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Abstract

Various active and passive orbital measurements have provided evidence for surficial water ice within some lunar
permanently shadowed reglons (PSRs), especially from near-infrared observations by the M? instrument. However,
radar identification of lunar ice has so far remained ambiguous. Here, we examine the radar-inferred dielectric
properties of lunar PSRs and illuminated craters to investigate the potential for ice. We show that the dielectric
permittivity of proposed surficial ice-bearing PSRs is lower and has a different distribution than illuminated crater
floors of the same diameter range. This dlfference is confirmed via polarimetric analysis. However, we find that
regions with fewer or greater numbers of M? detections do not have meaningfully different dielectric properties.
The lack of correlation with M detections suggests the differences in radar properties are likely due to a smoother
surface at the wavelength scale, perhaps as a consequence of the presence of deeper ice, as suggested by prior

studies.

Unified Astronomy Thesaurus concepts: Lunar surface (974); Radar observations (2287); Lunar science (972)

1. Introduction

Permanently shadowed regions (PSRs) at the lunar poles are
areas that have remained in shadow over geologic timescales
(N. Schorghofer & R. Rufu 2023). Current mapping shows that
these PSRs can exist poleward of +58° latitude over geologic
timescales (J. A. McGovern et al. 2013). The presence and
stability of water ice in these PSRs has long been considered a
possibility due to its low vapor pressure at extremely low
temperatures (K. Watson et al. 1961; J. R. Arnold 1979;
A. Vasavada 1999). A number of measurements over the past
few decades have provided evidence for the existence of buried
water ice within PSRs through remote sensing using neutron
spectroscopy (W. C. Feldman et al. 1998), radiometry
(D. A. Paige et al. 2010), lunar impact experiments
(A. Colaprete et al. 2010), and crater geometry (L. Rubanenko
et al. 2019). Recently, studies have also shown possible
detections of surficial (or surface exposed) water ice at the lunar
south pole using a diverse set of remote sensing measurements
including neutron spectroscopy (D. J. Lawrence et al. 2011),
ultraviolet albedo (P. O. Hayne et al. 2015), Lunar Orbiter
Laser Altimeter (LOLA) reflectance (E. A. Fisher et al. 2017),
and far-infrared emissivity (E. Sefton-Nash et al. 2019), with
some of the strongest evidence coming from near-infrared
(NIR) measurements from the M® instrument onboard
Chandrayaan-1 (S. Li et al. 2018). These NIR measurements
were combined with data from other orbiting instruments to
create a map of PSRs with the highest likelihood of containing
surficial water ice (M. Lemelin et al. 2021). Radar measure-
ments can also provide complimentary observations as radar is
sensitive to both wavelength-scale physical characteristics, and
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electrical properties of the near-surface integrated over the
penetration depth (meter scale compared to micron scale for
NIR measurements). For example, large water ice deposits on
the surfaces of icy moons (D. B. Campbell et al. 1977;
S. J. Ostro et al. 1980) and in the PSRs of Mercury
(J. K. Harmon & M. A. Slade 1992; M. A. Slade et al. 1992;
E. G. Rivera-Valentin et al. 2022) were detected by ground-
based measurements of circular polarization ratio (CPR) that
exceeded unity and a high radar albedo at high incidence
angles.

For the Moon, radar observations have been more ambig-
uous. Bistatic radar measurements using an Earth-Moon-
Clementine geometry found evidence for ice in the form of
an opposition surge, which was initially thought to confirm the
presence of water ice at the lunar south pole (S. Nozette et al.
1996). However, ground-based measurements of lunar PSRs
using the Arecibo observatory did not identify unique CPR
enhancements nor high radar albedo (B. A. Campbell et al.
2003; N. J. S. Stacy et al. 1997; D. B. Campbell et al. 2006).
Later, orbital radar measurements taken by the Mini-RF
instrument onboard the Lunar Reconnaissance Orbiter (LRO)
found anomalous craters with high CPR interiors, low CPR
exteriors, and high radar albedo (P. D. Spudis et al. 2013).
Although the results were initially thought to confirm the
existence of water ice, other analyses (W. Fa & Y. Cai 2013;
V. R. Eke et al. 2014) showed that the measurements could be
caused by wavelength-scale surface features (roughness, high
rock abundance, etc.). Recent S-band bistatic measurements of
CPR using an Arecibo-Moon-Mini-RF geometry show a strong
opposition surge between a 0° and 2° bistatic angle near
Cabeus crater that could indicate the presence of blocky, near
surface water ice deposits (G. Patterson et al. 2017). This result,
though, may be inconsistent with 0° (i.e., monostatic) Mini-RF
data of the same region (C. D. Neish et al. 2011). Much of this
ambiguity in lunar radar ice detection is because the dominant
scattering contributor to CPR varies as a function of incidence
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angle (see Figure 10 from W. Fa et al. 2011). Furthermore,
even in places known to have thick pure ice deposits like
Mercury, CPR is still an unreliable diagnostic compared to
newer polarimetric decomposition techniques (see Figures 5(c)
and (d) in E. G. Rivera-Valentin et al. 2022).

Overall, the ambiguity of radar measurements of water ice on
the Moon indicates that the physical form of ice, its mixing
with regolith (K. M. Cannon et al. 2020), or its formation over
time (N. Schorghofer & R. Rufu 2023) is different compared to
Mercury or the Galilean moons. Nevertheless, radar remains an
invaluable tool for water ice detection due to its ability to make
measurements in shadowed regions and determine the
dielectric properties of the surface and subsurface.

The dielectric constant is a material property described by a
dimensionless, complex number. The real part (¢,) describes
how much polarization a material experiences in an electric
field (such as a radar wave), and the imaginary part describes
the absorption of that field in a lossy medium. Early attempts at
inverting the lunar surface dielectric constant relied on
empirical fits based on Apollo samples (G. Olhoeft &
D. Strangway 1975). Recently, a number of inversion methods
have been created by fitting scattering laws to measurements
from dual-polarized radars like the Dual-frequency Synthetic
Aperture Radar onboard Chandraayan-2 (S. S. Bhiravarasu
et al. 2021) and hybrid-polarized radars like Mini-RF
(B. A. Campbell 2002; S. Shukla et al. 2020; A. Kumar
et al. 2022). Specifically, inverting the real part of the dielectric
constant of the regolith has shown promise for lunar water ice
characterization (N. Liu et al. 2017), especially on the floors of
craters (E. Heggy et al. 2020; Y. Gao et al. 2023). Newer
approaches include the use of neural networks as a means to
solve the inversion problem for larger regions of the lunar
surface (S. Shukla et al. 2024), including the poles and PSRs
(see Section 2.1). It is important to note that any inversion
model of the lunar surface will obtain a derived dielectric
constant value, which may not correspond directly with values
measured in a laboratory setting. Any given inversion on real
radar data is influenced both by the assumptions used to set up
the model and by imperfect knowledge of the geophysical
parameters of the surface being observed.

In this paper, we use an existing dielectric constant inversion
model and radar polarization mosaics of the south pole to
quantify population differences between PSRs suspected to
contain surficial water ice and non-PSR illuminated crater
floors. Section 2 describes the data sets and downselection
techniques used for the comparative analysis, and Section 3
describes observed differences within the two crater popula-
tions as well as the correlation to other remote sensing
data sets.

2. Data Sets and Methods
2.1. Surface Dielectric Constant Inversion Model

The dielectric constant inversion model used in this work is
that of S. Shukla et al. (2024). The map of ¢, produced therein
used existing Mini-RF S-band (2.38 GHz, 12.6 cm) controlled
south polar mosaics at a resolution of 128 ppd (H. Winters &
D. B. Bussey 2008; R. L. Kirk et al. 2013). Compared to both
classical curve fits (G. Olhoeft & D. Strangway 1975) that rely
on difficult-to-obtain geophysical parameters for the poles (e.g.,
surface bulk density) or remote sensing approaches that require
assumptions on the roughness of the lunar surface
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(B. A. Campbell 2002), the S. Shukla et al. (2024) model
can determine the dielectric constant of more diverse regions of
the lunar south pole where our two populations reside
(described in Section 2.2). Furthermore, since our goal is to
evaluate the presence of surficial water ice, the selected model
is useful as it inverts only surface €, and not the combined
surface and subsurface values as previous models have done.
While the selected model is in good agreement with Apollo
sample drive core measurements of €,, we also perform an
independent check to confirm the relative dielectric constant
differences between our two populations using an established
polarimetric analysis technique (Section 3.2).

Figure 1 shows all potential surficial-ice-bearing PSRs used
in this study, previously mapped by S. Li et al. (2018), overlain
on the controlled south polar mosaic of surface e, from
S. Shukla et al. (2024). As is typical for radar measurements,
the mosaic shows that €, increases on radar-facing slopes (e.g.,
crater walls), which requires us to filter pixels by slope value
(described in Section 2.2). The average surface dielectric
constant for the mosaic is ¢, = 2.55. Note that there are a few
data strips located between 120° and 150° west latitude that
have image artifacts. Data from these strips were not used in
this analysis as neither of our two defined populations were
within the image artifact regions. The 1o per pixel uncertainty
of the ¢, inversion due to the influence of topography on look
direction reported in S. Shukla et al. (2024) is 1.1 for the entire
south polar mosaic. This uncertainty is reduced to <0.5 for
regions south of 80°S, where the vast majority of our two
populations reside. We further reduce this uncertainty by
restricting our analysis to low slope regions (Section 2.2) and
using measures of central tendency rather than individual pixels
(e.g., the median value of all low slope pixels within a
given PSR).

2.2. Data Selection

In our analysis, we compare the dielectric constant of two
different groups of craters: illuminated craters and potential
surficial-ice-hosting craters. For both groups, we focused on
simple craters that range from 5 to 25 km in diameter. This size
range was chosen because prior studies have shown that the
dielectric constant of both Sun-illuminated polar and equatorial
crater floors is nearly constant as a function of diameter within
this range (E. Heggy et al. 2020; Y. Gao et al. 2023), thus
making any deviations easier to detect.

For the illuminated crater group, we use the LROC database
of simple craters of size 5-20 km in diameter (R. Z. Povilaitis
et al. 2018) and filter these craters to remove those in which a
PSR takes up a significant fraction of its area. To do this, we
used mapped PSRs >5 km? in area, derived from LOLA and
LROC data (E. Mazarico et al. 2011; H. M. Brown et al. 2022).
If any of these polygons intersect with a crater in the database,
that crater is removed from the data set. We also restrict our
analysis to craters poleward of 75°S to match the latitudinal
extent of PSR-hosting craters. Finally, we use a LOLA slope
map (G. A. Neumann 2009; downsampled to the pixel scale of
the Mini-RF dielectric constant mosaic) to include only those
pixels on the crater floors that have slope values <7°. Slope
values below this threshold do not significantly affect radar
returns in S-band at the Mini-RF nominal incidence angle
(T. W. Thompson et al. 2011). After this filtering, 151 crater
floors remain, which we refer to as the illuminated crater floor
data and which acts as a control data set.
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Figure 1. Controlled polar mosaic of real dielectric constant (e,) for the lunar south pole from 70° to 90° S. Lines of latitude are every 2° and lines of longitude every
30°. PSRs within craters of size 5-25 km are shaded in black. The bottom shows a zoomed version with permanently shadowed areas shaded in white. Figure modified

from S. Shukla et al. (2024) to include PSRs.

For the potential surficial-ice-hosting craters, we select
permanently shadowed areas suspected to host surficial water
ice and that also have modeled ice stability depths between O
and 2.5 m (a range mostly accessible by Mini-RF’s penetration
depth). This database was obtained from M. Lemelin et al.
(2021), which identifies 169 surficial-water-ice-bearing PSRs,
as mapped by the M instrument (S. Li et al. 2018). Their data

set includes polygons of the PSRs along with the number of
pixels with water ice detections per PSR, both as a total count
and on a per-area basis. These values are for each PSR as a
whole. We manually cross-referenced this PSR data set with
that of S. J. Robbins (2019) to select only those PSRs that have
a distinct single host crater with no ambiguous shared PSRs
and that fall within a size range of 5-25 km (see Appendix A
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the first and third quartiles for each region and the dashed horizontal line denotes the mean of each population’s median. (b) Histogram of ¢, for both populations

described in (a).

for the exact correlated Lemelin PSR IDs and Robbins crater
IDs). Doing this reduced the total PSR database from 169 to 51.
In order to make appropriate comparisons to the illuminated
crater floor data set, we further filtered the PSR database by
only including pixels that have a LOLA slope value <7°. For
brevity, we refer to this data set of potential surficial ice PSRs
simply as surficial ice PSRs. We feel this is appropriate since a
number of recent studies show that these regions have a high
likelihood of containing surface ice (see Section 1).

3. Results and Discussion

3.1. Dielectric Properties of Illuminated Crater Floors
versus PSRs

As detailed in Section 2.2, we now compare two populations
that represent the highest known likelihood for crater floors
lacking water ice (the illuminated crater group) and crater floors
containing surface exposed ice (the surficial ice PSR group).
The illuminated craters thus act as a direct control for potential
surficial-ice-hosting craters. Consistent with prior studies
(E. Heggy et al. 2020; Y. Gao et al. 2023), we find no trend in
€, for either population as a function of crater diameter for this
diameter range (Figure 2(a)). However, there are two major
differences in the distribution of ¢, values between the two
populations. The first is that the surficial ice PSRs, as a
population, have a consistently lower ¢, than the illuminated

crater floors. Specifically, the surficial ice PSRs have a median
average ¢, of 2.2, whereas the illuminated crater floors are 2.5.
The second major difference is that the surficial ice PSRs have
a much lower interquartile spread in their ¢, values irrespective
of the host crater diameter. There are a few outliers, the most
notable being the PSR inside Spudis crater (shown at 13.09 km
diameter). This particular PSR has both the highest ¢, and the
largest interquartile spread in our data set. A histogram of the
distribution of the two populations shows that the surficial ice
PSR ¢, distribution is on average lower than that of the
illuminated crater floors (Figure 2(b)). To determine if these
two distributions are statistically similar, we perform a Monte
Carlo simulation of the two-sample Kolmogorov—Smirnov
(K-S) test between these two populations using each individual
crater’s respective median and standard error of the median
values. We find an average p-value <0.01, giving us strong
evidence that the populations are not derived from the same
underlying distribution. Thus, while there is some overlap in
dielectric constant between the two populations, their statistical
distributions are meaningfully different. To further illustrate
this point, we also performed a similar analysis on
PSRs > 5km? in areas that have zero water ice detections
from the M instrument and fall within the same crater diameter
and latitude range (see Figure 5 in Appendix B). We find a
median average €, of 2.4, which is closer to the illuminated
crater group than the surficial ice PSR group. Thus, simply
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being in a PSR is not enough to account for the differences in e,
observed between the two populations.

Both model-based and physical factors can decrease the
derived ¢, of the lunar surface. One important model-based
factor in our selected inversion approach is surface roughness,
which, in the context of radar remote sensing, is the surface
statistical distribution at the wavelength scale (B. A. Campbell
2002). Our selected model, like others, cannot perfectly
distinguish between the effects of surface roughness and
surface €, and thus has a tendency to obtain higher dielectric
constant values for rougher surfaces (S. Shukla et al. 2024).
Recent analysis of surface roughness in ice stability zones has
shown that surfaces where ice is stable are smoother than
neighboring surfaces where temperatures are too warm for ice
(A. N. Deutsch et al. 2021; S. Moon et al. 2021). This was
found in ice stability regions with and without M* detections
(suggesting that buried ice deposits could be playing a role). An
influence from terrain smoothing would be consistent both with
our results of a lower ¢, and with the smaller interquartile
spread (due to a more homogeneous surface roughness) for
permanently shadowed areas. Other physical factors that can
potentially decrease €, are a reduced boulder population
(V. T. Bickel et al. 2021) and the extreme temperatures of
lunar regolith within PSRs (M. Kobayashi et al. 2023).
Depending on its form, surficial water ice can also play a role
in decreasing the ¢, of crater floors. Pure water ice at lunar PSR

temperatures is expected to have a ¢, = 3.15 (see Table 1 in
W. Fa et al. 2011, and references therein), whereas mixtures of
regolith, ice, and vacuum can have a ¢, <2 depending on the
porosity and volume percentage of ice (W. Fa et al. 2011;
E. Heggy et al. 2019). While thick deposits of pure water ice
likely cannot be uniquely characterized by measuring ¢,, the
overall decrease in €, compared to illuminated floors shows that
these PSRs are inconsistent with the presence of thick pure
water ice on the surface. This is in agreement with prior
observations (see Section 1) that rule out these types of deposits
in lunar PSRs. However, our results could be consistent with
higher porosity or the presence of porous regolith /ice mixtures
that can cause a decrease in the average €, within each PSR.

3.2. Polarimetric Properties of Illuminated Crater Floors
versus PSRs

In order to verify that our chosen inversion model is
revealing true differences in real dielectric constant between
our two populations, we implemented an independent check on
the inversion results. This approach is based on polarimetric
analysis of each region’s distribution of the same sense circular
(SC; &sc) and opposite sense circular (OC; &oc) polarization
values (A. K. Virkki & S. S. Bhiravarasu 2019; E. G. Rivera-
Valentin et al. 2022; A. K. Virkki et al. 2023). The 65¢c and 6p¢
values were derived from Mini-RF S-band controlled polar



THE PLANETARY SCIENCE JOURNAL, 6:72 (9pp), 2025 March

Himani et al.

a
1+ s 6 ' ' ' ' ' ' I
g
‘Bh
Q
- _
=
=
= L i
. 1 0ee ¢
g
)
3
46 I~ =
A
=
o UBEENOEENO o 40 @0@ 0 | : . ¥
2 2.2 2.4 2.6 2.8 3.2 34 3.6 3.8 4
Real Dielectric Constant (e, )
b —o— 1 1 T
100 - |
g I ]
.x .
—_
5}
A J
n
=
.8 4
+ 4
L .
2 1
o
5 ]
E 4
N \ ! \ ! ‘ | | ‘ E
2 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4

Real Dielectric Constant (e, )

Figure 4. (a) Scatter-histogram plot: the bottom is a scatterplot showing illuminated crater floors with no M> detections (gray), surficial ice PSRs with one M>
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histogram of each of the three populations. (b) M> detections per km? versus e, for surficial ice PSRs. The e, values are the median and interquartile range within each

region.

mosaics of the full Stokes vector (R. L. Kirk et al. 2013) using
the procedure described in M. Reid (2010). In an &sc— 6oc
space, differences in the intercept of a best-fit line through the
data represent relative differences in the dielectric constant.
Furthermore, the differences in slope of a best-fit line are due to
either particle size distribution or morphology (A. K. Virkki &
S. S. Bhiravarasu 2019). To accentuate differences, we segment
the two populations using a threshold of €, = 3.0 so that only
surficial ice PSRs with an average ¢, below this value and only
illuminated crater floors with an average ¢, above this value are
selected. This threshold is a simple way to ensure the
polarimetric analysis is applied to two distinct €, populations
rather than comparing overlapping ¢, distributions. Further data
reduction was done to remove outliers in both data sets with
large errors (i.e., 1o errors that fall below zero dsc or Goc). The
intercept values of the two populations are 0.001 + 0.009
for the surficial ice PSRs and 0.042 4+ 0.030 for the
illuminated crater floors (Figure 3). From A. K. Virkki &

S. S. Bhiravarasu (2019), this implies that the inversion is
producing, at minimum, relative differences in dielectric
constant between the two segmented populations. This is
consistent with the results from the full data set shown in
Section 3.1 and gives confidence that the differences in surface
¢, between surficial ice PSRs and illuminated crater floors are
physical and not a result of bias within the inversion process.
Slope values of the two segmented populations are 2.6 4+ 0.4
for the surficial ice PSRs and 1.1 £+ 0.5 for the illuminated
crater floors. The larger slope value for the surficial ice PSRs
may imply either a particle size distribution with fewer
wavelength-scale particles (e.g., discrete rocks or cobble) or a
particle morphology that is more rounded than those within the
illuminated crater floors. Fewer wavelength-scale particles
could be caused by a decrease in rock abundance within PSRs
and more rounded particle morphologies could be caused be
due to ice condensation on regolith particles, similar to how
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freeze—thaw cycles can affect the geometry of terrestrial soil
particles (Q. Liu et al. 2023).

3.3. Comparison to M° Infrared Ice Detections

The data set of surficial-ice-bearing PSRs reported in
M. Lemelin et al. (2021) includes the number of M> pixels
within each PSR that show a positive detection of surficial
water ice as determined by S. Li et al. (2018). We now segment
the surficial ice PSRs into two categories: a single M* detection
and multiple M® detections (Figure 4(a)). The vast majority of
the multiple detections are between 2 and 10 M> pixels, with
two notable outliers: Shackleton (N =34), and an unnamed
crater north of Shackleton and east of Sverdmp (N=36). All
illuminated crater floors have no M® water ice detections. For
visualization purposes, Figure 4(a) also shows a kernel density
estimate (Gaussian kernel with bandwidth of 0.0732) of the
distribution of M detections of each category defined above as
a function of ¢,. From this, we can see that the surficial ice
PSRs have a ¢, distribution that is clustered on the lower end
regardless of the number of M3 detections. In contrast, the
illuminated crater floor regions have a broader distribution of ¢,
values, with the majority between €, = 2. 2 and 3. The peak of
the distribution for single and multiple M> detection PSRs is

= 2.18 and 2.14, respectively, whereas the peak for the
illuminated crater floors is €, = 2.26. Regions with a single
detection versus multiple detections do not seem to have a
meaningfully different distribution of ¢,. We confirm this by
running another Monte Carlo snnulatlon of two- sarnple K-S
tests with both the single and multiple M detection regions and
find an average p-value >0.5, indicating insufficient evidence
that these two populations are derived from different
distributions.

These results show that the distribution of ¢, values can be
used as an independent check on future detections of porous
water ice on the surface relative to NIR spectroscopy.
However, if a greater number of M> detections correspond to
a greater mass,/volume percentage of ice, our analysis of ¢, is
not sensitive enough to discern differences between lower and
higher concentrations of ice. Furthermore, we find no increase
in M? detections on a per-area basis for surficial ice PSRs with
lower average ¢, (as shown in Figure 4(b)), which would be
expected if the lower €, was exclusively due to the presence of
porous ice mixtures on the surface.

4. Conclusions

We applied an existing surface real dielectric constant
inversion model to two populations of simple crater floors of
size range 5-25km in diameter. The first are crater floors
containing PSRs that are suspected to contain surficial water ice
as measured by the M? instrument (i.e., surficial ice PSRs), and
the second are floors of illuminated craters We find that the
median surface €, within these PSRs is, on average, lower than
that of illuminated crater floors and generally has a smaller
interquartile spread. Polarimetric analysis was used as an
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independent check to validate the inversion results, showing
that not only is e, for surficial ice PSRs lower (consistent with
our prior analysis) but also that these regions likely have a
different scatterer size distribution or morphology. Looking at
the number of M> water ice detections within each region, we
find that there is no difference in the distribution of ¢, between
those surficial ice PSRs that contain a single M detection
compared with those that contain multiple detections. Perhaps
the increase in water ice concentration going from a single
detection to multiple detections is still not sufficient to be
within the sensitivity of our analysis. Likewise, the number of
M? detections per square kilometer within these PSRs does not
correlate with the median €, within each respective region.
However, we note that the size of M pixels is much larger than
that of Mini-RF, so this lack of correlation may not apply to
many of the smaller craters, which only contain one or two
pixels. Thus, while the difference in €, for our two populations
of crater floors could be consistent with the presence of porous
ice mixtures, a smaller interquartile spread and lack of
correlation to M> pixel detections (both in total pixels and on
a per-area basis) suggests that a smoother surface may be a
more apt explanation for the lower €, observed within these
PSRs. The smoother surface could be a secondary effect of the
presence of water ice either on the surface or subsurface. Future
work in this area would require a full treatment of CPR
modeling (accounting for both the presence of surface ice and
wavelength scale near-surface roughness) to determine whether
radar polarization supports a smoother surface within these
surficial ice PSRs. Still, radar data can play a complementary
role to the detection and characterization of surficial ice
deposits from NIR instruments such as M. Since each type of
measurement is sensitive to different physical properties of
water ice, they help serve as independent checks on each other.
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Appendix A
Associated Craters and PSRs

Table 1 shows all PSR IDs and associated crater IDs used in
our analysis.
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Table 1 Table 1

PSRs (Lemelin FID) and Associated Crater (Robbins ID) (Continued)
PSR (Lemelin FID) Crater (Robbins ID) PSR (Lemelin FID) Crater (Robbins ID)
14 10-2-000451 100 10-2-001565
16 10-2-000470 104 10-2-001739
19 10-1-072826 106 10-2-002050
2 10-2-012400 107 10-2-001709
24 10-1-000708 108 10-1-090536
% 10-1-000710 111 10-2-001736
27 10-2-002449 113 10-1-000880
28 10-1-079428 114 10-2-012927
29 10-2-002109 116 10-1-000875
31 10-2-001254 119 10-2-001726
33 10-1-079219 120 10-2-001695
34 10-2-001268 121 10-1-094454
35 10-1-082923 122 10-1-094341
36 10-1-083166 123 10-2-001853
39 10-2-001298 124 10-1-094222
40 10-1-083342 125 10-2-001809
41 10-1-083146 129 10-2-001823
0 10-1-000792 131 10-2-009139
43 10-2-001272 132 10-2-001944
44 10-2-001365 133 10-1-094318
50 10-1-000791 135 10-1-094272
51 10-2-001391 136 10-2-001771
53 10-2-001392 137 10-2-001906
55 10-2-004380 138 10-2-001903
56 10-2-004493 142 10-2-001960
58 10-2-001406 143 10-1-000918
59 10-2-001352 144 10-2-013204
60 10-2-001403 146 10-1-099087
61 10-2-001372 147 10-2-001978
63 10-2-001354 149 10-1-102381
64 10-2-001407 151 10-1-000919
67 10-2-001494 152 10-1-000935
68 10-1-001314 158 10-2-013474
70 10-2-000665 159 10-2-013479
7 10-2-001488 160 10-2-013471
74 10-2-001477 163 10-1-113145
75 10-2-001483 165 10-2-014104
76 10-2-001451 168 10-2-014239
77 10-2-001520
78 10-2-000694
79 10-1-088585
81 10-1-000851
83 10-1-001313 Appendix B
84 10-2-002046 PSRs without Surficial Ice Detections
87 10-2-001594 i ) ) )
03 10-1-090401 Figure 5 shows the dielectric constant as a function of host
95 10-2-001624 crater diameter for PSRs > 5 km? that have zero water ice
99 10-2-006663 detections from the M? instrument.
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Figure 5. Median real dielectric constant (¢,) within PSRs lacking surficial water ice detections as a function of crater diameter. Error bars show the first and third
quartiles for each region and the dashed horizontal line denotes the mean of the population’s median.
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