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Abstract
This paper describes the feasibility of digit
detection using three photodiodes and an Arduino
Nano 33 BLE. This is done using a controlled
lighting condition, using a bright lamp. It
dives into the process of data collection, pre-
processing and model selection for a recurrent
neural network to do the classification of gestures
into digits. Using a ”ConvLSTM double conv.
layer model” with 128 units we were able to
achieve an average accuracy of 0.500 ± 0.091
on a 5-Fold cross-validation procedure based on
data that was collected in a controlled lighting
environment. While this provides a foundation for
digit detection using time-series data in a controlled
light environment, further suggestions are made for
future improvements and expansions in this area.

1 Introduction
The COVID pandemic made humans mentally aware of
the bacterial and viral traces they leave behind on objects.
Though these traces on shared surfaces are rarely the cause of
infection [1], they did cause ”touch anxiety” among people.
This was reported by therapists [2] and found in a survey by
London South Bank University [3]. This caused a necessity
for public devices allowing for touch-free interaction [4].

There are many solutions to this problem, like using
people’s smartphones as input devices or having a camera
and/or an infrared detection system. These are not always
feasible methods, because not everyone necessarily owns a
(reliable) smartphone. To illustrate this point a study showed
in 2020 in the US 85% of the people owned a smartphone
[5]. It would be unacceptable to have elevators that are only
operable by 85% of the population. Since user-interaction
devices are everywhere it is advantageous for them to use
up little energy, in contrast to infrared detection systems and
full-color video cameras. This is where photodiodes and the
Arduino Nano come in.

A research paper by K. Janczyk, K. Czuszynski and J.
Ruminski [6] describes using a single quadrant-photodiode
for digit classification. They used a mix of the MNIST data
set [7] and their own captured data (with a 20% arbitral
rejection of the worst samples) to train their best-performing
convolutional neural network. This approach, using their
best-performing setup, achieved an average accuracy of 86%.
A quadrant photodiode is different from the hardware that we
are using, and this paper did the inference of their model on a
stationary computer, and not on a micro-controller.

There are multiple scenarios in which the ability to
recognize digits from in-air gestures would be useful. An
anecdotal example is to enter the designated floor one would
like to take an elevator to. Another one is to use our system
for inserting a PIN to withdraw money from an ATM.

In 2022 a group of Computer Science Engineering
students [8–12] from the Delft University of Technology laid
the foundation for an interaction device that uses ambient
light to observe hand gestures. This setup is low in cost due

to using only three separate photodiodes, a custom-designed
PCB, cheap and widely available parts, and an Arduino Nano
33 BLE. This proves prominent due to its energy efficiency.

Last year’s team yielded many useful results that can be
used to further improve the recognition of certain gestures.
First off, access to the hardware from early on in the project
allows us to focus mainly on the data-collection and machine-
learning model aspect of this project. D. Barantiev proposed
potential ways to do pre-processing on the data [9]. The
research on data collection, a research project conducted by
F. Akadiri [10], and the software tools that came along with
it proved a great inspiration source for this research paper.
Furthermore, the two papers on neural networks, one on
convolutional neural networks conducted by W. Narchi [11],
and one on recurrent neural networks conducted by M. Lipski
[12], were a valuable asset at the start of this research project,
and were used as a guide in the right direction. A summary
of these papers can be found in section 2.2

Current research still lacks insights into the feasibility and
methods for digit detection using this specific setup. This
year we aimed to improve the recognition achieved by the
gesture-recognition setup created last year in the application
on digits. This paper focuses on the classification of digits
drawn in front of the photodiodes with a finger using a 3-
dimensional approach. A 3D approach entails that we use a
model that uses time as a dimension (using the fact that there
is a certain order in this data that is relevant). This is further
explained in section 2.1. The problem here consists mainly
of collecting the data and training an appropriate model that
adheres to the memory constraints of the Arduino Nano 33
BLE[13]. This paper contributes to finding an appropriate
model.

This paper contributes the following things:

1. Tools and insights into collecting a representative digit
gesture data set.

2. That it is possible to get to a mean accuracy of 50%
on digit recognition with 3 photodiodes, though it might
require an artificial light source.

3. What kind of model should be used when using 3D-
preprocessed data with the setup of this research in
mind.

The rest of this paper is structured in the following way:
First, there is a background section, section 2, which dives
into useful concepts and summarizes last year’s research
group’s papers. Then, the methodology section, section 3
describes the methodology and why it was chosen. Following
this, there is an explanation of the experimental setup and
results in section 4. This is followed by section 5 about
responsible research, tackling the ethical and reproducibility
aspects of this paper. Then there follows a discussion in
section 6, which is finally followed by a conclusion and future
works section, section 7, describing important conclusions
from the research performed, as well as giving guidance for
future work to progress the field.



2 Background

2.1 Useful concepts

3D formatted data refers to the data being formatted in
frames. This is done to make the photodiode data more like
a video instead of an image. Figure 1 shows data points of
photodiodes over time, divided into frames of size 3. The
image approach is shown in figure 3, and described in section
2.2.

Figure 1: Visual explanation of what data in frames looks like. Data
points from the photodiodes are grouped into a frame of a certain
size, here frame size n=3.

Inference refers to retrieving a prediction from a fully
trained model, usually after providing an unseen data sample.

Convolutional layers are layers used in deep learning
models to process image-like data. They work by applying
certain filters (or kernels) to a small portion of the (image)
data at a time and sliding over the whole image.

A recurrent neural network is a type of artificial neural
network that uses sequential data or time series data. Their
distinguishing feature is their ”memory”, which keeps track
of previous inputs and uses this with a certain weight in
the calculations done to make the current input into output.
Expansions on recurrent neural networks, RNNs, are GRU
and LSTM models. These models use ’gates’ to regulate the
flow of information in the network, which allows them to be
even better at recognizing patterns.

A ConvLSTM is a model that combines convolutional
layers and LSTM layers.

Quantization is a technique used to compress models
into a smaller version. It works by lowering the precision
of a model’s weights and activations. The TensorFlow
Lite documentation on model optimization [14] gives the
following description of how quantization works:

”Quantization works by reducing the precision
of the numbers used to represent a model’s
parameters, which by default are 32-bit floating
point numbers. This results in a smaller model size
and faster computation.”

A guide on how to do this procedure is written in the
TensorFlow Lite documentation on post-training quantization
[15].

2.2 Summary of last year’s projects
Hardware
The hardware for this project was designed last year by Stijn
van de Water [8]. There are two important conclusions that
are useful to keep in mind during this research project.

Firstly, for photodiode placement, the paper found
experimentally that in a triangular setup, a distance of 5 cm
between each photodiode is the best balance between the
precision and robustness of the system. This exact hardware
setup is also used during this research project and can be seen
in figure 2.

Secondly, section 5.1 of this paper describes a software
system for the automatic adaption of photodiodes’ sensitivity
to a changing light environment. The source code for this
can be found in the LightIntensityRegulator-class in the
”diode calibration” directory of the GitHub page 1. For data
collection we use the code in this class to calibrate the sensors
before collecting a sample. During inference, this class would
used to do the calibration.

Figure 2: Hardware setup designed by Stijn van de Water

Data Collection
Last year F. Akadiri [10] wrote a paper on data collection for
the project. The paper describes the creation of a data set of
gestures. The data set that was created consisted of 5 samples
for each candidate and 5 candidates for each possible light
condition. The paper also touches upon the human interaction
aspect of the gestures, but since it is talking about select
gestures like tapping, zooming, swiping, etc. they are not
relevant to the drawn digit gestures. Therefore nothing can
be said about the feasibility of the recognition of digits as
researched in this paper.

Pre-processing data
D. Barentiev created a pre-processing pipeline [9], though
it was never used in the final training and inference. This

1https://github.com/StijnW66/CSE3000-Gesture-Recognition/
blob/main/src/diode calibration/diode calibration.h

https://github.com/StijnW66/CSE3000-Gesture-Recognition/blob/main/src/diode_calibration/diode_calibration.h
https://github.com/StijnW66/CSE3000-Gesture-Recognition/blob/main/src/diode_calibration/diode_calibration.h


was because there was no time to tweak it such that it had
a positive effect on the accuracy of the models. The paper
describes the threshold computing algorithm they used for
detecting a gesture in section 4.4. The algorithms behind
the pre-processing pipeline are described in section 4.5 of the
paper.

Neural Networks
As mentioned earlier, there were two papers written on neural
network models used for the classification of gestures. The
paper written by M. Lipski [12] stands as a basis for this
paper, since it’s the one that is most similar to this research’s
research question. It’s an application of recurrent neural
networks with the use of ”3D-formatted data” (as described
in section 2.1) to the classification of hand gestures collected
on the same setup as we are using. The conclusion from the
paper is that a CNN-LSTM approach worked best for the data
they had collected. This means they used a model that first put
input through some convolutional layers, of which the result
was fed into an LSTM layer. The exact configuration can be
found in section 7.1 of the paper [12].

The author found that there was no support for RNN or
LSTM layers to be included in a model when using the
TensorFlow Lite for Microcontrollers library to convert it for
deployment on the Arduino. This problem has recently been
solved since there now is support for such layers. [16]

Figure 3: Example gesture, a hand ”right-swipe” gesture, encoded
as a 2D image. Light intensity data is normalized between 0 and 1.

The paper written by W. Narchi [11] describes the use of
convolutional neural networks. This approach encodes every
sample as an image, where all the data points of that sample
are encoded as a color, as shown in figure 3.

The paper describes why the final model was chosen. The
final chosen model (which the author called ”Narrow LilConv
Padding Pyramid (NLCPP)”) consists of a ZeroPadding2D
layer, convolutional layers, a 2DMaxPooling layer, another
convolutional layer, a flatten layer and finally a ’soft-max’
dense layer. This paper included a lot of useful background
and explanations of the basics of deep learning.

3 Methodology
In this section, the workflow for this project is described.
Figure 4 shows this workflow. To create a model for

digit recognition, we first collected a data set. Then
we experimented with models and converted them with
TensorFlow Lite for Microcontrollers.

Figure 4: Overview of the process of this research project

3.1 Data collection
There were two data sets created for this project. For both of
the data sets the data is strictly anonymous, and the consent
forms of each of the participants will not be made public.
Figure 5 shows an example plot of what collected gesture data
looks like.

For data collection of the first data set, we used a tool
that was built last year for this project2, which was changed
into an improved version [17] as a collaborative effort by the
Research Project group, group 46, consisting of Arne de Beer,
Sem van den Broek, Winstijn Smit, Paco Pronk and the author
of this paper, Gijs van de Linde.

The same GitHub repository [17] contains the data that was
collected using this tool. This data set was contributed to by
Arne de Beer, Sem van den Broek, Winstijn Smit, and the
author of this paper, Gijs van de Linde. This data set will be
referred to as the uncontrolled lights dataset, because the
light conditions weren’t controlled at all.

Controlled data set
The previously mentioned collaboratively improved tool for
data collection was further changed to meet the specific
demands of this project, of which the code is available on
GitHub [18]. Credit for some concepts used for collecting
data based on the threshold detection algorithm needs to be
given to Winstijn Smit, who was happy to discuss and explain
his ideas.

The second data set that was created was created by
Winstijn Smit and Gijs van de Linde. This one did have a
controlled light environment, as described in section 4. It
will therefore be referred to as the controlled lights data
set. This data set contains approximately twenty participants.
Twenty was chosen because it is a large amount enough
amount to cause variations in the exact motion of each

2https://github.com/StijnW66/CSE3000-Gesture-Recognition

https://github.com/StijnW66/CSE3000-Gesture-Recognition


Figure 5: Plot of a recording of the gesture for the digit 2 by
candidate ”g0” .

gesture, without having to collect an unreasonable amount of
different participants. Each candidate did a minimum of 10
recorded gestures of the same digit. Each gesture consisted of
a 2-second sample at 1000 Hz, resulting in the final sample
containing 2000 data points per photodiode. An example of a
gesture is visualized in the plot shown in figure 5.

Figure 6: Setup with lamp used for data collection.

The setup that was used for this data collection procedure
is shown in figure 6. This lamp is a ’selfie ring light’ from
HEMA [19], set to it’s ’normal light’ mode. The lamp’s
purpose was to give a consistent light source. This lamp
was placed approximately 30 cm above the PCB during
the experiment. This caused the photodiode collaboration
algorithm described in section 5.1 of the paper on the design
of the PCB by S. van de Water [8] to calibrate to 122000 Ohm.

During data collection, we aimed to make a representative

data set, considering an approximately equal amount of
women and men of different ages. There is a bias in the data
set since it is exclusively made up of right-handed people.

To make sure we created a representative data set for
the setup it used, we used the threshold-detection algorithm
intended for the final device, as described in section 3.3.
This makes sure that the sample collected for the data set is
similar to the sample used for inference on the final device.
It also made collecting data a lot easier, as the participants
could start drawing a new digit whenever they felt like it.
The changing of the lights on the Arduino board during a 2-
second recording made this interaction organic. To remove
some complexity from our model, we instructed participants
to draw a digit in a certain way. This is shown in figure 7.
Another measure we took to make the data less complex, was
that for each instruction we had the candidate start under the
lower right corner of the Arduino, and after finishing their
gesture we had them return to the same position.

Figure 7: Map that shows how participants had to draw the digits.

3.2 Model choice
For training different models we used Keras[20], the high-
level API for TensorFlow. Keras allows for creating and
training complex deep learning models, without having to
dive into the nitty-gritty of it.

Two main factors influenced our choice of types of neural
networks that we considered. First off, the fact that this
research is based on 3D pre-processed data, as described
in section 2, influenced our choice since this promotes the
use of recurrent neural networks. Recurrent neural networks
are often used for the classification of time series[21].
Secondly, we needed to convert our model such that it would
run on our target device. We, therefore, are required to
consider what models are supported by TensorFlow Lite for
Microcontrollers. The size restriction of the model comes
from the size of the RAM of the microcontroller we use,
which is the Arduino Nano 33 BLE Sense. The data sheet
of this microcontroller [13] tells us we have 256 KB RAM.

Under these restrictions, there were two evaluation metrics
that we used for finding the best deep-learning model.



First off, we did K-Fold cross-validation with K=5, which
results in an average accuracy and standard deviation.
Ideally, this accuracy would be as high as possible. For
each model, a confusion matrix was generated based on the
performance of the test set on the model for each fold. These
were collected over each fold of the evaluation procedure.
Finally, they were compiled into a confusion matrix using
the ConfusionMatrixDisplay class[22] from the scikit-learn
module. The second metric that is considered is the size
of the model converted to a TensorFlow Lite version after
200 training epochs. This is representative of how large a
model would be on the Arduino, though it’s not the theoretical
minimum size, since it can potentially be shrunk using
quantization. This is further described in the future work
section, section 7. The results of these experiments can be
found in section 4.2.

A key consideration in data preparation for training models
was that it is important to differentiate between two ways of
splitting the collected data into testing and training data. The
first way to do this split would be fully random, which will be
referred to as within-candidate-split. The second way is to do
a split that groups all data by the candidate that produced the
data. This means that a percentage of the candidates is used
as test data and a percentage is used for the test data. This
will be referred to as between-candidate-split. The Between-
candidate-split yields very different results from a within-
candidate-split. It was chosen to focus on the between-
candidate-split during this paper. This choice was made
because using this split is closer to a real-world application
that requires the recognition of gestures from people that were
not included in the process of gathering training data.

To help reduce overfitting a dropout layer was added to
certain layers of the models. A paper by N. Srivastava et
al.[23] shows that dropout layers can help reduce overfitting
of models. The parameters that were chosen for the final
experiments are described in section 4.

3.3 Gesture Detection

For detecting the start of a gesture, we use a threshold
detection algorithm. This algorithm consists of three circular
buffers of size 100. These buffers are updated with a
frequency of 1000Hz. Before the buffers are updated there
is a check to see if the current photodiode value has a
difference certain between the oldest value in the buffer. The
threshold for this change depends on the frequency used
and the lighting conditions. The value that was chosen for
this threshold was the integer 10. This was not extensively
researched but was chosen since it proved to work.

3.4 Deployment onto Arduino Nano 33 BLE

Though not further researched in this paper, the idea behind
these models was to run them on the Arduino Nano 33
BLE itself. This can be done using the TensorFlow Lite for
Microcontrollers [24], which is available on GitHub [25].
This is further touched upon in section 7, which contains
suggestions for future work.

Figure 8: Explanation of circular buffer

4 Experimental Setup and Results
Switch to controlled lighting

Figure 9: Confusion Matrix for using a ConvLSTM model trained
on the uncontrolled data set.

Initially, we set out to attempt data collection without
controlling the lighting conditions. The data we collected
seemed too varied to create a working model for. This
can be seen in figure 9, which shows the result of a 200-
epoch training procedure of a ConvLSTM model. This
confusion matrix shows that this model performs very badly.
It performed with an average accuracy of 0.14 on a 10-
class classification problem, which is close to a fully random
guessing approach.

To get a foundation for our ambient-light-based digit-
classification task we chose to switch to a controlled lighting
environment. This narrows down the research since the final
results will no longer be applicable to ambient light sources.
The data set created for this narrower task is described in
section 3.1.

4.1 Experimental Setup
The data was preprocessed before it was used for training.
The data was first down-sampled by using interpolation to
a 100Hz frequency. This resulted in 200 data points per
photodiode per sample. This data was then normalized to
be in the range (0, 1). Depending on the model it was then
divided into frames, as described in section 2.1. It was chosen
to fix the frame size to 5 since that proved to work best in the
paper by M. Lipski [12]. It was also chosen to use an Adam
optimizer with the learning rate set to 0.0005.

The following deep-learning model configurations were
evaluated:



Figure 10: The configurations for each model that were tested

CNN
Parameters: k kernels
1. Time-Distributed Reshape to shape (5, 3, 1) of each time frame.
2. Time-Distributed Conv2D-layer with k kernels of shape (2, 2) followed by a Dropout layer with
p = 0.25
3. Another Time-Distributed Conv2D-layer with k kernels of shape (2, 2) followed by a Dropout layer
with p = 0.25
4. A Dropout layer with p = 0.5, a Flatten-Layer and a soft-max-activated Dense layer with 10 units,
one for each output class.

RNN
Parameters: u units
1. A Time-Distributed Flatten layer to flatten each time frame.
2. A SimpleRNN-layer with u units, followed by a Dropout layer with p = 0.25.
3. a Flatten-Layer and a soft-max-activated Dense layer with 10 units, one for each output class.

GRU
Parameters: u units
1. A Time-Distributed Flatten layer to flatten each time frame.
2. A GRU-layer with u units, followed by a Dropout layer with p = 0.5.
3. A soft-max-activated Dense layer with 10 units, one for each output class.

LSTM
Parameters: u units
1. A Time-Distributed Flatten layer to flatten each time frame.
2. An LSTM-layer with u units, followed by a Dropout layer with p = 0.5.
3. A soft-max-activated Dense layer with 10 units, one for each output class.

ConvLSTM single conv. layer (3, 1) kernel
Parameters: u units
1. A Time-Distributed Reshape to (5, 3, 1) of each time frame.
2. Time-Distributed ’relu’-activated Conv2D-layer with 128 kernels of shape (3, 1) followed by a Dropout
layer with p = 0.25
3. A Reshape to the shape (40, 3 * 3 * 128).
4. An LSTM layer with u units.
5. A Dropout layer with p = 0.5, a Flatten-Layer and a soft-max-activated Dense layer with 10 units,
one for each output class.

ConvLSTM single conv. layer (2, 2) kernel
Parameters: u units
1. A Time-Distributed Reshape to (5, 3, 1) of each time frame.
2. Time-Distributed ’relu’-activated Conv2D-layer with 128 kernels of shape (2, 2) followed by a Dropout
layer with p = 0.25
3. A Reshape to the shape (40, 4 * 2 * 128).
4. An LSTM layer with u units.
5. A Dropout layer with p = 0.5, a Flatten-Layer and a soft-max-activated Dense layer with 10 units,
one for each output class.

ConvLSTM double conv. layer
Parameters: u units
1. A Time-Distributed Reshape to (5, 3, 1) of each time frame.
2. A Time-Distributed ’relu’-activated Conv2D-layer with 128 kernels of shape (3, 1) followed by a
Dropout layer with p = 0.25
3. A Time-Distributed ’relu’-activated Conv2D-layer with 128 kernels of shape (2, 2).
4. A Reshape to the shape (40, 2 * 2 * 128).
5. An LSTM layer with u units.
6. A Dropout layer with p = 0.5, a Flatten-Layer and a soft-max-activated Dense layer with 10 units,
one for each output class.

ConvLSTM max pooling
Parameters: u units
1. A Time-Distributed Reshape to (5, 3, 1) of each time frame.
2. Time-Distributed ’relu’-activated Conv2D-layer with 128 kernels of shape (2, 2) followed by a Dropout
layer with p = 0.25
3. Time-Distributed MaxPooling2D-layer followed by a Dropout layer with p = 0.25
4. A Reshape to the shape (40, 2 * 1 * 128).
5. An LSTM layer with u units.
6. A Dropout layer with p = 0.5, a Flatten-Layer and a soft-max-activated Dense layer with 10 units,
one for each output class.

• A CNN model

• An RNN model

• A GRU model

• A LSTM model

• Different ConvLSTM configurations

The exact setups used for experimentation are described in
depth in figure 10.

4.2 Results
The results from the experiments have been compiled into a
single table, table 11.

The results of the 5-split KFold evaluation of the models
can be seen in the ”accuracy” and the ”SD” columns of table
11, which represent the mean accuracy and standard deviation
over the 5 splits for each model for the 5-Fold cross-validation
evaluation.

Figure 11: Results of 5 split KFold, 200 epochs, rounded to the
3rd decimal. Includes size of model on 200 epochs of training after
conversion to a TensorFlow Lite model without quantization.

CNN model
Parameters Accuracy SD Loss Size
32 kernels 0.383 0.040 3.620 49.016 KB
64 kernels 0.395 0.039 4.545 101.64 KB
128 kernels 0.405 0.038 6.637 231.456 KB

RNN model
Parameters Accuracy SD Loss Size

32 units 0.3124 0.041 2.218 13.352 KB
64 units 0.3704 0.048 3.115 17.656 KB

128 units 0.369 0.077 3.901 31.8 KB
GRU model

Parameters Accuracy SD Loss Size
32 units 0.356 0.036 2.414 18.304 KB
64 units 0.416 0.098 3.192 30.072 KB

128 units 0.442 0.121 3.676 71.992 KB
LSTM model

Parameters Accuracy SD Loss Size
32 units 0.373 0.0794 2.459 19.216 KB
64 units 0.408 0.086 3.247 33.888 KB

128 units 0.413 0.098 3.380 87.776 KB
ConvLSTM single conv. layer (3, 1) kernel

Parameters Accuracy SD Loss Size
32 units 0.442 0.108 2.758 171.000 KB
64 units 0.423 0.800 3.523 331.192 KB

128 units 0.491 0.073 3.280 676.152 KB
ConvLSTM single conv. layer (2, 2) kernel

Parameters Accuracy SD Loss Size
32 units 0.424 0.086 2.706 154.752 KB
64 units 0.445 0.070 3.451 298.56 KB

128 units 0.463 0.082 3.49 610.752 KB
ConvLSTM double conv. layer

Parameters Accuracy SD Loss Size
32 units 0.445 0.077 2.873 159.352 KB
64 units 0.468 0.081 3.127 237.624 KB

128 units 0.500 0.091 3.158 418.744 KB
ConvLSTM max pooling

Parameters Accuracy SD Loss Size
32 units 0.385 0.091 2.305 57.008 KB
64 units 0.417 0.097 2.952 102.584 KB

128 units 0.429 0.125 3.318 218.168 KB

Generally, most recurrent neural networks perform better
with more memory blocks (units) as seen from the GRU,
LSTM and ConvLSTM models. With the standard deviation
in mind, the models that perform the best are the ConvLSTM
with a single convolutional layer that uses a (3,1) shaped
kernel and the ConvLSTM model with two convolutional
layers of which one uses a (3,1) shaped kernel and one uses



a (2, 2) shape. On the 5-fold cross-validation evaluation, the
single-convolution model had an accuracy of 0.491 ± 0.073,
whereas the model using two convolutional layers had an
accuracy of 0.500 ± 0.091. The confusion matrices of these
two best-performing models can be seen in figure 12 and
figure 13. These show that both models tend to have a hard
time distinguishing the following pairs of digits: 2 and 3, 3
and 7, and finally 5 and 9. This seems like an explainable
result since these three digit combinations follow a similar
path over the three observing photodiodes when performing
their associated gesture. The results of the conversion of the
models to TensorFlow Lite models can be seen in the ”size”
column of table 11.

Figure 12: The confusion matrices of the best-performing
ConvLSTM model with a single convolutional layer with a (3,1)-
shaped kernel.

Figure 13: The confusion matrices of the best-performing
ConvLSTM model with two convolutional layers, one with a (3,1)-
shaped kernel followed by a (2,2)-shaped kernel.

Interestingly, after conversion the single conv. layer
models become scaled a lot faster than the double conv.
model with the units provided to the LSTM layer of the
model. This can be explained due to the fact that for each

Figure 14: This explains why the ConvLSTM with two conv. layers
is smaller after conversion than the one with a single conv. layer.

of these one conv. layer models the LSTM layer takes an
input shape that’s two times larger than the one for the two
conv. layer models. This is visualized in figure 14, where it
can be seen that the single conv. model clearly has a larger
shape for the data that goes into the LSTM layer. This is also
reflected in the fact that the single conv. layer model has a
total of 592, 266 trainable parameters, where the two conv.
layer model has considerably less, namely only 395, 658.

5 Responsible Research

In this responsible research section, we will discuss the
reproducibility of this research. It will also reflect on the
ethical aspects of this research.

In the methodology and experimental setup sections, an
effort has been made to describe the process of data collection
and model training in detail.

For the controlled data set data samples were not thrown
out unless a participant signaled that something went wrong.
If one gesture on a candidate had more samples than a
different gesture on any candidate, then the smallest number
was taken, and if there were more samples available a random
sample of the samples was taken. This causes an element
of randomness, and the validation and test splits are also
sources of randomness in these experiments, which means
the exact results won’t easily be obtained, though similar
results are expected. The code for this project is available on
GitHub[18], which makes it easier to reproduce the results.

Because this research uses data that is collected from
people, there is a responsibility to do this in a manner that
is ethically responsible and to inform the participant of what
they’re participating in. To make sure of this we had them
sign a consent form that was passed through the HREC
(Human Research Ethics Committee). This form describes
all the implications of participation. This form was created
by our supervisor, Qing Wang, and is available on Google
Drive [26].



6 Discussion
This section discusses the results, and what they mean. It
also discusses what could’ve been better about this paper. An
important fact to notice is that the lighting conditions were
fixed to bright artificial light. This means the results are not
generalizable to ”ambient lighting”. Using ambient lighting
proved really challenging, as described in section 4. This
needs to be realized when interpreting the results or using the
conclusions.

A factor that should be considered in the uncontrolled data
set is that each collector of the data independently made
a selection of the samples they collected. The workflow
allowed for this with the single press of the ’d’ button after
looking at a collected sample plot. The fact that this was done
independently between four collectors should be highlighted
since this does mean that the bias in this data should be
representative of normal biases in the data collection of this
data set.

It is important to mention that the controlled lights
data set contains only right-handed data from right-handed
participants. This is a bias in the model, but since we are
researching how feasible a digit detection algorithm is this is
not that much of a problem, especially since the vast majority
of people are right-handed. The final product, as well as
further research, needs to consider left-handed data from left-
handed people.

Something else that needs to be noticed about the data
samples is that when doing gesture detection, as described in
section 3.3, the values in the circular buffer are not recorded
when a gesture is detected. A different approach would be to
first capture the values in the circular buffer, and then append
all the data collected after that, causing the sample to contain
all the data from the exact start of the gesture, maybe even a
little bit before it. This is just a choice since the values in the
buffer usually consist of the start of a gesture, which means
that a participant moves their hand to the desired starting
position. It’s also worth noting that the amount of time lost
for a gesture would be the first 100/1000 = 0.1 seconds.

Something to discuss about the way the participants were
instructed to draw a digit is that the digit 8 could be drawn in
two ways according to its representation in figure 7. This adds
a bit of extra complexity to the model, but such confusion
could only make the model perform worse, so it doesn’t
invalidate any of the results.

Section 3.2 describes that the way of splitting the data
into training and test data is very important for the results.
It is important when interpreting the results that they were
gathered using a between-candidate-split. Potentially a
higher mean accuracy and a better-looking confusion matrix
could have been found using a within-candidate-split since
this would evaluate the test metrics on data the model had
already seen. This fortifies our results though, since the
evaluation metrics are based on testing the model with data
from completely new, previously unseen candidates.

Furthermore, there was no evaluation done of models after
conversion to TensorFlow Lite models. There will most likely
be a decrease in performance after conversion since certain
optimizations cause trade-offs to be made. This needs to be

kept in mind when interpreting the results.

7 Conclusions and Future Work
Conclusion
A conclusion we can draw from this research is that digit
detection using ambient light and only three photodiodes is
challenging. By adding a constant, bright, artificial light we
researched the feasibility of creating a consistent model for
recognizing digits. The results from our experiments were
decent, and many improvements could be done to increase
performance. Suggestions for this are described in the next
section, the future work section.

From the model evaluation based on the 5-split KFold
cross-validation procedure, the following conclusions can be
drawn: According to the results in figure 11 best model is
either the ”ConvLSTM single conv. layer with a horizontal
((3,1)) kernel” or ”ConvLSTM double conv. layer”. These
performed the best during the experiment, with the single-
convolution model getting a mean accuracy of 0.491± 0.073
and the model using two convolutional layers getting a mean
accuracy of 0.500± 0.091.

Of these two, figure 11 tells us that the ”ConvLSTM double
conv. layer with 128 LSTM units” has a size of 418.744
KB, which is roughly 62% the size of the ”ConvLSTM single
conv. layer with a horizontal ((3,1)) kernel with LSTM 128
units” model which is 676.152 KB large.

In conclusion, while the current research provides a
foundation for digit detection using time-series data in a
controlled light environment, there is significant potential for
future improvements and expansion in this area.

Future Work
This section describes guidance and suggestions for future
work. Something that needs to be further explored in
order to deploy models on the Arduino is the conversion
to ’TensorFlow Lite for Microcontrollers’ models using
quantization, which is described in section 2.1, and
quantization-aware training [27] of the models. This
will make the models smaller in size and likely faster in
performance. After that, it would be useful to do inference
testing and evaluation of the models using the quantized
model either on a PC or when running it directly on the
Arduino itself.

The usual workflow for the development of models onto a
micro-controller, as described on the website [24], is this:

1. Train a model:

• Generate a small TensorFlow model that can
fit your target device and contains supported
operations.

• Convert to a TensorFlow Lite model using the
TensorFlow Lite converter.

• Convert to a C byte array using standard tools to
store it in a read-only program memory on the
device.

2. Run inference on the device using the C++ library and
process the results.



There are a lot of possible techniques for improving the
performance of deep learning models. One that is especially
applicable to this project is data augmentation. Because of
the limited data and the time-dependent nature of the data,
this could help improve the accuracy of our models greatly.

A tool that seems helpful for finding good parameters for
the models is Keras Tuner. A small example of this is written
out in a Google Colaberatory notebook here: http://bit.ly/
keras-tuner-example. Please note that directly running this
will not work, and it merely serves as an example.

The learning rate of the models and the frame size for the
data were fixed to a single value during this research. It is
probable that varying these can grant valuable increases in
performance.

The idea behind this research was to do real-time
classification. For this, we chose a maximum duration
of 200ms. The inference times of our models were not
evaluated, and need to be further researched.

For detecting the start of a gesture, we implemented a C++
function that starts inference whenever the values of one of
the three photodiodes become less than a certain threshold.
This threshold was chosen because it seemed to work, but
was not extensively researched. This could still be valuable
to research.
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