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Abstract
Consider the free orthogonal quantum groups O+N (F) and free unitary quantum groups
U+N (F) with N ≥ 3. In the case F = idN it was proved both by Isono and Fima-
Vergnioux that the associated finite von Neumann algebra L∞(O+N ) is strongly solid.
Moreover, Isono obtains strong solidity also for L∞(U+N ) . In this paper we prove for
general F ∈ GL N (C) that the von Neumann algebras L∞(O+N (F)) and L∞(U+N (F))

are strongly solid. A crucial part in our proof is the study of coarse properties of
gradient bimodules associatedwithDirichlet forms on these algebras and constructions
of derivations due to Cipriani–Sauvageot.

1 Introduction

In their fundamental paper [47] Ozawa and Popa gave a new method to show that
the free group factors do not possess a Cartan subalgebra, a result that was obtained
earlier by Voiculescu [66] using free entropy. To achieve this, Ozawa and Popa in fact
proved a stronger result. They showed that the normalizer of any diffuse amenable
von Neumann subalgebra of the free group factors, generates a von Neumann algebra
that is again amenable. This property then became known as ‘strong solidity’. As free
group factors are non-amenable and strongly solid they in particular cannot contain
Cartan subalgebras.

The approach of [47] splits into two important parts. The first is the notion of
‘weak compactness’. [47] showed that if a von Neumann algebra has the CMAP, then
the normalizer of an amenable von Neumann subalgebra acts by conjugation on the
subalgebra in a weakly compact way. The second part consists in combining weak
compactness with Popa’s malleable deformation for the free groups and his spectral
gap techniques.
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272 M. Caspers

After the results of Ozwa-Popa several other strong solidity results have been
obtained by combining weak compactness with different deformation techniques
of (group-) von Neumann algebras, often coming from group geometric properties.
Roughly (to the knowledge of the author) they can be divided into three categories:

(I.1) The aforementioned malleble deformations;
(I.2) The existence of proper cocycles and derivations and deformations introduced

by Peterson [50] and further developed by Ozawa–Popa [48];
(I.3) The Akemann-Ostrand property, which compares to proper quasi-cocycles and

bi-exactness of groups; c.f. [12,19,54].

For group von Neumann algebras the required property in (I.2) is to a certain extent
stronger than (I.3) in the sense that proper cocycles are in particular quasi-cocycles.
These techniques have been applied successfully to obtain rigidity results for von
Neumann algebras (in particular strong solidity results). The current paper also obtains
such results and our global methods fall into category (I.2). Note also that we shall
consider derivations on quantum groups without considering cocycles.

Recently, first examples of type III factors were given that are strongly solid [7],
namely the free Araki-Woods factors. This strengthens the earlier results of Houdayer-
Ricard [38] who showed already the absence of Cartan subalgebras. A crucial result
obtained in [7] is the introduction of a proper notion of weak compactness for the
stable normalizer of a von Neumann subalgebra. Using this notion of weak compact-
ness strong solidity of free Araki-Woods factors is obtained by proving amenability
properties of stable normalizers after passing to the continuous core.

This paper grew out of the question of whether the von Neumann algebras of
(arbitrary) free orthogonal and free unitary quantum groups are strongly solid. These
free orthogonal and unitary quantumgroups have been defined byWang andVanDaele
[63] as operator algebraic quantum groups.

As C∗-algebras the free orthogonal quantum groups are generated by self-adjoint
operators ui, j , 1 ≤ i, j ≤ N with N ≥ 2 satisfying the relation that the matrix
(ui, j )1≤i, j≤N is unitary. It was shown that this C∗-algebra can be equippedwith a natu-
ral structure of a C∗-algebraic quantum group. Through a canonical GNS-construction
this yields a von Neumann algebra L∞(O+N ). Parallel to this one may also define the
free unitary quantum groups with von Neumann algebras L∞(U+N ), N ≥ 2. We refer
to Sect. 2 below for details. These algebras have natural deformations parametrized
by an invertible matrix F ∈ GL N (C) which yields quantum groups with non-tracial
Haar weights (i.e. quantum groups that are not of Kac type). We write L∞(O+N (F))

and L∞(U+N (F)) for the associated von Neumann algebras.
Ever since their introduction these algebras have received considerable attention

and in particular over the last few years significant structural results have been obtained
for them. In particular, recently it was proved that free quantum groups can be distin-
guished from the free group factors [11]. Further, the following is known if we assume
N ≥ 3 (the case N = 2 corresponds to the amenable SUq(2) case):

(1) Factoriality results for L∞(U+N (F)) and L∞(O+N (F)) were obtained in [24,64].
In particular for any F ∈ GL N (C) the von Neumann algebra L∞(U+N (F)) is a
factor. If F = idN the factors are of type II1 and otherwise they are of type IIIλ
for suitable λ ∈ (0, 1].
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Gradient forms and strong solidity of freequantum groups 273

(2) For a range of F ∈ GLn(C) the algebras L∞(O+N (F)) and L∞(U+N (F)) are
non-amenable [4].

(3) For any F ∈ GLn(C) the algebras L∞(O+N (F)) and L∞(U+N (F)) have the
CMAP and the Haagerup property [10,24,33].

(4) O+N = O+N (IdN ) admits a proper cocycle that is weakly contained in the adjoint
representation [31]. That is, it satisfies a property resembling property H H+ of
[48], see also [50].

(5) In case F = idN the factors L∞(O+N ) and L∞(U+N ) are strongly solid [31,41]
(see also the bi-exactness results from [40]).

(6) For general F ∈ GL N (C) the algebras L∞(O+N (F)) and L∞(U+N (F)) do not
have a Cartan subalgebra [41].

In the current context also the results by Voigt [65] on the Baum–Connes conjecture
should be mentioned; part of the results of [24] and therefore the current paper are
based on q-computations from [65].

In this paper we use quantum Markov semi-groups (i.e. semi-groups of state pre-
serving normal ucp maps) and Dirichlet forms (i.e. their generators) to obtain strong
solidity for all free orthogonal and unitary quantum groups. Dirichlet forms have been
studied extensively [18,20–22,29,35,58,60]. In particular in [21] it was shown that in
the tracial case a Dirichlet form always leads to a derivation as a square root. The
derivation takes values in a certain bimodule which we shall call the gradient bimod-
ule. In this paper we show the following, yielding a H H+-type deformation as in
[48,50] (see I.2 above):

Key result (tracial case). Let G = O+N (F), F = IdN be the tracial free orthogonal
quantum group. There is a Markov semi-group of central multipliers on G, which
is naturally constructed from the results of [10,24], such that the associated gradient
bimodule is weakly contained in the coarse bimodule of L∞(G).

In fact, the same result is true in the non-tracial case, but a stronger property is
needed in order to treat that case by passing to the continuous core of a von Neumann
algebra. The proof of the key result is based on two crucial estimates for the case
F F ∈ RIdN : one on the eigenvalues of theDirichlet form and the other on intertwiners
of irreducible representations of O+N (F) going back to [64].

In order to tackle all quantum groups U+N (F) and O+N (F) we treat the above in
a more general context. We study semi-groups of state preserving ucp maps and
introduce three properties: immediately gradient Hilbert–Schmidt (IGHS), gradient
Hilbert–Schmidt (GHS) and gradient coarse (GC). IGHS (as well as GHS) essentially
implies GC (see Proposition 4.4). The key result announced in the previous paragraphs
is proved by showing that O+N (F)with F F ∈ RIdN admits a semi-group that is IGHS.
Preservation under free products and behavior under crossed products of IGHS and
GC are studied in Sect. 5 fromwhich we show that general free quantum groups admit
semi-groups that are IGHS and their cores admit GC semi-groups.

These results suffice to fuel the theory as set out in the beginning of the introduction.
We first recall the definition of strong solidity.

Definition 1.1 AvonNeumann algebraM is called strongly solid if for every diffuse,
amenable von Neumann subalgebra Q ⊆M for which there exists a faithful normal
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274 M. Caspers

conditional expectation EQ : M → Q, we have that the von Neumann algebra
NM(Q) generated by the normalizer

{u ∈M | u unitary and uQu∗ = Q},

is still amenable.

We use the notion of weakly compact actions of stable normalizers from [7] and the
deformation techniques (starting from proper derivations) as introduced by Peterson
[50] and further developedbyOzawa–Popa [48]. Eventually this leads to strong solidity
of all free orthogonal and unitary quantum groups. The precise statement we need
from these sources does not occur in the literature (though very similar statements are
claimed in [7,31,59]) and hence we incorporate them in the appendix.

We conclude:

Theorem For F ∈ GL N (C), N ≥ 3 let G be either O+N (F) or U+N (F). L∞(G) is
strongly solid.

Note that if a Kac type quantum group with the CMAP has the Haagerup property
then our approach here shows that there is a canonincal candidate for a bimodule
(i.e. the gradient bimodule) and a proper real derivation into this bimodule. It remains
then to show that the gradient bimodule is weakly contained in the coarse bimodule
to obtain good deformations. It would be interesting to know how large the class of
quantum groups is to which this strategy applies.
Structure. Section 2 contains various preliminaries on quantum groups and von Neu-
mann algebras. Section 3 recalls results by Cipriani-Sauvageot and some non-tracial
extensions. Section 4 contains general results on Markov semi-groups and coarse
properties of the gradient bimodule. Section 5 contains stability properties of IGHS,
GHS and GC that are nedeed to treat O+N (F) for all F ∈ GL N (C). In Sects. 6 and 7
we prove our main theorem, i.e. the strong solidity result. Finally in Sect. 8 we prove
a compression result. The parts that are directly taken from [7] and [48] are included
in Appendix A.

2 Preliminaries

2.1 Free orthogonal quantum groups

In [69]Woronowicz defined a compact C∗-algebraic quantum groupG = (A,�A) as a
pair of a unital C∗-algebra Awith a comultiplication�A : A→ A⊗A (minimal tensor
product) such that (�A ⊗ id)�A = (id ⊗ �A)�A and such that both (A ⊗ 1)�A(A)

and (1⊗ A)�A(A) are dense in A⊗ A. Compact quantum groups have a unique Haar
state ϕ such that for x ∈ A,

(ϕ ⊗ id)�A(x) = ϕ(x)1 = (id ⊗ ϕ)�A(x). (2.1)

Let (πϕ,Hϕ) be the GNS-representation of ϕ with cyclic vector �ϕ := 1 ∈ Hϕ and
set L∞(G) = πϕ(A)′′. The state ϕ determines a unique normal faithful state, still
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Gradient forms and strong solidity of freequantum groups 275

denoted by ϕ, on L∞(G) satisfying (2.1) for all x ∈ L∞(G). Here �G := �L∞(G)

is then the von Neumann algebraic comultiplication, which shall not be used in this
paper. The triple (L∞(G),�G, ϕ) is then a von Neumann algebraic quantum group
in the Kustermans-Vaes sense, see [45]. It is common to write L2(G) for Hϕ .

A finite dimensional unitary representation ofG is a unitary element u ∈ L∞(G)⊗
Mn(C) such that (�G ⊗ id)(u) = u13u23 with u23 = 1⊗ u and u13 = (� ⊗ id)(u23)

with � the flip. We denote Irr(G) for the set of all irreducible representations modulo
equivalence. For α ∈ Irr(G) we let uα be a corepresentation of class α; none of the
constructions in this paper depend on the choice of the representative uα . We use
α ⊆ β to say that α is a subrepresentation of β. This means that uα = (1⊗ p)uβ with
uβ ∈ L∞(G)⊗ Mnβ (C) for some projection p ∈ Mnβ (C) such that 1⊗ p commutes
with uβ .

In the literature the terminology ‘corepresentation’ is also common to refer to
representations, but here we stay with ‘representation’ as our terminology. Let α ∈
Irr(G) and let Xα be the span of elements (id ⊗ ω)(u), ω ∈ Mn(C)∗ and let Hα =
Xα�ϕ . Xα is called the space of matrix coefficients of α. The projection of L2(G) :=
L2(L∞(G)) onto Hα is denoted by pα and is called the isotypical projection of α.

We say thatG is finitely generated if Irr(G) is finitely generated as a fusion category.
That is, there exists a finite dimensional representationα such that for everyβ ∈ Irr(G)

there exists a k ∈ N such that β ⊆ α⊗k . We may assume that the trivial representation
is contained in α and that α is equivalent to its contragredient representation. Then the
minimal such k is called the length of β which we denote by l(β). The length depends
on α, which at the point that we need it is implicitly fixed.

In [63] Wang and Van Daele introduced the free orthogonal quantum groups. We
recall them here. Throughout the entire paper fix an integer N ≥ 2 and let F be a
invertible complex matrix of size N × N . Let A := A(O+N (F)) be the universal C∗-
algebra generated by elements ui, j , 1 ≤ i, j ≤ N subject to the relation that thematrix

u1 = (ui, j )i, j is unitary and u1 = Fu1F−1. Here u1 is the entrywise adjoint (u∗i, j )i, j .

It has comultiplication �A(ui, j ) = ∑N
k=1 ui,k ⊗ uk, j . We call this quantum group

O+N (F) with von Neumann algebra L∞(O+N (F)) and Haar state ϕ. In case N = 2 the
quantum group is amenable [4,9].

If we assume that F F ∈ RIdN the quantum group O+N (F) is monoidally equivalent
to SUq(2) where the number 0 < q < 1 is such that q + q−1 = Tr(F∗F). Also set
Nq = q + q−1 which is the quantum dimension of the fundamental representation
u1. It holds that Nq ≥ N and equality holds if and only if the Haar state of O+N (F)

is tracial. Note that q is the smallest root of x2 − Nq x + 1 = 0. In this case, i.e.
when F F ∈ RIdN , the representation theory of O+N (F) as a fusion category was
described by Banica [4]. We have Irr(O+N (F)) � N with 0 the trivial representation
and 1 isomorphic to u1 above. In fact we will denote uα for the representation of class
α ∈ N. The fusion rules are for α ≥ β,

β ⊗ α � α ⊗ β � |α − β| ⊕ |α − β + 2| ⊕ . . .⊕ |α + β|.

We write nα for the dimension of α ∈ Irr(O+N (F)). It satisfies the recurrence relation
Nnα = nα+1+nα−1. Ifwe letq0 ∈ (0, 1) be the smallest positive root of x2−N x+1 =
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276 M. Caspers

0 thenwe have nα � q−α
0 +O(1). Also q ≤ q0. It follows that lim supα→∞(nα)1/αq ≤

1.

2.2 General von Neumann algebra theory

For von Neumann algebra theory we refer to the books by Takesaki [61,62].

Assumption Throughout the entire paper M is a von Neumann algebra with fixed
normal faithful state ϕ. In case of a compact quantum group ϕ is the Haar state.

We use Mop for the opposite von Neumann algebra and write xop, x ∈ M for
elements in the opposite algebra. We also set x = (x∗)op. We write L2(M) for the
standard form Hilbert space. It has distinguished vector �ϕ such that x → x�ϕ is a
GNS-map for ϕ with ϕ(y∗x) = 〈x�ϕ, y�ϕ〉.

2.3 Tomita–Takesaki theory

Let S be the closure of themap x�ϕ → x∗�ϕ, x ∈Mwhich has polar decomposition

S = J∇ 1
2 . Here J : L2(M) → L2(M) is an anti-linear isometry with J 2 = 1. We

set the modular group σ
ϕ
t (x) = ∇ i t x∇−i t . We define the Tomita algebra Tϕ as the ∗-

algebra of x ∈M that are analytic for σϕ . We write ξ x for J x∗ Jξ, ξ ∈ L2(M). Then

�ϕx = σ
ϕ
−i/2(x)�ϕ . We have that∇ 1

4 x�ϕ ∈ L+2 (M), where the latter set denotes the
positive cone in the standardHilbert space.We also record that [62, LemmaVIII.3.18],

‖xy�ϕ‖2 ≤ ‖σϕ
i/2(y)‖‖x�ϕ‖2, ‖yx�ϕ‖2 ≤ ‖y‖‖x�ϕ‖2 x ∈M, y ∈ Tϕ.

(2.2)

2.4 Hilbert–Schmidt operators

Let H : Dom(H) ⊆M→M be a linear map. We say that H is Hilbert–Schmidt if
the associatedmap L2(M)→ L2(M) that sends x�ϕ to H(x)�ϕ isHilbert–Schmidt.
Wedenote the extension of H as a Hilbert–Schmidt map on L2(M) by H (l,2). Then
‖H (l,2)‖2H S =

∑
i, j |〈H (l,2)ei , e j 〉|2 is the Hilbert–Schmidt norm for any choice of

orthonormal basis ei . Let L2(M) be the conjugate Hilbert space of L2(M). We may
identify H (l,2) isometrically and linearly with a vector ζH ∈ L2(M) ⊗ L2(M) by
means of the identification,

〈H (l,2)(ξ), η〉 = 〈ξ ⊗ η, ζH 〉.

2.5 Bimodules and weak containment

AnM-M-bimodule is a Hilbert spaceHwith normal ∗-representations, π1 ofM and
π2 of the opposite algebra Mop, that commute. Notation: aξb = π1(a)π2(b)ξ with
ξ ∈ H, a, b,∈ M. We write MHM for the bimodule structure, or briefly H if the
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Gradient forms and strong solidity of freequantum groups 277

bimodule structure is clear.We recall theConnes-Jones definition ofweak containment
[26]. We also refer to the extensive treatment of bimodules by Popa [53].

Definition 2.1 Let K and H be two M-M-bimodules. We say that K is weakly con-
tained in H, notation K � H, if for every ξ ∈ K, ε > 0, E, F ⊆M finite there exist
finitely manyη j ∈ K indexed by j ∈ G such that for all x,∈ E , y ∈ F ,

|〈xξ y, ξ 〉 − 〈
∑

j∈G

xη j y, η j 〉| < ε.

We let ML2(M)M denote the identity bimodule L2(M) with actions aξb =
a Jb∗ Jξ . We let ML2(M) ⊗ L2(M)M denote the coarse bimodule with actions
a(ξ ⊗ η)b = aξ ⊗ ηb. The following is Popa’s definition of amenability [52,53].

Definition 2.2 A von Neumann algebra M is called amenable if ML2(M)M �
ML2(M)⊗ L2(M)M.

Let M be a von Neumann algebra with normal faithful state ϕ. If � :M →M
is a completely positive map then by Stinespring’s theorem [30,55, Section 5.2] there
exists aM-M-bimoduleH� with distinguished vector η� such that for x, y ∈Mwe
have 〈xη�y, η�〉 = 〈�(x)�ϕ y,�ϕ〉. Recall that the H� can be realized as follows.
TakeM⊗L2(M)with pre-inner product 〈a�ξ, c�η〉 = 〈�(c∗a)ξ, η〉. Quotienting
out the nilspace and taking a completion yields H� with actions x · (a � ξ) · y =
(xa � ξ y), a, x, y ∈ M, ξ ∈ L2(M). Then take η� = 1 ⊗ �ϕ . The following
properties are well-known and now easy to check. η� is cyclic in the sense that the
linear span of Mη�M is dense in H�. For any ξ ∈ H� we have that the map
ϕξ,ξ (x ⊗ yop) = 〈xξ y, ξ 〉 is positive onM�Mop. If � = IdM thenH� = L2(M)

(even asM-M-bimodules). We writeH for the conjugate space of a Hilbert spaceH.
Then the modular conjugation J : L2(M)→ L2(M) : ξ → ξ∗ is a linear isometric
isomorphism. The following was pointed out in [53, p. 28, Sect. 1.5: comments]
(attributed to Connes), but we could not find an explicit proof. The following argument
follows closely [3, Lemma 2.15].

We shall call a map � :M→M a Markov map if it is normal, ϕ-preserving and
unital, completely positive (ucp).

Lemma 2.3 Let M be a von Neumann algebra with normal faithful state ϕ. Let � :
M→M be a Markov map and suppose that �(l,2) : L2(M)→ L2(M) is Hilbert–
Schmidt. Then H� � Hcoarse.

Proof Let (H�, η�) be the pointed Stinespring bimodule. Take c1, c2, d1, d2 ∈ M
arbitrary and set ξ1 = c1η�d1 and ξ2 = c2η�d2. Now we get for a, b ∈M that there
exists a vector ζ� ∈ L2(M)⊗ L2(M) (see Sect. 2.4), such that

〈aξ1b, ξ2〉 =〈ac1η�d1b, c2η�d2〉 = 〈c∗2ac1η�d1bd∗2 , η�〉 = 〈�(c∗2ac1)�ϕd1bd∗2 ,�ϕ〉
=〈�(c∗2ac1)�ϕ,�ϕd2b∗d∗1 〉 = 〈c∗2ac1�ϕ ⊗�ϕd2b∗d∗1 , ζ�〉
=〈ac1�ϕ ⊗�ϕd2b∗, (c2 ⊗ 1)ζ�(1⊗ d1)〉.
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278 M. Caspers

This shows that ϕξ1,ξ2(a⊗b) = 〈aξ1b, ξ2〉 extends to a bounded functional onM⊗min
Mop, moreover it is normal and thus extends to the von Neumann tensor product
M ⊗Mop (by Kaplansky of the same norm). Take finitely many vectors ξi of the
above form and put ξ = ∑

i ξi . As ϕξ,ξ is positive on M ⊗min Mop it extends to a
positive normal functional onM⊗Mop by Kaplansky. Then, as L2(M)⊗ L2(M) is
the standard form Hilbert space forM⊗Mop, pick η ∈ L2(M)⊗ L2(M) such that
〈xξ y, ξ 〉 = 〈xηy, η〉. As vectors ξ of this form are dense in H� the lemma follows
by approximation. ��

2.6 QuantumDirichlet forms

Recall that a Markov map M→M was defined as a ϕ-preserving normal ucp map
(the normal faithful state ϕ is always implicitly fixed and usually the Haar state of a
compact quantum group in this paper). We say that a Markov map � is ϕ-modular if
�◦σϕ

t = σ
ϕ
t ◦� for all t ∈ R. AMarkovmap� :M→M is calledKMS-symmetric

if

〈∇ 1
4 �(x)�ϕ,∇ 1

4 y�ϕ〉 = 〈∇ 1
4 x�ϕ,∇ 1

4 �(y)�ϕ〉, x, y ∈M.

If � :M→M is any Markov map then by a standard interpolation argument there
exists a contractive map �(2) : L2(M)→ L2(M) acting as

∇ 1
4 x�ϕ → ∇ 1

4 �(x)�ϕ, x ∈M.

KMS-symmetry is then equivalent to �(2) being self-adjoint. With a Markov semi-
group we mean asemi-group (�t )t≥0 of KMS-symmetric Markov maps M → M
such that for every x ∈M the function t → �t (x) is σ -weakly continuous.

For ξ ∈ L2(M) we may write ξ = ∑3
k=0 i kξk with ξk ∈ L+2 (M) (the positive

cone of the standard form). Let ξ+ = ξ0.
Then let ξ∧ = ξ − (ξ −�ϕ)+.

Definition 2.4 A (closed, densely defined) quadratic form Q with domain Dom(Q) ⊆
L2(M) is said to be a conservative Dirichlet form if (1) ξ ∈ Dom(Q) implies
Jξ ∈ Dom(Q) and Q(Jξ) = Q(ξ); (2) �ϕ ∈ Dom(Q) and Q(�ϕ) = 0; (3) For
ξ ∈ Dom(Q) we have ξ+ ∈ Dom(Q), ξ∧ ∈ Dom(Q) and moreover Q(ξ+) ≤
Q(ξ), Q(ξ∧) ≤ Q(ξ).

A quadratic form Q is called conservative, completely Dirichlet if its matrix
amplification Q[n] is a conservative Dirichlet form for every n ≥ 1. Here Dom(Q[n])
are the n×n-matriceswith entries inDom(Q) and Q[n]((ξi, j )

n
i, j=1) =

∑
i, j Q(ξi, j ). If

Q is a quadratic form then write� = �Q ≥ 0 for the unique (closed densely defined)

unbounded operator with Dom(�
1
2 ) = Dom(Q) such that Q(ξ) = 〈� 1

2 ξ,�
1
2 ξ 〉. The

following result was obtained independently in [35] (in terms of Haagerup L p-spaces)
and [20] (in terms of standard forms, being the formulation we take here).
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Gradient forms and strong solidity of freequantum groups 279

Theorem 2.5 Q is a conservative completely Dirichlet form if and only if the semi-
group (e−t�)t≥0 determines a Markov semi-group, meaning that there is a Markov
semi-group (�t )t≥0 on M such that (e−t�)t≥0 = (�

(2)
t )t≥0.

In view of Schönberg’s correspondence [13, Appendix C], conservative completely
Dirichlet forms are therefore non-commutative analogues of conditionally positive
definite functions. We could have rephrased our statements in terms of conditionally
negative definite functions by considering −� instead of �.

We need the following lifting property from [18, Lemma 5.2], the proof of which is
essentially contained in [46]. We also recall that on the L2-level strong continuity and
weak continuity of (�(2)

t )t≥0 are equivalent (see [15, Lemma 3.5]). σ -weak continuity
of (�t )t≥0 is equivalent to weak continuity of (�

(2)
t )t≥0. A map T : L2(M) →

L2(M) is called completely positive if Idn⊗T maps the positive cone in the standard
form L+2 (Mn ⊗M) into itself for every n ∈ N.

Lemma 2.6 Let C = {ξ ∈ L2(M) | 0 ≤ ξ ≤ �ϕ}. If (St )t≥0 is a strongly contin-
uous semi-group of self-adjoint completely positive operators on L2(M) such that
St (�ϕ) = �ϕ and such that St (C) ⊆ C. Then there exists a Markov semi-group

(�t )t≥0 on M such that �
(2)
t = St .

3 Gradient forms and the results by Cipriani–Sauvageot

We recall some of the work of Cipriani–Sauvageot [21] which is crucial in our
approach. We need a slightly more general version going beyond the case of tra-
cial states of their construction. Note that we do not prove the existence of a square
root in the non-tracial setting however (which is one of the main results of [21]; the
question is also asked for in [60]).

3.1 The gradient bimodule

If Q is a conservative completely Dirichlet form on L2(M), then let � ≥ 0 be such

that Dom(�
1
2 ) = Dom(Q) and Q(ξ) = 〈� 1

2 ξ,�
1
2 ξ 〉.

Definition 3.1 We assume that there is a σ -weakly dense unital ∗-subalgebra of

the Tomita algebra Tϕ which we call A such that ∇ 1
4A�ϕ ⊆ Dom(�) and

�(∇ 1
4A�ϕ) ⊆ ∇ 1

4A�ϕ . For a ∈ A we write �(a) ∈ A for the unique1 element

such that ∇ 1
4 �(a)�ϕ = �(∇ 1

4 a�ϕ). That is, � on the L2- and L∞-level agree under
the symmetric correspondence. Finally, we assume that for every t ≥ 0 we have that
�t (A) ⊆ A and that (�t )t≥0 is norm continuous on A. The latter implies that on the
norm closure of A we have that (�t )t≥0 is a C∗-Markov semi-group and fits in the
framework of [21].

1 If∇ 1
4 �(a)�ϕ = 0 then for all y ∈Mwe have 0 = 〈∇ 1

4 �(a)�ϕ, y�ϕ〉 = 〈�(a)�ϕ,∇ 1
4 y�ϕ〉. Hence

�(a)�ϕ = 0 and since �ϕ is cyclic we have that �(a) = 0.
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Remark 3.2 Wenote here that ifϕ is a trace τ then in [27] itwas proved thatDom(�
1
2 )∩

M is a ∗-algebra which may serve to do analogous constructions as we do below. We
work with the algebra A however that is generally smaller in order to avoid some
technicalities. In general we cannot guarantee the existence of such an algebra. Our
assumption on the existence of A should also be compared to similar assumptions
made in [43].

Remark 3.3 Suppose that G is a compact quantum group. Let A(G) be the ∗-algebra
generated by all matrix coefficients uα

i, j , α ∈ Irr(G). This algebra is well-known to
be contained in the Tomita algebra Tϕ of the Haar state ϕ; in fact σϕ preserves the
space spanned by uα

i, j , 1 ≤ i, j ≤ nα for every single α ∈ Irr(G). Now if (�t )t≥0
is moreover a semi-group of central multipliers, i.e. �t (uα

i, j ) = cα,t uα
i, j for some

constants cα,t ∈ C that form a semi-group, then it follows that A = A(G) satisfies
the criteria described above. Indeed, in this case one has �(uα

i, j ) = c′αuα
i, j where c′α

is the derivative of cα,t at t = 0 from which this is directly derived.

Definition 3.4 For x, y ∈ A we define the gradient form

〈x, y〉� = �(y)∗x + y∗�(x)−�(y∗x) ∈ A ⊆M. (3.1)

Note that as A is unital we have A ⊗ A�ϕA = A ⊗ Aσ
ϕ
−i/2(A)�ϕ = A ⊗ A�ϕ .

Further A⊗A�ϕ may be equipped with a (degenerate) inner product

〈a ⊗ ξ, c ⊗ η〉∂ = 1

2
〈〈a, c〉�ξ, η〉.

Quotienting out the degenerate part and taking the completion yields a Hilbert space
H∂ . The class of a ⊗ ξ will be denoted by a ⊗∂ ξ . We have contractive commuting
actions (see below) determined by

x · (a ⊗∂ ξ) = xa ⊗∂ ξ − x ⊗∂ aξ, (a ⊗∂ ξ) · y = a ⊗∂ ξ y, (3.2)

with a, x, y ∈ A and ξ ∈ A�ϕA = A�ϕ .

The proof of the following lemma is taken from the arguments in [21]. Since our
setup is non-tracial and we work with the algebra A instead of the Dirichlet algebra
of [21] we included a proof sketch.

Lemma 3.5 The operations (3.2) are (well-defined) contractive left and right actions
of A that moreover commute.

Proof We first prove the statements for the left action. We need the auxiliary contrac-
tions A→M,

Rε(�) := 1

1+ ε�
=
∫

t∈R≥0
e−t�εt dt, �ε := �

1+ ε�
= 1

ε
(1− Rε(�)) .
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We define an approximate gradient form by

〈x, y〉�,ε = �ε(y)∗x + y∗�ε(x)−�ε(y∗x). (3.3)

So that limε↘0〈x, y〉�,ε = 〈x, y〉� weakly in M. Exactly as in [21, Lemma 3.1]
one proves that the approximate gradient form (3.3) is positive definite and that the
M-valued matrix (〈ai , a j 〉�,ε)i, j is positive. Then we further define on A�A�ϕ ,

〈a � ξ, c � η〉∂,ε = 1

2
〈〈a, c〉�,εξ, η〉.

Troughout the rest of the proof let ai , bi , x, y ∈ A. Rε(�) has aStinespring dilation
Wε : L2(M) → Hε with representation πε : A → B(Hε) satisfying Rε(x) =
W ∗ε πε(x)Wε. Exactly as in [21, Lemma 3.5] we get that,

2‖x ·
∑

i

ai ⊗ bi�ϕ‖2∂,ε = 2

∥
∥
∥
∥
∥

∑

i

xai ⊗ bi�ϕ −
∑

i

x ⊗ ai bi�ϕ

∥
∥
∥
∥
∥

2

∂,ε

=
〈
∑

i, j

b∗j
(
〈xai , xa j 〉�,ε + a∗j 〈x, x〉�,εai − a∗j 〈xai , x〉�,ε − 〈x, xa j 〉�,εai

)
bi�ϕ,�ϕ

〉

=
〈
∑

i, j

b∗j
(
Wεa j − πε(a j )Wε

)∗
x∗x (Wεai − πε(ai )Wε) bi�ϕ,�ϕ

〉

≤ ‖x‖2
〈
∑

i, j

b∗j
(
Wεa j − πε(a j )Wε

)∗
(Wεai − πε(ai )Wε) bi�ϕ,�ϕ

〉

.

And by the same argument backwards this yields therefore

‖x ·
∑

i

ai ⊗ bi�ϕ‖2∂,ε ≤ ‖x‖2
∥
∥
∥
∥
∥

∑

i

ai ⊗ bi�ϕ

∥
∥
∥
∥
∥

2

∂,ε

.

Contractiveness of the left action then follows by taking the limit ε ↘ 0. Next, for the
right action we get

∥
∥
∥
∥
∥

∑

i

ai ⊗ bi�ϕ y

∥
∥
∥
∥
∥

2

∂

= 1

2

〈
∑

i, j

〈ai , a j 〉�bi�ϕ y, b j �ϕ y

〉

≤ 1

2
‖y‖2

〈
∑

i, j

b∗j 〈ai , a j 〉�bi�ϕ,�ϕ

〉

= ‖y‖2
∥
∥
∥
∥
∥

∑

i

ai ⊗ bi�ϕ

∥
∥
∥
∥
∥

2

∂

.

So the right action is contractive. Clearly the left and right action commute. ��
Remark 3.6 By Lemma 3.5 the left and right action of A extend to the C∗-closure of
A. It is not clear to us whether these actions are normal in general and hence extend to
actions on the von Neumann closure ofA. However, in the bimodules that we require
to prove our main theorem this is true, see Proposition 3.8 below.
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Remark 3.7 Throughout the paper we shall often use the fact that for x, a, c ∈
A, ξ, η ∈ A�ϕ we have,

〈x · (a ⊗∂ ξ), c ⊗∂ η〉∂
= 〈xa ⊗∂ ξ − x ⊗∂ aξ, c ⊗∂ η〉∂
= 1

2
〈(c∗�(xa)+�(c)∗xa −�(c∗xa)− c∗�(x)a −�(c)∗xa +�(c∗x)a)ξ, η〉

= 1

2
〈(c∗�(xa)−�(c∗xa)− c∗�(x)a +�(c∗x)a)ξ, η〉. (3.4)

Proposition 3.8 Let G be a finitely generated compact quantum group and let (�t )t≥0
be a Markov semi-group of central multipliers. That is, for every t > 0 and α ∈ Irr(G)

there is a cα,t ∈ C such that for all 1 ≤ i, j ≤ nα we have �t (uα
i, j ) = cα,t uα

i, j .
Let A = A(G). The associated A-A-bimodule H∂ constructed above extends to a
(normal) L∞(G)-L∞(G)-bimodule.

Proof It suffices to show that the left and right action are σ -weakly continuous on
the unit ball. Let a, b ∈ A(G) and assume moreover that they are coefficients of irre-
ducible representations with length l(a) and l(b) respectively (see Sect. 2). Consider
the mapping, c.f. (3.4),

A(G) � x → 〈x · a ⊗∂ b�ϕ, a ⊗∂ b�ϕ〉∂
= 1

2
〈(a∗�(xa)−�(a∗xa)− a∗�(x)a +�(a∗x)a)b�ϕ, b�ϕ〉.

(3.5)

Note that �(uα
i j ) = c′αuα

i j with c′α the derivative of cα,t at t = 0. Therefore if x is a
coefficient of an irreducible representation with length > 2l(a) + 2l(b) we get that
〈x · a ⊗∂ b�ϕ, a ⊗∂ b�ϕ〉 = 0. So that the mapping (3.5) factors through the normal
projection L∞(G) → L∞(G) that maps uα

i, j to δα≤2l(a)+2l(b)uα
i, j which image is

finite dimensional. Hence the functional (3.5) is normal.
Now, let (x j ) j be a net in the unit ball ofA(G) converging σ -weakly to x ∈ A(G).

Take vectors ξ, η ∈ H∂ arbitrary and let ε > 0. Let ξ0, η0 be vectors in the linear
span of all vectors a ⊗∂ b�ϕ with a, b as above with ‖ωξ,η − ωξ0,η0‖∂ < ε. By the
previous paragraph and the polarization identity we may find j0 such that for j ≥ j0
we have |〈(x j − x) · ξ0, η0〉| ≤ ε. Then also |〈(x j − x)ξ, η〉| ≤ 2ε. This shows that
the left action is σ -weakly continuous on the unit ball. For the right action the proof
is similar. ��

3.2 Derivations in the tracial case

The constructions of Sect. 3 work for non-tracial ϕ. Now assume ϕ is tracial, say
ϕ = τ . Consider the linear map

∂ : A→ H∂ : a → a ⊗∂ �τ . (3.6)
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Because in the tracial case a�τ = �τ a, a ∈ A we have for a, b ∈ A,

∂(ab) = ab ⊗∂ �τ = ab ⊗∂ �τ − a ⊗∂ b�τ − a ⊗∂ �τ b = a∂(b)+ ∂(a)b,

i.e. ∂ is a derivation. Moreover, as by conservativity of � we have τ(�(a∗a)) =
〈�(a∗a)�τ ,�τ 〉 = 〈a∗a�τ ,��τ 〉 = 0 and we see that,

‖∂(a)‖2∂ =
1

2

(
τ(�(a)∗a)+ τ(a∗�(a))− τ(�(a∗a))

)

= 1

2

(
τ(�(a)∗a)+ τ(a∗�(a))

) = ‖� 1
2 (a)‖22. (3.7)

In [21, Section 4] it is proved that there exists a closable derivation ∂0 : Dom(�
1
2 )→

H∂ such that ∂∗0 ∂0 = � (so with equality of domains). By construction ∂ ⊆ ∂0 and

so ∂ is preclosed and we let ∂ be its closure. If A�τ is a core for �
1
2 it follows

from (3.7) that the Dom(∂) contains the Dirichlet algebra of all x ∈ M such that

x�τ ∈ Dom(�
1
2 ). So ifA is a core for �

1
2 then the derivation ∂ equals the closure of

the derivation ∂0 constructed in [21, Section 4].
In the cases we need it these conditions are satisfied.

Lemma 3.9 Let (�t )t≥0 be a semi-group of central multipliers on a compact quantum
group G of Kac type (i.e. with tracial Haar state). Let � be the generator of (�

(2)
t )t≥0

as before. Then A(G)�τ is a core for �
1
2 .

Proof Let pα be the isotypical projection of L2(G) onto the space ofmatrix coefficients
of α ∈ Irr(G). As (�t )t≥0 are central multipliers there exist constants �α such that

�pαξ = �α pαξ for any ξ ∈ L2(G). Let ξ ∈ Dom(�
1
2 ). Then taking limits over

increasing finite subsets F ⊆ Irr(G) we find
∑

α∈F pαξ → ξ and
∑

α∈F pα�
1
2
α ξ →

�
1
2 ξ . ��

Lemma 3.10 The derivation (3.6) is real in the sense that for all a, b, c ∈ A we have

〈∂(a), ∂(b)c〉∂ = 〈c∗∂(b∗), ∂(a∗)〉∂ .
Proof We have,

〈∂(a), ∂(b)c〉∂ = 〈a ⊗�τ , b ⊗ c�τ 〉∂ = 1

2
τ
(
c∗(�(b∗)a + b∗�(a)−�(b∗a))

)
.

Using that τ(x∗�(y)) = τ(�(x∗)y) and that τ(�(x)) = 〈x�τ ,�(�τ )〉 = 0 with
x, y ∈ A gives further,

〈∂(a), ∂(b)c〉∂
= 1

2
τ
(
b∗�(ac∗)+�(c∗b∗)a −�(c∗)b∗a

) = 1

2
τ
(
b∗�(ac∗)+�(c∗b∗)a −�(c∗)b∗a

)

= 1

2
τ
(
a�(c∗b∗)− a�(c∗)b∗ −�(ac∗b∗)+�(ac∗)b∗

) = 〈c∗ · (b∗ ⊗�τ ), (a
∗ ⊗�τ )〉∂

= 〈c∗∂(b∗), ∂(a∗)〉∂ .

��
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4 Coarse properties of the gradient bimodule: IGHS, GHS and GC

In this section we study when the bimodule H∂ is weakly contained in the coarse
bimodule. We use all notation introduced in Sects. 2 and 3. In particular M is a von
Neumann algebra with fixed normal faithful state ϕ. We let (�t )t≥0 be aMarkov semi-
group on M and associate to it the generator �, the algebra A, the Dirichlet form Q
and the gradient form 〈 , 〉� . As A is contained in M it inherits the matrix norms of
M and therefore complete positivity of a map A→M is understood naturally as a
map that sends positive operators to positive operators on each matrix level.

We introduce three properties of semi-groups that are convenient in studying coarse
properties of H∂ .

Definition 4.1 We call a Markov semi-group (�t )t≥0 on a von Neumann algebra M
with fixed normal faithful state ϕ immediately gradient Hilbert–Schmidt (IGHS)
if for every choice a, b ∈ A we have that the following two properties hold:

• For every t > 0 the map

�
a,b
t : x → �t (〈xa, b〉� − 〈x, b〉�a) (4.1)

extends to a Hilbert–Schmidt map L2(M) → L2(M) given by x�ϕ →
�

a,b
t (x)�ϕ, x ∈ A.

• For t = 0 the map (4.1) extends to a bounded map L2(M)→ L2(M) given by
x�ϕ → �

a,b
0 (x)�ϕ, x ∈ A.

We call (�t )t≥0 gradient Hilbert–Schmidt (GHS) if for t = 0 and any a, b ∈ A the
map (4.1) is Hilbert–Schmidt. We call (�t )t≥0 gradient coarse (GC) if the left and
rightA-actions onH∂ extend to normalM-actions andH∂ is weakly contained in the
coarse bimodule ofM.

Note that if �
a,b
0 ∈ B(L2(M)) then �

a,b
t ∈ B(L2(M)), t ≥ 0 and that �

a,b
t →

�
a,b
0 strongly in B(L2(M)) as t ↘ 0.

Remark 4.2 We shall often make use of the fact that for a, b, x ∈ A,

�
a,b
0 (x) = b∗�(xa)−�(b∗xa)− b∗�(x)a +�(b∗x)a, (4.2)

Lemma 4.3 For some n ∈ N let a1, . . . , an, c1, . . . , cn ∈ A. Then for any t ≥ 0 the
map

�◦t := �
◦,a1,...,an
t : x → [�t

(〈xai , a j 〉� − 〈x, a j 〉�ai
)]i, j , x ∈ A, (4.3)

is a completely positive map A→ Mn(M). Set

�t := �
a1,...,an;c1,...,cn
t : x →

n∑

i, j=1
c∗j�t

(〈xai , a j 〉� − 〈x, a j 〉�ai
)

ci , x ∈ A.

(4.4)
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Then the mapping

A⊗Aop→ C : x ⊗ yop → 〈�t (x)�ϕ y,�ϕ〉, (4.5)

is positive. Finally, if (�t )t≥0 is IGHS (resp. GHS) then for every t > 0 the map (4.4)
is Hilbert–Schmidt and converges strongly to �0 as t ↘ 0 (resp. for t = 0 the map
(4.4) is Hilbert–Schmidt).

Proof The fact that for any choice of the x, ai , ci ∈ A we have

0 ≤
〈

x ·
n∑

i=1
ai ⊗∂ ci �ϕ,

n∑

i=1
ai ⊗∂ ci �ϕ

〉

∂

= 1

2

〈

�
◦,a1,...,an
0 (x)

⎛

⎜
⎝

c1�ϕ

.

.

.

cn�ϕ

⎞

⎟
⎠ ,

⎛

⎜
⎝

c1�ϕ

.

.

.

cn�ϕ

⎞

⎟
⎠

〉

.

shows that �◦0 is positive and the same argument on matrix levels gives complete
positivity. Hence as �t is completely positive also (4.3) must be completely positive.
Let x = (x1, . . . , xn), c∗ = (c∗1, . . . , c∗n) be the row vectors with entries xi , ci ∈ A
and let again ai ∈ A. Then x∗x ∈ Mn(A)+ and

(idn ⊗�
a1,...,an ,c1,...,cn
t )(x∗x) = (idn ⊗ c�◦,a1,...,an

t ( · )c∗)(x∗x) ∈ Mn(M)+.

Further, recalling �t := �
a1,...,an;c1,...,cn
t ,

n∑

k,l=1
〈�t (x∗k xl)�ϕ yl y∗k ,�ϕ〉 = 〈(idn ⊗�t )(x∗x)

⎛

⎜
⎝

�ϕ y1
...

�ϕ yn

⎞

⎟
⎠ ,

⎛

⎜
⎝

�ϕ y1
...

�ϕ yn

⎞

⎟
⎠〉 ≥ 0,

so that (4.5) is positive. The final statement follows as if the semi-group is IGHS, then

A�ϕ � x�ϕ → �t (x)�ϕ =
n∑

i, j=1
c∗j�t

(〈xai , a j 〉� − 〈x, a j 〉�ai
)
�ϕσi/2(ci )

=
n∑

i, j=1
c∗j
(
�

ai ,a j
t (x)�ϕ

)
σi/2(ci ),

is Hilbert–Schmidt for t > 0 by linearity and bounded if t = 0. Further �t → �0
strongly as t ↘ 0. The statement for GHS follows similarly. ��

Proposition 4.4 Assume that the left and right A-actions on H∂ extend to normal
M-actions. If (�t )t≥0 is IGHS or GHS then it is GC.

Proof We give the proof for the IGHS assumption; for the GHS assumption the proof
is similar and in fact easier. Throughout the proof fix a1, . . . , an, c1, . . . , cn ∈ A and
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for t ≥ 0 let �t := �
a1,...,an ,c1,...,cn
t be the map defined in (4.4). Set � = �0. For

x, y ∈ A we get,

〈

x ·
(

n∑

i=1
ai ⊗∂ ci�ϕ

)

· y,

n∑

j=1
a j ⊗∂ c j�ϕ

〉

∂

=
〈

n∑

i=1
xai ⊗∂ ci�ϕ y − x ⊗∂ ai ci�ϕ y,

n∑

j=1
a j ⊗∂ c j�ϕ

〉

∂

= 1

2

〈
n∑

i, j=1
c∗j (〈xai , a j 〉� − 〈x, a j

〉

�

ai )ci�ϕ,�ϕ y∗〉 = 1

2
〈�(x)�ϕ,�ϕ y∗〉.

If x, y ∈ M are arbitrary we may approximate them using Kaplansky’s density
theorem in the strong topology with bounded nets (xk)k and (yk)k inA. Then xk → x
in the σ -weak topology and xk�ϕ → x�ϕ in the norm of L2(M). Similarly yk → y
σ -weakly and �ϕ y∗k = J yk�ϕ → J y�ϕ = �ϕ y∗ in norm. The left and right M-
action on H∂ are normal and the IGHS assumption gives that� is bounded L2(M)→
L2(M). We thus see that

〈

x ·
(

n∑

i=1
ai ⊗∂ ci�ϕ

)

· y,

n∑

j=1
a j ⊗∂ c j�ϕ

〉

∂

= lim
k1,k2

〈

xk1 ·
(

n∑

i=1
ai ⊗∂ ci�ϕ

)

· yk2 ,

n∑

j=1
a j ⊗∂ c j�ϕ

〉

∂

= lim
k1,k2

1

2
〈�(xk1)�ϕ,�ϕ y∗k2〉 =

1

2
〈�(x)�ϕ,�ϕ y∗〉.

In turn we find by the IGHS assumption that for all x, y ∈M,

〈

x ·
(

n∑

i=1
ai ⊗∂ ci�ϕ

)

· y,

n∑

j=1
a j ⊗∂ c j�ϕ

〉

∂

= 1

2
lim
t↘0
〈�t (x)�ϕ,�ϕ y∗〉.

By the IGHS assumption for t > 0 the map �t is bounded L2(M) → L2(M) and
moreover Hilbert–Schmidt by Lemma 4.3 and therefore we see that there exists a
vector ζt ∈ L2(M)⊗ L2(M) such that,

〈�t (x)�ϕ,�ϕ y∗〉 = 〈x�ϕ ⊗�ϕ y∗, ζt 〉.

This shows that for t > 0 we have that

M�Mop � x ⊗ y → 1

2
〈�t (x)�ϕ y,�ϕ〉 (4.6)
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extends to a normal functional on M ⊗Mop. Moreover, we see from Lemma 4.3
that (4.6) is positive on A � Aop and hence by Kaplansky on M ⊗Mop. Now
as L2(M) ⊗ L2(M) is the standard form Hilbert space of M ⊗Mop there exists
ζ ′t ∈ L2(M)⊗ L2(M), still with t > 0, with

1

2
〈�t (x)�ϕ,�ϕ y〉 = 〈xζ ′t y, ζ ′t 〉.

Therefore, for every x, y ∈M we have

〈

x ·
(

n∑

i=1
ai ⊗∂ ci

)

· y,

n∑

i=1
ai ⊗∂ ci

〉

= lim
t↘0
〈xζ ′t y, ζ ′t 〉. (4.7)

We can now directly check that H∂ is weakly contained in the coarse bimodule of
M. Indeed, let ξ ∈ H∂ , ε > 0 and let F ⊆ M be a finite subset. Assume that
ξ = ∑n

i=1 ai ⊗∂ ci�ϕ . Then by (4.7) we may find t > 0 such that for all x, y ∈ F
we have

|〈xξ y, ξ 〉 − 〈xζ ′t y, ζ ′t 〉| < ε. (4.8)

Then by approximation we find that for general ξ ∈ H∂ we can find t > 0 such that
for all x, y ∈ F the estimate (4.8) holds. We see by Definition 2.1 that H∂ is weakly
contained in the coarse bimodule ofM. ��

5 Stability properties

We prove that IGHS and GHS are properties that are preserved by free products. We
also prove the necessary reduction to continuous cores.

5.1 Free products

For the definition of free products of von Neumann algebras we refer to [2,66]. We
also refer to [17] and adopt its notation and terminology. Let (Mi , ϕi ), i ∈ I be
von Neumann algebras with normal faithful states ϕi . The free product (M, ϕ) is the
von Neumann algebra with normal faithful state ϕ that contains each Mi , i ∈ I as a
subalgebra to which ϕ restricts as ϕi ; moreover, these algebras are freely independent
in M with respect to ϕ and generate M. Set M◦

i to be the set of all x ∈ Mi with
ϕi (x) = 0. For x ∈ Mi we set x◦ = x − ϕi (x). A reduced operator in the free
product(M, ϕ) = ∗i∈I (Mi , ϕi ) is an operator of the form x1 . . . xn with xi ∈M◦

Xi
for some Xi ∈ I with Xi �= Xi+1. The word X = X1 . . . Xn is called the type of
x1 . . . xn . If �i is a normal ϕi -preserving ucp map on Mi (i.e. it is Markov with
respect to ϕi ) then there exists a unique normal ϕ-preserving ucp map ∗i∈I �i on
the free product (M, ϕ) such that for a reduced operator x1 . . . xn with xk ∈ M◦

ik
we have �(x1 . . . xn) = �i1(x1) . . . �in (xn). If (�i,t )t≥0 are Markov semi-groups on
Mi , i ∈ I then the maps �t = �i,t , t ≥ 0 form a Markov semi-group on M.
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Let �i be the generator of (�i,t )t≥0 and let Ai be the dense unital subalgebras
in Mi as described in Sect. 2. Let � be the generator of (�t )t≥0. Let a1 . . . an be a
reduced operator of type A in the algebraic free productA = ∗i∈IAi . Then by taking
σ -weak limits (which exists on these reduced operators), we obtain the following
Leibniz rule,

�(a1 . . . an)

= lim
t↘0

1

t
(a1 . . . an −�t (a1 . . . an))

=
n∑

i=1
lim
t↘0

1

t

(
�A1,t (a1) . . . �Ai−1,t (ai−1)ai . . . an −�A1,t (a1) . . . �Ai ,t (ai )ai+1 . . . an

)

=
n∑

i=1
a1 . . . ai−1�Ai (ai )ai+1 . . . an . (5.1)

A rather tedious computation purely based on this Leibniz rule now shows the follow-
ing.

Proposition 5.1 Let (M1, ϕ1), . . . , (Mn, ϕn) be finitely many von Neumann algebras
with normal faithful states. Suppose that each (Mi , ϕi ) is equipped with a Markov
semi-group (�i,t )t≥0 and let (�t )t≥0 be the free product Markov semi-group on the
free product

(M1, ϕ1) ∗ . . . ∗ (Mn, ϕn).

If each (�i,t )t≥0 is IGHS (resp. GHS) then (�t )t≥0 is IGHS (resp. GHS).

Proof The proof splits in steps.
1. Setup: expansion into reduced words. Let Ai and A = ∗iAi as in the paragraph
before this proposition. In particular the unit is in Ai so that x◦ ∈ Ai whenever
x ∈ Ai . Let ϕ = ∗iϕi be the free product state. For each i we let Oi be a set of
vectors in A◦i such that Oi�ϕi forms an orthonormal basis of L2(M◦

i ). Take x ∈ A
equal to a reduced word x = x1 . . . xn with letters in the Ai ’s. Also assume that both
a, b ∈ A are reduced words a = a1 . . . am and b = b1 . . . bk with letters in the Ai ’s.
We assume moreover that all letters ai , bi and xi come from∪ j O j . Let A, B and X be
the respective types of a, b and x . To reduce the number of cases we need to consider
in this proof we extend our notation as introduced above a bit. We shall write

◦
︷︸︸︷
xy = xy − ϕ(xy), x, y ∈ ∪iAi .

In particular, if x ∈ Oi and y ∈ O j then
◦

︷︸︸︷
xy = xy if i �= j (this extends the notation).

In case i �= j we have �(xy) = �(x)y + x�(y) by the Leibniz rule (5.1). If we start
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writing bxa as a sum of reduced operators we find the following terms,

bxa =
n−1∑

i=0

m∑

j=i+1

(

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(x j+1an− j )

× b1 . . . bk−i

◦
︷ ︸︸ ︷
(bk−i+1xi ) xi+1 . . . x j−1

◦
︷ ︸︸ ︷
(x j an− j+1) an− j+2 . . . am

)

+
n∑

i=1

(

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i (bk−i+1xi an−i+1)an−i+2 . . . am

)

= I + II,

(5.2)

where we define I and II as the big sums. We use the convention that a j = 0 if
j > m and b j = 0 if j > k. Also note that many of these terms are 0, for example if
x1 ∈ Oi and bk ∈ O j with i �= j we have that ϕ(bk x1) = 0. The summands in I are
reduced operators, the summands in II are not necessarily reduced for the reason that
bk−i+1xi an−i+1 is not necessarily reduced. In order to treat this summandwe continue
our expansion into three sums and a remainder part F(x). We find that,

II =
n∑

i=1
Bk−i+1=Xi �=An−i+1

(

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i

◦
︷ ︸︸ ︷
(bk−i+1xi ) an−i+1an−i+2 . . . am

)

+
n∑

i=1
Bk−i+1 �=Xi=An−i+1

(

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)

× b1 . . . bk−i bk−i+1
◦

︷ ︸︸ ︷
(xi an−i+1) an−i+2 . . . am

)

+
n∑

i=1
Bk−i+1=Xi=An−i+1

(

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i

◦
︷ ︸︸ ︷
(bk−i+1xi an−i+1) an−i+2 . . . am

)

+ F(x),

(5.3)
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where F :M→M is the finite rank operator that collects the remaining terms of II;

that is, F(x) is given by the same expression (5.3) but with the operation
◦

︷︸︸︷· replaced
by taking ϕ( · ).
2. Appyling the �-map. Now we apply �

a,b∗
t for t = 0 to x (we prefer �

a,b∗
t over

�
a,b
t to keep the notation simpler; for the proof it is irrelevant). Recall that,

�
a,b∗
0 (x) = b�(xa)−�(bxa)− b�(x)a +�(bx)a. (5.4)

We proceed by expanding the right hand side of this expression into a decomposition
very similar to (5.2) and (5.3). If we do this we get the following, where the respective
terms IIb�(xa), II�(bxa), IIb�(x)a and II�(bx)a are described below. Write �l

k for � if
k = l and for the identity operator otherwise. So,

b�(xa) =
n−1∑

i=0

m∑

j=i+1

m−n+1−1∑

l=1
ϕ(bk�

1
l (x1)) . . . ϕ(bk−i+2�i−1

l (xi−1))ϕ(xna1) . . . ϕ(x j+1an− j )

× b1 . . . bk−i

◦
︷ ︸︸ ︷

bk−i+1�i
l (xi )�i+1

l (xi+1) . . . �
j−1
l (x j−1)

×�
j
l (

◦
︷ ︸︸ ︷
x j an− j+1)� j+1

l (an− j+2) . . . �m−n+1−1
l (am)+ IIb�(xa),

�(bxa) =
n−1∑

i=0

m∑

j=i+1

k+2 j+m−n−2i+1∑

l=1
ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(x j+1an− j )

×�1
l (b1) . . . �k−i

l (bk−i )�
k−i+1
l (

◦
︷ ︸︸ ︷
bk−i+1xi )�

k−i+2
l (xi+1) . . . �

k+ j−2i
l (x j−1)

×�
k+ j−2i+1
k (

◦
︷ ︸︸ ︷
x j an− j+1)�k+ j−2i+2

l (an− j+2) . . . �
k+2 j+m−n−2i+1
l (am)+ II�(bxa),

b�(x)a =
n−1∑

i=0

m∑

j=i+1

n∑

l=1
ϕ(bk�

1
l (x1)) . . . ϕ(bk−i+2�i−1

l (xi−1))ϕ(�n
l (xn)a1) . . . ϕ(�

j+1
l (x j+1)an− j )

× b1 . . . bk−i

◦
︷ ︸︸ ︷

bk−i+1�i
l (xi )�i+1

l (xi+1) . . . �
j−1
l (x j−1)

◦
︷ ︸︸ ︷

�
j
l (x j )an− j+1 an− j+2 . . . am + IIb�(x)a,

�(bx)a =
n−1∑

i=0

m∑

j=i+1

k+ j+n−2i+4∑

l

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(�
k+ j+n−2i+3
l (xn)a1)

. . . ϕ(�
k+ j−2i+3
l (x j+1)an− j )

×�1
l (b1) . . . �k−i

l (bk−i )�
k−i+1
l (

◦
︷ ︸︸ ︷
bk−i+1xi )�

k−i+2
l (xi+1) . . . �

k+ j−2i+1
l (x j−1)

×
◦

︷ ︸︸ ︷

�
k+ j−2i+2
l (x j )an− j+1 an− j+2 . . . am + II�(bx)a .

Therefore, as all these terms cancel,

�̃
a,b∗
0 (x) = IIb�(xa) − II�(bxa) − IIb�(x)a + II�(bx)a .
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For the ‘II-terms’ we get the following. Again, we split this into a decomposition
similar to (5.3). We get that

IIb�(xa) =II(1)b�(xa) + II(2)b�(xa) + II(3)b�(xa) + Fb,a,1(x),

II�(bxa) =II(1)�(bxa) + II(2)�(bxa) + II(3)�(bxa) + Fb,a,2(x),

IIb�(x)a =II(1)b�(x)a + II(2)b�(x)a + II(3)b�(x)a + Fb,a,3(x),

II�(bxa) =II(1)�(bx)a + II(2)�(bx)a + II(3)�(bx)a + Fb,a,4(x),

where the Fb,a,i ’s are finite rank mapsM→M and the II(1), II(2) and II(3) terms are
specified below. Let us first examine the II(1)-terms. We get that,

II(1)b�(xa) =
n∑

i=1
Bk−i+1=Xi �=An−i+1

2i+1+m−n∑

l=1
ϕ(bk�

1
l (x1)) . . . ϕ(bk−i+2�i−1

l (xi−1))ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i

◦
︷ ︸︸ ︷

bk−i+1�i
l (xi ) �i+1

l (an−i+1) . . . �2i+1+m−n
l (am)

II(1)�(bxa) =
n∑

i=1
Bk−i+1=Xi �=An−i+1

k+m−n+2∑

l=1
ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

×�1
l (b1)

(1) . . . �k−i
l (bk−i )�

k−i+1
l (

◦
︷ ︸︸ ︷
bk−i+1xi )�

k−i+2
l (an−i+1) . . . �k+m−n+2

l (am)

II(1)b�(x)a =
n∑

i=1
Bk−i+1=Xi �=An−i+1

n∑

l=1
ϕ(bk�

1
l (x1)) . . . ϕ(bk−i+2�i−1

l (xi−1))ϕ(�n
l (xn)a1)

. . . ϕ(�i+1
l (xi+1)an−i )

× b1 . . . bk−i

◦
︷ ︸︸ ︷

bk−i+1�i
l (xi ) an−i+1 . . . am ,

II(1)�(bx)a =
n∑

i=1
Bk−i+1=Xi �=An−i+1

k+n−2i+1∑

l=1
ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(�k+n−2i+1

l (xn)a1)

. . . ϕ(�k−i+2
l (xi+1)an−i )

×�l
1(b1) . . . �k−i

1 (bk−i )�
k−i+1
l (

◦
︷ ︸︸ ︷
bk−i+1xi )an−i+1 . . . am ,

Again we see that,

II(1)b�(xa) − II(1)�(bxa) − II(1)b�(x)a + II(1)�(bx)a = 0.
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Now for the II(2)-terms we find,

II(2)b�(xa) =
n∑

i=1
Bk−i+1 �=Xi=An−i+1

2i+1+m−n∑

l=1
ϕ(bk�

1
l (x1))

. . . ϕ(bk−i+2�i−1
l (xi−1))ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i+1�i
l (

◦
︷ ︸︸ ︷
xi an−i+1)�i+1

l (an−i+2) . . . �2i+1+m−n
l (am)

II(2)�(bxa) =
n∑

i=1
Bk−i+1 �=Xi=An−i+1

k+m−n+2∑

l=1
ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

×�1
l (b1) . . . �k−i+1

l (bk−i+1)�k−i+2
l (

◦
︷ ︸︸ ︷
xi an−i+1)�k−i+3

l (an−i+2)

. . . �k+m−n+2
l (am)

II(2)b�(x)a =
n∑

i=1
Bk−i+1 �=Xi=An−i+1

n∑

l=1
ϕ(bk�

1
l (x1)) . . . ϕ(bk−i+2�i−1

l (xi−1))ϕ(�n
l (xn)a1)

. . . ϕ(�i+1
l (xi+1)an−i )

× b1 . . . bk−i+1

◦
︷ ︸︸ ︷

�i
l (xi )an−i+1 an−i+2 . . . am ,

II(2)�(bx)a =
n∑

i=1
Bk−i+1 �=Xi=An−i+1

k+n−2i+1∑

l=1
ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(�k+n−2i+1

l (xn)a1)

. . . ϕ(�k−i+3
l (xi+1)an−i )

×�l
1(b1) . . . �k−i+1

l (bk−i+1)�k−i+2
l (

◦
︷ ︸︸ ︷
xi an−i+1)an−i+2 . . . am .

Again we get (or in fact by a symmetry argument from the II(1)-case),

II(2)b�(xa) − II(2)�(bxa) − II(2)b�(x)a + II(2)�(bx)a = 0.

We now examine the II(3)-terms. We find,

II(3)b�(xa) =
n∑

i=1
Bk−i+1=Xi=An−i+1

m−n+2i∑

l=1
ϕ(bk�

1
l (x1)) . . . ϕ(bk−i+2�i−1

l (xi−1))ϕ(xna1)

. . . ϕ(xi+1an−i )

×b1 . . . bk−i (

◦
︷ ︸︸ ︷
bk−i+1xi an−i+1)�i+1

l (an−i+2) . . . �m−n+2i
l (am)

+
n∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )
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×b1 . . . bk−i (

◦
︷ ︸︸ ︷

bk−i+1�(

◦
︷ ︸︸ ︷
xi an−i+1))an−i+2 . . . am

+Gb,a,1(x), (5.5)

where

Gb,a,1(x) =
n∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i (

◦
︷ ︸︸ ︷
bk−i+1ϕ(xi an−i+1))an−i+2 . . . am,

is a finite rank map. Similarly, there are finite rank mapsM→M, say Gb,a,2, Gb,a,3

and Gb,a,4 (in fact Gb,a,3 being the 0 map as xi =
◦

︷︸︸︷
xi ) such that

II(3)�(bxa) =
n∑

i=1
Bk−i+1=Xi=An−i+1

m+k−n∑

l=1
ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

×�1
l (b1) . . . �k−i

l (bk−i )

◦
︷ ︸︸ ︷
bk−i+1xi an−i+1 �k−i+1

l (an−i+2) . . . �m+k−n
l (am)

+
n∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i�(

◦
︷ ︸︸ ︷
bk−i+1xi an−i+1)an−i+2 . . . am

+Gb,a,2(x),

II(3)b�(x)a =
n∑

i=1
Bk−i+1=Xi=An−i+1

n−1∑

l=1
ϕ(bk�

1
l (x1))

. . . ϕ(bk−i+2�i−1
l (xi−1))ϕ(�n−1

l (xn)a1) . . . ϕ(�i
l (xi+1)an−i )

× b1 . . . bk−i

◦
︷ ︸︸ ︷
bk−i+1xi an−i+1 an−i+2 . . . am

+
n∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i

◦
︷ ︸︸ ︷
bk−i+1�(xi )an−i+1) an−i+2 . . . am ,

+Gb,a,3(x),

II(3)�(bx)a =
n∑

i=1
Bk−i+1=Xi=An−i+1

n−1∑

l=1
ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(�n−1

l (xn)a1)

. . . ϕ(�k−i+1
l (xi+1)an−i )
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×�1
l (b1) . . . �k−i

l (bk−i )

◦
︷ ︸︸ ︷
bk−i+1xi an−i+1 an−i+2 . . . am

+
n∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

× b1 . . . bk−i

◦
︷ ︸︸ ︷

�(

◦
︷ ︸︸ ︷
bk−i+1xi )an−i+1 an−i+2 . . . am

+Gb,a,4(x). (5.6)

As �(1) = 1 (by conservativity of the Dirichlet form) we have for any y that �(y) =
�(

◦
︷︸︸︷

y ). We see that the first summations of the 4 terms of and (5.6) cancel each other,
so that we get a remaining term:

II(3)b�(xa) − II(3)�(bxa) − II(3)b�(x)a + II(3)�(bx)a

− (Ga,b,1(x)− Ga,b,2(x)− Ga,b,3(x)+ Ga,b,4(x))

=
n∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )b1 . . . bk−i

× (

◦
︷ ︸︸ ︷
bk−i+1�(xi an−i+1)−

◦
︷ ︸︸ ︷
�(bk−i+1xi an−i+1)

−
◦

︷ ︸︸ ︷
bk−i+1�(xi )an−i+1+

◦
︷ ︸︸ ︷
�(bk−i+1xi )an−i+1)an−i+2 . . . am

=
n∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )b1 . . . bk−i

×
◦

︷ ︸︸ ︷

�
an−i+1,b∗k−i+1
Xi ,0

(xi ) an−i+2 . . . am .

Now if we collect all of the above terms we see that

�
a,b∗
0 (x) =

n∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1) . . . ϕ(bk−i+2xi−1)ϕ(xna1)

. . . ϕ(xi+1an−i )b1 . . . bk−i

×
◦

︷ ︸︸ ︷

�
an−i+1,b∗k−i+1
Xi ,0

(xi ) an−i+2 . . . am

+ Fa,b(x),

(5.7)
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with Fa,b the finite rank operator

Fa,b = (Fb,a,1 − Fb,a,2 − Fb,a,3 + Fb,a,4)+ (Gb,a,1 − Gb,a,2 − Gb,a,3 + Gb,a,4).

3. Conclusion of the proof. Let ‖Fa,b‖H S be the Hilbert–Schmidt norm of Fa,b as
a map y�ϕ → Fa,b(y)�ϕ . Now note that if the length n of x as a reduced operator
is strictly longer than k + m − 1 then the expression (5.7) is 0 as there must be an
operator bk+1 or am+1 occuring in (5.7) which by definition are 0.

If each �
an−i+1,b∗k−i+1
Xi ,0

: L2(Mi )→ L2(Mi ) in (5.7) is bounded then so is �
a,b∗
0 :

L2(M) → L2(M). So we conclude that the second bullet of Definition 4.1 holds
for the free product semi-group (�t )t≥0 if it holds for each individual (�i,t )t≥0. It
remains to verify the first bullet point of Definition 4.1.

Set E as the set of all reduced operators of the form ei1 . . . ein with ein ∈ ∪ jO j . E
forms an orthonormal basis of L2(M◦) = L2(M) � C�ϕ . Fix t > 0 and let C ′ =
max j ‖σi/2(�t (a j ))‖ and then C = max(1, C ′). Further set D′ = max j ‖�t (b j )‖
and then D = max(1, D′). We conclude from (5.7) and twice Cauchy-Schwarz that,

‖�a,b∗
t ‖2H S =

∑

x∈E

‖�a,b∗
t (x)‖22

≤ 2‖Fa,b‖2H S + 2
∑

x∈E

‖
k+m−1∑

i=1
Bk−i+1=Xi=An−i+1

ϕ(bk x1)

. . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )

×�t (b1) . . . �t (bk−i )

◦
︷ ︸︸ ︷

�
an−i+1,b∗k−i+1
Xi ,t

(xi )�t (an−i+2) . . . �t (am)‖22

≤ 2‖Fa,b‖2H S + 2(k + m − 1)
k+m−1∑

i=1
Bk−i+1=Xi=An−i+1

∑

x∈E

|ϕ(bk x1)

. . . ϕ(bk−i+2xi−1)ϕ(xna1) . . . ϕ(xi+1an−i )|2

× ‖�t (b1) . . . �t (bk−i )

◦
︷ ︸︸ ︷

�
an−i+1,b∗k−i+1
Xi ,t

(xi ) �t (an−i+2) . . . �t (am)‖22
For all j we have

∑

y∈OB j

|ϕ(b j y)|2 =
∑

y∈OB j

|〈y�ϕ, b∗j �ϕ〉|2 = ‖b∗j‖22,

because OB j is an orthonormal basis. Similarly,

∑

y∈OA j

|ϕ(ya j )|2 =
∑

y∈OA j

|ϕ(σi (a j )y)|2 =
∑

y∈OB j

|〈y�ϕ, σi (a j )
∗�ϕ〉|2 = ‖σi (a j )

∗‖22,
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Therefore let K = max j (‖b∗j‖22, ‖σi (a j )
∗‖22, 1). We get using (2.2),

‖�a,b∗
t ‖2H S

≤ 2‖Fa,b‖2H S + 2(k + m − 1)K m+kC2m D2k

k+m−1∑

i=1
Ck−i+1=Xi=An−i+1

∑

xi∈Ei

‖�an−i−1,b∗k−i−1
Xi ,t

(xi )‖22

≤ 2‖Fa,b‖2H S + 2(k + m − 1)2K m+kC2m D2k max
1≤i≤n

‖�an−i−1,b∗k−i−1
Xi ,t

‖2H S,

which is finite for every t > 0 and for every choice of a and b in A. The proof for
GHS instead of IGHS follows just by using t = 0 instead of t > 0. ��

5.2 Crossed product extensions

We prove that IGHS semi-groups yield GC semi-groups on their continuous cores. We
recall the following from [62].As before letM be aσ -finite vonNeumann algebrawith
fixed faithful normal state ϕ. Let cϕ(M) be the continuous core vonNeumann algebra
of M. It is the von Neumann algebra acting on L2(M) ⊗ L2(R) � L2(R, L2(M))

that is generated by the operators

(πϕ(x)ξ)(t) = σ
ϕ
−t (x)ξ(t), where x ∈M,

and the shifts

(usξ)(t) = ξ(t − s)where s, t ∈ R.

We shall write u f =
∫
R

f (s)usds for f ∈ L1(R). The map πϕ embeds M into
cϕ(M). We let Lϕ(R) be the von Neumann algebra generated by ut , t ∈ R. Let ϕ̃

be the dual weight on cϕ(M) of ϕ. If s → xs and s → ys are compactly supported
σ -weakly continuous functions R→M, it satisfies

ϕ̃(

(∫

R

πϕ(ys)usds

)∗ ∫

R

πϕ(xs)usds) =
∫

R

ϕ(y∗s xs)ds.

We call the support of s → xs the frequency support of
∫
R

πϕ(xs)usds. Let h ≥ 0 be
the self-adjoint operator affiliated with Lϕ(R) such that hit = ut , t ∈ R. There exists
a normal, faithful, semi-finite trace τ̃ on cϕ(M) such that we have cocycle derivative
(Dϕ̃/Dτ̃ )t = hit . This is informally expressed as τ̃ (h1/2 · h1/2) = ϕ̃( · ). We write

nϕ̃ =
{

x ∈ cϕ(M) | ϕ̃(x∗x) <∞} .

For x ∈ nϕ̃ we write x�ϕ̃ for its GNS-embedding into L2(cϕ(M), ϕ̃). Let Jϕ̃ be the
modular conjugation.
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L2(cϕ(M), ϕ̃) is a cϕ(M)-cϕ(M)-bimodule with left and right actions

x · (a�ϕ̃) · y = x Jϕ̃ y∗ Jϕ̃ (a�ϕ̃), a ∈ nϕ̃ , x, y ∈ cϕ(M).

The Tomita algebra Tϕ̃ is defined as the algebra of all x ∈ cϕ(M) that are analytic for

σ ϕ̃ and such that for every z ∈ C we have σ
ϕ̃
z (x) ∈ nϕ̃ ∩ n∗̃ϕ . It shall be convenient for

us to identify unitarily

L2(cϕ(M), ϕ̃)→� L2(R, L2(M)) : πϕ(x)u f �ϕ̃ → ( f (s)x�ϕ)s∈R,

f ∈ C00(R), x ∈M. (5.8)

Remark 5.2 We may similarly set

nτ̃ =
{

x ∈ cϕ(M) | τ̃ (x∗x) <∞} .

For x ∈ nτ̃ we writex�τ̃ for its GNS-embedding into L2(cϕ(M), τ̃ ). We have the
cϕ(M)-cϕ(M)-bimodule structure given by

x · (a�τ̃ ) · y = x J̃τ y∗ J̃τ (a�τ̃ ), a ∈ nτ̃ , x, y ∈ cϕ(M).

Consider the map

D → L2(cϕ(M), τ̃ ) : x�ϕ̃ → [xh
1
2 ]�τ̃ , (5.9)

where D ⊆ L2(cϕ(M), ϕ̃) is the space of x ∈ nϕ̃ such that xh
1
2 is bounded and the

closure [xh
1
2 ] is in nτ̃ . The map (5.9) extends to a unitary map L2(cϕ(M), ϕ̃) →

L2(cϕ(M), τ̃ ) which is moreover an equivalence ofcϕ(M)-cϕ(M) bimodules. We
simply write L2(cϕ(M)) for this bimodule.

Recall that a Markov semi-group � = (�t )t≥0 on M is called ϕ-modular if
σ

ϕ
s ◦ �t = �t ◦ σ

ϕ
s for all s ∈ R and t ≥ 0. Let � = (�t )t≥0 be a ϕ-modular

Markov map on M. Then let �̃ = (�̃t )t≥0 be the crossed product extension on
cϕ(M) determined by

�̃t (πϕ(x)) = πϕ(�t (x)) and �̃t (us) = us where x ∈M, s ∈ R, t ≥ 0.

If � is a ϕ-modular Markov semigroup then so is �̃ for both the weights ϕ̃ and τ̃ ,
meaning that it is a point-strongly continuous semi-group of ucp maps that preserves
these weights. If p ∈ Lϕ(R) is a τ̃ -finite projection then the restriction of �̃ to the
corner pcϕ(M)p is a Markov-semigroup with respect to τ̃ .
Convention for the rest of this subsection: Let M = L∞(G) for a compact quantum
group G and let ϕ be the Haar state of G. Let A = A(G) be the ∗-algebra of matrix
coefficients of finite dimensional representations of G.
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The convention is mainly made to simplify several technicalities occuring in the
proofs of Lemmas 5.4, 5.7 as well as Proposition 5.8. Let (�t )t≥0 be a Markov semi-
group of central multipliers. Let � ≥ 0 be a generator for (�t )t≥0, i.e. e−t� = �

(2)
t .

Let p ∈ Lϕ(R) be a projection. Then � ⊗ p is a generator for the restriction of

(�̃
(2)
t )t≥0 to pcϕ(M)p. Its domain is understood as all �2-sums

∑

α∈Irr(G),1≤i, j≤nα

f α
i, j ⊗ uα

i, j

with f α
i, j ∈ pL2(R) such that also

∑
α∈Irr(G),1≤i, j≤nα

f α
i, j ⊗ �(uα

i, j ) exists as a �2-
convergent sum.

Definition 5.3 Let Ã be the ∗-algebra of elements
∫
R

πϕ(xs)usds ∈ cϕ(M) with
xs ∈ A σ -weakly continuous and compactly supported in s.

Lemma 5.4 Let (�t )t≥0 be a Markov semi-group of central multipliers on a compact
quantum group G. Let A = A(G) and let Ã be defined as above. Then Ã is contained

in the Tomita algebra Tϕ̃ and moreover �̃(∇ 1
4 Ã�ϕ̃) ⊆ ∇ 1

4 Ã�ϕ̃ . Further,we may set
(the limit being existent),

�̃(x) = lim
t↘0

1

t
(�̃t (x)− x), x ∈ Ã.

Moreover,

�̃(

∫

R

πϕ(xs)usds) =
∫

R

πϕ(�(xs))usds.

Proof The inclusion Ã ⊆ Tϕ̃ follows from the explicit form of the modular group of
ϕ̃, see [62, Theorem X.1.17]. If s → xs ∈ A is continuous and compactly supported,
it takes values in the space of matrix coefficients of a single finite dimensional repre-
sentation of G. Write xs = ∑

α xs,α where α ranges over this finite (s-independent)
subset of Irr(G). Then �(πϕ(xs)) =∑α �απϕ(xs,α) for some �α ∈ C. Further, for
x = ∫

R
πϕ(xs)usds,

lim
t↘0

1

t
(�̃t (x)− x) = lim

t↘0

1

t

∫

R

πϕ(�t (xs)− xs)usds =
∫

R

πϕ(�(xs))usds.

��

Definition 5.5 Assume (�t )t≥0 is a Markov semi-group of central multipliers on a
compact quantum group G. Set,

〈a, c〉�̃ = �̃(c)∗a + c∗�̃(a)− �̃(c∗a), a, c ∈ Ã.
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And further,

〈a ⊗ ξ, c ⊗ η〉̃∂ =
1

2
〈〈a, c〉�̃ξ, η〉, a, c ∈ Ã, ξ, η ∈ L2(cϕ(M)).

Just as in the state case this defines an inner product on Ã⊗ L2(cϕ(M)). Quotienting
out the degenerate part and taking a completion yields a Hilbert space H∂,cϕ with
contractive left and right Ã-actions given by

x · (z ⊗ ξ) = xz ⊗ ξ − x ⊗ zξ, (z ⊗ ξ) · y = z ⊗ ξ y,

x, y, z ∈ Ã, ξ ∈ L2(cϕ(M)).

We also set the map

�̃
z,z′
t (x) = �̃t (〈xz, z′〉�̃ − 〈x, z〉�̃z′), x, z, z′ ∈ Ã, t ≥ 0,

and set �̃z,z′ = �̃
z,z′
0 . So that

〈x · (z ⊗ ξ) · y, (z′ ⊗ η)〉̃∂ = 〈�̃z,z′(x)ξ y, η〉, x, y, z, z′ ∈ Ã, ξ, η ∈ L2(cϕ(M)).

Remark 5.6 Let a, c ∈ A. By mild abuse of notation we shall write �̃πϕ(a),πϕ(c) for
the L2-map

L2(cϕ(M))→ L2(cϕ(M)) : x�ϕ̃ → �̃πϕ(a),πϕ(c)(x)�ϕ̃,

in case this map is bounded and say that �̃πϕ(a),πϕ(c) ∈ B(L2(cϕ(M))). Similarly we
write �a,c for the map L2(M)→ L2(M) : x�ϕ → �a,c(x)�ϕ in case this map is
bounded and say �a,c ∈ B(L2(M)).

Lemma 5.7 Let (�t )t≥0 be a Markov semi-group of central multipliers on a compact
quantum group G. Assume that for all a, c ∈ A we have �a,c ∈ B(L2(cϕ(M))).
Then �̃πϕ(a),πϕ(c) ∈ B(L2(cϕ(M))) and under the correspondence (5.8) we have

�̃πϕ(a),πϕ(c) � (�σ
ϕ
s (a),c)s∈R.

Proof Take a, c ∈ A. Assume that a is a matrix coefficient of the finite dimensional
representation u. Let {ui, j | i, j} form a linear basis of all matrix coefficients of u.
The modular group preserves matrix coefficients of a fixed representation, see [69] (or
[14, Theorem 4.8]). So decompose σ

ϕ
s (a) =∑i, j fi, j (s)ui, j with fi, j (s) ∈ C. Then

each fi, j is bounded and continuous since σϕ is a σ -weakly continuous automorphism
group. We see that

�σ
ϕ
s (a),c =

∑

i, j

fi, j (s)�
ui, j ,c,

and by assumption�ui, j ,c ∈ B(L2(M)). This shows that�σ
ϕ
s (a),c ∈ B(L2(M))with

uniform bound in s.
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Now take a, c, x ∈ A and f ∈ L1(R). We have

πϕ(c)∗πϕ(x)u f πϕ(a) =
∫

R

f (s)πϕ(c∗xσϕ
s (a))usds.

We have πϕ(x)u f ∈ nϕ̃ and using Lemma 5.4,

�̃πϕ(a),πϕ(c)(πϕ(x)u f )

=
∫

R

f (s)πϕ(�(c∗xσϕ
s (a))+ c∗�(x)σϕ

s (a)− c∗�(xσϕ
s (a))−�(c∗x)σϕ

s (a))usds

=
∫

R

f (s)πϕ(�σ
ϕ
s (a),c(x))usds.

Under the identification (5.8) we see that �̃πϕ(a),πϕ(c) corresponds to (�σ
ϕ
s (a),c)s∈R ∈

L∞(R, B(L2(M))). ��
Proposition 5.8 Let (�t )t≥0 be a Markov semi-group of central multipliers on a com-
pact quantum group G. Let p ∈ Lϕ(R) be a projection. Then:

(1) The Ã-Ã-bimodule H∂,cϕ extends to a normal cϕ(M)-cϕ(M)-bimodule. More-
over, pH∂,cϕ p is a normal pcϕ(M)p-pcϕ(M)p-bimodule.

(2) If (�t )t≥0 on (M, ϕ) is IGHS then the Markov semi-group (cϕ(�t ))t≥0 on
pcϕ(M)p is GC.

Proof Tokeep the notation simplewewill identifyA as a subalgebra of cϕ(M) through
the embedding πϕ and further supress πϕ in the notation. We prove the statements for
the projection p = 1 and then justify how the general statements follow from this.
Throughout the entire proof let f1, f2, g1, g2 ∈ C00(R), a, b, c, d ∈ A.
Proof of (1) for p = 1. Let x ∈ Ã. We have,

�̃au f1 ,cu f2 (x)

= u∗f2c∗�̃(xau f1)− u∗f2c∗�̃(x)au f1 − �̃(u∗f2c∗xau f1)+ �̃(u∗f2c∗x)au f1

= u∗f2c∗�̃(xa)u f1 − u∗f2c∗�̃(x)au f1 − u∗f2�̃(c∗xa)u f1 + u∗f2�̃(c∗x)au f1

= u∗f2�̃
a,c(x)u f1 .

(5.10)

We have

〈x(au f1 ⊗ bug1�ϕ̃), cu f2 ⊗ dug2�ϕ̃〉
= 〈�̃au f1 ,cu f2 (x)bug1�ϕ̃, dug2�ϕ̃〉
= 〈u∗f2�̃a,c(x)u f1bug1�ϕ̃, dug2�ϕ̃〉.

(5.11)

Now to show that the left Ã-action on H∂,cϕ is normal it suffices to show that it
is σ -weakly continuous on the unit ball of cϕ(M). So suppose that xk is a net in
the unit ball of Ã converging σ -weakly to x .We get that �̃a,c(xk) ∈ Ã and may
be written as �̃a,c(xk) =

∫
πϕ(yk,s)usds, with integral ranging over some compact
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set. Similarly write �̃a,c(x) = ∫
πϕ(ys)usds. Let uα

i, j be a matrix coefficient of
α ∈ Irr(G). Then (〈yk,s�ϕ, uα

i, j�ϕ〉)s∈R is an element of L∞(R) that is σ -weakly
convergent to (〈ys�ϕ, uα

i, j�ϕ〉)s∈R. It follows then from the expression (5.11) that

〈(x − xk)(au f1 ⊗ bug1�ϕ̃), cu f2 ⊗ dug2�ϕ̃〉 → 0.

Since xk is bounded it follows that for ξ ∈ H∂,cϕ arbitrarywe get that 〈(x−xk)ξ, ξ 〉 →
0. This concludes the claim on the left action; the right action goes similarly.
Proof of (2) for p = 1. Assume that (�t )t≥0 is IGHS. For x ∈ Ã we have as in (5.10)
that �̃u f1a,u f2 c(x) = �̃a,c(u∗f2xu f1). Hence for x, y ∈ Ã we have

〈x(u f1a ⊗ bug1�ϕ̃)y, u f2c ⊗ dug2�ϕ̃〉
= 〈�̃u f1a,u f2 c(x)bug1�ϕ̃ y, dug2�ϕ̃〉
= 〈�̃a,c(u∗f2xu f1)bug1�ϕ̃ y, dug2�ϕ̃〉
= 〈�̃a,c(u∗f2xu f1�ϕ̃)σ

ϕ̃
i/2(bug1)y, dug2�ϕ̃〉

= 〈�̃a,c(u∗f2xu f1�ϕ̃), dug2�ϕ̃ y∗σ ϕ̃
i/2(b)∗u∗g1〉

(5.12)

We argue that in fact (5.12) holds for all x, y ∈ cϕ(M). Indeed, Ã is strong-∗ dense
in cϕ(M) so by Kaplansky’s density theorem we may take bounded nets xk and
yk in Ã converging in the strong-∗ topology (hence σ -weakly) to x ∈ cϕ(M) and
y ∈ cϕ(M) respectively. By Step 1 the left and right actions are normal (meaning
σ -weakly continuous) so that

lim
k1,k2
〈xk1(u f1a ⊗ bug1�ϕ̃)yk2 , u f2c ⊗ dug2�ϕ̃〉
= 〈x(u f1a ⊗ bug1�ϕ̃)y, u f2c ⊗ dug2�ϕ̃〉. (5.13)

Since �̃a,c is bounded by Lemma 5.7 andxku f1�ϕ̃ → xu f1�ϕ̃ in norm we find

lim
k1,k2
〈�̃a,c(u∗f2xk1u f1�ϕ̃), dug2�ϕ̃ y∗k2σ

ϕ̃
i/2(b)∗u∗g1〉

= 〈�̃a,c(u∗f2xu f1�ϕ̃), dug2�ϕ̃ y∗σ ϕ̃
i/2(b)∗u∗g1〉. (5.14)

The limits (5.13) and (5.14) show that (5.12) holds for all x, y ∈ cϕ(M). Further, by
strong continuity of the semi-group we find for all x, y ∈ cϕ(M),

〈x(u f1a ⊗ bug1�ϕ̃)y, u f2c ⊗ dug2�ϕ̃〉
= lim

t↘0
〈�̃a,c

t (u∗f2xu f1)�ϕ̃, dug2�ϕ̃ y∗σ ϕ̃
i/2(b)∗u∗g1〉.

(5.15)

By the unitary identification (5.8) there exist zs, z′s ∈M such that,

u∗f2xu f1�ϕ̃ � (zs�ϕ)s∈R ∈ L2(R, L2(M)),
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dug2�ϕ̃ y∗σ ϕ̃
i/2(b)∗ � (z′s�ϕ)s∈R ∈ L2(R, L2(M)).

We have

dug2�ϕ̃ y∗σ ϕ̃
i/2(b)∗u∗g1 �

(∫

R

g1(r)z′s+r�ϕdr

)

s∈R
.

Wemay express the limiting terms on the right hand side of (5.15) as follows by using
Lemma 5.7,

〈�̃a,c
t (u∗f2xu f1)�ϕ̃, dug2�ϕ̃ y∗σ ϕ̃

i/2(b)∗u∗g1〉

=
〈

�
a,c
t (zs�ϕ)s∈R,

(∫

R

g1(r)z′s+r�ϕdr

)

s∈R

〉

=
〈

(�
σ

ϕ
s (a),c

t (zs)�ϕ)s∈R,

(∫

R

g1(r)z′s+r�ϕdr

)

s∈R

〉

.

(5.16)

Because (�t )t≥0 is IGHS there exists for every t > 0, s ∈ R a vector ζ
σ

ϕ
s (a),c

t ∈
L2(M)⊗ L2(M) such that for all z, z′ ∈M,

〈�σ
ϕ
s (a),c

t (z)�ϕ, z′�ϕ〉 = 〈z�ϕ ⊗ z′�ϕ, ζ
σ

ϕ
s (a),c

t 〉.

It follows in particular that for all s, r ∈ R we have

〈�σ
ϕ
s (a),c

t (zs)�ϕ, z′s+r�ϕ〉 = 〈zs�ϕ ⊗ z′s+r�ϕ, ζ
σ

ϕ
s (a),c

t 〉. (5.17)

Further ζ σ
ϕ
s (a),c

t is continuous in s and in particular integrable (see the proof of Lemma
5.7).

Now fix some n ∈ N and assume that the frequency support of x is contained in
[−2n, 2n]. Let K be the product of the sets

ssupp( f1), ssupp( f2), and [−2n, 2n]. (5.18)

where the symmetric support is defined as ssupp( f ) = supp( f ) ∪ supp( f )−1 ∪ {0}.
Set for t > 0,

ζ̃
a,c
t (s, s + r) =

{

g1(r)ζ
σ

ϕ
s (a),c

t , s ∈ K , r ∈ sup(g1),
0 otherwise.

Then ζ̃
a,c
t defines an element of L2(R

2,M ⊗M) � L2(cϕ(M)) ⊗ L2(cϕ(M)).

Note that (zs)s∈R, hence (�
σ

ϕ
s (a),c

t (zs))s∈R, is supported on the product of the sets
ssup( f1), ssup( f2) and [−2n, 2n]. Hence
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(5.16) =
∫

R

∫

R

〈�σ
ϕ
s (a),c

t (zs)�ϕ, g1(r)z′s+r�ϕ〉drds

=
∫

K

∫

sup(g1)
〈�σ

ϕ
s (a),c

t (zs)�ϕ, g1(r)z′s+r�ϕ〉drds

=
∫

K

∫

sup(g1)
〈zs�ϕ ⊗ z′s+r�ϕ, g1(r)ζ

σ
ϕ
s (a),c

t 〉drds

=〈(zs�ϕ)s∈R ⊗ (z′s�ϕ)r∈R, ζ̃
a,c
t 〉

=〈u∗f2xu f1�ϕ̃ ⊗ dug2�ϕ̃ y∗σ ϕ̃
i/2(b)∗, ζ̃ a,c

t 〉
=〈xu f1�ϕ̃ ⊗ dug2�ϕ̃ y∗, (u f2 ⊗ 1)̃ζ a,c

t (1⊗ σ
ϕ̃
i/2(b))〉.

(5.19)

Now let χn = 1√
2n

χ[−n,n] ∈ L∞(R). Let mn = χn ∗χn , which is positive definite and

converges to 1 uniformly on compacta. Let Tmn : L∞(R) → L∞(R) be the Fourier
multiplier with symbol mn and by the Bozejko-Fendler theorem [8,44] let Mmn :
B(L2(R))→ B(L2(R)) be its extension to B(L2(R)) as a normal L∞(R)-bimodule
map (i.e. the so-called Herz-Schur multiplier). Then IdM⊗Mmn → IdM⊗IdB(L2(R))

in the point-σ -weak topolgy. Restricting IdM⊗Mmn fromM⊗ B(L2(R)) to cϕ(M)

yields a normal completely positive map

Rn : cϕ(M)→ cϕ(M) given by πϕ(v)us → mn(s)πϕ(v)us, v ∈M, s ∈ R.

The range of Rn is contained in the elements with frequency support in [−2n, 2n]. Fix
n and put K as before (5.18). It follows from (5.19) that for t > 0 the inner product
functional

cϕ(M)� cϕ(M)op � x ⊗ yop → 〈�̃a,c
t (u∗f2 Rn(x)u f1)�ϕ̃, dug2�ϕ̃ y∗σ ϕ̃

i/2(b)∗u∗g1〉
(5.20)

extends to a normal bounded map on the von Neumann algebraic tensor product
cϕ(M) ⊗ cϕ(M)op. Now let ξ = ∑

i u fi ai ⊗ bi ugi �ϕ̃ where the sum is finite and
a, b ∈ A, fi , gi ∈ C00(R). By (5.20) we see that the positive map (for positivity, see
the proof of Lemma 4.3)

ωn,t : cϕ(M)� cϕ(M)op � x ⊗ yop

→
∑

i, j

〈�̃ai ,a j
t (u∗f j

Rn(x)u fi )�ϕ̃, b j ug j �ϕ̃ y∗σ ϕ̃
i/2(bi )

∗u∗gi
〉,

extends to a normal bounded map on the von Neumann algebraic tensor prod-
uct cϕ(M) ⊗ cϕ(M)op. Moreover, by Kaplansky this extension is positive. Since
L2(cϕ(M))⊗ L2(cϕ(M)) is the standard Hilbert space of cϕ(M)⊗ cϕ(M)op there
exists ηn,t ∈ L2(cϕ(M))⊗ L2(cϕ(M)) such that for every x, y ∈ cϕ(M) we have

ωn,t (x ⊗ yop) = 〈xηn,t y, ηn,t 〉. (5.21)
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We can now conclude the proof as follows. Now let ε > 0 and let F be a finite
subset in the unit ball of cϕ(M). Let ξ =∑i u fi ai ⊗ bi ugi �ϕ̃ where the sum is finite
and a, b ∈ A, fi , gi ∈ C00(R). Since Rn → Idcϕ(M) in the point-σ -weak topology
we may take n ∈ N large such that for all x, y ∈ F we have

|〈xξ y, ξ 〉̃∂ − 〈Rn(x)ξ y, ξ 〉̃∂ | < ε. (5.22)

Recall from (5.12) that ωn,0(x ⊗ yop) = 〈Rn(x)ξ y, ξ 〉̃∂ . We may take t > 0 small
such that for all x, y ∈ F ,

|ωn,0(x ⊗ yop)− ωn,t (x ⊗ yop)| < ε (5.23)

Combining (5.21), (5.22), (5.23) we find that for all x, y ∈ F we have

|〈xξ y, ξ 〉̃∂ − 〈xηn,t y, ηn,t 〉| < 2ε.

As the vectors ξ as above are dense in H∂,cϕ it follows that the bimodule H∂,cϕ is
weakly contained in the coarse bimodule of cϕ(M).
Proof of (1) and (2) for arbitrary p ∈ Lϕ(R). Now let p ∈ Lϕ(R) be a projection.
Then we see that we have a weak containment of the pcϕ(M)p-pcϕ(M)p-bimodules
pHcϕ,∂ p in pL2(cϕ(M)) ⊗ L2(cϕ(M))p. The latter is in turn weakly contained
in pL2(cϕ(M))p ⊗ pL2(cϕ(M))p, which is justified by the following. If cϕ(M)

were to be a factor we write 1 = ∨n pn with pn projections with τ̃ (pn) = τ̃ (p); by
comparison of projections there are unitaries un such that u∗nun = pn and unu∗n = p.
Then ξ → ξun (resp. ξ → u∗nξ ) intertwines the left (resp. right) action of cϕ(M)

on L2(cϕ(M))p and L2(cϕ(M))pn (resp. pL2(cϕ(M)) and pn L2(cϕ(M))). From
this the weak containment follows in the factorial case. In general it follows from
desintegration to factors of cϕ(M). ��

6 The quantum groupO+
N (F)with FF ∈ RIdN admits an IGHSMarkov

semi-group

In this section we make an analysis of semi-groups associated with L∞(O+N (F)) and
its associated gradient bimodule. The idea is based on results from [24] where De
Commer, Freslon and Yamashita have obtained the Haagerup property for O+N (F).
We use general results from [18,42] to construct a semi-group for such O+N (F) that is
IGHS.

6.1 Semi-groups and Dirichlet forms, case FF ∈ RidN

SetA(O+N (F)) to be the underlying Hopf algebra of coefficients of finite dimensional
representations of O+N (F). Recall that in case F F ∈ RIdN we have Irr(O+N (F)) � N.
Let Uα, α ∈ N be the (dilated) Chebyshev polynomials of the second kind. They are
defined by U0(x) = 1, U1(x) = x and the recursion relation
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xUα(x) = Uα−1(x)+Uα+1(x), α ≥ 1.

Let U ′α be the derivative of Uα .
The arguments in the proof of Proposition 6.2 below are close to constructions from

[42,58] and its non-tracial generalization [18, Proposition 5.5]. We use these ideas to
obtain a specific generator of a Markov semi-group that can be expressed in terms of
the Chebyshev polynomials.

We need the fact that if P is a function that is smooth in a neighbourhood of 0 then,

lim
k→∞ k

(

−P(0)+ 1

k

2k∑

l=k+1
P

(
1

l

))

= log(2)P ′(0). (6.1)

Recall that throughout the entire paper we made the convention that 0 < q ≤ 1 is
fixed by the property q + q−1 = Tr(F∗F) = Nq . Define,

�α = U ′α(q + q−1)
Uα(q + q−1)

, α ∈ N. (6.2)

Lemma 6.1 We have,

�α = α
√

N 2
q − 4

(
1+ q−2α−2

1− q−2α−2

)

+ 2

(1− q2)
√

N 2
q − 4

.

where Nq = q + q−1 is the quantum dimension of the fundamental representation of
O+N (F).

Proof This is shown in [31, Lemma 4.4] (in fact it can be derived rather directly from
the recursion relation of Uα). ��
Proposition 6.2 Assume that F F ∈ RIdN . There exists a Markov semi-group (�t )t≥0
on L∞(O+N (F)) determined by �t (uα

i, j ) = exp(−t�α)uα
i, j .

Proof In [23, Theorem 17] it was proved that for every −1 < t < 1 we have that,

ϒt (u
α
i j ) = cd(t)uα

i j , with cα(t) =
(

Uα(qt + q−t )

Uα(q + q−1)

)3

, α ∈ N, 1 ≤ i, j ≤ nα,

determines a normal unital completely positive multiplier on L∞(O+N (F)). Note that
the maps ϒt with −1 < t < 1 mutually commute. Moreover, for x ∈ L∞(O+N (F))

we haveϒt (x)→ x σ -weakly as t ↗ 1. Put γk = k
log(2) (1− 1

k

∑2k
j=k+1 ϒ

(2)
1− j−1). The

proof of [18, Proposition 5.5] argues that we may define semi-groups of completely
positive contractions St,k = exp(−tγk) on L2(M). Further,

St,k(u
α
i, j ) = exp(−tγk)(u

α
i, j ) = exp

(
−tk

log(2)

(

1− 1

k

2k∑

l=k+1
cα(1− 1

l
)

))

(uα
i, j ).
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Taking the limit k → ∞ of this expression and using (6.1) gives limk→∞ St,k(uα
i, j )

= exp(−tc′α(1)) uα
i, j . By density we may conclude that for every ξ ∈ L2(O+N (F))we

have that St,k(ξ) is convergent say to St (ξ). Furthermore (St )t≥0 is a semi-group that is
moreover strongly continuous (again this follows by comparing actions onA(O+N (F))

in L2(O+N (F)) and then using density).
Consider the closed convex sets in L2(O+N (F)) given by C0 = {x ∈ L2(M) | 0 ≤

x ≤ �ϕ} and the positive cone in the i-th matrix amplification Ci = Mi (L2(M))+
where i ∈ N≥1. As for each t, n and i we have St,n(Ci ) ⊆ Ci we get St (Ci ) ⊆ Ci .
Further St (�ϕ) = �ϕ . Lemma 2.6 then shows that there exists a Markov semi-group

(�t )t≥0 on L∞(O+N (F)) such that�(2)
t = (St )t≥0. As,

c′α(t) = 3Uα(qt + q−t )2U ′α(qt + q−t )(qt log(q)+ q−t log(q−1))
Uα(q + q−1)3

,

we see that

c′α(1) = 3U ′α(q1 + q−1)(q log(q)− q−1 log(q))

Uα(q + q−1)
.

So the proposition follows by scaling the generator of the semi-group (St )t≥0. ��
The following is now another example of [18, Theorem 6.7].

Corollary 6.3 Assume that F F ∈ RIdN . There exists a conservative completely Dirich-
let form QN associated with O+N (F) with domain,

Dom(QN ) =
⎧
⎨

⎩
ξ ∈ L2(O+N (F)) |

∞∑

α=0

nα∑

i, j=1
�α|〈eα

i, j , ξ 〉|2 <∞
⎫
⎬

⎭
,

that is given by QN (ξ) =∑∞α=1
∑nα

i, j=1 �α|〈eα
i, j , ξ 〉|2. Here �α is defined in (6.2).

Proof This is a direct consequence of the correspondence between conservativeDirich-
let forms and Markov semi-groups, see Sect. 2.6 and [18, Section 6]. ��

6.2 Properties IGHS and GHS

We prove that the Markov semi-group constructed in Proposition 6.2 is IGHS and
even GHS in the non-tracial case.

Lemma 6.4 For α, β, γ ∈ N with |γ | ≤ max(α, β) we have

|�α+γ −�α − (�β −�β−γ )|
� γ (q2α+2γ − q2β+2γ )+ β(q2β − q2β−2γ )+ α(q2α − q2α+2γ ), (6.3)

where � stands for an inequality that holds up to a constant that does not depend on
α, β and γ .
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Proof For each m, n ∈ Z\{0} we have that,
1+ q−2m

1− q−2m
− 1+ q−2n

1− q−2n
= 2(q−2m − q−2n)

(1− q−2m)(1− q−2n)
= 2(q2n − q2m)

(q2m − 1)(q2n − 1)
.

Then we have from Lemma 6.1,
√

N 2
q − 4|(�α+γ −�α)− (�β −�β−γ )|

≤
∣
∣
∣
∣(α + γ )

1+ q−2α−2γ−2

1− q−2α−2γ−2
− α

1+ q−2α−2

1− q−2α−2
+ (β − γ )

1+ q−2β+2γ−2

1− q−2β+2γ−2
− β

1+ q−2β−2

1− q−2β−2

∣
∣
∣
∣

= γ

∣
∣
∣
∣
1+ q−2α−2γ−2

1− q−2α−2γ−2
− 1+ q−2β+2γ−2

1− q−2β+2γ−2

∣
∣
∣
∣+ β

∣
∣
∣
∣
1+ q−2β−2

1− q−2β−2
− 1+ q−2β+2γ−2

1− q−2β+2γ−2

∣
∣
∣
∣

+ α

∣
∣
∣
∣
1+ q−2α−2γ−2

1− q−2α−2γ−2
− 1+ q−2α−2

1− q−2α−2

∣
∣
∣
∣

� γ |q2α+2γ − q2β+2γ | + β|q2β − q2β−2γ | + α|q2α − q2α+2γ |.

This shows (6.3). ��
Assume F F ∈ RidN . Then let �

1
2 be the unique unbounded operator with domain

Dom(QN ) such that QN (ξ) = 〈� 1
2 ξ,�

1
2 ξ 〉 (c.f. Corollary 6.3). In other words

�
1
2 =

⊕

α

�
1
2
α pα

where pα is the projection of L2(M) onto the isotypical component of α ∈
Irr(O+N (F)) � N. Then let 〈 · , · 〉� be the gradient form defined in (3.1) with respect
to this �. Let H∂ be the L∞(O+N (F))-L∞(O+N (F)) bimodule constructed in Sect. 3
starting from the semi-group (�t )t≥0 and corresponding Dirichlet form of Proposition
6.2 and Corollary 6.3. The algebra A in Sect. 3 is then understood as A(O+N (F)).

The following lemma is directly based on estimates of Jones-Wenzl projections.
The estimate we need was precisely proved in [64, Appendix A] already, c.f. (6.7).
For α ∈ N write Pα(x) = pαxpα for the isotypical cut-down. For α, β, γ ∈ N the
fusion rules of O+N (F) imply that if γ ≤ |α − β| and γ − α + β ∈ 2Z then γ is

contained in α ⊗ β with multiplicity 1. We shall write V α,β
γ : Hγ → Hα ⊗Hβ for

the isometry that intertwines γ with α ⊗ β. By Peter-Weyl theory V α,β
γ is uniquely

determined up to a complex scalar of modulus 1. For the next lemma let uα
i, j denote

the matrix unit of uα with respect to some orthogonal basis vectors which we simply
denote by 1 ≤ i, j ≤ nα . We have Peter-Weyl orthogonality relations

‖uα
i, j‖2 = ‖Qαi‖2‖ j‖2,

for some positive matrix Qα ∈ Mnα (C) which may assumed to be diagonal after
possibly changing the basis (see [28, Proposition 2.1]). Moreover we have,

V α,β
γ Qγ = (Qα ⊗ Qβ)V α,β

γ .
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Lemma 6.5 Assume F F ∈ RidN . Take matrix coefficients x = uα
i, j , a = ur

m′,n′ , c =
us

m,n where α, r , s ∈ N. Assume r , s ≤ α and let k, l ∈ Z be such that |k| ≤ r and
|l| ≤ s wit k − r ∈ 2Z and l − s ∈ 2Z. We have,

‖Pα+k+l(Pα+k(cx)a)− Pα+k+l(cPα+l(xa))‖2 � qα‖x‖2. (6.4)

Here � is an inequality that holds up to a constant only depending on a, c and q.

Proof We prove this by induction on s and r . If either s = 0 or r = 0 the statement is
clear as the left hand side of (6.4) is 0
Step 1. Case r = 1 and s = 1. We get the following. We have,

Pα+k+l (Pα+k(cx)a)

= 〈uα+k+l (V α+k,r
α+k+l )

∗(V s,α
α+k ⊗ 1r )

∗(m ⊗ i ⊗ m′), (V α+k,r
α+k+l )

∗(V s,α
α+k ⊗ 1r )

∗(n ⊗ j ⊗ n′)〉. (6.5)

Similarly,

Pα+k+l (cPα+l (xa))

= 〈uα+k+l (V s,α+l
α+k+l )

∗(1s ⊗ V α,r
α+l )

∗(m ⊗ i ⊗ m′), (V s,α+l
α+k+l )

∗(1s ⊗ V α,r
α+l )

∗(n ⊗ j ⊗ n′)〉. (6.6)

By [64, Lemma A.1, Eqn. (A.2)] we see that in case l = 1 and k ∈ {−1, 1}, we have

‖(1s ⊗ V α,r
α+l)V s,α+l

α+k+l − (V s,α
α+k ⊗ 1r )V α+k,r

α+k+l‖ ≤ qα+(k−r)/2. (6.7)

In fact by [64, LemmaA.2, Eqn. (A.5)] the left hand side of (6.7)may also be estimated
by qα+(l−r)/2 in case l ∈ {−1, 1} and k = 1. Therefore for any k, l ∈ {−1, 1} except
for k = l = −1 we may continu as follows. We get,

‖〈 uβ((V α+k,r
α+k+l)

∗(V s,α
α+k ⊗ 1r )

∗ − (V s,α+l
α+k+l)

∗(1s ⊗ V α,r
α+l)

∗)(m ⊗ i ⊗ m′),

(V α+k,r
α+k+l)

∗(V s,α
α+k ⊗ 1r )

∗(n ⊗ j ⊗ n′) 〉‖22
= ‖Qβ((V α+k,r

α+k+l)
∗(V s,α

α+k ⊗ 1r )
∗ − (V s,α+l

α+k+l)
∗(1s ⊗ V α,r

α+l)
∗)(m ⊗ i ⊗ m′)‖22

× ‖(V α+k,r
α+k+l)

∗(V s,α
α+k ⊗ 1r )

∗(n ⊗ j ⊗ n′)‖22
≤ ‖((V α+k,r

α+k+l)
∗(V s,α

α+k ⊗ 1r )
∗ − (V s,α+l

α+k+l)
∗(1s ⊗ V α,r

α+l)
∗)

(Qsm ⊗ Qαi ⊗ Qr m′)‖22‖(n ⊗ j ⊗ n′)‖22
≤ q2α‖(Qsm ⊗ Qαi ⊗ Qr m′)‖22‖n ⊗ j ⊗ n′‖22
= q2α‖x‖22‖a‖22‖c‖22.

(6.8)

Similarly,

‖〈 uβ(V s,α+l
α+k+l)

∗(1s ⊗ V α,r
α+l)

∗(m ⊗ i ⊗ m′),

((V α+k,r
α+k+l)

∗(V s,α
α+k ⊗ 1r )

∗ − (V s,α+l
α+k+l)

∗(1s ⊗ V α,r
α+l)

∗)(n ⊗ j ⊗ n′) 〉‖22
≤ q2α‖x‖22‖a‖22‖c‖22.

(6.9)
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Combining all the above estimates yields, still with k, l ∈ {−1, 1} but not k = l = −1,

‖Pα+k+l(Pα+k(cx)a)− Pα+k+l(cPα+l(xa))‖2 ≤ 2qα‖x‖2‖a‖2‖c‖2. (6.10)

But as we have that

cxa =
∑

k,l∈{−1,1}
Pα+k+l(Pα+k(cx)a) =

∑

k,l∈{−1,1}
Pα+k+l(cPα+l(xa))

We can estimate the complementary case k = l = −1 through (6.10) by

‖Pα+k+l(Pα+k(cx)a)− Pα+k+l(cPα+l(xa))‖2 ≤ 6qα‖x‖2‖a‖2‖c‖2.

This proves the lemma in case s = r = 1.
Step 2. Induction. We prove that if the lemma holds for somer and s − 1 as in the
lemma, then it also holds for r and s. In particular it then follows that the lemma holds
for r = 1 and s arbitrary.

Leta1 = us−1
m′,n′ and leta2 = u1

m′′,n′′ . Take l1 ∈ Zwith |l1| ≤ s−1and l1−s+1 ∈ 2Z.
Further let l2 ∈ {−1, 1}. Write� for an inequality that holds up to a constant that only
depends on a1, a2, c and q. We get by Step 1 that,

‖Pα+k+l1+l2(Pα+l1+k(cPα+l1(xa1))a2)− Pα+k+l1+l2(cPα+l1+l2(Pα+l1(xa1)a2))‖2
� qα+l1‖Pα+l1(xa1)‖2‖c‖2‖a2‖2 � qα‖x‖2,

and

‖Pα+k+l1+l2(Pα+l1+k(cPα+l1(xa1))a2)− Pα+k+l1+l2(Pα+l1+k(Pα+k(cx)a1)a2)‖2
� qα‖x‖2‖c‖2‖a1‖2‖a2‖ � qα‖x‖2.

Hence,

‖Pα+k+l1+l2(Pα+l1+k(Pα+k(cx)a1)a2)

−Pα+k+l1+l2(cPα+l1+l2(Pα+l1(xa1)a2))‖2 � qα‖x‖2.

Fix l ∈ Zwith |l| ≤ s and l−s ∈ 2Z. Taking the sum over all l1 and l2 with l1+ l2 = l
we see

‖Pα+k+l(Pα+k(cx)a1a2)− Pα+k+l(cPα+l(xa1a2))‖2 � qα‖x‖2. (6.11)

Since a1 and a2 were arbitrary coefficients of us−1 and u1 respectively we get that
(6.11) holds with a1a2 replaced by any a that is a matrix coefficient of u(s−1)⊗1. Since
we have an inclusion of irreducible representations s ⊆ (s − 1)⊗ 1 we conclude our
claim.

123



310 M. Caspers

Step 3. Case r and s arbitrary as in the lemma. One may proceed as in Step 2 to
conclude the proof. Alternatively, assume the lemma is proved for r − 1 and s. We
want to show that it holds for r and s. We have,

‖Pα+k+l(Pα+k(cx)a)− Pα+k+l(cPα+l(xa))‖2
= ‖Pα+k+l(Pα+l(c

∗x∗)a∗)− Pα+k+l(a
∗Pα+k(x∗c∗))‖2

Recall that every element in Irr(O+N (F)) is equivalent to its contragredient repre-
sentation. So by the inductive step in Step 2 of the proof with the roles of s and r
interchanged we see that the right hand side may be estimated by a constant only
depending on a, c and q times q |α|. ��

The next lemma is now crucial. The fact that in the non-tracial case the Hilbert–
Schmidt properties of the maps �t in this lemma are better comes from the fact that
the intertwining properties of Lemma 6.5 are stronger.

Lemma 6.6 Assume that F F ∈ RidN . Let a, b ∈ A(O+N (F)). For t ≥ 0 consider the
linear map A(O+N (F))→ A(O+N (F)) defined by

�t := �
a,b
t : x → �t (〈xa, b〉� − 〈x, b〉�a) .

For t ≥ 0 consider the map �
(l,2)
t : L2(M)→ L2(M) : x�ϕ → �t (x)�ϕ, x ∈ A.

If t > 0 then �
(l,2)
t extends to a Hilbert–Schmidt map. Moreover, if F �= IdN then

�
(l,2)
t extends to a Hilbert–Schmidt map also for t = 0.

Proof Let a and b in A be coefficients of respectively irreducible representations ur

and us with r , s ∈ N. By linearity it suffices to show that for t > 0 (and t = 0 if
F �= IdN ) the map,

�t (x) = �t (〈xa, b〉� − 〈x, b〉�a)

is Hilbert–Schmidt. Let x = uα
i, j with α ∈ N. Firstly, we have

〈xa, b〉� − 〈x, b〉�a =b∗�(xa)−�(b∗xa)− b∗�(x)a +�(b∗x)a.

Note that each isotypical projection Pγ , γ ∈ N commutes with � which we may
naturally view as a map A(O+N (F))→ A(O+N (F)). From the fusion rules of O+N (F)

we conclude the following for numbers γ ∈ N. If α + γ ⊆ α ⊗ r then |γ | ≤ r . If
α+γ ⊆ s⊗α then |γ | ≤ s. For |γ | ≤ r and β ⊆ s⊗(α+γ )we have |β−α| ≤ r+s.
Finally for |γ | ≤ s and β ⊆ (α−γ )⊗ r we have |β−α| ≤ r + s. These observations
show that we get the following sum decomposition. Some summands can be zero; in
fact all that matters is that the summation is finite. So,
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〈xa, b〉� − 〈x, b〉�a

=
∑

α−r−s≤β≤α+r+s
−max(r ,s)≤γ≤max(r ,s)

Pβ

(
b∗�(Pα+γ (xa))−�(Pα−γ (b∗x)a)− b∗Pα+γ (�(x)a)+�(Pβ−γ (b∗x))a

)

=
∑

α−r−s≤β≤α+r+s
−max(r ,s)≤γ≤max(r ,s)

(�α+γ −�α)Pβ(b∗Pα+γ (xa))

− (�β −�β−γ )Pβ(Pα−γ (b∗x)a).

We therefore obtain for t > 0 that,

‖�t (〈xa, b〉� − 〈x, b〉�a) ‖2
≤

∑

α−r−s≤β≤α+r+s
−max(r ,s)≤γ≤max(r ,s)

|�α+γ −�α −�β +�β−γ |‖�t (Pβ(b∗Pα+γ (xa)))‖2

+ |�β −�β−γ |‖�t
(
Pβ(b∗Pα+γ (xa))− Pβ(Pα−γ (b∗x)a)

) ‖2

(6.12)

We write � for an inequality that holds up to some constant independent of α. Let
γ, α, β be such that |β − α| ≤ r + s and |γ | ≤ max(r , s). Lemma 6.4 shows that,

|�α+γ −�α −�β +�β−γ | � q2α. (6.13)

As the eigenvalues of � grow asymptotically linear, more precisely Lemma 6.1, we
have the following.

|�β −�β−γ | � max(r , s) � 1 and

exp(−t�β) � exp(−t(�α − r − s)) � exp(−tα). (6.14)

By Lemma 6.5 (note that b∗ is a coefficient of the contragredient of us which is
equivalent to us itself),

‖Pβ(b∗Pα+γ (xa))− Pβ(Pα−γ (b∗x)a)‖2 � qα‖x‖2. (6.15)

Combining (6.12) with the estimates from (6.13), (6.14) and (6.15) we see that,

‖�t (〈xa, b〉� − 〈x, b〉�a) ‖2 �q2α exp(−tα)‖x‖2 + qα exp(−tα)‖x‖2
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Now let ξ ∈ ⊕N
α=0Pα(L∞(G)) and let ξα = Pα(ξ). Then

‖�0(ξ)‖2 ≤
N∑

α=0
‖�0(ξα)‖2 �

N∑

α=0
qα‖ξα‖2

≤
( ∞∑

α=0
q2α

) 1
2
( ∞∑

α=0
‖ξα‖22

) 1
2

= 1

1− q2 ‖ξ‖2.

Hence �0 is bounded L2(M)→ L2(M). Further we get that,

‖�t‖2H S =
∑

α∈N,1≤i, j≤nα

‖�t (uα
i, j )‖22

‖uα
i, j‖22

�
∑

α∈N,1≤i, j≤nα

(q2α + qα)2 exp(−2tα)

≤
∑

α∈N
n2

αq2α exp(−2tα) =
∑

α∈N
(n

2
α
α q2 exp(−2t))α.

As n
2
α
α q2 converges to a number ≤ 1 (see Sect. 2) for α → ∞ this summation is

finite as soon as t > 0 which concludes the proof. Moreover, if F �= IdN then n
2
α
α q2

converges to a number < 1 (see Sect. 2) which concludes that the latter summation is
finite if t = 0. ��
As a direct consequence we get the following.

Theorem 6.7 Assume that F F ∈ RidN . The semi-group of Proposition 6.2 on
L∞(O+N (F)) is IGHS. If moreover F �= IdN then this semi-group is GHS.

7 Strong solidity

7.1 HH+-type properties and strong solidity in the tracial case

At this pointwe collect results for the tracial case, i.e. F = idN .Write O+N = O+N (idN ).
We first obtain the following result, which is closely related to Property(HH)+ from
[48] and its quantum version which was first studied in [31]. In fact Corollary 7.2 was
already proved in [31, Corollary 4.7] based on different methods.

Definition 7.1 Let M be a von Neumann algebra and let ∂ : Dom(∂) → H be a
derivation where Dom(∂) is a subalgebra of M and H is an M-M-bimodule. ∂ is
called closable if the operator ∂2 : Dom(∂)�ϕ → H : x�ϕ → ∂(x) is closable as
an (unbounded) operator L2(M, ϕ) → H. A closable derivation ∂ is called proper
if ∂∗2 ∂2 has compact resolvent. With slight abuse of notation we will write ∂ for ∂2 as
was also done in [48] and [50].

Corollary 7.2 Assume that F = idN . There exists a proper closable derivation ∂ on
A(O+N (F)) into a L∞(O+N )-L∞(O+N )-bimodule H that is weakly contained in the
coarse bimodule of L∞(O+N ).
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Proof By Proposition 3.8 we see that the left and right A(O+N )-actions extend to
normal actions of L∞(O+N ). Theorem 6.7 and Proposition 4.4 imply that the gradient
bimodule H∂ is weakly contained in the coarse bimodule. Then because we are in
the tracial case the constructions from [21] which are recalled in Sect. 2 show that
there exists a derivation ∂ : A(O+N ) → H∂ . Lemma 3.9 shows that this derivation
is closable with suitable domain so that � = ∂∗∂ . Then Lemma 6.1 shows that ∂ is
proper. ��

The following Corollary 7.3 follows by a modification of the arguments in [48]
from groups to quantum groups. This fact was also suggested in the final remarks of
[31]. For completeness and the fact that in the non-tracial case we also require this
result (even for stable normalizers), we included the proof in the appendix.

Corollary 7.3 Assume that F = idN and N ≥ 3. Then L∞(O+N ) is strongly solid.

Proof This follows from the methods in [48, Theorem B] (see Appendix A) in com-
bination with Corollary 7.2 and the fact that L∞(O+N ) has the CMAP [24]. ��

7.2 Strong solidity forO+
N (F) and U

+
N (F), case of general F

Recall that for a matrix F ∈ GLn(C) the free unitary quantum group U+N (F) is
defined as follows. As a C∗-algebra it is the algebra A freely generated by elements
ui, j , 1 ≤ i, j ≤ N subject to the relation that the matrix u1 = (ui, j )i, j is unitary and
u1 = Fu1F−1. The comultiplication is then given by �A(ui, j ) =∑N

k=1 ui,k ⊗ uk, j .
When F F ∈ RidN we have that U+N (F) is a quantum subgroup of Z ∗ O+N (F) with
Hopf ∗-algebra homomorphism

U+N (F)→ Z ∗ O+N (F) : ui, j → zui, j , (7.1)

where z denotes the identity function on T = Ẑ. Further, Wang [68] proved the
following decomposition results. For any F ∈ GL N (C) we have an isomorphism of
quantum groups

U+N (F) � U+N1
(D1) ∗ . . . ∗U+Nm

(Dm), (7.2)

and

O+N (F) � U+N1
(D1) ∗ . . . ∗U+Nm

(Dm) ∗ O+M1
(E1) ∗ . . . ∗ O+Mn

(Fn), (7.3)

for certain matrices Di and Ei of dimension Ni and Mi smaller than N respectively
with the property that Di Di ∈ RidNi and Ei Ei ∈ RidMi .

Remark 7.4 Recall that in Proposition 6.2we constructed aMarkov semigroup (�t )t≥0
on O+N (F) in case F F ∈ RIdN . Then taking the free product with the identity semi-
group on L∞(Ẑ) yields a semi-group onZ∗O+N (F)which restricts toU+N (F) under the
embedding (7.1). The gradient module of the identity semi-group is the zero module
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which is clearly IGHS. Therefore by Proposition 5.1 the free product semigroup is
IGHS on Z ∗ O+N (F) and hence on U+N (F). Take the free product of the latter semi-
group on the U+N -factors in (7.2) and (7.3) and of the semigroup (�t )t≥0 on the
O+N -factors. This yields a semi-group of central multipliers on an aribtrary quantum
group U+N (F) or O+N (F) that is moreover IGHS.

In the following proposition we collect some results from [40,49,64] that were not
stated explicitly. We refer to [40] and [64] for the definition of bi-exactness and the
Akemann-Ostrand property which shall not be used further in this paper.

Definition 7.5 A von Neumann algebraM is called solid if for any diffuse, amenable
von Neumann subalgebraQ ⊆M with faithful normal conditional expectation EQ :
M→ Q we have that Q′ ∩M is amenable.

Definition 7.6 A von Neumann algebraM is said to have the completely contractive
approximation property (CMAP) if there exists a net of normal completely contrac-
tive finite rank maps (ϒi )i on M such that for every x ∈ M we have ϒi (x) → x
σ -weakly.

Proposition 7.7 For any F ∈ GL N (C) and N ≥ 3 the von Neumann algebras
L∞(O+N (F)) and L∞(U+N (F)) are solid. Further, free products of such algebras
are solid.

Proof By [24, Theorem 24] the reduced C∗-algebras Cr (O+N (F)) and Cr (U
+
N (F))

have the CMAP and hence so do their free products[34,56]. This shows that such
C∗-algebras arelocally reflexive by [13,55, Chapter 18]. By [40, Theorem C] the (sep-
arable) quantum groups O+N (F), U+N (F) and their free products are bi-exact so that
by [64, Theorem 2.5] (see also [49]) they are solid. ��

The following proposition is essentially [7,Main Theorem]. Let Z(M) =M∩M′
denote the center of a von Neumann algebra. Suppose that Q is a von Neumann
subalgebra of M. Then we set the stable normalizer,

sNM(Q) = {x ∈M | xQx∗ ⊆ Q, x∗Qx ⊆ Q}. (7.4)

For two faithful normal states ϕ and ψ on M we set

πϕ,ψ : cψ(M)→ cϕ(M),

to be the ∗-homomorphism given by πϕ,ψ(us) = us and πϕ,ψ(πψ(x)) = πϕ(x)where
s ∈ R, x ∈M.

Definition 7.8 A Markov semi-group (�t )t≥0 with (�
(2)
t = e−t�)t≥0 with � ≥ 0 is

called immediately L2-compact if the generator � has compact resolvent.

Recall that in [18] it was proved that the existence of an immediately L2-compact
semi-group on a separable von Neumann algebra M is equivalent to M having the
Haagerup property.
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Proposition 7.9 Let G be a compact quantum group and let M = L∞(G). Suppose
that M is solid with the CMAP. Suppose moreover that M posseses a Markov semi-
group of central multipliers that is both IGHS and immediately L2-compact. Then M
is strongly solid.

Proof We follow the proof of [7, Main Theorem]. LetQ ⊆M be a diffuse amenable
von Neuman subalgebra with expectation. We need to prove that P = NM(Q)′′
is amenable. Fix a faithful state ψ on M such that Q is globally invariant under
σψ . The second paragraph of the proof of [7, Main Theorem] shows that by solidity
of M we may replace Q by the amenable ψ-expected von Neumann subalgebra
Q̃ = Q

∨
(Q′∩M) and prove thatNM(Q̃)′′ is amenable. This shows that without loss

of generality we can assume thatQ′ ∩M = Z(Q). From this property it follows that
cψ(P) ⊆ Ncψ(M)(cψ(Q))′′, see [7, Section 4, Claim], and this inclusion is ψ̃-expected
where ψ̃ was the dual weight of ψ . Hence we need to prove that Ncψ(M)(cψ(Q))′′
is amenable. Set P0 = πϕ,ψ(Ncψ(M)(cψ(Q))′′), Q0 = πϕ,ψ(cψ(Q)) and M0 =
cϕ(M) = πϕ,ψ(cψ(M)). We have P0 = NM0(Q0)

′′.
To show that P0 is amenable it suffices to show that for every τ -finite projection

p ∈ Lϕ(R) the von Neumann algebra pP0 p is amenable. Let p ∈ Lϕ(R) be such a
τ -finite projection. pP0 p is contained with expectation in sNpM0 p(pQ0 p)′′. So we
need to show that sNpM0 p(pQ0 p)′′ is amenable.

Note that pQ0 p isamenable [1]. Further, By [39, Lemma 2.5] we see that as Q is
diffuse and p is τ -finite, we have pQ0 p ⊀pM0 p Lϕ(R)p.

As M is equipped with a Markov semi-group of central multipliers that is IGHS,
it follows that pM0 p carries a GC semi-group, see Proposition 5.4. Moreover, by the
same Proposition 5.4 and the discussion at the end of Sect. 2 (see [21]) we see that
on pM0 p there exists a closable derivation ∂ into a pM0 p-pM0 p bimodule that is
weakly contained in its coarse bimodule of pM0 p. Moreover the derivation is real
(Lemma 3.10) and satisfies ∂∗∂ = �̃ where �̃ is the generator of the GC semi-group
constructed in Lemma 5.4, which on (pL2(R))⊗ L2(M) is given by p ⊗� with �

the generator of the IGHS semi-group onM. By assumption� has compact resolvent
so that ∂ as a derivation on pM0 p satisfies the properness assumption (A.1) with
L = pLϕ(R). As further M hence pM0 p has the CMAP, we may apply Theorem
A.5 to the triple (pcϕ(M)p, pLϕ(R)p, pQ0 p) to conclude that sNpM0 p(pQ0 p)′′ is
amenable. ��
Theorem 7.10 Let N ≥ 3 and take any F ∈ GL N (C). L∞(U+N (F)) and L∞(O+N (F))

are strongly solid.

Proof Let G be either U+N (F) or O+N (F) with conditions as stated in the lemma. By
[24] L∞(G) has the CMAP.

Remark 7.4 and Proposition 5.1 shows that L∞(G) posseses an IGHS Markov
semi-group of central multipliers. Futher, by Corollary 6.3 and the Leipniz rule (5.1)
this semi-group is immediately L2-compact. By Proposition 7.7M is solid. The result
then follows from Proposition 7.9. ��
Remark 7.11 Anywhere in this paper the usage of semi-groups of central multipliers
can be replaced by more general semi-groups of modular multipliers, i.e. multipliers
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� : L∞(G)→ L∞(G) that commute with the modular group σϕ of the Haar state. In
turn one may apply averaging techniques to assure the existence of such semi-groups
associated with quantum groups, c.f. [18, Proposition 4.2].

The reason thatwemustworkwithmultipliers in this paper is to assure that the gradi-
ent bimodulesH∂ extend fromA-A-bimodules to normal L∞(G)-L∞(G)-bimodules.
It would be nice to have a more conceptual understanding in the general context of
von Neumann algebras for when this happens.

8 Related results: amenability and equivariant compressions

We collect some final corollaries. Firstly, we recall the following result from [22]. We
give their proof in terms of Stinespring dilations.

Theorem 8.1 (Theorem 3.15 of [22]) Let M be a von Neumann algebra and suppose
that there exists a conservative completely Dirichlet form Q associated with M such
that �Q has a complete set of eigenvectors with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . .

(with multiplicity 1, so an eigenvalue may occur multiple times). If

lim inf
n∈N

λn

log(n)
= ∞, (8.1)

then M is amenable.

Proof As Q is a conservative completely Dirichlet form there exists a Markov semi-
group (�t )t≥0 onM such that�(2)

t = e−t�Q . (8.1) implies that for any K > 0 we find
for large n that eλn > nK . So if K > t−1 we see that for large n we get e−tλn < n−1. So
e−t�Q is Hilbert–Schmidt. Let (Ht , ηt ) be the pointed Stinespring M-M-bimodule
of �t . By Lemma 2.3 for every t > 0 we have Ht is weakly contained in the coarse
bimodule ofM. As t → �t is strongly continuous we get thatH0 is weakly contained
in the coarse bimodule. Then as �0 = IdM,H0 is the identity bimodule and soM is
amenable. ��

As an application we give a von Neumann algebraic proof of a compression
result. Recall [36] that if � is a finitely generated discrete group then the equiv-
ariant compression s�(�) of � is the supremum over all s ≥ 0 such that there
exists a cocycle c : � → Hπ into some Hilbert space representation (π,Hπ )

with d(γ1, γ2)
s ≤ ‖c(γ1) − c(γ2)‖2. Recall we say that c is a cocycle if it satis-

fies c(γ1γ2) = c(γ1) + π(γ1)c(γ2) for all γ1, γ2 ∈ �. Necessarily s�(�) ≤ 1 as
cocycles are Lipschitz.

Corollary 8.2 (Theorem 5.3 [36]) Let � be a finitely generated discrete group. If for
the equivariant compression we have s�(�) > 1

2 then � is amenable.

Proof For δ > 0 small there is a cocycle c : �→ Hπ for some representation (π,Hπ )

of � such that

‖c(γ )‖Hπ
= ‖c(γ )− c(0)‖Hπ

≥ l(γ )
1
2+δ. (8.2)
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Then ψ(γ ) = ‖c(γ )‖2Hπ
is conditionally positive definite and so the semi-group

(e−tψ)t>0 of multiplication operators on �2(�) yields an L2-implementation of a

Markov semi-group and thus a Dirichlet form Q(ξ) = 〈ψ 1
2 ξ, ψ

1
2 ξ 〉. As (8.2) gives

ψ(γ ) ≥ l(γ )1+2δ we see that this Dirichlet form satisfies (8.1). So the proof is con-
cluded from Theorem 8.1. ��
Acknowledgements The author thanks Yusuke Isono,Marius Junge, Adam Skalski, Stefaan Vaes,Mateusz
Wasilewski and Makoto Yamashita for useful discussions and/or useful comments on the paper. The author
thanks the referee for suggesting several improvements to the paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Stable strong solidity and derivations in the tracial case

The final part of the proof of Proposition 7.9 requires a generalization of some of
the main results of [48]. The proof is almost identical to [48, Corollary B]. Similar
observations were made in [59, Remark 3.3] and it was suggested in the context of
Kac type quantum groups in [31, Remarks after Theorem 4.10]. Since we need both
a von Neumann version of the group theoretical results from [48] as well as a stable
version we present the proof here.

A.1Weak compactness

Troughout all of the appendix, let (M,L,Q) be triple of a finite von Neumann algebra
Mwith normal faithful tracial state τ , an amenable vonNeumann subalgebraQ ⊆M
and a von Neumann subalgebra L ofM with the property thatQ does not embed into
L inside M in the sense of Popa (notation Q ⊀M L), see [51,52] for details.

Recall that the stable normalizer sNM(Q) of Q in M was defined in (7.4). Next
we introduce the object sN◦M(Q) below for which we need the following terminology.
We refer to the discussion before [7, Proposition 3.6] for further details. Let EZ be
the conditional expectation of Q onto Z(Q), the center of Q. For x ∈ sNM(Q) set
zr

x to be the support of EZ (x∗x) and set zl
x to be the support of EZ (xx∗). Suppose

that x = v|x | is the polar decomposition of x . Then, we denote by αv the unique ∗-
homomorphism Z(Q)zx

r → Z(Q)zx
l determined by va = αv(a)v with a ∈ Z(Q)zx

r .
Then set αx = αv and we let �x be the Radon-Nykodym derivative between τ and
τ ◦ αx . We set,

sN◦M(Q) = {x ∈ sNM(Q) | ∃δ > 0 such that EZ (x∗x) ≥ δzr
x and EZ (xx∗) ≥ δzl

x }.
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As explained in the discussion before [7, Proposition 3.6], is that we have an equality
sN◦M(Q)′′ = sNM(Q)′′. We shall call the latter von Neumann algebra P . Moreover,
the partial isometries in sN◦M(Q) generate P .

Nowwe need the following weak compactness type property obtained in [7, Propo-
sition 3.6].

Proposition A.1 Let (M, τ ) be a finite von Neumann algebra with the CMAP. Let Q
be an amenable von Neumann subalgebra of M. Then there exists a net of positive
vectors ηn ∈ L2(Q⊗Qop) such that

(1) limn ‖(a ⊗ 1)ηn − (1⊗ aop)ηn‖2 = 0, for all a ∈ Q.

(2) limn ‖(x ⊗ 1)ηn(x∗�
1
2
x ⊗ 1)− (1⊗ xop)ηn(1⊗ x)‖2 = 0 for all x ∈ sN◦M(Q).

(3) 〈(x ⊗ 1)ηn, ηn〉 = τ(x), for all x ∈M.

Moreover for every partial isometry v ∈ sN◦M(Q) there exists a sequence of elements
T (v, k) in the unit ball of the algebraic tensor product M�Mop such that

lim
k

(

lim sup
n
‖(v ⊗ 1)ηn − (1⊗ vop)ηnT (v, k)‖2

)

=0,

lim
k

(

lim sup
n
‖(v∗ ⊗ 1)ηn − (1⊗ v)ηnT (v, k)∗‖2

)

=0.

A.2 Derivations

Now suppose that ∂ is a closable derivation on some σ -weakly dense ∗-subalgebra
⊆M into aM-M-bimoduleH. Moreover, assume that ∂ is real. Let ∂ be its closure.
By [27,57] (so in the tracial case) we have that Dom(∂)∩M is still a σ -weakly dense
∗-subalgebra on which ∂ satisfies the Leibniz rule. Replacing ∂ by ∂ we may assume
without loss of generality that ∂ is closed. We introduce notation (see [48,50]), for
α > 0,

� = ∂∗∂, ζα =
√

α

α +�
, ∂α = α−

1
2 ∂ ◦ ζα,

�α =
√

�

α +�
and θα = 1−�α.

Let eL be the Jones projection of M onto L; it is the map x�τ → EL(x)�τ with
EL :M→ L the τ -preserving conditional expectation. We further assume the type
of properness assumption:

θα ∈ C∗(MeLM), ∀α > 0, (A.1)

where C∗(MeLM) is the C∗-algebra generated byMeLM. This suffices to still get
the following result from [48, Lemma 5.2] (recall that we assumed that Q ⊀M L).
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Lemma A.2 Let (M,L,Q) be as before with M having the CMAP. Let ∂ be a real
closable derivation on M satisfying (A.1). Consider further notation as above. For
every α > 0 and a ∈M we have

lim
n
‖(∂α ⊗ 1)(a ⊗ 1)ηn‖ = ‖a‖2.

Proof For an element x in the Jones construction 〈M, eL〉 set

ϕ0(x) = lim
n
〈(x ⊗ 1)ηn, ηn〉.

From property (1) of Lemma A.1 it follows that ϕ0 is a Q-central state on 〈M, eL〉.
Further by (3) of Lemma A.1 we see that ϕ0 restricts as τ onM. AsQ ⊀M L and by
the Assumption A.1 we find from [48, Lemma 3.3] that ϕ0(a∗θ∗αθαa) = 0. Therefore

lim
n
‖(∂α ⊗ 1)(a ⊗ 1)ηn‖2 = ϕ0(a

∗∂∗α∂αa) = ϕ0(a
∗a − a∗θ∗αθαa) = ϕ0(a

∗a) = ‖a‖22.

��
We put K = H⊗ L2(M) as aM-M-bimodule and we denote ρ :Mop→ B(K)

for the right action. For α > 0 and p ∈ Q′ ∩M a projection we set

η
p,α
n = (∂α ⊗ 1)((p ⊗ 1)ηn) ∈ K. (A.2)

We proceed as in the proof of [7, Proposition 3.7].

Lemma A.3 Let (M,L,Q) be as before with M having the CMAP. Let ∂ be a real
closable derivation on M satisfying (A.1). Let p ∈ Q′ ∩M be any projection. There
exists a subnet, say η

p
i = η

p,αi
ni , of the vectors η

p,α
n and elements S(v, i) in the unit

ball of M�Mop indexed by partial isometries v ∈ sN◦M(Q) with the property that
for every v ∈ sN◦M(Q),

lim
i
‖(ζαi (v)⊗ 1)ηp

i − (1⊗ vop)η
p
i (ζα ⊗ id)(S(v, i))‖2 = 0,

lim
i
‖(ζαi (v)∗ ⊗ 1)ηp

i − (1⊗ v)η
p
i (ζα ⊗ id)(S(v, i))‖2 = 0,

and further limi ‖ηp
i ‖2 = ‖p‖2. Moreover, for every x ∈M,

‖(∂α ⊗ 1)(x ⊗ 1)ηαi ‖ = ‖x‖2. (A.3)

Proof Let ηn be the vectors constructed in Proposition A.1. Let the net be indexed
by tuples (F, G, δ) with F a finite subset of partial isometries in sN◦M(Q), G ⊆M
finite and δ > 0. Given such i = (F, G, δ) we apply Proposition A.1 to find k large
such that for all v ∈ F ,

lim sup
n
‖(v ⊗ 1)ηn − (1⊗ vop)ηnT (v, k)‖2 < δ,

lim sup
n
‖(v∗ ⊗ 1)ηn − (1⊗ v)ηnT (v, k)∗‖2 < δ.
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By [48, Lemma 4.2] we may find α large such that for all v ∈ F we get,

lim sup
n
‖(ζα(v)⊗ 1)(∂α ⊗ id)((p ⊗ 1)ηn)− (∂α ⊗ id)((vp ⊗ 1)ηn)‖2 < δ,

and for all v ∈ F ,

lim sup
n
‖(∂α ⊗ id)((p ⊗ 1)ηnT (v, k))

−(∂α ⊗ id)((p ⊗ 1)ηn)(ζα ⊗ id)(T (v, k))‖2 < δ,

and similarlywith T (v, k) replaced by T (v, k)∗. Combining these estimates and recall-
ing the definition of η

p,α
n from (A.2) yields

‖(ζα(v)⊗ 1)ηα,p
n − (1⊗ vop)η

α,p
n (ζα ⊗ id)(T (v, k))‖2 < 3δ,

‖(ζα(v∗)⊗ 1)ηα,p
n − (1⊗ v)η

α,p
n (ζα ⊗ id)(T (v, k))‖2 < 3δ,

and moreover, these estimates hold uniformly in n. Then Lemma A.2 shows that for
any α > 0 we may take n so large that |‖ηp,α

n ‖ − ‖p‖2| < δ. Moreover, the same
Lemma A.2 shows that for x ∈M we get (A.3). ��

Nowagain let p ∈ Q′∩M be arbitrary and let ηp,αi
ni be the net of vectors constructed

in Lemma A.3. Set the functional on ρ(Mop)′ ∩ B(K) given by,

ϕp,i (x) = ‖p‖−22 〈(x ⊗ 1)ηp,αi
ni , η

p,αi
ni 〉.

By Lemma A.3 define the state �p by �p(x) = limi ϕp,i (x), x ∈ ρ(Mop)′ ∩ B(K)

for some ultralimit.

Lemma A.4 Let (M,L,Q) be as before with M having the CMAP. Let ∂ be a real
closable derivation on M satisfying (A.1). Consider further notation as above. Fix
p ∈ Q′ ∩M and let P = sNM(Q)′′. For a ∈ P we have

lim
i
|ϕp,i (xζαi (a))− ϕp,i (ζαi (a)x)| = 0, (A.4)

uniformly for x ∈ B(K) ∩ ρ(Mop)′ with ‖x‖ ≤ 1. Further if a = up for a unitary u
in P then

lim
i
|ϕp,i (ζαi (a)∗xζαi (a))− ϕp,i (x)| = 0, (A.5)

uniformly for x ∈ B(K) ∩ ρ(Mop)′

Proof Firstly, let x ∈ B(K) ∩ ρ(Mop)′. By Lemma A.3 we get for partial isometries
v ∈ sN◦M(Q)that

lim
i

ϕp,i (xζαi (v)) = lim
i
〈(xζαi (v)⊗ 1)ηp

i , η
p
i 〉 = lim

i
〈(x ⊗ vop)η

p
i (ζα ⊗ id)(S(v, i)), ηp

i 〉
= lim

i
〈(x ⊗ 1)ηp

i , (1⊗ v)η
p
i (ζα ⊗ id)(S(v, i))∗〉 = lim

i
〈(x ⊗ 1)ηp

i , (ζαi (v)∗ ⊗ 1)ηp
i 〉

= lim
i
〈(ζαi (v)x ⊗ 1)ηp

i , η
p
i 〉 = lim

i
ϕp,i (ζαi (v)x).
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Moreover, as these limits actually hold on the vector level this argument shows that

lim
i
|ϕp,i (xζαi (v))− ϕp,i (ζαi (v)x)| = 0.

uniformly for x in the unit ball of B(K) ∩ ρ(Mop)′.
We wish to extend this commutation type property beyond partial isometries v ∈

sN◦M(Q) as follows. Take v,w ∈ sN◦M(Q) partial isometries. By Cauchy-Schwarz
we see

|ϕp,i (xζαi (v))− ϕp,i (xζαi (w))|2 ≤ ϕp,i ((ζαi (v)

− ζαi (w))∗(ζαi (v)− ζαi (w)))ϕp,i (xx∗).

Taking limits (using [48] [Lemma 4.2] and (A.3)) we find

lim
i
|ϕp,i (xζαi (v))− ϕp,i (xζαi (w))|2 ≤ �(xx∗)‖v − w‖22.

Similarly, limi |ϕp,i (ζαi (v)x) − ϕp,i (ζαi (w)x)|2 ≤ �(x∗x)‖v − w‖22. Therefore by
L2-density in P of the span of partial isometries in sN0

M(Q) we see that in fact for all
a ∈ P we get that

lim
i
|ϕp,i (xζαi (a))− ϕp,i (ζαi (a)x)| = 0,

uniformly on the unit ball of B(K) ∩ ρ(Mop)′. This yields the first claim. Now if
u ∈ P is a unitary we get again from [48] [Lemma 4.2] and (A.3) that

lim
i

ϕp,i (ζαi (up)∗ζαi (up)) = ‖p‖−22 lim
i
‖(ζαi (up)⊗ 1)(̃δαi ⊗ 1)((p ⊗ 1)ηi )‖2

= ‖p‖−22 lim
i
‖(̃δαi ⊗ 1)((up ⊗ 1)ηi )‖2 = ‖p‖−22 ‖up‖22 = 1.

��
We now follow the proof of [48] to obtain the following.

Theorem A.5 Let (M,L,Q) be as before with M having the CMAP. Let ∂ be a real
closable derivation on M satisfying (A.1). Then sNM(Q)′′ is amenable.

Proof Take a non-zero projection p ∈ sNM(Q)′ ∩M (so certainly p ∈ Q′ ∩M)
and let F ⊆ sNM(Q)′′ be a finite set of unitaries. By [37, Lemma 2.2] to show that
sNM(Q)′′ is amenable it suffices to show that

‖
∑

u∈F

up ⊗ up‖M⊗Mop = |F |. (A.6)

By Lemma A.4 we find that

lim
i
|ϕp,αi (ζαi (up)∗xζαi (up))− ϕp,αi (x)| = 0, (A.7)
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uniformly for x ∈ B(K) ∩ ρ(Mop)′ with ‖x‖ ≤ 1. As H is weakly contained in the
coarse bimodule we get that the left M action on H⊗ L2(M) extends to a ucp map
� : B(L2(M))→ ρ(Mop)′ ∩ B(H⊗ L2(M)). Then ψp,i = ϕp,αi ◦� satisfies

lim
i
|ψp,i (ζαi (up)∗xζαi (up))− ψp,i (x)| = 0,

uniformly for x ∈ B(K)∩ρ(Mop)′ with ‖x‖ ≤ 1. From Powers-Stormer we get that

lim
i
‖
∑

u∈F

ζαi (up)⊗ ζαi (up)‖M⊗Mop = |F |. (A.8)

Since ζαi is ucp we see that (A.6) is larger than (A.8) which concludes the clam. ��
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