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SUMMARY

This thesis investigates how selected multivariate probabilistic methods can be adapted
for risk analysis and decision making in coastal and offshore environments. In particular,
the thesis makes a contribution to decision support tools for risk reduction efforts in
coastal environments and to statistical simulation methods for wave conditions.

Generally, very few observations on negative impacts in coastal or offshore environ-
ments are available for risk analysis or decision making due to the rare nature of extreme
events. However, synthetic impact data can be generated by propagating relevant hydro-
meteorological conditions to the environment of interest through a chain of multiple
models. Especially in coastal environments, this chain often includes computationally
intensive models.

Two of the current challenges are to instantly predict storm impacts in coastal areas
and to make the propagation of risks transparent. Both aspects are relevant for emer-
gency management as well as long-term planning. Inspired by numerous applications
of Bayesian networks (BNs) as tools for decision-making in a risk context, a framework
for decision support on risk reduction efforts in coastal areas has been developed in this
thesis.

A main contribution is a learning algorithm for estimating the parameters of the BN.
The algorithm can integrate simulations of synthetic or historical hydro- and morpho-
dynamic storm simulations with land-use data, vulnerability relationships (e.g., depth
damage curves) and risk reduction measures. The core of the algorithm builds on SMILE,
which is a reasoning engine for graphical models.1 The algorithm is programmed in C++
and openly available at: https://github.com/openearth/coastal-dss.

The BN framework is applicable to any coastal site and models constructed accord-
ingly have the potential to:

• predict impacts for any relevant storm events instantly,
• reflect the diversity of impacts (e.g., socio-economic and environmental aspects),
• reflect the spatial variability of impacts,

and
• evaluate the performance of risk reduction measures under different events.

This thesis illustrated the application to the town Wells-next-the-Sea in North Nor-
folk, UK, which is vulnerable to storm surges.2 BN output showed, for example, that ex-
tending the length of the existing flood wall can be more effective for impact reduction
across the variety of storm events that were considered than increasing its height.

In addition to the learning algorithm, detailed recommendations are given for math-
ematical validation and optimization methods. These include metrics for ‘prediction

1SMILE is available free of charge for academic research and teaching use from BayesFusion, LCC,
http://bayesfusion.com/.

2Within the RISC-KIT project, funded under the Seventh Framework Programme of the European Commis-
sion, applications have been made to nine other sites at all different European Seas (see www. risckit.eu).
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viii SUMMARY

precision’ and ‘spatial informativeness’ that are specific to the developed framework
rather than BNs in general. Nonetheless, it is advised to involve intended end users in
further model development to ensure that their needs are met, rather than solely relying
on mathematical validation and optimization methods.

A third challenge is to determine which hydro-meteorological conditions are relevant
for impact assessment and should be propagated through the model train. If relevant
events are omitted in the assessment, risks will be underestimated. A complicating issue
is that storm impacts can also depend on previous hydro-meteorological conditions, as
they may have weakened the environment. Examples are progressive beach and dune
erosion or structural fatigue.

For this reason many applications call for the generation of time series of hydro-
meteorological conditions, often at temporal resolution of approximately one hour. In
the literature, so-called vine-copulas and autoregressive moving-average (ARMA) pro-
cesses have been applied to multivariate time series, also of hydro-meteorological vari-
ables. Nonetheless, high temporal resolutions and the accurate description of depen-
dency between two variables which are elementary for characterizing wave conditions,
significant wave height and mean zero-crossing period, are still under-explored.

In response, this thesis developed two statistical simulation methods based on a data
set of wave conditions in the North Sea and compared their results. One method was
based on vine-copulas and the other on ARMA processes. In the first method, the skew-
t copula, which is a flexible 4-parameter family, was key component for capturing the
dependence between significant wave height and mean zero-crossing period. This cop-
ula can also be applied to construct a bivariate distribution of significant wave height
and mean zero-crossing period outside the time series context. In the second method, a
data-driven equation for a maximum wave-steepness condition has been derived for the
location of the data. The dependence is mainly captured by this equation and a copula
on the ARMA residuals.

The scope of the two methods is different. The method based on vine-copulas fo-
cuses on bivariate time series during oceanographic winter periods assuming station-
arity. The method based on ARMA processes additionally considers non-stationaries on
annual and inter-annual scale as well as a the influence of the wave direction on the joint
behavior of significant wave height and mean zero-crossing period.

Both methods are suitable for generating synthetic time series of significant wave
heights and mean zero-crossing periods. As they emulate storms as well as calm periods
well, which is shown by analyzing their persistency above and below selected thresholds,
they can be flexibly applied in different contexts. However, an uncertainty and sensitivity
analysis would be required to validate models built according to either of the methods
for any given application. One application is coastal risk analysis, for example via the
BN framework developed in this thesis, for which synthetic storm events can be gener-
ated. A second application is the estimation of project duration for coastal or offshore
operations that are sensitive to particular wave height and period limits.
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Dit proefschrift onderzoekt op welke wijze bepaalde multivariate probabilistische me-
thoden geschikt kunnen worden gemaakt voor risicoanalyse en besluitvorming in kust-
gebieden of een offshore omgeving. In het bijzonder draagt dit proefschrift bij aan het
construeren van besluitondersteunende gereedschappen voor het reduceren van risico’s
in een kustomgeving en van statistische simulatiemethoden voor golfcondities.

In het algemeen zijn er slechts weinig observaties beschikbaar van negatieve impact
op kust of offshore omgevingen voor risicoanalyse of besluitvorming vanwege het zeld-
zame voorkomen van extreme gebeurtenissen. Echter, synthetische impactdata kun-
nen worden gegenereerd door relevante hydro-meteorologische condities te propageren
naar het aandachtsgebied door middel van modellen. Specifiek in kustgebieden moet
hierbij gebruik gemaakt worden van een keten van verschillende -soms rekenintensieve-
modellen om de hydro-meteorologische condities te koppelen aan impacts.

Twee van de huidige uitdagingen betreffen de instantane voorspelling van de im-
pact van stormen in kustgebieden en het inzichtelijk maken van het doorwerken van
risico’s. Beide aspecten zijn relevant voor zowel rampenbeheersing als voor langeter-
mijnplanning. Geinspireerd door vele toepassingen van Bayesiaanse netwerken (BNs)
als gereedschap voor besluitvorming in een risicocontext, is een raamwerk ontwikkeld
voor besluitvormende ondersteuning voor risico verminderende maatregelen in kustge-
bieden.

Een belangrijke bijdrage van dit proefschrift betreft een lerend BN algoritme dat syn-
thetische of historische hydro- en morfodynamische storm simulaties kan integreren
met landgebruik data, kwetsbaarheidsrelaties (bijvoorbeeld waterdiepte-schade diagram-
men) en risico reducerende maatregelen. De kern van het algoritme is gebaseerd op
SMILE, een reasoning engine voor grafische modellen.3 Het algoritme is geprogram-
meerd in C++ en vrij verkrijgbaar op: https://github.com/openearth/coastal-dss.

Het BN-raamwerk is toepasbaar op een willekeurig kustgebied en hierop gebaseerde
modellen hebben de mogelijkheid om:

• instantane impact te voorspellen van een willekeurige storm
• de variabiliteit aan impact weer te geven (bijv. socio-economische en milieu as-

pecten)
• de ruimtelijke variabiliteit van impacts te laten zien, en
• het gedrag van risico reducerende maatregelen te evalueren voor verschillende

stormen.

Dit proefschrift illustreert de toepassing op de stad Wells-next-the-Sea in North Nor-
folk, UK, die kwetsbaar is voor stormvoeden.4 BN output laat bijvoorbeeld zien dat het

3SMILE is vrij beschikbaar voor academisch onderzoek en onderwijs via BayesFusion, LCC,
http://bayesfusion.com/.

4Toepassingen voor negen andere gebieden aan veschillende Europeese zeën zijn onderdeel van het RISC-KIT
project, welke gefinancierd is binnen het Seventh Framework Programme van de Europese Commissie (www.
risckit.eu).
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verlengen van de bestaande hoogwaterkering meer effectief kan zijn voor impact re-
ductie onder een varieteit van beschouwde storm secnario’s dan het vergroten van de
hoogte.

In aanvulling op het lerend algoritme zijn gedetailleerde aanbevelingen geformu-
leerd voor de wiskundige validatie en voor optimalisatie methoden. Deze aanbevelin-
gen bevatten metrieken voor ‘voorspellingsprecisie’ en ‘ruimtelijk informatie gehalte’.
Desalniettemin wordt het aanbevolen om mogelijke eindgebruikers te betrekken bij de
verdere modelontwikkeling om er zeker van te zijn dat hun behoeften worden gedekt,
eerder dan alleen te vertrouwen op wiskundige validatie en optimalisatie methoden.

Een derde uitdaging is vast te stellen welke hydro-meteorologische condities rele-
vant zijn voor impactduiding en zouden moeten worden doorgeleid via de modelketen.
Indien relevante stormen worden genegeerd in de evaluatie, zullen risico’s worden on-
dergewaardeerd. Een complicerend aspect is dat storm impacts ook kunnen afhangen
van voorgaande hydro-meteorologische condities, omdat zij de omgeving hebben kun-
nen aantasten. Voorbeelden zijn voortschrijdende strand- en duinerosie of vermoeiings-
schade aan constructies.

Om deze reden vragen vele toepassingen om het genereren van tijdreeksen van hydro-
meteorologische condities, veelal met een temporele resolutie van een uur. In de litera-
tuur zijn zogenaamde vine-copulas en autoregressieve moving-average (ARMA) proces-
sen toegepast op multi-variate tijdreeksen, ook van hydro-meteorologische variabelen.
Niettegenstaande, een hoge temporele resolutie en een nauwkeurige afhankelijdheids-
beschrijving tussen twee variabelen die elementair zijn om golfcondities te beschrijven,
de significante golfhoogte en de gemiddelde zero-crossing periode, zijn onderbelicht.

In antwoord hierop ontwikkelt dit proefschrift twee statistische simulatiemethoden
gebaseerd op een dataset van golfcondities in de Noordzee en heeft de uitkomst van deze
methoden vergeleken. Eén methode was gebaseerd op vine-copulas en één op ARMA-
processen. In de eerste methode is het sleutelcomponent voor het vangen van de af-
hankelijkheid tussen de signifcante golfhoogte en gemiddelde zero-crossing periode een
skew-t copula, welke een flexible 4-parameterfamilie is. Deze copula’s kunnen ook wor-
den toegepast op de constructie van een bivariate verdeling van significante golfhoogtes
en gemiddelde zero-crossing periodes, los van de tijdreekscontext. De tweede methode
maakt gebruik van een datagedreven vergelijking voor de maximale golfstijlheidcondi-
tie, die speciaal ontwikkelt is voor de locatie van de data. De afhankelijkheid is vooral
beschreven door deze vergelijking en een copula voor de ARMA-residuen.

De twee methodes verschillen in scope. De vine-copula methode focust op bivariate
tijdreeksen gedurende oceanografische winterperiodes en veronderstelt een stationair
process. De ARMA-methode houdt rekening met niet-stationairiteiten op jaarlijkse en
interjaarlijkse tijdschalen evenals de invloed van de golfrichting op het gemeenschap-
pelijke gedrag van de signifcante golfhoogte en de gemiddelde zero-crossing periode.

Beide methodes zijn geschikt voor het genereren van synthetische tijdreeksen van
signifcante golfhoogtes en gemiddelde zero-crossing periodes. De methodes kunnen
flexibel worden toegpast in verschillenden contexten, omdat de tijdreeksen zowel stor-
men als rustige condities weergeven. Dit blijkt uit de analyse van de persistentie boven
hoge en onder lage drempelwaarden. Onzekerheids- en sensiviteitsanalyses zijn echter
noodzakelijk om de modellen voor een specifieke toepassing te valideren. Een toepas-



SAMENVATTING xi

sing is de risicoanalyse in kustgebieden, bijvoorbeeld via het BN-raamwerk ontwikkeld
in dit proefschrift, waarvoor synthetische stormen worden gegenereerd als input. Een
tweede toepassing is het schatten van de projectduur voor operaties in kust- of offshore-
gebieden die vatbaar zijn voor bepaalde golfcondities.
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1
RESEARCH CONTEXT

1.1. EXAMPLES OF RISKS IN COASTAL AND OFFSHORE ENVIRONMENTS

Coastal and offshore environments are exposed to a variety of hydro-meteorological
forces that originate, for instance, from winds, waves, surges and precipitation. Coastal
environments include beaches and dunes, engineered coastal defense structures (e.g.,
dikes, flood walls or revetments), and ecosystems (e.g., salt marshes and mangroves).
Offshore environments include marine structures (e.g., breakwater, floating or bottom-
founded platforms and quays/jetties/docks), vessels and ecosystems (e.g., coral reefs).
Each of these coastal and offshore environments responds in its own way to hydro-
meteorological forces, which can pose severe threats when reaching extraordinary mag-
nitudes during storms.

In the past, the biggest threat from hydro-meteorological forces has been coastal
flooding, causing communities to suffer from material damages, economic, political and
social disruption, health issues, or damaged ecosystems [91, and references therein]. Ex-
treme events have caused societal disasters and had ripple effects on regional or national
scale. For instance, approximately 2000 people died in 1953 in The Netherlands, Belgium
and the UK [88] during the North Sea storm surge. Less than two decades ago, in 2005,
Hurricane Katrina caused more than 1800 fatalities the United States [96]. In countries
with lower protection standards, death tolls have been even higher. A recent example is
Typhoon Haiyan killing more then 6300 people in the Philippines in 2013 [128].

Flooding usually arises from high still water levels in combination with high wave
heights and long wave periods when they cause:

• overtopping or overflow due to high absolute run-up levels [76],
• (catastrophic) failure of engineered flood defenses due to extreme hydrodynamic

loads [153, 180],
or

• breaches in dunes due to intensified erosion rates [171, 174, 176].

On one hand erosion increases the risk of flooding, because beaches and dunes often
act as primary flood defenses to coastal developments and this role can be compromised
if the dune and beach width are decreased [e.g., 163, and references therein]. As a conse-
quence dunes could breach during a storm which would not have caused them to breach
otherwise. On the other hand, erosion is also problematic in itself. It can destroy ecolog-
ical habitats [55] as well as recreational areas [133], and threaten structures that are built
close to the shoreline [108].

3
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Offshore, the combined action of waves, wind and currents can damage or destroy
marine structures or vessels. Issues include:

• structural failure under extreme loads from combined contributions of waves, wind
and currents [125],

• structural failure due to fatigue from oscillatory stresses [188],
• scour development creating foundation instability or cable exposure [187],

and
• extreme motion responses due to wave periods close to a resonant heave period

[54].

For example, during Hurricane Katrina, 44 oil and gas platforms in the Gulf of Mexico
were completely destroyed and 21 others severely damaged [40].

Furthermore, weather-related down-time poses a significant financial risk to offshore
operations, which usually consists of multiple sequential activities with different dura-
tions and executed by different vessels [e.g., 102, for an example of the cable installation
for offshore wind farms]. In general, such activities are weather-sensitive and can only
be executed as long as hydro-meteorological variables stay within certain limits. Acero
et al. [3] provide a recent overview of such limits developed for various operations. If the
limits are exceeded, operations cannot start or may need to be interrupted leading to
unexpected down-time causing project delays and related costs.

The above examples of risks in coastal and offshore environments show that the field
of risk analysis and risk management in coastal and offshore environments is broad. This
doctoral thesis concentrates on the multivariate nature of the risks. More specifically, the
focus will be on two particular topics within the field: decision making on risk reduction
efforts in coastal areas and statistical simulation techniques for time series of hydro-
meteorological variables. The topics will be elaborated upon in the next two sections.

1.2. DECISION MAKING ON RISK REDUCTION EFFORTS IN COASTAL ENVI-
RONMENTS

Past coastal floods, for example the ones mentioned in the previous section, have em-
phasized a continuing need for effective coastal risk management. This is becoming all
the more important as risks are projected to increase globally, due to growing popula-
tions and assets, accelerated sea level rise and potential increases in storminess (both
tropical and extra-tropical) [70, 74, 177].

Coastal risk management essentially includes two types of activities: (1) taking prompt
actions in the face of an impending storm and (2) long-term planning. Accordingly, we
distinguish between a hot phase and a cold phase. In the hot phase, emergency managers
depend on real-time and reliable predictions of the expected conditions in the coastal
zone, as they attempt to select mitigation measures and allocate limited resources in or-
der to keep negative impacts as small as possible. In the cold phase, multiple actors,
including politicians, local stakeholders and scientists, cooperate to determine sensible
strategies for reducing risks in an uncertain future, while considering their constraints
[52]. To evaluate these strategies against historical and conceivable future storms, they
turn to impact assessments.
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Cutting across numerous disciplines, including oceanography, coastal science and
engineering, statistics, economics, and social and political science, coastal risk assess-
ment is highly challenging. Each field has complex models which target individual ele-
ments of the risk process. For example, multivariate statistical models estimate the re-
turn periods of extreme hydro-meteorological events [45, 184], while numerical models,
based on, for instance, hydro- and morphodynamic processes, determine the respec-
tive natural responses of the coast and extent of flooding [13, 73, 142, 185]. Finally, be-
havioral or statistical models estimate the diverse and complex consequences onshore
[4, 69, 93, 116]. However, risk management requires a framework that integrates the in-
dividual elements of the risk process [28]. Thus, various model outputs need to be inte-
grated in order to understand what drives losses and how they could be reduced.

A number of issues arise when attempting to link offshore sea conditions to their ex-
pected onshore hazards and impacts into a single model for operational use. Numerical
models, being computationally expensive, often have a long run time, while instant as-
sessments are needed for any conceivable hazard event during both the hot and cold
phases. On the other hand, the spatial and temporal scales of numerical and impact
models differ from one another and need to be integrated. Numerical models have grids
whose sizes depend on the physical properties of the area under consideration, whereas
impact models usually operate on the level of individual receptors. Furthermore, there
are various types of impact, such as property damages, lost lives or disruption of infras-
tructures, each of which has a unique spatial distribution under each storm event. To
evade the high-dimensionality, impact data can be aggregated into a single total estimate
for each storm event, for instance in a monetary unit, but this can be disadvantageous
for designing risk reduction measures.

To address some of these challenges, Jonkman et al. [91] developed an integrated
model to assess the flood hazard and corresponding damages to the built environment,
loss of life, as well as indirect economic impacts (e.g., the interruption of production
flows) for one hypothetical extreme event. The fundamental element of this approach
is a spatial database through which the authors connect output and input of the indi-
vidual models according to a common spatial attribute. In this way the Jonkman et al.’s
model addressed the challenges of different scales. While the study was limited to a sin-
gle storm, the databased could be extended to multiple storm events. In Portugal, Poel-
hekke et al. [136] integrated a wide range of simulated storm events in a discrete Bayesian
network (BN), which is a graphical model that describes system relations in probabilis-
tic terms and can give instantaneous predictions. Using this model the authors assessed
related flooding and erosion hazards in Praia de Faro.

Nevertheless, Poelhekke et al.’s approach did not estimate impacts and neither model
provides insight into the outcomes of risk reduction measures. However, for decision
makers it is fundamental to understand the impacts under various events and how they
would respond to human interventions in order to design effective risk reduction strate-
gies and to avoid unforeseen consequences [e.g., 58]. Thus, further integration of various
models is needed to support decision making on risk reduction efforts in coastal areas.

While exploratory analyses of relevant storm events and effects of risk reduction
measures are fundamental, more information may be required regarding a particular
measure’s performance before it is finally selected and implemented in practice. For ex-
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ample, an important criterion in the evaluation of risk reduction strategies is the achiev-
able safety level. This term can be used synonymous to risk level, but is often more
specifically defined in terms of individual risk or societal risk [e.g., 5]. In general, risk
can be defined as the expected value of loss1 for a given time horizon [15]. In this def-
inition loss could refer to a specific type of damage that is relevant for the application
at hand, or refer to the sum of all adverse consequences aggregated into a single value,
for example, in a monetary unit. On the other hand, individual risk refers to the annual
probability of death of an average, unprotected person and societal risk represents the
annual probability of multi-fatality events. For example, in the Netherlands, individual
and societal risk criteria legally apply to installations of hazardous industries, such as
chemical plants or LPG-fueling stations [6], and similar safety levels are targeted by the
Dutch government for people living behind primary flood defenses [47].

Probabilistic risk analysis (PRA) is the norm for assessing safety levels and for de-
termining corresponding requirements for structural designs. The method extends ex-
ploratory analyses, in that it not only deals with the identification of events and their
consequences, but also with the quantification of their probabilities [15]. PRA is also the
foundation of an economic optimization, which aims to be an objective approach to se-
lecting the most beneficial risk reduction strategy from a set of candidate strategies [90].
In this case, the most beneficial strategy is the one that minimizes risk, when the initial
investment and maintenance costs are included in the calculation as losses that occur
with certainty.

A challenge lies in the quantification of probability density functions for losses. As
mentioned before, empirical loss data are hardly available, but synthetic data could be
obtained, for example, by performing a Monte Carlo simulation of hydro-meteorological
forcing conditions and propagating them through a train of models, which target the
individual elements of the risk process (Figure 1.1). The probability density function
can then be estimated from the synthetic loss data. In this case, a prerequisite for high-
quality loss data is a high-quality Monte Carlo sample of hydro-meteorological forcing
conditions. Also the quality of the individual models in the train is fundamental. How-
ever, understanding and evaluating them requires discipline-specific knowledge of each
domain and is beyond the scope of this research effort.

Hydro-meteorological
conditions

Hydro- and morphodynamic
process models; Reliabilty
models for flood defenses

Statistical and behavioral
consequence models

Diverse consequences

Figure 1.1: Schematic illustration of a model train for coastal risk analysis.

It is important that the Monte Carlo simulation of forcing events is ‘complete’, be-
cause there is no one-to-one mapping between the probabilities of forcing events and
the probabilities of loss events. Instead, very similar loss events, could arise from differ-
ent hydro-meteorological forcing events. To illustrate this, we suppose that the sample
space of forcing events (i.e., the set of all possible forcing events) can be partitioned into
{s1, ..., sn} and that l is a fixed loss value. Then, the exceedance probability for this loss

1This definition is often less formally stated as risk = probability × loss.
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can be calculated with the law of total probability:

P (L > l ) =
n∑

i=1
P (L > l | S = si )P (S = si ). (1.1)

The equation shows that omitting any summand i leads to an underestimation of P (L >
l ), which ultimately leads to an underestimation of risk. For practical applications this
means that the sample space of forcing events needs to be well approximated in order
to well estimate P (L > l ), at least for those events in which P (L > l | S = si ) is non-zero.
This issue has also been pointed out by Jonkman et al. [92]. To limit a possible under-
estimation of risk, they chose a number of "representative" events for their flood risk
assessment based on the highest probabilities of occurrence.

While illustrative, equation (1.1) is an over-simplification of the problem. A first issue
is that it is difficult to define S. In fact, each si can be thought of as a realization of a mul-
tivariate, spatio-temporal stochastic process of water levels, wave heights, wave periods,
incident wave angles, wind speeds, wind directions, precipitation, and other variables of
interest. A second issue is that the extent of damages may depend on many past forcing
events, as they could have weakened the environment. For example, frequent storms
can have a great impact on the beach and dune profile [8, 95]. Similarly, structures and
vessels can fatigue, if repeatedly subjected to high hydrodynamic loads [188]. Therefore,
it is important to account for storm sequencing in risk analyses.

1.3. STATISTICAL SIMULATION METHODS FOR TIME SERIES OF METOCEAN

VARIABLES

Sea storms are segments of multivariate temporal processes of hydro-meteorological
variables that pose a hazard to the coastal and offshore environment or operations. Typi-
cally, these processes are described by hourly statistics, for example, the significant wave
height, which is computed from a spectrum of individual waves during a one hour record
of individual waves. The processes exhibit strong state-to-state autocorrelation on short
time scales, seasonal cycles on annual and multi-annual time scales, inter-series depen-
dences and, potentially, long-term trends [e.g., 114, 115, 158]. These statistical features
make it challenging to model time series of hydro-meteorological variables, including
sea storms.

Many simulation methods are based on binary renewal processes to model alternat-
ing sequences of storm and calm durations [31, 38, 43, 46, 104, 184]. A renewal process
is an idealized description of events that occur randomly in time. In the studies, storms
are defined in terms of the duration for which one or more variables exceed predefined
thresholds, together with the values of all variables of interest at the peak of the storm.
Furthermore, these are modeled as interdependent, for example with copulas in above
studies.

Copulas isolate the marginal properties from the dependence structure of random
variables. Genest and Favre [61], for example, provide a short introduction to copula
modeling. Comprehensive texts include Nelsen [129] and Joe [85]. A combination of any
copula with any marginal distribution leads to a valid specification of a joint distribu-
tion, enabling representations of a wide range of complex multivariate behaviors. In the
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Figure 1.2: Illustration of a "triangular equivalent storm" in terms of significant wave height (Hm0) and storm
duration (D).

bivariate case, many different copula families have proven to be useful (e.g., [111, 145],
and references therein). For more than two oceanographic variables, nested (also called
hierarchical) Archimedean copulas [38, 106, 183] and elliptical copulas, such as Gaus-
sian or t , [103, 143, 184] have been implemented and found valuable. Dependence trees
[136] and vines [45, 122], which are a generalization thereof, are alternative proposals.
Callaghan et al. [31] and Serafin and Ruggiero [150] adopt another approach to model
dependencies. They use a bivariate logistics model [165] and they specify parameters for
a conditional distribution of one variable based on the value of the conditioning variable.

Not only the dependencies between variables are important for impact assessment,
but also their temporal evolution; impacts amass during long-lasting or recurring ex-
treme conditions [e.g., 8, 95, and references therein for impacts on a sandy beach]. For
the storm periods, high temporal resolution time series of the relevant hydrological and
meteorological variables are then derived from an idealized ‘storm shape’. For most ap-
plications hourly values are needed. A typical assumption is that each univariate time se-
ries segment corresponds to two sides of a symmetric triangle whose height determines
the peak value and whose base is defined by the storm duration. Figure 1.2 provides an
illustration. For instance, Corbella and Stretch [37] and Poelhekke et al. [136] have used
these triangles and the dependencies between variables at the peak to derive idealized
storm time series with high resolution (~1h) to force numerical, physics-based models
that compute resulting erosion and flooding. Differently, Wahl et al. [182] applied a lin-
ear regression to parameterize and simulate the temporal evolution of total water levels
during storm surges. Similar schematizations with alternative geometrical shapes have
also been suggested [110, 159].

Simulating storm sequences as renewal processes by adopting a geometrical storm
shape based on pre-defined thresholds is a powerful approach to assess risks and, if
seasonal climatic and long-term non-stationarities are represented, to identify future
trends of risk. The main advantage is a minimized modeling effort, because features of
the hydro-meteorological time series that are less relevant for the application are not re-
solved. An example are serial dependence or dependencies between the variables during
calm periods.
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Nonetheless, the simplification to a standard storm shape implies a loss of accuracy
and it should be investigated how that affects risk estimates. Suppose s∗i is the equivalent
‘standard shape storm’ of si . Is P (L > l | S = s∗i ) ≈ P (L > l | S = si )? The answer will de-
pend on the joint distribution of L and S and on "how close" s∗ and s are. Furthermore,
the choice of shape and threshold ought to depend on the application, because differ-
ent coastal and offshore environments are vulnerable to other storm characteristics. For
instance, an operating vessel can be sensitive to hydro-meteorological conditions that
a sandy beach is not. Consequently, such storm models are application-specific and
may not easily be transferable to a different environment. An alternative to the renewal
process based approach is the modeling of complete time series. While increasing the
modeling burden, it allows for more flexibility in terms of potential applications.

Currently, three lines of research concentrate on simulating multivariate time series
of hydro-meteorological variables with high temporal resolution. Guanche et al. [63, and
references therein] developed a simulation method based on statistical downscaling of
synoptic scale weather patterns. The authors statistically simulate time series of larger-
scale sea level pressure fields with autoregressive moving average (ARMA) models from
which they then derive local sea state time series.

Furthermore, ARMA models have been used to directly represent time series of hydro-
meteorological variables at a location, most of them at three-hourly scales. Multiple
studies exist on univariate time series of significant wave heights [9, 65, 66, 149, 162].
Extension to bivariate processes have been made by including the mean wave periods
[64] and by including surges [30]. In addition to significant wave height and peak period,
Solari and van Gelder [158] incorporated parameters related to wind speed, wind direc-
tion and wave direction, thus simulating five interrelated processes. The bivariate and
multivariate approaches used so-called vector ARMA models, which are able to capture
linear interdependencies between multiple time series. However, Solari and van Gelder
reported that dependencies could not always be adequately represented.

Finally, copulas and vine-copulas have been adopted to model both serial depen-
dence as well as inter-series dependencies of hydro-meteorological processes. For in-
stance, Leontaris et al. [102] simulated wind speeds and significant wave heights. Solari
and Losada [157] compared a copula-based serial dependence model to an ARMA model
for significant wave height time series. They found that storm frequency and persistence
of storms were better represented by their copula-based model, whereas longterm auto-
correlation was better represented by their ARMA model.

Different techniques have been used to account for non-stationarities. The simplest
approach has been to focus on the most important season or to piecewise model sea-
sons or months [102, 103, 184]. Other studies have used linear or cyclic functions of
time [9, 31, 37, 66, 158, 162] and climate indices as co-variates [43, 114, 115, 150] to
represent trends or seasonal cycles on annual to decadal time scales. Climate indices
under consideration were the North Atlantic Oscillation (NAO), the Southern Oscilla-
tion Index (SOI), the Pacific-North America (PNA) and the El Niño-Southern Oscillation
(ENSO) index. Another difference between the techniques lies in the treatment of non-
stationarities. Some studies assumed that the hydro-meteorological processes can be
decomposed into seasonal mean and standard deviation processes as well as a station-
ary process [9, 66, 162, 184], while others applied non-stationary probability distribu-
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tions (i.e., with time-varying parameters) [31, 37, 43, 102, 103, 114, 115, 150, 158].
Statistical simulation models for time series of hydro-meteorological variables are

now being developed for several decades and have become increasingly sophisticated.
Nonetheless, accurate characterization of dependencies between hydro-meteorological
variables still appears to be a challenge, especially, when not limited to joint extremal be-
havior. In particular, the relationship between significant wave height and peak or mean
zero-crossing wave period is complex. Besides originating from a common meteorologi-
cal system, there is a deterministic limit to maximum wave heights at given wave periods
[for background see e.g., 77]. This so-called maximum steepness limit postulates that
too steep waves break and reduce in height.

1.4. RESEARCH OBJECTIVES AND SCOPE

The overarching aim of this research is to advance risk analysis and risk management in
coastal and offshore environments through problem-specific adaptation of multivariate
probabilistic methods. More specifically, this thesis makes a contribution to decision
support tools for risk reduction efforts in coastal environments and to statistical simula-
tion methods for time series of hydro-meteorological variables. The research is guided
by four key objectives. The first two are addressed in Part II and the last two in Part III, as
described below. Key objectives will be treated in separate chapters. An exception is key
objective 3, which is split into two sub-objectives treated in two chapters.

PART II: BN FRAMEWORK FOR DECISION SUPPORT ON RISK REDUCTION EFFORTS

In the past BNs have been applied numerous times as tools for decision-making under
uncertainty in other fields. For instance, Henriksen et al. [72] concluded that they are
very valuable for negotiations and discussions between managers, experts, stakeholders
and representatives of the general public, among others, because they are transparent
and flexible models. They can handle various sources and types of data enabling us to
combine information on the topography and assets of the potentially affected area with
simulation data of storm events and damage estimations from single discipline models.
This motivates the first key objective of this thesis:

1. Design a BN framework for decision support on risk reduction efforts in coastal
environments

The output will be a framework and a BN learning algorithm that is applicable to any
coastal site. BNs constructed according to this framework will be able to

• predict impacts for any relevant storm event instantly,
• reflect the diversity of impacts (e.g., socio-economic and environmental aspects),
• reflect the spatial variability of impacts,

and
• evaluate the performance of risk reduction measures under different storm events.

Once the framework is developed, BN prototypes will be built for 10 case study sites
within the RISC-KIT project as part of the European Commission’s 7th framework pro-
gramme. The case study sites are located at different European regional seas and have
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diverse geomorphic and ecological characteristics, land uses, storm climates and haz-
ard types, as well as socio-economic and cultural aspects. This thesis will describe the
application to a site in North Norfolk, UK, as an example.

Within the project, models will be built and validated through the expert knowledge
of project partners. Mathematical methods for model validation and optimization will
not yet be developed, but are the topic of the second key objective.

2. Indicate limitations of the BN framework and methods for improvement
The output will a list of main limitations of the framework together with an account of

how they could be remedied.

PART III: STATISTICAL SIMULATION METHODS FOR TIME SERIES OF WAVE CONDITIONS

Many engineering applications call for the generation of synthetic time series of wave
conditions at high temporal resolution, including the BN framework of Part II. Approaches
based on temporal vine-copulas as well as a ARMA processes have shown potential for
the simulation of time series of hydro-meteorological variables in several studies, as de-
scribed in the previous section. Nonetheless, high temporal resolutions and the accurate
description of the dependency between significant wave height and mean zero-crossing
period are still under-explored in the scientific literature. This motivates the next key
objective, which is split into two sub-objectives.

3. Develop a statistical simulation model for joint time series of wave conditions at
hourly resolution based on (a) temporal vine-copulas and (b) ARMA processes

The output will be similar for both sub-objectives (a) and (b). The statistical simula-
tion models will be developed for a data set in the Southern North Sea, which contains
time series data of significant wave height, mean zero-crossing period and mean wave
direction for 24 years with high coverage. The results will show how modeling choices
have to be guided by insights from exploratory data analysis. Besides the models for se-
rial dependence being different for sub-objective (a) and (b), the scope is unequal. The
simulation model based on temporal vine-copulas focuses on bivariate time series of
significant wave heights and mean zero-crossing periods during oceanographic winter
periods assuming stationarity. The simulation model based on ARMA processes addi-
tionally accounts for non-stationary behavior on annual and inter-annual scale as well
as a proxy for the wave direction.

4. Compare performance of the simulation models
The output will be an indication of the methods’ potential for applications based on a

comparison of simulation results from the two methods. Because different applications
have a need for accurate reflection of different statistical properties in the time series, a
comparison will be made for three of them. They are (1) the bivariate distribution of sig-
nificant wave height and mean-zero crossing periods, (2) persistence of storm and calm
periods, and (3) the reproduction of annual maxima. Furthermore, current limitations
will be pointed out.
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1.5. THESIS STRUCTURE

This doctoral thesis is divided into four parts and the structure is illustrated in Figure 1.3.
Parts I and IV constitute the introduction and the conclusion. Parts II and III represent
the body matter of the thesis and are built around two published articles [78, 80] and a
manuscript submitted for publication [81]. Nonetheless, the thesis also contains content
that has previously not been published.

Part I is the introduction, including the current Chapter 1 on the research context as
well as Chapter 2, which provides the theoretical background to the probabilistic models
that will be applied later in this thesis.

Part II, which consists of Chapters 3 and 4, addresses key objectives 1 and 2. This part
focuses on the development of a decision support system for coastal risk management.
Chapter 3 is based on [78] and develops the framework of the decision support tool using
a Bayesian network. The chapter describes the design of the decision support tool and
illustrates an application to a case study site in North Norfolk, UK. Chapter 4 outlines
opportunities for further optimizing the performance and usefulness of the tool. To this
end, a measure for model validity and an improved learning algorithm are suggested.

Part III, which consists of Chapters 5-7, addresses key objectives 3 and 4. This part
explores two different methods to simulate high-frequency time series of wave condi-
tions. Chapter 5 is based on [80] and develops a temporal vine-copula method to sim-
ulate stationary time series of hourly significant wave heights and mean zero-crossing
periods during oceanographic winters. Chapter 6 is based on [81] and establishes an al-
ternative approach based on autoregressive moving-average models. This approach is
non-stationary in that it accounts for seasonalities and inter-year differences. Further-
more, the influence of the incident wave angle on significant wave heights and mean
zero-crossing periods is modeled. Chapter 7 compares the two methods and discusses
their potential for different applications.

Part IV contains Chapter 8 and 9 and concludes the thesis. Chapter 8 summarizes the
main findings and reflects on them, while Chapter 9 suggests future research directions
and provides recommendations.
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Chapter 1: Research Context Chapter 2: Proba-
bilistic Preliminaries

Chapter 3: Framework Design

Chapter 4: Recom-
mended Extensions

Chapter 5: Temporal
Vine-Copula Method

Chapter 6: ARMA Method

Chapter 7: Compar-
ison and Limitations

Chapter 8: Main Contributions Chapter 9: Recommendations

Part I: Introduction

Part II: BN Framework for
Decision Support on Risk Re-
duction Efforts

Part III: Statistical Simulation Methods for Time Series of
Wave Conditions

Part IV: Conclusion

Figure 1.3: Visual Outline of Thesis.





2
PROBABILISTIC PRELIMINARIES

The core of this research, as introduced in the previous chapter, is the problem specific
adaption of selected multivariate probabilistic methods to create a decision support tool
for risk reduction efforts and simulation models for time series of wave parameters as in-
put for risk analyses. The selected methods are Bayesian networks (BNs), copulas, vines
and autoregressive moving-average (ARMA) models. The purpose of this chapter is to
provide the theoretical background of these methods for their adaptation, application
and evaluation in Part II and III of the thesis. Section 2.1 explains the basic theory of dis-
crete Bayesian networks, which will be used to develop a decision support tool in Part II.
Section 2.2 reviews copulas and vines and Section 2.3 introduces autoregressive moving-
average (ARMA) processes. The methods described in the last two sections are applied
to simulating bivariate time series of signficant wave height and mean zero-crossing pe-
riods in Part III.

2.1. DISCRETE BAYESIAN NETWORKS (BNS)

In this section we explain the basic theory of BNs. They represent a joint probability dis-
tribution over a set of random variables. If one or more variables are observed, a BN can
evaluate the influence of this new evidence on the distributions of all other variables. If
the model is “small enough", it can predict changes in distributions instantly and can be
interpreted intuitively. For this reason, BNs have been used as early warning systems for
natural hazards [18, 60, 136] and as input for negotiations and discussions between ex-
perts, managers, stakeholders and citizens [72, 113, 192]. In coastal settings, such models
have been shown to successfully predict erosion and shoreline retreat [48, 67, 71]. BNs
have also proved to be valuable for estimating damages to residential buildings after hur-
ricanes [172] and to evaluate the risk to nuclear facilities from coastal hazards [167].

A discrete1 BN represents the joint probability mass function of a set of random vari-
ables X = {X1, ..., Xn} as a directed acyclic graph [83, 131]. Each variable constitutes a
node in the graph. The nodes are connected by arcs which indicate potential depen-
dence between variables. The direction of an arc, from so-called parent to child, signifies
the direction of influence. The arcs must not form a cycle; no path Xi → ··· → Xi may
exist for any i = 1, ...,n. Figure 2.1 illustrates such a graph structure.

The semantics of the graph stipulate that each Xi is conditionally independent of all
predecessors given its parents. Therefore, a joint probability distribution P (X1, ..., Xn)

1We do not consider continuous BNs in this thesis.
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X1

X2

X3 X4 X5

X6

Figure 2.1: Example of a directed acyclic graph on six variables

can be economically factorized through the chain rule:

P (X1, ..., Xn) =
n∏

i=1
P (Xi | pa(Xi )), (2.1)

where pa(Xi ) denotes the set of parent nodes of Xi . The factors P (Xi | pa(Xi )) on the
right hand side of the equation are stored as conditional probability tables (CPTs), or in
case of no parents as probability tables (PTs), and associated with each node Xi . To-
gether, the graph semantics and all CPTs uniquely specify the joint probability mass
function of X.

A BN’s computing algorithm uses Bayes’ theorem. Lauritzen and Spiegelhalter [101]
developed exact algorithms for high dimensions, which are implemented in most BN
software. In two dimensions the theorem is given by

P (X1 | X2) = P (X2 | X1)P (X1)

P (X2)
. (2.2)

P (X2 | X1) is the CPT of node X2. P (X1|X2), which is computed, is called the posterior
distribution, and can be interpreted as the updated distribution of X1 taking into ac-
count new evidence on X2. The CPTs and PTs can be learned from data, specified based
on experts’ estimates or derived from equations.

2.2. COPULAS AND VINES

A copula is a specific type of joint distribution function that fully characterizes the joint
dependence between random variables, separately from their respective marginal be-
haviors.

Definition 1 For a n-variate distribution function F with univariate margins F1, ...,Fn ,
the copula associated with F is a distribution function C : [0,1]n → [0,1] with uniform
margins on [0,1] that satisfies

F (x) =C (F1(x1), ...,Fn(xn)), x ∈Rn . (2.3)

Theorem 1 [154]
If F is a continuous n-variate distribution function with univariate margins F1, ...,Fn and
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quantile functions F−1
1 , ...,F−1

n , then the copula

C (u) = F (F−1(u1), ...,F−1
n (un)), u ∈ [0,1]n , (2.4)

is unique.

A valid parametric model for F arises when F1,F2, ...,Fn and C are chosen from ap-
propriate parametric families of distributions. In the bivariate case, n = 2, many para-
metric families have been proposed, covering a wide range of dependence structures.
Joe [85] and Nelsen [129] provide comprehensive overviews.

Constructing higher dimensional families of copulas has proven to be difficult and
existing models, for example, multivariate elliptical or Archimedean copulas, can be too
restrictive for many applications. Montes-Iturrizaga and Heredia-Zavoni [122] discuss
this with respect to environmental variables. A more flexible approach to modeling mul-
tivariate dependencies is offered by R-vines [1, 16, 36, 84]. They are graphical models
consisting of a nested set of trees whose nodes in the first tree represent the random
variables X1, ..., Xn . A formal definition is given below.

Definition 2 Vine, R-vine [100]
V is a vine on n elements if

1. V = (T1, ...,Tn−1)

2. T1 is a connected tree with nodes N1 = {1, ...,n −1}, and edges E1; for i = 2, ...,n −2,
Ti is a connected tree with nodes Ni = Ei−1.

and V is a regular vine, or R-vine, on n elements if additionally

3 (proximity) For i = 2, ...,n − 2, if {a,b} ∈ Ei , then #a∆b = 2, where ∆ denotes the
symmetric difference. In other words if a and b are nodes of Ti connected by an edge
in Ti , where a = {a1, a2}, b = {b1,b2}, then exactly one of the ai equals one of the bi .

A special class of R-vines that are considered in this research are drawable vines, or
D-vines, for which the maximal number of edges attached to any node in the first tree is
2. The nodes reachable from a given edge in a R-vine are called the constraint set of that
edge. When two edges are joined by an edge in tree Ti , the intersection of the respective
constraint sets form the conditioning set. The symmetric difference of the constraint
sets form the conditioned set. R-vines can be used to specify a joint density through a
decomposition into univariate densities and (conditional) bivariate copulas:

Theorem 2 R-Vine density [100]
Let V = (T1, ...,Tn−1) be an R-vine on n elements. For each edge e( j ,k) ∈ Ei , i = 1, ...,n −1
with conditioned set { j ,k} and conditioning set De , let the conditional copula and copula
density be C j k|De and c j k|De . Let the marginal distributions Fi , i = 1, ...,n with densities
fi , i = 1, ...,n be given. Then the vine-dependent distribution is uniquely determined and
has a density given by

f1...n = f1 · · · fn

n∏
i=1

∏
e( j ,k)∈Ei

c j k|De (F j |De ,Fk|De ). (2.5)
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For a given R-vine this density is unique. The product on the right hand side contains
n(n−1)/2 copulas and conditional copulas, which is the exact number of ways in which
n elements can be coupled. This property is one reason why a vine-copula is more flexi-
ble than a fully nested Archimedean copula. Only n−1 bivariate margins can be modeled
distinctively with the latter, while all others are recurrent (e.g., [151], for an exemplifica-
tion). Furthermore, the families of the bivariate copulas in an R-vine are not restricted
to the Archimedean class.

A practical difficulty arises from the many possible different R-vine structures when
attempting to estimate a suitable vine-copula, especially if the dimension is high. On n
variables there are in total (

n

2

)
× (n −2)!×2

(n−2
2

)
(2.6)

labeled R-vines [123, 124]. We address the issue of selecting a suitable structure for time
series in the next section.

In this thesis we make the simplifying assumption that copulas of conditional distri-
butions do not directly depend on the conditioning variable in order to keep inference
and model selection fast and robust. While [68] showed that a simplified pair copula de-
composition can be a good approximation even when the assumption is far from being
fulfilled, [2] illustrated that it can also be misleading. To simulate time series, we sample
recursively according to well known algorithms using the inverse conditional copulas
corresponding to the R-vine density decomposition in (2.5) [1, 100].

2.3. AUTOREGRESSIVE MOVING-AVERAGE (ARMA) PROCESSES

An important concept in time series modeling is weak stationarity. A stochastic process
{X t : t = 1,2,3, ...} is considered to be weakly stationary if all its moments up to the order
of two do not vary in time. Thus, the mean and the variance of random variable X t is
equal to a constant and the covariance between any pair {X t , X t+k },∀k ∈N, only depends
on k but not on t .

ARMA models can describe weakly stationary processes. For a comprehensive intro-
duction to the topic see, for example, [25], [27] or [152]. A process X t is called ARMA, if
it can be expressed as the following function of past observations, X t−1, .., X t−p , and past
residuals, εt−1, ..,εt−q :

X t = c +
p∑

j=1
φ j X t− j +εt +

q∑
j=1

θ j εt− j , (2.7)

where c is a constant intercept term,φ j and θ j are non-zero constants, and the residuals
εt are independent and identically distributed (i.i.d.) with zero mean. If every φ j is zero,
the process is said to be a moving average process of order q , M A(q), and if every θ j is
zero, then it is called an autoregressive process of order p, AR(p).

For given orders p and q , the model parameters,φ j and θ j , can be estimated by max-
imum likelihood or by minimizing the conditional sum of squares of the fitted residuals.
An indication for suitable orders can usually be found by inspecting the autocorrelation
function (ACF) and the partial ACF (PACF). The ACF at lag k is defined as

ρ(k) = cor r (X t+k , X t ), (2.8)
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where cor r denotes the product moment correlation. In contrast, the PACF measures
the correlation between X t+k and X t , for k ≥ 2, with the linear effects of X t+1, ..., X t+k−1

removed. In order to define the PACF, let X̂ t+k denote the estimated mean from a regres-
sion of X t+k on {X t+k−1, ..., X t+1} and X̂ t denote the estimated mean from a regression of
X t on {X t+1, ..., X t+k−1}. The PACF for lag k can then be defined as:

φkk =
{

cor r (X1, X0), k = 1

cor r (X t+k − X̂ t+k , X t − X̂ t ), k ≥ 2
. (2.9)

ARMA models with different orders have distinctive ACF and PACF behaviors. The
ACF of an AR(p) process decays slowly, while its PACF has a cut off at lag p. Conversely,
the ACF of an M A(q) process has a cut off at lag q , but its PACF decays more slowly.
Finally, both ACF and PACF tail off in ARM A(p, q) processes and are dominated by mix-
tures of exponentials and damped sine waves after the first q − p lags and p − q lags
respectively.
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3
FRAMEWORK DESIGN

The introduction highlighted that emergency management and long-term planning in
coastal areas depend on detailed assessments (meter scale) of flood and erosion risks.
For these, multiple models from different disciplines need to be linked in a so-called
model train to account for various relevant physical processes and damage mechanisms.
A recognized challenge is the integration of the high-dimensional model output in a
clear manner, so that the information is easily accessible to and usable by decision mak-
ers.

In this chapter, a Bayesian network (BN) approach is developed to integrate the sep-
arate model results. Background on BNs was given in Section 2.1. We build on the widely
recognized source-pathway-receptor (SPR) concept and attempt to extend and general-
ize the work of [136]. The BN framework is part of a suite of tools, developed in the
RISC-KIT project, whose purpose is to help effective disaster risk reduction (DRR) man-
agement at coasts [170]. For different extreme events, the BN predicts percentages of
affected receptors in terms of the hazards experienced and their impacts in real-time.
Moreover, the BN can evaluate the effects of potential DRR measures. Although our fo-
cus is on marine storms, which are the primary threat to coastline stability, the approach
is broader. It is also possible to include, or even solely concentrate on, other types of
natural disasters, such as extreme river discharges or exceptional rainfall events in this
model.

The chapter is organized as follows. In Section 3.1, we introduce the methodological
background. We explain the SPR-concept and review how risk reduction measures have
been incorporated into models. In Section 3.2, we describe the design of the BN frame-
work, followed by examples from the case study site of Wells-next-the-Sea, Norfolk, UK,
in Section 3.3. Section 3.4 describes the integration with operational forecasting systems.
Finally, Section 3.5, summarizes the key points of the chapter.

3.1. METHODOLOGICAL BACKGROUND

In this section we provide an overview of models for the different elements in the risk
chain, following the logic of the SPR concept, as well as an approach to quantitatively
assess the effect of DRR measures. After that we describe the method we use to integrate
the various models and DRR measures: BNs.

Except for section 3.4, the content of this chapters have been published within [78]. Section 3.3 is largely a
contribution from co-author Elisabeth Christie and published here with her permission.
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THE SOURCE-PATHWAY-RECEPTOR CONCEPT

The SPR concept is a high-level framework to evaluate risks. It was first used to describe
the possible movements of a pollutant from its source to a receptor [75] and is now well
established in coastal risk management [29, 53, 127, 147].

In its basic form, the framework characterizes a causal chain of processes and events
in terms of sources, pathways and receptors (Figure 3.1). When considering coastal
storms, the chain reaches from offshore to onshore. The source is the offshore marine
environment. Typical source variables, or boundary conditions, are peak water level,
maximum wave height and peak period, and storm duration. The storm threat can af-
fect onshore areas through pathways. They are the interaction of water levels and waves
with coastal landforms and ecosystems, coastal infrastructure and low-lying coastal hin-
terlands. Finally, receptors are the entities at risk, such as people, built environments or
ecosystems.

Figure 3.1: Illustration of the source-pathway-receptor (SPR) concept for coastal storms

Sometimes, the framework explicitly includes consequences (C) as a fourth term (SPRC).
Any receptor can experience them, if affected by a hazard. Gouldby and Samuels [62]
have defined a hazard as the triple: source, pathway and receptor. However, we con-
sider a hazard to be a local condition directly affecting the receptors. Examples are flood
depth, flow velocity and erosion, which can, for instance, cause structural damage or
injuries.

Coastal risk assessments often follow this concept. The general idea is to generate
a set of representative extreme events, model the pathways, and estimate the resultant
impact [e.g., 130]. More specifically, detailed and specific models are applied to various
individual processes in the SPRC chain and then linked together. However, to the best of
our knowledge, a single model that captures the entire chain does not exist yet.

Source Models A set of events that are representative for the storm climate at a given
site can be derived from a statistical analysis. Often, storms are characterized by the val-
ues of hydraulic variables in deep water at the peak of the storm along with its duration.
In the past decade, copula-based models have become increasingly popular to estimate
dependencies between (some) such variables [e.g., 37, 45, 145, 184]. As discussed in Sec-
tion 2.2, copula models are a specific type of probability distribution that characterizes
the dependence structure between random variables irrespective of their marginal be-
havior. The temporal evolution of the variables, which is typically required as input for
pathway models, is often idealized as a so-called equivalent triangle [19] . Nonetheless,
a couple of studies model times series explicitly [80, 183].
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Pathway Models The response of coasts to storms and the extent of flooding can be
assessed with computational models, which numerically solve the physical equations
that govern the motion of water and sediment in the nearshore and the hinterland.

A number of different models [e.g., 13, 73, 142, 185], varying in their numerical solu-
tions, spatial dimensions and the range of physical processes included, have been suc-
cessfully applied to the problem of hazard modeling in different coastal settings [e.g.,
12, 44, 112]. The models are driven by time series of meteorological or hydraulic vari-
ables at the offshore boundary of their domain. Their output contains time series of
hydraulic or morphological variables, which are potential hazards at the shore and in
the hinterland, on a structured or unstructured numerical grid.

Probabilistic pathway models also exist, though they are not considered in this thesis,
as they have not been used for any of the RISC-KIT case study sites. An example are levee
failure models, which play an important role for flood risk assessment in the Netherlands
[e.g., 87, 92, 180].

Consequence Models for Receptors Diverse and complex consequences can arise from
flooding or erosion. Separate approaches can estimate economic, political, social, cul-
tural, environmental or health-related consequences. In general, these approaches op-
erate on the receptor level. Most commonly, they are functions, often referred to as
vulnerability relationships, which map one or multiple hazards to consequences for a
specific type of receptor. Literature reviews on vulnerability relationships exist, for in-
stance, for economic damage [116], health impacts [4, 69], and the loss of life [94] due to
flooding.

DISASTER RISK REDUCTION MEASURES IN MODELS

According to the terminology of the United Nations Office for Disaster Risk Reduction,
DRR measures reduce the exposure to hazards or lessen the vulnerability of receptors
[168]. For modeling, a similar categorization into three types is useful, as we explain
below. Exposure-reducing measures move receptors out of high risk areas, for instance,
by temporarily evacuating people or permanently relocating residential areas. Pathway-
obstructing measures change the bathymetry and hence its interactions with waves and
water levels. Examples are beach or dune nourishment, revetments and floodwalls. The
third type are vulnerability reducing measures, which include for instance flood protec-
tion for individual receptors. Also raising the awareness of potential flooding and flood
impacts amongst inhabitants belongs to this category.

Modeling the effect of DRR measures belonging to one of the first two types is straight-
forward. For exposure-reducing measures, receptors are excluded from the model or
different types of land-use can be assumed for high risk areas. For pathway-obstructing
measures, the pathway models can be modified and the effect simulated. Modeling
vulnerability-reducing measures is more intricate. In principle, their effect is assessed by
modifying consequence models [e.g., 166]. Some such measures such as early warning
or awareness raising, depend on effective uptake or operation by people. To accommo-
date this, [41] developed a methodology to quantify and aggregate factors that influence
uptake and operation.
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3.2. DESIGN OF THE DECISION SUPPORT SYSTEM

OVERVIEW

The BN that we designed as a decision support system (DSS) for coastal risk manage-
ment has five categories of variables: Boundary condition (BC ), receptor type (R), hazard
(H), consequence (C ), and DRR measure (M). Figure 3.2 shows a high-level framework
of the DSS and illustrates the influences from variables of one category onto another. If
in an application each category had only one variable, then this representation would
correspond to the BN graph. There are no arcs between variables of the same category.
As a consequence, all boundary conditions, receptor types and DRR measures are mu-
tually independent, while hazards and consequences are conditionally independent of
each other given their parents. Admittedly, this assumption may appear unnatural for
boundary conditions and DRR measures. We reflect on this issue when describing those
categories later in this Section.

BC

R

H

C

M

Figure 3.2: High-level framework of the DSS for coastal risk management illustrating the influences between
boundary conditions (BC ), receptors (R), hazards (H), consequences (C ), and risk reduction measures (M).
The solid arc indicates that all variables of the parent category influence all variables of the child category. If
this is not the case, the arc is dashed.

All boundary conditions influence all hazards, which is indicated by the solid arc
in Figure 3.2. In contrast, each type of receptor (e.g., people, buildings, infrastructure,
and ecosystems) has a sub-module in the BN. It consists of an R node (representing the
locations of receptors on the site) as well as H nodes (representing the hazards given
the receptors’ locations) and C nodes (representing the consequences given (some of)
the receptors’ hazards). The dashed arcs in Figure 3.2 represent the fact that the sub-
modules are not directly inter-connected. Nevertheless, dependencies arise from the
common parents, which are boundary conditions and, possibly, DRR measures.

While the high-level representation is generic, the BN is tailored to case study sites
through the choice of variables and the supplied training data, based on the charac-
teristics of the site under investigation. Owing to the generic structure, the process of
constructing the BN can be automated and, if desired, integrated with open shell sys-
tems that manage forecasting processes (Section 3.4). We developed specific file for-
mats in which variable definitions and training data need to be provided, as well as a
C++ program to read them and create a BN. The source code is open and available at
https://github.com/openearth/coastal-dss. An executable for Windows and documen-
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tation is also provided. The core of our program builds on SMILE, which is a reasoning
engine for graphical models. It is available free of charge for academic research and
teaching use from BayesFusion, LLC, http://www.bayesfusion.com/.

TRAINING DATA

In essence, the training data comprises a set of storm simulations, cadastral information
on the case study site, and vulnerability relationships (cf. section 3.1). Additional data
may be required to include risk reduction measures, as described in Section 3.2.

The set of simulations should reflect the storm climate of the site. Each storm is de-
fined by an offshore time series of waves and water levels, which is typically assumed
to be uniform along the offshore boundary, and the simulation shows its propagation
into the hinterland. For simplicity, we use statistics of the offshore time series, such as
maxima and averages, to characterize the storm. In our decision support framework,
these statistics are the variables of the BC category. Ideally, the storm events are derived
from a multivariate statistical analysis of measured wave and water level time series [e.g.,
136, 183] and can be a combination of historical and synthetic events. However, if ade-
quate data or analysis tools are not available, the events can also be derived from expert
opinion (e.g., with the classical model for structured expert judgment and extensions
thereof [35, 186]).

As the BC category is related to input of the simulations, the H category is related
to output. Statistics of the gridded time series of hydraulic or morphological variables
in the hinterland constitute the H variables. Finally, the data for the R variables stem
from the cadastral information and the data for the C variables are estimated from the
H variables using vulnerability relationships. In each category, the CPTs or PTs of the
variables are learned differently, as will be explained in the following section.

INCLUDING DRR MEASURES

DRR measures do not have PTs. They are implemented as decision nodes1 and not as
random nodes, because their states represent the actions of decision makers. For the
same reason, measures are not interconnected with arcs. To avoid situations in which in-
compatible measures are simultaneously selected, they can be treated as different states
of the same variable. When there are no conflicts, the variables typically have two states
("in place" and "not in place").

The three types of measures described in Section 3.1 can be incorporated into the
BN. To demonstrate the outcome from exposure-reducing measures, we conceptually
move receptors to a safe zone. To show the effect of the pathway obstructing measures,
we simulate different storm events with the original and the adapted bathymetry. Fi-
nally, we modify vulnerability relationships and, if applicable, we also include a measure
effectiveness factor, which can account for the fact that parts of the population may not
receive a warning, or be able or willing to take appropriate actions (e.g., to evacuate or
flood-proof their home).

1While we include decision nodes, our model is not an influence diagram, because it does not solve for an
optimal decision in terms of a maximum expected utility.
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QUANTIFICATION OF (CONDITIONAL) PROBABILITY TABLES

Boundary Conditions The BN learns the PTs of BC nodes from storm simulations. The
PT entries are set to the relative frequencies of observed values in all simulations. Al-
though there may be notable dependencies between hydraulic boundary conditions (cf.
Section 3.1), these are not modeled with the current version of the program; boundary
conditions do not have parents. We reflect on the implications of this assumption in the
next Chapter.

We use a simple counting-learning algorithm (e.g., [97]). Consider a data set with
simulations n = 1, ..., N and a node, Xbc , bc = 1, ..., Nbc , where Nbc is the number of
boundary conditions in the BN. Xbc has states sbc = 1, ...,Sbc . Before learning, the PTs are
uniform, Pr (0)(Xbc = sbc ) = 1

Sbc
for all sbc , and the so-called experience is zero, e(0) = 0.

Then, for each simulation n = 1, ..., N , we compute

e(n) = e(n−1) +1, (3.1)

Pr (n)(Xbc = s(n)
bc ) =

Pr (n−1)(Xbc = s(n)
bc ) ·e(n−1) +1

e(n)
, (3.2)

and

Pr (n)(Xbc = s̄(n)
bc ) =

Pr (n−1)(Xbc = s̄(n)
bc ) ·e(n−1)

e(n)
, (3.3)

where s(n)
bc is the state that corresponds to simulation n and s̄(n)

bc = 1, ...,Sbc , s̄(n)
bc 6= s(n)

bc .

Receptors Each receptor type, such as building, people or infrastructure, is associated
with a node that characterizes the location of a randomly selected object or individual.
To this end, the case study site is divided into zones (including the external safe area, if
applicable). A division is subjective and depends on features of the site; natural topolog-
ical or political boundaries can be used. The zones are identical for all receptor types.

Figure 3.3 shows an illustration site with 26 houses across two zones: the beachfront
and inland. We denote the node for the receptor type house as Xhouse . To understand
why we consider the location of an individual house as uncertain, imagine selecting one
of them randomly, just like drawing a ball from an urn. The probability for a house
to be within a given zone is proportional to the total number of houses in that zone.
Because 10 houses are located at the beachfront and 16 inland at the illustration site,
P (Xhouse = beachfront) = 5/13 and P (Xhouse = inland) = 8/13. The same entries of the PT
can be thought of as a spatial distribution of the houses in terms of the zones.

Note that the number of receptors in a zone could change for different combinations
of exposure influencing DRR measures. In that case Xhouse would have a CPT and not a
PT, because DRR measure variables would be parent nodes.

Hazards The BN learns the CPTs of hazards from storm simulations as well, however in
a different manner than the PTs of boundary conditions. Now, the CPT entries represent
an estimate for the proportion of affected objects or individuals, for different degrees
of hazard severity. (They can also be interpreted as the probability of degree of hazard
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Figure 3.3: Illustration site with 26 houses distributed across 2 zones. The color of a house indicates its degree
of flooding: none is white, medium is white-blue, and high is blue.

severity for a randomly selected receptor.) Of course the proportions vary depending on
the zone, the boundary conditions and the DRR measures in place.

We illustrate the learning with an example and refer the reader to A for the precise
algorithm. Consider again the illustration in Figure 3.3. We call the combination of
boundary conditions and DRR measures an scenario. The hazard variable, flood depth,
has three states: none, medium and high. The flood depth at each house is indicated by
its color: white, white-blue or blue. In the beachfront zone, 3/10 houses experience a high
flood depth, 6/10 a medium depth, and 1/10 none. These three numbers are the CPT entries
given the scenario and for the zone beachfront. Similarly, the entries are 3/16, 6/16 and 7/16,
for the zone inland under the same scenario.

Because the local features of a site influence the flood flow, the degree to which a
receptor is affected depends on its exact location. Without resolving to the spatial scale
of individual receptors, this is reflected by the above fractions. As other types of receptors
have a different spatial configuration (and total number), their fractions are different.
Therefore, we model hazards separately for each receptor type.

Finally, due to the discretization, it is not possible to distinguish storms whose bound-
ary conditions fall into the same pre-defined states. In such cases, we average the ob-
served fractions.

Consequences Consequences have truth tables, which are a special case of CPT. In a
truth table each combination of parent states corresponds to a single child state with
probability 1. Hence, the relationship of consequences to their parents is deterministic.
In this BN, we use vulnerability relationships, which are commonly used in the field (cf.
section 3.1), to compute consequences as a function of hazards and DRR measures.

3.3. EXAMPLE OF APPLICATION

CASE STUDY SITE

The North Norfolk coast is a north-facing coastline, characterized by both gravel and
sand barriers, with an extensive (>2000ha) saltmarsh area behind barrier islands, spits
and areas of low gradient sand flats on open coasts. In this area the natural environment
is a major source of revenue for the local economy via its contribution to nature-based
tourism and recreational uses. Analysis of coastal hazards along this stretch of coast has
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highlighted Wells-next-the-Sea as a risk hot spot [33].
Wells is a small coastal town (population 2165, 2011 Census). It is the largest urban

center on the North Norfolk coast. The main industry of Wells is tourism, but there is also
a small fishing and a wind farm servicing industry. The town has a long history of flood-
ing due to storm surges. As such, the coastal defenses have been improved over time.
The embankment forming the western side of the Wells Harbour Channel breached in
the catastrophic storm of 1953 [14] and again in the storm surge of 1978 [161], leading to
considerable areas being flooded on the western side of the town. Following the storm
surge of 1978, this embankment was re-built to a much higher specification and, as a
consequence, withstood the December 2013 surge with minimal damage [160]. In addi-
tion, the raising of the flood wall to the south of this embankment and the construction
of a movable barrier between this defense and the building line at the back of the Wells
Quay has reduced the risk of flooding to the low-lying western part of the town. Some
individual residential and commercial properties have also implemented property level
protection measures.

BN SPECIFICATION

Following the general structure introduced in Figure 3.2, the BN for Wells has boundary
conditions, DRR measures, receptors, hazards and consequences. Figure 3.4 shows the
graph of the BN. The boundary conditions are maximum water level and maximum wave
height. There are four receptor types, each with its own hazards and consequences. For
residential and commercial properties we include flood depth and absolute monetary
damage. For people we assess the maximum depth-velocity product experienced and
the risk to life. For the saltmarsh, we include flood depths and wave height, and damage
in terms of an ecosystem vulnerability indicator (cf. Table 3.2). Finally, there are two
pathway obstructing measures (extending the sea wall and increasing its height) and a
vulnerability reducing measure (raising awareness through display boards).

The BN is trained with 85 storm events representing the range of potential extreme
event conditions, which are generated from coastal scale modeling. They include histor-
ical storms (8 events), climate change (18 events) and synthetic events (59 events).

Boundary Conditions We defined the extreme events at Wells in terms of the peak wa-
ter level and maximum significant wave height. We calculated the boundary conditions
from a model train (Figure 3.5), which transforms coarse external model conditions to
detailed model results at the BN boundary condition location (Wells harbour channel
entrance, 52.993N 0.853E) and generates the input conditions for the model train to cal-
culate the subsequent flooding.

The model train uses predicted hindcast data at 12 locations from the CS3 (before
2007) and CS3X (post 2007) tidal surge model run by the National Oceanography Centre,
UK (NOC). The model predicts hourly tide and surge residual data with a resolution of
approximately 12km which are used to drive a 2D TELEMAC model [73]. The TELEMAC
model extends 50km offshore from the case study site, over an area of 4750km2. The
unstructured grid consists of 10,704 elements with 5759 nodes. The largest elements
have a resolution of 12km but the grid resolution becomes finer towards the coast with
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Figure 3.4: Graph of the Bayesian Network for Wells-next-the-Sea
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Figure 3.5: Framework of the Model train to assess the flood hazard in Wells-next-the-Sea, North Norfolk, UK.

the smallest resolutions in the Wells Harbour channel of approximately 15m.
The wave conditions are generated at the entrance to the harbour channel by 2 nested

SWAN models [23]. The nested SWAN models are driven by 2D spectra from the UK Met
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Office Wavewatch III (WWIII) North Atlantic European model with a resolution of ap-
proximately 12km. The Met Office model has a spectral resolution of 25 frequency bins
and 24 directional bins. It is forced by a 10m wind field from the Met Office Numerical
Weather Prediction models and the Global Wave Model. The wind characteristics are
obtained from the 10m wind field from the Met Office Numerical Weather Prediction
model. The water level and flow velocities are obtained from the TELEMAC model and
interpolated onto the the nested SWAN model grids. The largest of those grids covers an
area of 90 x 60km with a resolution of 5km, the smaller grid covers an area of 32 x 13km
with a resolution of 500m. Wave growth from wind, whitecapping, quadruplets, break-
ing waves, diffraction, triad interactions and setup are included in the models using the
present default settings (SWAN version 41.01 [22]).

The historic storm events were generated by external model hindcast storms selected
where boundary conditions were available from external models. In total eight historic
storm surge events were selected: 20-21 February 1993, 10 January 1995, 19-20 January
1996, 14 December 2003, 31 October-3 November 2006, 17-20 March 2007, 7-10 Novem-
ber 2007, and 4-7 December 2013. Synthetic storm events were generated to produce a
fuller range of potential storms based on historic surge and wave conditions. The syn-
thetic storms were generated using a typical spring tide, with length of 55 hours, with
the addition of a storm surge residual from one of eight historic storm surges. The peak
storm surge residual coincided with the peak tidal water level. To create a greater range
of synthetic storms the spring tide or storm surge residuals were multiplied by a factor
ranging from 0.7 to 1.3. Analysis of the historic surge events found no clear dependen-
cies between the surge and wave characteristics. At this location it is clear that it is the
high water levels, usually caused by the coincidence of a surge event with high water
on a high spring tide, which generates the flooding. In order to create representative
wave conditions which are likely to occur with a surge, the synthetic storm wave and
wind conditions were taken from the historic storm events. The synthetic storms cover
a range of conditions up to a return period of 400 years, based on peak water level. Only
those synthetic storms which had an impact are included in the BN.

Climate change events were generated by modifying the boundary conditions from
the historical storm event hindcast model to include a sea level rise prediction. The
climate change event sea level and surge data were based on the IPCC (2013) RCP8.5
(Representative Concentration Pathway) projections for 2060. The future extreme storm
surge levels (SSL) along the European coasts have been predicted by [179], using a DELFT3D-
Flow model forced by an 8 member climate model ensemble. The authors predict the
RCP8.5 2060 relative sea level rise (RSLR) at the case study site (52.98N 1.228E) to be
+39cm and the predicted change in surge height in 2060 for a 20 year return period is
-4cm, giving an overall climate effect of +35cm.

Receptors We divided the case study site into 6 zones, based on topographic features
and key current flood prevention measures, such as the flood wall and movable flood
barrier. The receptor types are residential property, commercial property, people and
saltmarsh. Their locations are shown in Figure 3.6. We did not include caravans as re-
ceptors themselves, but we did include the people living inside the caravans in the anal-
ysis. We considered people to be inside their homes/caravans at the time of the flooding
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impact. The model assumed a ratio of 3:1 for the number of people in houses to cara-
vans.

Figure 3.6: Defined zones in Wells-next-the-Sea and receptor locations

Hazards We obtained detailed hazard values (inundation depth, flow velocity, wave
height) by modeling the flood inundation in the study area and by mapping the receptor
locations at their nearest grid point.

A small SWAN model (4 x 4km with a resolution of 15m) calculates the wave height
within the harbor channel. It includes the wave energy dissipation due to the saltmarsh
vegetation adjacent to the Wells Harbor (plant height=0.11m, field data from Stiffkey,
North Norfolk [121]; plant diameter=0.00125m [120], plant density=1061 plants per m2,
field data at Tillingham, Essex [119]). From the SWAN model we obtained water level and
wave conditions at 64 locations along the Wells Harbor Channel. We calculated overtop-
ping rates at transects at these 64 locations using EurOtop [138] and used the resulting
overtopping discharge to drive a flood inundation model for the town. The inundation
model covers an area of 7.5km2, the whole of Wells-next-the-Sea and some of the sur-
rounding countryside. The landward margin of the flood grid is defined by the 10m Ord-
nance Datum Newlyn (ODN) contour. The majority of the grid has an approximately
12.5m resolution. A finer resolution is needed to represent the current flood wall and
DRR measures in the mesh; therefore a resolution of 0.5m is used at the wall.
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Consequences We determined the impact of the flooding with vulnerability relation-
ships. For residential properties, we estimated the potential absolute damage from the
inundation depth. To do that, we applied UK depth-damage curves for semi-detached
houses [132], the most common property type in Wells. The residential properties are
divided into those with flood protection and those without protection. From a site and
Google Street View survey only 17 of 960 houses below 10m ODN were found to have
any form of property level protection measures in place. We assumed that if flood re-
sistance measures are present the house had up to date protection to the current stan-
dards. UK industry standards assume that resistance measures protect up to 0.6m above
the threshold of the house [132]. The depth-damage curves were therefore modified for
properties with flood protection, so that no damage occurred below 0.6m.

Commercial properties are also divided into those that have flood resistance mea-
sures and those that are unprotected (surveys found 10 properties with flood protection
out of a total of 140 surveyed). Commercial properties within the case study site are typ-
ically small shops, restaurants, pubs, cafés and small warehouses. We assumed that the
depth-damage curve data for retail adequately represents the commercial properties in
the case study site. We obtained the depth-damage curve data from [132] for retail prop-
erties with no cellar, a short duration flood and a mean area of 140.45m2. We modified
the curve following the same principle as for the residential properties with flood resis-
tance measures.

As is common in the field, we calculated risk to life through the matrix developed by
[137], which is based on the depth velocity product experienced and the vulnerability
of the area (Table 3.1). Vulnerability of the area is based on the type of buildings and
the construction methods at three levels: low vulnerability is applied to masonry, con-
crete and brick buildings; medium vulnerability is applied to mixed building types and
high vulnerability is applied to caravans, campsites, bungalows and poorly constructed
buildings. We assumed that the area is largely medium vulnerability, as it is a typical
residential area with mixed type of properties. An exception is zone 1 to the west of the
earthen embankment at the edge of the Wells Channel, which we defined as a high vul-
nerability area due to the large number of caravans (568 caravans in zone 1).

We estimated the damage to the saltmarsh by an ecosystem vulnerability indicator
(Table 3.2), which relates damage to inundation depth and maximum wave height. We
developed the saltmarsh vulnerability indicator from the work of [189] and [120]. We
assumed the saltmarsh at the case study site is an open coast marsh in a mesotidal area.
For inclusion in the BN, the saltmarsh was divided into 372 individual units, based on
the grid node locations of the TELEMAC model.

DRR Measures We tested two structural DRR measures: i) an extended flood wall and
ii) increasing the height of the flood wall in combination with a movable barrier. Fig-
ure 3.7 shows the location of the current structural and natural coastal protection in
Wells-next-the-Sea as well as the possible flood wall extension.

We ran modified versions of the TELEMAC flood model to assess the change in the
hazard experienced by the receptors. The extended flood wall lengthens the existing wall
along the front of the harbor quay, protecting the properties in Area 3. The higher flood
wall was chosen as water levels for the recent 2013 storm surge event almost reached the
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Nature of the Area
Depth Velocity product m2s−1 Low Vulnerability Medium Vulnerability High vulnerability
<0.25 Low risk Low risk Low risk
0.25-0.50 Low risk Medium risk Medium risk
0.50-1.10 Medium risk Medium risk High risk
1.10-7 Medium risk High risk Extreme risk
>7 Extreme risk Extreme risk Extreme risk

Table 3.1: Risk to Life matrix [137], relating the depth-velocity product experienced during a flood event and
the area vulnerability to the risk to life.

Wave Height (m)
Depth (m) <0.3 0.3-0.6 0.6-1 1-2 >2
0 to 1 0 2 2 3 3
1 to 2 0 1 2 2 3
2 to 3 0 1 1 2 2
3 to 4 0 0 1 1 2

0: No effect
1: Changes within normal seasonal variation
2: Changes beyond normal seasonal variation,

but partial/total recovery
3: Irreversible change

Table 3.2: Saltmarsh Ecosystem Vulnerability Indicator [175]

top of the existing defenses.
Additionally, we included iii) a vulnerability influencing DRR measure in the BN. This

takes the form of a series of display boards containing cartographic information on for-
mer shoreline positions to demonstrate coastal dynamics, and images of flood markers
along the coast to indicate elevations reached by historic storm surges. The aim of the
display boards is to increase awareness of flood risk, with a hoped-for increase in prop-
erty level protection.

To determine the effectiveness of the display boards we employed the method of [41],
which assumes that the effectiveness of DRR measure depends on three factors: uptake,
operator and performance. The values for each of these factors are displayed in Table 3.3.

• Uptake is the percentage of the population who will adopt the measure. We cal-
culated a value of 9% based on 50% of the population will see the display board,
30% of the population will want to take action as the threat and coping appraisal
level are high and 60% of the population can afford the measures due to an above
average income level (9% = 50% ·30% ·60%).

• The operator factor is the percentage of the population that will operate the mea-
sure before a flood, assumed as 77.3%. The Environment Agency [50] gives an op-
erator value of 86.1%, which was adjusted down as 24% of the population within
the North Norfolk Area of Natural Beauty (AONB) are second home owners. We as-
sumed that a third of the second homes would have someone available to operate
the flood protection (due to the probability of an event occurring at a weekend or
holiday when second home owners are more likely to be in residence). This leads
an operator factor of 72.3% (= 86.1%−86.1% ·24% ·(100%−33.3%)). However, with
the use of the display boards it is expected that more of the population will be re-
minded to check they know how to operate the measures they have. Therefore,
post DRR operation measure of 77.3% is assumed.
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Figure 3.7: Current structural and natural coastal protection in Wells-next-the-Sea and possible flood wall
extension.

• The performance factor is the percentage of the population who will operate the
measure effectively. We calculated a value of 73% from the assumptions that 95%
of equipment are not lost or misplaced, 95% of the product are in good working or-
der, 90% of the population receive a flood warning, and that there is a 90% chance
that flood heights do not exceed flood protection level [82]. (73% = 95%·95%·90%·
90%)

By multiplying uptake, operator and performance factors, we estimate an increase
of property level protection with the display board DRR of 5.08%. While it is possible to
include the increase in protection as a measure effectiveness node, in this instance, we
have directly modified the vulnerability relationships accordingly.

Influencing Factors Post DRR measure
Uptake: % of the population who will adopt the measure 9%
Operator: % of the population that will operate the measure before a flood 77.3%
Perfomance: % of the population who will operate the measure effectively 73%

Table 3.3: Influencing factors for the effectiveness of the display board DRR measure

Results We could predict hazards and impacts in Wells with the BN in real-time with-
out the need for further detailed flood modeling, as the BN is trained with a range of
potential storms. The BN also allowed the impact and cost-effectiveness of the DRR
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measures to be studied. The quantified model with its prior probabilities can be seen in
Figure B.1 in Appendix B. In this section, we describe the BN results for a storm of 4.41
m water level and 2.17 m significant wave height. This storm was calculated as the 1 in
100 year return period storm based on the maximum water level only. For reference, the
BN constraint on these bins is given in Figure B.2 in Appendix B.

The majority, 93.55%, of residential properties had no flood inundation and there-
fore sustained no damages (Figure 3.8a). Maximum inundation depths with an associ-
ated absolute damage of £30,000-55,000 reached 0.49% of the properties. The higher sea
wall had little effect on the absolute damage distribution (Figure 3.8c). The extended
sea wall shifted the distribution of damage to lower values (Figure 3.8b). Display boards
can be applied together with any of the structural measure options. Whilst the display
boards had little influence on the largest damage bins, due to the property level protec-
tion only protecting up to 0.6m, the distribution of damage shifted to lower levels below
0.6m (Figure 3.8d, 3.8e, 3.8f).

Commercial properties were at a greater risk in this event with 36.6% of commer-
cial properties experiencing some flooding with no DRR measures in place (Figure 3.9a).
5.91% of commercial properties were inundated by 1-3m resulting in absolute damage of
£120,000 to 200,000. Again, the higher sea wall, showed little damage reduction, suggest-
ing that this is not a suitable measure for this storm event (Figure 3.9c). The extended
sea wall reduced the number of commercial properties experiencing the highest levels
of absolute damage (Figure 3.9b). The Display Board showed a shift to lower levels of
damage for all the events tested. However, they had no influence on the higher damage
levels due to the flood protection height limit (Figure 3.9d, 3.9e, 3.9f).

Figure 3.8: Absolute Residential Damage values for the 1 in 100 year return period storm with a) No DRR mea-
sures, b) Extended sea wall c) Higher sea wall d) Display boards e) Display boards and extended sea wall and f)
display boards and higher sea wall
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Figure 3.9: Absolute Commercial Damage values for the 1 in 100 year return period storm with a) No DRR
measures, b) Extended sea wall c) Higher sea wall d) Display boards e) Display boards and extended sea wall
and f) Display boards and higher sea wall

The expected value of any of the shown conditional damage distributions represents
the total absolute damage corresponding to the selected 1 in 100 year return period
storm and under the considered DRR measure. Table 3.4 shows these values for absolute
residential and commercial damage for different DRR measures. For this storm event, a
combination fo display boards and an extended sea wall would reduce the damage most.

Table 3.4: Total absolute damages in 1000 GPB for the 1 in 100 year storm with a) No DRR measures, b) Ex-
tended sea wall c) Higher sea wall d) Display boards e) Display boards and extended sea wall and f) Display
boards and higher sea wall

Type of damage DRR measure
a) b) c) d) e) f)

Residential 126.25 97.15 126.63 113.35 88.65 113.2
Commercial 2948.55 2567.45 2948.7 2688.15 2213.15 2677.9

97.6% of the people were not at risk to life, 2.3% at a low risk and 0.1% at a medium
risk. The risk to life changed through the hazard influencing DRR measures, as the mea-
sures modified the maximum depth-velocity product in Wells. With an extended sea
wall, risk to life was reduced compared to the no DRR case. 98.3% of the population was
at no risk and 1.6% at a low risk. The higher sea wall had negligible influence on the risk
to life. 97.5% of the population was at no risk, 2.3% at low and 0.1% at medium risk.

The saltmarsh was not influenced by the DRR measures due to its location seaward.
For this 1 in 100 year storm, 98.4% of saltmarsh was undamaged, while 1.54% of the
saltmarsh experienced changes within the normal seasonal variation of saltmarsh con-



3.4. INTEGRATION INTO OPERATIONAL FORECASTING SYSTEMS

3

39

dition.

We observed similar effects of the DRR measures across all the storm events of the
BN. The higher sea wall showed a very similar distribution of damage to the no DRR
measure option for all the storm events, suggesting that the higher sea wall is not a suit-
able DRR measure at this location. The extended sea wall led to a slight reduction in
damage to residential properties, a slight reduction in risk to life and a larger reduction
in damage to commercial property. The display board DRR measure showed a general
reduction in commercial and property damage for those properties with low inundation
depth, however, at large flood depths this DRR measure had no effect.

3.4. INTEGRATION INTO OPERATIONAL FORECASTING SYSTEMS

Delft-FEWS is a generic tool to set-up forecasting and early warning systems, originally
developed for inland flooding, which has been adapted to accommodate applications in
coastal areas during the RISC-KIT project [20]. Essentially, Delft-FEWS is an open data
handling platform that can connect different models by automatizing the data transfer
between them. It defines and executes a sequence of models through which a data set
passes.

Figure 3.10 shows a typical configuration for a coastal application with the final model
being the Bayesian network tool. The sequence starts with numerical predictions of
global weather and waves. Then, it nests different models for water levels, currents and
waves to downscale the predictions from a large offshore domain with a coarse reso-
lution to a small nearshore domain with high resolution. Next, a hydrodynamic, and
possibly morphodynamic, model computes the hazards at the coast and in the hinter-
land. Finally, the data is transferred to the Bayesian network tool to estimate the conse-
quences. Figure 3.5 is a specific example for such a configuration for the case study site
North Norfolk.

Figure 3.10: Typical model sequence in a coastal FEWS (adapted from: [20])

Data is not directly transferred from one model to another, but imported and ex-
ported by Delft-FEWS with so-called model adapters. This is necessary to accommodate
the specific data formats required by each of the models. The model adapter for the BN
computes all conditional probability tables from Delft-FEWS-exported data and updates
them as a new complete storm simulations become available. However, conditioning of
the BN always takes place in the software GeNIe. For instance, when nearshore bound-
ary conditions for an impending storm have been forecast, but the nearshore model is
still computing, the BN can provide useful estimation of hazards and impacts.
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3.5. KEY POINTS

We developed a BN approach to support decision making in coastal risk management.
An important contribution is the CPT learning algorithm for the BN, which integrates
output from storm simulations with land use data, vulnerability relationships and DRR
measures. The algorithm is programmed in C++ and openly available at

https://github.com/openearth/coastal-dss .

We described the application to a small town in North Norfolk, UK, which is a risk
hot spot during coastal storms. The case study demonstrates how information flows
through the BN and how it can predict onshore hazards and impacts, when provided
with evidence of the offshore boundary conditions of a storm event. Because detailed
data of severe storms including their hazards and impacts are almost never available,
the BN learns from a database of hindcast and synthetic events. Each event in the data-
base is simulated with a 2D physics-based numerical model that covers the hot spot area.
This way, the training data set captures the dependence between boundary conditions
and various hazards, such as erosion and flood velocity, and reflects the complex influ-
ence of the local bathymetry. At this stage, we take the precise locations of receptors
into account. We include the dependence between hazards and impacts via vulnerabil-
ity relationships, such as depth-damage-curves. Finally, we can also incorporate DRR
measures. If they are structural, they are added through additional simulations with al-
tered bathymetry. Otherwise, we assign them modified spatial distributions of receptors
or vulnerability relationships.

The resulting BN forms a comprehensive and concise representation of risk propa-
gation in a complex system of physical, ecological and human components. It can also
be integrated in operational forecasting systems. From a practical point of view, this in-
tegrative character, together with the capability to predict in real-time, makes the BN a
helpful tool for decision makers. From a scientific point of view, the model development
approach emphasizes how results from multiple disciplines must be connected in order
to understand risks and can provide an objective basis for choosing DRR measures.
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The previous chapter developed a BN framework for decision support on risk reduction
efforts in coastal areas and presented an application to a site in North Norfolk, UK. The
BN enables a comprehensive analysis of storm impacts on coastal communities by in-
tegrating hydrodynamic, morphological, socio-economic and environmental data. The
BN can also inform on the estimated effects of DRR measures, accounting for human
behavior before and during extreme events.

Within the RISC-KIT project, additional applications have been made to nine sites
at the different European regional seas, which have diverse geomorphic and ecological
characteristics, land uses, storm climates and hazard types, as well as socio-economic
and cultural aspects [56]. Detailed descriptions of the application have been published
for coastal sites in Portugal, Spain, Italy, Bulgaria and Belgium [21, 135, 146, 169].

During the project, the BN models were built and validated through the expert knowl-
edge of project partners from each case study site and mathematical methods for model
optimization have not yet been developed. This chapter discusses how the BN frame-
work could be further advanced. In particular, we reflect on current limitations and
elaborate on possible model optimization and validation.

Section 4.1 explains why the updated distributions of hazards and consequences
conditional on a set of boundary conditions can be interpreted as ensemble mean pre-
dictions of affected receptor proportions. Section 4.2 proposes a metric for model val-
idation. The metric assesses prediction performance for forward reasoning, which is
the primary mode of use of the BNs. For the time being, backward reasoning (i.e., con-
ditioning on hazards or impact and inferring storm characteristics) is not considered.
Section 4.3 briefly outlines how this metric could be used to represent uncertainties in
training data.

Then the focus will be on model optimization. In general, the performance of a dis-
crete BN depends on three main factors: (1) quality of training data, (2) model structure,
and (3) node discretization. Section 4.4 discusses the first and the second factor. Sec-
tion 4.5 proposes a discretization strategy for receptor nodes and Section 4.6 proposes
a discretization strategy for boundary condition nodes. Instead of also developing dis-
cretization strategies for hazard and consequence nodes, we recommend to elicit them
from the model users. Therefore, there is no section on discretization for these node
categories. Also note that DRR measure nodes do not need to be discretized, since they
constitute actions of decision makers rather than continuous random variables. Finally,
Section 4.7 summarizes the key points of this chapter.
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4.1. USE OF THE BN AS AN ENSEMBLE MEAN PREDICTOR1

A main feature of the BNs is the immediate prediction of receptor proportions that ex-
perience hazards and consequences (to different degrees of severity) in distinct spatial
zones of a site when imposing evidence for the offshore boundary conditions of a storm
event. This property is crucial for operational forecasting and early warning systems (cf.
Section 3.4). Many of them rely on ensemble forecasting to account for (some of the)
uncertainties in initial conditions and model formulations of numerical weather predic-
tions as well as regional hydrodynamics and wave models (e.g., see references in [7]).
Hence, the boundary conditions that the BN should evaluate in the hot phase could be
an ensemble instead of a point forecast. The BN could deal with such forecasts.

We consider the simple case of a BN with one boundary condition variable influ-
encing one hazard variable. Given a regular point estimate for the boundary condition
value, the BN can be updated to present the associated conditional hazard distribution.
We will refer to it as the ‘predicted hazard distribution’ and interpret it as an estimate of
the proportions of receptors that are affected to different degrees.

Since boundary condition nodes are discretized representations of continuous vari-
ables, the predicted hazard distribution will not correspond directly to the one of the
point estimate of the boundary condition. Rather will it be the mean of hazard distri-
butions of all training storms whose boundary condition value falls into the same bin
as the point estimate. Similarly, an ensemble of boundary conditions would link to an
ensemble of hazard distributions. In the BN, we can set the distribution of the bound-
ary condition node so that it represents the ensemble members. The predicted hazard
distribution would then be an estimate of the ensemble mean hazard distribution.

In principle, the ensemble mean can be estimated for multiple boundary conditions
as well, but we might introduce error, because they are modeled as independent in the
BN. This model assumption is generally unproblematic for predictions based on fixed
values of all boundary conditions. However, neglecting those dependencies can limit
the BN’s applicability for other purposes. In particular, this simplification can introduce
error to the estimates of unconditional hazard and consequence probabilities, as the BN
evaluates the law of total probability.

Accurate estimates of unconditional hazard and consequence probabilities would be
necessary for risk assessments and to find the most economical suite of DRR measures
[e.g., 89, 190]. The situation is similar for hazard and consequence probabilities that are
computed for updated distributions of boundary conditions, for instance to represent
an ensemble forecast. Finally, the assumption could also have effects on the diagnos-
tic reasoning (i.e., in opposite arc direction) of the BN, because then the unconditional
hazard and impact probabilities appear in the denominator of Bayes’ theorem.

To expand the BN’s potential for wider applications, the graph structure dictated by
the framework should be adapted so that it can represent the multivariate distribution
of boundary conditions at case study sites more realistically. We also recommend, to
investigate the influence of different discretizations on the dependence structure and, if
necessary, to optimize it per site. Of course, a prerequisite for these extensions would

1The content of this section has been previously published as part of [78]. Minor modifications have been
made the text consistent with other sections of this chapter.
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be a multivariate statistical analysis of available boundary condition measurements or
hindcast for the location of interest, for instance with copula-based approaches [45, 184].

4.2. A METRIC FOR BN VALIDATION

Two important questions have not yet been answered with formal methods. The first
question is ‘How precisely do the BNs built (according to the prescribed framework from
Chapter 3) describe the training data?’ and the second one is ‘How precisely would the
models predict new data?’. In other words, ‘How good is the fit?’ and ‘Did we over-fit?’. To
be able to answer these question, a metric that measures prediction performance needs
to be defined, which is the aim of this section.

Primarily, we designed the BN to predict hazards and impacts for given storm events.
Therefore, we focus, for the time being, on a validation measure in terms of BN precision
in predictions, though the BN can also be used to infer likely boundary conditions for
given hazards and impacts. The objective is to assess how precisely the model predicts
in practice, when it is given an independent case that has not been used for training.
Especially, in the operational early warning mode when decision makers may need to
solely depend on the estimates of the BN, it is important to understand the associated
uncertainties.

Earlier studies on BN applications in coastal science either computed log-likelihood
ratios [134, 136, 172] or a so-called skill metric [67, 134]. Neither method is suitable for
BNs developed according to the proposed framework, because they evaluate the mean
or mode of an updated BN distribution, obtained by conditioning on other variables,
against a single observation corresponding to the conditioning values. In our case, we
need to compare the updated BN distribution against a spatial distribution of observa-
tions. Because this is different to any other BN application we are aware of, we need to
define a new validation metric.

Before we define the metric, we describe the particular structure of the training data
and how the hazard CPTs are learned once more. To this end, we consider a simple
BN with one boundary condition node and one hazard node, as displayed in Figure 4.1.
We assume that there is only one type of receptor and do not consider any division
into zones. The boundary condition node is storm magnitude with the three states low,
medium and high. The hazard node is flood depth and has states none, medium and
high.

Figure 4.1: A simple BN with one boundary node and one hazard node.

In terms of training data, each storm simulation contains one boundary condition
value and as many hazard values as there are individual receptors. In fact, hazard values
are obtained at multiple locations in the hinterland, while the boundary conditions are
taken from a single location offshore. Instead of all individual hazard values, the pro-



4

44 4. RECOMMENDED EXTENSIONS

portions of receptors that are affected to predefined degrees of severity are stored in the
BN (cf. section 3.2). For simplicity, we assume that the BN has been “well-trained", that
is with a sufficient variety of storm simulations to capture the variability in storm cli-
mate at the study site. The BN, as conditioned in the Figure, predicts that, on average,
across all high magnitude storms, 23% of the receptors would be flooded to a high de-
gree, 46% to a medium degree, and 31% not at all. In other words, the BN functions as an
ensemble mean predictor, although making simplifying assumption on the probability
distribution of storm magnitude. However, the BN does not reflect how much the three
fractions vary between different high-magnitude storms.

The variation constitutes the uncertainty associated with its ensemble mean predic-
tion. How much the fractions vary depends on how different the effects are of storms
that fall into the same boundary condition bin in terms of hazard. Figures 4.2a and 4.2b
illustrate ensemble mean predictions that are associated with different degrees of uncer-
tainty. This functioning as ensemble mean predictor of a spatial distribution, makes this
BN different to conventional applications, where the nodes’ distributions are interpreted
as an uncertain estimate for a fixed, but unknown value. This is another reason why we
need to develop a new validation metric, instead of using already existing approaches
from the literature.

For decision making, it is desirable to optimize the BN in a such way that the predic-
tion uncertainties are minimized. In this section, we propose a metric to quantify the
uncertainty, and, hence, help to validate the model.

Validating the BN against field data is hardly possible. Indeed, boundary conditions
of past storm events have often been recorded for years, but detailed observations of
hazards or consequences, are rare. Moreover, two identical storm events now and in
the past could cause very different hazards and impacts, because characteristics of the
affected area may have changed. For example, in 2013, cyclone Xaver did not lead to
flooding in the Netherlands, although its surge levels were comparable to the disastrous
1953 event, which caused extensive flooding and resulted in 1836 casualties [109]. The
advanced flood defense system, built in response to the disaster, accounts for the dif-
ference. On the other hand, land use evolves continuously. A similar flood event as in
1953 is likely to lead to far more casualties, since the population density has increased by
approximately 70% since then [32]. To take such changing characteristics into account,
we have to validate the BN against modeled data.

Because generating training data with computer simulations is an expensive pro-
cess, a k-fold cross-validation seems useful. Nonetheless, an out-of-sample validation
is preferable, if sufficient data can be made available. In a k-fold cross-validation, we
partition the data into k equal-sized sets of subsamples and perform k rounds of cross
validation. In each round, k −1 sets of subsamples are used for training and 1 set of sub-
samples is used for testing the prediction accuracy. The process is repeated until every
sub-sample has been used for testing exactly once. Common choices are between 2 and
10, depending on the sample size [57].

To define the metric, we denote the predicted distribution of hazard HR , tested on
storm bc, as p̂HR |BC=bc . Again, the predicted distribution of hazard HR refers to an en-
semble mean prediction of fractions of receptors experiencing different degrees of haz-
ard severity, as defined by the discretization of HR . Similarly, pHR |BC=bc is the simu-
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(a)

(b)

Figure 4.2: Illustration of two identical ensemble mean predictions for the node flood depth for multiple storm
simulations classified as high-magnitude. In (a) the predicted proportions of receptors that experience a given
depth of flooding vary more across the simulations than in (b).

lated (true) distribution, adhering to the same discretization as the predicted one. In
terms of validation, we would like to assess the distance between the predicted and sim-
ulated hazard distributions. Therefore, we can compute the maximum over- and under-
prediction for each discrete state s of HR , as

A+
HR

(s) = max
1≤bc≤nBC

(p̂HR |BC=bc (s)−pHR |BC=bc (s),0) (4.1)

and
A−

HR
(s) = max

1≤bc≤nBC

(pHR |BC=bc (s)− p̂HR |BC=bc (s),0), (4.2)

respectively. Here, nBC is the number of storms in the complete data set. The maximum
over- and under-prediction can be used to estimate error intervals for the prediction of
any new storm bc + i , i ≥ 1, which has not been part of the validation:

EHR ,BC=bc+i (s) =
[

p̂HR |BC=bc+i (s)− A−
HR

(s), p̂HR |BC=bc+i (s)+ A+
HR

(s)
]

. (4.3)

Figure 4.3a) illustrates the error band for a hypothetical prediction example with HR =
flood level and s ∈ [none,medium,high].



4

46 4. RECOMMENDED EXTENSIONS

Computing such error bands is currently not implemented in the c++ program, but
technically straightforward. However, it would be difficult to communicate all these in-
tervals to the (intended) end users of the BN without developing a new graphical in-
terface that displays them. A simpler alternative could be to separately maximize over-
and under-prediction over all states and hazard variables so that we arrive at two single
estimates. Error bands can then be calculated by replacing A+

HR
(s) and A−

HR
(s) in equa-

tion (4.3) by taking their respective maxima. As illustrated in Figures 4.3b) and c), this
generally results in more conservative error bands. Note, that the error bands in (b) and
(c) would be the same, if flood depth had a higher over- and under-prediction than any
of the other hazards. The advantage is that the maximum over- and under-prediction
encountered during the BN validation process could be reported without an upgraded
graphical user interface.

(a) (b) (c)

Figure 4.3: Illustration of error bands for a flood depth prediction of a hypothetical BN: (a) individual error
bands for each state of flood depth, (b) identical error bands for each state of flood depth and (c) identical error
bands for each state of any hazard variable in the BN.

4.3. INCORPORATION OF TRAINING DATA UNCERTAINTIES

A general limitation of the proposed BN approach is its reliance on synthetic data. While
we need modeled data to gain insight into hazards and impacts of storms when field
observations are lacking, the validity of the BN depends on the validity of the underly-
ing data-generating models. At present, we do not account for imperfections in those
models, but future research should explore the sensitivity of BN predictions to errors or
uncertainties in the data generation process.

If quantifiable, errors and uncertainties of the underlying models could be incorpo-
rated in the BN, for instance, by using Monte Carlo sampling, and be represented by
showing error bands, as defined in equation (4.3), for both hazard and consequence dis-
tributions. To outline the approach, we use the simple BN in Figure 4.4.

BC H C

Figure 4.4: A simple BN

First we consider the nearshore model and suppose that it is forced by a boundary
condition value bc1. The model computes erroneous hazard values h̃i for each location i
of interest. If the ‘true’ values hi are given by some functional relationship f (h̃i ,ε), where
ε is an error term with known probability distribution function, we can generate multiple
samples hi

1, ...,hi
l through Monte Carlo simulation. Next, we use an equivalent approach
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to account for uncertainty in vulnerability relationships. However, now we create a set
of samples c i

1, ...,c i
m for each hi

1, ...,hi
l . Finally, we repeat this process for all remaining

boundary conditions bc2, ...,bck in the storm data set. This way, we obtain k · l ·m cases
to train the BN with.

The inherent problem in this approach is that f and ε are generally unknown for any
model. A practical answer to this problem could be to apply a number of alternative
models to compute the hazards and consequences of interest and to weigh their results
equally. Such an approach has been used by [181] to analyze uncertainty in flood damage
estimates and its potential effect on investment decisions.

If we would condition the BN on a single boundary condition value, for instance bc1,
it would display the mean hazard distribution of the corresponding l training samples
and the mean consequence distribution of the corresponding l · m training samples.
While the BN would not reflect how much the distributions could differ from one an-
other according to the uncertainties in the underlying models, this could be represented
by showing error bands for both hazard and consequence distributions.

4.4. CHOICE OF TRAINING DATA AND MODEL STRUCTURE

This sections deals with the choice of training data. As mentioned in previous Sections,
training and cross-validation is largely based on synthetic storm event data, since obser-
vations are scarce. A danger is that future real storms will not be similar enough to any
of the synthetic training storms for the BN to make useful predictions.

To minimize this risk, we advise to use statistical models to create synthetic storm
events based on past observations of the relevant hydro-meteorological variables. In a
subsequent step, these events should be validated by local experts as likely represen-
tations of possible storms at the site. In the previous chapter we called such statisti-
cal models ‘source models’ as they describe the source component of the SPRC con-
cept (Section 2.1.1). Additionally, it is recommended to explore, if there are other events
which would not be foreseeable based on past data, but could be physically possible.
Lin and Emanuel [105] introduced such an approach for the modeling of extreme tropi-
cal cyclones.

An approach of statistic simulation has not been taken the BN of the case study site in
North Norfolk, which was presented in the previous Chapter, but for the BN of the case
study site in Ria Formasa, Portugal [135, 136]. Nonetheless, storms were not selected
by simply simulating the desired number of events. This would result in proportionally
more mild than severe storms, though the latter are of particular interest for decision
making. Instead, a large set of 106 storm events has been simulated from a joint proba-
bility distribution constructed via a dependence tree with bivariate copulas. Each sam-
ple consisted of a values on significant wave height, peak period, surge level and storm
duration. To train the BN with roughly as many severe as mild storms, 100 events have
been selected from all simulations so that significant wave heights were distributed uni-
formly over their range of possible values [136]. Hence, the PTs only provide an overview
of which storm events have been used for training and cannot be linked to actual occur-
rence probabilities of the storms.

The statistical model has only been used to create storms that represent a variety of
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possible storms with realistic dependencies between the individual boundary condition
(BC) variables. Nonetheless, the PTs could be modified after training to represent actual
occurrence probabilities. If that were done, the BN would represent the annual expected
spatial distributions of consequences, when boundary nodes are unconditioned. In a
subsequent step, these could be converted into annual expected total damages, which is
a common metric for overall risk, as illustrated in Section 3.3 for a 1 in 100 year storm.
Hence, the joint probability of boundary condition variables must be estimated and in-
corporated into the BN in order to perform a formal risk assessment, for example, similar
to the ones by Jonkman et al. [92] or Jongejan and Maaskant [87] for case studies in the
Netherlands.

To achieve a greater accuracy in representation of actual occurrence probabilities, it
is also recommended to adapt the model structure. In our case, the BN structure ad-
heres to the decision support framework illustrated in Figure 3.2. Therefore the high
level structure is fixed, while the exact implementation is case study site specific. A cur-
rent limitation of this high level structure is that boundary conditions are modeled as
independent of one another and hazards are represented as mutually conditionally in-
dependent given their boundary conditions.

Thus, one way to improve the framework would be to introduce arcs among bound-
ary conditions and hazards. However, a prerequisite is a statistical analysis of the joint
behavior of the boundary condition variables. Furthermore, it is difficult to provide gen-
eral guidelines without such an analysis, because dependencies are likely to vary across
study sites.

4.5. OPTIMIZATION OF SPATIAL ZONES

A design objective for the BN was to aggregate high-dimensional data in such a way
that relevant information is easily accessible to decision makers. We recall that recep-
tor nodes characterize the location of individual receptors by zones that have been es-
tablished in advance. Discretization of receptor nodes is thus equivalent to definition of
zones. A BN whose receptor nodes contain as many states as there are receptors, hence
reflects each individual receptor location, is confusing and overloads model users with
unnecessarily detailed information they cannot easily process. For this reason, a zoning
is required. Aggregating receptor locations into zones, even though the individual loca-
tions are known, compacts the data and inevitably involves a loss of information. Hence,
there is a trade-off between how clearly presented and how detailed the information is.

When conditioned on individual zones, or combinations thereof, the hazard distri-
butions depend on the discretization of receptor nodes. However, when receptor nodes
are left unconditioned, their discretization does not influence hazard predictions: Across
the entire site the same proportions of receptors are affected in the same way, no matter
how they have been assigned to zones. In this sense, the discretization of receptor nodes
does not affect model validity in terms of BN precision, but the spatial informativeness.

A simple strategy to define a discretization is to ask model users or local experts
to decide on the zoning. For Wells-next-the-Sea, the zones were derived based on to-
pographic features and key current flood prevention measures, such as the flood wall
and movable flood barrier. Similar strategies have been employed for other case studies
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within the RISC-KIT project [11, 21, 135, 169].
Often there are natural zones, for instance due to administrative, geographical or

built boundaries, that decision makers in the area are already working with. In this case,
imposing a new zoning could result in a model that is not intuitive to the user. An alter-
native strategy could be to seek a discretization that maximizes spatial informativeness
while keeping the number of zones ‘manageable’ for model users.

The purpose of the receptor nodes is to provide information on the spatial distribu-
tion of hazards and consequences. Hence, the zoning should help identify vulnerable
and safe areas. To illustrate the issue, we consider the most simple case of a division into
two zones, a single storm event, a single type of receptor and the two hazard categories
‘affected’ and ‘not affected’. The least informative division would be the one according
to which the proportions of affected and unaffected in each zone are identical. The most
informative division would be the one according to which the first zone contains all af-
fected receptors, whereas the second zone contains all the not affected receptors.

Now we consider any given number of potential zones, nR . Since there is also a
known and fixed number of receptors and it is sufficient to define the zones in terms
of which receptors they contain (instead of exact geographical coordinates), the number
of ways in which zones can be defined is limited as well.2 We denote the predicted dis-
tribution of the hazard HR conditioned on zone ri under discretization λ as p̂(λ)

HR |R=ri
. An

optimal discretization could then be found by maximizing as follows:

λopti mal = argmax
λ

I (λ), (4.4)

with I being the informativeness criterion defined as

I (λ) =
nR∑

ri=1

nR∑
r j =1

‖p̂(λ)
HR |R=r j

− p̂(λ)
HR |R=ri

‖2. (4.5)

Essentially, the resulting discretizations group together receptors which tend to experi-
ence similar hazard intensities.

However, in practice finding an optimal discretization is more complicated than out-
lined above. First, different storm events likely result in different spatial distributions of
hazard intensities. As a consequence the most informative division for one storm, may
not be the most informative for another. A simple way to address this would be to use the
ensemble mean prediction for the hazard in equation (4.5) considering all storm events.
However, the affected areas might vary strongly, for example, for storm events from dif-
ferent directions. By doing so, the resulting discretization may not be very useful when
turning to predictions of individual events. Another way to account for multiple storm
events could be to condition on and sum over the storm events in equation (4.5). Both
ways could be further refined, by introducing a weighing function to define the relative
importance of having spatial information on more or less severely affected receptors.

Secondly, the BN might include different types of hazards, which affect different ar-
eas. For instance, flow velocities might be critical in sloped areas, whereas they are less

2Note that strictly speaking the division in zones is not a discretization problem, but a clustering problem with
the constraint that only spatially adjacent receptors can be assigned to the same group.
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likely to be relevant in low lying plains. The opposite holds for flood depth. Again, there
are different approaches to address the issue. On one hand, one could elicit from the
model user for which hazard spatial informativeness is most important and optimize
the zoning according to that. One the other hand, one could add additional double sum
terms for each hazard in the BN to equation (4.5). Further, weighing functions could be
added not only for different hazard intensities, but also for different types of hazards.

Finally, there are likely to be several types of receptors in the BN. While one could find
an optimal zoning for each one of them, we assume that working with a single definition
of zones is significantly easier for model users. Similar to above, one could ask the model
user for a most relevant receptor type or incorporate additional double sum terms in
equation (4.5). Weighting functions could also be added.

In the above discussion, we assumed that the number of zones is fixed, for instance,
according to the preference of a model user. Consequently, equation (4.5) finds a dis-
cretization that maximizes informativeness relative to the number of zones. Adding
zones will likely increase informativeness. However, we would expect the effect to di-
minish once a certain number of zones is exceeded, because historic events have shown
that there are spatial dependencies that cause groups of receptors to experience very
similar hazards.

Based on this assumption, another promising strategy would be to iteratively add
zones until the increase in informativeness is ‘small enough’, where a suitable threshold
needs to be defined in advance. Developing this even further one could attempt to find
an optimal division for a single receptor and hazard, and then iteratively include other
receptors and hazards, while further dividing the study site.

This section outlined potential strategies to select a discretization for receptor nodes
and highlighted some of their advantages and disadvantages. Nonetheless, further re-
search is needed to refine and evaluate the strategies. This research should start by ad-
dressing remaining uncertainties about the model users’ needs.

4.6. OPTIMIZATION OF BOUNDARY NODE DISCRETIZATION

In the above section, we described the discretization of receptor nodes, which affects
spatial informativeness rather than BN precision. The present framework has nodes of
four more categories. Of these, DRR measures nodes do not need to be discretized, as
they represent distinct actions by decision makers, but boundary conditions, hazards
and consequences do. We can simplify the task, by eliciting the discretization of hazard
and consequence nodes from model users. They are the ones taking decisions based
on model predictions and could indicate which threshold levels are relevant to that end.
Hence, the task at hand is to devise a strategy for discretizing boundary condition nodes.

Competent handling of continuous variables is a key challenge in discrete BNs. The
discretization of a continuous variable is the division of its range in mutually exclusive
and collectively exhaustive intervals and their mapping to discrete values. Since vari-
ables in a BN interact, the optimal discretization for one node is likely to depend on the
ones of other nodes. In the literature, multiple formal approaches have been suggested
for learning the discretization of a BN from data (e.g., [59, 98, 99, 141]). They have in com-
mon that they search for a discretization, which maximizes a predefined performance
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metric, while trying to avoid over-fitting. However, they are based on different theoreti-
cal principles and differ on the search strategy, the choice of performance metric and the
approach to avoid over-fitting. As far as we can tell there are no clear recommendations
on what strategy is most appropriate under given circumstances.

A more practical approach than the formal ones cited above, has been put forth by
Fienen and Plant [57]. They propose to evaluate descriptive and predictive model perfor-
mance through cross-validation and to choose a discretization that balances them using
a visual diagnostic method. The underlying idea is that a BN should be able to accurately
describe the data set it has been trained with as well as accurately predict new data. For
instance, a BN whose nodes have a bin for each data point, would precisely describe the
training data set, but lack predictive power. By reducing the number of bins, predictive
performance can be increased, but at a loss of descriptive performance. We can easily
adapt Fienen and Plant’s method to our type of BN application by using the BN precision
metric, defined in Section 4.2, to evaluate model performance.

Another question is how to deal with the interactions of the discretizations of various
BC nodes, meaning that the discretization of one influences the optimal discretization
of another (see e.g., [59]). Hence, we should search the space of possible discretizations
of all the boundary condition variables at once. The number of possible discretizations
is finite in our case, since values of variables are provided with a finite resolution (e.g.,
significant wave height data are usually available with a resolution of 1cm). A wider res-
olution could also be chosen, for instance, based on the argument that differences below
a certain threshold are not of practical relevance. A disadvantage is that this strategy can
be computationally intensive depending on the number of BC nodes. On the other hand,
one could iteratively discretize of one BC variable at a time, while keeping the discretiza-
tions of all others, until the discretization of any variable cannot be improved anymore.
Whereas this approach is less computationally intensive, it does not guarantee to find a
global optimum discretization.

Less computationally intensive strategies to search for discretizations of all interact-
ing variables simultaneously have been proposed. These strategies reduce computa-
tional time by only considering a subset of the space of possible discretizations. Hence,
their number decreases. For example, Kozlov and Koller [98] suggested an algorithm for
non-uniform discretization based on so-called binary split trees. The concept is to iter-
atively split bins of any variable in half. For our application, the discretization would be
executed as follows. At the beginning all BC nodes would have a single bin. Then, one
of the bins is split in half. Here, the split, of all possible ones, which increases predictive
BN precision most is chosen. Next, a second bin is split in half according to the same
rule. Note that this could result in two nodes having two equally large bins or in one
node having a bin that spans half of its value range and two bins that each span a quar-
ter of its value range. The splitting procedure is continued until predictive BN precision
decreases.

If computational intensity is not a concern, the first search strategy is the best op-
tion. In the other case, we propose to further investigate the potential of the approach
of iterative discretization of single variables at the time or the one based on binary split
trees for the present type of BN application. Further investigations should be carried out
for a case study, as real data is needed to refine and test the approach.
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4.7. KEY POINTS

This chapter discussed how the BN framework for decision making on risk reduction ef-
forts in coastal areas could be further advanced, thus indicated a number of directions
for future research. However, a prerequisite for implementing and testing the recom-
mendations is a case study with data of sufficient quality and quantity. Another crucial
step is to involve the intended model users in the development process. Many compo-
nents of the BN can be optimized via mathematical methods. However, these require a
predefined optimization criterion and it is unclear how to choose it. This issue can only
be resolved by communicating with end users and understanding their needs. Addition-
ally, end users may not want certain aspects of the BN to be mathematically optimized.
An example could be the division into zones. End users might prefer to adhere to known
administrative zones, even though the BN could make better predictions for a different
division of the area.

The chapter focused on the optimization of the BN via mathematical methods when
used as an ensemble mean predictor for affected receptor proportions under uncertain
storm boundary conditions. The fundamental recommendation is the development of
a metric for the prediction performance of the BNs, which computes error bands for the
predicted proportions of affected receptors through cross-validation. The metric can
be used to (1) validate the BNs for application in emergency management or long-term
planning (if a maximum error has been specified by the model user), (2) to represent
uncertainties in the underlying training data (if these have been made available to the
BN in the training phase), and (3) to optimize the discretization of boundary condition
nodes. Differently, we suggested to discretize receptor nodes (i.e., the division of the area
into zones) by compromising between clarity of and level of detail of spatial information.

Finally, we recommended to adapt the graph structure of the framework for each ap-
plication individually so that it can represent the multivariate distribution of boundary
conditions at case study sites more realistically. This will expand the BN’s potential to
a wider range of applications, for instance, improve ensemble forecasts and diagnos-
tic reasoning. A prerequisite for finding a better graph structure, would be analysis of
the dependencies between boundary condition variables for the location of interest (for
instance with copula-based approaches [45, 184]). A multivariate probabilistic model
should also be used to generate a representative set of synthetic storm events, as to be
able to estimate overall risk.
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5
TEMPORAL VINE-COPULA METHOD

The previous chapter discussed the importance of selecting storm events that are repre-
sentative for the case study site when building a decision support system based on the
proposed Bayesian network framework. As explained in the introduction, one approach
to create synthetic events is to simulated complete time series with a probabilistic model
and to extract storms from the simulated series. An open problem is the accurate rep-
resentation of the dependency between significant wave height and mean zero-crossing
wave period. Their relationship is particularly complex, because of the limiting wave
steepness condition, which causes waves that are too high for their period to break and
decrease in height.

This chapter explores a temporal vine-copula approach to simulate time series of
significant wave heights and corresponding mean zero-crossing periods with an hourly
resolution. Background on the mathematical methods is provided in Section 2.2. Vine-
copulas have recently been suggested for time series modeling in the financial field, for
energy research and in the social sciences [26, 126, 155, 156]. Dependence trees, the
simplest form of a vine-copula, have been applied for environmental time series before:
in a preliminary study for this chapter [79] and to compute workability windows for the
installation of offshore wind farms based on wind speeds and significant wave heights
[102]. The dependencies between wave height and period statistics have also received
attention before. Repko et al. [140] compared a physics-based model to different sta-
tistical models for analyses of extremes and Vanem [173] proposed the construction of
skewed copulas by extra-parameterization.

With the temporal vine-copula approach we model only one time step explicitly,
but simulate time series of arbitrary lengths by assuming stationarity and a first order
Markov property. In this chapter the time series modeling is restricted to oceanographic
winter periods in order to bypass seasonal effects. The approach is tested for a case study
data set in the Southern North Sea. Simulated time series can, for instance, serve as input
for coastal hazard models or offshore operations.

The aim of this chapter is three-fold: (1) to present an overview of vine-copula mod-
els for time series, (2) to point out useful copula families for the instantaneous rela-
tionship of significant wave height and mean zero-crossing period, which safeguard
the physical maximum wave steepness, and (3) to set forth a methodology for parsimo-
niously representing sea waves as a stochastic process.

This chapters is based on [78]
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Section 5.1 describes the data set and the preprocessing that has been carried out
prior to the analysis. Section 5.2 discusses the representation of time series by vine-
copulas and Section 5.3 presents the results. Section 5.4 concludes the chapter by sum-
marizing the key points.

5.1. DATA

Hourly values of the significant wave height, Hm0, and the mean zero-crossing wave pe-
riod, Tm02, are available for a period of 27 years, starting in April 1989 and ending in
February 2016. The data has been collected at the Europlatform, a Dutch offshore sta-
tion located 58km off the coast of Rotterdam (52◦00′N , 03◦17′E) at a water depth of ap-
proximately 26.5m, which is operated by Rijkswaterstaat. The location is shown on the
map in Figure 5.1.

To bypass seasonal effects, the study is limited to the wave climate during the oceano-
graphic winter period (1 November - 15 April) in which storm events are more frequent
and heavier than during the summer period, see Figure 5.2. An analysis for the summer
season may be conducted similar to the one presented in this chapter.

Figure 5.1: Location of the offshore measuring station “Europlatform” indicated as gray circle.

Both time series exhibit strong temporal serial correlation. Figure 5.3 shows the serial
correlation, in terms of Spearman’s rank correlation coefficient, and indicates that it only
drops below 0.1 for a time lag of at least 200 hours for significant wave heights. A similar
relationship arises for mean zero-crossing periods (Figure 5.3). Here a periodic variation
is notable in the order of 12 hours. In the following analysis this variation is neglected to
keep the modeling parsimonious.

While we try to model the serial correlation structure, ignoring it in the inference pro-
cess can cause unwanted bias. In particular, standard statistical inference procedures
require independent and identically distributed (i.i.d.) observations. To obtain (approx-
imately) i.i.d. observations, we have sub-sampled the data. More precisely, we extracted
a comparatively small number of time series fragments (N = 506, T = 2). These are suf-
ficient for the inference of the vine-copula models under consideration, because we as-
sume stationarity and a first order Markov property, as explained in the previous section.
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(a)

(b)

Figure 5.2: Hourly (a) significant wave heights and (b) mean zero-crossing periods at the Europlatform (April
1989 - February 2016). Winters are depicted in black, summers in gray.

In the time series fragments, we denote the respective j-th sample of the t-th time point
of significant wave height and mean zero-crossing period as hm0 j ,t and tm02 j ,t , where
j = 1, ..., N and t = 1,T . The N joint samples are (approximately) i .i .d and can be used
for inference of the marginal distributions and bivariate copulas.

Because formal hypothesis testing for stationarity yielded contradictory results, we
followed a diagnostic approach. QQ-plots attest that the univariate distributions do not
depend on t (not shown) and the observed differences in rank correlation coefficients
for the same variable pairs at different points in time are very small. Table 5.1 reports all
coefficients for a time series fragment of length T = 4 to indicate the order of magnitude
in the differences. Thus, we concluded that it is reasonable to model the processes, in a
first instance, as stationary. Nevertheless, more research in this direction is desirable.

Another aspect that has to be dealt with before the data analysis, is the limited in-
strumental resolution, which causes the available measurements to be discrete, while
the physical variables are continuous. Mainly in the case of the mean zero-crossing pe-
riod this phenomenon causes a high number of ties, imposing additional challenges for
the statistical analysis. To overcome these, the data has been randomized following the
extensive guidelines in [145]: Suppose T ∗

m02 j
is a discrete measurement of Tm02 j . It is

transformed to
T̃m02 j = T ∗

m02 j
+∆ ·W j , (5.1)

where j = 1, ..., N , ∆ is the approximate resolution of the measurement instrument and
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Figure 5.3: Serial correlation in terms of Spearman’s rank correlation coefficient for measured significant wave
heights and mean zero-crossing periods

W j has a uniform distribution on [0,1]. Thus, T ∗
m02 j

is re-sampled uniformly over the

resolution interval and the resulting T̃m02 j is assumed to be statistically equivalent to
the real Tm02 j . We did not find our results to be sensitive to the choice of ∆.

5.2. REPRESENTATION OF TIME SERIES AS VINES

In this section we consider n univariate time series jointly observed at time points t =
1, ...,T , which we denote by {X (1)

t }, ..., {X (n)
t }. In our application, n = 2, namely significant

wave heights and mean zero-crossing periods. A time series with T = 30 and n = 2 could
be represented as a vine on 60 nodes, which represent X (1)

1 , ..., X (1)
30 and X (2)

1 , ..., X (2)
30 . Ac-

cording to equation (2.6) the number of possible R-vines on 60 nodes is incredibly high,
each requiring the specification of 60 marginal distributions and 1770 pair copulas.

A significant simplification of this problem can be achieved by making stationarity
and Markov assumptions. For stationary data, the marginal distributions for each vari-
able do not change with time. In the same way, the bivariate copulas (including the
conditional ones) joining any two variables are preserved in time. A Markov property of

Table 5.1: Spearman’s rank correlation coefficients for time series fragments with T = 4 (N = 506)

Hm0t Tm02t Hm0t+1 Tm02t+1 Hm0t+2 Tm02t+2 Hm0t+3 Tm02t+3

Hm0t 1 0.80 0.99 0.81 0.98 0.80 0.95 0.79
Tm02t 0.80 1 0.78 0.97 0.76 0.92 0.73 0.85

Hm0t+1 0.99 0.78 1 0.80 0.99 0.80 0.98 0.79
Tm02t+1 0.81 0.97 0.80 1 0.78 0.97 0.76 0.90
Hm0t+2 0.97 0.76 0.99 0.78 1 0.79 0.99 0.79

Tm02t+2 0.80 0.92 0.80 0.97 0.79 1 0.78 0.96
Hm0t+3 0.95 0.73 0.98 0.76 0.99 0.78 1 0.79

Tm02t+3 0.79 0.85 0.79 0.90 0.79 0.96 0.79 1
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order k implies that all copulas with a lag length greater than k in the conditioned nodes
can be set to the independence copula. As a consequence, the number of bivariate cop-
ulas that need to be estimated no longer depends on T , but on k and the vine structure.
The simplest case is, of course, k = 1. When developing the vine-copula model for sig-
nificant wave heights and mean zero-crossing periods, we limit ourselves to this case.

To achieve a desirable parsimonious model for the time series data, the vine structure
should be selected so that (1) the number of unique copulas to be used is minimized, (2)
the number of independence copulas in the model is maximized, and (3) the model is
easily extendable to arbitrarily many time steps. The last point automatically leads to a
structure that represents the flow of time in an intuitive manner. Structures that fulfill
these requirements are usually not obtained when using the popular structure selection
algorithm by [49], which allocates the strongest pairwise dependencies to the first tree.

Advantageous structures for stationary and Markovian multivariate time series have
been proposed by Brechmann and Czado [26], Smith [156] and Nai Ruscone and Osmetti
[126]. Brechmann and Czado [26] call their approach COPAR, which stands for COPula
AutoRegressive model, and investigate inflation effects on industrial production, stock
returns and interest rates. In COPAR serial dependence of X (1)

t is modeled uncondition-

ally of X (2)
t ...X (d)

t and the serial dependence of X (i )
t , i ≥ 2, is modeled conditionally on

all X ( j )
t , j < i . In two dimensions, this approach is most appropriate when modeling the

dependence of one time series onto another. The first three trees of a modified version
of the COPAR model for n = 2 and T = 3 are depicted in Figure 5.4a. In this version, se-
rial dependence of {X (1)

t } is also modeled conditionally, in this case on {X (2)
t }. We made

the modification for two reasons. On one hand, there is no obvious cause and effect rela-
tionship between significant wave heights and mean zero-crossing periods. On the other
hand, all non-independence copulas are now included in the first three trees yielding a
clearer graphical representation. Just as for the COPAR, 5 unique copulas are needed to
quantify this R-vine. These are listed in the third column of Table 5.4. It is evident that
we can sample X (1)

t+s and X (2)
t+s iteratively for all s > 1 in the same way we sampled X (1)

t+1

and X (2)
t+1

Smith [156] propose a D-vine structure of a univariate series Y = (Y1, ...,YN ), N = T n,
into which the elements of a multivariate time series have been re-ordered. His article
examines five dimensional time series from the Australian electricity market. Figure 5.4b
shows the first three trees of this model for n = 2 and T = 4. From now on, we call this
model alternating D-vine, because X (1) and X (2) alternate in the first tree. Similarly to
the modified COPAR example, 5 unique bivariate copulas are needed to quantify it (col-
umn 4 in Table 5.2), although they differ except for CX (1)

t ,X (2)
t

. Again, it is sufficient to

create an alternating D-vine up to t = 2. After that, we can iteratively sample X (1)
t+s and

X (2)
t+s for s > 1 (Appendix C).

A third alternative is given in Figure 5.4c with unique copulas reported in column 5
of Table 5.2. In the 2D case it coincides with a proposal by [126]. This structure is referred
to as branching D-vine, as X (1) and X (2) branch out. In higher dimensions, the first tree
is star-like. Note that 6 instead of 5 unique copulas are needed, with one of them being
in the highest order tree. The main difference with the previous approaches is that serial
correlations in each univariate series are modeled unconditionally on the other series.
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While cross-series dependence is modeled conditionally on previous time points, except
of course for t = 1. Because of the high number of independence copulas, we can again
sample X (1)

t+s and X (2)
t+s iteratively, this time for s > 2 (Appendix C).

X
(1)
1 X

(1)
2 X

(1)
3

X
(2)
1 X

(2)
2 X

(2)
3

(a) First three trees of the modified COPAR model

X
(1)
1 X

(2)
1 X

(1)
2 X

(2)
2 X

(1)
3 X

(2)
3

(b) First three trees of the alternating D-Vine Structure

X
(1)
3 X

(1)
2 X

(1)
1 X

(2)
1 X

(2)
2 X

(2)
3

(c) Branching D-vine Structure

Figure 5.4: Examples of (truncated) vines for a bivariate stochastic process {X (1)
t , X (2)

t }t=1,2,3. Edges of the
same tree have the same line type and edges signifying serial dependence with Markov property of order k > 1
are depicted in gray.

In theory, the three vine structures define different decompositions for the same joint
density. In other words, they are equivalent representations of a bivariate stationary
stochastic process with first order Markov property. However, in practice, it may be eas-
ier to find suitable bivariate copula models for one structure than for another. This will
affect the overall performance of the vine-copula, which is discussed in section 5.3.

Although Smith [156] and Brechmann and Czado [26] propose integral vine-copula
estimation methods, the sea waves application relies on a sequential estimation ap-
proach, because fast algorithms are not available for some of the copula models we con-
sider. Estimation and simulation efforts are comparable for the three vine-copulas.
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Table 5.2: Overview of bivariate copulas other than the independence copula that are needed for each of the

three vines to specify a stationary bivariate stochastic process {X (1)
t , X (2)

t }t=1,2,... with 1st order Markov prop-
erty.

Tree Copula
modified
COPAR

Alternating
D-Vine

Branching
D-Vine

1

C
X (1)

t ,X (1)
t+1

x x

C
X (1)

t ,X (2)
t

x x x

C
X (2)

t ,X (1)
t+1

x

C
X (2)

t ,X (2)
t+1

x

2

C
X (2)

t ,X (1)
t+1|X (1)

t
x x

C
X (1)

t ,X (2)
t+1|X (1)

t+1
x

C
X (1)

t ,X (2)
t+1|X (2)

t
x

C
X (2)

t ,X (2)
t+1|X (1)

t+1
x

C
X (1)

t ,X (1)
t+1|X (2)

t
x

3 or higher

C
X (2)

t ,X (2)
t+1|X (1)

t ,X (1)
t+1

x

C
X (1)

t ,X (2)
t+1|X (2)

t ,X (1)
t+1

x

C
X (1)

t+1,X (2)
t+1|X (1)

t ,X (2)
t

x

5.3. RESULTS

UNIVARIATE MARGINS

The marginal distribution of the significant wave height is assumed to follow a Weibull
distribution with shape parameter 1.78 and scale parameter 167.21. The mean zero-
crossing period is approximated by a gamma distribution with shape parameter 30.08
and rate parameter 6.51. Both distributions are estimated from sub-sampled data, as de-
scribed in section 5.1. Histograms and the maximum likelihood fits are displayed in Fig-
ure 5.5. The adequate fit of these distributions is attested by the QQ-plots in Figure 5.6.
Moreover, we sampled 506 random numbers from the specified distributions and per-
formed two-sample Kolmogorov-Smirnov tests. These did not reject the null hypotheses
that the observed and sampled data stem from the same distributions. We performed
such tests 100 times and obtained p-values ranging from 0.07 to 0.90 for significant wave
heights and from 0.08 to 0.97 for mean zero-crossing periods.

DEPENDENCE STRUCTURE

To be consistent with the mathematical notation of section 5.2, we denote significant
wave heights and mean zero-crossing periods now also as X (1) and X (2) (cf. Table 5.3).

We estimated the vines sequentially, that is, we estimated the bivariate copulas in
lower order trees before the ones in higher order trees. To quantify the three candidate
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(a) (b)

Figure 5.5: Histograms and maximum likelihood fit of (a) significant wave heights and (b) mean zero-crossing
periods

(a) (b)

Figure 5.6: QQ-plots showing the fit of the univariate models for (a) significant wave heights and (b) mean
zero-crossing periods

Table 5.3: Nomenclature for variables

Variable Standard name Name in this chapter

Significant wave height [cm] Hm0 X (1)

Mean period [s] Tm02 X (2)

models, 12 unique bivariate copulas need to be estimated. They are listed in the first
column of Table 5.4. Inference on the bivariate copula models is based on ranks and
not by using the parametric univariate distributions. They give a faithful representation
of dependence, irrespective of the marginal behavior of the variables. The rank of x(i )

j ,t



5.3. RESULTS

5

63

among x(i )
1,t , ..., x(i )

N ,t divided by N +1 will be denoted as u(i )
j ,t . Before copula selection, we

performed an independence test based on Kendall’s τ. This test is implemented in the
VineCopula package [148] and described in Genest and Favre [61]. If the null hypothesis
of independence could not be rejected, we chose the independence copula. In general,
we estimated model parameters by pseudo maximum likelihood and selected families
according to the AIC criterion with the VineCopula package. As potential candidate cop-
ula models, we considered the following commonly known families, which are included
in the package: Gaussian, t, Frank, Gumbel, Clayton, Joe, BB1, BB6, BB7, BB8 families
and, if applicable, rotated versions thereof. All selected models as well as their parame-
ters are listed in Table 5.4. The independence copula is represented by

∏
.

Table 5.4: Copula families and parameters for vines

Copula Family Parameters
C

X (1)
t ,X (1)

t+1
t ρ = 0.99, ν= 11.18

C
X (1)

t ,X (2)
t

skew-t (ρ,δ1,δ2,ν) = (0.73,−0.85,−0.27,30)

C
X (2)

t ,X (1)
t+1

skew-t (ρ,δ1,δ2,ν) = (0.7,−0.85,−0.26,30)

C
X (2)

t ,X (2)
t+1

t ρ = 0.96, ν= 12.06

C
X (2)

t ,X (1)
t+1|X (1)

t

∏ −
C

X (1)
t ,X (2)

t+1|X (1)
t+1

∏ −
C

X (1)
t ,X (2)

t+1|X (2)
t

Frank θ = 1.35

C
X (2)

t ,X (2)
t+1|X (1)

t+1
Gumbel θ = 3.01

C
X (1)

t ,X (1)
t+1|X (2)

t
Survival Gumbel θ = 5.21

C
X (2)

t ,X (2)
t+1|X (1)

t ,X (1)
t+1

Gumbel θ = 3.17

C
X (1)

t ,X (2)
t+1|X (2)

t ,X (1)
t+1

90◦ rotated BB8 (θ1,θ2) = (−1.47,−0.96)

C
X (1)

t+1,X (2)
t+1|X (1)

t ,X (2)
t

t (ρ,ν) = (0.36,17.05)

We made an exception to this procedure for CX (1)
t ,X (2)

t
and CX (2)

t ,X (1)
t+1

, because the cor-

responding data exhibits a skewness feature that none of the above models can repre-
sent. The observations of (U (1)

t ,U (2)
t ) are shown in Figure 5.7a). The variables are pos-

itively associated. Very notable is an asymmetry with respect to the main diagonal, or
skewness, and a sharp line bounding the maximum significant wave height for given
mean zero-crossing period values. Considering the water depth at the measuring lo-
cation, this feature of the data can be attributed to steepness-induced wave breaking
("white-capping"). The observations of (U (2)

t ,U (1)
t+1) are visually not distinguishable from

the ones of (U (2)
t ,U (1)

t ). For CX (1)
t ,X (2)

t
and CX (2)

t ,X (1)
t+1

, we considered the Tawn, the skew-

t and the gamma 1-factor model (GFM) families. Again, we estimated parameters by
pseudo maximum likelihood. Appendix D provides more details on these families and
shows samples of the respective maximum likelihood fits for (U (1)

t ,U (2)
t ).

The Tawn copula does not capture the sharp line which limits the wave height with
respect to the period, and indicates the threshold for wave breaking (Figure 5.8a). This
is an important physical process and, therefore, we did not select this family. Both, the
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(a) (b) (c)

Figure 5.7: Empirical normalized ranks of (a) significant wave heights at t and mean zero-crossing periods at
t , (b) significant wave heights at t and at t +1, (c) mean zero-crossing periods at t and at t +1.

(a) (b) (c)

Figure 5.8: Comparison of observations (U (1)
t ,U (2)

t ) with simulated points from (a) Tawn type 2 copula, (b)
gamma-1-factor model and (c) skew-t copula. Parameters are estimated via maximum likelihood.

GFM and the skew-t family are able to capture the wave breaking (Figure 5.8b and Fig-
ure 5.8c). Besides visually comparing the simulated points from the three copulas to the
data, we computed semi-correlations, in terms of Pearson’s product moment correla-
tion, for their normal scores (Nsi m = 105). These are listed in Table 5.5. Semi-correlations
are correlations of the lower and upper quadrants, ρ+

N and ρ−
N , respectively. The empiri-

calρ+
N andρ−

N are notably different, indicating stronger upper than lower tail-dependence
in the data. Because, the GFM has more symmetric semi-correlations than the skew-t
copula, the latter has been selected for further analysis. A disadvantage of the skew-t
family is that closed form conditional and inverse conditional copula are not available
and need to be approximated numerically.

The three vines are different approaches to specifying the dependence structure be-
tween significant wave heights and mean zero-crossing periods. We investigated their
relative performance on three bivariate margins, namely on (U (1)

t ,U (2)
t ), (U (1)

t ,U (1)
t+1) and

(U (2)
t ,U (2)

t+1). To this end, we simulated 506 bivariate time series with T = 100. The scatter
plots for the empirical pairs of ranks are depicted in Figure 5.7. Figure 5.7b exposes the
dependence between significant wave heights at subsequent hours, while Figure 5.7c
shows the dependence between mean zero-crossing periods at subsequent hours. In
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Table 5.5: Lower and upper semi-correlations, ρ+N and ρ−N , for the pair (X (1)
t , X (2)

t )

Copula ρ+N ρ−N
Empirical 0.80 0.45
Tawn type 2 0.79 0.54
GFM 0.66 0.59
Skew-t 0.72 0.56

both cases the points are distributed closely around the main diagonal indicating a very
strong positive association, which is in agreement with Figure 5.3.

Figure 5.9 shows the simulated ranks for t = 1 as well as t = 99. Results of the mod-
ified COPAR model are promising (Figure 5.9 (a) - (c)). Pairwise scatter plots are very
similar to the ones of the data (Figure 5.7 (a) - (c)) and the dependence structure does
not appear to change significantly over time. Moreover, considering a small time series
fragment of T = 4, the simulated and observed rank correlation coefficients are compa-
rable (cf. Table 5.6 and Table 5.1). The maximum difference we observe is 0.047.

Table 5.6: Spearman’s rank correlation coefficients for time series fragments simulated with the modified CO-
PAR (T = 4, Nsi m = 506)

Ĥm0t T̂m02t Ĥm0t+1 T̂m02t+1 Ĥm0t+2 T̂m02t+2 Ĥm0t+3 T̂m02t+3

Ĥm0t 1 0.79 0.99 0.76 0.98 0.76 0.97 0.77
T̂m02t 0.79 1 0.79 0.93 0.78 0.88 0.78 0.83

Ĥm0t+1 0.99 0.79 1 0.78 0.99 0.78 0.98 0.78
T̂m02t+1 0.76 0.93 0.78 1 0.77 0.94 0.76 0.88
Ĥm0t+2 0.98 0.78 0.99 0.77 1 0.78 0.99 0.78

T̂m02t+2 0.76 0.88 0.78 0.94 0.78 1 0.78 0.93
Ĥm0t+3 0.97 0.78 0.98 0.76 0.99 0.78 1 0.79

T̂m02t+3 0.77 0.83 0.78 0.88 0.78 0.93 0.79 1

The simulated ranks from the alternating D-vine are plotted in Figure 5.9 (d) - (f).
This model does not capture the strong serial correlation between mean zero-crossing
periods; ρU (2)

t ,U (2)
t+1

of the simulated data is around 0.61, while we estimated a value of

0.97 for the data (Table 5.1). In the branching D-vine the skewness of the (U (1)
t ,U (2)

t ) pair
deteriorates in time (actually already within a few steps), which is not surprising given
the skew-t copula is only used to model the very first point in time (Figure 5.9 (d) - (f)).

Hence, we chose the modified COPAR structure for time series simulation of signifi-
cant wave heights and mean zero-crossing periods. Copula samples can be transformed
to the original (Hm0,Tm02)-space by applying the respective inverse marginal distribu-
tion functions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Simulated points for significant wave heights at t and mean zero-crossing periods at t , significant
wave heights at t and at t +1, and mean zero-crossing periods at t and at t +1: (a) - (c) modified COPAR, (d) -
(f) alternating D-vine, and (g) - (i) branching D-vine.
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BIVARIATE DISTRIBUTION OF SIGNIFICANT WAVE HEIGHTS AND MEAN ZERO-CROSSING

PERIODS

The specification of the modified COPAR includes a specification of the bivariate distri-
bution of significant wave height and corresponding mean zero-crossing period. Sam-
ples of this distribution are shown in Figure 5.10. A visual comparison of observed and
simulated points indicates that the model is valuable. In particular, it captures the phys-
ical limitations on wave steepness due to wave breaking. Wave steepness can be com-
puted as

Sm02 = 2π

g

Hm0

T 2
m02

. (5.2)

Spmax = 0.07 is thought to be an upper limit [77], and is represented as a line in Figure
5.10. A histogram of wave steepness for observations and simulated points confirms that
the distribution of Sp is well described by the model (Figure 5.11). The skew−t family is a
promising, although computationally more intensive, alternative to the skewed families
constructed by extra-parameterization in [173].

Figure 5.10: Simulated and observed significant wave heights and mean zero-crossing periods

Figure 5.11: Histogram of wave steepness for simulated and observed significant wave heights and mean zero-
crossing periods
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SIMULATED TIME SERIES

We simulated 100 time series of 3984 hours, which is equivalent to an oceanographic
winter, with the modified COPAR. However, these synthetic series contain notably fewer
storm events than observed. An exploratory analysis of the root cause of this phenomenon
shows that the long term serial correlation is very sensitive to the choice of the ρ param-
eter in the CX (1)

t ,X (1)
t+1

copula, now denoted by ρ(1)
t ,t+1.

We conducted a sensitivity analysis, assuming values 0.98 and 0.95 besides the esti-
mated 0.99 for ρ(1)

t ,t+1. Figure 5.12 shows examples of simulated time series as well as the
observations from the winter 2013/2014. The three simulated time series are based on
the same random seed. They exhibit the same pattern, however, the spikes in significant
wave height and mean zero-crossing period are higher for lower values of ρ(1)

t ,t+1. The
boxplot in Figure 5.13a provides more insight into the total hours with significant wave
heights higher than 400 cm, NHm0≥400. Recall that N = 27 time series have been observed
and N = 100 have been simulated. For smaller ρ(1)

t ,t+1, the median increases, while the
variance decreases. The reason for this model behavior is likely to lie in the faster decay
of the serial correlation for smaller ρ(1)

t ,t+1 (Figure 5.14), increasing the likelihood of sud-
den, extreme changes in Hm0 and Tm02. The serial correlation function of both variables
is most closely approximated when using ρ(1)

t ,t+1 = 0.98. Results for the number of hours
with significant wave heights smaller than 50 cm, NHm0≤50, are different (Figure 5.13b).
In this case the median is higher in the simulations than in observations.

To investigate whether the observed NHm0≥400 and NHm0≤50 are statistically different
to the ones simulated, we conducted an analysis of variance (ANOVA) and performed a
two-sample Kolmogorov-Smirnov (KS) test. At the 5%-level the Null-hypothesis of the
ANOVA, the mean of observed and simulated NHm0≥400 or NHm0≤50 are equal, is not re-
jected for any of the values of ρ(1)

t ,t+1. For the KS-test with the Null-hypothesis that ob-

served and simulated NHm0≥400 are equal in distribution, ρ(1)
t ,t+1 = 0.99 is rejected with

a p-value close to 0, but ρ(1)
t ,t+1 = 0.98 and ρ(1)

t ,t+1 = 0.95 cannot be rejected at the 5%-
level. The results are different when testing the Null-hypothesis that observed and sim-
ulated NHm0≤50 are equal in distribution. ρ(1)

t ,t+1 = 0.99 cannot be rejected at the 5%-level,

ρ(1)
t ,t+1 = 0.98 is rejected with a p-value of 0.04 and ρ(1)

t ,t+1 = 0.95 is rejected with a p-value
close to 0.

Considering these findings, the modified COPAR is useful for applications that re-
quire extreme wave time series, such as coastal risk analyses, as well as for applications
that need estimations of quiet seas, such as scheduling of offshore operations. It is not
surprising that very small differences in ρ(1)

t ,t+1, which could even be sample fluctuations,
gain importance when simulating longer time frames, such as T = 3984. It is therefore
essential to validate the model in view of the application and time frame of interest.
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(a)

(b)

Figure 5.12: Hourly measurements of (a) significant wave height and (b) mean zero-crossing period during
winter 2013/2014 and examples of simulated time series using the same random seed, but a different parame-

ter in C
X (1)

t ,X (1)
t+1

denoted as ρ(1)
t ,t+1.

(a) (b)

Figure 5.13: Boxplots for (a) NHm0≥400 and (b) NHm0≤50 in the measured and simulated data. ρ(1)
t ,t+1 denotes

one of the two parameters of C
X (1)

t ,X (1)
t+1

. The whiskers represent the 5th percentile and the 95th percentile of

the distribution of interest.
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(a) (b)

Figure 5.14: Serial correlation of measured and simulated (a) significant wave heights and (b) mean zero-

crossing periods. ρ(1)
t ,t+1 denotes one of the two parameters of C

X (1)
t ,X (1)

t+1
.

5.4. KEY POINTS

In this chapter, we presented a vine-copula approach to simulate joint time series of
significant wave heights and mean zero-crossing periods. First, we reviewed existing
vine-copula models for time series. While many different vine structures are possible,
a few have recently been proposed that make efficient use of stationarity and Markov
assumptions and yield parsimonious representations of such stochastic processes. In
two dimensions, depending on the structure, no more than 5 or 6 unique copulas have to
be specified to characterize arbitrarily long, stationary time series with first order Markov
property .

Furthermore, as a building block for the vine-copula, we investigated the depen-
dence structure of significant wave heights and mean zero-crossing periods at the same
time. We approximated the dependence with the flexible 4-parameter skew-t copula
family. It captures asymmetric tail dependence as well as skewness patterns of the data,
and, as a result, preserves the limiting wave steepness condition in simulated samples of
the two variables.

Finally, we found an R-vine structure similar to the COPAR introduced by Brech-
mann and Czado [26] to be most valuable for this application. Based on observations
of two successive pairs of significant wave height and mean zero-crossing period, we
constructed a vine-copula on four variables. These observations are a small i.i.d. subset
of measurements (506 out of 53492), collected during the oceanographic winter period
at a single location in the North Sea. We simulated time series with the duration of an
oceanographic winter and compared them against all measured winters. While results
are sensitive to small changes in the copula parameters, the presented model has po-
tential to provide valuable input for various applications, such as coastal risk analysis,
design of marine structures and offshore operations.
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ARMA METHOD

The previous chapter explored a temporal vine-copula approach for time series of sig-
nificant wave heights and corresponding mean zero-crossing periods with an hourly
resolution. While the method could emulate storms as well as daily conditions during
oceanographic winter periods, the validity of the model is highly sensitive to the selected
vine-structure, the chosen copula families and the parameter estimates. Moreover, one
copula needs to be from a high-parameter family, making the model complex and requir-
ing long simulation times. In this chapter, we explore a different, less complex time series
approach, based on ARMA models. To account for complex dependencies, such as the
one caused by the limiting wave steepness condition, we apply additional transforma-
tions. In addition, the model includes non-stationary behavior and also demonstrates
an influence of the wave direction on the time series behavior. While we reapply many
techniques that have been suggested in the literature cited in Section 1.3, the method
presented here distinguishes itself from others on five principle points:

1. We develop a data-driven equation for the limiting wave steepness condition at
the study location and use it for an initial variable transformation. In this way, we
separate the deterministic part of the relationship between significant wave height
and mean zero-crossing periods, which is steepness-induced wave breaking, from
the stochastic part, which is due to common meteorological and geographical fac-
tors, in our modeling.

2. Modeling of the mean wave direction is simplified by assuming a categorical vari-
able with two possible values, north and southwest, which we refer to as wave di-
rection regime. The assumption is reasonable given the geographical context of
the measurement station. The main advantage is that we circumvent challenges
related to modeling a circular variable and avoid inaccuracies that could arise from
ignoring the circular aspect. Time series of the wave direction regime are modeled
as a seasonal alternating renewal process, inspired by [144].

3. Instead of applying a VARMA model with joint-normally distributed residuals to
the bivariate time series of significant wave heights and mean zero-crossing peri-
ods, we estimate two univariate ARMA models with a non-normal joint residual
distribution constructed via a copula. Recent examples of such an approach for
other types of environmental time series can be found in [51] and [17].

The content of this chapter is based on the manuscript [81], which has been submitted for publication.
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4. The wave direction regime is used to trigger regime switches in the joint resid-
ual distribution to account for possible differences in the statistical characteristics
of northern and south-western waves. Differences are expected, because south-
western waves are mostly wind-sea due to a limited fetch length, while northern
waves can be a mixture of swells and wind-seas.

5. Similar to existing studies, we use Fourier series to characterize a seasonal mean
process and a standard deviation process. However, we assume that the Fourier
coefficients are random variables, potentially dependent, instead of constants in
order to represent inter-year differences and dependencies between the processes
on yearly time scales.

The outline of the chapter is as follows. Section 6.1 introduces a data set from the
measuring station Europlatform in the Dutch Southern North Sea. This data set will be
used to develop and illustrate the simulation method. The section also shows how the
wave direction affects the bivariate distribution of significant wave heights and mean
zero-crossing periods and motivates why wave directions are clustered into two regimes.
Section 6.2 develops the methodology for jointly modeling time series of the wave pa-
rameters. Section 6.3 shows simulation results. Finally, Section 6.4 contains the discus-
sion and conclusions.

6.1. DATA AND REGIME DEFINITION

As in chapter 5, the data stems from the Europlatform (Figure 5.1). The data set consists
of hourly measurements of three wave statistics, spectral significant wave height, mean
zero-crossing period and mean wave direction, for a period of 24 years (1 Jan 1991 - 31
Dec 2015).

The existence of leap years complicates time series modeling on an hourly scale, be-
cause the number of hours per year varies. Annual seasonal processes would thus have
a period that differs by 24 hours if the year is a leap year as compared to when it is not.
To avoid this, we introduced a new calendar for modeling purposes, in which all years
are equally long. This calendar assumes that all Februaries consist of 28 days and 6 ad-
ditional hours. Thus, each year has 8766 hours, instead of non-leap years having 8760
hours and leap years having 8784 hours. Of course, days in different years start at differ-
ent times of the day, but this is not relevant for our application and has no effect on the
results. However, the reader should be aware that dates mentioned and displayed do not
exactly correspond to actual dates and times.

The data coverage is higher than 94%; most missing values arise before 2003. The
period 1 Jan 2003 - 31 Dec 2014, according to the new calendar, has only five instances
in which values of the three wave statistics are jointly missing. We have filled these by
linear interpolation. If a component of the simulation model required a complete time
series record without missing values for parameter estimation, this shorter-length record
was used and this is mentioned in the corresponding section. Otherwise, models were
estimated based on the full-length record.

The observed time series for significant wave height and mean zero-crossing period
are shown in Figures 6.1a and 6.1b. Most waves either originate from distinctly northern
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or south-western directions (Figure 6.2). Because of the geographical characteristics of
the location (cf. Figure 5.1), waves from northern directions can be swells, wind seas
or a mixed sea state, while waves from south-western directions are mainly wind seas.
For this reason, we expect differences in the statistical properties of northern and south-
western waves.

(a) (b)

Figure 6.1: Time series of (a) Hm0 and (b) Tm02 from January 2003 to December 2014. Observations are 1 hour
apart.

Figure 6.2: Circular histogram of direction wave directions. Green and yellow indicate the two wave direction
regimes.

Issues can arise when ignoring the circular nature of a variable. For a variable in po-
lar coordinates 0◦ and 360◦ are identical directions. Furthermore, 358◦ cannot be called
larger than 2◦ and neither is 180◦ their meaningful average. To analyze and model such
a variable, many standard statistical tools or measures for ratio variables, such as signif-
icant wave height and mean zero-crossing period, might not be suitable. For example,
it would be difficult to interpret a rank correlation of the mean wave direction with an-
other variable. If we ignore the circular nature of the mean wave direction and compute
its rank correlation with significant wave height, we obtain a value of 0.11. The calcula-
tion assumes that 0◦ is the smallest and 360◦ the largest possible direction. Now suppose
that, we would have defined mean wave direction as the direction into which the waves
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are traveling, contrary to the norm, which is the direction of origin. All our measure-
ments would be shifted by 180◦, but the dependence between mean wave direction and
significant wave height would remain the same. However, we compute a rank correla-
tion value of −0.21 for this case. The example shows the danger of obtaining misleading
results, when neglecting the circular nature of mean wave direction.

In the present geographical context it seems natural to represent the wave direction
as a categorical variable with two states in order to circumvent issues related to circular-
ity. Hence, the data have been partitioned into two clusters representing the two main
directional sectors and a new variable, the wave direction regime, is defined as follows:

Θt =
{

0, mean wave direction at time t ∈ (304◦,48◦),

1, mean wave direction at time t ∈ [48◦,304◦].
(6.1)

In the remainder of this chapter we use the standard notation for significant wave
heights, Hm0, and mean zero-crossing periods Tm02. An overview is given in Table 6.1.

Table 6.1: Overview of Variables

Variable Unit Name Sample space

Significant wave height cm Hm0 {R+}
Mean zero-crossing period s Tm02 {R+}
Wave direction regime − Θ {0,1}

6.2. MODEL DEVELOPMENT

Two types of probabilistic models are at the core of this simulation method: ARMA mod-
els and copulas. A short introduction to them can be found in Sections 2.2 and 2.3.
The statistical simulation method developed here consists of several steps shown in the
flowchart in Figure 6.3. First, directional regime time series are derived according to
equation (6.1) from the mean wave direction series. Then, the durations for which the
directions remain in each regime before switching to the other are represented by a sea-
sonal renewal process. Independently thereof, a limiting wave steepness condition is es-
timated for the collected data and used to remove the effects of steepness-induced wave
breaking. Next, the data of significant wave height and mean zero-crossing period are
normalized and decomposed into stationary and non-stationary processes. The non-
stationary processes are modeled using Fourier series with random coefficients, while
the stationary processes are modeled as ARMA using a regime-switching joint residual
distribution. The regime switches are triggered by the directional regimes.

SEASONAL MODEL FOR REGIME SWITCHES

The process {Θt }t is modeled as an alternating binary renewal process, following [144],
who described wet and dry periods of precipitation in this way. For this application,
the durations for which waves are coming from one of the two directions are random
variables, N and SW . For example, the initial wave direction regime is 0 and remains
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Mean wave direction Significant wave height Mean zero-crossing period

Input data: Joint time series of wave parameters

Model for the limiting steepness condition

Normalization and decomposition into
non-stationary and stationary components

Model for station-
ary components

Model for non-
stationary components

Reduction to
regime time series

Seasonal model for
regime switches

Modeling steps

Figure 6.3: Overview of the steps of the statistical simulation method for wave parameter time series

that for a time SW1. Then it switches to 1 and remains that for a time N1. It is then 0 for
time SW2, and so on. Figure 6.4 illustrates the process.

Figure 6.4: Illustration of renewal process

An alternating renewal process supposes that both sequences {Nn} and {SWn}, n ≥ 1,
are independent and identically distributed. However, Nn and SWn may be dependent.
We made two modifications to this set up. On one hand, we allow SWn to depend on
Nn−1, n ≥ 2. On the other hand, we assume that both Nn and SWn , n ≥ 1, depend on the
time of the year as well. Thus, we estimated a bivariate distribution for (Nn−1,SWn) and
for (SWn , Nn) for each season, using a decomposition into univariate distributions and
a copula.

We could not find adequate parametric univariate distributions among well-known
families and suspect that this is caused by the many one-valued observations (i.e., many
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durations are 1 hour). However, we did not investigate if and how so-called zero-inflated
probability distributions could be adapted to this problem [e.g., 193]. For simplicity, and
since we do not need to extrapolate beyond the range of the observations, we used the
empirical distribution functions. Figure 6.5 shows box plots of the observations for N
and SW for the four seasons. Seasonal differences are more pronounced for SW .

(a)

(b)

Figure 6.5: Boxplots of the observed durations (a) N and (b) SW for the four seasons.

Bivariate copulas were selected according to the AIC criterion using the VineCopula
package [148], which compares twelve different families and, if applicable, their rotated
versions. The corresponding parameters were estimated by maximum likelihoods. The
selected families, parameter estimates and Kendall’s τ for (Nn−1,SWn), n ≥ 2, and for
(SWn , Nn), n ≥ 1, are given in Table 6.2. Comparing values of Kendall’s τ, both variable
pairs are positively associated. Thus, a wave direction regime tends to persist longer
when the duration in the preceding regime was long than when it was short. This ten-
dency is stronger and seasonal differences more distinct for (Nn−1,SWn) than for (SWn , Nn).
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Table 6.2: Selected copula families, parameter estimates (denoted par1 and par2) and Kendall’s τ for the pairs
(Nn−1,SWn ) and (SWn , Nn ).

Variable pair Season copula family par1 par2 τ

(Nn−1,SWn )

Spring BB8 1.86 0.68 0.13
Summer BB8 1.52 0.81 0.11
Autumn Frank 1.77 − 0.19
Winter Survival BB8 2.74 0.59 0.19

(SWn , Nn )

Spring Frank 1.0.7 − 0.08
Summer BB8 1.41 0.85 0.1
Autumn Frank 0.99 − 0.11
Winter Frank 1.02 − 0.11

SIGNIFICANT WAVE HEIGHTS AND MEAN ZERO-CROSSING PERIODS

Model for the limiting wave steepness condition While the relationship between sig-
nificant wave heights and mean zero-crossing periods is in large part stochastic, there is
a physical limit on the maximum steepness that individual waves can attain. As soon as
waves approach this limit, they break1. Wave steepness is defined as wave height divided
by wave length, but can be formulated as a function of wave height and wave period. In
terms of significant wave height and mean zero-crossing period, it is

sm02 = 2π

g

Hm0

T 2
m02

. (6.2)

The limiting steepness condition is clearly visible in the scatter plot of Hm0 and Tm02

(Figure 6.6a): For a given Tm02 the corresponding Hm0 cannot exceed a certain upper
limit, or equivalently, for a given Hm0 the corresponding Tm02 is bounded from below.
Nonetheless, we observed a few data points that appear to be unusually distant from the
others (gray crosses in Figure 6.6a). We suspect that these are anomalies in the measure-
ments and substituted them by missing values before proceeding with the data analysis.

Recent studies showed that bivariate distributions constructed with 3- or 4-parameter
copula families can be suitable to reflect the limiting steepness condition and to repre-
sent the joint distribution of Hm0 and Tm02 [80, 173]. However, we cannot directly apply
such approaches to the ARMA modeling in this study. Instead, we separate the deter-
ministic part and the stochastic part of the relationship between Hm0 and Tm02 to model
them individually. The idea is to remove the deterministic part by subtracting the lower
bound from Tm02:

T̃m02 = Tm02 −Tm02mi n , (6.3)

where the lower bound can be determined from Hm0 and sm02max as

Tm02mi n =
√

2π

g

Hm0

sm02max

. (6.4)

1This is different in shallow water, where depth-induced breaking occurs before steepness-induced breaking.
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(a) (b)

Figure 6.6: Scatter plots of (a) significant wave height and mean zero-crossing period and of (b) significant
wave height and steepness. Different proposed wave steepness limits are indicated in both plots.

After this transformation, we proceed with time series modeling of the pair (Hm0, T̃m02).
A difficulty that arises is the choice of sm02max . Different values have been proposed

in the literature. For the North Sea, Holthuijsen [77] states sm02max = 0.067, while Michel
[117] derives sm02max = 0.098. However, by visual comparison neither of the two esti-
mates seems to fit our data set. Figure 6.6b shows a bivariate scatter plot of (Hm0, sm02)
and the proposed constant values for sm02max as purple and green lines. The correspond-
ing lines for Tm02mi n are plotted in Figure 6.6a, also in purple and green. Michel’s pro-
posed value is too far away from the data, while Holthuijsen’s value would cut off a no-
table part of the data.

To achieve a better fit, we set out to estimate a maximum steepness condition from
the data. From the scatter plot in Figure 6.6b it appears that observations of sm02max

are not constant, but depend on Hm0. More precisely, there appears to be a horizontal
asymptote roughly below sm02max = 0.08, while the observed sm02max is rapidly decreas-
ing for small Hm0. To account for this behavior we fit the curve

sm02max (Hm0) = a

(
Hm0

b

)(
c

Hm0

)
, a,b,c > 0 (6.5)

to the data. The reasoning behind selecting this functional form is the following. Sup-
pose b is a large value that cannot be attained by measurements of Hm0 at the Europlat-
form. Then, a can be interpreted as the value defining the horizontal asymptote, since
sm02max → a, as Hm0 → b. Finally, c affects the slope of sm02max for smaller values of Hm0.

The procedure to fit the sm02max -curve was the following. First, we discretized the
Hm0 data into 108 discrete bins. These were not equally spaced, but contained an equal
number of data points (1870). Most bins cover a range in height of 1cm or 2cm. An
exception is the widest bin, which spans from 274cm to 656cm. Next, we computed the
maximum value of sm02max in each bin and associated it with the value of Hm0 at the
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bin center. These data points are shown as orange circles in Figure 6.6b. Finally, we
estimated the coefficients a, b and c using nonlinear least-squares.

The resulting estimates are a = 0.0782, b = 999.4cm (the upper bound was fixed at
1000) and c = 7.674cm. The coefficient of determination is R2 = 0.858 and the root mean
square error is RMSE = 0.0051. The fitted sm02max -curve is also shown in Figure 6.6b
and the corresponding Tm02mi n -curve is depicted in Figure 6.6a (orange lines). Accord-
ing to this limiting steepness condition, 160 measurements are classified as anomalies,
because they are too steep. These are 67 more than initially identified by visual inspec-
tion and amount to less than 0.08% of the data. It should be noted that while this relation
fits the observational data well in statistical sense, we do not propose to use this formu-
lation to better describe the physics of wave steepness-related breaking.

After substituting the 160 measurements classified with missing values, Tm02 is trans-
formed to T̃m02 (equation 6.3). Figure 6.7 shows a scatter plot of the pair (Hm0, T̃m02). In

the remainder, we will denote X (Hm0) = Hm0, X (T̃m02) = T̃m02 to simplify notation.

Figure 6.7: Scatter plot of significant wave height and mean zero-crossing period subtracted by its steepness
induced lower bound.

Normalization and decomposition into non-stationary and stationary components

Neither of the processes {X (Hm0)
t }t and {X (T̃m02)

t }t is stationary. Inspection of the data sug-
gests strong seasonal behavior (cf. Figures 6.1a and 6.1b). Trends do not seem apparent.
Moreover, the data are notably right skewed and strictly positive. Different methods can
be used to analyze and model such time series data [e.g., 25]. The prevailing approach
is to deseasonalize the data and to model the seasonal components and the stationary
component separately.

We identified two main procedures for deseasonalization in the literature on wave
parameter modeling and simulation that appeared successful. Suppose xt , t = 1, ...,T ,
is a time series for an arbitrary wave parameter. The first procedure involves two steps
[162]. One step is to transform the data to reduce skewness:

yt = f (xt ), t = 1, ...,T, (6.6)
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with f being a suitable monotone transformation function. This facilitates finding a
fitting distribution for the ARMA residuals of the stationary component, but is also im-
portant for simulations, as will be explained in the next paragraph. A second step is to
represent the transformed time series data as a realization of the following process:

yt =µt +σt zt , t = 1, ...,T, (6.7)

where µt and σt are slowly changing non-stationary components exhibiting seasonal
features and zt is a high-frequency, stationary component. Each of the components
is then modeled and yt is obtained by combining them according to equation (6.7).
Guedes Soares et al. [66] followed a similar procedure, however they first decomposed
the data into seasonal and stationary components and then applied a skewness reduc-
ing transformation to the stationary data series. The second approach relies on using
a non-stationary distribution function to transform the data to standard normal [158].
With this approach no additional transformation is necessary.

We used a method in line with the first approach to develop the simulation model.
As potential transformations we considered the Box-Cox family [24]

f (x,λ) =
{

xλ−1
λ , λ 6= 0,

log(x), λ= 0
, (6.8)

shifted logarithms
f (x,c) = log(x + c), c ≥ 0, (6.9)

and a transformation to standard normal using the empirical distribution function in
the probability integral transform

f (x) =Φ−1(F̂n(x)), (6.10)

whereΦ−1 is the inverse of the standard normal cumulative distribution function and F̂n

is the empirical distribution function estimated for the data x1, ..., xT . All three transfor-
mations, each denoted as f for simplicity, have proven valuable in similar applications
[42, 66, 162].

The choice of transformation strongly influenced the simulation results that would
be obtained at later stages. Box-Cox transformations whose λ was estimated by max-
imum likelihood or a (not shifted) logarithm resulted in unrealistically high simulated
values. For instance, simulated significant wave heights were in the order of 30m, while
the highest observed is below 7m. In contrast, choosing higher values of λ or shifting
the logarithm by a positive constant c would result in reasonable maximum heights, but
also in negative ones. These issues arose both when transforming the data before the
decomposition as well as when transforming the stationary component.

The transformation to standard normal via the probability integral transform re-
sulted in simulation values that were representative of real values, at least when applied
before the decomposition. When transforming after the decomposition, the simulated
values ofµt ,σt and Zt would sometimes combine to a negative value. This is not surpris-
ing, since we modeled µt and σt independent of Zt , as will be explained in the next sec-
tions. Hence, the transformation to standard normal via the probability integral trans-
form before a decomposition was chosen. Figures 6.8a and 6.8b show the relationship
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between transformed and original variables. Time series of the transformed variables
are shown in Figure 6.9.

(a) (b)

Figure 6.8: Normalizing transformation for (a) significant wave heights and (b) mean zero-crossing periods

(a) (b)

Figure 6.9: Time series of normalized (a) significant wave heights and (b) mean zero-crossing periods from
January 1989 to December 2014.

After the time series xt , t = 1, ...,T , has been transformed to the series yt , the seasonal
componentsµt andσt of equation 6.7 are extracted using a smoothing technique. µt can
be interpreted as a local mean andσt as a local standard deviation. Both were computed
with sliding windows and an Epanechnikov kernel as weighting function for smoothing,
as follows:

µt = 1

2t ′
t+t ′∑

k=t−t ′
K2t ′ (xt −xk ) (6.11)

and

σt =
√√√√ 1

2t ′
t+t ′∑

k=t−t ′
K2t ′ ((xt −µt )2 − (xk −µk )2), (6.12)

where K2k is the Epanechnikov (parabolic) kernel. The bandwidth, t ′, was set to 720
hours, which amounts to 30 days and is in line with the common practice to deseason-
alize oceanographic variables via monthly statistics [recent examples are 43, 184].
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Model for the non-stationary components The non-stationary processes exhibit sea-
sonal patterns, but also inter-year variability (Figures 6.10a-6.10d). Such variabilities are
inherent in the climatic system [e.g., 107, 118], and thus reflected in wave parameter
time series. Méndez et al. [114, 115] as well as Serafin and Ruggiero [150] described sea-
sonality of wave or water level parameters as a superposition of an annual cycle and
a semiannual cycle using a Fourier series representation. Further, they approximated
inter-year variability by regressing on time series of regional climate indices related to El
Niño - Southern oscillation (ENSO), such as the POI, PNA or MEI. Solari and van Gelder
[158] took another approach to modeling inter-year variability. Instead of studying the
physical basis and using climatic covariates, they identified a 5-year and 26-year cycle in
their observed data and included these in a Fourier series representation together with
seasonal cycles.

(a) (b)

(c) (d)

Figure 6.10: Seasonal mean and standard deviation processes processes: (a)µ(Hm0)
t , (b)µ(Tm02)

t , (c) (a)σ(Hm0)
t ,

and (d) (a) σ(Tm02)
t .

For this chapter, we neither studied climatological covariates nor cycles longer than
1 year. We developed a somewhat different approach assuming that it is more important
to represent the range of inter-year differences than their temporal sequencing. While
we use a 5-factor Fourier series in order to represent both annual and semiannual cycles
following earlier studies [114, 115, 150], we let the Fourier coefficients vary each year to
produce inter-year variations.

For simplicity, we let the coefficients vary randomly according to a multivariate Gaus-
sian distribution that accounts for dependencies between the four local mean and stan-
dard deviation processes. In the future, it might be worthwhile to further investigate, if
the coefficients could be predicted by climatic covariates.

The first step of this approach involves dissecting the 24-year data series µ(Hm0)
t ,

µ
(T̃m02)
t , σ(Hm0)

t and σ
(T̃m02)
t into 1-year segments. To easily identify them, we re-index
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the series using a double index, k = 1, ...,24 for the year and τ = 1, ...,8766 for the hour
within the year2. Then, we estimate 5-factor Fourier series for each segment:

f (µ(i )
k )(τ) = a

(µ(i )
k )

0 +a
(µ(i )

k )
1 cos

(
2πτ

T

)
+a

(µ(i )
k )

2 sin

(
2πτ

T

)
+a

(µ(i )
k )

3 cos

(
4πτ

T

)
+a

(µ(i )
k )

4 sin

(
4πτ

T

)
(6.13)

and

f (σ(i )
k )(τ) = a

(σ(i )
k )

0 +a
(σ(i )

k )
1 cos

(
2πτ

T

)
+a

(σ(i )
k )

2 sin

(
2πτ

T

)
+a

(σ(i )
k )

3 cos

(
4πτ

T

)
+a

(σ(i )
k )

4 sin

(
4πτ

T

)
(6.14)

where T = 8766 and i = {Hm0, T̃m02}. To obtain the 24-year series, the fitted 1-year seg-

ments are concatenated, for example f (µ(i )) =
[

f (µ(i )
1 ), ..., f (µ(i )

24 )
]

, and discontinuities at

the transitions from one year to another are smoothed out using cubic spline interpo-
lation. The continuous fitted series obtained in this way explain more than 90% of the
variance in the corresponding data series (Table 6.3).

Table 6.3: Coefficient of determination R2 for the fitted seasonal mean and standard deviation series.

µ
(Hm0)
t µ

(T̃m02)
t σ

(Hm0)
t σ

(T̃m02)
t

0.96 0.91 0.98 0.94

In the next step, we assume that the estimated coefficients a(i ,k)
m are i.i.d. observa-

tions of random variables A(i )
m , m = 0, ...,4, and estimate a joint distribution for them.

Since the sample size is small (N = 24) compared to the dimension of the random vector
(d = 20), an extensive analysis of its distribution seems infeasible and for simplicity we
assumed it to be multivariate Gaussian.

We modeled the distribution in terms of univariate Gaussian marginals and a mul-
tivariate Gaussian copula. Despite the relatively high dimensionality, the correlation
matrix is sparse. On one hand, the basis functions of a Fourier series are mutually or-
thogonal, hence their coefficients uncorrelated leading to many zero-valued entries. On
the other hand, we performed the bivariate asymptotic independence test based on
Kendall’s τ for the remaining pairs of coefficients, which is implemented in the VineCop-
ula Package [148]. According to the test, most pairs are independent. Only three correla-

tions were found to be significant: ρ(A(σ(Hm0))
0 , A(σ(T̃m02))

0 ) =−0.7, ρ(A(µ(T̃m02))
1 , A(σ(T̃m02))

1 ) =
0.6, and ρ(A(µ(Hm0))

2 , A(µ(T̃m02))
2 ) =−0.5, where ρ denotes the product moment correlation.

Thus, these correlation values correspond to the only three non-zero off-diagonal ele-
ments of the the correlation matrix parameterizing the Gaussian copula. The parame-
ters of the univariate distributions were estimated by maximum likelihood and can be
found in Table 6.4.

28766 hours correspond to one year when“correcting" for leap years.
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Table 6.4: Parameters (mean, standard deviation) of the univariate normal distributions of the Fourier coeffi-
cients

A0 A1 A2 A3 A4

µ(Hm0) (0,0.09) (0.39,0.09) (−0.10,0.12) (0.03,0.08) (−0.03,0.10)

µ(T̃m02) (0,0.10) (−0.21,0.06) (0.14,0.1) (−0.03,0.04) (0,0.07)
σ(Hm0) (0.91,0.05) (0.01,0.05) (0,0.06) (−0.01,0.03) (0.01,0.05)

σ(T̃m02) (0.96,0.04) (0,0.04) (0.03,0.03) (−0.01,0.02) (0,0.03)

Model for the stationary components The deseasonalised processes, obtained through

z(i )
t = y (i )

t −µ(i )
t

σ(i )
t

, (6.15)

are shown in Figure 6.11. These will be represented as ARMA process. To this end, we
first inspect the autocorrelation functions (ACFs) and partial autocorrelation functions
(PACFs) to make a first guess on the form of the ARMA model (see Section 2.3). We iter-
atively search for suitable orders p and q , starting from our first guess. We choose the
ARM A(p, q) model with the least parameters p + q that can produce simulated series
with ACFs and PACFs that closely resemble the ones of the process z(i )

t and for which the
residuals are white noise processes. The latter is checked by computing ACFs and PACFs
of the residuals and squared residuals. In each iteration parameters are estimated based
on maximum likelihood, as implemented in the ar i ma() function of R’s stats package
[39]. The parameter estimates finally obtained are listed in Table 6.5.

(a) (b)

Figure 6.11: Stationary components of normalized (a) significant wave height and (b) mean zero-crossing pe-
riod time series as obtained after the decomposition.

Once adequate orders p and q have been found, the residuals, ε(i )
t , of the fitted

ARM A(p, q) model for z(i )
t should be (almost) i.i.d. and following an arbitrary distribu-

tion with zero mean and constant variance. Because we expect differences across the
wave direction regimes, we estimate conditional distributions for the residuals given the
regime, E (i )|RΘ = k, for each k ∈ {0,1}. We cannot expect these distributions to be Gaus-
sian and we need to find a suitable parametric family of distributions. We considered the
following families in this study: normal, skew-normal, t and skew-t. We select the fam-
ily and attest its goodness of fit with visual diagnostic tools. We examine qq-plots and
check if applying a probability integral transform (PIT) to the residuals via the selected
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family results in uniformly distributed values. We refer to these as PIT residuals and vi-
sually assess their uniformity with histograms. All four univariate distributions are best
approximated by a skew-t family. The estimated parameters can be found in Table 6.6.
Diagnostic plots to verify the adequacy of the selected orders p and q and the marginal
distribution are shown in Figures 6.12 and 6.13.

Table 6.5: Coefficients of ARMA models for Z (Hm0)
t and Z (Tm02)

t . Standard errors are given in parenthesis.

Process ar1 ar2 ar3 ma1 ma2 intercept

Z (Hm0)
t 1.07 (0.00) 0.10 (0.01) −0.18 (0.00) - - 0.00 (0.03)

Z (T̃m02)
t 2.63 (0.00) −2.54 (0.00) 0.89 (0.00) −1.62 (0.00) 0.83 (0.00) 0.00 (0.01)

Table 6.6: Parameters (mu, sigma, skew, shape) of regime-dependent skew-t distributions for residuals E (Hm0)

and E (Tm02).

k F̂E (Hm0)|RΘ=k F̂E (Tm02)|RΘ=k

0 (−0.01,0.16,1.07,4.80) (0.05,0.35,0.87,5.58)
1 (0.01,0.17,1.13,5.36) (−0.04,0.43,0.90,5.52)

Finally, the residual processes, ε(1)
t and ε(2)

t could depend on each other, because the
original time series are interrelated. Therefore, we construct regime-dependent bivariate
residual distributions via copulas. We fit them on the empirical ranks of the conditional
residuals normalized to (0,1). As before, we use the AIC criteria for model selection and
estimate the parameters by maximum likelihood. Table 6.7 contains the selected bi-
variate copula families, estimated parameters and Kendall’s τ. Figure 6.14 shows the
bivariate density contours for observed and simulated residuals.

Table 6.7: Bi-variate copula families, their parameters and Kendall’s τ for regime-dependent copulas for resid-
uals E (Hm0) and E (Tm02).

E (Hm0),E (Tm02) | R = k
k family par par2 tau

0 t −0.09 5.53 −0.06
1 t −0.23 6.36 −0.14
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(a) (b) (c)

(d) (e) (f)

Figure 6.12: Diagnostic plots for ε(Hm0)
t : (a) ACF of residuals, (b) PACF of residuals, (c) ACF of squared residu-

als, (d) PACF of squared residuals, (e) histogram of PIT residuals for northern directions, (f) histogram of PIT
residuals for southern directions.
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(a) (b) (c)

(d) (e) (f)

Figure 6.13: Diagnostic plots for ε(Tm02)
t : (a) ACF of residuals, (b) PACF of residuals, (c) ACF of squared resid-

uals, (d) PACF of squared residuals, (e) histogram of fitted quantiles for northern directions, (f) histogram of
fitted quantiles for southern directions.

(a) (b)

Figure 6.14: Bivariate density contour plots residuals E (Hm0) and E (Tm02) (a) corresponding to northern wave
directions and (b) corresponding to south-western wave directions. Densities are estimated from 24 observed
years (black) and 24 simulated years (gray).
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6.3. SIMULATION RESULTS

WAVE ANGLE REGIMES

The developed renewal process model for wave angle regimes captures persistency and
seasonal differences well. Figure 6.15 shows an example of a observed and a simulated
wave direction regime time series. Figure 6.16 compares the percentage of time per
year in which waves come from the Southwest for observed data (12 years) and simu-
lated data (105 years). The model correctly reflects that the highest percentage of south-
western waves occurs in spring, while the lowest percentage of south-western waves oc-
curs in autumn. All except one measured percentage fall within 1.5 times the interquar-
tile range from the lower and higher quartile, respectively. Also a two-sided, sample-
based Kolmogorov-Smirnov (KS) test does not reject the null hypothesis that observed
and simulated percentages are equal in distribution for any of the seasons. P-values
range from 0.52 for winter to 0.96 for autumn.

(a) (b)

Figure 6.15: Wave direction regime time series (a) observed in 2003 and (b) for a simulated year. Light gray
represents northern wave directions and dark gray represents south-western wave directions.

Figure 6.16: Percentages of time per season with south-westerly wave directions during each of the four sea-
sons. Boxplots summarize data of 10000 simulated years. The whiskers represent the lowest and highest sim-
ulated data point still within 1.5 times the interquartile range from the lower and higher quartile, respectively.
The open circles represent all remaining data points. Colored points represent observed percentages during
12 years.

SIGNIFICANT WAVE HEIGHTS AND MEAN ZERO-CROSSING PERIODS

To assess how well the simulation method replicates the characteristics of significant
wave height and mean zero-crossing periods time series, we rely on a visual diagnostics.
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We do not apply statistical goodness of fit tests, because any model would be rejected
for a sample size this large. There are 201960 observations and 210384 simulated values.
(The discrepancy is due to the fact that the observed time series contain a number of
missing values.)

Figures 6.17a and 6.17b show simulated time series for Hm0 and Tm02 . These time
series results from a combination of all model components described previously. The
simulated time series of Hm0 are visually not distinguishable from the equally long ob-
served time series in Figure 6.1a. In particular, the model reflects annual seasonality and
inter-year differences well. Nonetheless, potential multi-annual cycles have not been
accounted for. The simulated time series of Tm02 also reflect the main characteristics of
the corresponding observed time series in Figure 6.1b.

(a) (b)

Figure 6.17: Simulated time series of (a) significant wave height and (b) mean zero-crossing period for a dura-
tion of 24 years.

Figure 6.18a shows boxplots of observed and simulated significant wave heights for
different wave angle directions. The model approximates well the distribution of ob-
served data (based on visual comparison of first quartile, median and third quartile). The
model also reflects well that northern waves tend to be lower than southwestern waves,
and that their distribution is more narrow. Analogously, Figure 6.18b shows boxplots of
observed and simulated mean zero-crossing periods. Again, the model well represents
the overall distribution of the observed data. Differences between the regimes, which
are less pronounced than in the case of significant wave heights are also adequately cap-
tured. Mean zero crossing-periods tend to be higher for northern waves than for south-
western waves.

Figure 6.19 shows probability density contours for simulated and observed pairs of
Hm0 and Tm02. In both cases the density contours have been estimated from time se-
ries data of a length of 24 years. A visual comparison of contours shows that the model
well approximates the bivariate distribution of Hm0 and Tm02. Especially the maximum
steepness condition is well-represented.

Figure 6.20 compares individual contour lines for the bivariate distribution condi-
tional on northern and southwestern directions. The contour levels are the same as in
Figure 6.19. The unconditional contours are included for reference. From top to bot-
tom, the 25 ·10−4 , 5 ·10−4 and 10−4 density contours are shown in separate panels. The
left three panels show bivariate density contours of observed data, while the three right
panels show bivariate density contours of simulated data. For the highest density level
(top pair of panels), the model well approximates the bivariate density for southwest-
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(a)

(b)

Figure 6.18: Boxplots of observed and simulated data for (a) significant wave height and (b) mean zero-crossing
period.

ern directions, but underestimates the degree of positive dependence between the two
variables for northern directions. For the intermediate density level (middle pair of pan-
els), the opposite is true. The model adequately approximates the bivariate density for
northern directions, but underestimates the degree of positive dependence between the
two variables for southwestern directions. For the lowest density level (bottom pair of
panels), the model still underestimates the degree of positive dependence between the
two variables for southwestern directions. Moreover, for high mean zero-crossing peri-
ods, significant wave heights for northern directions are underestimated, while they are
overestimated for southwestern directions. An overall tendency to underestimate the
degree of positive dependence for southwestern directions is also reflected by values of
Spearman’s ρ (Table 6.8).

Table 6.8: Values of Spearman’s ρ for observed and simulated significant wave height and mean zero-crossing
periods for different wave angle directions.

Wave direction Observed data Simulated data

All 0.74 0.73
Northern 0.70 0.70

Southwestern 0.88 0.80

Next, we investigate the capability of the model to simulate sequences of storms. As
mentioned in the introduction, a potential advantage of simulating full time series is that
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Figure 6.19: Bivariate density contours for significant wave heights and mean zero-crossing periods. Densities
are estimated from 24 observed years (black) and 24 simulated years (gray).

no prior assumptions have to be made on critical threshold values or storm shape. This
is useful, because different applications might require different assumptions. Here, we
explore the model’s capability to reproduce storm durations and storm interarrival time
for two different storm definitions. Storm I events are defined as periods in which the
significant wave height exceeds 300cm and the mean zero-crossing period exceeds 6s.

This storm event definition is inspired by Li et al. [103] who simulated sea storms for
a location in the Dutch North sea with comparable geographical properties. They use
a significant wave height threshold of 300cm in combination with a surge threshold of
50cm. These thresholds are chosen, because more severe conditions are likely to cause
morphological change [139]. Since 300cm significant wave height corresponds to the
96.5% quantile in our data set, we combined it with the 96.5% mean zero-crossing period
quantile, which is 6s. Storm II events are defined as more severe. We defined a period
as a storm II events when both variables exceed their respective 99.5% quantiles, which
are 407cm and 6.7s. The threshold values for both event definitions are summarized in
Table 6.9.

Table 6.9: Critical threshold values for Storm I and Storm II events.

Storm Hm0 Tm02

I 300cm 6s
II 407cm 6.7s

Figure 6.21 compares storm durations and interarrival times for observed and sim-
ulated time series. The observed time series is the segment from 2003 to 2014, because
this period does not contain missing values. The simulated time series is also 12 years
long. The simulation model produces realistic storm durations and storm interarrival
times for both event definitions, storm I and storm II. However, the model appears to
slightly overestimate storm durations and produces three storm II interarrival times that
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are longer than a year.
Furthermore, the model simulates a realistic number of storms, when comparing

the observed 12 year period to 100 simulated 12 year periods. Of course, this is expected
given the results on storm duration and interarrival time. From 2003 to 2014, 402 storm
I events and 69 storm II events have been observed. The respective 5th percentile and
95th percentile of the corresponding simulated storm events are 291 and 434 as well as
47 and 104.

6.4. KEY POINTS

In this chapter, we presented a simulation method for joint time series of significant
wave height, mean zero-crossing period and a directional regime variable. The latter
distinguishes between northern and southwestern waves. Time series can be simulated
at a high resolution of 1 hour, which is useful for risk analyses in various coastal and
offshore applications. The method has been applied to a data set in the Dutch North
sea.

The method contains several modeling steps and relies on renewal processes, Fourier
series with random coefficients, ARMA processes, copulas, and regime-switching. A
particular feature is a data-driven estimate for a wave height-dependent limiting wave-
steepness condition, which we use to describe part of the dependence between signif-
icant wave heights and mean zero-crossing periods and which facilitates the copula-
based dependence modeling later on. Similar to many other studies, annual seasonality
is represented by Fourier series. The coefficients are modeled as inter-dependent ran-
dom variables to account for inter-year differences. At this point we did not consider
climatic covariates and recommend to examine if they have predictive skill for inter-year
differences.

The stationary components of the two processes are represented as ARMA with regime-
switching joint residual distribution, constructed using copulas. The regime-switches
are triggered by changes in wave direction from North to Southwest. While these regime-
switches result in differences between bivariate distributions of simulated significant
wave height and mean zero-crossing period when conditioned on the northern and
southwestern regime, they are not as pronounced as in observed data. We recommend
that future research is directed at improving and extending the simulation method as to
better capture these differences. Nonetheless, the unconditioned bivariate distribution
of significant wave height and mean zero-crossing periods appears to be represented
adequately.

Moreover, storm durations and storm interarrival times are well captured for two
different storm definitions, which rest on different critical threshold values for the two
significant wave height and mean-zero crossing periods. As storm sequences are ade-
quately represented, the model has potential value for applications in coastal and off-
shore engineering, such as the prediction of long-term morphological changes, or the
planning and budgeting of offshore operations.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20: Individual contour lines for the bivariate distribution of significant wave heights and mean zero-
crossing periods conditional on northern and southwestern wave directions. From top to bottom the two plots
in each panel show the 0.0025, 0.0005 and the 0.0001 contour.
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(a)

(b)

Figure 6.21: Boxplots of storm durations and storm interarrival times for storm I and storm II events. The
underlying observed and simulated time series from which the durations and interarrival times were derived
were both 12 years long.



7
COMPARISON AND LIMITATIONS

The two preceding chapters developed methods for the statistical simulation of time se-
ries of wave parameters at an hourly scale. The main difference between the two meth-
ods is how serial dependence is modeled. The first method (Chapter 5) applied vine-
copulas, while the second method (Chapter 6) relied on ARMA processes. Furthermore,
the data pre-processing was different. The purpose of this chapter is to evaluate the prac-
tical applicability of the methods in different contexts. To this end, the chapter compares
the methods in terms of underlying assumptions, model performance, extendability to
higher dimensions and transferability to other locations. For easy reference, the simu-
lation models proposed in Chapter 5 will be referred to as ‘model 1a-c’ and the one in
Chapter 6 as ‘model 2’ (cf. Table 7.1).

Table 7.1: Overview on Models.

Name Model

Model 1a Vine-Copula based with ρt ,t+1 = 0.99
Model 1b Vine-Copula based with ρt ,t+1 = 0.98
Model 1c Vine-Copula based with ρt ,t+1 = 0.95
Model 2 ARMA based

Section 7.1 compares simulation results obtained from the two methods. In par-
ticular, the section compares (1) the bivariate density for simulated time series data of
significant wave height and mean zero-crossing periods during the oceanographic win-
ter period, (2) their persistency characteristics, and (3) return levels of significant wave
heights. Section 7.2 points toward model limitations. Topics are (1) model uncertainty
and sensitivity, (2) extendability of either method to higher dimensions, that is to in-
clude additional variables, and (3) transferability to other locations. Finally, Section 7.3
summarizes the findings of the chapter.

7.1. MODEL COMPARISON

The main differences between the methods in terms of underlying assumptions and
data preprocessing are listed in Table 7.2. The comparison of observed and simulated
data from the models developed in the previous two chapters is not exhaustive; the fo-
cus is on three selected topics: (1) bivariate density contours of the time series data, (2)
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persistency characteristics, and (3) return level calculations for significant wave heights.
Because models 1a-c are restricted to oceanographic winter periods (1 November - 15
April) and only includes significant wave height and mean zero-crossing periods, the
comparison is only performed on according time series segments for model 2.

Table 7.2: Comparison of selected properties of the methods as applied in this thesis.

Aspect Vine-Copula method ARMA method

Markov order 1 3 for the Hm0; infinite for
Tm02

Treatment of seasonality Restriction to oceanographic
winter season

Decomposition and separate
modeling of seasonal and
stationary processes

Inter-year differences Not explicitly accounted for Explicitly accounted for
through randomly varying
Fourier series coefficients

Modeling of serial correlation Sub-sampling & vine-copula ARMA process
Modeling of cross-series de-
pendence

Vine-copula Wave steepness-based trans-
formation & copulas

Gaps in time series record Allowed Not allowed

BIVARIATE DENSITY CONTOURS OF TIME SERIES DATA

Observed data are available for 23 winter seasons (1991/1992 through 2013/2014). Fig-
ure 7.1 compares bivariate density contours of the time series data observed during these
periods with time series data simulated for 23 winter seasons. The contours are obtained
via bivariate kernel density estimation on a square grid with 50 grid points in each direc-
tion. For all four models, bivariate densities of simulated and observed data are com-
parable. In particular, a limiting steepness condition is well represented in all cases.
Discrepancy mainly exist in the outermost contour when both variables are small and
when they are large for model 1a-c.

For a more objective comparison, we computed the sum of squared distances be-
tween the distribution of observed and simulated points, which is the Cramer-van-Mises
test statistic:

C M n =
∫

A

p
n

(
Fn(x, y))−Fθn (x, y)

)2 d xd y, (7.1)

where Fn denotes the empirical bivariate cumulative distribution function obtained from
observed data and Fθn the one obtained from simulated data and A is the domain of
X ,Y .1 We computed the CvM statistic numerically for five simulations of 23 winter sea-
sons with each of the models. The number five is a heuristic choice to explore how large
differences between simulation runs are. Just as before, we use a square grid with 50
points in each direction.

1Here, θn refers to the parameter vector of the distribution estimated from n data points. Note that we previ-
ously use θ to denote copula parameters in Chapter 5 andΘ for the wave direction regime in Chapter 6.
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(a) (b)

(c) (d)

Figure 7.1: Bivariate contours for observed and simulated time series data of significant wave height and mean
zero-crossing periods

The results are listed in Table 7.3. The statistics for model 1a-c are of similar order of
magnitudes, with the smallest for different simulations either corresponding to model 1a
or 1c. The statistics for model 2 are notably smaller than for models 1a-c. Thus, model 2
better approximates the bivariate distribution according to the CvM criterion. However,
this increased accuracy may not be of practical relevance.

PERSISTENCY

This section investigates the models’ capability to represent sequences of (1) storms that
are expected to have morphological impact on the coast and (2) calm weather windows
during which specific offshore operations can be executed.

Storm events are defined as periods in which the significant wave height and mean
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Table 7.3: Sum of squared distances for distributions of simulated and observed time series data.

Model Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

1a 154.6 403.8 577.9 270.4 510.4
1b 184.7 416.5 527.6 304.3 476.8
1c 246.5 418.2 477.0 347.2 440.5
2 97.7 40.0 61.0 19.0 31.4

zero-crossing period exceed 300cm and 6s, respectively. The motivation behind this
storm definition is given in the previous Chapter in Section 6.3. Weather windows are
defined as periods in which the significant wave heights remains below 150cm and the
mean zero-crossing periods remains below 4.7s. The selected significant wave height
limit has been reported in several studies on operability of marine operations [3, 102]
and the mean zero-crossing period limit has been obtained in a similar fashion as for
the storm. Note, that in practice, the limits are usually not fixed and independent, but
one is dependent on the other [3].

Figures 7.2a and 7.2b show storm duration and interarrival time for observed and
simulated time series for a period of 11 years. The period for which data are compared
here is shorter than in the previous section, because persistency cannot be accurately
computed when missing values are present. All four models capture that storm dura-
tions are approximately an order of magnitude shorter than storm interarrival times.
Simulated storm durations from models 1a-c are more narrowly distributed and tend
to underestimate the ones observed. The contrary is true for durations from model 2.
In terms of storm interarrival time, simulated values from model 1a and b have a lower
median and third quartile and the ones from model 1c and 2 have a higher median and
3rd quartile than observed values. When comparing models 1a, b and c with each other,
skewness of the distribution of storm interarrival time seems to increase with decreasing
values for ρt ,t+1 and at the same time the tail shortens.

Similarly, Figures 7.3a and 7.3b show weather window duration and interarrival time.
In this case the duration is of a similar order of magnitude as the interarrival time, which
is reflected by all models. Nonetheless, they tend to underestimate both. The distribu-
tion of duration and interarrival time obtained via model 2 is closest to the empirical
one. Furthermore, a similar trend for skewness and tail behaviors for models 1a-c can be
observed.

Overall, model 2 seems to be more versatile than models 1a-c, because its perfor-
mance in terms of persistence is more consistent across different thresholds. Nonethe-
less, risks could be underestimated when applying the model, since storm interarrival
times tend to be longer than observed, while weather window interarrival times tend to
be shorter.

ANNUAL MAXIMA AND RETURN LEVELS

Many engineering applications require multivariate return levels or simulations of an-
nual maxima of hydro-meteorological variables, for instance design and reliability anal-
ysis of structures. A natural question is therefore, if the time series models could be valu-
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(a)

(b)

Figure 7.2: Boxplots for storm duration and interarrival time of simulated and observed time series.

(a)

(b)

Figure 7.3: Boxplots for weather window duration and interarrival time for simulated and observed time series.
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able for the estimation of return levels. For a general introduction to statistical modeling
of extreme values the reader is referred to [34].

Note that in most years (19 out of 23) the observed annual maximum occurs in win-
ter. The instances, for which this is not the case are listed in table 7.4. All them occur
during the second half of October, where the wave climate is similar to the one in winter,
indicating that using winter time series to estimate annual maxima is justified. Nonethe-
less, we would recommend further research on the definition of the winter period and
its effects on simulated annual maxima.

Table 7.4: Annual maxima that did not occur during the oceanographic winter period

Date Value

25/10/1998 567cm
27/10/2002 636cm
28/10/2013 533cm
21/10/2014 538cm

As an example, Figure 7.4 compares return levels estimated from observed and sim-
ulated annual winter maxima of significant wave heights up to a return period of 100
years. The observed data consists of 23 and the simulated data of 115 winter segments.
The latter correspond to the 5 · 23 simulated winter seasons of section 7.1. The Figure
shows return levels estimated empirically (dots) and by fitting the generalized extreme
value (GEV) distribution (lines).

Figure 7.4: Return levels (RLs) estimated empirically and via a GEV distribution for an observed winter series
(N = 23) and four simulated winter series generated by the different models (N = 100).
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Return levels estimated from time series simulated by models 1a-b are lower than
observed. This could indicate that the models tend to underestimate annual maxima.
Levels from model 1a are the lowest, followed by levels from model 1b, then 1c. Differ-
ences between the models are larger for lower return periods than for higher ones. For
100 years, the return levels seem to approach the same value. Differently, return levels
estimated from time series simulated by model 2 are slightly lower than observed below
return periods of 12 years and slightly higher above.

While return level estimates from models 1c and 2 seem realistic, the application of
the time series models for extreme value problems is not straightforward and requires
further research. One issue related to model 2 is the use of the empirical cumulative dis-
tribution function for an initial transformation of significant wave heights (Section 6.2).
This limits simulated annual maxima to the highest observed in simulated time series
and may artificially bound return level estimates for high return periods (e.g., 1000 years)
from above. Finding a different suitable variable transformation is therefore fundamen-
tal before estimating return values for practical applications.

It is important to realized that the simulated time series are five times longer than
the observed series. Due to this difference, uncertainty on the parameters of the GEV
distribution can be expected to be lower, leading to narrower uncertainty bounds for
the return levels. As an example, Figure 7.5 shows the 90% uncertainty bands for return
levels of series that have been observed and simulated by model 1c. As the bands do
not account for uncertainty related to model 1c, they are likely overconfident estimates
of the uncertainty bands for return levels. Hence, further research is required on time
series model uncertainties before applying them to practical extreme value problems.

Figure 7.5: 90% uncertainty interval on GEV estimates for return levels based on the observed winter series
(N = 23) and the simulated winter series from model 1c (N = 115).
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7.2. MODEL LIMITATIONS

MODEL UNCERTAINTY AND SENSITIVITY

Temporal Vine-copula Method Sections 5.3 and 7.1 have shown that the simulation
results are highly sensitive to the choice of the parameter ρt ,t+1. Other parameters, also
of other vine configurations, have not been investigated. Neither did we explore sam-
pling fluctuations in the estimates for ρt ,t+1 or any of the other parameters. These also
depend on the number of samples from which they are estimated. Two factors influence
the number of samples: (1) length of the available data record and (2) the selected sub-
sampling interval (cf. Section 5.1). Both could be varied to investigate the influence of
sample size. Furthermore, the model structure, including the assumption of 1st order
Markov property, is likely to an influence. For instance, Solari and Losada [157] found
that a temporal vine-copula model with 2nd order Markov property outperformed an
ARMA(23,23) model in terms of storm persistency when applied to a time series data set
of three-hourly significant wave heights in Spain. However, the results from Solari and
Losada’s study are not directly translatable to the present research and further research
in this direction is recommended.

ARMA Method While developing the method, we noticed that results are very sensi-
tive to the choice of initial variable transformation. For example, a logarithmic variable
transformation would result in simulated wave heights in the order of magnitude of 30m.
This was mentioned in Section 6.2, although results were not presented at length. Sen-
sitivity to other modeling choices or to parameter uncertainty has not yet been explored
and remains a topic for further research.

Parameter uncertainty itself has not been investigated in depth either, but prelimi-
nary results are available for the autoregressive parameters of the AR(3) model for signif-
icant wave heights. In Figure 7.6 parameter estimates obtained individually for each year
in the period 2003 - 2014 are indicated as circles in different colors. (Table 6.5 showed the
parameters as estimated over the entire period.) Additionally, 90% uncertainty intervals
for the parameter estimates of the year 2003 are shown indicating that differences be-
tween years are larger than sampling fluctuations. The uncertainty interval is obtained
via 100 bootstrap samples of the same length as the observed series. Main open ques-
tions are (1) how sensitive simulation results would be to variations in the parameters in
the order of magnitude displayed in Figure 7.6 and (2) what the underlying drivers are.

INCORPORATION OF ADDITIONAL VARIABLES

While the two methods have been specifically developed to simulate time series of signif-
icant wave height and mean zero-crossing period, they could also be adapted for other
or extended to include additional variables. In fact, the present research was inspired
by previous applications of similar methods to multiple financial variables [e.g., 26, 164].
Hence, examples of similar methods to other sets of variables already exist.

For offshore environments, wind speed would be a valuable addition. For coastal en-
vironments, surges as well as wave direction with a resolution of nautical degrees would
be of interest [see 178, and references therein]. However, adaptation of one of the meth-
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Figure 7.6: Parameter estimates of AR(3) models for significant wave heights for individual years in the period
2003 - 2014 (colored circles) and 90% bootstrap uncertainty band for the estimates of the year 2003 (boxplots
with whiskers indicating the 90% uncertainty band).

ods to other or additional variables may be a research task of similar scope as presented
for that method in this thesis, at least for hydro-meteorological variables. The reason is
that each new type of process will come with its own physical properties and relations to
other variables, posing unique challenges for the adaptation of a statistical model.

TRANSFERABILITY TO OTHER LOCATIONS

The methods could be transferred to other locations, but, again, this is not necessarily
straight forward. Waves are generated by physical processes on different spatial scales.
Local and regional meteorological variables and bathymetry play a role in the wave gen-
eration and propagation. For locations with similar properties, in terms of climate and
bathymetry, the adaptation of the methods can be expected to be easier than for loca-
tions with very different properties. For instance, we have used the wave direction as
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a predictor for swell-dominant or wind-sea dominant waves, which was unique for the
location in the Southern North Sea (Figure 5.1).

7.3. KEY POINTS

This chapter compared the two simulation methods developed in the previous two chap-
ters and pointed towards some of their limitations. Models based on either method have
the potential to generate realistic time series of significant wave height and mean zero-
crossing period. More precise results of the comparison are the following:

• The representation of the bivariate distribution of time series data is adequate in
both cases.

• In terms of persistency, model 2 seems to be more versatile than models 1a-c, be-
cause its performance is more consistent for different thresholds.

• Return level estimates of model 1c and 2 for annual winter maxima of significant
wave heights are realistic as well. Although model 2 should not be applied for ex-
treme value purposes before substituting the empirical distribution function used
in the simulation methods by a suitable parametric alternative. When simulating
longer synthetic time series than observed, the uncertainty bound for return level
estimate may decrease. However, these bounds are likely to be over-confident,
if model uncertainty of the simulation method is not taken into account. In this
context an uncertainty and sensitivity analysis is recommended.

While both methods are generally suitable to generate time series that exhibit statis-
tical features relevant for coastal and offshore risk analysis, additional variables would
need to be included for many applications. For offshore operation, wind speeds are often
central, while coastal risk analysis or the prediction of longterm morphological changes
require surges and precise wave angles. Furthermore, the methods are location-specific,
although they potentially can be adapted to other locations.
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8
MAIN CONTRIBUTIONS

The present study investigated the adaptation of selected multivariate probabilistic meth-
ods for risk analysis and decision making in coastal and offshore environments. In par-
ticular, this thesis developed a BN framework for decision support on risk reduction ef-
forts in coastal areas and statistical simulation methods for wave conditions using tem-
poral vine-copulas or ARMA processes. Detailed conclusions to the five research objec-
tives, which were introduced in at the beginning of this thesis in Section 1.4 and num-
bered 1, 2, 3a, 3b and 4, are given below.

1. Design a BN framework for decision support on risk reduction efforts in coastal en-
vironments

Emergency management and long-term planning in coastal areas depend on detailed
assessments (meter scale) of flood and erosion risks. Typically, models of the risk chain
are fragmented into smaller parts, because the physical processes involved are very com-
plex and consequences can be diverse. For example, multivariate probability models can
be used to estimate the return periods of extreme storms, numerical models, based on
hydro- and morphodynamic processes, to assess the respective natural responses of the
coast and extent of flooding, and behavior or statistical models to estimate the diverse
and complex consequences onshore. Chapter 3 developed an approach to integrate re-
sults from the separate models using a BN.

An important contribution is the learning algorithm for the BN, which integrates out-
put from synthetic and historical hydro-and morphodynamic storm simulations (2D)
with land use data, vulnerability relationships (e.g., depth-damage curves) and risk re-
duction measures. An executable for Windows systems and documentation is also pro-
vided. The core of the algorithm builds on SMILE, which is a reasoning engine for graph-
ical models. It is available free of charge for academic research and teaching use from
BayesFusion, LLC, http://www.bayesfusion.com/. The algorithm is programmed in C++
and openly available at: https://github.com/openearth/coastal-dss .

As part of the RISC-KIT (Resilience-Increasing Strategies for Coasts toolKIT) project,
we successfully tested the approach and algorithm in a range of morphological settings.
In this thesis, we describe the application to the town of Wells-next-the-Sea, Norfolk, UK,
which is vulnerable to storm surges. For any storm input event, the BN estimated the
percentage of affected receptors in different zones of the site by predicting their hazards
and damages. Receptor types under consideration were people, residential and com-
mercial properties, and a salt marsh ecosystem. Additionally, the BN displayed the out-
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come of two structural risk reduction measures, the raising and extending of a flood wall,
and a soft measure, the setting up of educational display boards. BN output showed, for
example, that extending the length of the existing flood wall can be more effective for im-
pact reduction across the variety of storm events that were considered than increasing
its height.

The application illustrates that the developed BN framework fulfills its design objec-
tives and makes it possible to

• apply it to any coastal site,
• predict impacts for any relevant storm event instantly,
• reflect the diversity of impacts (e.g., socio-economic and environmental aspects),
• reflect the spatial variability of impacts,

and
• evaluate the performance of risk reduction measures under different storm events.

With these capabilities, BNs can form a comprehensive and concise representation of
risk propagation in a complex system of physical, ecological and human components.
BNs can also be integrated in operational forecasting systems. From a practical point
of view, their integrative character, together with the capability to predict in real-time,
makes the BN a helpful tool for decision makers. From a scientific point of view, the
model development approach emphasizes how results from multiple disciplines must
be connected in order to understand risks and can provide an objective basis for choos-
ing risk reduction measures.

2. Indicate limitations of the BN framework and methods for improvement
Currently, the BN framework has a number of limitations, which could be remedied.

Important cases ware identified in Chapter 4 and are enumerated below:

1. The basic BN graph structure is generic for all applications and makes simplify-
ing assumptions on independence and conditional independence between vari-
ables. While they have no effect on hazard and impact predictions for a given
storm event, they may limit the BNs applicability to ensemble forecasting or di-
agnostic reasoning.

2. In each application, the discretization of boundary condition (BC) and receptor
(R) nodes has been chosen ad hoc by local experts. The discretization’s effect on
predictions for hazard (H) and consequence (C) nodes has not been assessed sys-
tematically.

3. Model validation has been performed through expert knowledge. A formal method
has not yet been implemented.

4. The BNs are built from synthetic data, since field observations are generally lack-
ing due to rare occurrences of relevant events. Therefore, the validity of BN pre-
dictions depends on the validity of the underlying data-generating models. At
present, imperfections of those models have not been considered.

In Chapter 4 we reasoned that limitations 2-4 could mostly be addressed by imple-
menting a metric for BN precision, assuming the primary use of the BN would be ensem-
ble mean prediction of affected receptor proportions under uncertain storm conditions.
The metric would represent error bands for predicted proportions of affected receptors
through cross-validation. The metric could
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• assess a BN’s validity for application in emergency management or long-term plan-
ning (if a maximum error has been specified by the model user),

• represent uncertainties in the underlying training data (if these have been made
available to the BN in the training phase),
and

• constitute an optimality criterion for the discretization of BC nodes.

A second metric of spatial informativeness has been proposed to serve as an optimal-
ity criterion for the discretization of R nodes. According to this criterion, receptors are
grouped into the same spatial zone, when they tend to experience similar hazard intensi-
ties. This maximizes spatial informativeness, even though the BN’s resolution is limited
to a few zones rather than the individual locations of hundreds or thousands of recep-
tors.

3.a) Develop a statistical simulation model for joint time series of wave parameters at
hourly resolution based on temporal vine-copulas

Many engineering applications call for the generation of synthetic time series of wave
conditions at high temporal resolution (in the order of one hour). Chapter 5 showed
for data set in the Southern North Sea that temporal vine-copulas can be a suitable
method to simulate time series of significant wave height and mean zero-crossing pe-
riod. Nonetheless, selecting a vine structure, finding appropriate copula families and
estimating parameters is not straightforward. The validity of the model, as well as the
conclusions that can be drawn from it, are sensitive to these choices.

The simulation model was developed for oceanographic winter periods to bypass
considerations on seasonal effects. The assumption on stationarity, together with the
first order Markov property, enabled a parsimonious representation of the temporal bi-
variate process as a vine-copula based on five bivariate copulas and two marginal dis-
tributions. In the model the serial dependence between subsequent significant wave
heights as well as the cross-serial dependence between significant wave heights and
mean zero-crossing periods at the same time were modeled unconditionally. Differently,
the serial dependence between subsequent mean zero-crossing periods was modeled
conditionally on the significant wave heights at the corresponding times.

The family of skew-t copulas has been found to adequately capture cross-serial de-
pendence, in particular tail dependence and asymmetry resulting from the limiting wave
steepness condition. While this bivariate copula is a building block for the temporal
vine-copula, it could also be applied outside a time series context to construct a bivariate
distribution of significant wave height and mean zero-crossing period. This is a valuable
by-product of the approach.

3.b) Develop a statistical simulation model for joint time series of wave parameters at
hourly resolution based on ARMA models

For the same data set in the Southern North Sea, Chapter 6 showed that ARMA mod-
els are also useful for simulating bivariate time series of significant wave heights and
mean zero-crossing periods. Nevertheless, the modeling scope was different to the vine-
copula approach on two aspects: (1) non-stationary behavior on annual and inter-annual
scale was addressed and (2) the influence of the wave direction on the marginal as well
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as joint behavior of significant wave height and mean zero-crossing periods has been
included. However, the modeling of the wave direction was simplified by assuming a
categorical variable with two possible values, north and southwest. Hence, the entire
angular domain was represented by two pre-defined directional sectors.

The data analysis confirmed that Fourier series are suitable to represent seasonal cy-
cles in mean and standard deviation on annual and semi-annual scales, as previously
reported by other studies. Additionally, variations in the cycles across years as well as a
relation between the seasonal cycles of significant wave height and mean zero-crossing
could be detected, when estimating Fourier series for individual years, despite the sam-
ple size being small (N=24, which is the length of the data record in years). These varia-
tions and dependencies were reproduced in the simulated time series by using a multi-
variate Gaussian distribution on the Fourier coefficients.

Univariate time series were modeled as ARMA processes and cross-serial dependen-
cies were represented with additional methods. For the present data set, cross-serial de-
pendence could be adequately captured by modeling parts of it in three different steps:

• A data-driven equation for the limiting wave steepness condition,
• a multivariate Gaussian distribution of Fourier coefficients,

and
• a bivariate distribution, constructed via a copula, of ARMA residuals related to sig-

nificant wave height and mean zero-crossing period.

Time series of the wave direction regime could be represented by a binary seasonal
renewal process. The wave direction regimes were used to trigger regime switches in
the joint distribution of ARMA residuals. While this resulted in differences between the
bivariate distributions of simulated significant wave height and mean zero-crossing pe-
riod when conditioned on the northern and southwestern regime, they were not as pro-
nounced as in observed data. Nonetheless, the unconditioned bivariate distribution of
significant wave height and mean zero-crossing periods was represented adequately.

4. Compare performance of the simulation models Both methods are suitable for
generating synthetic time series of significant wave height and mean zero-crossing pe-
riod. The methods can be flexibly applied in different contexts, as simulated time series
emulate storms as well as calm periods. This is shown by analysing their persistency
proper above high and below thresholds. For example, such methods could be applied
to generate synthetic storm events as input for BN framework developed in this thesis
or other approaches to coastal risk analysis. The methods could also be applied to esti-
mate the duration of coastal or offshore operations that are sensitive to particular wave
height and period limits. Nonetheless, an uncertainty and sensitivity analysis is required
to validate models built according to either of the methods for a given application.
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RECOMMENDATIONS

Recommendations are given separately for the BN framework for decision support on
risk reduction efforts in coastal areas and the simulation methods for time series of wave
conditions.

BN FRAMEWORK FOR DECISION SUPPORT ON RISK REDUCTION EFFORT

A number of possible future research directions were given as main contribution of Chap-
ter 4, whose objective was to indicated limitations of the BN framework and methods for
improvement, and summarized in Chapter 8. We have the following main recommen-
dations for implementing and verifying those methods effectively:

1. Intended model end users should be involved in all stages of the model devel-
opment process to ensure that their needs are met. A number of aspects can be
optimized via mathematical models. These are the choice of model structure, the
generation of a representative set of synthetic storm events for BN training, and
the discretization of boundary condition or receptor nodes. However, especially
the latter two require the definition of an optimization criterion and it can be de-
batable how to choose it. This issue can be resolved by eliciting such criteria from
end users. This may also clarify instances in which mathematical optimization of
some sense is not desired due to external factors. For example, end users might
prefer to adhere to known administrative zones, even though the BN could make
"better" predictions when a different geographic division is used.

2. Especially for verifying the proposed methods for improvement, it is essential to
use a case study with data of high quality and quantity.

3. As the validity of the BN (and of any similar tool) depends on the validity of un-
derlying data-generating models, further research should be directed at improv-
ing them and assessing their uncertainties. Models of interest include numerical
hydro- and morphodynamic models as well as the vulnerability relationships.

STATISTICAL SIMULATION METHODS FOR TIME SERIES OF WAVE CONDITIONS

The main recommendations pertaining to Part III of this thesis are the following:

1. The model development process has shown that simulation results can be sen-
sitive to existing structural uncertainty and parameter uncertainty. A sensitivity
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and uncertainty analysis is therefore recommended. For the temporal vine-copula
method, a particular question of interest is, if a model with 2nd order Markov prop-
erty would be less sensitive to parameter uncertainty and have improved persis-
tency characteristics. For the ARMA method, the choice of initial variable transfor-
mation should be further investigated, including a probability integral transform
(PIT) with a non-stationary distribution function. A second order Markov property
as well as a PIT with a non-stationary distribution function have been reported
useful by Solari and Losada [157] for a similar univariate application.

2. Time series of significant wave height and mean zero-crossing periods are often
necessary, but not sufficient, as input for risk analysis in coastal and offshore en-
vironments. Further research should be directed at the the inclusion of additional
hydro-meteorological variables. For example, wind speeds are of interest for off-
shore operations, while surges and precise wave directions central to coastal risk
analysis and predictions of long-term morphological change.

3. Drivers for inter-year variations in wave climate have not been investigated. We
recommend to examine, if climatic covariates have predictive skill for inter-year
differences, as this was the case in similar studies [43, 114, 115, 150].

4. For the data set in the Southern North Sea, the joint behavior of significant wave
height and mean zero-crossing period depended on the directional regime (North
or Southwest). By introducing regime-switches in the joint residual distribution
only minor differences in joint behavior of simulated data could be produced. Fur-
ther research should be directed at extending the simulation method as to better
capture these differences.

5. It is recommended to explicitly model wind sea significant wave height and mean
zero-crossing period as well as swell significant wave height and mean zero-crossing
period, if the corresponding data can be obtained. We would expect this to be
more accurate than using a wave direction regime as an indicator for wind sea and
swell conditions and corresponding differences in the joint distribution. Further-
more, the approach could be more easily transferable to locations where the wave
direction has little predictive skill on wind sea and swell conditions.
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A
LEARNING ALGORITHM FOR THE

CONDITIONAL PROBABILITY TABLES OF

HAZARD NODES

Table A.1: Nomenclature for CPT learning

Super- or Subscripts
n simulation index
bc boundary condition index
m DRR measure index
r receptor type index
h hazard index
pa parent set

Variables
Xbc boundary condition bc
Xm DRR measure m
Xr receptor type r
Xhr hazard h for receptor type r
E experience matrix

Constants
Sbc number of states of Xbc

Sm number of states of Xm

Sr number of states of Xr

Shr number of states of Xhr

Let Xhr denote a hazard node for receptor type r with states shr = 1, ...,Shr . We denote
DRR measures, boundary conditions and receptors analogously using the subscripts m,
bc and r (cf. Table A.1).

Before learning the CPT, we introduce an experience matrix, E , of size Sbc×Sm∈pa(hr ).
Sbc is the vector of number of states of all boundary conditions and Sm∈pa(hr ) is the vector
of the number of states of DRR measures in the parent set of Xhr . Before learning, all

115



A

116
A. LEARNING ALGORITHM FOR THE CONDITIONAL PROBABILITY TABLES OF HAZARD

NODES

entries are 0. For each simulation n we set

E (n)[s(n)
bc ,s(n)

m∈pa(hr )] = E (n−1)[s(n)
bc ,s(n)

m∈pa(hr )]+1. (A.1)

Here, s(n)
bc and s(n)

m∈pa(hr ) denote the states of X(n)
bc and X(n)

m∈pa(hr ) in simulation n. Then, we

compute, for each sr and shr ,

Pr (n)(Xhr = shr | Xbc = s(n)
bc ,X(n)

m∈pa(hr ) = s(n)
m∈pa(hr ), Xr = sr )

=

m(n)
sr ,shr
mr

+p(n−1)

Xhr |X(n)
bc ,X(n)

m∈pa(hr ),Xr
·E (n−1)[s(n)

bc ,s(n)
m∈pa(hr )]

E (n)[s(n)
bc ,s(n)

m∈pa(hr )]
,

(A.2)

where m(n)
sr ,shr

is the number of receptors of type r in zone sr that experience hazard Xhr

in state shr in simulation n. Further, we used p(n−1)

Xhr |X(n)
bc ,X(n)

m∈pa(hr ),Xr
to denote Pr (n−1)(Xhr =

shr | Xbc = s(n)
bc ,X(n)

m∈pa(hr ) = s(n)
m∈pa(hr ), Xr = sr ). Thus, according to equation A.2, the CPT

entries represent average proportions of receptors of type r subjected to shr over all sim-
ulations with identical states for boundary conditions and DRR measures.



B
BN FOR WELLS-NEXT-THE-SEA IN GENIE

As graphical user interface for the BNs we used GeNIe, which is available free of charge
for academic research and teaching use from BayesFusion, LLC, http://www.bayesfusion.com/.
Because the state names of the nodes in GeNIe must be strings with no spaces and no
symbols, we resorted to special characters to represent positive or negative values, deci-
mals and ranges (Table B.1).

Figure B.1 shows the quantified BNs with its prior distributions and Figure B.2 shows
the quantified BN conditioned on the states corresponding to a 1 in 100 year return
storm (water level =4.41m; wave height =2.17m).

Special character Meaning
p +
m −
_ .

__ to

Table B.1: Special characters used in state names in GeNIe
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Figure B.1: Bayesian Network for Wells-next-the-Sea with prior distributions



B

119

Figure B.2: Bayesian Network for Wells-next-the-Sea showing a 100 year return period event





C
SAMPLING ALGORITHMS FOR

VINE-COPULAS

This appendix presents the sampling algorithms for the three vine-copulas that have
been used in this article. Conditional copulas are denoted by the following h-function:

h(u, v,θ) = ∂Cu,v (u, v,θ)

∂v
, (C.1)

where u, v,∈ [0,1] and θ denotes the set of parameters for the copula of the joint distri-
bution function of u and v . Thus, the second parameter of h(·) always corresponds to
the conditioning variable. The inverse of the h-function with respect to u is denoted by
h−1 and corresponds to the inverse conditional copula. We recall that n is the number
of variables and k is the order of the Markov property.

Algorithm 1 (modified COPAR for n = 2 and k = 1)

1. Simulate 2T random variates s1, ..., s2T from U (0,1).

2. Set x(1)
1 = s1

3. Set x(2)
1 = h−1(s1, x(1)

1 ,θX (1)
t ,X (2)

t
).

For i = 2, ...,T :

4. Set x(1)
i = h−1(h−1(s2i−1,h(x(2)

i−1, x(1)
i−1),θX (1)

t ,X (1)
t+1|X (1)

t
), x(1)

i−1,θX (1)
t ,X (2)

t
)

5. Set x(2)
i = h−1(h−1(h−1(s2i ,h(h(x(2)

i−1, x(1)
i−1,θX (1)

t ,X (2)
t

),h(x(1)
i , x(1)

i−1,θX (1)
t ,X (1)

t+1
),

θX (2)
t ,X (1)

t+1|X (1)
t

),θX (2)
t ,X (2)

t+1|X (1)
t ,X (1)

t+1
)θX (1)

t ,X (1)
t+1

), x(1)
i−1,θX (2)

t+1,X (1)
t

)

Algorithm 2 (Alternating D-Vine for n = 2 and k = 1)

1. Simulate 2T random variates s1, ..., s2T from U (0,1).

2. Set x(1)
1 = s1.

3. Set x(2)
1 = h−1(s2, x(1)

1 ,θX (1)
t ,X (2)

t
).

For i = 2, ...,T :
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4. Set x(1)
i = h−1(h−1(s2i−1,h(x(1)

i−1, x(2)
i−1,θX (1)

t ,X (2)
t

),θX (1)
t+1,X (1)

t |X (2)
t

), x(2)
i−1,θX (1)

t+1,X (2)
t

)

5. Set x(2)
i = h−1(h−1(h−1(s2i−2,h(h(x(1)

i−1, x(2)
i−1,θX (1)

t ,X (2)
t

),h(x(1)
i , x(2)

i−1,θX (1)
t+1,X (2)

t
),

θX (1)
t ,X (1)

t+1|X (2)
t

),θX (1)
t ,X (2)

t+1|X (2)
t ,X (1)

t+1
),h(x(2)

i−1, x(1)
i ,θX (2)

t ,X (1)
t+1

),θX (1)
t ,X (2)

t+1|X (1)
t+1

), x(1)
i ,

θX (2)
t ,X (1)

t
)

Algorithm 3 (Branching D-vine for n = 2 and k = 1)

1. Simulate 2T random variates s1, ..., s2T from U (0,1).

2. Set x(1)
1 = s1.

3. Set x(2)
1 = h−1(s2, x(1)

1 ,θX (1)
t ,X (2)

t
)

4. Set x(1)
2 = h−1(h−1(s3,h(x(2)

1 , x(1)
1 ,θX (1)

t ,X (2)
t

),θX (1)
t+1,X (2)

t |X (1)
t

), x(1)
1 ,θX (1)

t ,X (1)
t+1

)

5. Set x(1)
2 = h−1(h−1(h−1(s4,h(h(x(1)

2 , x(1)
1 ,θX (1)

t+1,X (1)
t

),h(x(2)
1 , x(1)

1 ,θX (2)
t ,X (1)

t
),

θX (1)
t+1,X (2)

t |X (1)
t

),θX (1)
t+1,X (2)

t+1|X (1)
t ,X (2)

t
),h(x(1)

1 , x(2)
1 ,θX (1)

t ,X (2)
t

),θX (1)
t+1,X (2)

t+1|X (2)
t

), x(2)
1 ,

θX (2)
t+1,X (2)

t
)

For i = 3, ...,T :

6. Set x(1)
i = h−1(s2i−1, x(1)

i−1,θX (1)
t ,X (1)

t+1
)

7. Set x(2)
i = h−1(h−1(s2i ,h(x(1)

i , x(1)
i−1,θX (1)

t+1,X (1)
t

),θX (1)
t+1,X (2)

t+1|X (1)
t ,X (2)

t
), x(2)

i−1,θX (2)
t+1,X (2)

t
)



D
BACKGROUND ON SELECTED COPULA

FAMILIES

D.1. TAWN

The Tawn copula [165] is an asymmetric extension of the Gumbel copula and its cdf is
given by

C (u1,u2) = exp{log(u1u2)A

(
log(u1)

log(u1u2)

)
}, u1,u2 ∈ [0,1], (D.1)

where A(t ) = 1−β+ (β−α)t + {αr t r +βr (1− t )r }
1
r , 0 ≤α, β≤ 1, 1 ≤ r <∞, t ∈ [0,1]. Two

simplified versions of the Tawn copula with two parameters each are implemented in R’s
VineCopula package [148]. They are called "Tawn type 1" and "Tawn type 2" and have
one of the asymmetry parameters fixed to 1 such that the dependence is either left- or
right-skewed.

D.2. GAMMA 1-FACTOR MODEL

A bivariate gamma 1-factor model has the form

X j = Z0 +Z j , j = 1,2, (D.2)

where Z0, Z1 and Z2 are independent gamma distributed variables with shape parame-
ters θ1, θ2 and θ3 and scale parameters all equal to 1. The copula cdf is [85, p.211]

Cθ1,θ2,θ3 (u1,u2) = F (F−1
θ0+θ1

(u1),F−1
θ0+θ2

(u2)), u1,u2 ∈ [0,1]. (D.3)

Here F is the joint cdf of X1 and X2, while Fθ0+θ1 and Fθ0+θ2 are the marginal distribution
functions of X1 and X2 obtained by convoluting the marginal distributions functions of
Z0, Z1 and Z2. This model is implemented in the R’s CopulaModel package [86].

D.3. SKEW-T

The skew-t copula derives from the skew-t distribution, which is a normal mean vari-
ance mixture. While several formulations exist, only the formulation by Azzalini and
Capitanio [10] is considered here. For this formulation an estimation procedure based
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on maximum likelihood has been developed by Yoshiba [191], who also published the
corresponding R code. The copula cdf is given by

Cρ,δ1,δ2,ν(u1,u2) = St (St−1
1 (u1;0,1,δ1,ν),St−1

2 (u2;0,1,δ2,ν);0,ρ,α,ν), u1,u2 ∈ [0,1],
(D.4)

where St is the multivariate skew-t distribution with correlation parameter ρ, a trans-
formed skewness vector α and degrees of freedom ν. St1 and St2 are the univariate mar-
gins of this distribution and δ1 and δ2 are the respective skewness parameters.
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