<]
TUDelft

Delft University of Technology

GSST
Parallel string decompression at 191 GB/s on GPU

Vonk, Robin; Hoozemans, Joost; Al-Ars, Zaid

DOI
10.1145/3759441.3759450

Publication date
2025

Document Version
Final published version

Published in
Operating Systems Review (ACM)

Citation (APA)
Vonk, R., Hoozemans, J., & Al-Ars, Z. (2025). GSST: Parallel string decompression at 191 GB/s on GPU.
Operating Systems Review (ACM), 59(1), 55-61. https://doi.org/10.1145/3759441.3759450

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3759441.3759450
https://doi.org/10.1145/3759441.3759450

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

t.)

Check for
Updates

GSST: Parallel string decompression at 191 GB/s on
GPU

Robin Vonk
Delft University of Technology
Delft, The Netherlands
research@robinvonk.com

Abstract

Most of the commonly used compression standards make
use of some form of the LZ algorithm. Decompressing this
type of data is not a good match for the Single-Instruction,
Multiple Thread (SIMT) model of computation used by GPUs,
resulting in low throughput and poor utilization of the GPU
parallel compute capabilities. In this paper, we introduce
GSST, a GPU-optimized version of the FSST compression
algorithm, which targets string compression. The optimiza-
tions proposed in this paper make the algorithm particularly
suitable for GPUs, which allows it to achieve a significantly
better tradeoff for decompression throughput vs compres-
sion ratio as compared to the state of the art. Our results
show that the new algorithm pushes the Pareto curve closer
towards the ideal region, completely dominating LZ-based
compressors in the nvCOMP library (LZ4, Snappy, GDeflate).
GSST provides a compression ratio of 2.74x and achieves a
throughput of 191 GB/s on an A100 GPU.

ACM Reference Format:

Robin Vonk, Joost Hoozemans, and Zaid Al-Ars. 2025. GSST: Par-
allel string decompression at 191 GB/s on GPU. In 5th Workshop
on Challenges and Opportunities of Efficient and Performant Storage
Systems (CHEOPS °25), March 30-April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3719330.3721228

1 Introduction

As the throughput gap between storage media and computa-
tional device speeds narrows down, it becomes increasingly
important to ensure the high throughput of compression al-
gorithms, as indicated by a number of recent studies (7, 8]. In
this evolving landscape, achieving a high compression ratio
(CR) is becoming less critical for overcoming the bottlenecks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHEOPS 25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1529-7/25/03
https://doi.org/10.1145/3719330.3721228

Joost Hoozemans
Voltron Data
worldwide remote, US
joosthooz@gmail.com

55

Zaid Al-Ars
Delft University of Technology
Delft, The Netherlands
z.al-ars@tudelft.nl

1000

<«— Tc=33/(Rc-1) Ideal decompression

® Bitcomp-sparse
@ Bitcomp @ Ans

® Cascaded

100
High-performance
GDeflate-entropy- decompression

only Snappy

GPU decompression throughput [GB/s]

® : \za @ GDeflate-throughput G[)eﬂau?.
compression
@ zstd
Low-performance @ Deflate
decompression
10
1 1.5 2 2.5 3 3.5

Compression ratio

Figure 1. Decompression throughput and compression ratio
of GPU compression algorithms included in the nvCOMP
library using the measurements on the nvCOMP website [10]
on the A100 GPU for the Silesia dataset

caused by slow interconnects. Instead, the focus has shifted
to the decompression process, which can now take longer
than transferring data to the computation device.

High throughput and parallel compression algorithms
have become a hot research topic in the high-performance
computing (HPC) community. Traditionally, compression al-
gorithms have been designed to maximize CRs and optimize
single-core throughput. However, with the stagnating single-
core performance improvements, hardware manufacturers
are now enhancing performance through multicore proces-
sors and accelerators such as GPUs. This shift necessitates
the development of algorithms that can leverage these new
hardware capabilities.

To benefit from the rapid increase in the throughput
achievable on GPU accelerators, multiple compression algo-
rithms have been ported and optimized to GPUs, achieving
various throughput-CR tradeoff points.

Figure 1 plots the benchmark results of GPU compres-
sion algorithms included in the nvCOMP library using the
measurements on the nvCOMP website [10] running on the
NVIDIA A100 GPU for the Silesia dataset [13]. Achieving
both high throughput and high CR at the same time has
been a formidable challenge on GPUs, especially for string-
based datasets. Decompression of the commonly used LZ-
style compression algorithms (used for example in Deflate,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3759441.3759450&domain=pdf&date_stamp=2025-08-06

Snappy, LZ4, and zstd) proves to be a poor match for GPUs,
because of their sequential nature [12].

This paper presents a GPU accelerated string
(de)compression algorithm called GSST, based on the
FSST (Fast Static Symbol Table) compression format [3].
This paper discusses a number of modifications we made
to the FSST algorithm to benefit f romt he abundant
parallelism GPUs provide. The optimizations proposed to
the algorithm include the addition of sub-block metadata,
that allows thread parallel decoding of the sub-blocks
(a technique similar to the two-level parallelism used in
GDeflate [15]). Then, we present a number of optimizations
in the implementation, including:

e Thread balancing during the compression stage, to
minimize thread imbalances during decompression

e The use of local scratchpad storage for symbol table
and input/output data blocks

e Asynchronous data movement between the main mem-
ory and local scratchpads

Results show that the proposed GSST algorithm signif-
icantly pushes the state-of-the-art in GPU decompression
performance.

This paper is organized as follows. Section 2 introduces
the FSST compression layout, while Section 3 details the
GSST decompression implementation and its modifications
compared to FSST. In Section 5, we describe the experimental
setup used for benchmarking, followed by the performance
results presented in Section 6, where we compare GSST with
FSST and the nvCOMP algorithms.

2 FSST compression

The FSST compression format works by replacing frequently
occurring substrings (symbols) of lengths 1 to 8 bytes with
fixed-size 1-byte codes. This process involves creating a static
symbol table based on the input data, where each code maps
to a corresponding symbol. This symbol table is limited in
size to 255 symbols, and so can be indexed using a single
byte.

Figure 2 shows the compression process of FSST. Dur-
ing compression, FSST scans the input string, identifies the
longest matching symbol from the table, and substitutes
them with their respective codes. When there is no symbol
describing a part of the input string, a special escape code
is used to store individual bytes. An escape code indicates
that the next byte should be interpreted as data, and not as
a code. Finally, the symbol table is stored together with the
sequence of codes.

In decompression, FSST performs a lookup to convert each
1-byte code back to its original substring using the static
symbol table. The static nature of the symbol table enables
FSST to support random access to individual compressed
strings, allowing efficient decompression without needing
to process entire data blocks. This makes FSST particularly

56

/ Symbol Table \

Code

|l

rlelplofs]i]eo]

Symbol

Uncompressed:
www.tudelft.nl
www.repository.tudelft.nl
www.ewi.tudelft.nl

Compressed:

' 012
0254ErEyE. 12
OEeEwEIiE. 12

=N

254

Figure 2. Demonstration of FSST compression. During the
compression, the input data is scanned for repeated patterns.
These are inserted in the symbol table. During the compres-
sion process, data is replaced by (1-byte) codes from the
symbol table. Data patterns that cannot be found in the sym-
bol table, are prepended by an escape code (here shown as
E). The escape code allows storing individual raw bytes.

suitable for database systems where rapid access to specific
string attributes is essential.

3 The GSST compression format
3.1 Tiling parallelism

A commonly exploited method of achieving parallelism dur-
ing compression and decompression, is by dividing the data
into blocks and compressing each block of data indepen-
dently. This method is referred to as tiling, chunking, or
block compression [1, 14]. Increasing the number of blocks
enhances parallelism but reduces block size, which can neg-
atively affect the compression ratio. Since each block is com-
pressed independently, the algorithm cannot exploit repeated
data patterns that extend across multiple blocks.

Our proposed GSST algorithm increases the parallelism
of FSST by adding block-based compression. Our implemen-
tation uses OpenMP on the CPU and CUDA on the GPU,
supports user-configurable block sizes and is able to handle
edge cases such as escape sequences on a block boundary.

3.2 Splits parallelism

Decompression of data suffers from two sequential depen-
dencies, preventing its parallel execution: 1. the output of
compressed data depends on other decompressed data, and
2. the position of decompressed data depends on the de-
compressed size of the data before it. Because of the static
symbol table, the FSST format does not suffer from the first
limitation; all symbols can be decompressed independently
of each other. Only the second limitation needs to be solved
to achieve full parallel decompression. As the symbols can
have different lengths, additional information is required
to know where the output data corresponding to a certain
offset in the compressed input data must be stored.

GSST stores additional metadata during compression, that
contains information about the uncompressed size of subsec-
tions inside a block (called splits), allowing the decompression
to determine the corresponding output locations. In a sense,
this adds another level of hierarchy to the block-level par-
allelism, with the difference being that each block has its
own symbol table while all the splits inside a block make use
of the same symbol table (and can therefore employ SIMT
parallelism). The amount of splits in a block determines the
level of thread-level parallelism. More splits can result in
higher throughput, but each split requires a value in the
added metadata. Using a large number of splits with a rel-
atively small block size can negatively affect the achieved
compression ratio.

3.3 Splits layout

Here, we define the layout of the metadata for carrying the
sub-block split information. Splitting the symbols in a block
can be done in two ways:

1. Constant uncompressed size, variable split compressed
size: As illustrated in Figure 3a, this format stores the
offsets/locations in the compressed data (= sizes of the
compressed splits) where a constant amount of data
has been compressed. During decompression, each
thread reads a location from the header and starts de-
compressing at that location. Because of the constant
output size of each compressed split, each thread can
calculate the output location of their data by multi-
plying the split index by the constant uncompressed
size.

2. Variable uncompressed size, constant split compressed
size: As illustrated in Figure 3b, this format divides
the compressed data into constant sized splits. The
uncompressed size of each split is stored in the header.
During decompression, each thread can start decom-
pressing at a multiple of the constant compressed size
and writes the resulting data at the offset/location from
the header.

We use a length encoding approach for storing split loca-
tions in the header, similar to the strategy described in [9].
By leveraging the fact that each split location begins after the
previous one, only the difference between consecutive splits
needs to be stored. This method reduces the storage require-
ments for metadata. However, it necessitates pre-processing,
specifically summing the preceding locations, before decom-
pression can begin.

4 Memory alignment optimization

To fully make use of the high bandwidth of GPU memory,
using aligned memory accesses is highly desirable. There
are two memory operations during decompression that will
benefit the most from aligned accesses.

57

split
location

split
location

split
location

split

number of splits location
c

s[s[s[s[sisislslslslsls

[V VT3 [Y [
] 4 \1 8‘2 1 111111118
I — fLFLT LS T

(a) Split format, dividing a block into splits by using a constant
uncompressed size

(b) Split format, dividing a block into splits by using a constant
compressed size

Figure 3. Two formats for ordering symbols in a compressed
block. The arrow direction (—) refers to thread execution
order. A format consists of a header with metadata followed
by a sequence of symbols. The format describes the order in
which the symbols are stored. In this example, the symbols
are divided over four splits, storing four values as meta-
data in the header. The number in a symbol depicts the
uncompressed length of that symbol. Format 3a stores the
compressed length of each split, and each split has uncom-
pressed size 8. Format 3b stores the uncompressed length of
each split, and each split has compressed size 3.

1. Reading compressed data from global memory to
shared memory (L1 cache)

2. Writing decompressed data from shared memory to
global memory

Decompression of a split starts with aligning both the
input and output pointers in global memory. The memory
accesses are shown in Figure 4. First, the input pointer is
aligned by using unaligned reads until the first aligned ad-
dress in the input buffer is reached. Then this data is de-
compressed and written to global memory using unaligned
writes until the first aligned address in the output buffer is
reached. This leads to two possible scenarios:

1. Aligning the input buffer generated enough output
data to align the output pointer. In this case, copy the
amount of data needed to align the output pointer to
global memory.

2. Aligning the input buffer did not generate enough data
to align the output pointer. In this case, first decom-
press all the data from aligning the input and write it
to global memory. Then read the first aligned input
block, decompress it, and write data to global memory
until the output is aligned.

In both cases, we can now move the remaining output data
in shared memory to the beginning of the buffer, and con-
tinue decompressing until the output buffer is full. The full

CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[Reading input alignment First alignmenl
boundary in input

; \ buffer . .
Compressedcodesm‘X’X’X’O ik 1‘2‘2‘2‘2 330303
global memory ‘ ‘ ‘

Input buffer in
shared memory

3. The final alignment can
input buffer

yvershoot

2. Aligned read

XXXX}

Writing output alignment

XX X X[XXX X
shared memory

1

[Output bufter in
1. Store until

alignment

boundary 3. Store remainder

ligned store

Output buffer in

2.A
global memory ‘

1)1 [2[2[2[2falzlz 2] -

‘0‘0‘0‘1‘1‘1 11

R "I First alignment

boundary in output
buffer

Figure 4. Achieving aligned transfers in an unaligned com-
pressed buffer on a 4 byte-boundary for the compressed input
data and on an 8 byte-boundary for the decompressed data
by (1) reading, decompressing and writing individual bytes
until the first aligned input and output addresses are reached.
(2) Then, aligned read and write operations are used. (3) Fi-
nally, overshoot of the input data needs to be handled, and
the remainder data in the output buffer needs to be stored.

buffer can now be moved to global memory using aligned
instructions.

5 Experimental setup

The experiments are executed on a dual-socket machine with
two Intel Xeon Platinum 8380 CPUs. The memory is 32x
128GB running at 3200MHz, with a total of 4TB. The node
also has 8 NVIDIA A100 GPUs with 80GB device memory. In
addition, the node has an 8 lane network interface running
at 200GbE and a Samsung PM9A3 storage system with 8x
15TB storage.

We compare the performance of GSST against the
nvCOMP library from NVIDIA. nvCOMP version 3.0.6 has
support for the classical compression formats LZ4, Snappy,
Deflate, and zstd. In addition, ANS, Bitcomp, Cascaded, and
GDeflate are provided with GPU-optimized formats. To iden-
tify the optimal configuration for the algorithms, a sweep
is conducted with various chunk sizes. In the results sec-
tion below (Section 6), we report the highest throughput
achieved by each algorithm for the most optimal chunk size.
The throughput measurements are performed based on data
that resides in GPU memory. In other words, we are not
taking I/O performance and PCle transfer times into consid-
eration. The dataset is initially generated by TPC-H’s dbgen
tool. From the lineitem table, we extracted the column named

58

Robin Vonk, Joost Hoozemans, and Zaid Al-Ars

W FssT
M GSST Blocks CPU

1l | ‘ ”
Figure 5. Decompression throughput of FSST and the CPU
implementation of GSST block-level parallelism. The bench-
mark involves decompressing a 1.5 GB text file, generated
by dbgen, which has been compressed into 1024 blocks. The
benchmark measures decompression speed of decompress-

ing data from an in-memory input buffer with compressed
data to an in-memory output buffer.

%
o

»
o

N
o

Decompression throughput (GB/s)
- w
o o

al

15 20 25 30

Number of threads

"comment". To ensure sustainable throughput, we ensure our
dataset size is 10GB.

6 Results
6.1 CPU performance

The first implementation of GSST utilizes block-level paral-
lelism on the CPU with OpenMP. Figure 5 compares the de-
compression throughput to FSST. As we increase the number
of threads, decompression throughput grows by about 3 GB/s
up to 14 threads. Beyond that point, the performance each
thread delivers begins to decline, and after 32 threads, adding
more threads actually reduces overall throughput. Looking at
compression ratios, FSST achieves 2.71, where GSST reaches
2.74 when using 1024 blocks. Despite GSST adding extra
metadata, it still has a slightly better ratio. This difference
can be attributed to the amount of data compressed per sym-
bol table. FSST processes 4 MB of uncompressed data per
symbol table, while GSST uses about 1.46 MB in this config-
uration. Depending on the dataset, using a different amount
of data per symbol table can improve the compression ratio.

6.2 GPU decompression throughput and
compression ratio

We begin by examining the progressive optimization of our
GSST decompression kernels on the GPU. Figure 6 presents
the achieved decompression throughput for five key imple-
mentations, each building incrementally on the one before it.
The initial GSST Blocks Kernel suffers from low GPU utiliza-
tion due to limited threads per block. Switching to the GSST
Splits Kernel improves utilization by using all threads, but
global memory stalls limit compute throughput. Introducing
shared memory shifts the bottleneck to shared memory stalls

N
o
o

191.449

Qg
o
9
= 150 158.168
-
Q.
-
[T}
3
(o]
o
S 100
=3
o
@
(%]
@
Q.
£ 50
(o]
ot
o 33.292
9.188
118612 —
G S\S‘) ; CSS) . /146 SS)- DG A%y
%Cs Wiy Py org Pty . %0»[’//’34, sy Pt .
B Yo, 1o V4, T8 (& B
&, ey ey ey Y 07*/7@ @foprfos,
s /07/38
(4

Figure 6. Decompression throughput achieved by each GSST
GPU implementation.

GSST Blocks Kernel introduces block parallelism, as explained
in Section 3.1.

GSST Splits Kernel Initial is the first implementation utilizing
the split format, described in Section 3.2.

GSST Splits Kernel Shared Memory enhances this by incorpo-
rating shared memory for data staging.

GSST Splits Kernel Memory Alignment adds aligned memory
transfers, as covered in Section 4.

GSST Splits Kernel Parameter Optimized is the same imple-
mentation as the memory-aligned splits but using the fastest
parameters found by sweeping parameters.

and reveals misalignment issues, where each byte written
triggered a 32-byte cache-line transaction. Aligning memory
accesses greatly increases memory and compute throughput,
with the largest bottleneck being stalls waiting for shared
memory. Finally, tuning the parameters (number of blocks,
number of splits, number of bytes per alignment, and shared
memory buffer size) reduced these stalls and achieved the
highest decompression throughput.

Figure 7 compares the decompression throughput and
compression ratio of GSST against the nvCOMP algorithms.
From these results, the following observations can be pro-
vided:

1. GSST significantly outperforms traditional CPU-based
formats in nvCOMP, such as LZ4, Snappy, and zstd,
when it comes to decompression throughput. GSST
achieves a decompression throughput of 191GB/s,
which is only surpassed by ANS and Bitcomp in
nvCOMP. While these two algorithms have a 49% and
46% higher decompression throughput compared to
GSST, respectively, GSST offers a 49% and 151% higher
compression ratio compared to ANS and Bitcomp.

300
Algorithm
® GSST Splits Kemel
250 ® nvCOMP ANS
nvCOMP Bitcomp
200 - IVCOMP Cascaded
L VCOMP Gdeflate
IVCOMP LZ4
150 VCOMP Snappy
VCOMP Zstd

0ld Pareto front
100

Decompression throughput (GB/s)

1 15 2 25 3 35

Compression ratio

Figure 7. Comparison of decompression throughput and
compression ratio of GSST against nvCOMP algorithms on
an NVIDIA A100, using the 10GB TPC-H text dataset. The
decompression throughput measures the time it takes for
compressed data in GPU memory to be decompressed to
GPU memory. The large dots represent the new Pareto front.
GSST shifts the Pareto front, offering a favorable balance of
both decompression throughput and compression ratio.

2. Compression Ratio: When compressing string data,
GSST achieves a compression ratio of 2.74, out-
performing all nvCOMP algorithms except zstd.
Although zstd surpasses GSST with a 23% higher com-
pression ratio, GSST makes up for this with its de-
compression throughput, which is 18.6x faster than
zstd.

Overall, GSST is well-positioned as an optimal solution,
offering a strong trade-off between compression ratio and
decompression throughput for string data. Note that bitcomp
and ANS may still be able to perform better on numerical
data, but that is not the focus of GSST.

6.3 GPU memory usage

Memory usage is an important factor when evaluating
compression algorithms, especially on GPUs, where exces-
sive memory consumption can slow down processing, limit
throughput, and prevent large datasets from being handled
effectively [6]. This makes memory usage an important met-
ric for assessing how well compression algorithms perform
on large files.

In this analysis, memory usage was measured for GSST
and all nvCOMP compression algorithms using the 10GB text
file. The memory usage during decompression is recorded
using NVIDIA Nsight Systems with the -cuda-memory-
usage=true parameter. The exact values are extracted from
the SQLite export of the profile.

The memory usage measurements are shown in Figure 8. A
remarkable observation was the high memory consumption
of nvCOMP algorithms, particularly due to a large buffer
allocation when creating the nvCOMP compression manager.
Regardless of the algorithm, the manager allocated a buffer
twice the size of the input data (i.e. 20GB for our 10GB input),

-
o c
>

J1ageuew Surpnpuy

—
o
>

Memory usage (Bytes)

10
10 1.984e+10 1.98e+10 1.98e+10 1.981e+10 1.98e+10 e
10°
383
I

10" 2.580+10
3.901e+7
9.062e+6 W 5 437¢+6
1.359e+6 [l 1.35%+6
— .

G
X 7,
Pl

Memory usage (Bytes)
Iafeuew Suipnppxg

(044 (\041 0(),‘7 %47

?/
””0/7 w]"l’p

Co
e ey

Decompression algorithm

Figure 8. Peak GPU memory usage of GSST compared to the
algorithms in the nvCOMP library when decompressing the
10GB TPC-H text dataset on the A100 80GB, as reported by
NVIDIA Nsight Systems. This only includes the memory us-
age from initializing the nvCOMP compression manager and
calling the decompression algorithm. This does not include
the input buffer with compressed data and output buffer
for the decompressed data. Gdeflate is not included, as the
benchmark crashed when launched by Nsight Systems. The
nvCOMP manager in the high-level API allocates a buffer
of twice the input size before any compression or decom-
pression is done. The top graph shows the memory usage
including the memory allocated by the nvCOMP manager,
and the bottom graph without it.

before any compression or decompression is started. This
overhead contributed to significantly higher memory usage.
While this benchmark used nvCOMP’s high-level API, it
is possible that using the low-level API could reduce these
large memory allocations.

GSST demonstrates a significant advantage over nvCOMP
in terms of memory efficiency. By keeping the needed data,
such as the symbol tables, in shared memory, the algorithm
requires almost no global memory. As stated before, this is
mainly the result of nvCOMP using excessive amounts of
global memory. As nvCOMP is closed source, it is unclear
why it allocates such large amounts of memory. While the
low-level API might help reduce memory consumption, it is
unlikely to bring memory usage down to the same levels as
GSST.

7 Related work

Most traditional compression algorithms predate GPU ac-
celerators and lack parallel-friendly designs, whereas newer
big data formats increasingly emphasize parallelization by
design. A SIMD-friendly integer encoding layout introduced
in [1] facilitates parallel decoding of schemes like delta

60

and run-length encoding, which was later implemented
on GPUs [2]. Alongside software-based optimizations, the
push for higher decompression throughput has spurred the
development of dedicated hardware accelerators for pop-
ular encoding formats, such as NVIDIA’s data processing
units (DPUs) with built-in decompression [16] and upcom-
ing GPU generations featuring specialized decompression
engines [11], as well as those developed on FPGAs [4, 5].

8 Conclusion

This paper discusses a new algorithm for string compression
based on FSST that targets fast decompression throughput
on GPUs. By making use of a pre-defined static symbol table
and adding metadata to expose additional parallelism, our
proposed GSST algorithm allows efficient use of the GPUs
SIMT model of computation. Results show that the algorithm
performs significantly better in terms of both decompres-
sion throughput and compression ratio compared to most
LZ-based algorithms that have GPU implementations. That
means that those algorithms are rendered obsolete when
working with string data on GPUs.

This new GPU compression landscape has only 3 Pareto-
optimal trade-off points for string decompression on GPUs:

e zstd provides the highest compression ratio at 3.40x but
the decompression throughput is limited to 9.8GB/s.

e ANS provides the highest decompression throughput,
reaching 286GB/s at a compression ratio of 1.83x.

o GSST provides a balanced tradeoff with a compression
ratio of 2.74x and a throughput of 191GB/s.

GSST achieves a high compression ratio with high decom-
pression throughput, allowing for efficient data transfer and
processing on GPUs. It also delivers the lowest memory us-
age by minimizing global memory overhead and utilizing
shared memory, making it highly effective for handling large
datasets with minimal resource consumption.

References

[1] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression
Layout: Decoding > 100 Billion Integers per Second with Scalar Code.
Proc. VLDB Endow. 16, 9 (May 2023), 2132-2144. https://doi.org/10.
14778/3598581.3598587
Azim Afroozeh, Lotte Felius, and Peter Boncz. 2024. Accelerating
GPU Data Processing using FastLanes Compression. In Proceedings of
the 20th International Workshop on Data Management on New Hard-
ware (Santiago, AA, Chile) (DaMoN °24). Association for Comput-
ing Machinery, New York, NY, USA, Article 8, 11 pages. https:
//doi.org/10.1145/3662010.3663450
Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast ran-
dom access string compression. Proceedings of the VLDB Endowment 13,
12 (01 07 2020), 2649-2661. https://doi.org/10.14778/3407790.3407851
[4] Jianyu Chen, Maurice Daverveldt, and Zaid Al-Ars. 2021. FPGA
Acceleration of Zstd Compression Algorithm. In 2021 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (2021-06-01). IEEE Computer Society, 188-191. https:
//doi.org/10.1109/IPDPSW52791.2021.00035

[2

—

[3

[t}

[5] Jian Fang, Jianyu Chen, Jinho Lee, Zaid Al-Ars, and H.Peter Hofstee.

(10]

2019. Refine and Recycle: A Method to Increase Decompression Paral-
lelism. In 2019 IEEE 30th International Conference on Application-specific
Systems, Architectures and Processors (ASAP) (2019-07), Vol. 2160-052X.
272-280. https://doi.org/10.1109/ASAP.2019.00017 ISSN: 2160-052X.

Laiq Hasan, Marijn Kentie, and Zaid Al-Ars. 2011. DOPA: GPU-based
protein alignment using database and memory access optimizations.
4,1(2011), 261. https://doi.org/10.1186/1756-0500-4-261

Byungseok Kim, Jaecho Kim, and Sam H. Noh. 2017. Managing Array of
SSDs When the Storage Device Is No Longer the Performance Bottle-
neck. In 9th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 17). USENIX Association, Santa Clara, CA. https://www.
usenix.org/conference/hotstorage17/program/presentation/kim

Fritz Kruger. 2016. CPU Bandwidth — The Worrisome 2020 Trend. (23
March 2016). https://blog.westerndigital.com/cpu-bandwidth-the-
worrisome-2020-trend/

Lennart Noordsij, Steven van der Vlugt, Mohamed A. Bamakhrama,
Zaid Al-Ars, and Peter Lindstrom. 2020. Parallelization of Variable Rate
Decompression through Metadata. In 2020 28th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP).
245-252. https://doi.org/10.1109/PDP50117.2020.00045

NVIDIA. 2024. nvCOMP library. https://developer.nvidia.com/nvcomp

61

[11]
[12]

[13]

[14]

[15]

[16]

NVIDIA. 2024. NVIDIA Blackwell Architecture Technical Brief. https:
//resources.nvidia.com/en-us-blackwell-architecture

Jeongmin Park, Zaid Qureshi, Vikram Mailthody, Andrew Gacek, Shun-
fan Shao, Mohammad AlMasri, Isaac Gelado, Jinjun Xiong, Chris New-
burn, I hsin Chung, Michael Garland, Nikolay Sakharnykh, and Wen
mei Hwu. 2023. CODAG: Characterizing and Optimizing Decompres-
sion Algorithms for GPUs. arXiv:2307.03760 [cs.DC]
Sebastian Deorowicz. 2024. Silesia Compression Corpus.
//sun.aei.polsl.pl/~sdeor/index.php?page=silesia

Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden.
2022. Tile-based Lightweight Integer Compression in GPU. In Proceed-
ings of the 2022 International Conference on Management of Data (New
York, NY, USA, 2022-06-11) (SIGMOD ’22). Association for Computing
Machinery, 1390-1403. https://doi.org/10.1145/3514221.3526132
Yury Uralsky. 2024. Accelerating Load Times for Di-
rectX Games and Apps with GDeflate for DirectStorage.
https://developer.nvidia.com/blog/accelerating-load-times-for-
directx-games-and-apps-with-gdeflate-for-directstorage/

Zheng Wang, Chenxi Wang, and Lei Wang. 2023. DPUBench: An
application-driven scalable benchmark suite for comprehensive DPU
evaluation. BenchCouncil Transactions on Benchmarks, Standards and
Evaluations 3, 2 (2023), 100120. https://doi.org/10.1016/j.tbench.2023.
100120

https:

