error (m)

Max
Error (m)

Mean
Error (m)

Max
Error (m)

0.5 2.251 3.764 2.154 4.101
1 2.252 3.767 2.223 4.288
2 2.255 3.879 2.445 4.688
5 2.267 4.077 4.130 7.404

worse when the level of measurement noise is increased. It may be observed from Table 7.9 that for accurate
measurements (σq = 0.5 deg) the orders N = 1 and N = 2 exhibit similar performance, and, while the method of
order N = 1 keeps performing at the same level of error, the method with N = 2 shows decreased performance
when measurement uncertainties are increased.

The reason for this is that when additional noise is added, the wobbling is harder to observe in the data
and therefore harder to accurately estimate. It becomes clear that under these conditions the method with
N = 2 loses its value. Since under realistic conditions the lower order method (N = 1) is more accurate or as
accurate as the higher order method (N = 2), the lower order method is identified as most promising solution
for reaching more accurate estimates of the final position. Table 7.9 also shows that the method with order N
= 1 is robust to measurement errors, as the error remains stable, despite an increasing measurement accuracy.

This robustness is likely a characteristic of the least squares method, combined with how the navigation
filter estimates the target rotation. It was explained in Section 5.2.2 that the filter receives measurements of
the attitude, and is required to estimate rotation from these measurements over time. This leads to higher
errors in the instantaneous estimate of rotation ω, but should yield a relatively accurate representation of
the target rotation over the long term, being near to the true value on average. The least squares method is
a perfect tool for estimating this average behaviour, which should thus be a good representation of the true
behaviour, as is indeed observed in the good results obtained from this section.

7.4. Comparing Integration and Fitting
Two methods for estimating the desired chaser state, at the intersection of the spin-axis with the KOS, were
presented in Sections 7.2 and 7.3, a method of integration and a method of fitting. The integration method is
widely used ([86, 90]) and is the current standard method for this type of estimation. It was however shown
that in the presence of uncertainties, this method of integration is inadequate in achieving accurate results.
For this reason the fitting method was introduced and examined, and the results showed that the method has
a potential for delivering a more robust estimate with a higher accuracy.

7.4.1. Impact on guidance
This section evaluates the impact of using both methods on guidance. Focus is on the evaluation of the total
efficiency of the manoeuvre and both the estimated as well as the attained final location.

Phase 2: Final position estimation
First, an assessment is made the stability of both methods, meaning the estimation error behaviour and pre-
dictability in the magnitude of the error. Several simulations were performed to illustrate this point, the
results of which are displayed in Figure 7.22.
Figure 7.22 shows that the estimation error in is rather unpredictable for the integration method, showing
large peaks at random moments, while also showing an inconsistent error magnitude over time. Furthermore
the error that is achieved in a specific run is unpredictable as the error behaviour achieved over all the runs is
very different for each run. For the fitting method, however, it may be observed that the expected error does
not grow or decrease over time, only oscillate. This results in its maximum and minimum accuracy being
predictable.

The introduction of the fitted final state thus results in a more stable final state, as expected. The resulting
individual components of the estimated final state, obtained through both integration and fitting, are shown
in Figure 7.23. This shows that the estimate obtained from fitting is more robust than the estimate obtained
from integration. In fact, the final position error is nearly constant for all runs when using the fitting method,
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Figure 7.22: Error behaviour over time for randomly selected simulations. The error in the case of the integration method is unpredictable
and varies strongly per individual simulation. The error of the fitting method oscillates steadily and does not grow over time, making its
limits predictable.

and the position error has a value of 3.9 meters. This is an improvement over the final position error for the
runs using forward-integration, as those obtain a final state estimate between 2.8 and 13.2 meters.

(a) Individual components of the final state. (b) Final state projected on the KOS.

Figure 7.23: True and estimated final position from 30 random simulations using both integration and fitting method. The red circles
have a radius of 5m and 10m respectively and are centred around the true value. It may be observed that while the estimated state of the
integration method is spread widely, the estimated state of the fitting method is grouped closely together.

One step remains in this comparison, which is the use of both the fitting and integration method in a number
of optimal trajectories. An analysis was performed with a total of 45 separate runs. In 15 of these runs the fit-
ting method was used to determined the final position, in the other 30 runs the integration method was used
for the same purpose. These 30 runs consisted of 2 sets of 15 runs, each set with a different level of uncer-
tainty. The achieved final position error of the chaser is computed for all runs and the results are summarised
in Table 7.10.
This table demonstrates that the choice between the integration and fitting method is not always straight-
forward. If the measurements and the available information about the target inertia are accurate enough,
the integration method may well outperform the fitting method, as demonstrated by Table 7.10. Even for the
integration runs with higher uncertainties, there is a 50/50 chance of being more accurate than the fitting
method. This is however not considered very desirable, as the odds of doubling the error are as likely, if not
more likely, as to halve it.

Furthermore, the table demonstrates the robustness of the fitting estimate. The difference between the
maximum and minimum value for 15 runs of the fitting method is only 0.28 m, while this difference is 4.13 m
for the high accuracy integration runs and an astounding 13.63 m for the integration runs with lower accuracy.
This repeatedly demonstrates that the fitting method is more stable and the error resulting from it more
predictable, despite the fact that the integration might outperform this method is some cases. The integration
method should be avoided if possible, especially over long time-spans.
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Table 7.10: Achieved final position from simulation with the complete GNC architecture, fitted and integrated. The uncertainties on atti-
tude measurements (σq , see Section 5.2.1) and target inertia (εJ , see Section 7.2.3) are included. It may be observed that the performance
of the fitting method is robust and predictable, while the performance of the integration method is highly sensitive to uncertainties.

Integrated
σq = 3 deg
εJ = 2%

Integrated
σq = 5 deg
εJ = 4%

Fitted
σq = 5 deg
εJ = 4%

0.96 0.53 4.80
1.54 2.94 4.82
1.60 3.63 4.88
1.72 3.64 4.91
1.73 3.84 4.93
1.73 4.13 4.93
1.82 4.41 4.94

Final Position Error (m) 1.96 5.03 4.94
2.03 8.12 4.94
2.04 8.59 4.96
2.17 9.23 4.98
2.31 9.33 4.99
2.38 9.44 5.01
5.07 13.95 5.02
5.17 14.10 5.08

Phase 2: Delta V
Figure 7.24 shows the resulting open-loop ∆V values for several runs using the fitted final state estimate,
compared to similar runs from Chapter 6 using the integrated final state estimate. There is no direct link be-
tween the magnitude of the final open-loop (or closed-loop) ∆V and the use of the fitted final state estimate.
However, Figure 7.24 shows that the integrated cases display a ’bulge’ near the end of the trajectory, as well as
showing large differences in the final piece-wise ∆V value, which can either increase steeply, or remain close
to zero. The fitted cases, on the contrary, shows a great coherence regarding their final piece-wise ∆V values.
This robustness is the most significant gain of the fitting strategy. The accuracy of the fitting strategy might
be improved in future experiments by using the integration method over a short period of time at the end of
the manoeuvre.
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Figure 7.24: Open-loop ∆V values for nominal runs with accuracy level Mod2 and Mod3, comparison of runs with integrated and fitted
final state.

Phase 3 rotation

The rotation ωT BF /RT N
T BF is the most important parameter of phase 3, as it also fully determines the desired

state, according to Equation (5.15). The estimate of this parameter can be retrieved from navigation, or
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through fitting method B (see Section 7.3.1). The accuracy of the estimate of ωT BF /RT N
T BF is analysed for a

realistic measurement standard deviation of σt = 5 deg, for which the results are presented in Figure 7.25.
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Figure 7.25: Phase 3 ωT BF /RT N
T BF errors achieved from navigation, a moving mean filter and fitting.

The estimate achieved through fitting method B is both smoother and more accurate than the estimates ob-
tained from navigation, even with the moving mean filter. However, when this fitted value is transformed to
ωT BF /RT N

T BF using q RT N
T BF , this smoothness is lost, as is shown in Figure 7.26. With this it also loses its advan-

tage over the estimate made by the navigation filter + MMF, and experimental results show that the ∆V and
guidance errors are not improved with respect to the case with navigation and moving mean filter.
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Figure 7.26: EstimatingωT BF /RT N
RT N through navigation and fitting.

7.4.2. Accuracy
The accuracy of both methods has been discussed at length in the previous sections, therefore a short sum-
mary is sufficient. Section 7.2 showed that the accuracy of the integration method is dependent on a number
of parameters, respectively Jtar, ω0 and q0, where the effect of q0 is negligible compared to the other two.
From Table 7.4 it was established that an accurate estimate of the spin-axis location can only be found from
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the combination of very accurate initial conditions, low inertia uncertainties and a short integration time.
When considering the total manoeuvre time of 1500 seconds and reasonable uncertainties inω, J of 0.5 deg/s
and 4%, the expected accuracy is 5-8 meters with a standard deviation of approximately 2 m (see Table 7.10).

The fitting method was discussed in Section 7.3 and is almost completely uncoupled from initial param-
eters and the estimate of inertia J , as these only influence the prior estimate of the fitting parameters β in
Equation (7.7), but do not cause problems for the fitting process. The results for this method under realis-
tic measurement conditions were presented in Table 7.9 and the expected accuracy was established to be
4-5 meters with a standard deviation of 10-20cm (see Table 7.10). This is still the largest contributor of final
position error, however, more accurate than the integration method and, more importantly, less sensitive to
uncertainties.

7.4.3. Advantages and Drawbacks
In conclusion to this chapter, all advantages and disadvantages that were identified for both methods are
listed in a single overview.

Integration Method
A lot of disadvantages of this method were identified in the previous sections, along with several advantages
of this method. To summarise:

Advantages:

• Always works when an estimate ofωT BF /EC I
T BF , q T BF

RT N is available. No initiation time is required, allowing
to use this method without the need for a dedicated time for measurements prior to the approach.

• This method is a good reflection of the true dynamics and if the estimation of both these parameters
would be perfect, the integration would result in a perfect representation of the truth.

Drawbacks:

• Requires very high accuracy of ωT BF /EC I
T BF , q T BF

RT N to yield accurate results. Estimates of ωT BF /RT N
T BF and

q T BF
RT N are certain to contain uncertainties.

• Suffers from high errors especially over large integration times, as uncertainties compound over time.

• Highly sensitive to uncertainties in J . The inertia matrix J also contains uncertainties (see Table 2.1)
and has an large influence on the accuracy of the integrated dynamics, as was shown in Section 7.2.3.

• There is little correlation between error from uncertainties J andω.

• The behaviour of the error is unpredictable and its magnitude is completely dependant on the acciden-
tal conditions and accuracy of the available measurements.

Fitting Method
The fitting method was presented as an alternative for the integration, which is current standard. Also for this
method several advantages and drawbacks were identified. To summarise:

Advantages:

• This method is independent from J , which is a large advantage when working with uncooperative tar-
gets, as those usually exhibit large inertia uncertainties.

• The fitting method does not require an instantaneous estimate of the current dynamics in the form
of ωT BF /RT N

T BF . This means that the method is not sensitive to any instantaneous errors present in the
measurements of ω. Therefore, if the expected rotation of Envisat is assessed prior to the real mission,
a good estimate of the expected amount of final position error can be made.

• Predictable error behaviour. The estimate of the final spin axis has a predictable amount of error, which
is constant over time. Furthermore, subsequent estimates of the final position are very close together,
always guiding the satellite to the same point and saving some ∆V .

Drawbacks:
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• Requires (long) period for initiation prior to the approach to allow convergence of the fit. This period is
recommended to be one full orbit, as this provides more than enough data, allowing for a more reliable
fit.

• Uncoupled from and thus not a good reflection of the true dynamics. Even if the measurements would
be perfect, some error would still be retained when using this method. This is inherent to this method,
as it does not consider the target dynamics in any way. Furthermore, a sinusoid is not a completely
accurate representation of rotations with the triaxial symmetry, obtained when all three diagonal com-
ponents of J are different in magnitude [51].

• Contrary to the integration method, where accuracy increased when the integration time was decreased,
the accuracy of the fitting method is not improved as the remaining time becomes smaller.



8
Trajectory design

This chapter is concerned with the design of an optimal trajectory for the spacecraft to follow. Optimality,
in this context, concerns the optimality of lighting conditions and mission geometry, such that optimal per-
formance of the vision-based pose estimation system may be achieved. Lighting conditions, or illumination
conditions, are defined from the angle between the camera boresight axis and the incoming solar rays. When
then sun is positioned directly behind the camera, these two vectors are aligned and the angle between them
is zero. This scenario is considered the most desirable, as all the visible surfaces of the target spacecraft are
illuminated in the camera images. Therefore, whenever lighting conditions or illumination conditions are
discussed, the angle between the camera boresight vector and the outgoing vector from the sun to the cam-
era is considered. This angle is represented by χcam. An important parameter in the design of these orbits
is the sun-angle β, which is defined as the angle between the vector pointing from the sun to earth and the
target orbit normal.

Section 8.1 presents some tools that can be leveraged in the design of such an optimal trajectory. Sec-
tion 8.2 discusses how the expected orientation and rotation of the target influence the optimal design. Sub-
sequently, Section 8.3 shows how to evaluate the lighting conditions during the three parts of the reference
trajectory (see Section 2.1), and how to use those conditions in the design of an optimal orbit. Finally, the per-
formance of the GNC system for an optimally designed trajectory is evaluated in Section 8.4, demonstrating
the benefits of such a trajectory.

8.1. Design Tools
This section continues to build on the ROE parameterization presented in Section 3.3.3, and shows how this
representation of the 3D motion can be used to design relative orbits with particular beneficial geometries
relatively easily. These beneficial geometries may then be employed in the design of optimal trajectories.

8.1.1. Angle with target orbital plane
The first property to discuss is the angle of the relative orbit with respect to the orbital plane. This property
is particularly useful when designing the passively safe, closed observation orbit for the first phase of the
mission (see Section 4.2). In this phase the satellite is uncontrolled, meaning that the selected relative orbit
fully determines the viewing conditions in this phase.

The angle between the relative orbital plane is represented by ρ, and is visualised in Figure 8.1. Figure 8.1b
shows that for passively safe relative orbits, where δe ∥ δi and δa = δλ = 0 (see Section 3.3.3), the angle ρ,
between the planes of the target orbit and the relative orbit, can be defined as

tan
(
ρ
)= ∣∣∣∣ δi

2δe

∣∣∣∣ → ρ = arctan

(∣∣∣∣ δi

2δe

∣∣∣∣) (8.1)

which also represents the angle between the target orbit normal vector and the relative orbit normal vector.

As the camera travels the relative orbit, always pointing at the target, the camera boresight axis has an angle
with the target orbital plane that varies between +ρ and -ρ. This can be confirmed by investigation the angle

113
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(a) 3D view. (b) Side-view of the N-T plane.

Figure 8.1: Angle ρ, between the orbital plane and the relative orbital plane. The side-view is obtained by letting δa = δλ = 0 in Figure 3.5.

of the camera with respect to the target orbital plane, plotted in Figure 8.2 over the course of a single orbit for
fixed aδe and varying aδi . The corresponding values of ρ are presented in Table 8.1.
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Figure 8.2: Angle of the camera with respect to the target orbital plane during one full orbital period. aδe = 50 and ϕ,ϑ = 0◦ (see Equa-
tion (3.20)). The coloured lines represent orbits with aδi between 30 and 80, increasing with steps of 5 in the direction of the arrow. The
red-dotted lines indicate the eclipse period.

Table 8.1: Angle ρ for the camera angles presented in Figure 8.2. aδe = 50.

aδi (m) 30 35 40 45 50 55 60 65 70 75 80

ρ (deg) 16.7 19.3 21.8 24.2 26.6 28.8 31.0 33.0 35.0 36.9 38.7

Comparing Table 8.1 to Figure 8.2, it can be observed that the angle between the camera and the orbital plane
is stable at a value of +ρ for approximately 1800 s, then changes sign over the course of approximately 1000 s
and continues to be stable at -ρ for another 1800 s. Since the angle between the boresight axis and the target
orbital plane is relatively constant at either +ρ or -ρ over extended periods of time, the angle ρ presents an
important design value for influencing the lighting conditions on the relative orbit. The angle ρ can be used
as a design parameter to enable alignment of the relative orbital plane with the incoming solar rays. This can
be achieved by matching ρ with the sun-angle, β, which is constant for a sun-synchronous orbit.
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8.1.2. Phase angles
The position of the chaser spacecraft in the relative orbit is determined by phase angles ϕ and ϑ, as defined
in Equation (3.20). Equation (3.20) shows that when δa and δλ are equal to zero the relative position is
completely defined by both phase angles and the argument of longitude u, which describes the position of
the target in its absolute orbit (see Equation (3.16)). In order to meet the condition for passive safety defined
in Section 3.3.4, the relation between the two angles is defined as ϕ = ϑ + kπ, with k an integer. This means
that the two angles are necessarily combined and serve as a single design variable together. The phase angles
can be used to influence the lighting conditions during the first phase of the rendezvous and to define the
starting position of the optimal manoeuvre in the second phase of the rendezvous process (see Section 4.2
for definitions of the phases).

The phase angles, ϕ and ϑ, can be used to define the optimal position of the chaser. Which position on
the orbit is optimal depends on the chosen reference, two of which are available. First, the sun and, second,
the target orientation, which will both be discussed later. The exact trajectory and viewing conditions depend
strongly on the choice of ϕ/ϑ, which is visualised in Figure 8.3.

(a) Projection on target orbital plane. (b) 3D view

Figure 8.3: Reference orbit geometry with respect to target absolute orbit around earth (blue). The four markers show the location of a
spacecraft for four different values of ϕ,ϑ, separated 90◦ from each other. The R- and N- axes of the RTN frame are visualised in black.
Considering that the sun and the target both have a constant position/orientation in the inertial frame, the four markers create very
different lighting conditions for the camera and view the target from different perspectives during the illuminated time on the orbit.

Figure 8.3 shows how the reference orbit is oriented with respect to the absolute orbit and how the space-
craft moves in the reference orbit. This shows how the orientation of the reference orbit is fixed to the R-axis,
its shortest axis always aligned with R. It can be imagined that by choosing the phase angles ϕ,ϑ, various
lighting conditions and viewing geometries can be achieved, as the target and the sun are at a fixed orienta-
tion/position in the inertial frame while the RTN frame, and subsequently the reference orbit, rotate in the
inertial frame.

Sun phase angle
Similar to how the phase angles between the target and chaser satellites were defined in Equation (3.20), a
phase angle between the target and the sun can be defined. Considering that the relative orbit is not a ’real’
motion, but rather a representation of the relative motion of target and chaser in their absolute orbits from
the perspective of the target, a similar representation may be constructed of the relative motion between the
sun and the target from the perspective of the target. The component of distance is left out of this definition,
and only a relative angular position of the sun with respect to the target is defined in the form of a single
phase angles ϕsun similar to ϕ, defined by Equation (3.20). As the sun is continuously on the same side of the
target orbital plane, defining ϑsun would be similar to defining a constant elevation angle. Defining this angle
would be useless, as it is independent from u and already completely defined from sun-angle β.

The definition of the phase angle ϕ in Equation (3.20) assumes that the chaser position is aligned with
the negative R-axis of the target RTN frame when ϕ = u, as shown in Figure 3.5. Similarly, the sun phase
angleϕs can be defined such thatϕsun = u when the component of the inverse sun vector in the target orbital
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plane, pointing from the target to the sun, is aligned with the negative R-axis of the target RTN frame. This is
visualised in Figure 8.4.

Figure 8.4: Visualisation of the definition of sun phase angle ϕsun. Due to the continuous and constant rotation of the RTN frame, the
vector pointing from the target to the sun is subsequently aligned with +T when u = ϕsun + π/2, with +R when u = ϕsun + π and with -T
when u = ϕsun -π/2.

If the components of the unit vector pointing from the target towards the sun, are examined, it can be de-
duced that the inverse sun vector is aligned with -R when u ≈ 340, shown in Figure 8.5. This means that the
sun can be said to have a phase angle of ϕsun = 340, or -20, degrees.
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Figure 8.5: Components of the unit vector pointing towards the sun, in the RTN-frame.

Spin-axis phase angle.
The same way that ϕ and ϑ represent the chaser position on the relative orbit, and ϕsun represents the orien-
tation of the sun, a single phase angle ϕspin can be used to represent the direction of the target spin-axis in
the context of the relative orbit. Let

r̂spin =
δrR,spin

δrT,spin

δrN ,spin

 (8.2)
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represent unit the vector that defines the pointing direction of the target spin-axis in the RTN-frame. Then
the phase angle ϕspin can be defined (similar to ϕ in Equation (3.20)) from

δrr,spin =−cos(u −φ)

δrt ,spin = sin(u −φ)
(8.3)

tan(u −φ) = sin(u −φ)

cos(u −φ)
= rt ,spin

−rr,spin
→ φ= u −atan2(rt ,spin,−rr,spin) (8.4)

where u is the mean argument of latitude of the target orbit. The definition is visualised with respect to the
reference orbit in Figure 8.6, which shows that the definition is parallel to the definition of ϕ as shown in
Figure 3.5.

Figure 8.6: Definition of the spin-axis phase angle φ. The spin-axis vector pointing from the target is subsequently aligned with +T when
u ≈ ϕsun + π/2, with +R when u ≈ ϕsun + π and with -T when u ≈ ϕsun -π/2. Contrary to the sun vector in Figure 8.4 this alignment is
not perfect due to the wobbling motion of the spin-axis in the inertial frame, resulting in the use of ≈ rather than =.

8.2. Spin-axis geometry
The movement of target spin-axis, following from its attitude dynamics, presents an opportunity to optimise
the trajectory from a point of mission geometry. Positions on the relative observation orbit in phase 1 might
be identified that naturally provide more, or less, favourable initial conditions for the optimal manoeuvre to
start, considering that the end point of the manoeuvre is fully determined by the spin-axis movement. The
definition of a spin-axis phase angle ϕspin in the previous section allows the use of phase angles ϕ and ϑ to
define a suitable initial position on the relative orbit of phase 1 to begin the optimal manoeuvre of phase 2,
as ϕspin allows a metric for comparison. The following hypothesis is constructed:

The most optimal manoeuvre is expected when the phase angle of the spin-axis (ϕspin) is equal, or
similar, to the phase angle of the satellite in the relative orbit (ϕ).

This hypothesis is based on the following line of reasoning.

• First, the spin-axis is assumed to have a constant orientation in the inertial frame. As the RTN frame
is rotating with respect to the inertial frame (see Figure 7.16) the projection of the spin-axis travels a
virtual circle in the R-T plane as visualised in Figure 8.6. This creates a virtual mean motion in the RTN
frame, from the perspective of the target. The magnitude of this motion is the same as the rotation of
the RTN frame with respect to the inertial frame, 360 degrees per full orbit.
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• Second, the chaser completes one full revolution on the relative orbit for one full orbital period of the
target in its absolute orbit. If the relative position of the chaser were projected on the R-T plane, it
would similarly complete a virtual circle in the R-T plane over the course of one orbital period. In this
case the same virtual mean motion is found, as was found for the spin-axis projected on the R-T plane.

The validity of this reasoning may be proven by observing the (x,y) components of the spin-axis and
chaser position vectors over the course of one orbital period. Figure 8.7 presents the value of x/

√
x2 + y2

and y/
√

x2 + y2 for both the spin-axis and the chaser position, where (x, y, z) are the components of the
vector describing the position of the chaser and the orientation of the spin-axis in the target RTN frame.
It may be observed that these lines do not resemble perfect sine waves, which would be the case if the
mean motion were constant, however, approximate alignment of the X/R and Y/T components of spin-
axis and chaser position may be observed throughout one orbit, if alignment at t = 0 is assured.
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Figure 8.7: Value of x/
√

x2 + y2 and y/
√

x2 + y2, with (x, y, z) the components of the vector describing the position of the chaser and
the direction of the spin-axis in the target RTN frame. These are not physical quantities and are merely intended to represent alignment
of the projection of the vector on the R-T plane with a specific axis. A value of +1 means perfect alignment with the positive axis and -1
perfect alignment with the negative axis. For example, the X-component of both chaser position vector and spin-axis orientation vector
are aligned with the +R axis around 2300 s.

• Third, the optimal manoeuvre, due to its definition (see Equation (5.6)), should follow the natural or-
bital motion as much as possible. Therefore it is likely to resemble a closed relative elliptical orbit [90].

• Fourth, if both the observation orbit in phase 1 and the optimal manoeuvre from phase 2 resemble a
closed elliptical orbit around the target, a minimal ∆V is logically achieved through a minimal alter-
ation of the ROE, as all changes in ROE have a cost [26].

• Fifth, the manoeuvre lasts 1500 seconds, as discussed in Section 4.2. The manoeuvre starts from a point
on the phase 1 observation orbit at t = 0. If no control were applied, the chaser would simply remain
in this observation orbit and reach state X1500,free after 1500 seconds. If the goal is a minimal change
in ROE, the final state of the controlled optimal manoeuvre X1500,opt should, logically, be as close to
X1500,free as possible.

• Sixth, the final position of the manoeuvre is fully defined by the location of the spin-axis (see Equa-
tion (5.9)) and the radius of the KOS. This intersection of the spin-axis vector with the KOS should thus
be as close to X1500,free as possible at the end of the optimal manoeuvre. It is assumed that this minimal
separation is achieved when the projections on the R-T plane of r1500,free and r̂spin (see Equation (8.2))
are aligned.

• Seventh and final, it was reasoned in the first and second step that the mean motion in the R-T plane of
the projections of both chaser position and spin-axis vector are equal. Therefore, an alignment of the
two at t = 0 should lead to alignment at t = 1500, at least approximately.

The hypothesis is tested by calculating the expected open-loop∆V values for a complete range forϕspin from
0 to 360 degrees, with intervals of 1 degree, using a fixed value of ϕ,ϑ. The open-loop trajectory is computed
once, resulting in a single expected open-loop∆V value. For eachϕspin this computation is performed 5 times
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and random noise with a very small amplitude is added to the initial conditions to prevent the sensitivity
of the guidance algorithm to initial conditions discussed in Section 5.1.3 from influencing the results. The
following settings for the relative orbit were adopted:

ϕ=ϑ= 0◦

aδa = aδλ= 0

aδex = 50

aδix = 60

aδey = aδi y = 0

which simply define a convenient and passively safe relative orbit. The initial argument of latitude u, at the
start of the manoeuvre, is 0.7417 radians or 42.5 degrees. The resulting ∆V for all trajectories is shown in
Figure 8.8 and the orientation of the most and least optimal spin-axis orientations are are visualised in the
context of the reference orbit in Figure 8.9a.

Figure 8.8: Open-loop ∆V for complete range of spin-axis phase angles φ. Green and red regions indicate the most and least optimal
values of φ. The results show the sensitivity with respect to the initial conditions (Section 5.1.3), but also show a clear pareto front with
optimal values.

Figure 8.8 shows that the hypothesis should at least partially be rejected, as the optimal configuration of the
spin-axis is found around φ = 30 deg, which is not equal to the chaser phase angle ϕ (= 0 deg). However,
Figure 8.8 shows that the total ∆V for the manoeuvre is definitely correlated to the spin-axis phase angle
ϕspin. The most optimal configurations of the spin-axis are found close to the value of ϕ, centred around an
optimal value at ϕspin ≈ 30 deg. The spin-axis phase angle ϕspin should thus be relatively close to the chaser
phase angle ϕ to allow the most optimal manoeuvre.

The differences in ∆V are not very significant and range from approximately 0.21 m/s around φ = 30 deg
to approximately 0.26 m/s around φ = 190 deg, which is only a slight increase and likely negligible when the
total mission ∆V is considered. However, the difference between minimum and maximum ∆V are depen-
dent on the tilt angle of the spin-axis with respect to the orbital momentum axis N (see Section 2.2). The
current simulation was performed with a tilt angle of 15◦, resulting in small differences between maximum
and minimum ∆V . When the tilt angle is 0 degrees (spin-axis aligned with N) there is no difference between
minimum and maximum, while at a value of 90 degrees (spin-axis perpendicular to N) the difference be-
tween maximum and minimum ∆V increases to almost 100% (0.18 - 0.34 m/s). Therefore it is recommended
to characterise the expected orientation of the spin-axis more accurately before commencing the mission.

The trajectories that belong to the pareto front of optimal solutions in Figure 8.8 are visualised in Fig-
ure 8.9 to further investigate their geometry.

Figure 8.9a shows that optimal configurations of the spin-axis at t = 1500 (green area) are situated just
’ahead’ of the spacecraft initial position (orange cross) in the direction of motion. Additionally, Figure 8.9b
shows that the reference trajectories with a final position in this green area require a smaller change of the
relative orbital plane compared to those with a final position in the red area. This is attributed to the safety
constraints, requiring a larger change in relative orbital plane to remain outside the KOS for the trajectories
with final position in the red area. This required change of relative orbital plane is the main contributor to the
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(a) Projection of relative observation orbit and most and least optimal spin-
axis and trajectories, on the R-T plane. The green and red regions match
those of Figure 8.8 and the trajectories that end in these regions are coloured
accordingly. Cross indicates starting position for the manoeuvre.

(b) Optimal reference trajectories for the complete range of φ, projected on
the T-N plane. The green and red trajectories are the same as in Figure 8.9a.
An approximation of the relative orbital plane of the trajectories is made by
means of a straight line through their beginning and end point.

Figure 8.9: Projection on the R-T (left) and T-N planes (right) of the trajectories achieved in the best and worst scenarios identified in
Figure 8.8.

increased∆V and is logically increased when the tilt-angle increases. This may be imagined by visualising the
blue band on the KOS in Figure 8.9b more towards the middle of the KOS. Consequently, reference trajectories
to the red area are required to travel completely around the KOS and subsequently increasing the total ∆V .

In order to achieve the optimal initial conditions discussed in this section, in-plane reconfiguration would
be required, changing the chaser phase angles ϕ,ϑ. This is possible with simple impulsive manoeuvres, at
little∆V cost, however, over extended periods of time (i.e. multiple orbits) [26]. The total∆V costs for optimal
in-plane transfers using two- or three-impulse manoeuvres were calculated by Gaias and D’Amico [26] and
are expected in the order of 0.03 - 0.07 m/s. Possible benefits of this reconfiguration depend entirely on the
spin-axis orientation. With the current 15◦ the differences between maximum and minimum ∆V are only
0.05 m/s, thus the cost of reconfiguration would be the same as the gain, rending such a reconfiguration
useless. Therefore, reconfiguration is beneficial to the total expected mission ∆V only when the tilt-angle is
sufficiently large.

8.3. Lighting conditions
Now that optimality with respect to mission geometry is explored, the optimality of the trajectory should
be evaluated with respect to lighting conditions. As explained before, this considers the orientation of the
camera boresight axis with respect to the incoming sun vector and is considered optimal when this angle is
minimal, such that the sun is positioned directly behind the camera. This angle is influenced in different
ways in the three different phases of the rendezvous process (see Section 4.2).

In phase 1 of the rendezvous process, the magnitude of this angle, χcam, is fully determined by the closed
relative observation orbit that was selected, allowing the use of ρ andϕ,ϑ together withϕsun (see Section 8.1)
to design this observation orbit optimally. In the second phase the angle χt extcam is fully dependant on the
optimal manoeuvre, of which only the initial conditions can be controlled by manipulating ϕ,ϑ and t0 of the
manoeuvre. The third phase is completely dependant on the spin-axis, as the chaser is required to approach
the target along its spin-axis, as described by Equation (5.15). Depending on the orientation of the spin-axis,
which cannot be controlled, highly unfavourable lighting scenarios might arise.

8.3.1. Phase 1
The optimal design of the trajectory in the first phase of the rendezvous process is comprised of two steps.
First, the optimal value of the angle ρ must be calculated and, second, the corresponding optimal values for
ϕ,ϑ must be determined.

Angle of the relative orbital plane
The angle ρ was defined in Section 8.1 and can be used to align the reference trajectory with the incoming
solar rays. The angle of the sun vector with the normal of Envisat’s sun-synchronous orbit is ≈ 62◦. The angle
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ρ should then be assigned an optimal value of

ρ = 90◦−62◦ = 28◦

The optimal ratio δi /δe can then be derived from Equation (8.1) and has a value of approximately 1.06, with
δi > δe, and an orbit with aδi = 60 and aδe = 55 is selected. This orbit has

δi /δe ≈ 1.09

which is close to the optimal ratio, and exhibits a minimum and maximum inter-satellite distance of respec-
tively

dmin = aδe = 55m

dmax =
√

(2aδe)2 + (aδi )2 =
√

1102 +602 ≈ 125m

When using a passively safe orbit with parallel or anti-parallel e-/i-vectors, the relative orbital plane is tilted
along the R-axis (see Figure 8.1). As the orientation of the R-axis in the inertial frame changes throughout the
orbit, as shown in Figure 7.16, there are only two moments where the orbital plane can be perfectly aligned
with the incidence angle of the solar rays. These two moments are found to be near the poles, where u = 90 deg
(north pole) and u = 270 deg (south pole). More correct would be to define this moment for R perpendicular
to the ecliptic plane, however, the choice is made to use the celestial poles, as these have well defined values
of u, simplifying the analysis.

Since there are two poles, there are two optimal configurations, defined by +ρ and −ρ. However, during
eclipse the camera is not operational and the chaser cannot safely perform the manoeuvre. The eclipse period
is found between u ≈ 280 deg and u ≈ 40 deg (see Figure 8.2). As the south pole is reached at u = 270 deg,
this means that the optimal viewing conditions can only be exploited for a relatively short period of time, not
sufficient to accommodate a 1500 second manoeuvre. This leaves the north pole, and accordingly +ρ, as only
viable option.

Chaser phase angles
Despite the orientation of the relative orbit being fixed, the momentary lighting conditions still depend on the
location of the chaser in the orbit, as explained in Section 8.1.2. It was found that the optimal aligned of the
relative trajectory was for ρ ≈ +28◦, aligning the reference trajectory with the incoming solar rays above the
north pole. Figure 8.10 shows the geometry of this optimal relative orbit above the north pole, immediately
identifying the optimal and least optimal position of the camera in this situation.

Figure 8.10: Top-view of the geometry created by the target orbital plane, relative orbital plane and sun position, projected on the ecliptic
plane. The target is located above the north pole, at the centre of the reference orbit, marked by the white star. This geometry is a
snapshot of the situation at u = 90◦.

The optimal position in Figure 8.10 is marked by a green cross and the sun-camera angle, χcam, is approx-
imately 0 degrees at this instance. At the least optimal location χcam ≈ 180 degrees, and the sun is directly
in front of the camera. Both the optimal and least optimal locations are found at the apsides of the relative
orbit. The optimal position can be achieved using a parallel alignment of δe and δi , meaning ϕ = ϑ (see
Section 3.3.4), with ϕ = ϑ = 0◦. The least optimal position is found for ϕ = ϑ = 180◦.
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As the target orbital plane is not at an exactly right angle with the ecliptic plane, the optimal configuration
identified in Figure 8.10 does not occur exactly above the north pole, as already shortly discussed at the end of
the previous section. In order to select the most optimal value ofϕ,ϑ, the magnitude of the sun-camera angle,
χcam, was examined over the course of one orbital period, for the previously determined optimal ratio δi /δe
and a range of ϕ,ϑ from -30 deg to +15 deg in steps of 5 degrees. The results of this analysis are presented in
Figure 8.11,

Figure 8.11: Sun-camera angle over the course of a single orbit, with δi = 60 and δe = 55. The red markers after t = 4000 identify the
eclipse period. The thick arrow indicates the values of ϕ,ϑ represented by each line, starting with -30◦ at the bottom up to +15◦ at the
tip of the arrow, following steps of 5◦ per line. The line for ϕ,ϑ is coloured blue and identified as reference. The black lines indicate a
magnitude of χcam of 30 and 40 degrees respectively.

Figure 8.11 shows that she sun stays behind the camera (sun-camera angle < 90 deg) the entire orbit for
all selected values of ϕ,ϑ. The thresholds of 30 and 40 degrees are selected as they are assumed to provide
optimal lighting conditions. In the case ofϕ,ϑ = 0 deg, the sun-camera angle stays below 30 degrees for more
than 1300 seconds and below 40 degrees for more than 2400 seconds, which is more than half of the useful
orbit, excluding eclipse time. Using this case as a reference, it can be observed that increasing the value of
ϕ,ϑ yields less desirable results, as the magnitude of the sun-camera angle is increased during almost the
complete orbital period, and also the time period over which the magnitude is below 40 degrees is decreased.

Decreasing the value ofϕ,ϑ yields promising results, as the sun-camera angle magnitude is lower than for
the reference case withϕ,ϑ = 0 during most of the orbital period. A minimum value of nearly 0 deg is achieved
for ϕ,ϑ between -10◦ and -30◦, and the sun-camera angle stays below 30 degrees for a longer period of time.
However, as the value ofϕ,ϑ decreases further to -25◦ and -30◦ a more rapid increase of the sun-camera angle
is found at an earlier time. This results in reaching higher values earlier in the trajectory and strongly reducing
the times at which the angle is below 30 or 40 deg with almost 1000 s between the reference case where ϕ,ϑ
= 0◦ and the case where ϕ,ϑ = -30◦. The choice of ϕ,ϑ therefore becomes a design choice, depending on the
expected camera performance for different sun-camera angles.

Behaviour of the sun-camera angle
Considering the geometry expressed in Figure 8.4, it can be imagined that, after completing a full orbital pe-
riod, the virtual motion of the sun from the perspective of the target may be described by a cone. The relative
orbit of the chaser instead describes an elliptical plane from the perspective of the chaser. A completely op-
timal alignment of camera and sun is only possible when these virtual planes intersect, which is the case for
less than half of the orbit, as demonstrated in Figure 8.12. This shows the plane that is formed by the tra-
jectory of the chaser around the target as well as the cone that is formed from the virtual motion of the sun
around the target. Therefore, in the best case, the camera is aligned with the solar rays for approximately half
of the time in orbit and in the worst case for none of it.
Since the camera shall always be pointed at the target, the camera boresight axis is necessarily found within
the relative orbital plane. Similarly, the sun-vector is always found in the cone described by the virtual motion
of the sun around the target. The resulting relative motion of both camera and sun vectors is visualised in
Figure 8.13 for ϕ,ϑ = 0◦.
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Figure 8.12: The surfaces created by the motion of respectively the chaser (blue) and the sun (red) around the target. The chaser motion
describes a closed elliptical plane around the target, which is described by its relative orbit. The virtual motion of the sun described a
’cone’ around the target, as may be visualised from Figure 8.4. Vectors describing the camera pointing are in the blue plane, while vectors
describing the sun position are found in the red plane. Alignment of these vectors, and subsequently a minimisation of sun-camera angle
χcam, can only occur upon the alignment of these two planes.

The motion that can be observed in Figure 8.13 can be explained from the different planes in Figure 8.12
as well as the velocity of the virtual motion of the chaser and sun around the target in the RTN frame. The
sun travels with a constant motion due to the near-circular absolute target orbit. This can be observed from
Figure 8.5, where the components of the unit vector produce a smooth sine wave. The camera, however,
travels slower near the relative apsides and faster when it is near the R-axis, which may be observed from
Figure 8.7, where the projection of the motion on the R-T is very unlike a sine wave.

As the orientation of the sun behind the camera changes continuously, both in the R-T and T-N planes.
This causes the Envisat to be illuminated from different angles continuously from the perspective of the cam-
era. This motion could both be beneficial or disadvantageous, something which will have to be shown in
experiments that employ real pose estimation architectures.

8.3.2. Phase 3
It is useful to discuss the lighting conditions of phase 3 before phase 2, as the third phase is mainly concerned
with the illumination conditions of the spin-axis, along which the chaser approaches the target in this third
phase of the rendezvous process. It is shown that the lighting conditions of the trajectory in phase 2 are
fully determined by the lighting of the relative orbit from phase 1 and the lighting of the spin-axis. As such a
discussion of the spin-axis illumination, especially relevant for the third phase of the rendezvous process, is
a logical next step.

Spin-axis illumination
Similar to the definition of χcam, the lighting conditions on the spin-axis are described by the angle between
the negative spin-axis pointing vector and the sun pointing vector, represented by χspin. The spin-axis point-
ing vector is the vector pointing outward from the target along its axis of rotation, described by unit vector
ω̂T BF /RT N

RT N . The spacecraft approaches the spin-axis along the spin-axis vector, meaning that the camera is
approximately aligned with this vector in the opposite direction. Therefore the angle between the negative
spin-axis pointing vector and the sun vector is approximately equivalent to the sun-camera angle that is ex-
perienced by the chaser in the third phase of the rendezvous.

Three scenarios for the orientation of the spin-axis in the inertial frame were described in Section 2.2,
where the tilt-angle, between the spin-axis and N, was assumed to have a value of 0, 15 or 30 degrees. Due
to the nutation, described in the same section, the spin-axis tilt-angle can be in any direction. In the inertial
frame, the angle with N is thus fixed, while the angle with the Earth rotation axis Z (see Figure 2.4) is allowed to
vary. This nutation has a period of several days, therefore the lighting conditions on the spin-axis during the
approach are assumed constant, as this approach is expected to last less than 2000 seconds (see Section 4.2).
The resulting lighting conditions on the spin-axis, in the form of χspin are presented in Figure 8.14.

Figure 8.14 shows that the angleχspin depends on the tilt-angle between the spin-axis and N. If this angle is
0, the spin-axis is constant with an angle of β = 62◦, the sun-angle experienced by the sun-synchronous orbit.
It is clear that the scenario with a 30 degree angle would be preferred, as the sun-angle χspin reaches lower
values, however, the tilt-angle is however not a parameter which can be controlled. Furthermore, Figure 8.14
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Figure 8.13: Time-lapse of pointing vectors from the sun and camera over the course of a single orbit. Vectors are plotted at a fixed
time interval of 200 seconds and aδi = 60, aδe = 50, ϕ,ϑ = 0◦. The sun vector is aligned with the camera vector at the instant marked
with t0. Relative to the target, the sun vector virtually travels faster than the chaser and gets ’ahead’ of the camera vector, leading to a
misalignment of the two vectors in the R-T plane around t/Tor bi t = 0.25. The camera vector then ’catches up’ and, around t/Tor bi t =
0.5, the vectors are again approximately aligned when projected on the R-T plane. However the relative orbit has passed through the
orbital plane around t/Tor bi t = 0.25, and the N-component of the camera vector becomes opposite that of the sun-vector. The reverse
of this motion happens on the second half of the orbit, aligning the vectors again at t/Tor bi t = 1.
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Figure 8.14: Mean spin-axis sun-angle χspin over a range of spin-axis phase angles ϕspin.

shows the mean value of the angle χspin, however, the actual value of χspin is not constant, but oscillating
between ±10 degrees of the mean value due to the wobbling motion. This can be seen in Figure 8.15.

Finally, Figure 8.14 shows that the minimal value of the χspin is not achieved when ϕspin is equal to ϕsun,
which might be expected, as theoretically this should mean an alignment of the sun vector and the spin-
axis vector. Repeating the analysis of χspin with the wobbling removed, learns that this ’mismatch’ can be
completely attributed to the wobbling of the spin-axis. When the rotations around the other two principle
axes are set to 0, the wobbling due to inertia is largely removed and the minimal value of χspin is found at
ϕspin = 340◦, or -20◦, which is consistent with the sun phase angle that was identified in Section 8.1.2.

It can be concluded that the expected attitude dynamics of the Envisat are favourable. If the spin-axis
were directed in the opposite direction, values of χspin of 120◦ to 140◦ would be encountered. Furthermore,
in the absence of the nutation, the spin-axis, in the worst case, could have a continuous χspin of 68◦ or 84◦, the
maximum values found in Figure 8.14. However, with the nutation acting on the target spin-axis, a desirable
time for approach may be awaited, when the angle χspin is closer to its minimum achievable value of 54◦ or
38◦, identified in Figure 8.14 for respectively a 15◦ and 30◦ tilt-angle. Once more it may be concluded that a
more accurate characterisation of the Envisat spin-axis orientation, prior to the mission, is desirable.

8.3.3. Phase 2
The final part of the rendezvous process to consider is the optimal trajectory in the second phase. This tra-
jectory resembles part of a closed, elliptical orbit [91], and is expected to closely follow the relative orbital
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plane of the passive orbit. This was confirmed in Figure 8.9b, where it was shown that for the most optimal
manoeuvres, the orbital plane of the optimal trajectory is close to the orbital plane of the relative orbit from
phase 1.

This is a desirable property since it implies that lighting conditions during the optimal trajectory in phase
2 are similar to the relative observation orbit from phase 1. The facts are that, first, the sun-camera angle at
the beginning of the phase 2 trajectory, χcam,t0 , is completely defined by the selected departure point from
the orbit in phase 1 and, second, the sun-camera angle at the end of the trajectory, χcam,t f , equals the value
of χspin. All intermediate sun-camera angles, χcam,t , are expected to have a magnitude greater than χcam,t0

but smaller than χspin.

This expectation can be tested, and for this purpose an optimised design of the optimal trajectory is con-
structed. In this optimised design the relative orbit is defined from angle ρ = 28 deg, leading to δe = 55, δi = 60.
Furthermore, the phase angles ϕ,ϑ are set to 0◦, which was determined to yield desirable sun-camera angles
in phase 1 (see Figure 8.11). Finally, ϕspin is set to 0◦ for a tilt-angle of 30◦ and to 30◦ for tilt-angles of 15◦ and
0◦, which were determined the optimal values for minimising χspin (see Figure 8.14). Phase 2 was initiated at
u = 42◦, setting t = t0 at this point. The lighting conditions for this trajectory are shown in Figure 8.15. This
confirms the expectation that χcam,t0 χcam,t < χspin.
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Figure 8.15: Angle of the sun-vector with the camera boresight vector in the optimal trajectory and with the spin-axis. Tilt angle of the
spin-axis with the orbit normal is set to 30◦ (left), 15◦ (middle) and 0◦ (right).

This shows that by designing the rendezvous manoeuvre carefully, very favourable lighting conditions can be
created. A slightly larger tilt angle would be favourable, as it results in smaller values of χcam, however, this
value completely depends on the true orientation of Envisat and is not a design parameter.

Sun-camera angle optimization
One way to achieve control of the sun-camera angle, χcam, during the optimal manoeuvre, would be to add
χcam as an objective or constraint in the trajectory optimization process described in Section 5.1. This, how-
ever, causes several difficulties with respect to multi-objective optimization and suitable constraint values.

The main challenge of multi-objective optimization is the determination of weighting factors for the ob-
jectives to be assessed [18], which, in this case, means determining weighting factors for ∆V and χcam. Since
these two properties are physically unrelated, the determination of weighting factors would be completely
arbitrary and experimental determination, often a laborious process, would be required. Furthermore, the
relation between sun-camera angle χcam and measurement accuracy σsun (see Section 5.2.1) is completely
based on assumptions. The optimal weighting, achieved through an experimental process, might therefore
be useless, as it would heavily depend on these assumptions, which might be proven in the future not to
be a good representation of real pose estimation systems. Therefore it is decided not to include χcam as an
objective.

It would be mathematically easy to include χcam as a constraint:

r̂sun · r̂cam +‖r̂sun‖cosχcam,max ≤ 0 (8.5)

where r̂sun is the sun unit vector in the orbital frame, r̂cam is the camera unit pointing vector in the RTN-frame
andχcam,max is the maximum allowable sun-camera angle. The problem with usingχcam as a constraint arises
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from the need for a proper value of χcam,max. This value can not be smaller than the expected χspin, as this
would create a conflict within the optimization process. Eventually this conflict would lead to divergence,
as the final conditions of the trajectory would violate this constraint. Furthermore, as the constraint value
should always obey χcam,max > χspin, while the value of χcam is not expected to exceed χspin, the constraint
would not contribute anything to the optimization process and it is decided not to include a constraint either.

8.4. Illumination-based Performance
As a conclusion to this work, the performance of the vision-based GNC system is analysed for the most and
least optimal lighting conditions that may be achieved. This demonstrates the working of the GNC algorithm
and the dependence of its performance on illumination conditions. In both the optimal and least-optimal
case, the relative observation orbit in phase 1 is characterised by:

aδa = 0 m

aδλ= 0 m

aδe = 55 m

aδi = 60 m

As the closed orbit of phase 1 is designed completely around the sun angle (see Section 8.3.1), it is assumed
that, on any mission, the satellite can be placed in the most optimal observation orbit, with phase anglesϕ,ϑ
that reflect the most optimal χcam. Also, in both cases it is assumed that the approach in phase 2 commences
directly after eclipse, as this is found to be a desirable location. These two assumptions lead to the following
phase angles and argument of longitude:

ϕ,ϑ= 0 deg

u = 42 deg

For the most optimal case, it is assumed that the mission waits for the most optimal spin-axis configuration.
The optimal lighting conditions are found by examining Figure 8.14, which shows a minimum mean χspin at

ϕspin ≈ 0, 30 deg

for tilt-angles of 30◦ and 15◦ respectively. To create the least optimal conditions, it is assumed that the mission
approaches at the worst possible spin-axis configuration. For angles greater than 90◦ it could be decided to
approach the satellite from the opposite side, to create better illumination conditions. Based on Figure 8.14,
the maximum value of χspin is found for the following value of the spin-axis phase angle φ:

ϕspin ≈ 180, 210 deg

for tilt-angles of 30◦ and 15◦ respectively. For both the most and least optimal case, the tilt angle between the
spin-axis and orbit normal N, is evaluated at 0, 15 and 30 degrees to create three different scenarios. The mea-
surements are generated according to the theory outlined in Section 5.2, including standard deviation from
both inter-satellite distance and sun-camera angle. To complete the framework, the strategies for recognition
and mitigation, presented in Chapter 7, were also activated in this evaluation and the fitted estimate ofωwas
used (see Section 7.3).

8.4.1. Phase 1: Passive observation
The rendezvous process begins with a period of passive observation, in which the chaser is moving on a
closed, relative orbit with respect to the target. The chaser is not controlled and remains in this orbit over the
course of one orbital period. The trajectory is presented in Figure 8.16, and the expected sun-camera angle
for the satellite on this optimal closed orbit is shown in Figure 8.17.
It may be observed from Figure 8.17 that the sun angle is always behind the camera. As this first phase is not
interesting from a guidance perspective, it is only shortly discussed. An overview of the expected performance
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Figure 8.16: Highlighted in red is the trajectory of phase 1. It is a closed, elliptical orbit around the target which is passively save and
allows optimal lighting conditions.

Figure 8.17: Inter-satellite distance and sun-camera angle for the first phase of the rendezvous trajectory, the closed relative orbit. The
sun-camera angle is very favourable due to the trajectory design, as it stays below 40 degrees for over half the illuminated time and never
exceeds 60 degrees. According to the assumptions from Section 5.2.1, this means that measurement error due to illumination should be
low.

of the vision-based navigation system for the most optimal scenario is provided by Figures 8.18 and 8.19,
showing the navigation and measurement errors respectively. It may be observed by comparing Figure 8.18
to Figure 8.17 that the distance is the main driver of the measurement accuracy in this phase.
In the most optimal case the performance of the navigation system shows small navigation errors for both the
translational as well as the rotational components. Figure 8.18 shows that the position error is consistently
below 0.5 meters, mostly below 0.2 meters. The velocity error during this period is at millimetre level. The
attitude estimation error is around 2-3 degrees and the rotation estimate, presented separately in Figure 8.19,
improved by the MMF, has an accuracy of 0.3 - 0.5 deg/s. As has been elaborately discussed throughout this
work, the rotation error is crucial for the guidance system in the second phase.

Eclipse period
It can be seen that, during the eclipse period, the attitude errors grow to almost 360 degrees, indicating that
the attitude estimate should not be used when no measurements are available, which was also concluded in
Chapter 6 for the periods of decreased performance of the pose estimation system.

The performance of the navigation filter in the translational component allows to keep the camera pointed
at the target during eclipse, as the position error remains smaller than 2 m during the period of eclipse. This
means that the camera is still pointed at the target after the eclipse period, which enables the chaser to im-
mediately resume measurements when the sunlight is returned, without the need for searching the target.
This allows the second phase of the manoeuvre to commence quickly after the eclipse period has ended.
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Figure 8.18: Navigation and measurement errors in the least optimal trajectory. As the measurements are accurate (mostly < 1m, 7 deg),
correspondingly the navigation filter performs well in the estimation of both translational (errors < 0.3 m) and rotational (errors <5 deg)
parameters.

Figure 8.19: Navigation rotation error for the optimal orbit in phase 1. The accuracy of the estimate is significantly improved by the
application of the moving mean filter discussed in Section 5.2.3.

8.4.2. Phase 2: Optimal manoeuvre
The rendezvous continues with the (near-)optimal manoeuvre. This phase and its challenges were already
elaborately discussed in Chapter 6 and several forms of mitigation were investigated and proven in Chapter 7.
The trajectory in the second phase, ending at the intersection of the spin-axis with the KOS of 25m radius, is
visualised in Figure 8.20.

The trajectory is simulated for three different values of the tilt-angle between the spin-axis and the orbit
normal of 0, 15 and 30 degrees. Furthermore, to demonstrate the working of the mitigation strategies from
Chapter 7, three moments of failure were randomly introduced during this approach:

t = 247s → 2s Optimistic feedback failure

t = 839s → 30s Pessimistic feedback failure

t = 1213s → 60s Pessimistic feedback failure

The definition of a failure period, in terms of measurement accuracy, was provided in Section 6.2.1 and an
overview of the feedback definitions may be obtained from Section 4.3.1. The trajectory in this second phase
is evaluated for both the best and worst final spin-axis orientation, considering illumination conditions.
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Figure 8.20: Highlighted in red is The trajectory of phase 2. It is the result of solving the minimisation problem described by Equation (5.8)
and closely resembles a piece of a closed, elliptical orbit [91].

Most optimal conditions
The most important parameters of this phase are presented in Figure 8.21 for the most optimal conditions,
showing the sun-camera angle, measurement error, navigation and guidance errors and open-loop and closed-
loop ∆V respectively.

Figure 8.21: Overview of sun-camera angle χcam, measurement error, navigation and guidance error and open- and closed-loop ∆V for
phase 2. Any large errors that were present in Section 6.2.1, especially for the optimistic feedback type, have been correctly mitigated.
The increased amount of measurement error is still found in the measurements (top row), however, any sign of failure is completely
absent from the navigation and guidance error (middle row), as well as from the ∆V estimate (bottom row).

Examination of the top row of Figure 8.21 learns that, in the optimal case where χcam is low, the measurement
accuracy under nominal circumstances is influenced mainly by the inter-satellite distance. The sun-camera
angle can be seen to grow more rapidly near the end of the trajectory, where a slight increase in the measure-
ment error can be observed in the cases of 15◦ and 30◦ tilt-angle.
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Further examination of Figure 8.21 learns that, under optimal lighting conditions and including all mitiga-
tion strategies, the GNC architecture performs satisfactorily. Despite the fact that some periods of decreased
performance of the pose estimation system are present, as can be observed from the measurement error in
the top row, the performance of the GNC system is stable, especially compared to the scenarios that were
presented for optimistic feedback in Section 6.2.1. Only the navigation and guidance error, as well as the
closed-loop ∆V , show a slight increase for the optimistic feedback scenario, in the case where the tilt-angle
is 15◦. This increase is however quickly restored, showing that the strategies for recognition and mitigation
from Section 7.1 work properly.

Figure 8.22 shows the attitude measurement errors and corresponding rotation errors.

Figure 8.22: Attitude measurement error and navigation rotation error for the most optimal trajectory of phase 2.

Figure 8.22 shows how the navigation estimate of the rotation is influenced by the measurement error. Peaks
may be observed in the bottom row of Figure 8.22 at the same moment as the peaks in the measurements
occur in the top row. This again demonstrates the difficulty that the navigation filter has with estimating the
target rotation. As may be observed in Figure 8.21, no such peaks occur in the navigation position error for
peaks in the position measurement error. The accuracy that is achieved in the estimate of the target rotation
is around 0.5 deg/s. This accuracy translates into the fitted and integrated final estimation errors in Table 8.2.

Table 8.2: Fitted, integrated and achieved final position error for the most optimal conditions in phase 2. The fitted estimate of the final
position was used in the trajectory, and therefore the true final error should resemble the fitted error.

Tilt-angle
30◦ 15◦ 0◦

Fitted error (m) 4.050 5.274 5.096
Integrated error (m) 4.805 5.244 7.780
True final error (m) 4.634 5.807 4.534

Table 8.2 shows that the fitted estimate of the final state (Section 7.3) is more accurate than the integrated
estimate (Section 7.2) in nearly every case. In some cases, when the accuracy ofω and J are sufficiently high,
the benefit of the fitted method is small compared to the integrated method. As the fitted method is used
in the simulation, naturally the values of the true final error are closer to the fitted error than the integrated
error.

Least optimal conditions
The least optimal conditions are characterised by a different final spin-axis orientation compared to the most
optimal conditions. Similar to the data presented in Figure 8.21, Figure 8.23 presents the most important data
for the trajectory with the least optimal conditions.
Figure 8.23 shows that despite the increase of χcam at the end of the trajectory, no significant differences are
found when comparing it too the most optimal scenario. The same is true for the attitude measurement error
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Figure 8.23: Overview of sun-camera angle χcam, measurement error, navigation and guidance error and open- and closed-loop ∆V for
the least optimal conditions in phase 2. May be compared to Figure 8.21, upon which minimal differences are found.

and navigation rotation error, shown in Figure 8.24.

Figure 8.24: Attitude measurement error and navigation rotation error for the least optimal trajectory of phase 2. May be directly com-
pared to Figure 8.22.

Finally, a table similar to Table 8.2 may be presented for the bad case, the result of which is Table 8.3.
Surprisingly, Table 8.3, representing the least optimal case, reports lower values for all the errors, compared to
the most optimal case from Table 8.2. This is a good example of the limited accuracy that is currently achieved
on the final state estimate. The differences between the fitted and integrated cases are very small in the case
of sufficiently accurate measurement, and it must also be considered that only a very small sample (3 runs) is
used. Repeating this analysis with 100 runs per case would yield more trustworthy values, however, this would
also take more time. Currently the evaluation of the 1500 second trajectory of phase 2, takes approximately
6 minutes on an Intel i7 dual core processor. Running 100 runs for all scenarios (3 tilt-angles, most and least
optimal) would result in 600 runs and a total of 3600 minutes, the equivalent of 2.5 days. It is decided not to
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Table 8.3: Fitted, integrated and achieved final position error for the least optimal conditions in phase 2. The fitted estimate of the final
position was used in the trajectory. May be directly compared to Table 8.2.

Tilt-angle
30◦ 15◦ 0◦

Fitted error (m) 4.255 5.600 4.472
Integrated error (m) 5.624 5.710 5.315
True final error (m) 3.657 4.923 3.973

include this and might be left as a recommendation. The similarity between the achieved final error in the
most and least optimal cases may be considered as another incentive, to develop more accurate methods for
the estimation of the target’s rotational dynamics.

8.4.3. Phase 3: Forced approach
The trajectory of the third and final phase of the rendezvous process is characterised by the need to follow the
spin-axis, resulting in a spiralling motion due to the wobbling of the spin-axis, as shown in Figure 5.16. The
reference trajectory in phase 3 is highlighted in red in Figure 8.25.

Figure 8.25: Highlighted in red is the trajectory of phase 3. As this trajectory is required to follow the spin-axis upon approach, it is
characterised by a spiralling motion.

This is likely the most challenging part of the rendezvous trajectory, as the sun-camera angle is highest in this
phase. On the other hand, the distance is decreased to a relatively low value. Because of the sun induced
error, the error in the estimation ofωRT N /T BF

T BF increases. This complicates the trajectory, as the estimation of

the desired state is fully dependent onωRT N /T BF
T BF , according to Equation (5.15).

Most optimal conditions
The most optimal conditions are characterised by the lowest possible value of χcam for the tilt-angle of the
spin-axis. Figure 8.26 shows the sun-camera angle, measurement error and guidance and navigation errors
for this phase.
It can be noticed that, despite the sun-angle growing to 60◦/70◦. The combination of sun-angle and distance
is still favourable, as measurement error are in the same order as they were observed at the beginning of the
optimal trajectory (see Figure 8.21), approximately 1 m. It may be observed that although navigation error
is very low, the guidance error is much higher than in previous situations. This again stresses the difficulty
that the controller has with following the spiralling trajectory. This spiral is guided based on the navigation
estimate ofωT BF /RT N

RT N , the error on which is presented in Figure 8.27, together with the measurement errors
By comparing Figure 8.27 and Figure 8.22 that the attitude measurement error has increased compared to
phase 2. The resulting increase in the navigation rotation error may also be observed. This increase is not
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Figure 8.26: Overview of the sun-camera angle χcam, measurement error and guidance and navigation errors for phase 3.

Figure 8.27: Attitude measurement error and navigation rotation error for the most optimal trajectory of phase 3.

a desirable development, as the guidance trajectory in phase is fully determined from it. Increased error
inevitably leads to larger guidance errors and larger ∆V , as shown in Table 8.4.

Table 8.4: Control effort, mean guidance error and true final position error for the most optimal conditions in phase 3. The true final
error is the difference between the final state achieved by the chaser and the true desired state, calculated from the true value of unit
vector ω̂T BF /RT N

RT N at a final distance of 5 meters.

Tilt-angle
30◦ 15◦ 0◦

∆V (m/s) 10.356 12.414 11.473
Mean guidance error (m) 1.684 2.012 1.817
True final error (m) 0.759 0.708 1.151

It is found that all trajectories require in excess of 10 m/s of ∆V for completion, which is considered unac-
ceptable. This is another strong incentive to either improve the estimation of ωT BF /RT N

RT N or to formulate the
trajectory of phase 3 differently. This is further supported by the fact that the true final error, achieved at the
end of phase 3,

Finally, the third phase also incorporates the synchronisation of the chaser rotation with the rotation of
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the target. The results of this synchronisation are shown in Figure 8.28.
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Figure 8.28: Synchronisation error for the chaser for the most optimal conditions in phase 3. The synchronisation error describes the
angular difference between the chaser body frame and its intended orientation.

Surprisingly, all runs are able to reach a final attitude control error of 7 degrees, which was the threshold that
was determined by the tuning of the controller in Section 5.3.3. This is explained by calculating the mean
value of the navigation attitude error, which has a magnitude of around 4 deg, which is well below the 7
degree control error.

Least optimal conditions
The trajectory of phase 3 in the least optimal case is necessarily subject to a higher degree of error, due to the
increased mean value of χcam. This increase may be observed in Figure 8.29, together with a slight increase
of the measurement error and accordingly the navigation and guidance error.

Figure 8.29: Overview of the sun-camera angle χcam, measurement error and guidance and navigation errors for the least optimal con-
ditions in phase 3. An increase may be observed with respect to Figure 8.26.

Figure 8.29 shows that despite a significant increase in χcam, from 45◦ to 80◦ in the case of a 30◦ tilt-angle,
the increase in the navigation error, from ≈ 0.15 m to ≈ 0.3 m is only marginal. Guidance error seems to be
unaffected in magnitude, except for some spikes. Considering the relative distance of the chaser with respect
to Envisat, decreasing from 25 m to 5 m, a guidance error of 4 m might be reason for worry, however, it can be
shown that these errors arise mainly perpendicular to the Envisat spin-axis, ensuring safety of the chaser at
all time. Also, the guidance error decreases with time and is at sub-meter level when the chaser is closest to
the target.

The attitude and rotation of the target are displayed in Figure 8.30.
A similar increase from Figure 8.27 to Figure 8.30 may be observed, as was the case with Figure 8.29. The mea-
surement accuracy decreases and the estimation error accordingly increases. The navigation rotation errors
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Figure 8.30: Attitude measurement error and navigation rotation error for the least optimal trajectory of phase 3. May be directly com-
pared to Figure 8.27

.

assume a magnitude of almost 1 deg/s, which is insufficient for accurate guidance, as might be demonstrated
from Table 8.5, showing even higher ∆V and mean guidance error compared to Table 8.4.

Table 8.5: Control effort, mean guidance error and true final position error for the least optimal conditions in phase 3. The true final
error as in Table 8.4, to which this table may be directly compared.

Tilt-angle
30◦ 15◦ 0◦

∆V (m/s) 14.824 13.207 11.541
Mean guidance error (m) 2.224 2.208 1.763
True final error (m) 1.125 1.216 1.105

Contrary to the comparison of Tables 8.2 and 8.3 for phase 2, the comparison of Tables 8.4 and 8.5 shows a
clear increase of all variables presented in the table, as would be expected beforehand. Finally, the synchro-
nisation errors achieved from the control law are presented in Figure 8.28.
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Figure 8.31: Synchronisation error for the chaser for the least optimal conditions in phase 3. May be directly compared to Figure 8.28.

This shows that, despite the decrease in measurement accuracy that was observed between Figures 8.27
and 8.30, no increase of synchronisation error is found when comparing Figure 8.31 to Figure 8.28. The
reason for this becomes clear when the mean navigation attitude error is calculated, as this value is equal
to 4.827 degrees, which is well below the minimum achievable control error.

It might be concluded from this section that the GNC architecture is surprisingly robust against the var-
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ious lighting conditions, throughout all the phases. It was shown that, when designing the trajectory for the
most optimal lighting conditions, the performance of the GNC system is always adequate, and navigation
errors < 1 m, 5 deg, 0.5 deg/s may be achieved in almost any situation. The only exception being the third
phase, where the navigation rotation error could not be established at < 0.5 deg/s.

The optimal trajectory in the second phase was proven efficient, robust to uncertainties and, using the
mitigation strategies, robust to failures/decreased performance of the pose estimation system. This trajectory
was shown to be efficient both under the most and least optimal conditions, showing similar efficiency and
final error in both cases.

The third phase of the rendezvous process should receive the most attention in future research, as this
phase exhibits very high ∆V values and is prone to high guidance errors. This may be attributed to the tra-
jectory, which is required to follow the spin-axis, which asks a lot from the controller. A different trajectory
might be considered that is more suitable for a tumbling target with large amounts of wobbling.



9
Conclusions and Recommendations

This chapter presents the conclusions that were reached from this research, the contribution of which can
be divided into three categories. The first category is related to the investigation of performance of the guid-
ance system, especially under decreased performance of the pose estimation system. The second category is
concerned with the robust estimation and prediction of the target attitude dynamics. The third category is
associated with trajectory design, aimed at designing for optimal lighting conditions.

9.1. Guidance performance
The first part of this research was aimed at finding out how the guidance system performs when the perfor-
mance of the pose estimation system is decreased. The GNC algorithm was tested against several scenarios,
most importantly against three types of measurement feedback. First, true feedback which is statistically
perfect (σ2). Second, pessimistic feedback, which assigns a measurement covariance that is higher than the
true value (>σ2) and, third, optimistic feedback, which assigns a covariance that is lower than the true value
(<σ2).

Failure of the system and need for mitigation were found in specific scenarios, in particular those with
optimistic feedback. These scenarios cause a strong response and create navigation errors > 5m, whereas
errors of 20 cm were achieved in nominal operation. The difficulty with optimistic feedback is that the nav-
igation filter cannot identify it. As the assigned covariance is low, a decrease of the filter state covariance
is caused and the filter thinks it has become more, rather than less accurate. A reference state is propagated
without the measurement update that occurs in the filter, allowing the identification of divergences caused by
measurements. Using a threshold, this reference allows to correctly identify 100% of the optimistic feedback
scenarios, the detection lagging 1 or 2 seconds behind the true occurrence. Upon identification the navi-
gation state is reset and takes the value of the reference, effectively mitigating these situations and keeping
errors in the order of 20-40 cm.

In the case of true or pessimistic feedback, the main effect is a decreased accuracy of the attitude dy-
namics estimation. While the translational state proved to be robust, the attitude became considerably less
accurate, such that the guidance system can not accurately calculate the desired final state and should not
be updated using this attitude data. In these cases the navigation system recognises the error, as the filter
state covariance serves as an indication of a loss of accuracy and can be used to identify the periods of de-
creased performance. A threshold on the attitude state covariance is used to identify periods of decreased
performance, resulting in a 100% recognition rate, with a small detection lag of 3 to 6 seconds. The mit-
igation consists of withholding the guidance system from updating the optimal trajectory, which does not
significantly improve the performance of the system.

9.2. Attitude Dynamics Estimation
It was found that the main weakness of vision-based pose estimation systems is in their ability to estimate the
attitude dynamics of a tumbling object, especially when a future prediction of these dynamics is required, re-
quired by the guidance system to make an estimate of the desired final conditions for an optimal manoeuvre
towards the spin-axis.

137
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Currently, the standard technique for obtaining a prediction of attitude dynamics consists of the integra-
tion of the current attitude rates over the remaining time. However, when integrating the attitude dynamics
over long integration times, final position errors of 5-8 m are found in the presence of uncertainties in target
rotation and inertia as small as 0.5 deg/s and 4%. As the guidance error has a sub-meter magnitude, this
estimation error can be identified as the largest source of error in the guidance system. Furthermore, this
estimation error was found to have a large standard deviation, often exceeding 2 m, indicating a high level of
unpredictability in the magnitude of this error.

These conclusions have raised the need to develop a more robust method for the prediction of target
attitude dynamics. A method was developed based on the minimisation of a least squares problem, fitting the
available attitude data obtained during a complete orbital period with a sinusoidal function. Future points
may be extrapolated from this function as a form of prediction, which is found robust against uncertainties
in the target attitude dynamics and inertia. Using this method slightly improves the accuracy of the estimate
to 4-5 m, and greatly decreases the standard deviation of the estimates to below 20 cm. A combination of the
fitting method with the standard integration has been attempted, however, no increase in performance could
be observed.

9.3. Trajectory Designs for Optimal Lighting
The final part of this research focused on the design of trajectories in which the lighting conditions of the
vision-based system are optimised. Concretely, this design aimed to minimise the angle χcam between the
camera boresight vector and the sun vector, which was assumed to be the main driver of measurement ac-
curacy. A Relative Orbital Element (ROE) parameterization was exploited to define a relative orbit for obser-
vation under optimal lighting conditions. It was found that an optimal trajectory is possible in each phase of
the rendezvous.

The first phase consists of a passively safe, elliptical, relative orbit. By controlling the angle of this orbit
with respect to the target orbital plane, as well as the position of the chaser on this orbit, χcam < 40o for a
period of at least 2000 seconds, allowing for a long period of accurate measurements. Subsequently, χcam

in the second phase may be controlled by selecting a proper time of departure from the passively safe orbit.
When an optimal departure time is selected, the angle χcam < 60◦ during the entire optimal manoeuvre in the
second phase.

For the third phase of the rendezvous, in which the chaser approaches the target along the spin-axis, the
expected lighting conditions are determined by the spin-axis orientation, and the angle χspin was defined
as the angle between the spin-axis vector and the sun vector. It was found that the most optimal values of
χspin are encountered for a larger tilt angle between the spin-axis and N, which is expected between 0◦ and
30◦. Due to nutation, the spin-axis moves between mean values of χspin = 40◦-80◦, with a margin of ±10◦ due
to wobbling. By awaiting the right conditions, the spin-axis may be approached at a very favourable χcam =
30◦-40◦.

9.4. Recommendations
The first recommendation is for the construction of a more accurate prediction model of the expected rota-
tional dynamics, as the largest challenge for vision-based systems remains the prediction of attitude dynam-
ics. Currently the most accurate results achieved from the fitting method contain an error of 4-5 m, remaining
the largest source of error in the GNC system. In parallel to the development of such a method, the rotation
of the Envisat should be more accurately characterised, as the expected magnitude and orientation of the
rotation still contain a large margin of uncertainty.

Second, depending on the tumbling and wobbling of the Envisat, the trajectory in the third phase of the
rendezvous might need to be reconsidered. Constraining this trajectory to follow the spin-axis continuously
was shown to require considerable control effort, which might not be necessary. A trajectory that approx-
imately follows the spiral, but stays near the centre of it, might be a viable solution, as the chaser would
consume less fuel following a straight line compared to a spiral. Alternatively, the use of a Keep Out Coat
(KOC) instead of a Keep Out Sphere could be investigated, as this would bring the final position of the op-
timal manoeuvre closer to the target. A shorter distance in the third phase automatically reduces the fuel
consumption. This would require an investigation of the safe use of a KOC, defining a minimum allowable
distance from the target surface to ensure safety.

Third, the influence the sun-camera angle on the accuracy of pose estimation systems should be further
investigated. Despite the fact that this angle is easy to model as a metric, very little information about its
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relation to measurement accuracy is available. Defining how the performance of the pose estimation system
depends on this angle will assist with error modelling in future experiments.

Finally, it might be interesting to research a camera pointing law based on the position of the target in
the image, rather than based on the estimated relative position, as in this work. This would however require
access to an operational pose estimation system.
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