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Abstract 
Most of the commonly used compression standards make 
use of some form of the LZ algorithm. Decompressing this 
type of data is not a good match for the Single-Instruction, 
Multiple Thread (SIMT) model of computation used by GPUs, 
resulting in low throughput and poor utilization of the GPU 
parallel compute capabilities. In this paper, we introduce 
GSST, a GPU-optimized version of the FSST compression 
algorithm, which targets string compression. The optimiza­
tions proposed in this paper make the algorithm particularly 
suitable for GPUs, which allows it to achieve a significantly 
better tradeoff for decompression throughput vs compres­
sion ratio as compared to the state of the art. Our results 
show that the new algorithm pushes the Pareto curve closer 
towards the ideal region, completely dominating LZ-based 
compressors in the nvCOMP library (LZ4, Snappy, GDeflate). 
GSST provides a compression ratio of 2.7 4x and achieves a 
throughput of 191 GB/s on an A100 GPu. 
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1 Introduction 
As the throughput gap between storage media and computa­
tional device speeds narrows down, it becomes increasingly 
important to ensure the high throughput of compression al­
gorithms, as indicated by a number of recent studies [7, 8J. In 
this evolving landscape, achieving a high compression ratio 
(CR) is becoming less critical for overcoming the bottlenecks 
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Figure 1. Decompression throughput and compression ratio 
of GPU compression algorithms included in the nvCOMP 
library using the measurements on the nvCOMP website [lOJ 
on the A100 GPU for the Silesia dataset 

caused by slow interconnects. Instead, the focus has shifted 
to the decompression process, which can now take longer 
than transferring data to the computation device. 

High throughput and parallel compression algorithms 
have become a hot research topic in the high-performance 
computing (HPC) community. Traditionally, compression al­
gorithms have been designed to maximize CRs and optimize 
single-core throughput. However, with the stagnating single­
core performance improvements, hardware manufacturers 
are now enhancing performance through multicore proces­
sors and accelerators such as GPUs. This shift necessitates 
the development of algorithms that can leverage these new 
hardware capabilities. 

To benefit from the rapid increase in the throughput 
achievable on GPU accelerators, multiple compression algo­
rithms have been ported and optimized to GPUs, achieving 
various throughput-CR tradeoff points . 

Figure 1 plots the benchmark results of GPU compres­
sion algorithms included in the nvCOMP library using the 
measurements on the nvCOMP website [10J running on the 
NVIDIA A100 GPU for the Silesia dataset [13]. Achieving 
both high throughput and high CR at the same time has 
been a formidable challenge on GPUs, especially for string­
based datasets. Decompression of the commonly used LZ­
style compression algorithms (used for example in Deflate, 
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Snappy, LZ4, and zstd) proves to be a poor match for GPUs,
because of their sequential nature [12].
This paper presents a GPU accelerated string

(de)compression algorithm called GSST, based on the
FSST (Fast Static Symbol Table) compression format [3].
This paper discusses a number of modifications we made
to the FSST algorithm to benefit f rom t he abundant
parallelism GPUs provide. The optimizations proposed to
the algorithm include the addition of sub-block metadata,
that allows thread parallel decoding of the sub-blocks
(a technique similar to the two-level parallelism used in
GDeflate [15]). Then, we present a number of optimizations
in the implementation, including:

• Thread balancing during the compression stage, to
minimize thread imbalances during decompression

• The use of local scratchpad storage for symbol table
and input/output data blocks

• Asynchronous data movement between the mainmem-
ory and local scratchpads

Results show that the proposed GSST algorithm signif-
icantly pushes the state-of-the-art in GPU decompression
performance.
This paper is organized as follows. Section 2 introduces

the FSST compression layout, while Section 3 details the
GSST decompression implementation and its modifications
compared to FSST. In Section 5, we describe the experimental
setup used for benchmarking, followed by the performance
results presented in Section 6, where we compare GSST with
FSST and the nvCOMP algorithms.

2 FSST compression

The FSST compression format works by replacing frequently
occurring substrings (symbols) of lengths 1 to 8 bytes with
fixed-size 1-byte codes. This process involves creating a static
symbol table based on the input data, where each code maps
to a corresponding symbol. This symbol table is limited in
size to 255 symbols, and so can be indexed using a single
byte.
Figure 2 shows the compression process of FSST. Dur-

ing compression, FSST scans the input string, identifies the
longest matching symbol from the table, and substitutes
them with their respective codes. When there is no symbol
describing a part of the input string, a special escape code
is used to store individual bytes. An escape code indicates
that the next byte should be interpreted as data, and not as
a code. Finally, the symbol table is stored together with the
sequence of codes.

In decompression, FSST performs a lookup to convert each
1-byte code back to its original substring using the static
symbol table. The static nature of the symbol table enables
FSST to support random access to individual compressed
strings, allowing efficient decompression without needing
to process entire data blocks. This makes FSST particularly
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Figure 2. Demonstration of FSST compression. During the
compression, the input data is scanned for repeated patterns.
These are inserted in the symbol table. During the compres-
sion process, data is replaced by (1-byte) codes from the
symbol table. Data patterns that cannot be found in the sym-
bol table, are prepended by an escape code (here shown as
E). The escape code allows storing individual raw bytes.

suitable for database systems where rapid access to specific
string attributes is essential.

3 The GSST compression format

3.1 Tiling parallelism

A commonly exploited method of achieving parallelism dur-
ing compression and decompression, is by dividing the data
into blocks and compressing each block of data indepen-
dently. This method is referred to as tiling, chunking, or
block compression [1, 14]. Increasing the number of blocks
enhances parallelism but reduces block size, which can neg-
atively affect the compression ratio. Since each block is com-
pressed independently, the algorithm cannot exploit repeated
data patterns that extend across multiple blocks.
Our proposed GSST algorithm increases the parallelism

of FSST by adding block-based compression. Our implemen-
tation uses OpenMP on the CPU and CUDA on the GPU,
supports user-configurable block sizes and is able to handle
edge cases such as escape sequences on a block boundary.

3.2 Splits parallelism

Decompression of data suffers from two sequential depen-
dencies, preventing its parallel execution: 1. the output of
compressed data depends on other decompressed data, and
2. the position of decompressed data depends on the de-
compressed size of the data before it. Because of the static
symbol table, the FSST format does not suffer from the first
limitation; all symbols can be decompressed independently
of each other. Only the second limitation needs to be solved
to achieve full parallel decompression. As the symbols can
have different lengths, additional information is required
to know where the output data corresponding to a certain
offset in the compressed input data must be stored.
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GSST stores additional metadata during compression, that
contains information about the uncompressed size of subsec-
tions inside a block (called splits), allowing the decompression
to determine the corresponding output locations. In a sense,
this adds another level of hierarchy to the block-level par-
allelism, with the difference being that each b lock has its
own symbol table while all the splits inside a block make use
of the same symbol table (and can therefore employ SIMT
parallelism). The amount of splits in a block determines the
level of thread-level parallelism. More splits can result in
higher throughput, but each split requires a value in the
added metadata. Using a large number of splits with a rel-
atively small block size can negatively affect the achieved
compression ratio.

3.3 Splits layout

Here, we define the layout of the metadata for carrying the
sub-block split information. Splitting the symbols in a block
can be done in two ways:

1. Constant uncompressed size, variable split compressed
size: As illustrated in Figure 3a, this format stores the
offsets/locations in the compressed data (= sizes of the
compressed splits) where a constant amount of data
has been compressed. During decompression, each
thread reads a location from the header and starts de-
compressing at that location. Because of the constant
output size of each compressed split, each thread can
calculate the output location of their data by multi-
plying the split index by the constant uncompressed
size.

2. Variable uncompressed size, constant split compressed
size: As illustrated in Figure 3b, this format divides
the compressed data into constant sized splits. The
uncompressed size of each split is stored in the header.
During decompression, each thread can start decom-
pressing at a multiple of the constant compressed size
andwrites the resulting data at the offset/location from
the header.

We use a length encoding approach for storing split loca-
tions in the header, similar to the strategy described in [9].
By leveraging the fact that each split location begins after the
previous one, only the difference between consecutive splits
needs to be stored. This method reduces the storage require-
ments for metadata. However, it necessitates pre-processing,
specifically summing the preceding locations, before decom-
pression can begin.

4 Memory alignment optimization

To fully make use of the high bandwidth of GPU memory,
using aligned memory accesses is highly desirable. There
are two memory operations during decompression that will
benefit the most from aligned accesses.
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(a) Split format, dividing a block into splits by using a constant

uncompressed size
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(b) Split format, dividing a block into splits by using a constant

compressed size

Figure 3. Two formats for ordering symbols in a compressed
block. The arrow direction (→) refers to thread execution
order. A format consists of a header with metadata followed
by a sequence of symbols. The format describes the order in
which the symbols are stored. In this example, the symbols
are divided over four splits, storing four values as meta-
data in the header. The number in a symbol depicts the
uncompressed length of that symbol. Format 3a stores the
compressed length of each split, and each split has uncom-
pressed size 8. Format 3b stores the uncompressed length of
each split, and each split has compressed size 3.

1. Reading compressed data from global memory to
shared memory (L1 cache)

2. Writing decompressed data from shared memory to
global memory

Decompression of a split starts with aligning both the
input and output pointers in global memory. The memory
accesses are shown in Figure 4. First, the input pointer is
aligned by using unaligned reads until the first aligned ad-
dress in the input buffer is reached. Then this data is de-
compressed and written to global memory using unaligned
writes until the first aligned address in the output buffer is
reached. This leads to two possible scenarios:

1. Aligning the input buffer generated enough output
data to align the output pointer. In this case, copy the
amount of data needed to align the output pointer to
global memory.

2. Aligning the input buffer did not generate enough data
to align the output pointer. In this case, first decom-
press all the data from aligning the input and write it
to global memory. Then read the first aligned input
block, decompress it, and write data to global memory
until the output is aligned.

In both cases, we can now move the remaining output data
in shared memory to the beginning of the buffer, and con-
tinue decompressing until the output buffer is full. The full
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Figure 4. Achieving aligned transfers in an unaligned com-
pressed buffer on a 4 byte-boundary for the compressed input
data and on an 8 byte-boundary for the decompressed data
by (1) reading, decompressing and writing individual bytes
until the first aligned input and output addresses are reached.
(2) Then, aligned read and write operations are used. (3) Fi-
nally, overshoot of the input data needs to be handled, and
the remainder data in the output buffer needs to be stored.

buffer can now be moved to global memory using aligned
instructions.

5 Experimental setup

The experiments are executed on a dual-socket machine with
two Intel Xeon Platinum 8380 CPUs. The memory is 32x
128GB running at 3200MHz, with a total of 4TB. The node
also has 8 NVIDIA A100 GPUs with 80GB device memory. In
addition, the node has an 8 lane network interface running
at 200GbE and a Samsung PM9A3 storage system with 8x
15TB storage.

We compare the performance of GSST against the
nvCOMP library from NVIDIA. nvCOMP version 3.0.6 has
support for the classical compression formats LZ4, Snappy,
Deflate, and zstd. In addition, ANS, Bitcomp, Cascaded, and
GDeflate are provided with GPU-optimized formats. To iden-
tify the optimal configuration for the algorithms, a sweep
is conducted with various chunk sizes. In the results sec-
tion below (Section 6), we report the highest throughput
achieved by each algorithm for the most optimal chunk size.
The throughput measurements are performed based on data
that resides in GPU memory. In other words, we are not
taking I/O performance and PCIe transfer times into consid-
eration. The dataset is initially generated by TPC-H’s dbgen
tool. From the lineitem table, we extracted the column named
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Figure 5. Decompression throughput of FSST and the CPU
implementation of GSST block-level parallelism. The bench-
mark involves decompressing a 1.5 GB text file, generated
by dbgen, which has been compressed into 1024 blocks. The
benchmark measures decompression speed of decompress-
ing data from an in-memory input buffer with compressed
data to an in-memory output buffer.

"comment". To ensure sustainable throughput, we ensure our
dataset size is 10GB.

6 Results

6.1 CPU performance

The first implementation of GSST utilizes block-level paral-
lelism on the CPU with OpenMP. Figure 5 compares the de-
compression throughput to FSST. As we increase the number
of threads, decompression throughput grows by about 3 GB/s
up to 14 threads. Beyond that point, the performance each
thread delivers begins to decline, and after 32 threads, adding
more threads actually reduces overall throughput. Looking at
compression ratios, FSST achieves 2.71, where GSST reaches
2.74 when using 1024 blocks. Despite GSST adding extra
metadata, it still has a slightly better ratio. This difference
can be attributed to the amount of data compressed per sym-
bol table. FSST processes 4 MB of uncompressed data per
symbol table, while GSST uses about 1.46 MB in this config-
uration. Depending on the dataset, using a different amount
of data per symbol table can improve the compression ratio.

6.2 GPU decompression throughput and

compression ratio

We begin by examining the progressive optimization of our
GSST decompression kernels on the GPU. Figure 6 presents
the achieved decompression throughput for five key imple-
mentations, each building incrementally on the one before it.
The initial GSST Blocks Kernel suffers from low GPU utiliza-
tion due to limited threads per block. Switching to the GSST
Splits Kernel improves utilization by using all threads, but
global memory stalls limit compute throughput. Introducing
shared memory shifts the bottleneck to shared memory stalls
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Figure 6. Decompression throughput achieved by each GSST 
GPU implementation. 
GSST Blocks Kernel introduces block parallelism, as explained 
in Section 3.1. 
GSST Splits Kernel Initial is the first implementation utilizing 
the split format, described in Section 3.2. 
GSST Splits Kernel Shared Memory enhances this by incorpo­
rating shared memory for data staging. 
GSST Splits Kernel Memory Alignment adds aligned memory 
transfers, as covered in Section 4. 
GSST Splits Kernel Parameter Optimized is the same imple­
mentation as the memory-aligned splits but using the fastest 
parameters found by sweeping parameters. 

and reveals misalignment issues, where each byte written 
triggered a 32-byte cache-line transaction. Aligning memory 
accesses greatly increases memory and compute throughput, 
with the largest bottleneck being stalls waiting for shared 
memory. Finally, tuning the parameters (number of blocks, 
number of splits, number of bytes per alignment, and shared 
memory buffer size) reduced these stalls and achieved the 
highest decompression throughput. 

Figure 7 compares the decompression throughput and 
compression ratio of GSST against the nvCOMP algorithms. 
From these results, the following observations can be pro­
vided: 

1. GSST significantly outperforms traditional CPU-based 
formats in nvCOMP, such as LZ4, Snappy, and zstd, 
when it comes to decompression throughput. GSST 
achieves a decompression throughput of 191GB/s, 
which is only surpassed by ANS and Bitcomp in 
nvCOMP. While these two algorithms have a 49% and 
46% higher decompression throughput compared to 
GSST, respectively, GSST offers a 49% and 151% higher 
compression ratio compared to ANS and Bitcomp. 
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Figure 7. Comparison of decompression throughput and 
compression ratio of GSST against nvCOMP algorithms on 
an NVIDIA A100, using the 10GB TPC-H text dataset. The 
decompression throughput measures the time it takes for 
compressed data in GPU memory to be decompressed to 
GPU memory. The large dots represent the new Pareto front. 
GSST shifts the Pareto front, offering a favorable balance of 
both decompression throughput and compression ratio. 

2. Compression Ratio: When compressing string data, 
GSST achieves a compression ratio of 2.74, out­
performing all nvCOMP algorithms except zstd. 
Although zstd surpasses GSST with a 23% higher com­
pression ratio, GSST makes up for this with its de­
compression throughput, which is 18.6x faster than 
zstd. 

Overall, GSST is well-positioned as an optimal solution, 
offering a strong trade-off between compression ratio and 
decompression throughput for string data. Note that bitcomp 
and ANS may still be able to perform better on numerical 
data, but that is not the focus of GSST. 

6.3 GPU memory usage 

Memory usage is an important factor when evaluating 
compression algorithms, especially on GPUs, where exces­
sive memory consumption can slow down processing, limit 
throughput, and prevent large datasets from being handled 
effectively [6]. This makes memory usage an important met­
ric for assessing how well compression algorithms perform 
on large files. 

In this analysis, memory usage was measured for GSST 
and all nvCOMP compression algorithms using the 10GB text 
file. The memory usage during decompression is recorded 
using NVIDIA Nsight Systems with the -cuda-memory­
usage=true parameter. The exact values are extracted from 
the SQLite export of the profile. 

The memory usage measurements are shown in Figure 8. A 
remarkable observation was the high memory consumption 
of nvCOMP algorithms, particularly due to a large buffer 
allocation when creating the nvCOMP compression manager. 
Regardless of the algorithm, the manager allocated a buffer 
twice the size of the input data (i.e. 20GB for our 10GB input), 
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Figure 8. Peak GPUmemory usage of GSST compared to the
algorithms in the nvCOMP library when decompressing the
10GB TPC-H text dataset on the A100 80GB, as reported by
NVIDIA Nsight Systems. This only includes the memory us-
age from initializing the nvCOMP compression manager and
calling the decompression algorithm. This does not include
the input buffer with compressed data and output buffer
for the decompressed data. Gdeflate is not included, as the
benchmark crashed when launched by Nsight Systems. The
nvCOMP manager in the high-level API allocates a buffer
of twice the input size before any compression or decom-
pression is done. The top graph shows the memory usage
including the memory allocated by the nvCOMP manager,
and the bottom graph without it.

before any compression or decompression is started. This
overhead contributed to significantly higher memory usage.
While this benchmark used nvCOMP’s high-level API, it
is possible that using the low-level API could reduce these
large memory allocations.

GSST demonstrates a significant advantage over nvCOMP
in terms of memory efficiency. By keeping the needed data,
such as the symbol tables, in shared memory, the algorithm
requires almost no global memory. As stated before, this is
mainly the result of nvCOMP using excessive amounts of
global memory. As nvCOMP is closed source, it is unclear
why it allocates such large amounts of memory. While the
low-level API might help reduce memory consumption, it is
unlikely to bring memory usage down to the same levels as
GSST.

7 Related work

Most traditional compression algorithms predate GPU ac-
celerators and lack parallel-friendly designs, whereas newer
big data formats increasingly emphasize parallelization by
design. A SIMD-friendly integer encoding layout introduced
in [1] facilitates parallel decoding of schemes like delta

and run-length encoding, which was later implemented
on GPUs [2]. Alongside software-based optimizations, the
push for higher decompression throughput has spurred the
development of dedicated hardware accelerators for pop-
ular encoding formats, such as NVIDIA’s data processing
units (DPUs) with built-in decompression [16] and upcom-
ing GPU generations featuring specialized decompression
engines [11], as well as those developed on FPGAs [4, 5].

8 Conclusion

This paper discusses a new algorithm for string compression
based on FSST that targets fast decompression throughput
on GPUs. By making use of a pre-defined static symbol table
and adding metadata to expose additional parallelism, our
proposed GSST algorithm allows efficient use of the GPUs
SIMTmodel of computation. Results show that the algorithm
performs significantly better in terms of both decompres-
sion throughput and compression ratio compared to most
LZ-based algorithms that have GPU implementations. That
means that those algorithms are rendered obsolete when
working with string data on GPUs.

This new GPU compression landscape has only 3 Pareto-
optimal trade-off points for string decompression on GPUs:

• zstd provides the highest compression ratio at 3.40x but
the decompression throughput is limited to 9.8GB/s.

• ANS provides the highest decompression throughput,
reaching 286GB/s at a compression ratio of 1.83x.

• GSST provides a balanced tradeoff with a compression
ratio of 2.74x and a throughput of 191GB/s.

GSST achieves a high compression ratio with high decom-
pression throughput, allowing for efficient data transfer and
processing on GPUs. It also delivers the lowest memory us-
age by minimizing global memory overhead and utilizing
shared memory, making it highly effective for handling large
datasets with minimal resource consumption.
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