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Abstract 
 

In design with composite materials, the capability of tailoring the properties of the structure with 

respect to the specific load requirements in each direction, allowed by their anisotropic nature, is 

coupled with the development of interlaminar stresses transferred through the thickness. 

Specifically, at the free edge of the laminate, due to the change in fiber orientation and the 

different response of the constituent materials, stresses that act in the thickness direction are 

developed. Starting at the free edge and moving towards the center of the laminate up to a certain 

threshold, the stress state of the plies is further complicated by the interlaminar stresses. The 

widely employed Classical Laminated Plate Theory does not account for the aforementioned 

effects, since each ply is considered to be in plane stress state.  

The primary goal of the present thesis project was to develop an analytical stress model that 

includes expressions for all six stresses. By construction, the stresses acting through the thickness 

have an exponential decay behavior until they become zero, once the aforementioned threshold is 

reached. Parallel to that, the in-plane stress expressions gradually recover the CLPT predicted 

values.  

Furthermore, the model was intended to capture a specific sequence of damage occurrences in 

laminates of the family [02/θ2/-θ2]s loaded under tension, as observed by O’Brien. Namely, during 

loading matrix cracks initiating at the free edge of the off-axis plies and propagating along the 

respective fiber orientation are anticipated to occur first. While these cracks increase in leng th 

and number, at some point a +θ crack will intersect with a – θ one, thus forming an envelope with 

the free edge. As loading continues, a local delamination is expected within this envelope.  

In order to predict that, the stress expressions would have to be implemented in a failure theory 

that is capable of accounting for the ongoing phenomena and of distinguishing not only between 

matrix and fiber failure, but also between different matrix failure modes. These requirements led 

to the selection of Puck Failure Theory. 

The process proved to be more complex than estimated and numerous issues occurred during the 

formulation of the model. 

At first, results from literature could not be duplicated. After an extensive period of thoroughly 

checking and editing the approach, the expressions on a symbolic level and the code in which they 

were implemented, it was realized that a multiplicative factor is distorting the output.  
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After calculating the numerical value of the factor for each one of the out-of-plane stress 

expressions and applying it, agreement with published results was excellent. Unfortunately, the 

origin of the error could not be found. 

Once the error has been corrected, the potential integration of the expressions in a fatigue life 

evaluation model specifically designed for composites, could replace the currently employed semi-

empirical theories that where originally formulated for isotropic materials and rely mainly on 

curve-fitting.  
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1   General Background 

 

1.1 Introduction 

The use of composite materials in primary load bearing structural components has been 

gaining increasing attention over the last years, especially in industries such as Aerospace, 

Marine, Automotive and Wind Energy.  

In general, when it comes to applications where weight minimization is a crucial factor, 

composites are superior to traditionally used metals due to their high specific properties. 

Moreover, their anisotropic nature and performance allows for fine tuning of the structure 

according to the requirements in each direction, instead of a global behaviour that applies 

to all planes and directions, which is the case with metals. The level of anisotropy of a 

composite material system and therefore of a structure or component is also tuneable, 

based on the selection of materials and the structural design strategy. Hence, it seems that 

the use of composites is a one way road when the factors discussed above are of interest.  

On the other hand, the anisotropic nature of composites is coupled with a variety of 

damage mechanisms and failure modes, which may act individually, in a unique sequence 

or even simultaneously. The interactions of the different damage modes and the 

accumulation of damage starting from initiation up to final failure are crucial in order to 

have a good understanding of the underlying mechanisms and hence an accurate prediction 

for design. 

 

1.2 Damage Initiation and Evolution 

Whether it is quasi-static or cyclic type of loading, the primary and mostly dominating 

damage modes in continuous fibre composites are matrix cracking, fibre breakage and 

delamination. These modes might act singularly or combined, either in an impeding or in 

a promoting manner with each other.  

In the specific load case studied in this project, namely uniaxial tensile quasi-static and 

potentially cyclic tension-tension loading, the purpose is to isolate matrix cracks in the 

family of laminates [02/θ2/-θ2]s and subsequently predict the first matrix cracks and 

gradually the first delamination.  



Chapter 1 

2 

 

By formulating a model that can reasonably predict the fatigue performance of the 

discussed material systems, the design of damage tolerant structures and components is 

feasible.  

Focusing on the matrix of the composite material system, for ductile polymer matrix 

materials, the fatigue damage evolution resembles up to a certain point that of metals, 

primarily in the sense that it consists of crack initiation and crack propagation. For Carbon 

Fibre Reinforced Polymers that are of interest cracks will usually initiate from matrix 

flaws and propagate until the crack tip reaches a fibre interface, where it will be arrested 

for some time, until the stress at the crack tip becomes sufficiently high in order to lead 

to fibre breakage or pass through the thickness to a neighbouring ply.  

At low strain levels, the formed cracks may be isolated within the matrix itself, increasing 

only in numbers. This is the so called dispersed matrix failure mode [5].  

At higher strain levels, the fibres that are at the crack tip might fail, allowing the matrix 

cracks to further propagate. If at some point a crack is long enough, the developed shear 

stress at the crack tip may be high enough to cause interfacial failure, leading to diversion 

of the crack parallel to the fibre direction. According to the material’s interfacial shear 

strength, the fracture plane might be restrained to a flat surface or a “broom-like” fracture 

surface [5].  

For the family of laminates discussed above, there is a distinct sequence of events that 

leads from the first damage event to the final catastrophic failure of the laminate. More 

specifically, matrix cracks are first anticipated in the ±θ plies, following the fibre direction 

in these plies. For the sake of visualization, a crack in the +θ direction will form an 

envelope with a crack in the –θ direction. As cyclic loading continues further on, a 

delamination is expected to occur within this envelope in the θ/-θ interface that will 

consequently lead to fibre breakage. This is shown schematically in the sketch below.  

 

 
Figure 1: Anticipated damage mode for the [02/θ2/-θ2]s family of laminates under tension 
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1.3 State of the Art 

Extensive research has been conducted in this field but primarily focusing on cross-ply 

laminates, consisting of plies in the 0o and the 90o direction. Moreover, glass fibre reinforced 

polymer (GFRP) material systems are most commonly investigated, since it is possible to 

visually observe the crack formation within the matrix due to the partial transparency of 

the samples.  

As the density of the cracks in the matrix increases, the appearance of the matrix in that 

region changes from transparent to more and more opaque/white, indicating the evolution 

of crack formation.  

Extension to other families of laminates was initially studied by O’Brien [6] and O’Brien 

et al.[7]. In their investigation, cross-ply as well as quasi-isotropic laminates were chosen.  

The first sequence is chosen in order to isolate and promote the 90 o matrix cracking from 

other damage types. On the other hand, in the second type, the expected damage types 

are again initially 90o matrix cracks, subsequently followed by free edge delamination in 

the 0/90 ply interfaces due to the high peeling stresses that are observed at that location.  

Matrix cracks within a single ply, otherwise named intralaminar cracks, have been 

observed not to form ad infinitum in number, but only until a certain saturation state is 

reached, first called by Reifsnider Characteristic Damage State [8]. For the case of cyclic 

loading, depending on the orientation of each ply, matrix cracks reach their individual 

saturation level in a different number of cycles [7]. Crack accumulation in the 90o plies is 

reached prematurely compared to the other ply orientations, so all other damage modes 

are expected to occur and progress after matrix crack saturation in the aforementioned 

orientation has been reached.  

Whether this concerns quasi-static tension loading or pure tension-tension fatigue loading, 

the damage sequence and evolution has been observed to be the same. As observed by 

O’Brien for the stacking sequence[±30/±30/90/90̅̅̅̅ ]𝑠, the sequence of events is as follows. 

First of all, a small number of isolated cracks is formed in the 90 o plies, followed by small 

edge delaminations, leading to the formation of more cracks in the 90 o plies, along the 

delaminated length.  

Further on, more delaminations occurred up to a point where two of them, initially starting 

from different sides, joined each other, thus leading to global failure [6]. 

Dvorak and Laws [9] in their study observed that debonded fibres due to loading are 

susceptible to be crack initiation locations. Such regions might also be present in the 

component due to manufacturing flaws etc. Fibre-matrix debonding is more likely to occur 

in region where the fibre density is increased or if the fibres are in contact.  
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Another area of particular attention when it comes to cyclic loading is that of st iffness 

reduction and stress redistribution after the initiation of the crack formation phase 

described above. For these issues, several shear lag models have been employed [2], [10].  

The simplest of the shear lag models is described by Hashin and is based on the 

assumptions that: 

 

 The normal stress in the applied load direction remains constant throughout the 

ply thickness 

 Shear stresses are only developed in a thin boundary layer of unknown and 

somehow arbitrary thickness which is located between the plies (interphase) 

 The cracks themselves remain sufficiently far apart so that they develop 

individually and there is no interaction between them.  

 

The main problems associated with the above assumptions are that the transverse normal 

stresses cannot be estimated, the thickness of the boundary layer is unknown and the fact 

that the different cracks are not interacting does not agree with experimental findings.  

 

In comparison to the simple shear lag model described above, another method has been 

proposed by Laws et al [11], who have made used of the Self Consistent Scheme 

approximation to calculate the stiffness reduction in cracked plies.  

Issues associated with this approach include the fact that crack opening restrain due to 

the neighbouring plies is not taken into account and that stress concentrations due to 

interlaminar cracks are neglected.  

Hashin’s variational approach takes into consideration the problems and limitations of the 

other methods and uses only one assumption, namely that the normal ply stresses in the 

applied load direction are constant over the ply thickness [2]. The approach is based on 

the principle of minimum complementary energy.  

Berthelot et al. [10], [12]proposed a complete parabolic shear lag model, assuming a linear 

stress distribution through the ply thickness and consequently a parabolic variation of 

axial displacement in both 0o and 90o plies.  

The different models and approaches that have been suggested are compared to FEM 

models.  

For low crack density values, there is in general a good agreement between the analytical 

model and the FEM models, but for an increasing crack density some of the models show 

large discrepancies in their predictions compared to FEM.  
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Starting from the one-dimensional analytical model, in which the longitudinal stresses are 

assumed to be constant through the ply thickness, the deviation of the average values 

between the two methods is considerable.  

Continuing with the 2D analytical model, where there is parabolic variation of longitudinal 

stresses only in the 90o plies, the differences between the model and FEM are reduced. 

Finally, for the complete parabolic model, that accounts for the longitudinal stress 

variation in both 0o and 90o layers, a good agreement is achieved compared to the FEM 

results [10].  

 

1.4 Present Study - Considerations 

Considering the various methods presented above, there are some crucial issues that need 

to be taken into consideration when it comes to damage onset prediction in cross-ply, 

quasi-isotropic or multi-directional laminates loaded under tension, whether it is quasi-

static or cyclic loading. For the case of cross-ply laminates, the interlaminar stresses that 

are developed due to the large difference in fibre orientation are considerable and should 

not be neglected.  

Furthermore, the same holds for the free edge cracks initiating in the 90 o layers. At the 

location of crack initiation, the out-of-plane stresses are increased, which makes these 

locations susceptible to delamination.  

The issue of edge delaminations was investigated by O’Brien and Hooper [13], who 

conducted an experimental investigation of the delaminations caused due to the 

intersection of angle-ply matrix cracks in the off-axis layers of multidirectional laminates 

of the family [02/θ2/-θ2]s subjected to static tension.  

Through radiography images taken at the onset of damage it was shown that there was at 

least one and in some cases numerous matrix cracks in the internal –θ angle plies. For θ 

values up to 15o-20o, there were only one or two matrix cracks, but, as the θ values 

increased towards 45o, the number of matrix cracks in the off-axis plies was increased, 

reaching a maximum of about 10 cracks.  

Another interesting observation coming from the radiograph is that there is a triangular 

dark shadow in some of the specimens (see figure 2, section 1.5). The shadow is enclosed 

between two matrix cracks, namely in the +θ and –θ directions, which are intersecting.  

The apparent shadow is indicating a local delamination at the intersection between the 

two matrix cracks at the +θ/-θ interface, where the interlaminar stresses are at maximum. 
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All tests were consistent in the sense that the occurrence of the local delamination was an 

event following the initial matrix cracking in the –θ plies. These two events were always 

coupled in the way that initial matrix cracking in the –θ was followed by delamination.  

The normal and shear in-plane stresses, as well as the interlaminar stresses at the edges 

were calculated using a 3D FEM model. It indicated that matrix cracks are prone to 

initiate in the –θ oriented plies that are closest to the mid-plane of the laminate, where 

the in-plane transverse stresses have the greatest magnitude. Compared to that, the First 

Ply Failure (FPF) criteria that use the Classical Laminated Plate Theory (CLPT) stresses 

as an input for damage onset prediction, indicate that failure initiation of a ply is located 

near the free edge, where the in-plane transverse stresses have their maximum values, but, 

on the other hand, might be a bit unconservative due to the fact that the stresses calculated 

from CLPT are actually the ones that are developed in the part of the laminate that is 

not affected by the interlaminar stress effects. Hence, the predicted stress state might be 

more “optimistic” than reality.    

An important conclusion is that in this class of laminates, free edge delaminations do not 

expand along the whole length of the laminate, as is observed in other types of laminates, 

but they exhibit local delaminations near the free edges and these delaminations are always 

constrained between two matrix cracks, namely in the +θ and –θ orientations.  

Taking into account all the experimental investigations presented above, it can be realised 

that it is quite challenging and complex to combine free edge cracking and interlaminar 

stresses in an analytical model without the use of a finite element analysis.  

On the other hand, a FEM simulation of the problem can be prohibitive in a design 

environment, where long runs might be required in modelling cyclic loading where the 

model needs to be updated in every cycle to account for strength and stiffness degradation.  

Hence rises the need for an analytical model that will take into account the interlaminar 

stresses at the vicinity of the laminates that are affected by the free edge effects. Moreover, 

the selection of the failure criterion to predict the initiation of ply failure, the first matrix 

crack, is of critical importance. 
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1.5 Research Objectives 

Taking into consideration all the aforementioned, the primary scope of this thesis project 

is to: 

 Develop an analytical model that will provide the capability to obtain the 

developed stresses and reliably predict the onset of damage initiation under uniaxial 

tensile loading for the special class of laminates with stacking sequence [0 2/θ2/-θ2]s. 

The formulation of a three-dimensional stress solution is required, in order to take 

into account the critical interlaminar stresses that will be developed near the free 

edges of the laminate. 

 

 This stress solution will gradually lead to the recovery of the classical laminated 

theory stress state, meaning that on a ply level the out-of-plane stresses will become 

zero and the in-plane stresses will match the CLPT stress distribution (plane 

stress). This is expected to take place in the “far-field” portion of the laminate that 

is not affected by the free edge effects. 

 

 A reliable failure theory will have to be employed, so that it can accurately predict 

the anticipated damage mode and the point at which it will occur. This should be 

a criterion that will take into account the stress interactions and that can give an 

insight on the occurring damage mode and not merely a load or stress state at 

which first ply failure will occur. Considering the fact that the failure mode that 

needs to be captured is matrix cracking in specific angles, the failure criterion must 

make a distinction, not only between fiber and matrix failure, but also between 

different modes of matrix failure.  

 The model should be capable of accounting for the sequence of events and 

mechanisms leading to failure onset. The sequence of failure events that the model 

will attempt to capture are, qualitatively, as follows: 

1. The initiation of damage (first ply failure) is expected to be in the form of 

a matrix crack, occurring in a ply within the block of the off -axis plies 

located internally in the sequence and at the location of the free edge of the 

laminate (see figure 2, next page). 

2. The crack will then propagate along the fibre direction, namely either at 

an angle +θ or -θ with respect to the laminate’s longitudinal axis. 
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3. At a certain point during loading, looking at the top view of the laminate 

(xy plane), a triangle envelope is expected to be formed between the free 

edge, a +θo crack and a –θo crack. 

4. Continuing, within this envelope, a local delamination is expected to occur. 

5. Accumulation of these damage types will subsequently lead to fibre 

breakage and finally to global failure. Hence, the 3D stress solution will 

have to be modified in order to account for the first matrix cracks formed 

in the ±θ orientation. 

 

 

The criterion should have the capability of determining the first matrix cracks and 

subsequently the triangularly shaped delaminations in the θ/-θ interface.  

A characteristic image is shown below, indicating the triangular envelope (dark part – 

local delamination) that is constrained between two matrix cracks, one in the θ direction 

and the other one in the –θ.  

 

 

 
Figure 2: Example of [02/252/-252]s laminate after onset of damage [13] 

 

The selection of the [02/θ2/-θ2]s family was made because they combine all the major failure 

modes, namely matrix cracking, delamination and fibre breakage, in a reasonably well-

defined sequence.  

Thus, a model capturing all events as described above will be very promising for further 

extension in laminates with other types of stacking sequences.    

Finally, extending the considerations to pure tension cyclic loading would allow the 

possibility of implementing the developed stress solution into a fatigue model based on the 

cycle-by-cycle probability of failure, stiffness degradation and load redistribution with 

respect to the predicted damage events.  
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This could potentially lead to a promising analytical method that does not rely on any 

semi-empirical methods that are originally applicable to isotropic materials [14], [15]. 

In what follows, Chapter 2 consists of a review of the most commonly used failure theories 

for predicting the onset of damage in composite laminated structures. Continuing, it 

concludes with a more detailed description and analysis of the employed failure theory for 

the discussed project.  

Further on, Chapter 3 is focused on the proposed model that will give the desired three-

dimensional stress state. Each step that was taken during the development of the model 

is mentioned clearly. Moreover, additional information, as well as more details, can be 

found in the corresponding appendices. The idea is that the reader will get all the required 

documentation in order to be able to potentially repeat the process.
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2   Review of Failure Theories for Composite Materials 

 

As mentioned at the end of the previous chapter, one of the key ingredients of the approach 

to be developed is the failure criterion that will be used. The present chapter discusses 

various failure theories and their respective advantages and disadvantages.  

 

2.1 General Discussion 

The vast and versatile design opportunities offered by Fiber Reinforced Polymer materials 

in comparison with their metal competitors and in some cases predecessors and the ability 

to fine-tune the mechanical properties of the component or structure differently in each 

direction according to the structural requirements are a consequence of the anisotropic 

behavior of such materials. 

The engineering community has been carrying out longstanding analytical and 

experimental campaigns in the process of formulating failure theories that can accurately 

and consistently predict the onset of damage initiation and gradually the evolution of 

damage in such material systems. The employed assumptions during the design phase, the 

extent of structural optimization that is to be achieved in each problem and numerous 

other parameters can either promote or “suppress” the inherent anisotropic characteristics 

of the discussed material systems. It is widely known that in order to fully exploit the 

structural capabilities of FRPs, they must not be handled with design strategies that are 

traditionally applied to metallic materials. This statement is of course coupled with the 

consequence of increased complexity in predicting the structural performance of composite 

materials.  

During the recent decades, a large number of failure criteria have been developed for 

composite materials, most of which can be quite simplistic in the assumptions that they 

include and the stresses that they take into account for the prediction of the onset of 

damage. 

In an attempt to get a better comparison and understanding of the different failure criteria 

a programme was begun to evaluate failure criteria for fibre composite materials.  

This “World Wide Failure Exercise” was conceived and conducted by M. J. Hinton and 

A. S. Kaddour and others [16], [17].  
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It functioned for over a decade and involved the participation of many advocates for many 

different possible approaches to the problem. The results and conclusions of the programme 

were highly inconsistent even in that case, indicating once more the uncertainty of the 

failure criteria and the complexity of the phenomena they attempt to quantify.  

In the following section, the most commonly employed failure criteria will be briefly 

reviewed.  

At first, the proposed macromechanical models for failure prediction of anisotropic 

materials were based on the already existing theories for isotropic materia ls,  

including extensions and adaptations that would account for the anisotropy in strength 

and stiffness of such materials [18].  

The common characteristic of most of these theories is the assumption of homogeneity up 

to some extent, as well as the linear relationship between developed stresses and strains. 

Another point that must be stressed out is the interaction between the different stress 

components that most theories fail to take into account and exclude due to their 

simplifying assumptions. The different theories can be classified in three main categories 

[19]: 

 

1. Limit Criteria: These criteria predict failure of a structure by comparing the ply 

stresses in the principal directions with the respective strength in a separate 

manner. Therefore, no interaction between stresses is considered.  

 

2. Interactive Criteria: According to the given load case, these criteria predict a failure 

load by using a quadratic or higher order polynomial failure index, that includes 

all the different stress components. Once the failure index is satisfied, failure has 

been reached at that corresponding calculated load. This category of failure criteria 

account for interaction between stresses up to a certain extent, but do not indicate 

anything with respect to the failure mode.  

 

3. Separate Mode Criteria: The failure theories that fall into this group distinguish 

between fiber failure and matrix failure. The failure indices can be dependent on 

either one or more stress components. Hence, the degree of stress interaction that 

is taken into consideration differs according to the specific theory employed.  

  

Some representative criteria of each of the above mentioned categories will be discussed 

below [19].  
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2.2 Limit Criteria  

2.2.1 Maximum stress criterion 

This criterion is based on the assumption that failure occurs when at least one of the stress 

components along the principal materials axes exceeds the respective material strength in 

that direction. The failure condition is: 

 

 

 

 

 

 

 

Where XT and XC are the tensile and compressive ply strengths in the fiber direction and 

YT, YC the ones perpendicular to the fibers. The fiber directions corresponds to subscript 

1, while subscript 2 denotes the direction that is perpendicular to the fibers in each ply. It 

should be mentioned that all the stresses are translated in the local coordinate system of 

each ply. As it can be seen from the formulation of the criterion, it does not take into 

consideration any kind of interaction between stresses [19].  

 

 

2.2.2 Maximum strain criterion 

This failure theory is practically the same as the one discussed above, but from a strain 

point of view instead of stress. Failure occurs when at least one of the strain components 

in one of the principal material axes exceeds the ultimate strain in that direction. The 

failure condition is as follows: 
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Where ε1, ε2, γ6 are the developed strains in the principal material directions. On the right 

hand side of the failure conditions are the ultimate strains. Subscript “t” indicates tension, 

“c” indicates compression, “u” means that these are the ultimate strains and the numbers 

correspond to the respective directions [19].  

 

2.3 Interactive Criteria  

2.3.1 Tsai-Hill criterion 

In contrast with the previously mentioned criteria, Tsai and Hill were among the first to 

include a combined failure condition for composite materials. Its principle is directly 

derived from the von Mises yield criterion, vastly known and used for isotropic materials. 

The difference lies in the fact that for composite materials instead of yielding there is 

failure. The Tsai-Hill criterion in its final form is given below [20]: 

 

 

 

Where again X,Y are the corresponding strengths parallel and perpendicular to the fiber 

direction respectively and S is the in-plane shear strength. Thus, the criterion distinguishes 

between different strengths in different directions.  

 

2.3.2 Tsai-Wu criterion 

This criterion came as an attempt to tweak the previously described Tsai-Hill so that it 

can account for the fact that composite materials have different strength in tension than 

in compression. This leads to conclusion that the Tsai-Wu criterion is not merely 

phenomenological, but is also includes curve fitting. The criterion is [20]: 
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Superscripts t and c correspond to tension and compression. In both of the above 

mentioned criteria, the stresses are on a ply-level and with respect to the local coordinate 

system of the ply and not the global of the laminate.  

 

2.3.3 Hoffman criterion 

This criterion has the form: 

 

 

 

Equivalent to the previously described Tsai-Wu criterion [20], [21]. It basically is a 

modification of the criterion originally proposed by Hill. The difference lies in the inclusion 

of linear terms with respect to stress, thus taking into account the different performance 

of such material systems in tension and compression.  

 

2.4 Separate Mode Criteria  

As discussed above, the criteria that fall into that category are the ones that do not solely 

indicate failure, but also make a distinction between different failure modes.  

 

2.4.1 Hashin-Rotem criterion 

It is made up of two separate failure conditions, one indicating fiber failure and another 

one for matrix failure.  

The one of the two that is satisfied first (at a lower stress state) is the one that is considered 

as the first damage mode that will occur while loading. The two conditions are given below 

[19]: 
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2.4.2 Hashin criterion 

The main difference and advantage of that criterion in comparison to the previous one is 

that instead of just fiber failure, it also gives the capability of predicting whether the fiber 

failure is in tension or in compression [19]. As it will be seen, the condition for matrix 

failure is the same as above.  

 

 

 

 

 

 

 

 

 

Due to the fact that now there separate tensile and compressive fiber failure modes, it is 

necessary to distinguish between XT and XC, the first indicating the ply strength in tension 

and the second one in compression.  

 

 

2.5 Puck Failure Theory 

It can be seen from the brief discussion in the previous section that most failure criteria 

rely on simplifications, curve fitting, or emulation of metal behaviour. As such, they are 

not expected to be very accurate, as was demonstrated by the World Wide Failure Exercise 

[16], [17]. It is very important that the failure criterion or criteria used capture some of 

the physical mechanisms taking place during failure and at a length scale that allows 

relating local failure mechanisms with global behaviour.  
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The need, therefore, arises for a physically based phenomenological model that will not 

rely on linear stress-strain relationships, will account for various failure modes and at the 

same time will be practical to use in engineering practice.  

For the purposes of the thesis project, the primary criterion that has been selected, which 

seems to meet these requirements, is the Puck Failure Criterion, which is also the most 

widely accepted in the Aerospace Industry and was initially formulated for damage onset 

and fracture [1], [3], [4], [22], [23].  

 

The main reasons for that selection are: 

1. It avoids deficiencies of both interactive and non-interactive failure theories 

2. It distinguishes between fibre and matrix failure modes, including 3 matrix failure 

modes and 2 fibre failure modes 

3. It relies on non-linear stress and strain analysis before the initiation of failure 

4. It includes a physically based action plane related fracture criteria, both for inter-

fibre failure and for fibre failure 

 

In contradiction to the analysis of stresses and strains, strength analysis of composite 

laminates demands the formulation of fracture models that are sufficiently close to physical 

reality and yet remain practical and feasible for engineering practice. Puck’s fracture 

theory has some distinct characteristics that are judged to be fundamental when the issue 

of a reliable fracture criterion arises.  

These characteristics are: 

 Two independent fracture criteria are applied at the same time. One for fiber failure 

(FF) and one for inter-fiber failure (IFF). This is essential since these two fracture 

occurrences must be treated as independent phenomena. Moreover, the design 

strategy is different according to the governing failure mode, the one that will occur 

at a lower load.  

 The fracture envelope of (σ2, τ12), where 2 is the direction perpendicular to the 

fibers, is not described by a single equation that included both the transverse tensile 

strength Yt and the transverse compressive strength Yc. The reason for that is that 

the strength characteristics in tension and compression are independent. 

 In the case of IFF type of failure, it is crucial that the criterion gives information 

whether IFF occurred from transverse tension or compression. The case of crack 

formation due to transverse tensile stresses is relatively benign, compared to the 
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respective case in compression, which potentially causes the “explosive” effect of 

oblique cracks.  

    

Following this introductory part, the fracture theory will now be described in more detail.  

The failure model is based on the brittle behaviour of composites and it accounts for five 

different failure modes in total, namely fibre failure in tension and in compression and 

three different inter-fibre failure modes, namely A, B and C (see Figure 2). Modes A and 

B concern cracks that develop perpendicular to the mid-plane in tension and compression 

respectively (straight cracks), while mode C predicts oblique cracks that are at an angle. 

For mode C, the direction of the crack is also predicted, by means of the inclination of the 

fracture plane with respect to the thickness direction of the laminate.  

 

 
Figure 3: Inter-fiber failure modes of Puck failure theory [1] 

 

According to Puck’s criterion, there are six types of stresses (Figure 4) that can cause 

fracture, namely tension and compression parallel to the fibre direction (associated with 

the two fibre failure modes), then tension and compression perpendicular to the fibre 

direction and two types of shear stress, perpendicular-perpendicular,  

shearing the 13 or the 12 planes (3being the out-of-plane direction) and parallel-

perpendicular, shearing the 23 plane (associated with the three inter-fibre failure modes).  

Instead of the common stress subscript notation, Puck introduced the term of “stressing” 

only distinguishing whether the stress is acting longitudinally or transversely to the fibre 

direction. The stressings are shown below in Figure 4 for better understanding. 
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Figure 4: The six types of stressing of Puck failure theory [2] 

Corresponding to the six “stressings” mentioned above, there are also six strengths that 

are taken into account by the criterion, which are the experimentally determined ultimate 

loads for each type of stressing divided by the surface on which the load is acting. A point 

of attention related to the surface on which the stress is acting is that in the case of brittle 

fracture, as it is in CFRP and GFRP with brittle epoxy matrix, is that it does not coincide 

with the fracture plane.  

The only stressings that produce fracture in their action planes with the action plane 

coinciding with the fracture plane are tensile perpendicular to the fibre direction and 

perpendicular-parallel shear, shearing the 23 plane.  

Therefore, it can be concluded that we are dealing primarily with brittle fracture behaviour 

and that criteria which are originally intended for ductile metallic materials are not 

applicable.  

Therefore, the essential fracture hypothesis that needs to be followed in our case is that 

“The stresses in the fracture plane are decisive for fracture”, as formulated initially by 

Mohr. This idea was adopted by Puck in the formulation of his fracture criterion and 

tuned in order to apply to UD composites. The resulting hypothesis is that the normal 

stress σn and the shear stresses τnt and τn1 are critical for inter-fibre failure.  

A tensile stress promotes fracture whereas a compressive stress impedes fracture, acting as 

a crack closure mechanism. See Figure 4 below for reference.  
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Figure 5: Acting stresses on the fracture plane [3] 

Another term that is introduced by Puck in his criterion is that of the fracture resistance 

RA (superscript stands for action plane).  

The fracture resistance of an action plane is the maximum resistance with which the action 

plane can resist its own fracture caused either by tensile stressing perpendicular to the 

fibre direction, a transverse-transverse (namely 12 or 13) shear or a transverse-parallel 

(23) shear stressing.  

Finally, another term incorporated in Puck’s failure theory is that of the master fracture 

body. It concerns the inter-fibre failure modes and envelopes all the possible stress states 

that the unidirectional composite can withstand without damage/fracture. 

 

 
Figure 6: Puck's master fracture body [3] 

 

A point of attention is the determination of the fracture plane angle θfp (see Figure 5) that 

concerns mode C IFF (inter-fibre failure).  
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It is essential to know the fracture plane angle in order to be able to determine the direction 

of the fracture vector that will give mode C failure.  

The answer follows from the fact that fracture is expected at the plane that is parallel to 

the fibre direction and that the stress state under consideration has its maximum value. 

The failure indices for Puck’s failure theory for each failure mode are given below.  

 

Failure Mode Failure Index 

Fibre 

Tension 

𝐸𝐿

𝑋𝑇 ∗ (𝜀𝐿 +
𝑣𝑓

𝐸𝑓
∗ 𝑚𝜎𝑓 ∗ 𝜎𝑇) = 𝐹𝐼𝑓 ,               (… ) ≥ 0 

Fibre 

Compression 

𝐸𝐿

𝑋𝐶 ∗ |(𝜀𝐿 +
𝑣𝑓

𝐸𝑓
∗ 𝑚𝜎𝑓 ∗ 𝜎𝑇)| = 𝐹𝐼𝑓 ,            (… ) < 0 

Mode A √
𝜏𝑇𝐿

2

𝑆
+ (1 − 𝑝┴∥

(+)
∗

𝑌𝑇

𝑆
)

2

∗ (
𝜎𝑇

𝑌𝑇)
2

+ 𝑝┴∥
(+)

∗
𝜎𝑇

𝑆𝑇 = 𝐹𝐼𝑀,                𝜎𝑇 ≥ 0 

Mode B 
1

𝑆
∗ (√𝜏𝑇𝐿

2 + (𝑝┴∥

(−)
∗ 𝜎𝑇)

2

+ 𝑝┴∥

(−)
∗ 𝜎𝑇) = 𝐹𝐼𝑀 ,       𝜎𝑇 < 0 ≤ |

𝜎𝑇

𝜏𝑇𝐿

| ≤
𝑅

|𝑆𝑐 |
 

Mode C [(
𝜏𝑇𝐿

𝑌𝐶 ∗
𝑅

𝑆
)

2

+ (
𝜎𝑇

𝑌𝐶 )
2

] ∗
𝑌𝐶

−𝜎𝑇
= 𝐹𝐼𝑀 ,                            𝜎𝑇 < 0 ≤ |

𝜏𝑇𝐿

𝜎𝑇

| ≤
|𝑆𝑐 |

𝑅
 

 𝑅 =
𝑌𝐶

2 ∗ (1 + 𝑝┴┴
(−)

)
,          𝑝┴∥

(+)
= 𝑝┴∥

(−)
= 𝑝┴┴

(−)
∗

𝑆

𝑅
,        𝑆𝐶 = 𝑆 ∗ √1 + 2 ∗ 𝑝┴┴

(−) 

Table 1: Puck's failure indices 

The following table is explanatory of the required parameters and properties for the 

application of the criterion.  

 

XT, XC Longitudinal tensile and compressive ply strength 

YT, YC Transverse tensile and compressive ply strength 

S In-plane shear ply strength 

Ef, vf Fiber modulus and Poisson’s ratio 

p(+)
┴┴,p(-)

┴┴, 

p(+)
⃦┴,p(-)

⃦┴ 
Inclination parameters that are experimentally determined 

mσf Stress magnification factor due to difference between fiber transverse modulus 

and matrix modulus 

EL Ply longitudinal Young’s modulus 
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εL Normal longitudinal strain 

σT, τTL Transverse normal and in-plane shear ply stress 

Table 2: Required parameters for the application of Puck failure criterion [4] 

For the case of IFF mode C, the fracture plane angle with respect to the thickness direction 

(see Figure 5) is given by the formula [22]: 

 

 

Typical values are also given below for the inclination parameters [23].  

 

 
Table 3: Recommended values for inclination parameters 

The model described above was applied to numerous cases of different laminates (both 

GFRP and CFRP) and under different loading schemes. Typical results of the anticipated 

fracture envelopes will be described below.  

 
Figure 7: Biaxial failure stress envelope of GRP laminate [4] 

 

In the figure above, the failure envelope is shown for GFRP material under combined 

transverse and shear loading. 

Three different failure modes are included in the envelope, depending on the developed 

stress state. Namely, under combined in-plane shear and transverse tension, IFF mode A 

occurs.  
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At low levels of transverse compression (combined always with shear), IFF mode B occurs. 

At stress combinations that are on the left of the dashed line (that indicates higher levels 

of transverse compression), IFF mode C is the predicted failure mode.  

 

 
Figure 8: Biaxial failure envelope of CRP laminate [4] 

 

Figure 8 displays the failure envelope of a CFRP laminate subjected to longitudinal loading 

combined with in-plane shear. The different load regions and combinations again indicate 

a different mode of failure.  

 

 
Figure 9: Biaxial failure envelope of GRP laminate [4] 

A GRP laminate under combined longitudinal and transverse axial stress is shown in 

Figure 9. In this case, four different failure modes are observed.  

There is both fiber failure in tension and compression and naturally it is observed on the 

vertical boundaries of the envelope, where the longitudinal axial stress has its maximum 

absolute values.  
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In between those two limits, the occurring failure modes are either IFF mode A or mode 

C, depending on the sign of the transverse stress.  

As it can be observed from what was mentioned above, the matrix failure modes that are 

experimentally observed such as cracks that have propagated either perpendicular or 

inclined with respect to the fiber plane (12), are captured by the Puck failure theory. 

It gives a better insight on the type of failure that should be anticipated, depending on 

the load (or stress in that case) combination, thus allowing for structural optimization to 

be oriented specifically with respect to the failure mode that will occur at lower loading 

regimes. It is a very useful tool to get an overview of the different responses that should 

be expected in each case. Hence, it is the selected failure theory to be applied in this 

project. As a reference, the results given in each case by Puck will be compared to the 

results given by a limit criterion, namely the maximum stress criterion and also to the 

results by an interactive criterion which, in this case, is the Hoffman failure criterion.
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3    Developed Model 

 

3.1 Introductory Discussion 

In this chapter, the proposed approach for the determination of the onset of damage in a 

specific class of laminates under tension will be presented in detail.  

More specifically, the examined family of laminates, with stacking sequence [02/θ2/-θ2]s, is 

expected to exhibit a certain sequence of damage events when being exposed to this specific 

type of loading. The phenomenon that is desired to be captured is first of all the matrix 

cracks propagating along the ±θ fiber orientation, followed by a local delamination in the 

envelope formed between a +θ crack, a –θ crack and a free edge of the laminate [6].  

It can be understood that it is essential for the model to include in the analysis the out-

of-plane stresses, thus taking into account the developed interlaminar stresses and their 

effects in the vicinity of the laminate that is affected by the free edges. 

Further on, as it was briefly mentioned in the first chapter, the functional form for the 

stresses of the model must at some point lead to the recovery of the Classical Laminated 

Plate Theory (CLPT) stress solution. As one moves from the free edges towards the center 

of the laminate, the effects of the interlaminar stresses diminish and, at some point, cease 

to exist or in any case become negligible. From that point onwards, the predicted stress 

values of the model should match the ones supplied by CLPT. 

Therefore, the stress functions must consist of two parts, one of them accounting for the 

interlaminar stresses that will become zero after the threshold of the influence of the free 

edge effects is reached and another one that will handle the part where the stress functions 

must give the CLPT solutions [24].  

All the necessary steps for the formulation of the described model will be shown in the 

coming sections.  

 

3.2 Initial Stress Expressions 

The selected stress functions to be given as a starting point for the derivation of the rest 

of them are the ones of σy and τxy.  
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Figure 10: Coordinate system and type of loading 

Figure 10 indicates the used coordinate system (global) and the considered type of loading. 

It should be mentioned at this point that for all the stress functions, no dependence on x 

is taken into account. All of them have a dependence on the y axis (in-plane dependence) 

and on the thickness direction (z axis). As it will be realized later on in the description of 

the model, this assumption was made in order to decrease the number of unknown 

constants and coefficients to a level that can be handled by the available equations and 

conditions and to make the model more practical from a mathematical and computational 

point of view without sacrificing its accuracy and applicability.  

Therefore, the initial stress functions are the following: 

      

    (1) 

 

   (2) 

 

From the form of the functions given above, it can be seen that they consist of an 

exponential part with respect to the y direction, multiplied by an infinite Fourier series 

with respect to z. The origin of the y axis is at the edge, with a direction towards the 

center of the laminate, see Figure 11 [25].  

 

 
Figure 11: Coordinate system origin 
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Further on, the unknown constants φ1, φ2, φ3 are considered to be positive real numbers. 

This has as a consequence that when y goes to infinity, all the exponents go to zero, thus 

leaving only the Fourier series part active. In this case, infinity is considered to be the far-

field area of the laminate, where there is no effect of the interlaminar stresses. 

Therefore, it remains for the Fourier series to “simulate” the response of the laminate in 

a way that will match the CLPT stress solution. 

The next step is to derive the rest of the stress expressions, through the application of the 

governing equations for the three-dimensional state of stress. The set of equations is given 

below. 

 

    (3) 

 

    (4) 

 

     (5) 

 

The red parts of the equations shown above are not existing in the described case since, 

as already mentioned, no dependence of the stresses on x is taken into account. However, 

through the elimination of the red terms, it can be seen that in order to solve for σx an 

extra equation is required. By performing a double z integration, it is possible to have an 

expression for σx using the following equation: 

 

       (6) 

    

This process will be adequately explained in steps in the following sections of the chapter.  

 

3.3 Derivation of the Remaining Stress Expressions 

3.3.1 Application of the governing equations - equilibrium 

By applying the equilibrium conditions given above, the desired stress expressions are 

firstly described as shown below: 

 

  (7) 
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  (8) 

 

  (9) 

 
 

  (10) 

 

3.3.2 Application of the boundary conditions 

 

 
Figure 12: Schematic representation of the applied boundary conditions 

 

The next step is to apply the free edge boundary condition (see Figure 12). This condition 

ensures that at the origin of the y axis (green line in left part of Figure 12), all stresses 

that are exposed there (σy, τxy, τyz) are equal to zero. The condition is given below: 

 

 (11) 

 

  (12) 

 

  (13) 

 

Applying the above condition to the stress expressions derived previously leads to: 

 

   (14) 
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   (15) 

 

   (16) 

 

By solving the system of the three parts included in the parentheses, it is possible to 

express B1, B2 and A3 with respect to the rest of the unknowns. Further on, the next 

objective is that the boundary condition at the top and bottom of the laminate is satisfied. 

This requires that all the stresses that include a z component, meaning τxz, τyz, σz, must 

be zero at the outermost boundary of each half of the laminate (red lines in right part of 

Figure 12).  

Since, the mid-plane is considered to be the origin of the coordinate system, this holds for 

z=± h/2, where h is the total laminate thickness (see Figure 12). The condition is the 

following: 

       

(17)

 

                      

      

(18)

 

 

       

(19)

 
 

From this we get to: 

   (20) 
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                           (21) 

 

            (22) 

 

For clarification, it should be mentioned that for the interlaminar stresses under discussion 

(τxz, τyz and σz), the equations were equivalent for the top and the bottom ply condition, 

thus giving one condition for each one of the three stresses (with the respective order in 

which they were mentioned above).   

As it can be observed, the first two equations are by default satisfied for all the values of 

m=1, 2…n, obviously due to the sinus. And from the third one, the unknown function f(y) 

can be expressed with respect to the rest of the unknown parameters as follows.  

3.3.3 Stress functions after equilibrium and BC’s 

After all the steps described above, the stress functions in their latest form are: 
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Table 4: Stress functions after BCs and equilibrium 

There are some matters that remain to be discussed concerning the functions as they are 

presented in the table above.  

First of all, the f(y) function that appears in the function of σz was placed in order to 

satisfy the top and bottom ply condition for the mentioned stress, also accounting for the 

fact (from the form of f(y) finally) that σz should be zero when the far-field is reached and 

y goes to infinity.  

The Fourier coefficients, namely Cm and Dm that appear in the functions will be found by 

matching the limit of the stress expressions as y goes to infinity with the corresponding 

CLPT solution.  

Looking at Table 4 with the stresses, one can see that actually when y approaches the far-

field (y large), the out-of-plane stresses become zero, while the in-plane ones have a 

remaining part, consisting of the Fourier series multiplied by some coefficients. In each 

case, these parts are set equal to the corresponding stress solution provided by CLPT for 

each ply.  

Specifically for the case of σx, an extra coefficient K is required, because a Fourier cosine 

series averages to zero but, unlike σy and τxy, whose CLPT solution averages to zero 

through the thickness, σx does not. The way all the coefficients are calculated is described 

in detail later, in section (3.4.3.1).  
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3.4 Energy Expression Minimization 

After determining all the stress expressions, the energy of the laminate can be found.  

3.4.1 Formulation of the energy expression 

In order to calculate the total energy of the laminate, some matrices need to be defined 

first. The required ones are the compliance matrix, as well as the three-dimensional stress 

tensor. These are defined using the three-dimensional stress-strain relation, solved with 

respect to strains: 

     (23) 

 

From which the compliance tensor is obtained as: 

 

                (24) 

 

 

It must be noted at this point that the elements of the compliance matrix are on a ply 

basis. The respective calculations will be given below at the end of section 3.4.4. The 

expression for the complementary energy of the laminate is given as: 

 

        (25) 

In the formula above, [A] is the stress vector as given below: 
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                                          (26) 

 

The superscript “T” indicates the transpose of matrix [A]. Normally, the above formula 

should include a triple integration over the volume. Taking into account that no 

dependence on x is considered, the energy expression diminishes to the above.  

By performing the matrix operations of the above equation, we get to the following form 

of the energy expression: 

 

  (27) 

 

This equation consists of 13 terms in total. The next step is integrations with respect to y 

and z. It should be emphasized at this point that for each one of the stress expressions 

(and correspondingly the same holds for each one of the energy terms), the dependence on 

y is separated from the dependence on z.  

This means that each one of the energy terms will be firstly integrated with respect to y 

and then at a second step with respect to z.  

Moreover, by taking a look at the given compliance matrix, one would assume that some 

of the matrix elements will be zero, since the approach concerns at this point only 

symmetric laminates. This is actually true, namely for S16, S26, S36 and S45. But this is true 

if someone considers the compliances of the whole laminate. For the scope of the present 

analysis and in order to evaluate the energy accurately, the compliances are considered as 

ply compliances. In this way, each ply will have its own contribution, multiplied by a 

different factor.  

Therefore, for the coming sections, whenever compliance is stated, it will be on a ply basis. 

In other words, Sij is considered to be a z dependent parameter. Hence, it will be included 

in the z integration.  
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3.4.2 Integration with respect to y 

The dependence of the stress functions on y is in terms of the exponential part of the 

functions. The integration limits in this case are zero and infinity. Zero indicates the free 

edge of the plate and infinity the part of the laminate towards the center, at which the 

interlaminar stresses become zero. As a reference, the procedure will be shown for the first 

term of the energy expression. The rest of the terms are treated in the same manner and 

the calculations can be seen in the appendix. 

Before going into the calculations, it must be mentioned that for ease of  manipulation of 

the terms, the Fourier parts of each function, together with the compliance terms that are 

also depending on z are replaced by S1...S7. Each one of these terms is given for clarification. 

 

stress Corresponding Sk term (k=1…7) 

 

   

 
 
 

 
    

 

 

 
 

 

 

 
 
 

 

 

 
 

 
 
 

 

 
 
 

 

 

 
 

 
 

Table 5: z dependent parts of stress functions 
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Continuing, now that the z parts of the functions have been replaced by the Sk terms, they 

can be considered solely as functions of y for that step. As it can be seen from the energy 

expression, the first term is (σx)
2. Therefore, the required integration is:  

 

   (28) 

For some of the terms of the energy expression, the whole integral goes to infinity and this 

is caused by parts that are directly multiplied by infinity in the upper bound of the 

integration. Hence, whenever an issue like that occurs, infinity is replaced by a new 

unknown denoted L that can be viewed as the “boundary layer” within which interlaminar 

stresses are appreciable. It is a sufficiently large number that will be determined later on. 

Furthermore, for the simplification of the integrated terms, the values of φ1, φ2 and φ3 are 

always considered to be positive. Carrying out the calculations, the final form of the first 

term of the energy expression after y integration is: 

 

 

 

 

 

 

 

 

 

The exact same procedure holds for the rest of the 13 terms in total. This results in 13 

expressions in the form of the one given above for term1. The next step is to perform the 

z integration.  

 

3.4.3 Integration with respect to z 

After integrating the 13 terms with respect to y exactly as shown for the first term, the 

resulting equations are replaced in the initial energy expression, shown in section 3.4.1. 

This leads to an expression consisting of the unknown constants φ1, φ2, φ3, A1 and A2, h 

which is the total laminate thickness and the z dependent parameters Sk, the compliance 

elements Sij, the Fourier series and Kstar.  
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Again, in order to make calculations easier and more straightforward, all the parts that 

have a z dependence are grouped together and substituted by the corresponding T j terms. 

These terms that are 22 in total and include different combinations of S ij, Sk, Kstar. They 

are given in the table below.  

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

 

  
 

 

 

 

 
 

 

 

 

 

Table 6: Final terms for z integration 

Again here, as a reference, the z integration of T1 will be shown. The same procedure holds 

for the rest of these terms and more information can be found in the appendix.  

First of all, all the operations between series were performed according to the following 

rule:
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In the second case, where m=p, the square of the Fourier series is handled as shown in the 

formula below: 

 

  (31) 

 

As it can be seen from the formula above, the product of two series is a Fourier double 

series. In the case where a series is squared, the same formula is used by multiplying the 

series with itself. Moreover, the integrals are calculated only for half of the laminate and 

then doubled, owing to the stacking sequence symmetry. It follows then that the 

integration of T1 is as follows: 

 

 
 

Where a and b are two random integration limits. As it has already been mentioned, the 

compliance terms are considered to be on a ply by ply basis.  

Concerning the integration bounds, this means that each integral will have to be split in 

a number of integrals equal to the number of plies for one half of the laminate. Hence, the 

integration bounds for all of these integrals will be the z coordinates of the lower and upper 

interface of each ply. 

After z integration of all the terms, the resulting expressions should be calculated and 

summed for the first n terms. In this case, both m and p were set to 40.  

   

3.4.4 Calculation of the z-dependent parameters (Fourier series coefficients & compliance 

matrix) 

As it has already been mentioned, at the point where the interlaminar stress effects will 

be negligible, the CLPT stress solution must be recovered. This, of course, concerns the 

in-plane stresses, while the out-of-plane will go to zero. As a reminder, the remaining parts 

of the in-plane stress functions after y goes to infinity are given.  
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    (32) 

 

                        (33) 

 

                       (34) 

 

Therefore, these expressions should be equal to the corresponding stress value given from 

CLPT for each ply. Knowing the ply stresses for a unit load, it is possible to determine 

the Fourier coefficients Cm and Dm and also Kstar using standard Fourier series procedures. 

The method will be shown initially for σy as an example.  

 

 

 

 

 

 

 

Considering now only the left hand side (LHS) of the equation, this integral depends on 

whether m is equal or not to p. The two cases are: 

 

 

 

It can be seen that only the case of m=p gives a solution, through which it is possible to 

find Dm after equating the result with the right hand side of the equation above. The 

integral on the right hand side should be split to as many integrals as the plies of half the 

laminate.  
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In each one of the integrals, the limits will be the lower and upper edge of the respective 

ply. For better understanding, an example of the calculation for a half -laminate with 4 

plies will be shown.  

 

  (35) 

The left hand side, as given above, is set equal to the right hand side, which is split in 4 

integrals, one for each ply of half the laminate. 

The case of τxy is exactly analogous to what was shown above. The same formulas are 

applicable only if Dm is replaced by Cm and of course the transverse stress values from 

CLPT are replaced by the corresponding shear stresses.  

Having already determined Dm, Kstar can also be calculated through the same procedure as 

shown above, applied on σx. Moreover, as already stated, the compliance matrix elements 

are considered to be on a ply level and not of the whole laminate.  

With these results, the through the thickness dependence for σx, σy and τxy away from the 

free edge (where y is large) for a laminate of the type [02/θ2/-θ2]s under static tension in 

the x direction (see Figures 10, 11) predicted by the present model is compared to the 

CLPT solution in Figures 12 and 13 

 

 
Figure 13: Comparison between CLPT stress solution and Fourier series for different numbers of terms in the 

series for σy 
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Figure 14: Comparison between CLPT stress solution and Fourier series for different numbers of terms in the 

series for τxy 

It is observed that as the number of terms in the Fourier series increases, the present 

solution converges to the CLPT solution as it should. Based on the results of Figures 12,13 

and similar results for other laminates, it was decided that the number of terms in the 

Fourier series to be used would be 40. This gives sufficient accuracy and is not very 

intensive computationally. 

 

The formulas that were used for the determination of the compliances are the following 

[20]: 
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Table 7: Compliance matrix elements calculation 

Where m and n represent cos(θ) and sin(θ) respectively, θ being the fiber orientation of 

each ply.  

This m appearing here should not be confused with the “m” in the Fourier series. Also, 

E11, E22, G12, G13, G23 and v12 are basic ply engineering constants experimentally 

determined.  

After having calculated the cumulative value of every integral for the specified number of 

terms to be accounted, the energy expression has reached its final form, being a polynomial 

function of φ1, φ2, φ3, A1, A2 and L.  

L is considered to be a constant and its value has originally been set equal to the whole 

laminate thickness. It is a value that will be corrected later on and be set equal to the 

distance from the free edge to the point that the interlaminar stresses go to zero, as it will 

be observed from the stress plots. The other constraint, as already mentioned, is that φ1, 

φ2 and φ3 must be greater than zero, in order to satisfy the anticipated exponential decay 

of the stress expressions. 

The last step that needs to be taken before proceeding to the minimization of the energy 

is the calculation of the work term (described in section 3.4.5). 
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3.4.5 Work term 

The work term is an integral of σx over the surface where displacements are described of 

σx*uo and uo are the constant applied displacements. The stress expression of σx must be 

integrated with respect to y (from zero to infinity) and z (from –h/2 to +h/2). The same 

procedure as was followed for the rest of the energy terms will also be used here. For 

additional information, refer to sections 3.4.2 and 3.4.3.    

 

First of all, σx is expressed in the following way: 

 

(36) 

 

Where,  

 

     (37) 

   (38) 

 

                                  (39) 

 

M1, M2, M3 are all the z-dependent parameters of the expression. By carrying out the 

double integration of the above expression exactly as described previously, the resulting 

work term is the following: 

 

     (40) 
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The constant applied displacement that is needed for the calculation of the work term can 

be correlated to the externally applied load per unit width Nx. The way to do that is shown 

below: 

 

         (41) 

 

In our case, Nx is the only applied load. Hence, Ny and Nxy are zero. By solving the system 

of the 3 equations given in matrix form above, we get to the following: 

 

      (42) 

 

                         (43) 

 

Through which it is possible to express εx with respect to the applied Nx, if the above are 

substituted in the first equation of the system, namely: 

 

     (44) 

 

Finally, εx is the displacement uo, divided by the length of the laminate l. in this way, the 

applied displacement can be expressed with respect to the applied load, as shown below: 

 

       (45) 

 

Where l is the laminate length. With the work term calculated, it is time to start with the 

minimization of the laminate’s energy. The next section discusses that matter.  
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3.4.6 Energy minimization process 

Having performed all the above steps, the next objective is to find the solution that satisfies 

the requirements stated previously and minimizes the energy expression. The minimization 

process in that case was approached with two different methods.  

In the first case, from the energy expression’s final form, the partial derivatives with 

respect to each one of the 5 variables (φ1, φ2, φ3, A1, A2) individually were found.  

These derivatives were then treated as a 5x5 system of equations. The algorithm consisted 

of nested iterations.  

Each time, arbitrary values close to anticipated ones were set to three of the five variables 

and a convergence procedure followed between the two remaining ones.  

Once convergence was reached, these two recalculated the value of the third variable (with 

the preset value) and then a new iteration began. At some point, convergence was satisfied 

for all five variables. 

Another (not so practical) idea that was tried was to actually find all the solutions of the 

5x5 system and firstly keep only those ones that satisfy the constraints. At a second step, 

for all the solutions that were kept, the energy expression value would be calculated and 

then the set of solutions that gave the minimum value in the energy would be the selected 

one. Unfortunately, the first step of calculating all the possible solutions of the system 

turned out to be much more consuming in computational time and power than was 

expected.  

The alternative approach was to minimize the value of the energy expression directly, 

without using the derivatives.  

The inherent limitation of that method is that, even in the case that a minimum is found, 

it cannot be reassured that this is the global minimum. In fact, it will most likely be a 

local minimum.  

This problem was treated with Matlab’s “fconmin” function, as well as Microsoft Excel’s 

optimizer. The issue mentioned above for those tools is due to the built-in algorithms of 

these optimization functions. When the optimizer enters a valley-like region in space, from 

that point onwards it will only search vertically for better solutions, thus reaching at some 

point the bottom of the valley and claiming convergence. Once that happens, the process 

will end, without checking whether there is another valley in a specific vicinity that goes 

even lower. So, unless someone has to deal with a convex problem that by default has only 

one global minimum, this method can prove to be a bit problematic. 
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A partial solution to the problem would be to change the search process to a more robust 

one that will jump arbitrarily from one region to another in order to minimize the 

possibility of falling into the same valley endlessly. After stating the above, it should be 

reminded that the desired solution to the energy minimization task corresponds to a 

specific laminate. For different stacking sequences the described procedure concerning the 

energy expression will have to be repeated.
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4   Results 

4.1 General Comments 

After finding the set of values of the unknowns that minimizes the total energy of the 

laminate, the solution can be implemented in the stress expressions, so that they can be 

plotted for a specified point through the thickness of the laminate. 

As it was mentioned in the previous chapter (see section 3.4.6), the process of minimizing 

the energy expression can prove to be quite tricky. The level of complexity of solving the 

system (or finding the solution that minimizes the energy) is of course directly connected 

to the number of unknown constants.  

Due to the aforementioned issues, the initial 5x5 system (owing to φ1, φ2, φ3, A1, A2) had 

to be reduced in order to get to a solution that would lead to capturing the desired 

behavior. More specifically, the five unknowns are reduced to 3 by eliminating φ3 and 

setting A1 to zero. The procedure steps are exactly the same as shown in Chapter 3.  

4.2 Material Properties & Load Case 

The material system that was used in the calculations is CFRP, consisting of unidirectional 

carbon reinforcement and epoxy resin system. The ply properties that are taken into  

account are given in the table below: 

 

Property  Value 

E1 (GPa) 137.90 

E2 (GPa) 14.48 

E3 (GPa) 14.48 

G12 (GPa) 5.86 

G13 (GPa) 5.86 

G23 (GPa) 5.86 

V12 (-) 0.21 

V13 (-) 0.21 

V23 (-) 0.21 

tply (mm) 0.15 

Table 8: Ply properties of the considered material 
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Furthermore, the stacking sequence that has been used to get to the stress plots that will 

be shown further on in the chapter is [45/-45/0/90]s. As a reference for now but also for 

later on, a sketch is given showing the upper half of the laminate.  

 

 

 
Figure 15: Upper half of discussed laminate 

Finally, the load case that the upcoming graphs correspond to is shown in the sketch 

below: 

 

 
Figure 16: Load case and coordinate system definition 

4.3 Simplified Stress Expressions 

As it was mentioned in section 4.1, the stress expressions that were introduced and those 

that were derived from them in Chapter 3 were simplified in order to decrease the required 

computational time and power. All the steps that lead to the solution of the system are 

precisely as described in the previous chapters. The simplified stress expressions after 

satisfying the equilibrium equations and applying the boundary conditions are given below: 
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Table 9: simplified stress plots 

 

4.4 Stress Plots 

Using the stress expressions given in Table 9, one can create the corresponding stress plots. 

In this case, all stresses were plotted along the y axis, moving from the free edge of the 

laminate towards the center. For the coordinate system that was set refer to Figure 11. In 

the following sections, the resulting plots will be given, together with some comments on 

the observed stress behavior.  

 

4.4.1 Out-of-plane stress plots 

Concerning the out-of-plane stresses (σz, τxz and τyz), it is expected by the physics of the 

phenomenon and correspondingly by the construction of the model that at some point 
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sufficiently far away from the free edge they will decrease and go asymptotically to zero, 

thus showing an exponential decay kind of behavior. The respective graphs are given 

below: 

 

 
Figure 17: σz

z
 along the y-axis in the given coordinates through the thickness 

 

 
Figure 18: τxz along the y-axis in the given coordinates through the thickness 
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Figure 19: τyz along the y-axis in the given coordinates through the thickness 

 

First of all, it can be seen in Figures 16, 17 and 18 that each one of the stresses has been 

plotted for three different points along the thickness of the laminate. Namely, at the 

midplane of the laminate and at the two interfaces along the stacking sequence where 

there is the largest relative change in fiber orientation between the neighbouring plies.  

Concerning the horizontal axis, as it has already been mentioned, y initiates at the free 

edge of the laminate and heads towards the origin of the coordinate system at the center 

of the laminate (see Figure 11). Moreover, the constant b in (1-y/b) is equal to two times 

the thickness of the laminate (=2*nplies*tply) [26], [27].   

Looking at all three graphs, at h/2 all the out-of-plane stresses are zero (red label in plots). 

This fact confirms the boundary condition that all the z-acting stresses (σz, τxz and τyz) are 

zero at the top and bottom surface of the laminate (see section 3.3.2). 

Continuing, all the out-of-plane stresses have the desired exponential decay behaviour and 

hey go to zero after a specific distance from the free edge. In the model, this “threshold” 

is considered as infinity in order for the corresponding expressions to become zero. 

Furthermore, there is a gradual decrease in the values of the ply stresses as one goes 

towards the upper surface of the laminate, which is also anticipated.   
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4.4.2 In-plane stress plots 

As it was mentioned in the previous section, at some distance from the free edge, the 

interlaminar stresses will become zero. At this point, the in-plane stresses should recover 

the CLPT stress solution and remain constant once they reach the corresponding value. 

This is observed in the graphs given below.  

 

 
Figure 20: σx along y-axis 

 
Figure 21: σy along y-axis 
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Figure 22: τxy along y-axis 

Indeed, the stress values that are obtained from the graph once they become constant 

match to within less than 0.6% the ones calculated through CLPT, shown below: 

 

 90o 0o -45o 45o 

σx (MPa) 20.45 206.62 53.13 53.13 

σy (MPa) -58.38 -2.03 30.20 30.20 

τxy (MPa) 0 0 -32.45 32.45 

Table 10: CLPT stress values for the given laminate 

 

 

4.5 Comparison to Literature - Considerations 

The out-of-plane stress plots presented above (refer to Figures 17-19) were afterwards 

compared to the stress results presented in [25]. The comparison showed that, although 

qualitatively the interlaminar stresses are correct and follow the anticipated trends, the 

numerical values of the stresses in the two cases differ significantly.  

The first question that rises is whether the solution (φ1, φ2) of the energy expression 

minimization is not correct, thus creating the numerical deviation between the model and 

the literature. In order to check for that, σz was plotted again along the transverse distance 

from the free edge, for all the ply interfaces. This graph is presented below: 
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Figure 23: σz along y axis for different z locations 

As it can be seen in the graph above, σz becomes zero at the same transverse distance 

from the free edge (along y-axis), irrespective of the location along the thickness of the 

laminate.  This suggests that there are no anomalous variations on the σz plots that would 

manifest themselves as wide variations in the location that the stress becomes zero. 

Solutions that have been published support this fact [25].  

After consecutive trials and errors, it was realized that the results are distorted by a 

multiplicative factor. This factor is carried on from some point and in the end all the stress 

values are multiplied by that same factor. This factor has been found to be constant for 

each stress (but each stress having its own unique factor) but it is not known for sure 

whether it also changes for each one of the plies.  

After finding this factor for a certain stress and applying it to the results of the model, the 

agreement between the present solution and the one presented in [25] is excellent, as it is 

shown in the figure below: 
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Figure 24: Present results compared to literature after applying the correction factor 

With these findings it can be reassured that a multiplicative factor is causing the error 

and that there is no issue with the approach or the solution of the energy minimization.  

A respectable amount of time was dedicated to breaking down the code and rewriting 

multiple scripts in order to check for potential bugs and errors. Furthermore, the whole 

process for the determination of the final stress expressions and their subsequent 

implementation in the code was checked from top to bottom thoroughly. Unfortunately, 

the multiplicative factor was still not found after 2-3 months of checking and at that point 

there was no more time available, although the specific research topic was highly 

motivating and intriguing. 

Therefore, the model itself in its approach and the symbolic stress expressions are correct 

and once this factor is found, it can be applied in order to predict the first matrix cracks 

and subsequently the first local delamination in the discussed class of laminates under 

tension.
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5 Discussion – Recommendations for Future Research 
 

Despite the unexpected issues that occurred in the formulation of the model and were 

discussed in Section 4.5, the derived expressions are in essence capable of capturing the 

stress interactions that take place at the vicinity of the free edges of a composite laminate.  

Each one of the stress expressions has the behaviour that it is expected to have in space 

and the applied boundary conditions are indeed verified by the stress plots.  

Once the factor that distorts the stress values is found, the stress expressions can be 

implemented in a failure theory such as the Puck criterion that, as discussed in Section 

2.5, is capable of accounting for the anticipated damage phenomena. In that way, it will 

be possible to predict the failure sequence that was presented in [6], [13]. 

Although at this point it is not causing any errors, the process of the energy minimization 

could be made more efficient by writing a code that will start with initial values and 

converge to a solution of the system of equations that minimize the energy of the laminate. 

Once a solution is found, then the algorithm should jump to a region sufficiently far away 

from there. This step is suggested in order to ensure that the optimizer will exit the 

“valley” of the previously found solution. After a sufficient number of iterations, the 

solution will begin to converge. Once convergence has reached the desirable level, the 

solution is kept and implemented in the expressions.   

Further on, once the model is finalized and it can accurately duplicate the results presented 

in the aforementioned literature, an interesting continuation of the project would be to 

implement the developed method in the model of Kassapoglou [28] for the fatigue life 

evaluation of composite structures, which is based on the cycle-by-cycle probability of 

failure. 

The potential capabilities of such an extension are remarkable, since the field of fatigue of 

composite structures is in need of a method that does not limit itself in curve fitting in 

order to capture damage occurrences through conditions and criteria originally designed 

to describe the behaviour of isotropic materials.   

Finally, the model was originally designed to account for either symmetric or non-

symmetric laminates, as well as all possible combinations of applied in-plane loads per unit 

width.     
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Appendix I – Y Integration of the Energy Expression Terms 

 

First of all, the stresses will be given at their latest form, with all z-dependent parts 

substituted by S1 to S7. For these refer to Table 5 of the report.  

 

 

 

 

 

 

 

The different terms are the following: 
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Notice that at this point, all the stresses are considered to be only a function of y. This is 

just for ease of calculations. All the Sk elements that represent the z-dependence of the 

expressions are considered as constants for now. The integrals of the terms w.r.t. y are 

shown below in their final form. A point that needs to be mentioned here as that for some 

of the terms (namely 1, 2, 4, 9, 10 and 11), the integral goes to infinity due to direct 

multiplication of some constant with infinity. In order to resolve that issue, in those cases 

infinity is replaced directly with an unknown constant L. This L represents the distance 

from the free edge after which the interlaminar stress effects cease to exist or become 

negligible.  
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Appendix II – Z Integration of the Energy Expression Terms 

 

After doing the integration of the energy expression terms with respect to y, it is time to 

do the same procedure for z. The final form of the z-dependent parts of the terms can be 

seen again in Table 6 of the report. The integrals here are shown for arbitrary bounds a 

and b (lower and upper respectively). For the calculations, the integrals were split in equal 

sub-integrals as the number of plies of half the laminate. As has already been mentioned, 

due to symmetry of the laminate, only half is taken into account and then for the 

calculations every integral is multiplied by 2.   

Firstly, the integrals are given for m≠p.     
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The exact same procedure for m=p leads to the following: 
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