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Model-independent noise-robust extension of
ptychography

A. P. KONIJNENBERG,1,* W. M. J. COENE,1,2 AND H. P. URBACH1

1Optics Research Group, Imaging Physics Department, Delft University of Technology, The Netherlands
2ASML Netherlands B.V., Veldhoven, The Netherlands
*a.p.konijnenberg@tudelft.nl

Abstract: A noise-robust extension of iterative phase retrieval algorithms that does not need
to assume a noise model is proposed. It works by adapting the intensity constraints using the
reconstructed object. Using a proof-of-principle ptychographic experiment with visible light
and a spatial light modulator to create an object, the proposed method is tested and it compares
favorably to the Extended Ptychographic Iterative Engine (ePIE) with reduced step size. The
method is general, so it can also be applied to other iterative reconstruction schemes such as
phase retrieval using focus variation.
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (110.1758) Computational imaging; (110.4280) Noise in imaging systems; (100.5070) Phase retrieval;
(100.3190) Inverse problems.
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1. Introduction

Ptychography [1] has recently been proven to be a very promising technique to image objects
ranging from biological samples [2] to semiconductor structures [3] in both the visible light
regime [4,5], as well as in the extreme ultraviolet (EUV) [6], X-ray [3,7], and electron regimes [8].
In this method, multiple intensity patterns are recorded, from which the object is reconstructed
computationally using an iterative algorithm. Since the object is recorded from a series of intensity
patterns, it is important that these patterns are recorded with a sufficiently high signal-to-noise
ratio (SNR).
For both regular [1] and Fourier ptychography [5], the effects of noise in the intensity

measurements on the object reconstruction have been studied, and to make the reconstruction
algorithm more noise robust several methods have been proposed, most of which rely on choosing
the right cost function to minimize [9], sometimes combined with a regularization scheme [10].
One choice for the cost-function is the log-likelihood cost function which can be derived from
a maximum-likelihood principle [10, 11]. In this scheme, one needs to assume a certain noise
model and maximize the likelihood of obtaining the measured intensity patterns by minimizing
the negative logarithm of the likelihood function. A very good initial guess is required, or some
regularization to prevent divergence is necessary [10, 11].
An alternative method uses variance stabilizing transforms [12–14]. Also in this scheme a

noise model needs to be assumed. In the noise model, the variance of the measured intensity
depends on its expectation value, but by applying a variance stabilizing transform, the variance
becomes approximately independent of the noise-free intensity value. It can be shown that the
cost function using the variance stabilizing transform closely approximates the log-likelihood
cost function [14]. However, the update function derived from the log-likelihood cost function
can diverge, which would therefore require some additional regularization, whereas the cost
function using a variance-stabilizing transformation for Poisson noise does not suffer from such
instabilities. Another way to reliably increase noise-robustness is to simply reduce the step size
of the update function [15].
We propose an extension to the ptychographic algorithm that can be applied to any of the

aforementioned algorithms [10–14], does not require an assumed noise model, and works by
adapting the intensity constraints. We test the algorithm with a proof-of-principle experiment in
the visible light regime where we use a phase-only Spatial Light Modulator (SLM) to create and
shift the object. The proposed algorithm is shown to compare favorably to regular ePIE [16] with
reduced step size combined with a position correction scheme [17]. Note that the idea behind
this algorithm is not necessarily restricted to ptychography, but could also be applied to other
reconstruction schemes where a field is reconstructed from multiple intensity measurements,
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such as for example a through-focus scan or similar scans [18].

2. Noise robust ptychographic algorithms

Previous proposals for noise robust ptychographic algorithms mainly revolved around assuming
a known noise model, and using a maximum-likelihood optimization scheme [10, 11] or a
variance-stabilizing scheme [12–14] to construct a cost function which, when minimized, yields
a superior reconstruction, because prior knowledge of the noise model has been incorporated. In
this section, we discuss the methods in more detail to see where there is room for improvement in
these reconstruction schemes, which is what motivated the development of the algorithm that is
proposed in this article.

2.1. Maximum likelihood scheme

Let us start by describing the problem posed in ptychography when noise is present. We have
an unknown complex-valued object O(x) that we want to estimate with Oest(x). Here, x is a
two-dimensional position vector in object space. The object is illuminated with a known probe
P(x) that is shifted to different positions X. We denote the noise-free diffraction pattern intensities
by

mX(u) = |F{O(x)P(x − X)}(u)|2 , (1)
and the estimated diffraction patterns by

zX(u) = |F{Oest(x)P(x − X)}(u)|2 . (2)

Here, F{·} denotes the Fourier transform, and u denotes a two-dimensional position vector in
diffraction space. We assume that u is discrete due to the pixelation of the detector. We denote
the measured noisy diffraction patterns by yX(u). The problem that needs to be solved is: how do
we find an estimated object Oest(x) that matches the noise-free diffraction patterns mX(u), while
only noisy diffraction patterns yX(u) are given?
The reasoning behind the maximum-likelihood optimization scheme is the following. We

assume that yX(u) obeys a certain noise model. For example, if we assume Poissonian noise, then
the probability that we measure a certain intensity y given a noise-free intensity m is

P(y |m) = mye−m

y!
. (3)

The total probability that we measure the data set yX(u) is given by

Ptot[mX(u)] =
∏
X,u

P(yX(u)|mX(u)), (4)

assuming that the noise at each pixel is uncorrelated. We then try to find Oest such that Ptot[zX(u)]
is maximized, or equivalently, such that − log Ptot[zX(u)] is minimized. Thus, we define the cost
function

L[Oest(x)] = − log Ptot[zX(u)]

=
∑
X,u

zX(u) − yX(u) log zX(u) + log yX(u)!. (5)

Here, the term
∑

X,u log yX(u)! is independent of zX(u), so it can be omitted. The ptychographic
algorithm is then constructed by minimizing L[Oest(x)] using an optimization scheme, which is
commonly the steepest-descent scheme. In the steepest-descent scheme, Oest(x) is updated using
the Wirtinger derivative of the cost function

Oest(x) := Oest(x) − µ
dL

dOest(x)∗
. (6)
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The derivative of Eq. (5) may diverge. One way to remedy that is to assume that zX(u) ≈ yX(u)
when we have a good object estimate (i.e. Oest(x) ≈ O(x)), so that we can Taylor expand Eq. (5)
in terms of

√
zX(u) around the point

√
zX(u) =

√
yX(u), which gives [11]

z − y log z ≈ y − y log y + 2
(√

z − √y
)2
. (7)

Thus, ignoring irrelevant additive and multiplicative constants, we can define the cost function

L[Oest(x)] =
∑
X,u

(√
zX(u) −

√
yX(u)

)2
. (8)

This is the amplitude-based cost function that is used to derive regular PIE and ePIE, which
supports the claim that regular ePIE is optimized to deal with Poisson noise.

2.2. Variance stabilization scheme

Another way to look at the problem is from the perspective of variance stabilization. For example,
consider the intensity-based cost function

L[Oest(x)] =
∑
X,u
(zX(u) − yX(u))2 . (9)

If we again assume that yX(u) is drawn from a Poisson distribution, then for larger yX(u) we
expect a larger error (mX(u) − yX(u))2, and therefore the cost function weighs the pixels with
high intensity more strongly than pixels with low intensity. If we want each pixel to have equal
weight regardless of its measured intensity, we need to apply a transformation so that the expected
error is independent of the measured intensity, which is a variance-stabilizing transformation.
For Poisson noise, this transformation is taking the square-root, which leads once more to the
amplitude-based cost functional of Eq. (8). It has been proposed to use other variance-stabilizing
transforms, such as the Anscombe transform [14].

We have seen that the amplitude-based cost function in Eq. (8) can be derived either by using a
Maximum-Likelihood approach that aims to find an object for which the probability of obtaining
the measured intensity patterns is maximized, or by using a variance-stabilizing approach that
aims to make the variance the same for each pixel regardless of its measured intensity. Even
though these two approaches appear to be very different, it can be shown that the Maximum
Likelihood approach is also a way to make the probability distribution the same for each pixel
regardless of its measured intensity value. If P(y |m) denotes the probability we measure a noisy
value y given a noise-free value m, then we can use Bayes’ rule to calculate the probability
P(m|y) that m is the noise-free value if we measure a noisy value y [19]

P(m|y) = P(y |m)P(m)
P(y) . (10)

We now want to find a transformation Ty such that Ty(m) is normally distributed with mean 0 and
standard deviation 1, independently of the measured intensity value y

P(m|y) = e−Ty (m)
2/2

√
2π

. (11)

The cost function we then want to minimize is

L[Oest(x)] =
∑
X,u

Ty(zX(u))2. (12)
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We can solve for Ty(m)2

Ty(m)2 = −2
(
log
√

2π + log P(m|y)
)

= −2
(
log
√

2π + log P(y |m) + log P(m) − log P(y)
)
.

(13)

This expression for Ty can be plugged into Eq. (12). If we assume we have no prior information
about m (so P(m) is independent of m), and we ignore all irrelevant additive constants that are
independent of z, and we ignore global multiplicative constants, we find the cost function

L[Oest(x)] = −
∑
X,u

log P(yX(u)|zX(u)), (14)

which is the negative log-likelihood function as used in the maximum-likelihood method.

2.3. Discussion

We have seen that the maximum-likelihood schemes and variance-stabilizing schemes aim to
construct a cost function that gives equal weight to pixels with low intensity and pixels with high
intensity. It has been demonstrated that this is important in Fourier ptychography because the
dark-field images which carry information about the high spatial frequencies of the object have a
very low intensity compared to the bright-field images [9]. However, in regular ptychography such
a distinction is absent (although there may be a large dynamic range in each single measurement,
depending on what illuminating probe function one uses), and it has even been suggested to give
pixels with a higher signal-to-noise ratio (which for Poisson noise are the pixels with higher
intensity) more weight [20].
There is still some room for improvement in these schemes because all these cost functions

push the algorithm towards the solution for which zX(u) = yX(u) which we know almost certainly
to be wrong. After all, if yX(u) is randomly distributed, the probability that yX(u) = mX(u) for
all X and u is extremely small, so we expect that for the true solution Oest(x) = O(x) that L , 0,
even though the aforementioned algorithms try to achieve L = 0.

Another way to think about it is that in Eq. (13) we assumed that we have no prior information
P (mX(u)) about the probability that a certain noise-free intensity value is mX(u). However, with
all the overlap constraints in ptychography, there is in fact some information about this probability.
For example, consider a probe position X and all its adjacent probe positions. If we measure
certain intensity patterns for the adjacent probe positions, then the intensity pattern we measure
for probe position X is not completely arbitrary, which means P(mX(u)) is not independent of
mX(u). More specifically, one could create an object reconstruction using the intensity patterns for
all probe positions except X, and then use that object estimate to give a rather accurate prediction
of mX(u) that can be used to update P(mX(u)). By including this term in the cost function as
prescribed by Eq. (13), the algorithm is not necessarily pushed to the solution zX(u) = yX(u)
anymore. Note that P(mX(u)) is independent of the assumed noise model.

In the extension that we propose in this article, we aim to find a cost function for which L = 0
can be achieved, making use of the overlap constraints that are present in ptychography.

3. The proposed extension

In the noise-free case, one would obtain Oest(x) by minimizing for each probe position X a cost
functional such as

LX[Oest(x)] =
∑

u

(√
zX(u) −

√
mX(u)

)2
. (15)

In this ideal case, ePIE would be able to obtain a good reconstruction of the object. However,
since we only have noisy measurements yX(u), we cannot define this cost functional. What we
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can do, however, is to estimate mX(u) from yX(u) and all the additional information we have, such
as the probe and the probe positions. So by running the ePIE algorithm we would be using all our
available information to estimate mX(u) from yX(u) using zX(u). Inspired by the observation that
ePIE becomes more noise robust when decreasing the step size [15], one can come up with the
following scheme to update the estimate for mX(u):

1. Choose the initial estimate mX,est,0(u) of mX(u) to be yX(u) or some denoised version of
yX(u).

2. Run the PIE algorithm with a small step size for a certain number of iterations, using
mX,est,k(u) as the intensity constraints.We denote the resulting estimated diffraction patterns
as zX,k(u)

3. Set
mX,est,k+1(u) = µzX,k(u) + (1 − µ)mX,est,k(u). (16)

Here, µ is a step size that should be chosen much smaller than 1 but larger than 0.

4. Repeat steps 2 and 3 until zX,k(u) ≈ mX,est,k(u).

Adapting the intensity constraints has also been considered when combining the Hybrid Input-
Output (HIO) algorithm [21] with PIE [22]. Note that if we choose µ = 0 this scheme is identical
to the regular ePIE algorithm, and in case the intensity measurements are corrupted by noise, the
value of the cost functional LX[Oest(x)] can in general not be minimized to be 0. By contrast, if
we choose µ > 0 (but still small), then the algorithm stagnates when zX,k(u) ≈ mX,est,k(u) which
means that LX[Oest(x)] ≈ 0. However, it is important to realize that if we obtain L = 0, the error
of the reconstructed object need not be 0 as well.

4. Method

To create and shift a phase object on which to test our proposed algorithm experimentally, we
use a phase-only Spatial Light Modulator (SLM) to which we assign an image that we want
to reconstruct. The SLM in which the object is created is a reflective liquid crystal phase-only
PLUTO SLM by Holoeye, with a resolution of 1920 × 1080 pixels, and a pixel pitch of 8.0µm.
With a lens with a focal length of 15cm we create the Fourier transform of the field that is reflected
by the SLM. To reduce the dynamic range of the diffraction patterns [4,23], a fixed rapidly varying
phase pattern as shown in Fig. 1(c) is added with the SLM on top of the shifted object, which
more or less defines the probe P(x). The illuminated area of the SLM (which corresponds to the
size of the probe) is a circle with a radius of 250 pixels. The object is shifted along a 7 × 7 square
grid with a period of 50 pixels with some random offsets to reduce the raster grid pathology
in the reconstruction [24]. The images are recorded with an 8-bit SVS-VISTEK eco204MVGE
CCD camera with a resolution of 1024 × 768 pixels and a pixel size of 4.65µm × 4.65µm. For
each intensity measurement, we take the average of 50 pictures. The object is then reconstructed
using ePIE [16] and a probe position correction scheme [17]. Another reconstruction is then
performed which uses, in addition to ePIE and the probe position correction scheme, the proposed
noise-robust scheme where the intensity constraints are updated as in (16). The experimental
setup is shown in Fig. 2.

5. Results

In Fig. 1 the phase objects that are applied to the SLM are shown. The object should in principle
have a constant amplitude, but the contours of the phase pattern become apparent in the amplitude
if the object is low-pass filtered. In the experiment, low-pass filtering of the object is inevitable
since the information of the higher spatial frequencies that is present in the diffraction patterns is
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(a) Object 1 (b) Object 2

(c) Probe

Fig. 1. The phase objects and the illuminating probe used for the ptychography experiment.

Fig. 2. Experimental setup to generate ptychographic data sets to test the proposed algorithm
on.
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lost due to the finite size and limited dynamic range of the detector. Also, in Fig. 1 the probe
with which the reconstruction was performed is shown. This probe was reconstructed using
phase-shifting holography and refined using ePIE [16].
Before performing the reconstruction on the noisy data set using ePIE and the proposed

algorithm, the intensity measurements were denoised. To do this, measurements that were taken
in the dark (i.e. when the laser is completely blocked) were subtracted from the ptychographic
measurements. Then, a rectangular region in the measurements was selected where the images
should be practically zero, as shown in Fig. 3. In this region, the mean and standard deviation
of the noise level were determined. The mean value was subtracted from the entire image, and
everything below three times the standard deviation was set to zero. This denoising method as
well as others are described in [25]. We run two reconstruction algorithms: ePIE with a reduced

Fig. 3. A measured intensity pattern (log scale) where a region is selected (red rectangle in
the top left corner) to calculate the mean and the standard deviation of the noise.

step size combined with a probe position correction scheme, and the proposed adaption of this
algorithm. For the first algorithm we eventually use a step size of 0.1, although in the initial
iterations a larger step size can be used. For the position correction update scheme [17], we
use a step size of 0.1. For the proposed noise-robust algorithm we do the same, but after 150
iterations, we update the intensity constraints according to (16) each 10 iterations with a step size
of µ = 0.05. In Fig. 4 the reconstruction for the object 1 is shown. For object 1, which is a more
‘natural’ image, we observe in some regions an increase in contrast. In Fig. 5 it is shown how
adapting the intensity measurements causes a stronger presence of higher spatial frequencies,
thus indeed leading to an increased resolution in the object reconstruction. In Fig. 6 it is shown
that for the amplitude-based cost function L as defined in Eq. (8) L cannot converge to 0 when
using regular ePIE, whereas when we adapt the amplitude constraints the value of L gradually
approaches 0. For object 2, which is a binary image that may be more characteristic of fabricated
semiconductor structures, we see in Fig. 7 that the smaller structures become more clearly visible
by applying the proposed algorithm. The structured nature of object 2 causes the differences
in the reconstructions to be more easily visible, so we choose this object to perform further
tests of the algorithm. In Fig. 8 only a single measurement is taken per probe position, meaning
that the signal-to-noise ratio is significantly lower than in Fig. 7. Additionally, in Fig. 9 we use
incorrect initial probe guesses and use probe position correction. One can observe that in Fig. 9
the reconstruction quality is significantly lower than in 8, which is because the algorithm fails
to find the correct probe positions due to the high noise levels. Nonetheless, in both cases the
noise-robust extension appears to improve the reconstruction quality in some points, as evidenced
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by the zoomed-in images where the phase along the vertical lines are more uniform when the
proposed algorithm is used.
Unfortunately, it is difficult to perform further quantitative analysis on these reconstructions.

Even though we know the image that has been assigned to the SLM, there are still small
uncertainties in the magnification factor between the assigned image and the reconstructed image,
the rotation angle between the SLM and the detector which causes the reconstructed image to be
slightly rotated, and the way the SLM converts assigned grayscale values into phase shifts. Even
though the uncertainties may be small, the differences between the reconstruction errors for the
two algorithms are small as well, so it is difficult to use the image that is assigned to the SLM for
quantitative analysis.

(a) Reconstruction results

(b) Zoom with reduced phase range to increase contrast. Increased contrast can be
observed between and below the lips.

Fig. 4. Reconstructions of object 1.

6. Simulations

To quantify the benefit of the proposed algorithm more accurately, we performed reconstructions
with simulated data that closely resembled the measured data, i.e. we used the same object and
probe as the ones that were assigned in the SLM in the experiment, and we used an oversampling
rate that approximately matches the one from the experiment. We multiplied the simulated
intensity patterns with a certain value to change the photon count. Then, Poisson noise was
added to simulate shot noise. This process was performed for different values of the photon
count, and for each value we compared the PIE reconstruction with the reconstruction obtained
with the proposed algorithm (we assumed no uncertainty in the probe or probe positions). The
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Fig. 5. A comparison of the estimated diffraction patterns (log scale) of object 1 using
standard ePIE and the proposed algorithm. One can observe that in the proposed algorithm
the higher spatial frequencies have a stronger presence, thus causing the reconstructed object
to have a higher resolution.

Fig. 6. Plot of the amplitude-based cost function L as a function of the number of iterations.
For the regular ePIE algorithm, the estimated amplitudes are compared with the measured
amplitudes yX(u), while for the proposed algorithm the estimated amplitudes are compared
with the adapted amplitude constraints mX,est(u).
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(a) Reconstruction results

(b) Zoom with reduced phase range to increase contrast

(c) Zoom

Fig. 7. Reconstructions of object 2. For each probe position, 50 measurements were averaged.
Position correction was used.
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(a) Reconstruction results

(b) Zoom

(c) Zoom

Fig. 8. Reconstructions of object 2. For each probe position, a single measurement was taken.
Correct probe positions were used in the reconstruction and no position correction was used.
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(a) Reconstruction results

(b) Zoom with reduced phase range to increase contrast

Fig. 9. Reconstructions of object 2. For each probe position, a single measurement was taken.
Position correction was used.
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reconstruction error is calculated using the error metric

E[Oest(x)] =
∑

x |cOest(x) −O(x)|2∑
x |O(x)|2

, (17)

where Oest(x) is the reconstructed object, O(x) is the actual object, and c is a complex constant
that minimizes the error

c∗ =
∑

x O(x)∗Oest(x)∑
x |Oest(x)|2

. (18)

The results are shown in Fig. 10. We see that for higher photon counts (higher than 104), using
the proposed algorithm gives the same reconstruction error as using the regular PIE algorithm
at a photon count that is 100.5 ≈ 3.2 times higher. In practice this would mean that one could
reduce the radiation dose to which the sample is exposed by a factor of 3 without sacrificing
reconstruction quality. The reason why the benefit of the proposed extension is lower for higher
noise levels is because it uses the reconstructed object to update the intensity constraints. If the
noise levels are higher, the reconstructed object is worse, and the intensity constraints are updated
in a less reliable manner.
With these simulations it was also investigated how many PIE updates should be applied

each time after the intensity constraints have been updated according to Eq. (16). For an update
parameter of µ = 0.05, the reconstruction error has been plotted for different numbers of PIE
updates in Fig. 11. One can observe that for this situation, applying just one PIE update after the
intensity constraints are updated gives the same reconstruction error as applying 20 PIE updates,
and significantly fewer iterations are needed.
To demonstrate that the proposed method is not restricted to one specific noise model,

simulations with different amounts of additive Gaussian noise were performed. After normalizing
the set of intensity patterns such that the overall maximum value is 1, Gaussian noise with
standard deviations of 10−3.5, 10−3, 10−2.5 was added. The resulting simulated intensity pattern
were then denoised using the same procedure as described in Section 5. The reconstruction
results shown in Fig. 12 indicate that the proposed method also works for additive Gaussian
noise, provided that the noise level is not too high.
Lastly, it was noted in Section 2.3 that for Fourier ptychography the effect of Poisson is

significantly different for Fourier ptychography than it is for regular ptychography. Therefore,
simulations were performed to test if the proposed method also works for Fourier ptychography.
As shown in Fig. 13, a phase object with constant amplitude was used for the simulations. The
simulation results presented in Fig. 14 indicate that also in this case the proposed method is
capable of improving the reconstruction results. For example, one can visually observe that by
using the proposed extension, the reconstructed amplitude becomes more constant, as it should
be since the object is a pure phase object.

7. Phase retrieval using focus variation

Even though our focus has been on the ptychographical algorithm, the idea behind the proposed
algorithm is rather general, and can also be applied to other iterative phase retrieval methods. As
a demonstration of this, we simulate a set of through-focus measurements by adding a quadratic
phase factor e2πiA|x |2 to the object O(x). For each value A of the defocus parameter, we take a
noisy measurement mA(u) ≈ |F{O(x)e2πiA|x |2 }|2. Similar to Eq. (15), we define a cost function

LA[Oest(x)] =
∑

u

(√
zA(u) −

√
mA(u)

)2
, (19)

that we can use to update Oest(x) sequentially for each A using the steepest-descent method with
a small step size of 0.01. This gives essentially the same update scheme as the one used in PIE,
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Fig. 10. Error plots of simulated ptychographic reconstructions of object 1. Left: the
reconstruction errors as a function of the number iterations for different photon counts which
are indicated on the horizontal axis of the plot on the right. The dotted blue curves correspond
to the standard PIE algorithm, and the solid red curves correspond to the proposed algorithm.
Right: the reconstruction errors after 1000 iterations for different photon counts.

Fig. 11. Plots showing the reconstruction errors for the proposed method for different levels
of Poisson noise when different numbers of PIE iterations are applied after the intensity
constraint is updated.

except we define the probe as PA(x) = e2πiA|x |2 instead of PX(x) = P(x − X). We refer to this
method as the Sequential Gerchberg-Saxton method [26]. In Fig. 15 the reconstruction results are
shown for simulated data sets of 50 different values of the defocus parameter A. Also in this case
it can be seen that by adapting the intensity measurements during the reconstruction a reduction
in the reconstruction error can be achieved.
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(a) Logarithm of the simulated intensity patterns with different amounts of additive Gaussian noise.

(b) Plots of the reconstruction error

Fig. 12. Simulation results for ptychography with Gaussian noise.

Fig. 13. Figures showing the amplitude and phase of the object, as well as the probe positions
that were used to simulate the Fourier ptychography dataset.
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(a) Simulated intensity patterns with different amounts of Poisson noise.

(b) Plots of the reconstruction error

(c) Amplitude reconstruction

Fig. 14. Simulation results for Fourier ptychography.

Fig. 15. Error plots of simulated through-focus reconstructions of object 1. Left: the
reconstruction errors as a function of the number iterations for different photon counts
which are indicated on the horizontal axis of the plot on the right. The dotted blue curves
correspond to the standard sequential Gerchberg-Saxton algorithm, and the solid red curves
correspond to the proposed algorithm. Right: the reconstruction errors after 500 iterations
for different photon counts.
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8. Conclusion

We have proposed a noise-robust extension of iterative phase retrieval algorithms. It does not
rely on an assumed noise model, and works by adapting the intensity constraints using the
reconstructed object. This algorithm has been tested experimentally for ptychography, and it
was compared to the standard ePIE algorithm with reduced step size combined with a probe
position correction scheme. Both experimental and simulation results show that the proposed
algorithm outperforms (e)PIE when the noise level is not too high. The idea behind this algorithm
is general enough to be applied to other iterative phase retrieval methods, such as the focus
variation method, as was demonstrated using simulations. Quite possibly the applications of the
proposed method extend beyond phase retrieval algorithms.
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