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Abstract

Consider the free orthogonal quantum groups 0; (F) and free unitary quantum groups
U;?(F ) with N > 3. In the case F = idy it was proved both by Isono and Fima-
Vergnioux that the associated finite von Neumann algebra LOO(OJ“\;) is strongly solid.
Moreover, Isono obtains strong solidity also for L. (U ;) . In this paper we prove for
general F € G Ly (C) that the von Neumann algebras LOO(O;\?(F)) and LOO(U;\;(F))
are strongly solid. A crucial part in our proof is the study of coarse properties of
gradient bimodules associated with Dirichlet forms on these algebras and constructions
of derivations due to Cipriani—Sauvageot.

1 Introduction

In their fundamental paper [47] Ozawa and Popa gave a new method to show that
the free group factors do not possess a Cartan subalgebra, a result that was obtained
earlier by Voiculescu [66] using free entropy. To achieve this, Ozawa and Popa in fact
proved a stronger result. They showed that the normalizer of any diffuse amenable
von Neumann subalgebra of the free group factors, generates a von Neumann algebra
that is again amenable. This property then became known as ‘strong solidity’. As free
group factors are non-amenable and strongly solid they in particular cannot contain
Cartan subalgebras.

The approach of [47] splits into two important parts. The first is the notion of
‘weak compactness’. [47] showed that if a von Neumann algebra has the CMAP, then
the normalizer of an amenable von Neumann subalgebra acts by conjugation on the
subalgebra in a weakly compact way. The second part consists in combining weak
compactness with Popa’s malleable deformation for the free groups and his spectral
gap techniques.
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272 M. Caspers

After the results of Ozwa-Popa several other strong solidity results have been
obtained by combining weak compactness with different deformation techniques
of (group-) von Neumann algebras, often coming from group geometric properties.
Roughly (to the knowledge of the author) they can be divided into three categories:

(I.1) The aforementioned malleble deformations;

(I1.2) The existence of proper cocycles and derivations and deformations introduced
by Peterson [50] and further developed by Ozawa—Popa [48];

(I.3) The Akemann-Ostrand property, which compares to proper quasi-cocycles and
bi-exactness of groups; c.f. [12,19,54].

For group von Neumann algebras the required property in (I.2) is to a certain extent
stronger than (I.3) in the sense that proper cocycles are in particular quasi-cocycles.
These techniques have been applied successfully to obtain rigidity results for von
Neumann algebras (in particular strong solidity results). The current paper also obtains
such results and our global methods fall into category (I.2). Note also that we shall
consider derivations on quantum groups without considering cocycles.

Recently, first examples of type III factors were given that are strongly solid [7],
namely the free Araki-Woods factors. This strengthens the earlier results of Houdayer-
Ricard [38] who showed already the absence of Cartan subalgebras. A crucial result
obtained in [7] is the introduction of a proper notion of weak compactness for the
stable normalizer of a von Neumann subalgebra. Using this notion of weak compact-
ness strong solidity of free Araki-Woods factors is obtained by proving amenability
properties of stable normalizers after passing to the continuous core.

This paper grew out of the question of whether the von Neumann algebras of
(arbitrary) free orthogonal and free unitary quantum groups are strongly solid. These
free orthogonal and unitary quantum groups have been defined by Wang and Van Daele
[63] as operator algebraic quantum groups.

As C*-algebras the free orthogonal quantum groups are generated by self-adjoint
operators u; j,1 < i,j < N with N > 2 satisfying the relation that the matrix
(i, j)1<i, j<n is unitary. It was shown that this C*-algebra can be equipped with a natu-
ral structure of a C*-algebraic quantum group. Through a canonical GNS-construction
this yields a von Neumann algebra LOO(O;). Parallel to this one may also define the
free unitary quantum groups with von Neumann algebras LOO(U;), N > 2. We refer
to Sect. 2 below for details. These algebras have natural deformations parametrized
by an invertible matrix F' € G Ly (C) which yields quantum groups with non-tracial
Haar weights (i.e. quantum groups that are not of Kac type). We write LOO(O]*\,'(F ))
and LOO(U;(F )) for the associated von Neumann algebras.

Ever since their introduction these algebras have received considerable attention
and in particular over the last few years significant structural results have been obtained
for them. In particular, recently it was proved that free quantum groups can be distin-
guished from the free group factors [11]. Further, the following is known if we assume
N > 3 (the case N = 2 corresponds to the amenable SU, (2) case):

(1) Factoriality results for Lo (U ;\; (F)) and LOQ(O;\?(F )) were obtained in [24,64].
In particular for any F € G Ly (C) the von Neumann algebra LOO(U;;(F ))isa

factor. If F = idy the factors are of type II; and otherwise they are of type III,
for suitable A € (0, 1].
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(2) For arange of F € GL,(C) the algebras Loo (O (F)) and Loo(Uy (F)) are
non-amenable [4].

(3) For any F € GL,(C) the algebras Lo(O},(F)) and Loo(Uy; (F)) have the
CMAP and the Haagerup property [10,24,33].

@ oF = O;\," (Idx) admits a proper cocycle that is weakly contained in the adjoint
representation [31]. That is, it satisfies a property resembling property H H™ of
[48], see also [50].

(5) In case F = idy the factors LOO(O;\?) and LOO(U;\;) are strongly solid [31,41]
(see also the bi-exactness results from [40]).

(6) For general F € GLy(C) the algebras Loo (O} (F)) and Loo (U (F)) do not
have a Cartan subalgebra [41].

In the current context also the results by Voigt [65] on the Baum—Connes conjecture
should be mentioned; part of the results of [24] and therefore the current paper are
based on g-computations from [65].

In this paper we use quantum Markov semi-groups (i.e. semi-groups of state pre-
serving normal ucp maps) and Dirichlet forms (i.e. their generators) to obtain strong
solidity for all free orthogonal and unitary quantum groups. Dirichlet forms have been
studied extensively [18,20-22,29,35,58,60]. In particular in [21] it was shown that in
the tracial case a Dirichlet form always leads to a derivation as a square root. The
derivation takes values in a certain bimodule which we shall call the gradient bimod-
ule. In this paper we show the following, yielding a H H*-type deformation as in
[48,50] (see 1.2 above):

Key result (tracial case). Let G = O;;(F ), F = Idy be the tracial free orthogonal
quantum group. There is a Markov semi-group of central multipliers on G, which
is naturally constructed from the results of [10,24], such that the associated gradient
bimodule is weakly contained in the coarse bimodule of L (G).

In fact, the same result is true in the non-tracial case, but a stronger property is
needed in order to treat that case by passing to the continuous core of a von Neumann
algebra. The proof of the key result is based on two crucial estimates for the case
FF € RIdy: one on the eigenvalues of the Dirichlet form and the other on intertwiners
of irreducible representations of O;Q(F ) going back to [64].

In order to tackle all quantum groups U;(F ) and O;V’(F ) we treat the above in
a more general context. We study semi-groups of state preserving ucp maps and
introduce three properties: immediately gradient Hilbert—Schmidt (IGHS), gradient
Hilbert—Schmidt (GHS) and gradient coarse (GC). IGHS (as well as GHS) essentially
implies GC (see Proposition 4.4). The key result announced in the previous paragraphs
is proved by showing that 0;; (F) with FF € RIdy admits a semi-group that is IGHS.
Preservation under free products and behavior under crossed products of IGHS and
GC are studied in Sect. 5 from which we show that general free quantum groups admit
semi-groups that are IGHS and their cores admit GC semi-groups.

These results suffice to fuel the theory as set out in the beginning of the introduction.
We first recall the definition of strong solidity.

Definition 1.1 A von Neumann algebra M is called strongly solid if for every diffuse,
amenable von Neumann subalgebra Q@ C M for which there exists a faithful normal
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274 M. Caspers

conditional expectation Eg : M — Q, we have that the von Neumann algebra
N (Q) generated by the normalizer

{u € M | u unitary and u Qu* = Q},

is still amenable.

We use the notion of weakly compact actions of stable normalizers from [7] and the
deformation techniques (starting from proper derivations) as introduced by Peterson
[50] and further developed by Ozawa—Popa [48]. Eventually this leads to strong solidity
of all free orthogonal and unitary quantum groups. The precise statement we need
from these sources does not occur in the literature (though very similar statements are
claimed in [7,31,59]) and hence we incorporate them in the appendix.

We conclude:

Theorem For F € GLN(C), N > 3 let G be either O (F) or Uy (F). Lo(G) is
strongly solid.

Note that if a Kac type quantum group with the CMAP has the Haagerup property

then our approach here shows that there is a canonincal candidate for a bimodule
(i.e. the gradient bimodule) and a proper real derivation into this bimodule. It remains
then to show that the gradient bimodule is weakly contained in the coarse bimodule
to obtain good deformations. It would be interesting to know how large the class of
quantum groups is to which this strategy applies.
Structure. Section 2 contains various preliminaries on quantum groups and von Neu-
mann algebras. Section 3 recalls results by Cipriani-Sauvageot and some non-tracial
extensions. Section 4 contains general results on Markov semi-groups and coarse
properties of the gradient bimodule. Section 5 contains stability properties of IGHS,
GHS and GC that are nedeed to treat 0;(F ) forall F € GLy(C). In Sects. 6 and 7
we prove our main theorem, i.e. the strong solidity result. Finally in Sect. 8§ we prove
a compression result. The parts that are directly taken from [7] and [48] are included
in Appendix A.

2 Preliminaries

2.1 Free orthogonal quantum groups

In [69] Woronowicz defined a compact C*-algebraic quantum group G = (A, Ap) asa
pair of a unital C*-algebra A with a comultiplication Ap : A — A® A (minimal tensor
product) such that (Ap ® id)Ap = (id ® Aa)Ap and such that both (A @ 1) Aa(A)
and (1 ® A)Aa(A) are dense in A ® A. Compact quantum groups have a unique Haar
state ¢ such that for x € A,

(¢ @id)An(x) = ¢(0)] = (id ® ) Aa(x). 2.1

Let (74, H,) be the GNS-representation of ¢ with cyclic vector Q2 := 1 € H, and
set Loo(G) = 7y (A)”. The state ¢ determines a unique normal faithful state, still
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Gradient forms and strong solidity of freequantum groups 275

denoted by ¢, on Lo (G) satisfying (2.1) for all x € Lo(G). Here Ag := AL (@)
is then the von Neumann algebraic comultiplication, which shall not be used in this
paper. The triple (L~ (G), Ag, ¢) is then a von Neumann algebraic quantum group
in the Kustermans-Vaes sense, see [45]. It is common to write L(G) for H,,.

A finite dimensional unitary representation of G is a unitary elementu € Lo (G) ®
M, (C) such that (Ag ® id)(u) = uj3uz3z withupzs = 1 Q@ uand u13 = (X ® id) (u23)
with ¥ the flip. We denote Irr(G) for the set of all irreducible representations modulo
equivalence. For o € Irr(G) we let u® be a corepresentation of class «; none of the
constructions in this paper depend on the choice of the representative u“. We use
o C B to say that « is a subrepresentation of 8. This means that u® = (1 ® p)u” with
uf € Loo(G) ® M, (C) for some projection p € My, (C) such that 1 ® p commutes
with uf.

In the literature the terminology ‘corepresentation’ is also common to refer to
representations, but here we stay with ‘representation’ as our terminology. Let o €
Irr(G) and let X, be the span of elements (id ® w)(u), w € M,(C)* and let H, =
Xy2y. Xy is called the space of matrix coefficients of . The projection of L, (G) :=
L7(Loo(G)) onto H,, is denoted by p, and is called the isotypical projection of «.

We say that G is finitely generated if Irr (G) is finitely generated as a fusion category.
That s, there exists a finite dimensional representation « such that forevery g € Irr(G)
there exists a k € N such that 8 € «®*. We may assume that the trivial representation
is contained in « and that « is equivalent to its contragredient representation. Then the
minimal such k is called the length of 8 which we denote by /(). The length depends
on «, which at the point that we need it is implicitly fixed.

In [63] Wang and Van Daele introduced the free orthogonal quantum groups. We
recall them here. Throughout the entire paper fix an integer N > 2 and let F be a
invertible complex matrix of size N x N. Let A := A(O;;(F )) be the universal C*-
algebra generated by elements u; ;, 1 < i, j < N subject to the relation that the matrix
u' = (u; ;); jis unitary andu' = Fu! F~!. Here u! is the entrywise adjoint W} i
It has comultiplication Aa(u; j) = Z,i\/:l ui p @ uy, j. We call this quantum group
0; (F) with von Neumann algebra LOO(O;V" (F)) and Haar state ¢. In case N = 2 the
quantum group is amenable [4,9].

If we assume that F'F € RIdy the quantum group O;\," (F) is monoidally equivalent
to SU,(2) where the number 0 < g < 1 is such that g + q_l = Tr(F*F). Also set
Ny =q + g~ which is the quantum dimension of the fundamental representation
u'. It holds that Ny > N and equality holds if and only if the Haar state of 0;(F )
is tracial. Note that ¢ is the smallest root of x* — Ngx + 1 = 0. In this case, i.e.
when FF € RIdy, the representation theory of O;G(F ) as a fusion category was
described by Banica [4]. We have Irr(O;{,'(F )) =~ N with 0 the trivial representation
and 1 isomorphic to u! above. In fact we will denote u® for the representation of class
o € N. The fusion rules are for o > S,

BRQa~a@pF=|la—B|Pla—B+2D...8|a+ Bl

We write n,, for the dimension of o € Irr(O;G(F )). It satisfies the recurrence relation
Nnyg = ng4+1+nq—1.If weletgp € (0, 1) be the smallest positive root of x2—Nx+1 =
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276 M. Caspers

Othenwehaverny =~ g, *+0(1). Alsog < go.Itfollows that lim supa_)oo(na)l/“q <
1.

2.2 General von Neumann algebra theory

For von Neumann algebra theory we refer to the books by Takesaki [61,62].

Assumption Throughout the entire paper M is a von Neumann algebra with fixed
normal faithful state ¢. In case of a compact quantum group ¢ is the Haar state.

We use M°P for the opposite von Neumann algebra and write x°P, x € M for
elements in the opposite algebra. We also set x = (x*)°P. We write L,(M) for the
standard form Hilbert space. It has distinguished vector €2, such that x — x€, is a
GNS-map for ¢ with ¢(y*x) = (xQq, y2).

2.3 Tomita-Takesaki theory

Let S be the closure of the map xQ, — x*Q,, x € M which has polar decomposition
S = JV?. Here J : Ly(M) — La(M) is an anti-linear isometry with J2 = 1. We
set the modular group o,” (x) = V/'xV ™", We define the Tomita algebra 7, as the *-
algebra of x € M that are analytic for 0. We write £x for Jx*J&, & € Ly(M). Then
Qpx = ofi /z(x)9¢. ‘We have that V%XQ(/, € L;r (M), where the latter set denotes the
positive cone in the standard Hilbert space. We also record that [62, Lemma VIIL.3.18],

lxyS2ll2 < IIGi('}z(y)llllxﬂwllz, lyxQpll2 < I¥llxRllz x e M,y eT,.
2.2)

2.4 Hilbert-Schmidt operators

Let H : Dom(H) € M — M be a linear map. We say that H is Hilbert—Schmidt if
the associated map L, (M) — L (M) thatsends x 2, to H (x) 2, is Hilbert—Schmidt.
Wedenote the extension of H as a Hilbert—Schmidt map on Ly (M) by H? . Then
IH G236 = X5 ; 1(H"Pe;, )| is the Hilbert-Schmidt norm for any choice of
orthonormal basis e;. Let L, (M) be the conjugate Hilbert space of Ly (M). We may
identify H*? isometrically and linearly with a vector ¢y € La(M) ® Ly(M) by
means of the identification,

(HY2 @), n) = (£ @7, ¢u).

2.5 Bimodules and weak containment
An M-M-bimodule is a Hilbert space H with normal x-representations, 771 of M and

7y of the opposite algebra M°P, that commute. Notation: aéb = m(a)m(b)é with
& e H,a,b,e M. We write ryH, for the bimodule structure, or briefly H if the
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Gradient forms and strong solidity of freequantum groups 277

bimodule structure is clear. We recall the Connes-Jones definition of weak containment
[26]. We also refer to the extensive treatment of bimodules by Popa [53].

Definition 2.1 Let IC and H be two M-M-bimodules. We say that I is weakly con-
tained in H, notation JC < H, if forevery £ € IC, ¢ > 0, E, F C M finite there exist
finitely manyn; € K indexed by j € G such thatforallx,e E,y € F,

l(x&y, &) — anjy nj)l <e.

jeG

We let a(L2(M)pq denote the identity bimodule L;(M) with actions a&b =
aJb*J&. We let pqL2(M) ® La(M)aq denote the coarse bimodule with actions
a(& ® n)b = a& ® nb. The following is Popa’s definition of amenability [52,53].

Definition 2.2 A von Neumann algebra M is called amenable if \qLo(M)aq =<
ML2(M) @ Lo(M) pq.

Let M be a von Neumann algebra with normal faithful state ¢. If ® : M — M
is a completely positive map then by Stinespring’s theorem [30,55, Section 5.2] there
exists a M-M-bimodule H¢ with distinguished vector ng such that forx, y € M we
have (xney, ne) = (P(x)Ryy, 24). Recall that the He can be realized as follows.
Take M ® L, (M) with pre-inner product (¢ ©&, cOn) = (P(c*a)&, n). Quotienting
out the nilspace and taking a completion yields H¢ with actions x - (@ © §) - y =
(xa © €y),a,x,y € M,E € Ly(M). Then take ne = 1 ® Q,. The following
properties are well-known and now easy to check. ng is cyclic in the sense that the
linear span of MneM is dense in Hgq. For any & € Hg we have that the map
@ee(x @ yP) = (x&y, &) is positive on M © MP.If & = Id 4 then Ho = Lo (M)
(even as M-M-bimodules). We write 7 for the conjugate space of a Hilbert space .
Then the modular conjugation J : Ly(M) — Ly(M) : & — £* is a linear isometric
isomorphism. The following was pointed out in [53, p. 28, Sect. 1.5: comments]
(attributed to Connes), but we could not find an explicit proof. The following argument
follows closely [3, Lemma 2.15].

We shall call amap ® : M — M a Markov map if it is normal, ¢-preserving and
unital, completely positive (ucp).

Lemma 2.3 Let M be a von Neumann algebra with normal faithful state ¢. Let ® :
M — M be a Markov map and suppose that ®!-2) : Ly(M) — L(M) is Hilbert—
Schmidt. Then Ho < Heoarse-

Proof Let (Hg, ne) be the pointed Stinespring bimodule. Take ¢y, ¢3,dy,d» € M
arbitrary and set §; = cned; and & = coneds. Now we get for a, b € M that there
exists a vector {p € Ly(M) ® Lo(M) (see Sect. 2.4), such that

(a&1b, &) =(acinedib, conedr) = (c3acinedibds, ne) = (P(cyaci)Qypdibds, Q)
(D (chac)) Ry, Qudsb*d}) = (ciaciQy ® Lydb*dr, Lo)
=(ac1R2p @ Qydr2b*, (c2 @ )¢ (1 ®d))).
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278 M. Caspers

This shows that ¢, &, (a®b) = (a&1b, &) extends to a bounded functional on M ®min
M°P, moreover it is normal and thus extends to the von Neumann tensor product
M ® M®P (by Kaplansky of the same norm). Take finitely many vectors &; of the
above form and put & = Y. &. As ¢ ¢ is positive on M Qmin MOP it extends to a
positive normal functional on M ® M°P by Kaplansky. Then, as L>(M) ® L?(M) is
the standard form Hilbert space for M ® M°P, pick n € L?(M) ® L?(M) such that
(x&y, &) = (xny, n). As vectors & of this form are dense in H¢ the lemma follows
by approximation. O

2.6 Quantum Dirichlet forms

Recall that a Markov map M — M was defined as a g-preserving normal ucp map
(the normal faithful state ¢ is always implicitly fixed and usually the Haar state of a
compact quantum group in this paper). We say that a Markov map ® is ¢-modular if
®oo =0/ odforallt € R. AMarkovmap ® : M — M is called KMS-symmetric
if

(VIdX)Q, ViyQ,) = (VirxQ, VId(y)Q,). x.ye M.

If & : M — M is any Markov map then by a standard interpolation argument there
exists a contractive map ®? : L,(M) — L»(M) acting as

VixQ, > Vid(x)Q,. x € M.

KMS-symmetry is then equivalent to ®®) being self-adjoint. With a Markov semi-
group we mean asemi-group (®;);>0 of KMS-symmetric Markov maps M — M
such that for every x € M the function t — ®,(x) is o-weakly continuous.

For § € Ly(M) we may write § = Zi:oikfk with & € L2+(./\/l) (the positive
cone of the standard form). Let & = &.

Thenletén =& — (§ — Q).

Definition 2.4 A (closed, densely defined) quadratic form Q with domain Dom(Q) €
Ly(M) is said to be a conservative Dirichlet form if (1) £ € Dom(Q) implies
J& € Dom(Q) and Q(J§) = Q(§); (2) 2, € Dom(Q) and Q(£2,) = 0; (3) For
& € Dom(Q) we have &, € Dom(Q), éx € Dom(Q) and moreover Q(£y) <
0(), Q(Er) = Q).

A quadratic form Q is called conservative, completely Dirichlet if its matrix
amplification Q"] is a conservative Dirichlet form for every n > 1. Here Dom(Q!"))
are the n x n-matrices with entries in Dom(Q) and Q[n]((fi,j)?,jzl) =), Q& ).If
Q is a quadratic form then write A = A > 0 for the unique (closed densely defined)
unbounded operator with Dom(A %) = Dom(Q) such that Q(§) = (A%é, A%g). The
following result was obtained independently in [35] (in terms of Haagerup L ,-spaces)
and [20] (in terms of standard forms, being the formulation we take here).
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Gradient forms and strong solidity of freequantum groups 279

Theorem 2.5 Q is a conservative completely Dirichlet form if and only if the semi-
group (e~'2);>¢ determines a Markov semi-group, meaning that there is a Markov

semi-group (®;);>0 on M such that (e”A),Zo = (<Df2)),zo.

In view of Schonberg’s correspondence [13, Appendix C], conservative completely
Dirichlet forms are therefore non-commutative analogues of conditionally positive
definite functions. We could have rephrased our statements in terms of conditionally
negative definite functions by considering — A instead of A.

We need the following lifting property from [18, Lemma 5.2], the proof of which is
essentially contained in [46]. We also recall that on the L,-level strong continuity and
weak continuity of (@;2)),20 are equivalent (see [15, Lemma 3.5]). o -weak continuity
of (®;);>0 is equivalent to weak continuity of (@fz)),zo. Amap T : Ly(M) —
Ly (M) is called completely positive if Id, ® 7" maps the positive cone in the standard
form L;‘ (M, ® M) into itself for every n € N.

Lemma2.6 Let C = {§ € Lo(M) | 0 <& < Q). If (S¢)i>0 is a strongly contin-
uous semi-group of self-adjoint completely positive operators on Ly(M) such that
$/(2y) = Qg and such that §;(C) C C. Then there exists a Markov semi-group

(®,)120 on M such that &> ='5,.

3 Gradient forms and the results by Cipriani-Sauvageot

We recall some of the work of Cipriani-Sauvageot [21] which is crucial in our
approach. We need a slightly more general version going beyond the case of tra-
cial states of their construction. Note that we do not prove the existence of a square
root in the non-tracial setting however (which is one of the main results of [21]; the
question is also asked for in [60]).

3.1 The gradient bimodule

If Q is a conservative completely Dirichlet form on L, (M), then let A > 0 be such
that Dom(A?) = Dom(Q) and Q(€) = (A2£, AZE).

Definition 3.1 We assume that there is a o-weakly dense unital *-subalgebra of
the Tomita algebra 7, which we call A such that ViAQw C Dom(A) and
A(V%AQ(/)) c V%AQ(,). For a € A we write A(a) € A for the unique' element
such that V% Aa)Qy = A(V%aﬂw). That is, A on the L;- and L-level agree under
the symmetric correspondence. Finally, we assume that for every # > O we have that
d;(A) C A and that (P;);>¢ is norm continuous on A. The latter implies that on the
norm closure of A we have that (®;);>0 is a C*-Markov semi-group and fits in the
framework of [21].

1 1 1
1 If V4 A(a)Qy = Othenforally € M wehave 0 = (V4 A(a)Qy, yQ2yp) = (A(a)R2p, V4 yQy). Hence
A(a)Qyp = 0 and since 2, is cyclic we have that A(a) = 0.
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280 M. Caspers

Remark 3.2 We note here that if ¢ is a trace T then in [27] it was proved that Dom(A 5 n
M is a x-algebra which may serve to do analogous constructions as we do below. We
work with the algebra A however that is generally smaller in order to avoid some
technicalities. In general we cannot guarantee the existence of such an algebra. Our
assumption on the existence of .4 should also be compared to similar assumptions
made in [43].

Remark 3.3 Suppose that G is a compact quantum group. Let A(G) be the x-algebra
generated by all matrix coefficients u{ L€ Irr(G). This algebra is well-known to
be contained in the Tomita algebra 7, of the Haar state ¢; in fact 0¥ preserves the
space spanned by ul L 1 <i,j < ny for every single « € Irr(G). Now if (®;);>0
is moreover a semi-group of central multipliers, i.e. ®,(uf.) = cq, Uy i for some
constants ¢,; € C that form a semi-group, then it follows that A = A(G) satisfies

the criteria described above. Indeed, in this case one has A(u“ ) = cu i ] where ¢,
is the derivative of ¢, ; at + = 0 from which this is directly derlved
Definition 3.4 For x, y € A we define the gradient form

(x, y)r = A)*x + y*A(x) — A(y*x) e AC M. (3.1)

Note that as A is unital we have A @ AQyA = AQ® .Aofl-/z (A2, = AR AQ,.
Further A ® A, may be equipped with a (degenerate) inner product

1
(a ®€:7 c® ’7>d = z((as C)ng 77)

Quotienting out the degenerate part and taking the completion yields a Hilbert space
Hjy. The class of a ® & will be denoted by a ®j &. We have contractive commuting
actions (see below) determined by

X-(a®é)=xa®y&—x®yaé, (@®y&)-y=a®;§&y, (3.2)

witha,x,y € Aand § € AQ, A = AQ,,.

The proof of the following lemma is taken from the arguments in [21]. Since our
setup is non-tracial and we work with the algebra A instead of the Dirichlet algebra
of [21] we included a proof sketch.

Lemma 3.5 The operations (3.2) are (well-defined) contractive left and right actions
of A that moreover commute.

Proof We first prove the statements for the left action. We need the auxiliary contrac-
tions A — M,

R:.(A) =

|
= e ', dt, A = = — (1 = R.(A)).
— /R . . S (- Re(a))
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We define an approximate gradient form by
(X, Y)re = Ae(y)*x+y*Ae(x)_As(y*x)~ (3.3)
So that limg\o(x, y)r, = (x, y)r weakly in M. Exactly as in [21, Lemma 3.1]

one proves that the approximate gradient form (3.3) is positive definite and that the
M-valued matrix ((a;, a;)r.)i,; is positive. Then we further define on A © AQ,,

1
(@&, cOnye = 5((61, c)r,eé,m).
Troughout the rest of the proof let a;, b;, x, y € A. R.(A) has aStinespring dilation

We : Lo(M) — H, with representation 7, : A — B(H,) satisfying R.(x) =
Wime (x)We. Exactly as in [21, Lemma 3.5] we get that,

2% ai @ billf, =2
i

 ®biQy— Y x®aibi®y,
i

a,e

<Zb < (xaj, xaj)re +aj(x, x)rea; —aj{xa;, x)re — <X,xaj)l“,eai> biQy, Q¢>
= <Z b_’; (Wgaj — e (aj)Wg)* x*x Wea; — me(a;) W) b; Qy, Q¢>

< Ix? <Zb;f (Weaj — me(apnWe) " (Wea; — s (a) We) bi 2. sz,,,>.
ij

And by the same argument backwards this yields therefore

2

- Zai ®biQ‘ﬂH%,a = ”x”2 i ® b2y
i

d,¢

Contractiveness of the left action then follows by taking the limit ¢ \ 0. Next, for the
right action we get

Hza,‘ ® b,‘Q(ﬂy
i

2
= <Z ai, a;)rbiQyy, b, Q¢y>
)

J

1
=5l <Zb;f<a,»,a,->rb,«szw, sz¢> = |IylI?

ij

Za,‘ ®biQW
i

2
bl

So the right action is contractive. Clearly the left and right action commute. O

Remark 3.6 By Lemma 3.5 the left and right action of A extend to the C*-closure of
A. Itis not clear to us whether these actions are normal in general and hence extend to
actions on the von Neumann closure of .A. However, in the bimodules that we require
to prove our main theorem this is true, see Proposition 3.8 below.
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Remark 3.7 Throughout the paper we shall often use the fact that for x,a,c €
A, &, n e AQ, we have,

(x-(a®y &), c®ny
={(xa®y§ —x®pa&,c®yn
= %((C*A(xa) + A(0)*xa — A(c*xa) — c*Ax)a — A(c)*xa + A(c*x)a)E, n)

= %((C*A(xa) — A(c*xa) — c*A(x)a + A(c*x)a)é, n). (3.4)

Proposition 3.8 Let G be a finitely generated compact quantum group and let (9;);>0
be a Markov semi-group of central multipliers. That is, for everyt > 0 and a € Irr(G)
there is a cy; € C such that for all 1 < i,j < ny we have CIJI(u;?"j) = ca,,u?fj.
Let A = A(G). The associated A-A-bimodule Hy constructed above extends to a
(normal) Loo(G)-Loo(G)-bimodule.

Proof It suffices to show that the left and right action are o-weakly continuous on
the unit ball. Let a, b € A(G) and assume moreover that they are coefficients of irre-
ducible representations with length /(a) and /(b) respectively (see Sect. 2). Consider
the mapping, c.f. (3.4),

AG) 3 x = (x-a ®y bQy, a ® bQ)y

3.5
= %((a*A(xa) — A(a*xa) —a*A(x)a + A(a*x)a)bQy,, bQy,). G-

Note that A(uf,) = c&uf; with ¢, the derivative of ¢y at = 0. Therefore if x is a
coefficient of an irreducible representation with length > 2I(a) + 2I(b) we get that
(x -a ®j b2y, a ®3 bQ2,) = 0. So that the mapping (3.5) factors through the normal
projection Loo(G) — Loo(G) that maps uf‘ ;o SQSQI(QHZI(;,)M?" j which image is
finite dimensional. Hence the functional (3.5) is normal.

Now, let (x;) ; be a net in the unit ball of A(G) converging o-weakly to x € A(G).
Take vectors &, n € Hj arbitrary and let ¢ > 0. Let &y, no be vectors in the linear
span of all vectors a ®jy bS2, with a, b as above with |wg ; — wg, nolla < €. By the
previous paragraph and the polarization identity we may find jjy such that for j > jo
we have [((x; — x) - &, no)| < €. Then also [{(x; — x)&, n)| < 2¢. This shows that
the left action is o-weakly continuous on the unit ball. For the right action the proof
is similar. O

3.2 Derivations in the tracial case

The constructions of Sect. 3 work for non-tracial ¢. Now assume ¢ is tracial, say
¢ = t. Consider the linear map

0:A— Hy:ar— a®y Q. 3.6)
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Because in the tracial case a2; = Q;a,a € A we have fora, b € A,
d(ab) =ab ®y Q; =ab Ry QL —a ®y by —a ®y Qb =ad((b) + d(a)b,

i.e. d is a derivation. Moreover, as by conservativity of A we have t(A(a*a)) =
(A(@*a)Q:, Q) = (a*aQ;, AQ;) = 0 and we see that,

1
19@)]5 = 5 (r(A(@)*a) + T(@* Aa) — T(A(a*a)))

N = N

(tr(A@*a) + t(@* M) = I1A2@)]3. (3.7

In [21, Section 4] it is proved that there exists a closable derivation dp : Dom(A %) —
‘Hjy such that 86"80 = A (so with equality of domains). By construction 3 € 9y and

s0 9 is preclosed and we let 3 be its closure. If AQ; is a core for A7 it follows
from (3.7) that the Dom(d) contains the Dirichlet algebra of all x € M such that

1 | _
xQ; € Dom(A?z). Soif Ais a core for A2 then the derivation d equals the closure of
the derivation dg constructed in [21, Section 4].

In the cases we need it these conditions are satisfied.

Lemma 3.9 Let (D;),>0 be a semi-group of central multipliers on a compact quantum
group G of Kac type (i.e. with tracial Haar state). Let A be the generator 0f(d>fz)),zo
as before. Then A(G)2; is a core for A3,

Proof Let p, be the isotypical projection of L, (G) onto the space of matrix coefficients
of o € Irr(G). As (®;);>0 are central multipliers there exist constants A, such that

ApoE = Aypy& forany & € Lo(G). Let & € Dom(A%). Then taking limits over

incfreasing finite subsets F C Irr(G) we find ),y po — & and )", cp Pa Aég —

A2E. O

Lemma 3.10 The derivation (3.6) is real in the sense that for all a, b, c € A we have
(3(a), d(b)c)y = (c* (™), d(a™))s-

Proof We have,

(3(a), d(b)chy = (a ® e, b ® )y = %z (c*(A(b")a + b*Ala) — Ab*a))) .

Using that T(x*A(y)) = t(A(x*)y) and that t(A(x)) = (xQ;, A(R;)) = 0 with
x,y € A gives further,

(0(a), 9(b)c)y
= %1’ (b*Alac*) + A(c*b*)a — A(c*)b*a) = %‘L’ (b*Alac™) + A(c*b*)a — A(c*)b*a)
= %r (aA(*D*) — aA ()b — A(ac*b*) + Alac™)b*) = (¢* - (b* ® ), (@ @ Q1))s
= (c*3(b"), d(a™))s.
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4 Coarse properties of the gradient bimodule: IGHS, GHS and GC

In this section we study when the bimodule Hj is weakly contained in the coarse
bimodule. We use all notation introduced in Sects. 2 and 3. In particular M is a von
Neumann algebra with fixed normal faithful state ¢. We let (®;);>0 be a Markov semi-
group on M and associate to it the generator A, the algebra A, the Dirichlet form Q
and the gradient form (, )r. As A is contained in M it inherits the matrix norms of
M and therefore complete positivity of a map A — M is understood naturally as a
map that sends positive operators to positive operators on each matrix level.

We introduce three properties of semi-groups that are convenient in studying coarse
properties of Hj.

Definition 4.1 We call a Markov semi-group (®;);>0 on a von Neumann algebra M
with fixed normal faithful state ¢ immediately gradient Hilbert—-Schmidt (IGHS)
if for every choice a, b € A we have that the following two properties hold:

e For every r > 0 the map
Wl x> @, ((xa, b)r — (x, b)ra) 4.1

extends to a Hilbert-Schmidt map Ly(M) — Lo(M) given by xQ, >
VP (0)Q,, x € A

e For r = 0 the map (4.1) extends to a bounded map L(M) — L,(M) given by
xQy > VP ()R, x € A

We call (®;),>0 gradient Hilbert-Schmidt (GHS) if for r = 0 and any a, b € A the
map (4.1) is Hilbert—Schmidt. We call (®;),;>o gradient coarse (GC) if the left and
right A-actions on H; extend to normal M-actions and Hj is weakly contained in the
coarse bimodule of M.

Note that if W§* € B(Ly(M)) then W’ € B(Ly(M)), 1 > 0 and that ¥*” —
\Ilg’b strongly in B(Ly(M)) as t \ 0.

Remark 4.2 We shall often make use of the fact that for a, b, x € A,
\Ilg’b(x) =b*A(xa) — A(b*xa) — b*A(x)a + A(b*x)a, 4.2)

Lemma4.3 For somen € Nletay,...,a,,cy,...,cy € A. Then for anyt > 0 the
map

OF := O, x > [Py ((xai,aj)r — {x, aj)ra,-)],-,j, xe A, (4.3)

is a completely positive map A — M, (M). Set

ij=1
“4.4)
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Then the mapping
AQAP - C:x @ yP > (0,(x)Q2y, Q). 4.5)

is positive. Finally, if (®;);>0 is IGHS (resp. GHS) then for every t > O the map (4.4)
is Hilbert—Schmidt and converges strongly to ©¢ as t \ O (resp. for t = 0 the map
(4.4) is Hilbert—Schmidt).

Proof The fact that for any choice of the x, g;, ¢; € A we have

182y 12y

n n
L] o
0< <x - Zai ® €i Ly, Zai ®a ciQ¢> =53 <®0’”"”"a” (x)
?

i=1 i=1 >
shows that ®; is positive and the same argument on matrix levels gives complete
positivity. Hence as ®, is completely positive also (4.3) must be completely positive.
Let x = (x1,...,x,),c* = (c],...,cy) be the row vectors with entries x;, ¢; € A
and let again a; € A. Then x*x € M,(A)* and

2y 2y

(id, @ @ @Clnlny (¥ 1y = (id,, @ O % (. )e*) (x*x) € My(M)T.

Further, recalling @, := @{>@nicln
n Qrp)’l Q(p)’l
D Oy ) = (@O ) [ = || =0,

k=1 Qtpyn wan

so that (4.5) is positive. The final statement follows as if the semi-group is IGHS, then
n
AQy 3 xQy > 0,02y = Y O, ((xai, aj)r — (x. aj)ra;) Quoij(c)
ij=1

n
= & (¥ 09, ) oiae),

ij=1

is Hilbert—Schmidt for ¢+ > 0 by linearity and bounded if + = 0. Further ®;, — ©
strongly as 7 N\ 0. The statement for GHS follows similarly. O

Proposition 4.4 Assume that the left and right A-actions on Hjy extend to normal
M-actions. If (®;)s>0 is IGHS or GHS then it is GC.

Proof We give the proof for the IGHS assumption; for the GHS assumption the proof
is similar and in fact easier. Throughout the proof fix ay, ..., ay, c1, ..., c, € A and
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for t > 0 let ©; := @f % be the map defined in (4.4). Set ® = @. For
x,y € A we get,

j=1

n n
<x' (Zai ®3 CiQw) Y, Zaj ®3 Cj9<p>
i=1 )

n n
<Zxa,- ®p €ipy — X Ry aiciLypy, Zaj ®s ch(p>
i=1 j=1 9

| =

n
1
< E ci(xa;, aj)r — <x7aj> ai)ciQy, Qyy™) = §<®(X)Q(pv Quy™).

ij=1 .

If x,y € M are arbitrary we may approximate them using Kaplansky’s density
theorem in the strong topology with bounded nets (x ) and (yg)g in A. Then x; — x
in the o-weak topology and x; 2y — x$2, in the norm of Ly (M). Similarly yy — y
o-weakly and Qpy; = Jy Ry — JyQy = Quy* in norm. The left and right M-
action on Hj are normal and the IGHS assumption gives that ® is bounded Ly (M) —
Ly(M). We thus see that

n n
<x . (Zai R Cng;) -y, Zaj Ry CjQ¢>
i=1 j=1 3

n n
=% <Xk1 ' (Z ai @ i | Yo ) aj @3 ¢y
o i=1 )

j=1

.1 1
= im ~(©(x,) R, L37) = 5 (O ()2, 2py").
kika 2 2

In turn we find by the IGHS assumption that for all x, y € M,

n n
1.
<X~ <Zai ®s CiQ(p) ¥ ) a; ®p CjQ¢> = 5 lim(©: (1) Quy*).
i=1 =1

a

By the IGHS assumption for 7 > 0 the map ®; is bounded Ly(M) — L,(M) and
moreover Hilbert—Schmidt by Lemma 4.3 and therefore we see that there exists a
vector §; € Ly(M) ® Lr(M) such that,

(0: (X)), Quy™) = (xQy ® Quy*, &1).
This shows that for + > 0 we have that
1
MOMPsx®y—> 5(@,(x)§2¢y, Q) 4.6)
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extends to a normal functional on M & M°P. Moreover, we see from Lemma 4.3
that (4.6) is positive on A ® A° and hence by Kaplansky on M ® MO°P. Now
as Ly(M) ® Lp(M) is the standard form Hilbert space of M ® M°OP there exists
¢ € Ly(M) ® Lry(M), still with r > 0, with

1
(81 (x)82, Qyy) = (x&iy. &)

Therefore, for every x, y € M we have

<x . (Zai ®3 c,-) -y, Zai ®3 ci> = tli\r‘l(l)(x{,’y, ). 4.7)
i=1

i=1

We can now directly check that Hj is weakly contained in the coarse bimodule of
M. Indeed, let & € Hy,e > 0 and let F C M be a finite subset. Assume that
& =" ,ai ®yciQy. Then by (4.7) we may find r > 0 such that for all x, y € F
we have

[(xEy. &) — (x¢g/y, ¢l < e 4.8)

Then by approximation we find that for general £ € Hy we can find # > 0 such that
for all x, y € F the estimate (4.8) holds. We see by Definition 2.1 that Hj is weakly
contained in the coarse bimodule of M. O

5 Stability properties

We prove that IGHS and GHS are properties that are preserved by free products. We
also prove the necessary reduction to continuous cores.

5.1 Free products

For the definition of free products of von Neumann algebras we refer to [2,66]. We
also refer to [17] and adopt its notation and terminology. Let (M;, ¢;),i € I be
von Neumann algebras with normal faithful states ¢;. The free product (M, @) is the
von Neumann algebra with normal faithful state ¢ that contains each M;,i € I as a
subalgebra to which ¢ restricts as ¢;; moreover, these algebras are freely independent
in M with respect to ¢ and generate M. Set M to be the set of all x € M; with
@i(x) = 0. For x € M; we set x° = x — ¢;(x). A reduced operator in the free
product(M, ¢) = *;c7(M;, ¢;) is an operator of the form x; ... x, with x; € M}l_
for some X; € I with X; # X;11. The word X = X ... X, is called the type of
X1 ...x,. If ®; is a normal ¢;-preserving ucp map on M; (i.e. it is Markov with
respect to ¢;) then there exists a unique normal ¢-preserving ucp map *;c;P; on
the free product (M, ¢) such that for a reduced operator xj ... x, with x; € Mfk
we have @ (x1...x,) = ®; (x1) ... D;, (x,). If (P; ;)0 are Markov semi-groups on
M;,i € I then the maps ®; = ¥, ¢, > 0 form a Markov semi-group on M.
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Let A; be the generator of (®;,);>0 and let A; be the dense unital subalgebras
in M; as described in Sect. 2. Let A be the generator of (®;);>0. Letaj...a, be a
reduced operator of type A in the algebraic free product A = #*;<;.A;. Then by taking
o-weak limits (which exists on these reduced operators), we obtain the following
Leibniz rule,

Aay...ay)

o1
:}gl(l)?(al...an—<I>,(a1...a,,))

n
1
= Z}{% —(@ari(@) . ®a @)y = Da (@) P (@) )
i=1

:Zm...ai,lAAi(ai)a,~+]...an. 5.1
i=1

A rather tedious computation purely based on this Leibniz rule now shows the follow-
ing.

Proposition 5.1 Let (M, ¢1), ..., (My, @) be finitely many von Neumann algebras
with normal faithful states. Suppose that each (M;, ¢;) is equipped with a Markov
semi-group (®; 1);>0 and let (P;);>0 be the free product Markov semi-group on the
free product

(Mlv ‘Pl) kLK (an (pn)

If each (®; 1)i>0 is IGHS (resp. GHS) then (®;);>0 is IGHS (resp. GHS).

Proof The proof splits in steps.

1. Setup: expansion into reduced words. Let .4; and A = *;.4; as in the paragraph
before this proposition. In particular the unit is in A; so that x° € 4; whenever
x € A;. Let ¢ = *;¢; be the free product state. For each i we let O; be a set of
vectors in A? such that O; 2y, forms an orthonormal basis of Ly (M?). Take x € A
equal to a reduced word x = x| ...x, with letters in the A;’s. Also assume that both
a,b € Aarereduced wordsa = aj ...a, and b = by ... by with letters in the A;’s.
We assume moreover that all letters a;, b; and x; come fromU; O;. Let A, B and X be
the respective types of a, b and x. To reduce the number of cases we need to consider
in this proof we extend our notation as introduced above a bit. We shall write

o
—_—
xy =xy—ey), x,y€UA.
o
In particular,if x € O;andy € Oj then xy = xyifi # j (this extends the notation).

Incasei # j we have A(xy) = A(x)y + xA(y) by the Leibniz rule (5.1). If we start
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writing bxa as a sum of reduced operators we find the following terms,

n—1 m
bxa=Yy Y <<p<bkx1>...go<bk,»+zx,»1><o(xna1>...¢<xj+1an,»>

i=0 j=i+1
o o

—— ——
X b] . bk—i (bk_i+1xi)xi+1 s X1 (xjan—j-H) Ap—j4+2 ...y

n
i=1
X by ... bp—i(br—it1XiGn—iy1)n—it2 .. ~am>

=141,

+ Z (@(bk)q) o @bp—it2xi—D)@(xpar) . .. @(Xig1an-i)

(5.2)

where we define I and II as the big sums. We use the convention that a; = 0 if
Jj>mandbj =0if j > k. Also note that many of these terms are 0, for example if
x1 € O; and by € O; withi # j we have that ¢(bgx1) = 0. The summands in I are
reduced operators, the summands in II are not necessarily reduced for the reason that
b—iy1Xian—i+1 is not necessarily reduced. In order to treat this summand we continue

our expansion into three sums and a remainder part F'(x). We find that,

II=

n

i=1
Bi—it1=Xi#An—i+1

o
——
X by .. bg—i (bk—i+1Xi) Qp—i+1an—i+2 - -~am)

n

+ Z ((p(bkxl) e @(br—it2xi—1)

i=1
Bi—iv1#Xi=Ap—it+1

> (SO(bkxl) o (br—i2Xi—1)9(Xnar) - . @(Xiy1an-i)

o (5.3)
—
X by ... bg—ibg—it1 (Xian—i+1) An—it2 . -~am)
n
+ Z (fﬂ(bkm) oo @bp—ip2xi—)@(xpar) . .. @(Xip1an-i)

i=1
Bi—it+1=Xi=An—i+1

o

—
X by ... bg—i (bk—i+1XiQn—i+1) aGn—i+2 - -~am)

+ F(x),

@ Springer



290 M. Caspers

where F : M — M is the finite rank operator that collects the remaining terms of II;
o

that is, F'(x) is given by the same expression (5.3) but with the operation - replaced
by taking ¢( - ).

2. Appyling the W-map. Now we apply ¥} " fort = 0to x (we prefer O " over
[\ 1o keep the notation simpler; for the proof it is irrelevant). Recall that,

Wi (x) = bA(xa) — A(bxa) — bA(x)a + A(bx)a. 54

We proceed by expanding the right hand side of this expression into a decomposition
very similar to (5.2) and (5.3). If we do this we get the following, where the respective
terms IpA (xays HAbxa)s Hpa(x)e and 1Ay are described below. Write Af{ for A if
k = [ and for the identity operator otherwise. So,

n—1 m m—n+1-1
bAGa) =Y Y Y iDL (1) @bk AT (i) - 9 (X 100 )
i=0 j=i+1 I=1

o

—_—~—
- ) L
X b1 b be—ip 1 Al ) A () AT g2

AP @) 4+ s a).

;| — | .
x A’(x,-an_,-+1)Af“<an_,-+z> o
m  k+2j+m—n—2i+1
A(bxa) = Z > Z @brx1) - .. p(br—iy2Xi—DP(nar) . .. (Xj41an—)
i=0 j=i+1

o

. . N . k+i—2i
) AL (B1) - AT B AT b x) AT i) AT )

« Ak+]*2!+1 k+j—2i4+2 k+2]+m n—2i+1

———
(x an— j+1)A (an ]+2) (am)“"HA(hxa)a

bA(x)a—Z > Zw(bkA, @) - @12 A @i 1)@(A] ) - (AT (s Dan- )
i=0 j=i+1 =1

) o

N e
A il i—1 i
X by b bt A () AT (i) AT G2 1) A () an— 41 an—j42 - - - dm + Dpacoya
n—1 m k+j+n—2i+4

k+j+n—2i+3
Abvya=" 3" Z @(bexy) ... p(be—iaxi- @A T T an)
i=0 j=i+1
k+j—2i+3
(AT g an )
. _ —_——~— . ket i—2i
X ALy AT B AT i) AT P ) AT T @)

o

ktj—2i42

x A (xj)an—j+1 an—j+2 - - - am + UA@px)a-

Therefore, as all these terms cancel,

b*
Ui (x) = Mpaa) — Uagra) — Dpawa + Hapoa-
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For the ‘II-terms’ we get the following. Again, we split this into a decomposition
similar to (5.3). We get that

—_D (2) 3)

Upaca) =Hpa ey T Wpaa) T Upaca) T Foia1(x),
_D 2 3

A @pxa) _HA(hxa) + HA(bxa) + HA(hxa) + Foa2(x),
—_D (2) 3)

Upama =Myaya T Upacoa T Mpamya T Foa3(0),

_1h 2) 3)
Uawxa) =Mp e T Tapara T Hapeya T Fo.aa(x),

where the F}, ,;’s are finite rank maps M — M and the IV, 11® and TI® terms are
specified below. Let us first examine the 111 -terms. We get that,

n 2i+14+m—n
1 i—
2 0 = > 3 e (k1) . @iip2 AT (i 1)@(nar) - @ (X 1)

i=1 =1
Bi—iv1=Xi#An—i+1

o
———

X by ... by—i bg—i 1Al (x1) A§+l(an—i+1) e A%i+l+m_"(am)
n k+m—n+2
1
ug),., = 3 ST e . 9briz2xi—)@Cnar) - .. p(i1an—i)

i=1 =1
Bi—it1=Xi#An—i+1

x ALODW AT k) AT i1 x) AT @) AT @)
n n
1 i—
0 0 = Yoo Y eBAL ) pbripa A (i) (A] (x)an)

i=1 =1
Bi—it1=Xi#An-i+1

(AT (i an—)
——

X b1 b b1 AV g1 - s
n k+n—2i+1
1 A _9;
ug),,, = > ST pexn) . pbripaxi—)@(AFT T (n)ay)

i=1 =1
Bi—it1=Xi#An—i+1

A;<71+2

c( (Xi+1)an—i)

o

. . e
x Ay by . AT o) AT ki X an—ig1 -,

Again we see that,

) Y] Y] (e9) _
HhA(xa) - HA(bxa) - HbA(x)a + HA(hx)a =0.
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Now for the II®-terms we find,

n 2i+1+m—n

0= 2 DO IC T

i=1 =1
Bi—iv1#Xi=Ap—i+1

e @Bk AT )@ (nar) - o (i1 an—i)

o

| T Al 2it14+m—
X bi o b1 A Kian—i ) AT (anig2) . AT (ay,)

n k+m—n+2
ug,., = > Yo ebrx1) . p(britaXi )@Cnar) . . (i t18n—)
Bk—i+l#i;:1:14u—i+1 =
) AL (b1 . AT b ) AT i) AF T (anig2)
A2 (g,
U3 e = > D @A (D) - @br—ita AT (xim1))@(A] (xn)ar)
Bk—i+l7+-i)?il=An—i+l =
(AT (i) an—i)
———
X b1 ot A (X ap—i1 Qpig2 - G
n k+n—2i+1
ug,,, = > D ebexn) . @i ipaxi DA T (x)an)

i=1 =1
Bi—iv1 #Xi=An—i+1

(AT (i D an—)

o

x A1) . AT i) AT (i) an—i42 - - - -
Again we get (or in fact by a symmetry argument from the IIV-case),

(2) 2 2 (2) _
HbA(xa) - HA(bxa) - HbA(x)a + HA(bx)a =0.

We now examine the II®-terms. We find,

n m—n—+2i

U ) = 3 Y ebeA @) - @ brip2 A (X)) (xar)
i=1 =1

Bi—iy1=Xi=An—i+1
e @(Xip1an—i)

[e]

P ——— . .
1 —n+2
xbi .. g (bi—iy1Xian s DA (@n—iy2) ... AT (@)
n

+ Y i) . pbkinaxi ) @(na) - @(Xig18ni)

i=1
Bi—iv1=Xi=An—i+1
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o]

——
xby...bg_i(br—it1 AXian—i11))an—it2 ... am

+Gpa,1(x), (5.5)
where
n
Gpa1(x) = Z @(brx1) ... @(br—it2Xi-1)@(xpay) . .. @(Xi1an-;)

i=1
Bi—iy1=Xi=An—it1

o

X by bp—i(bp—iv19(XiGn—i+1))An—i+2 - - - A,

is a finite rank map. Similarly, there are finite rank maps M — M, say Gp 4.2, Gp.a.3

o

and Gy 4 4 (in fact Gp 4 3 being the O map as x; =" x; ) such that

n m+k—n
3
H(Asza) = > D exi) . @i D@1 - @i 1)
i=1 I=1
Bk—i+1:lXi:An—i+1
. r—— .
)AL (1) - AT bi) br—is 1 Xin—iet A @mig2) - AT @)
n
+ > Qbix1) ... (br—i2Xi ) Q(Xna1) - .. (Xi 1)
i=1
Bk—i+1=lXi=An—i+1
— ——
X by ... br—i A(bg—i+1XiAn—i+1)an—i+2 - - - Am
+ Gpa2(x),
n n—1
3
HI(7A)(X)a = Z Zﬁﬂ(bkAll (x1))
i=1 =1
Bk—i+]:lxi:An—i+]
@i AT i) (A] T Cedarn) - (A (X)) an—i)
—
X by .. bg—i bg—i+1XiGn—i+1 n—i42 - - - A
n
+ > @(brx1) ... @ (bk—ip2Xi—1)@(xpar) ... @(Xiy1an—i)
—
Bk—i+1:lxi:An—i+l
—
X by .. .bg—i bk—i1 A(Xj)an—i+1) An—i42 - - - A,
+ Gpa3(x),
n n—1
3 _
S, = Yoo Y etexn) . pbrivaxioD@(A] T (n)ar)
1 =1

i=
Br—iv1=Xi=An—it1

(AT D an)
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. ——

XAFB1) o AT (D) b1 X1 i - -

n
+ > Qbix1) ... (br—i2Xi - )Q(Xnar) . .. (Xi1an—7)

i=1

Bk—i+1=lXi=An—i+1
——
e

X by ... bg—i ADg—i1Xi)an—i+1 An—i+2 ... A
+Gpga(x). (5.6)

As A(1) = 1 (by conservativity of the Dirichlet form) we have for any y that A(y) =

A( y ). We see that the first summations of the 4 terms of and (5.6) cancel each other,

so that we get a remaining term:

3) (3) 3) 3)
HbA(xa) - HA(bxa) - HbA(x)a + HA(bx)a

—(Gap,1(x) = Gapo(x) — Gap3(x) + Gy pa(x))

n

= > Qbix1) - @(bi—is2Xi-D)@(Xna1) - .. p(Xis18n-)b1 . ..

i=1
Bi—iv1=Xi=An—i+1

o o

X (br—iv1Axian—iv1) — A(br—iy1Xian_i+1)

o o

—br i1 A an—iy1+ Abr—i11X)An—i11)An—i12 - - - Am
n

= > Q(bix1) - @(bi—is2Xi-D)@(Xna1) - p(Xis16n-1)b1 ...

i=1
Bi—iv1=Xi=An—i+1

]

An—i+1,b}_;
X ‘I/X,-,O (X)) ap—ig2 .. am.

Now if we collect all of the above terms we see that

n
vt () = > Q(bex1) ... p(bk—i42Xi- 1)@ (Xna1)
—
Bk—i+l:lXi:An—i+l

e o(Xip1ap—i)by .. b

o

An—i+1 sb;;_-_H
x Wy o (X)) an—it2 ... am

+ Fa,b(x),
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with F, j the finite rank operator
Fap = (Fpa1 — Fpa2 — Fpa3 + Foa4) + (Goa1 — Gpa2 — Gpa3+ Gpaa).

3. Conclusion of the proof. Let || F, || zs be the Hilbert-Schmidt norm of Fj j; as
amap y2, = Fy»(y)Q2p. Now note that if the length n of x as a reduced operator
is strictly longer than k 4+ m — 1 then the expression (5.7) is O as there must be an
operator by or a,, 41 occuring in (5.7) which by definition are 0.

If each \Il;':_’_é%b""'“ : Ly(M;) — Ly(M;) in (5.7) is bounded then so is \Ilg’b* :
Ly(M) — Ly(M). So we conclude that the second bullet of Definition 4.1 holds
for the free product semi-group (®;);>¢ if it holds for each individual (®; ;);>0. It
remains to verify the first bullet point of Definition 4.1.

Set E as the set of all reduced operators of the form e;, ... e;, withe;, € U;0;. E
forms an orthonormal basis of Ly(M°) = Ly(M) & CQ,. Fixt > 0 and let C' =
max; ||oj/2(®;(a;))| and then C = max(1l, C’). Further set D' = max; [|®,(b))||
and then D = max(1, D’). We conclude from (5.7) and twice Cauchy-Schwarz that,

N b* 2
I s = D 1w (013

xeE
k+m—1
<20 Fuplis+2) | > ¢ (bix1)
xeE i=1
Bi—iv1=Xi=An—i+1
e @(br—i2xi— D@ (xpay) ... @(Xiy1a,—;)

o]

n—i abﬁf,i
X @y (by) ... @y (be—i) Wy, () @i (an—is) - . By (am) 13
k+m—1
<2 Faplys+2k+m—1 Y > lpbx)
i=1 xeE

Bi—i+1=Xi=An—i+1

e @bk 2 Xi—)Q(Xpa1) - . p(Xip1an—i) >

o]

an—i+1,bf

X @ (b1) ... @p(br—i) Wy ;T (x0) @pl@n—it2) .- - @, (am) |3

For all j we have

D lebinP =) 1y, i) = Ib5113.

y€O0s; y€0s;

because O B; is an orthonormal basis. Similarly,

D leaplF = Y lei@pnlP = > 1(yQy. 0i(a))*Q,)1* = loi(a)*|I3,

y€04; y€04; y€O0p;
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Therefore let K = maxj(||bjf||§, loi(a;)* 113, 1). We get using (2.2),

N7
< 2||Fupll3ys + 2(k +m — 1)Kk c2m p*
k+m—1
Z 3wy ) 3

x;i€E;
Cr—i+1= X =An—it1

Vl l b
< 2| Fapllyys + 2k +m — D*K"T*C*" D max |y "

k—i—1
1<i<n ”HS’

which is finite for every ¢+ > 0 and for every choice of a and b in A. The proof for
GHS instead of IGHS follows just by using ¢ = 0 instead of # > 0. O

5.2 Crossed product extensions

We prove that IGHS semi-groups yield GC semi-groups on their continuous cores. We
recall the following from [62]. As before let M be a o -finite von Neumann algebra with
fixed faithful normal state ¢. Let ¢, (M) be the continuous core von Neumann algebra
of M. It is the von Neumann algebra acting on Ly (M) ® Lr(R) ~ Ly (R, Ly(M))
that is generated by the operators

(my(X)E)(t) = Gft(x)é(t), where x € M,
and the shifts
(us&)(t) = &(t — s) where 5,1 € R.
We shall write uy = fR f(s)usds for f € Li(R). The map 7, embeds M into
cp(M). We let L,(R) be the von Neumann algebra generated by u,,r € R. Let ¢

be the dual weight on ¢, (M) of ¢. If s — x; and s = y, are compactly supported
o-weakly continuous functions R — M, it satisfies

5(( / ngo(ys)usds) / 1, (s usds) = / o(yxy)ds.
R R R

We call the support of s — x; the frequency support of fR 7y (xs)usds. Leth > 0 be
the self-adjoint operator affiliated with £, (R) such that h'" = u,,t € R. There exists
a normal, faithful, semi-finite trace T on ¢y (M) such that we have cocycle derivative
(D@/DT); = h''. This is informally expressed as T(h'/? - h'/?) = §(-). We write

ng = {x € cp(M) | (x*x) < oo}.

For x € ng we write xQg for its GNS-embedding into L (c, (M), §). Let J5 be the
modular conjugation.
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L>(cy (M), @) is a ¢y (M)-c, (M)-bimodule with left and right actions
x-(aQp) -y =xJ5y Jz(ap),  aeng x,y € cy(M).

The Tomita algebra 73 is defined as the algebra of all x € ¢, (M) that are analytic for

0% and such that for every z € C we have 0¥ (x) € ng N n(’%. It shall be convenient for
us to identify unitarily

Ly(cy(M), ) = Lo(R, Lo(M)) : my ())u s Qg > (f (5)xQp) ek,
f €Co(R), x € M. (5.8)

Remark 5.2 'We may similarly set
nz = {x € c,(M) | T(x*x) < oo}.

For x € ny we writexQ7 for its GNS-embedding into L (cy, (M), 7). We have the
cp (M)-cy(M)-bimodule structure given by

x - (aQz) -y =xJzy JzaQz), aenz x,y € cy(M).
Consider the map
D — Ly(c,(M), 7) : x5 > [xh?]9, (5.9)

where D C Ls(c,(M), @) is the space of x € ng such that xh% is bounded and the

closure [xh%] is in nz. The map (5.9) extends to a unitary map L3 (cy(M), @) —
L>(cy (M), T) which is moreover an equivalence ofcy,(M)-c, (M) bimodules. We
simply write L(c,(M)) for this bimodule.

Recall that a Markov semi-group ® = (®;);>0 on M is called p-modular if
0l o®, = ®,00f foralls € Randt > 0. Let ® = (®/)i>0 be a p-modular
Markov map on M. Then let o = (&3,)[20 be the crossed product extension on
¢y (M) determined by

@, (71, (x)) = 7y (P, (x)) and D, (us) = u; where x € M,s € R, 1 > 0.

If @ is a p-modular Markov semigroup then so is ® for both the weights & and 7,
meaning that it is a point-strongly continuous semi-group of ucp maps that preserves
these weights. If p € L, (R) is a T-finite projection then the restriction of ® to the
corner pcy,(M)p is a Markov-semigroup with respect to 7.

Convention for the rest of this subsection: Let M = Lo (G) for a compact quantum
group G and let ¢ be the Haar state of G. Let A = A(G) be the *x-algebra of matrix
coefficients of finite dimensional representations of G.
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The convention is mainly made to simplify several technicalities occuring in the

proofs of Lemmas 5.4, 5.7 as well as Proposition 5.8. Let ($;);>0 be a Markov semi-

group of central multipliers. Let A > 0 be a generator for (®;);>0, i.e. e /4 = d>t(2).

Let p € L,(R) be a projection. Then A ® p is a generator for the restriction of
(552))20 to pcy, (M) p. Its domain is understood as all £2-sums

o o
> i,j Ui j

aelr(G),1<i,j<nqy

with £, € pLa(R) such that also D el @) 1<, j<ng 11 Y ® Aluf ;) exists as a £o-
convergent sum.

Definition 5.3 Let A be the x-algebra of elements fR Ty (xs)ugds € cy(M) with
xs € A o-weakly continuous and compactly supported in s.

Lemma 5.4 Let (®;);>0 be a Markov semi-group of central multipliers on a compact
quantum group G. Let A = A(G) and let A be deﬁned as above Then A is contained

in the Tomita algebra Ty and moreover A(V4 .AS'Z(;) - V4AQ¢. Further,we may set
(the limit being existent),

A(0) = lim 2@, (x) - x) A
X) = t{r(l)l‘ (x X), x € A.
Moreover,
Z(/ nw(xs)usds)zfJr(p(A(xs))usds.
R R

Proof The inclusion A € T; 7 follows from the explicit form of the modular group of
@, see [62, Theorem X.l.17] If s = x; € Ais continuous and compactly supported,
it takes values in the space of matrix coefficients of a single finite dimensional repre-
sentation of G. Write x; = >_, x; o Where o ranges over this finite (s-independent)
subset of Irr(G). Then A (7, (xy)) = Y, AaTy(xs,o) for some A, € C. Further, for
X = f]R Ty (xs)usds,

1 i
tim - (®,0) — ) = lim /R g (1 (xy) — xyutsdls = fR 74 (A Cxs)ityds.

O

Definition 5.5 Assume (®;);>0 is a Markov semi-group of central multipliers on a
compact quantum group G. Set,

(a,c)f = Ae)*a + c*Ala) — A(c*a), a, c € A.
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And further,
1 ~
<a ® ‘i:’ c® '7)5 = 5((‘1’ C)Fs, 77)1 ace Av i:s ne LZ(C(p(M))

Just as in the state case this defines an inner product on A® L3 (cy(M)). Quotienting
out the degenerate part and taking a completion yields a Hilbert space Hj ., with

contractive left and right A-actions given by

X-(Z®&E =x7Q&—xQ z§, (z®&)-y=zQ%&y,
x, v,z € A & € La(cy(M)).

We also set the map
WS (x) = B, ((x2, 2)f — (v, 2)52), x.2.7 € A1 >0,
and set U7 = \TJ(Z)’Z,. So that

(x-@®&) -y, @ @My = (T WEy,n), x,,2,7 €A Ene Licy(M)).

Remark 5.6 Let a, ¢ € A. By mild abuse of notation we shall write U7 (@-7¢(©) for
the Ly-map

Lo(cy(M)) = La(cy(M)) 1 xQ5 — \i”‘/’(“)’”‘f’(c)(x)Qg,

in case this map is bounded and say that U™ (@-7¢(© e B(Ls(c,(M))). Similarly we
write W% for the map Ly(M) — La(M) : xQp > ¥4(x)€, in case this map is
bounded and say W€ € B(Ly(M)).

Lemma 5.7 Let (®;);>0 be a Markov semi-group of central multipliers on a compact
quantum group G. Assume that for all a,c € A we have W% € B(L2(cy,(M))).
Then Ume(@-7p(©) ¢ B(L2(cy(M))) and under the correspondence (5.8) we have
T (@,70(0) ~ (goi' @.ey o

Proof Take a, ¢ € A. Assume that ¢ is a matrix coefficient of the finite dimensional
representation u. Let {u; ; | i, j} form a linear basis of all matrix coefficients of u.
The modular group preserves matrix coefficients of a fixed representation, see [69] (or
[14, Theorem 4.8]). So decompose of(a) = Zi’j fi,j(®u; j with f; i (s) € C. Then
each f; ; is bounded and continuous since o ¥ is a o -weakly continuous automorphism
group. We see that

W@ =N p ()Wt

i,j

and by assumption W%/ € B(L,(M)). This shows that W% @-¢ € B(L,(M)) with
uniform bound in s.
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Now take a,c,x € Aand f € L{(R). We have
T (€) (X u f1ry(a) = /Rf(s)n(p(c*xaf(a))usds.

We have 7y (x)u s € ngy and using Lemma 5.4,

e @70 () (7 (x)u 5)

= / FOe(Alc*xaf (@) + c*Ax)of (a) — c*A(xof (@) — A(c*x)of (a))ugds
R

If £, (W @€ (0)ugds.
R

Under the identification (5.8) we see that P (@)1 () corresponds to (\Il(’;p @y er €
Loo(R, B(L2(M))). o

Proposition 5.8 Let (®;);>0 be a Markov semi-group of central multipliers on a com-
pact quantum group G. Let p € L,(R) be a projection. Then:

(1) The A-A-bimodule Ha.c, extends to a normal cy,(M)-c,(M)-bimodule. More-
over, pHy.c, p is a normal pcy, (M) p-pcy (M) p-bimodule.

(2) If (®1)i=0 on (M, @) is IGHS then the Markov semi-group (cy,(®;))i>0 on
pco(M)p is GC.

Proof To keep the notation simple we will identify .4 as a subalgebra of ¢, (M) through
the embedding 7, and further supress 7, in the notation. We prove the statements for
the projection p = 1 and then justify how the general statements follow from this.
Throughout the entire proof let ]j f2, 81,82 € Coo(R),a,b,c,d € A.
Proof of (1) for p = 1. Let x € A. We have,

\’I‘;aufl JCll f, (x)
=, A(xaup) — wh *Aauf, — A, c*xaup) + Ahc*xau (5.10)
= u?QC*Z(Xa)”f1 - ”}zC*Z(X)a”fl - ”?2Z(c*xa)”fl + ”?2Z(C*x)auf‘ |

= u’}qua’c(x)ufl.
We have

(x(auyf @ bug, Q3), cup, ® dug,Q25)
= (BN (x)bug, Qz, dug, 25) (5.11)
= (u"}zlll“’c(x)uflbugl Qg, dug, Q).

Now to show that the left A-action on Hs. cy is normal it suffices to show that it
is o-weakly continuous on the unit ball of c¢,(M). So suppose that x is a net in
the unit ball of A converging o-weakly to x.We get that Uae(x) € A and may
be written as W4 Clxp) = f 7y (Vk,s )usds, with integral ranging over some compact
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set. Similarly write \TJ“"'(x) f my(ys)usds. Let uf . be a matrix coefficient of
a € Irr(G). Then ({yr,s2p, uf ' Qy))seRr 1s an element of Lo (R) that is o-weakly
convergent to ({52, uf‘ j Q(p))seR It follows then from the expression (5.11) that

((x —xp)(aup, ® bug Qp), cup, ® dug,Qz) — 0.

Since x is bounded it follows that for § € H; (, arbitrary we get that ((x —xx)§, §) —
0. This concludes the claim on the left action; the right action goes similarly.
Proof of (2) for p = 1. Assume that (®,),> is IGHS. For x € A we have as in (5.10)
that W41 410E (x) = P4 ”(u . xuf,). Hence for x, y € A we have

(x(upa@bug L)y, upc @ dug Q)

= (@“fla’“.fzc(x)bug] Qzy, dug, Q)

= (\pa,c(u.’;-zxuf] Ybug Qzy, dug, Q) (5.12)

= ({r;ll,c(u?zxufl 95)Ui(§2(bugl)y’ dugzngﬁ)

= (\Ba’c(u?zxufl Qp), dug, Qay*ai";z(b)*u;)
We argue that in fact (5.12) holds for all x, y € ¢, (M). Indeed, Ais strong-*x dense
in ¢,(M) so by Kaplansky’s density theorem we may take bounded nets x; and
Yk in A converging in the strong-s# topology (hence o-weakly) to x € c,(M) and

y € cy(M) respectively. By Step 1 the left and right actions are normal (meaning
o-weakly continuous) so that

klil}cl (xk (ufya @ bug Q) yiy t ¢ ® dug, Q25)
1.k2

= (x(upa®bug Qp)y,upc® dug,Q25). (5.13)

Since U< is bounded by Lemma 5.7 andxgu r, 2 — xu s, Qg in norm we find

lim (B (', xay 1 1, ), ditg, vy 07 (0Y 1)
- <\"13“"’(u’;2xufl Qp), du g,y o)y (b) 1} ). (5.14)

The limits (5.13) and (5.14) show that (5.12) holds for all x, y € ¢, (M). Further, by
strong continuity of the semi-group we find for all x, y € ¢, (M),

(x(ufa®bug Qp)y,upc®dug, Q)

5.15
= 11\1}1( (ufzxufl)Qw,dug2 7y al/z(b) ). ( )

By the unitary identification (5.8) there exist z,, z; € M such that,
W xu Q= (25Q)ser € La(R, La(M)),
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dug, Qy o) (b)* = (2;Q)ser € L2(R, L2(M)).

We have
dugzﬂgy*giiz(b *uz,l ~ (/ gl(r)ZiH_rder) .
R seR

We may express the limiting terms on the right hand side of (5.15) as follows by using
Lemma 5.7,

(W @y 1) Q. dug, Y o)), (b) usy)

= <\I/ta’C(ZsQ¢)‘ye]R, (/R gl(V)Z;+rder>S€R> (516)
@
= <(\II;TS (a)’C(ZS)Q(ﬂ)AER’ (/ gl (r)2;+rg2(pdr) >.
R seR
4
Because (®;),>¢ is IGHS there exists for every t > 0,5 € R a vector ¢ @.c ¢

Ly(M) ® Ly(M) such that for all z, 7/ € M,
12 _ ¢
(W ()R, Q) = (22 ® TRy, & ).

It follows in particular that for all s, » € R we have

[ R
(\IJ[JS (a),c(ZS)Q(p’ Z;+rg2<p> — (Zngo ® Z;—&-rQwv ttrs (a),c>' (5.17)

¢
Further ¢ (@-¢ i continuous in s and in particular integrable (see the proof of Lemma

5.7).
Now fix some n € N and assume that the frequency support of x is contained in
[—2n, 2n]. Let K be the product of the sets

ssupp(f1), ssupp(f2), and  [—2n,2n]. (5.18)

where the symmetric support is defined as ssupp( f) = supp(f) U supp(f)~" U {0}.
Set for t > 0,

o) (a).c
Eta’c(s,s tr)= g1(rg , 8 € K,‘r € sup(g1),
0 otherwise.

Then 7% defines an element of Ly(R2, M @ M) ~ L(cy(M)) ® La(cy(M)).

@
Note that (zy)secr, hence (¥;° (@€ 2 ))ser, is supported on the product of the sets
ssup( f1), ssup( f2) and [—2n, 2n]. Hence
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2 .
(5.16) =/R/R(\I’,US (a)’°(15)§2¢,gl(r)z;HQq,)drds
= f / (wo @D (2R, 81(1) 71, Qp)drds
K Jsup(gr)

- ¢
=/ / (25 ® 204, Q. g1(NE “)drds (5.19)
K Jsup(gr)

=((25Q2)scr ® (@, QLp)rer, L°°)

=(upxu Q@ dug, Qtﬁy*"ig;z(b)*’ o)

=(xu £, Qp ® dug, XY™, (1, ® DG (1@ 0, (D))

Now let x, = \/szn X[—n,n] € Loo(R). Letm,, = x, * x,, which is positive definite and
converges to 1 uniformly on compacta. Let T, : Loo(R) — Loo(R) be the Fourier
multiplier with symbol m,, and by the Bozejko-Fendler theorem [8,44] let M,,, :
B(Ly(R)) — B(L2(R)) be its extension to B(L,(R)) as a normal L (R)-bimodule
map (i.e. the so-called Herz-Schur multiplier). Then Id p ® M, — Id A ®Id g1, R))
in the point-o-weak topolgy. Restricting Id g ® M, from M ® B(L(RR)) to ¢, (M)
yields a normal completely positive map

Ry i cg(M) = cp(M) given by Ty = my(s)me()ug, v e M, s € R.

The range of R, is contained in the elements with frequency support in [—2n, 2n]. Fix
n and put K as before (5.18). It follows from (5.19) that for # > 0 the inner product
functional

Co(M) O cy(M)P 5 x @ yP > (‘T’f’c(u?an(x)“f1)Q¢7 d”gzgﬁy*ai(/;z(b)*bt;
(5.20)

extends to a normal bounded map on the von Neumann algebraic tensor product
Co(M) ® cpy(M)P. Now let & = Y, ura; ® biug, Q27 where the sum is finite and
a,be A, f;, g € Coo(R). By (5.20) we see that the positive map (for positivity, see
the proof of Lemma 4.3)

Ont 1 Cp(M) O co(M)P 5 x @ yP
= D (Y W Ry (0w )R, bjug, Qpy*ay, (b uf),

i,J

extends to a normal bounded map on the von Neumann algebraic tensor prod-
uct ¢y (M) ® ¢, (M)P. Moreover, by Kaplansky this extension is positive. Since
Lo(cy(M)) @ La(cy(M)) is the standard Hilbert space of ¢, (M) & ¢, (M)°P there
exists 1, € La(cy(M)) @ La(cy(M)) such that for every x, y € c,(M) we have

On,1 (X @ YP) = (X0t Y, Nt (5.21)
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We can now conclude the proof as follows. Now let ¢ > 0 and let F be a finite
subset in the unit ball of ¢, (M). Let & = )", u r,a; ® bjug Q27 where the sum is finite
anda,b € A, f;, gi € Coo(R). Since R, — Idcw( M in the point-o-weak topology
we may take n € N large such that for all x, y € F we have

|(x€y.§)5 — (Ru(0)§y. E)3] < e. (5.22)

Recall from (5.12) that w, o(x ® y°P) = (R,(x)€y, £)3. We may take r > O small
such that forall x,y € F,

lwn,0(x ® yP) — wp i (x @ yP)| < & (5.23)
Combining (5.21), (5.22), (5.23) we find that for all x, y € F we have

[(xEy, &)y — (XMt Yy Mne)| < 2e.

As the vectors & as above are dense in Hp c, it follows that the bimodule H; c, is
weakly contained in the coarse bimodule of ¢, (M).

Proof of (1) and (2) for arbitrary p € L,(R). Now let p € L,(IR) be a projection.
Then we see that we have a weak containment of the pcy, (M) p-pcy, (M) p-bimodules
PHe,9p in pLa(cy(M)) ® La(cy(M))p. The latter is in turn weakly contained
in pLa(cy(M))p ® pLa(cy(M))p, which is justified by the following. If ¢, (M)
were to be a factor we write 1 = Vv, p, with p, projections with T(p,) = T(p); by
comparison of projections there are unitaries u,, such that u}u, = p, and u,u}; = p.
Then & +— &u, (resp. £ — u};&) intertwines the left (resp. right) action of ¢, (M)
on La(cy(M))p and La(cy(M))pn (resp. pLa(c,(M)) and p,La(cy(M))). From
this the weak containment follows in the factorial case. In general it follows from
desintegration to factors of ¢, (M). a

6 The quantum group O} (F) with FF € Ridy admits an IGHS Markov
semi-group

In this section we make an analysis of semi-groups associated with LOO(OIJ\?(F )) and
its associated gradient bimodule. The idea is based on results from [24] where De
Commer, Freslon and Yamashita have obtained the Haagerup property for OIJ\;(F ).

We use general results from [18,42] to construct a semi-group for such 01‘\,Ir (F) thatis
IGHS.

6.1 Semi-groups and Dirichlet forms, case FF e Ridy

Set A(O;(F )) to be the underlying Hopf algebra of coefficients of finite dimensional
representations of OZ(F ). Recall that in case FF € RIdy we have Irr(O;\;(F )) ~ N.
Let Uy, o € N be the (dilated) Chebyshev polynomials of the second kind. They are
defined by Up(x) = 1, U;(x) = x and the recursion relation
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XUy (x) = Ugy—1(x) + Ugy11(x), a>1.

Let U}, be the derivative of Uy.

The arguments in the proof of Proposition 6.2 below are close to constructions from
[42,58] and its non-tracial generalization [18, Proposition 5.5]. We use these ideas to
obtain a specific generator of a Markov semi-group that can be expressed in terms of
the Chebyshev polynomials.

We need the fact that if P is a function that is smooth in a neighbourhood of 0 then,

lim k& PO ! S P ! =1og(2)P’'(0 6.1
Jim k| — (H%z:k; <7) = log(2) P'(0). (6.1)

Recall that throughout the entire paper we made the convention that 0 < g < 1 1is
fixed by the property ¢ +¢~' = Tr(F*F) = Ny . Define,

_Ulg+q7h

A e )
T Usgt+g™h

o e N. (6.2)
Lemma 6.1 We have,

Ay =

o <1+q2°‘2>+ 2
N2—4 N =g gy N2 —4

Uis the quantum dimension of the fundamental representation of

where Ng = q +q~
O (F).

Proof This is shown in [31, Lemma 4.4] (in fact it can be derived rather directly from
the recursion relation of Uy). O

Proposition 6.2 Assume that FF € Rldy. There exists a Markov semi-group (P10
on Loo(Oy, (F)) determined by ®; (u ) =exp(=tAguf ;.

Proof In [23, Theorem 17] it was proved that for every —1 < ¢ < 1 we have that,

Uslg"+q7")

3
s . 1~ ) aENslSistn ’
Ua(q +q‘1)> “

Tt(u?;») = cd(t)u?‘j, with ¢y (t) = <

determines a normal unital completely positive multiplier on LOO(O; (F)). Note that

the maps Y; with —1 < ¢ < 1 mutually commute. Moreover, for x € LOO(O;\S(F )
2

we have Y;(x) — x o-weaklyast /' 1. Puty, = log%(l — % Z;k:k_H Tf_)j,l). The

proof of [18, Proposition 5.5] argues that we may define semi-groups of completely

positive contractions S; x = exp(—7yx) on La(M). Further,

ik 1 2k 1
Sea(i ;) = exp(—ty)(uf ;) = exp (@ (1 % Z ca(l — 7))) g ).

I=k+1
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Taking the limit k — oo of this expression and using (6.1) gives limg_ o S,,k(u;?"j)
= exp(—tc, (1)) uf‘J By density we may conclude that for every & € Lz(O; (F)) we
have that S; ¢ (§) is convergent say to S; (§). Furthermore (S;);>0 is a semi- group thatis
moreover strongly continuous (again this follows by comparing actions on A(O7; N ()
in LQ(O;(F)) and then using density).

Consider the closed convex sets in Lz(O;\;(F )) givenby Co = {x € Lo(M) |0 <
x < Q,} and the positive cone in the i-th matrix amplification C; = M; (Ly(M)T
where i € N>j. As for each ¢, n and i we have S; ,(C;) € C; we get S;(C;) € C;.
Further S;(24) = Q. Lemma 2.6 then shows that there exists a Markov semi-group
(®,)120 0n Loo(O7(F)) such thatd? = (8;),20. As,

3Uu(q" + 97U, (q" + g ") (q" log(q) + g~ 1og(q—1))

= Ualg +077?
we see that
(1) = 3Uila' + 4 D(glos(q) — g loa(g)
Uo(q +471)
So the proposition follows by scaling the generator of the semi-group (S;);>0- O

The following is now another example of [18, Theorem 6.7].

Corollary 6.3 Assumethat FF € Rldy. There exists a conservative completely Dirich-
let form Q y associated with 014\,'(F ) with domain,

Dom(Qn) = {& € La(OF(F) | D Y~ Agllef . )P < oo,

a=0i,j=1

that is given by Qn(§) = Y o, Z, o1 Dallef /., £)|2. Here Ay is defined in (6.2).

Proof Thisisadirect consequence of the correspondence between conservative Dirich-
let forms and Markov semi-groups, see Sect. 2.6 and [18, Section 6]. O

6.2 Properties IGHS and GHS

We prove that the Markov semi-group constructed in Proposition 6.2 is IGHS and
even GHS in the non-tracial case.

Lemma 6.4 Fora, B,y € Nwith |y| < max(a, 8) we have

Aaty = A — (A — Agy)
<y (@t — gty 4 (@ — P + a (@™ — g™, (6.3)

where < stands for an inequality that holds up to a constant that does not depend on
o, Bandy.
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Proof For each m, n € Z\{0} we have that,

1 +q—2m 1 +q—2n Z(q—Zm _ q—Zn) B 2(q2n _ qu)

T2 T—g 2 (=g (I —g2) @ =Dg> 1)

Then we have from Lemma 6.1,

IN2 = 4l(Basy — Aa) — (Ap — Apy)]

4 g 222 | g 22 | 4 g~2p+2r=2 1 4q 262

=|@+y) | — g—20-2r-2 o g—2a—2 + (B - V) —g B2 B 1—g26-2

1+ q72a72y72 1+ q72ﬁ+2y 2
=v ' 1—g20-2r—2 | _g-26+2—2

1+q—2a72y—2 1+q—2a—2
1 —g20-2y=2 " | _ 4202

14¢ 262 14 g 26+2v2
‘ 1—g 262 1—q26t2y2

+a

< y‘q2a+2y _ q2ﬁ+2y| +'3|q2/3 _ qZﬁ—Zyl +Ol|q2a _ q2a+2y|.

This shows (6.3). O

Assume F'F € Ridy. Then let AZ be the unique unbounded operator with domain
Dom(Q ) such that Qn(§) = (A%E, A%S) (c.f. Corollary 6.3). In other words

% @Aapa

where pq is the projection of L(M) onto the isotypical component of o €
Irr(O;VF(F )) ~ N. Then let ( -, - )r be the gradient form defined in (3.1) with respect
to this A. Let Hj be the Loo (O} (F))-Loo (O} (F)) bimodule constructed in Sect. 3
starting from the semi-group (®;);>o and corresponding Dirichlet form of Proposition
6.2 and Corollary 6.3. The algebra A in Sect. 3 is then understood as A(O;V’(F ).

The following lemma is directly based on estimates of Jones-Wenzl projections.
The estimate we need was precisely proved in [64, Appendix A] already, c.f. (6.7).
For o € N write Py(x) = pqxp, for the isotypical cut-down. For «, B,y € N the
fusion rules of O,‘\,"(F) imply that if y < |¢ — 8| and y — a + B € 2Z then y is
contained in @ ® B with multiplicity 1. We shall write V; b H, — Ho ® Hg for
the isometry that intertwines y with @ ® §. By Peter-Weyl theory V“”S is uniquely
determined up to a complex scalar of modulus 1. For the next lemma let u? i denote
the matrix unit of 4 with respect to some orthogonal basis vectors which we simply
denote by 1 < i, j < ny,. We have Peter-Weyl orthogonality relations

i ;2 = 1 Qaill2lljl2,

for some positive matrix Q, € M, (C) which may assumed to be diagonal after
possibly changing the basis (see [28, Proposition 2.1]). Moreover we have,

VEPQ, =(0s® 0p) VP,
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Lemma 6.5 Assume FF € Ridy. Take matrix coefficients x = uf a=u,, . c=

ufnn where o, r,s € N. Assume r,s < a and let k,l € 7 be such that k| 5 r and
I <switk—r €2Z andl — s € 27. We have,

| Pa-titi (Poti (cx)a) — Pyyiti(cPoti(xa))ll2 < g% llxll2. (6.4)
Here < is an inequality that holds up to a constant only depending on a, ¢ and q.

Proof We prove this by induction on s and r. If either s = 0 or » = 0 the statement is
clear as the left hand side of (6.4) is 0
Step 1. Case r = 1 and s = 1. We get the following. We have,

Py k41 (Patk(cx)a)
= @ EED (VIS @ L) m @i @m), (VIR (VIS @ 1) (e j @n)).

o

(6.5)

Similarly,

Py tkt1(cPyti(xa))
= VI A @ VI m @i @m)), (VIS s @ VI e jen). (6.6)

By [64, Lemma A.1, Eqn. (A.2)] we see thatincase/ = 1 and k € {—1, 1}, we have

(1, ® VEDVEEE, — (V38 @ 1) VEHEn | < getk=n/2, 6.7)

In fact by [64, Lemma A.2, Eqn. (A.5)] the left hand side of (6.7) may also be estimated
by ¢*+tU="/2incase ! € {—1, 1} and k = 1. Therefore for any k, [ € {—1, 1} except
for k =1 = —1 we may continu as follows. We get,

P (VRS (Ve @ 1" = (VIS ) (L, @ VEDHm @i @ m),
VAV @ 1) e j@n))I3
= 1 Qp((VEED (VIS @ 1,)" — (VIS ) (1, @ VDN m @i @ m)|3
x VSRS VI ® 1) @ j @ )3
< IV Vo @ 10" = (Ve s @ V™)
(Qsm ® Qui ® O,m) 30 ® j ® 13
< *(Qsm ® Qui ® Qrm)|3lIn ® j @ n'|I3

20 21 1212
=g~ lIxlzllallzllc]l3-

(6.8)

Similarly,

P (VI (1, @ VI m @i @ m'),
(VR (VS @ 1) — (VI ) (1, @ V) (@ j @ n)))II3 (6.9)

20 (211 (21112
< g~ lxlzllalzlcll3-
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Combining all the above estimates yields, still withk,/ € {—1, 1} butnotk =/ = —1,

| Pogti (Pogi (cx)a) — Pygiqi(cPoyi(xa))ll2 < 2¢% |Ixl2llall2llcll2.  (6.10)

But as we have that

cxa= Y Papr(Papr(ex)a) = Y Pasiyi(cPoyi(xa))
k,le{—1,1} k,le{—1,1}

We can estimate the complementary case k = [ = —1 through (6.10) by

I Pertiett (Patk (€x)a) = Potii (¢ Pagi (xa)) 12 < 6% [lx [12]lall2lcll2-

This proves the lemma in case s =r = 1.
Step 2. Induction. We prove that if the lemma holds for somer and s — 1 as in the
lemma, then it also holds for » and s. In particular it then follows that the lemma holds
forr = 1 and s arbitrary

Leta; = u?’ , ,andletag = ul v - Takel] € Zwith || < s—landli—s+1 € 27Z.
Further let /> € { 1, 1}. Write < for an inequality that holds up to a constant that only
depends on ay, az, ¢ and g. We get by Step 1 that,

| Pogktty 415 (Pt +4 (€ Paggy (xa1))a2) — Popkdy 415, (€ Pagty 1, (Pagr, (xar)az)) |2

]
< @M Pyyr, (xaD) 2llcli2llazll2 < g*llx 2,

and

| Pttty 41 (Povty 4k (€ Poty (xa1))a2) — Poykty+1 (Poiy 4k (Pagk (ex)ar)az) |12
< q%lxl2llcl2llarlizllazll < g*llx]l2.

Hence,

| Pootse+1,+1, (Por1y +k (Potk (cx)ar)az)
— Po ity 15 (€ Patty 1, (Poyry, (xap)an)) 12 < g |lx]l2.

Fixl € Z with |l| < s and/—s € 2Z. Taking the sum over all /1 and I, with 1 +1p =1
we see

| Pogiti(Pogi(cx)araz) — Poyiqi(cPogi(xara)lla < g%|lx]l2. (6.11)

Since a; and a, were arbitrary coefficients of «*~! and u' respectively we get that
(6.11) holds with ajas replaced by any « that is a matrix coefficient of u“~D®!_ Since
we have an inclusion of irreducible representations s € (s — 1) ® 1 we conclude our
claim.
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Step 3. Case r and s arbitrary as in the lemma. One may proceed as in Step 2 to
conclude the proof. Alternatively, assume the lemma is proved for » — 1 and s. We
want to show that it holds for » and s. We have,

| Potiti (Pati(cx)a) — Poyyii(cPyti(xa))ll2
= || Pkt (Pagi (c*x*)a™) — Pyqiqi(a™ Pyyr(x*c*)) 2

Recall that every element in Irr(O;\,"(F )) is equivalent to its contragredient repre-
sentation. So by the inductive step in Step 2 of the proof with the roles of s and r
interchanged we see that the right hand side may be estimated by a constant only
depending on a, ¢ and ¢ times ¢/*!. O

The next lemma is now crucial. The fact that in the non-tracial case the Hilbert—
Schmidt properties of the maps W, in this lemma are better comes from the fact that
the intertwining properties of Lemma 6.5 are stronger.

Lemma 6.6 Assume that FF € Ridy. Leta, b A(OX,'(F)). For t > 0 consider the
linear map A(Oy,(F)) — A(O}(F)) defined by

W, =0 x> @, ((xa, b)r — (x, b)ra).

For t > 0 consider the map lIJ,(Z’z) tLy(M) = Lo(M) 1 xQy = W (X)Q2y, x € A
Ift > 0 then \IJ,(I’Z) extends to a Hilbert—Schmidt map. Moreover, if F # Idy then
\IJ,(l’z) extends to a Hilbert—Schmidt map also fort = 0.

Proof Let a and b in A be coefficients of respectively irreducible representations u”
and u* with r, s € N. By linearity it suffices to show that for r > 0 (and r = 0 if
F # 1dy) the map,

W (x) = ®; ((xa, b)r — (x, b)ra)
is Hilbert—Schmidt. Let x = uf‘ j with o € N. Firstly, we have
(xa, b)r — (x,b)ra =b*A(xa) — A(b*xa) — b*A(x)a + A(b*x)a.

Note that each isotypical projection P,,y € N commutes with A which we may
naturally view as a map A(O;(F)) — A(O?V'(F)). From the fusion rules of 0;(F)
we conclude the following for numbers y € N. If « + y C o ® r then |y| < r. If
a+y Csathen|y| <s.For|y|<randB C s®(a+y)wehave |f—a| < r-+s.
Finally for |y| <sand 8 C (¢ —y) ® r we have | —«| < r +s. These observations
show that we get the following sum decomposition. Some summands can be zero; in
fact all that matters is that the summation is finite. So,

@ Springer



Gradient forms and strong solidity of freequantum groups 31

(xa, b)r — (x,b)ra

= > Pg

a—r—s<B<a+r+s
—max(r,s)<y <max(r,s)

(b* A(Paty (xa)) = A(Py—y (b*x)a) — b* Pyiy (A(x)a) + A(Pg—y (b*x))a)
= > (Aaty = Do) Pg(b* Puyy (xa))

a—r—s<f<a+r+s
—max(r,s)<y <max(r,s)

— (A — Ag—y) Pg(Py—y (b™x)a).
We therefore obtain for ¢+ > O that,

[®; ((xa, b)r — (x,b)ra) |2

< > [Aaty = Ao = Ap + Apy |9 (P (b* Payy (xa))) 12
a—r—s<f<a+r+s (6.12)
—max(r,s)<y <max(r,s)

+1Ap = Ap—y 1D (P (D* Poyy (xa)) — Pg(Py—y (b*x)a)) |12

We write < for an inequality that holds up to some constant independent of «. Let
y,a, B besuchthat | —a| <r+ s and |y| < max(r, s). Lemma 6.4 shows that,

| Aoty = Ao — Mg+ Dp_y| < g% (6.13)

As the eigenvalues of A grow asymptotically linear, more precisely Lemma 6.1, we
have the following.

|[Ag — Ag_y| <max(r,s) <1 and
exp(—tAg) X exp(—t(Ay — 7 —5)) <X exp(—ta). (6.14)

By Lemma 6.5 (note that b* is a coefficient of the contragredient of u#® which is
equivalent to u* itself),

| P (b* Pysy (xa)) — Pg(Py—y (b*X)a)ll2 < %[ x]2. (6.15)
Combining (6.12) with the estimates from (6.13), (6.14) and (6.15) we see that,

19, ((xa, b)r — (x, byra) 2 <> exp(—re)|xll2 + ¢* exp(—ta) |l x]2
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Now let £ € ®N_ Py (Loo(G)) and let & = Py (&). Then

N N
1Wo@)ll2 < ) IWoEll2 < D g% IEall2

a=0 a=0

o \} /oo } |
< (qu) (Z mn%) = 73 léll.
a=0 a=0 -4

Hence ¥y is bounded Ly(M) — Ly (M). Further we get that,

W lgs= >

aeN,1<i, j<nqy

2
<D neq™ exp(=2ta) = ) (niq” exp(=20)".

aeN aeN

W, (e )I5
— 2 <N (P 4 g exp(—2ta)
”ui’j ”2

aeN,1<i,j<ng

2

As ng g* converges to a number < 1 (see Sect. 2) for « — oo this summation is
2

finite as soon as # > 0 which concludes the proof. Moreover, if F # Idy then ng ¢>

converges to a number < 1 (see Sect. 2) which concludes that the latter summation is
finite if r = 0. O

As a direct consequence we get the following.

Theorem 6.7 Assume that FF € Ridy. The semi-group of Proposition 6.2 on
LOO(O]'\,"(F)) is IGHS. If moreover F # Idy then this semi-group is GHS.

7 Strong solidity
7.1 HH* -type properties and strong solidity in the tracial case

Atthis point we collect results for the tracial case, i.e. F = idy. Write ot = OIJ\?(idN).
We first obtain the following result, which is closely related to Property(HH)™ from
[48] and its quantum version which was first studied in [31]. In fact Corollary 7.2 was
already proved in [31, Corollary 4.7] based on different methods.

Definition 7.1 Let M be a von Neumann algebra and let 9 : Dom(d) — H be a
derivation where Dom(9d) is a subalgebra of M and H is an M-M-bimodule. 9 is
called closable if the operator 9> : Dom(d)$2, — H : xQy > 9d(x) is closable as
an (unbounded) operator L>(M, ¢) — H. A closable derivation 9 is called proper
if 3;‘52 has compact resolvent. With slight abuse of notation we will write d for 9, as
was also done in [48] and [50].

Corollary 7.2 Assume that F = idy. There exists a proper closable derivation 9 on
A(O;(F)) into a LOO(O;)-LOO(O;\,")-bimodule ‘H that is weakly contained in the
coarse bimodule of LOO(O;\?).
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Proof By Proposition 3.8 we see that the left and right A(O;)-actions extend to
normal actions of LOO(OIJ\;). Theorem 6.7 and Proposition 4.4 imply that the gradient
bimodule Hj is weakly contained in the coarse bimodule. Then because we are in
the tracial case the constructions from [21] which are recalled in Sect. 2 show that
there exists a derivation 0 : A(O;\;) — Hy. Lemma 3.9 shows that this derivation
is closable with suitable domain so that A = 3*3. Then Lemma 6.1 shows that 3 is
proper. O

The following Corollary 7.3 follows by a modification of the arguments in [48]
from groups to quantum groups. This fact was also suggested in the final remarks of
[31]. For completeness and the fact that in the non-tracial case we also require this
result (even for stable normalizers), we included the proof in the appendix.

Corollary 7.3 Assume that F = idy and N > 3. Then LOO(OX;) is strongly solid.
Proof This follows from the methods in [48, Theorem B] (see Appendix A) in com-
bination with Corollary 7.2 and the fact that LW(O;) has the CMAP [24]. O

7.2 Strong solidity for O} (F) and U} (F), case of general F

Recall that for a matrix ¥ € GL,(C) the free unitary quantum group U]‘V"(F ) is
defined as follows. As a C*-algebra it is the algebra A freely generated by elements
u; j, 1 <i, j < N subject to the relation that the matrix ul = (i, )i, is unitary and
u' = Fu' F~'. The comultiplication is then given by Ap(u; ;) = Y0 ik ® ug. ;.
When FF € Ridy we have that U;\;(F) is a quantum subgroup of Z * 0;;(F) with
Hopf *-algebra homomorphism

UN(F) = Zx Of(F) :u; j v zu; j, (7.1)

where z denotes the identity function on T = 7. Further, Wang [68] proved the
following decomposition results. For any F € G Ly (C) we have an isomorphism of
quantum groups

Uy (F) = Uy (D1) ...% Uy (Dp), (7.2)
and
ON(F) = Uy (D1) ... x Uy (D) % Oy (E1) % ...% Oy (Fp),  (1.3)

for certain matrices D; ar£1 E; of dimension LV,- and M; smaller than N respectively
with the property that D; D; € Ridy, and E; E; € Ridy,.

Remark 7.4 Recall that in Proposition 6.2 we constructed a Markov semigroup (®;);>0
on O;(F )in case FF € RIdy. Then taking the free product with the identity semi-
groupon L (Z) yields a semi-group on Zx* O; (F) whichrestricts to U IJ\;(F ) under the
embedding (7.1). The gradient module of the identity semi-group is the zero module
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which is clearly IGHS. Therefore by Proposition 5.1 the free product semigroup is
IGHS on Z % O;\?(F ) and hence on U;?(F ). Take the free product of the latter semi-
group on the U;,'-factors in (7.2) and (7.3) and of the semigroup (¥;);>0 on the
0;—factors. This yields a semi-group of central multipliers on an aribtrary quantum
group U;;(F ) or O;\;(F ) that is moreover IGHS.

In the following proposition we collect some results from [40,49,64] that were not
stated explicitly. We refer to [40] and [64] for the definition of bi-exactness and the
Akemann-Ostrand property which shall not be used further in this paper.

Definition 7.5 A von Neumann algebra M is called solid if for any diffuse, amenable
von Neumann subalgebra @ € M with faithful normal conditional expectation Eg :
M — Q we have that Q' N M is amenable.

Definition 7.6 A von Neumann algebra M is said to have the completely contractive
approximation property (CMAP) if there exists a net of normal completely contrac-
tive finite rank maps (Y;); on M such that for every x € M we have Y;(x) — x
o-weakly.

Proposition 7.7 For any F € GLN(C) and N > 3 the von Neumann algebras
LOO(O]'\,"(F)) and LOO(U;,'(F)) are solid. Further, free products of such algebras
are solid.

Proof By [24, Theorem 24] the reduced C*-algebras Cr(O;\,"(F)) and Cr(U;,'(F))
have the CMAP and hence so do their free products[34,56]. This shows that such
C*-algebras arelocally reflexive by [13,55, Chapter 18]. By [40, Theorem C] the (sep-
arable) quantum groups 0;(F ), U;?(F ) and their free products are bi-exact so that
by [64, Theorem 2.5] (see also [49]) they are solid. O

The following proposition is essentially [7, Main Theorem]. Let Z(M) = MNM’
denote the center of a von Neumann algebra. Suppose that Q is a von Neumann
subalgebra of M. Then we set the stable normalizer,

SNM(Q) = {x e M | xQx™ € Q,x"Qx C Q}. (7.4)
For two faithful normal states ¢ and ¥ on M we set
T,y - Cw(./\/l) — C(p(./\/l),

to be the *-homomorphism given by 7y, y (uy) = uy and 7y y (y (x)) = 7, (x) where
seR,x e M.

Definition 7.8 A Markov semi-group (®;);=0 with (&2 = ¢='2),-o with A > 0 is
called immediately L,-compact if the generator A has compact resolvent.

Recall that in [18] it was proved that the existence of an immediately L,-compact
semi-group on a separable von Neumann algebra M is equivalent to M having the
Haagerup property.
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Proposition 7.9 Let G be a compact quantum group and let M = L (G). Suppose
that M is solid with the CMAP. Suppose moreover that M posseses a Markov semi-
group of central multipliers that is both IGHS and immediately Ly-compact. Then M
is strongly solid.

Proof We follow the proof of [7, Main Theorem]. Let @ C M be a diffuse amenable
von Neuman subalgebra with expectation. We need to prove that P = N (Q)”
is amenable. Fix a faithful state ¢ on M such that Q is globally invariant under
o V. The second paragraph of the proof of [7, Main Theorem] shows that by solidity
of M we may replace Q by the amenable v/-expected von Neumann subalgebra
Q = 9\/(Q'NM) and prove that N4 (Q)” is amenable. This shows that without loss
of generality we can assume that @' N M = Z(Q). From this property it follows that
ey (P) € Ne, (M) (cy (Q))”, see [7, Section 4, Claim], and this inclusion is V-expected
where J was the dual weight of ¥y. Hence we need to prove that N, o My ey ( Q))”’
is amenable. Set Py = ”w,w(Ncw(M)(Cxlf(Q))//)’ Qo = 7y y(cy(Q)) and Mo =
Cp(M) = 14 y (cy (M)). We have Py = Ny, (Qo)”.

To show that Py is amenable it suffices to show that for every t-finite projection
p € L,(R) the von Neumann algebra pPpp is amenable. Let p € L,(R) be such a
t-finite projection. pPy p is contained with expectation in SN, v, ,(PQop)”. So we
need to show that sN, pq,,(pQop)” is amenable.

Note that p Qg p isamenable [1]. Further, By [39, Lemma 2.5] we see that as Q is
diffuse and p is t-finite, we have pQop Apatep Lo(R)p.

As M is equipped with a Markov semi-group of central multipliers that is IGHS,
it follows that p M p carries a GC semi-group, see Proposition 5.4. Moreover, by the
same Proposition 5.4 and the discussion at the end of Sect. 2 (see [21]) we see that
on p M p there exists a closable derivation d into a p. Mg p-p Mg p bimodule that is
weakly contained in its coarse bimodule of p/\/lo p. Moreover the derivation is real
(Lemma 3.10) and satisfies 9*9 = A where A is the generator of the GC semi-group
constructed in Lemma 5.4, which on (pL2(R)) ® Ly(M) is given by p @ A with A
the generator of the IGHS semi-group on M. By assumption A has compact resolvent
so that 9 as a derivation on pMjp satisfies the properness assumption (A.1) with
L = pL,(R). As further M hence p.Myp has the CMAP, we may apply Theorem
A5 to the triple (pcy, (M) p, pL,(R)p, pQop) to conclude that SN, o1, , (P Qop)” is
amenable. O

Theorem 7.10 Let N > 3andtake any F € GLy(C). Loo(Uy (F)) and Loo(O3 (F))
are strongly solid.

Proof Let G be either U]‘\,"(F ) or 0,‘\7(F ) with conditions as stated in the lemma. By
[24] Lo (G) has the CMAP.

Remark 7.4 and Proposition 5.1 shows that L, (G) posseses an IGHS Markov
semi-group of central multipliers. Futher, by Corollary 6.3 and the Leipniz rule (5.1)
this semi-group is immediately L,-compact. By Proposition 7.7 M is solid. The result
then follows from Proposition 7.9. O

Remark 7.11 Anywhere in this paper the usage of semi-groups of central multipliers
can be replaced by more general semi-groups of modular multipliers, i.e. multipliers
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D : Loo(G) = Loo(G) that commute with the modular group 0¥ of the Haar state. In
turn one may apply averaging techniques to assure the existence of such semi-groups
associated with quantum groups, c.f. [18, Proposition 4.2].

The reason that we must work with multipliers in this paper is to assure that the gradi-
ent bimodules H extend from A-.4-bimodules to normal L (G)-L o (G)-bimodules.
It would be nice to have a more conceptual understanding in the general context of
von Neumann algebras for when this happens.

8 Related results: amenability and equivariant compressions

We collect some final corollaries. Firstly, we recall the following result from [22]. We
give their proof in terms of Stinespring dilations.

Theorem 8.1 (Theorem 3.15 of [22]) Let M be a von Neumann algebra and suppose
that there exists a conservative completely Dirichlet form Q associated with M such
that A g has a complete set of eigenvectors with eigenvalues 0 < A < kp < A3 < ...
(with multiplicity 1, so an eigenvalue may occur multiple times). If

An

lim inf 00, (8.1)

neN log(n) -

then M is amenable.

Proof As Q is a conservative completely Dirichlet form there exists a Markov semi-
group (®P;);>0 on M such that <I>§2) =e¢ 120, (8.1) implies that for any K > 0 we find
forlarge n that e’ > nX Soif K > t~! we see that for large n we gete "*» < n~!.So
e~'A¢ is Hilbert-Schmidt. Let (H,, ;) be the pointed Stinespring M-M-bimodule
of ®,. By Lemma 2.3 for every t+ > 0 we have H; is weakly contained in the coarse
bimodule of M. Ast — ®; is strongly continuous we get that H is weakly contained
in the coarse bimodule. Then as ®¢ = Id o4, Hy is the identity bimodule and so M is
amenable. O

As an application we give a von Neumann algebraic proof of a compression
result. Recall [36] that if I" is a finitely generated discrete group then the equiv-
ariant compression s*(I") of I' is the supremum over all s > 0 such that there
exists a cocycle ¢ : I' — H, into some Hilbert space representation (7, H)
with d(y1, 12)* < llc(y1) — c(y2)]l2. Recall we say that ¢ is a cocycle if it satis-
fies c(y1y2) = c(y1) + w(y1)c(yn) for all y1, y» € T. Necessarily s*(I') < 1 as
cocycles are Lipschitz.

Corollary 8.2 (Theorem 5.3 [36]) Let I be a finitely generated discrete group. If for
the equivariant compression we have s*(I') > % then T is amenable.

Proof For§ > 0small thereisacocyclec : ' — H, for some representation (7, H )
of I" such that

e e, = le() — cO)llz, = 1(y)TT. (8.2)
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Then ¢ (y) = ||c(y)||%1” is conditionally positive definite and so the semi-group
(e7),~0 of multiplication operators on £,(I") yields an L»-implementation of a
Markov semi-group and thus a Dirichlet form Q(§) = (1//%5 , 1//%5 ). As (8.2) gives
v(y) > l(y)H‘z‘S we see that this Dirichlet form satisfies (8.1). So the proof is con-
cluded from Theorem 8.1. O
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Appendix A. Stable strong solidity and derivations in the tracial case

The final part of the proof of Proposition 7.9 requires a generalization of some of
the main results of [48]. The proof is almost identical to [48, Corollary B]. Similar
observations were made in [59, Remark 3.3] and it was suggested in the context of
Kac type quantum groups in [31, Remarks after Theorem 4.10]. Since we need both
a von Neumann version of the group theoretical results from [48] as well as a stable
version we present the proof here.

A.1 Weak compactness

Troughout all of the appendix, let (M, L, Q) be triple of a finite von Neumann algebra
M with normal faithful tracial state T, an amenable von Neumann subalgebra Q@ € M
and a von Neumann subalgebra £ of M with the property that Q does not embed into
L inside M in the sense of Popa (notation Q A L), see [51,52] for details.

Recall that the stable normalizer sN ((Q) of Q in M was defined in (7.4). Next
we introduce the object sN} (Q) below for which we need the following terminology.
We refer to the discussion before [7, Proposition 3.6] for further details. Let Ez be
the conditional expectation of Q onto Z(Q), the center of Q. For x € sNx(Q) set
z%. to be the support of Ez(x*x) and set zi to be the support of Ez(xx*). Suppose
that x = v|x| is the polar decomposition of x. Then, we denote by «, the unique *-
homomorphism Z(Q)z} — Z(Q)z; determined by va = ay(a)v witha € Z(Q)z;.
Then set oy = o, and we let A, be the Radon-Nykodym derivative between t and
T o ar,. We set,

sN%(Q) = {x € sNA((Q) | 38 > O such that Ez(x*x) > 8z} and Ez(xx™) > 8zi}.
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As explained in the discussion before [7, Proposition 3.6], is that we have an equality
SN (Q)" = sN((Q)". We shall call the latter von Neumann algebra P. Moreover,
the partial isometries in SN.OM(Q) generate P.

Now we need the following weak compactness type property obtained in [7, Propo-
sition 3.6].

Proposition A.1 Let (M, t) be a finite von Neumann algebra with the CMAP. Let Q
be an amenable von Neumann subalgebra of M. Then there exists a net of positive
vectors N, € Ly(Q & Q°P) such that

(1) lim, [[(a @ Dn, — (1 @aOp)nnllz =0, foralla € Q.

(2) lim, [(x ® Dy (x*AF @ 1) — (1 @ xP)5, (1 @ X) |2 = 0 for all x € sN3 ((Q).
(3) {(x ® D, nn) = t(x), forall x € M.

Moreover for every partial isometry v € sN°, ((Q) there exists a sequence of elements
T (v, k) in the unit ball of the algebraic tensor product M © M°P such that

1i]1(n (lim sup [(v® Dn, — (1 @ vP)n, T (v, k)llz) =0,
n

lim <lim sup [|[(v* ®@ Dy — (1 @ V), T (v, k)*||2) =0.
n

A.2 Derivations

Now suppose that d is a closable derivation on some o-weakly dense *-subalgebra
C M into a M-M-bimodule H. Moreover, assume that 9 is real. Let 9 be its closure.
By [27,57] (so in the tracial case) we have that Dom(d) N M is still a o-weakly dense
s-subalgebra on which 9 satisfies the Leibniz rule. Replacing 3 by 9 we may assume
without loss of generality that 9 is closed. We introduce notation (see [48,50]), for

o > 0,
o _1
A =93%9, Ca:',a—}——A’ Oy = 200y,
A v/ A d 6, 1—A
= an = — .
o a—|—A o o

Let e, be the Jones projection of M onto £; it is the map x2; — E,(x)Q2; with
E; : M — L the t-preserving conditional expectation. We further assume the type
of properness assumption:

Oy € C*(Mep M), VYo > 0, (A1)

where C*(Me M) is the C*-algebra generated by Me M. This suffices to still get
the following result from [48, Lemma 5.2] (recall that we assumed that Q 4 ¢ L).
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LemmaA.2 Let (M, L, Q) be as before with M having the CMAP. Let 3 be a real
closable derivation on M satisfying (A.1). Consider further notation as above. For
every o > 0 and a € M we have

lim [|(8y ® 1)(a ® Dnull = llall>.
Proof For an element x in the Jones construction (M, e,) set
eo(x) = lim{(x ® D)y, 0n)-

From property (1) of Lemma A.1 it follows that ¢ is a Q-central state on (M, er).
Further by (3) of Lemma A.1 we see that ¢ restricts as T on M. As Q 4 £ and by
the Assumption A.1 we find from [48, Lemma 3.3] that ¢o(a*060,a) = 0. Therefore

lim |3 ® 1)@ ® D> = go(a*0580a) = go(a*a — a*0564a) = go(a*a) = |jall3.

O

We put £ = H ® Ly(M) as a M-M-bimodule and we denote p : M°P — B(K)
for the right action. For & > 0 and p € Q' N M a projection we set

" = (8, ® D((p® Dny) € K. (A2)

We proceed as in the proof of [7, Proposition 3.7].

LemmaA.3 Let (M, L, Q) be as before with M having the CMAP. Let 3 be a real
closable derivation on M satisfying (A.1). Let p € Q' N M be any projection. There
exists a subnet, say r;;U = n,fi‘a", of the vectors ni"* and elements S(v, i) in the unit
ball of M © M®P indexed by partial isometries v € sN% ,(Q) with the property that
foreveryv € ij\/l(Q),

lim [ (Z; (v) @ Dn! = (1@ VP! (Le ® id)(S(v, D))l|l2 =0,
lim 16 @) ® D = (1 @ D)) (Lo ® id)(S(v,i))]l2 = 0,

and further lim; ||nf||2 = || plla. Moreover; for every x € M,
(0 @ D(x & Dng; [ = lIxl2- (A.3)

Proof Let 1, be the vectors constructed in Proposition A.1. Let the net be indexed
by tuples (F, G, §) with F a finite subset of partial isometries in ijVl(Q), GCM
finite and § > 0. Given suchi = (F, G, §) we apply Proposition A.1 to find k large
such that for all v € F,

limsup |(v ® Dmp — (1 @ vP)n, T (v, K)|l2 < 6,
n

limsup [(v* ® Dy — (1@ )T (v, O)*l2 < 6.
n
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By [48, Lemma 4.2] we may find « large such that for all v € F we get,

lim sup || ({a(v) @ 1)(3x @ id)((p @ 1)1p) — (3o @ id)((vp & Dny)ll2 < 8,

and forallv € F,

lim sup |[(9x ® id)((p ® DnaT (v, k))
n
— (0 ®1d)((p ® Dnp) (Lo @ 1d)(T (v, k)2 < 8,
and similarly with 7' (v, k) replaced by T (v, k)*. Combining these estimates and recall-
ing the definition of n%"* from (A.2) yields

(e (@) @ Dign? — (1 @ vP)ny’ (¢o @ 1d)(T (v, K))l2 < 38,
(2 (@*) @ Dign? — (1 @ V)1’ (L @ id)(T (v, k) ||2 < 38,

and moreover, these estimates hold uniformly in 7. Then Lemma A.2 shows that for
any a > 0 we may take n so large that |||n2"*| — | pll2| < 8. Moreover, the same
Lemma A.2 shows that for x € M we get (A.3). O

Now againlet p € Q' NM be arbitrary and let n,fl.’ ' be the net of vectors constructed
in Lemma A.3. Set the functional on p(M°P)’ N B(K) given by,

@p.i(0) = 1Pl ((x ® D™ ™).

By Lemma A.3 define the state Q,, by ©2,(x) = lim; ¢, ; (x), x € p(M°P)" N B(K)
for some ultralimit.

LemmaA.4 Let (M, L, Q) be as before with M having the CMAP. Let 3 be a real
closable derivation on M satisfying (A.1). Consider further notation as above. Fix
p € Q NMandlet P =sNy(Q)". Fora € P we have

lipl 1@p,i (XCa; (@) — @p.i (Lo (@)x)] =0, (A.4)

uniformly for x € B(IC) N p(M°OP) with ||x|| < 1. Further if a = up for a unitary u
in P then

1ilm 9p,i (o (@) X80, (@) — @p,i (x)] = 0, (A.5)

uniformly for x € B(K) N p(MOP)’

Proof Firstly, let x € B(K) N p(M°P)'. By Lemma A.3 we get for partial isometries
v € sNY ,(Q)that

lim @ ; (xGo; (v) = lim((x&o, (V) ® D/, nf') = lim{(x ® v (Lo ®id)(S(v, D)), 1))
=1lim((x ® Dy, (1 @ )1} (a ®1d)(S(v, )*) = lim{(x @ D}, (o 0)* @ D)

= lim((g; (v)x ® Dnf. nl) = lim ;i (6, (v):0)-
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Moreover, as these limits actually hold on the vector level this argument shows that
lilm 19p.i (x8e; (V) = @p.i (Lo (V)X)] = 0.

uniformly for x in the unit ball of B(K) N p(M°P)’.

We wish to extend this commutation type property beyond partial isometries v €
ijM(Q) as follows. Take v, w € ij\/l(Q) partial isometries. By Cauchy-Schwarz
we see

|¢p,i (x§a,- (v)) — ¢p,i(x§ai (w))|2 = @p.i ((goc,- (v)
— Loy (W) (Lo (V) = oy (W)))@pi (xx™).

Taking limits (using [48] [Lemma 4.2] and (A.3)) we find

1im [ i (¥ (V) = ¢p.i (¥l W)HI* < Qxx™ v — wl3.

Similarly, lim; [¢p,; (Za; (V)X) — @p.i (Co, (W)X) > < Q(x*x)[lv — w]|3. Therefore by
Ly-density in P of the span of partial isometries in sN?M (Q) we see that in fact for all
a € P we get that

lim [, (¥, (@) = 9.1 (5 (@))] = 0.

uniformly on the unit ball of B(K) N p(M©°P)". This yields the first claim. Now if
u € P is a unitary we get again from [48] [Lemma 4.2] and (A.3) that
1im @i (Co; (up) *Ca (up)) = 1Pl lim || Gy (up) © 1) By ® D((p @ Do)

= Ipll52 lim G @ D((up @ D) lI* = lIply 2 llupl3 = 1.

We now follow the proof of [48] to obtain the following.

Theorem A.5 Let (M, L, Q) be as before with M having the CMAP. Let 3 be a real
closable derivation on M satisfying (A.1). Then sN(Q)" is amenable.

Proof Take a non-zero projection p € sN((Q) N M (so certainly p € Q' N M)
and let F C sN4(Q)” be a finite set of unitaries. By [37, Lemma 2.2] to show that
sN¢(Q)” is amenable it suffices to show that

1Y up ® upll moser = | FI. (A.6)
uekF
By Lemma A .4 we find that
hlm |(pp,ot,~ (é‘ai (MP)*XCai (up)) — Pp,a; x)| =0, (A7)
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uniformly for x € B(K) N p(M°P) with |x|| < 1. As H is weakly contained in the
coarse bimodule we get that the left M action on H ® L2 (M) extends to a ucp map
W : B(Ly(M)) = p(MPY N B(H® La(M)). Then ¥, ; = ¢ o o W satisfies

1ilm [V p.i (Go (up)*XCa; up)) — Yrp.i(x)| = 0,
uniformly for x € B(K) N p(MO°P) with ||x|| < 1. From Powers-Stormer we get that

lim || Y ta, 4p) ® Lo, (up) | mger = |F . (A8)

ueF

Since g, is ucp we see that (A.6) is larger than (A.8) which concludes the clam. O
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