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Abstract
Over the last decade, an increasing amount of data has become available for data analysts to un-
derstand. Datasets containing books, images, networks, or other types of data have been studied.
A recent group of methods proposes to analyze samples in datasets based on a description of their
shape. This group of methods is often referred to as Topological Data Analysis (TDA). In this thesis, an
extension to the most commonly used TDA method, called Persistent Homology (PH), is proposed. PH
only describes topological features, while this extension additionally allows for the description of geo-
metric properties. The new information is obtained via the persistent Laplacian, a recently proposed
operator that encodes the topological information of persistent homology in its kernel and geometric in-
formation in its non-zero spectrum. The persistent Laplacian contains a lot of information and extracting
the relevant parts has not yet been standardized. In this thesis, a new operator, the persistent multi-
plicity operator, is proposed. The new operator summarizes the information of the persistent Laplacian
such that it can easily be extracted and used to extend PH. This allows the many previously studied
methods based on persistent homology to additionally describe geometric properties, as opposed to
only topological features. For the multiplicity operator, the trace is analyzed and the features captured
by it are discussed. Besides analyzing the sum of the eigenvalues, it is argued that individual eigenval-
ues could contain more information. However, these are deemed hard to understand. Therefore, an
adjusted multiplicity operator is proposed that contains separately interpretable eigenvalues. Finally,
the operators are used to classify handwritten digits from the MNIST dataset and to make statistical
tests that can detect different generation processes of artificially made cross sections of crystalline
structures.
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1
Introduction

With the rise of Machine Learning and Artificial Intelligence in recent years, more and more data across
various fields and applications has become available. Numerous methods and models have been
proposed to interpret this data, to make predictions with the data and to visualize the data. These
range from older methods such as linear regression and logistic regression to newer neural networks.
These methods often focus on predicting a distribution in some high-dimensional space, often called
feature space.

Instead of directly predicting the distribution in this feature space, one could look at first describing
its properties. For example, in image data, often all pixel values of an image are used to create a very
high dimensional representation of the image. However, only certain shapes within the image are often
of importance.

This brings the category of methods from the field of Topological Data Analysis (TDA). These meth-
ods try to combine the abstract field of topology with the field of data science. Topology looks at shapes
in abstract spaces and provides ways of describing these shapes. TDA methods convert data to such
a shape, allowing the usage of the shape descriptions in methods such as linear regression [21]. De-
scribing the shapes is done in terms of topological invariants, properties of the shape that remain intact
under deformations like stretching, twisting or bending. These invariants include, number of connected
components, number of loops and the number of voids.

The most commonly used method in TDA is called Persistent Homology (PH) [11]. It aims to de-
scribe samples in a dataset, by creating a continuously changing topological shape and analyzing its
properties during this change. The result will be a set of intervals, referred to as a persistent barcode,
that describe when certain properties appear and disappear. These barcodes can be analyzed using
statistical methods to understand the differences between the samples.

PH has been successfully applied in many different fields [23]. Examples can be found in Oncology
and the study of tumor behavior [8, 48], COVID-19 identification and mutation detection [6, 28], quantifi-
cation of bone microstructure [38], protein engineering and folding [27, 39, 47], granular crystallization
[41], text classification [22], the study of the cosmic microwave background temperature [37] etc. Two
applications are highlighted.

The first of which is the study of handwritten number recognition. It aims to detect the number written
in images of handwritten numbers. Examples of such images are shown in Figure 1.1. Describing
these images with persistent homology, one could obtain a changing topological shape by scanning
the images from top to bottom. The 4 in the figure would start with two connected components, while
the 6 and 9 both start with only one, therefore a first distinction could immediately be found in terms of
the topological invariants. Furthermore the 6 and the 9 could be differentiated by the moment the loop
is fully scanned. When scanning from top to bottom, the 9 finishes its loop first, making it different in
terms of the invariants compared to the 6. In [21] the authors apply the method to the MNIST dataset
[2]. They conclude that the method can reduce the dimensionality of the data, while retaining a similar
accuracy on the test set.

The second application is the classification of crystalline structures of alloys, see Figure 1.2a. The
focus will be on the red lines in the figure, representing Kernel Average Misorientation (KAM). It is often
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2 1. Introduction

Figure 1.1: Examples of handwritten numbers from the MNIST dataset [2].

(a) Microstructure image showing the Kernel Average Misorienta-
tion (KAM) in red, black dots are carbides.

(b) Artificially generated cross section of a three dimensional Pois-
son Voronoi diagram.

Figure 1.2: Real microstructure image on the left and artificially generated cross section on the right.

believed that these lines as well as the carbides, contain information that describes physical properties
of the material. Therefore, understanding these images may help the development of new alloys.

Relating the material properties to these structures would require many of these images, which
would be time-consuming to obtain. Instead, it would be useful to artificially generate samples of these
types of images. [43] propose a new test statistic, based on persistent homology to test whether a
microstructure can be modeled as an artificially generated structure, see Figure 1.2b.

For this thesis, only the artificially generated cross sections are analyzed, where three different
types of generation processes are discussed to see if they can be recognized by the TDA methods.
The ideas behind the tests proposed in [43] can again be used. This would allow the application of
persistent homology and therefore the analysis of topological features in the images.

Nevertheless, persistent homology does have some limitations. Because it only uses topological
invariants, geometric information which can be affected by stretching, twisting or bending is not cap-
tured. For example, the authors of [21] note that for handwritten number recognition, their method
would misclassify a 7 as a 3 if a horizontal center bar is added to the 7 or misclassify a 9 as a 4 if the
top loop of the 9 is not fully closed. A 9 with an open loop can be bent into the 4 seen in Figure 1.1,
therefore the topological invariants would be equal. Hence, analyzing these invariants does not allow
us to differentiate between these two numbers and geometric information would be needed to do so.

An operator that captures the topological invariants, as well as some geometric properties, is the
combinatorial Laplacian [24]. Originally defined as a generalization of the graph Laplacian, it encodes
the topological features in the 0-eigenspace, while geometric properties can be found in the non-zero
spectrum. Even though this operator has seen some success in certain applications [3, 20, 44], it does
not follow the PH pipeline, as it only looks at a single shape and not a continuously changing one.

In order to track the changes in the combinatorial Laplacian over such a changing shape, persistent
Laplacians were recently proposed [44]. It has been shown that this new operator contains all the
information obtained from standard persistent homology, together with some extra information [33].
This extra information is often thought to describe geometric features, however little is known about its
specific meaning [46]. Nevertheless, persistent Laplacians have already been used in multiple fields.
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Successes have been noted in handwritten number recognition on the MNIST dataset [16], protein
thermal stability [44], protein-ligand binding [34], and COVID-19 strain projections [13].

Another advantage of using the persistent Laplacian arises from the analysis of crystalline struc-
tures. In PH, all parts of the shape are of the same type. However, in Figure 1.2 carbides are also
visible as black dots and are thought to affect the properties of the material. Including this information
would require a distinction to be made between different points. Standard persistent homology is un-
able to make this distinction, instead weighted persistence would be needed to do so [40]. Including
weighted persistence in the standard algorithm to compute persistent homology is not trivial. However,
the persistent Laplacian can easily be adapted to include it.

In this thesis, the full spectrum of the persistent Laplacian is analyzed. This yields the introduction
of a new operator, the persistent multiplicity operator, that summarizes the information captured by
the persistent Laplacian. For many applications, such as machine learning, having more condensed
information, as opposed to a lot of duplicate information, often yields better results [31, 30, 15]. It is
therefore argued that this operator can yield a better performance in the previously discussed appli-
cations of the persistent Laplacian, as well as potential new ones. Furthermore, information from this
operator can easily be extracted in a form similar to how persistent homology encodes information.
This allows us to describe the operator as an enhancement of PH, which can make it more intuitive
for someone unfamiliar with Laplacians. Moreover, it allows existing theory based on PH to describe
additional features captured by the persistent Laplacian. To demonstrate the capabilities of this new
operator, it is applied to the study of handwritten number recognition and the classification of crystalline
structures.

In Chapter 2, the formal definitions of all the concepts used in the thesis are given. Having defined
the persistent Laplacian, Chapter 3 starts by introducing a new way of visualizing the operator showing
the duplicate information that seems to be present, giving rise to the new multiplicity operator. The
next two sections in the chapter analyze the new operator algebraically, thereby showing some of
the properties it captures. Afterwards a section discusses how to use the operator in practice, which
also shows that existing theory can easily be adapted to include the new information. The chapter is
concluded with a proposed algorithm to compute the new operator. Finally, the persistent multiplicity
operator and its corresponding method are applied to the MNIST dataset [2], containing handwritten
numbers, and some computer generated crystalline structures in Chapter 4.

Code used in the thesis can be found on https://github.com/siroj99/Master_thesis.
To write the code, Microsoft Copilot was used. This is an Artificial Intelligence based system that
generates lines of code or parts of lines based on the already written code. The user can then accept
these lines, which means that some of the code was written with AI. Furthermore, Google Gemini was
used to do a spelling and grammar check on the thesis. This was done by uploading the document
and asking: ”Could you correct all spelling and grammar errors in the document? Just tell me where
the mistakes are and how to correct them. Do not rewrite the entire document.”. It was therefore only
used to highlight the sentences that contained errors. Changing the sentences was done by hand, one
at a time and not all its suggestions were accepted. Besides these two usages, no further Artificial
Intelligence was used to write the thesis.

https://github.com/siroj99/Master_thesis




2
Mathematical Background

The purpose of this chapter is to standardize the notation used in the thesis. The chapter is divided
into five sections. The first section summarizes some abstract linear algebra concepts like the Moore-
Penrose pseudo inverse, which are needed later on in the thesis. The second and third sections
define some concepts used for the applications. Section 2.2 introduces Mapper, an algorithm that
takes a point cloud and outputs a graph and Section 2.3 introduces Voronoi diagrams and ways of
artificially generating crystalline structures. The fourth Section introduces homology and the field of
persistent homology. Finally the chapter is concluded with a section on graph-, combinatorial- and
persistent Laplacians. It describes how combinatorial Laplacians are commonly visualized and used.
Furthermore, for persistent Laplacians, a short discussion on the computational complexity is noted.

2.1. Preliminaries
In this thesis, a few abstract concepts from the field of linear algebra are used. First, we define the
Moore-Penrose pseudo inverse for real matrices. In contrast to the normal inverse, it is also defined for
non-square or singular matrices. While it is a relatively well known operator, it may be useful to define
it formally.

Definition 2.1.1 (Moore-Penrose pseudo inverse, [26]). TheMoore-Penrose pseudo inverse of amatrix
𝐴 ∈ ℝ𝑚×𝑛 is the 𝑛 ×𝑚 matrix 𝐴†, which satisfies:

𝐴𝐴†𝐴 = 𝐴 (2.1)
𝐴†𝐴𝐴† = 𝐴† (2.2)
(𝐴𝐴†)𝑇 = 𝐴𝐴† (2.3)
(𝐴†𝐴)𝑇 = 𝐴†𝐴. (2.4)

Often an alternative definition using the singular value decomposition is used that is equivalent to
the previously discussed definition. Here, it is formulated as a theorem.

Theorem 2.1.1 ([25]). For a matrix 𝐴 ∈ ℝ𝑚×𝑛 with singular value decomposition 𝐴 = 𝑈Σ𝑉𝑇, where
𝑈 ∈ ℝ𝑚×𝑚 and 𝑉 ∈ ℝ𝑛×𝑛 are both orthogonal matrices and Σ ∈ ℝ𝑚×𝑛 a diagonal matrix, the Moore-
Penrose pseudo inverse 𝐴† can be defined as 𝐴† = 𝑉Σ†𝑈𝑇, where Σ† ∈ ℝ𝑛×𝑚 is a diagonal matrix,
with

(Σ†)𝑖,𝑖 = {
1
Σ𝑖,𝑖

if Σ𝑖,𝑖 ≠ 0.
0 otherwise.

(2.5)

Besides these, three more properties are relevant throughout this thesis. They are formulated in
the following theorem.
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6 2. Mathematical Background

Theorem 2.1.2 ([26]). For a matrix 𝐴 ∈ ℝ𝑚×𝑛, with Moore-Penrose pseudo inverse 𝐴†, we have,

𝐴† = 𝐴𝑇(𝐴𝐴𝑇)† = (𝐴𝑇𝐴)†𝐴𝑇 (2.6)
(𝐴𝐴𝑇)† = (𝐴𝑇)†𝐴† (2.7)

For 𝑎 ∈ ℕ, let 𝐵 ∈ ℝ𝑎×𝑛, then ker𝐴 ⊆ ker𝐵 ⟺ 𝐵 = 𝐵𝐴†𝐴. (2.8)

Finally, the matrix 𝑄 = 𝐴†𝐴 has some interesting properties. 𝑄 is a projection matrix as, by Equation
(2.4), it is symmetric and using Equation (2.2), one can show it is idempotent, see Equation (2.9).

𝑄2 = 𝐴†𝐴𝐴†𝐴 = 𝐴†𝐴 = 𝑄 (2.9)

It is known that this matrix is the projection matrix that projects onto the complement of the kernel of 𝐴
[36].

Besides the Moore-Penrose inverse, the notion of the Schur complement is also often used. Before
we define the Schur complement, note that the definition stated here is for block matrices, such that
the blocks consist only of adjacent rows and columns. A more general definition exists, where blocks
are defined as sets of any rows and columns [9], however it will not be used in this thesis.

Definition 2.1.2 ([33], Schur complement). Let𝑀 ∈ ℝ𝑛×𝑛 be a block matrix 𝑀 = (𝐴 𝐵
𝐶 𝐷), where block

𝐷 ∈ ℝ𝑑×𝑑 is square. The (Generalized) Schur complement of 𝐷 in 𝑀, is defined as,

𝑀/𝐷 ∶= 𝐴 − 𝐵𝐷†𝐶. (2.10)

Here, 𝐷† denotes the Moore-Penrose pseudo inverse of 𝐷.

Finally, it is useful to recall two well-known identities for vector norms and inner products. For two
vectors 𝑥, 𝑦 ∈ ℝ𝑛, the Parallelogram law states,

||𝑥 + 𝑦||2 + ||𝑥 − 𝑦||2 = 2||𝑥||2 + 2||𝑦||2. (2.11)

Secondly, the polarization identity states,

||𝑥 + 𝑦||2 = ||𝑥||2 + ||𝑦||2 + 2⟨𝑥, 𝑦⟩. (2.12)

Finally, these two can be combined to get the following equation,

2⟨𝑥, 𝑦⟩ = ||𝑥||2 + ||𝑦||2 − ||𝑥 − 𝑦||2. (2.13)

2.2. Mapper
The Mapper method, introduced by [42], is a method that takes a point cloud and generates a graph
with a similar structure. The resulting graph is often less complex than the entire point cloud, therefore
it can be seen as a dimensionality reduction algorithm. After using Mapper, the graph can be analyzed
instead of the full point cloud to perform regression, classification or any other desired task.

Instead of discussing the classical Mapper algorithm, a more recent adaptation is used, called Ball
Mapper [17]. The classical algorithm is very sensitive to multiple parameters and choosing one set of
these parameters that works on every image in the dataset would be very difficult, if not impossible.
Ball mapper reduces the number of parameters to one single parameter, 𝜀, the radius of the balls. The
resulting graph can still vary significantly based on this parameter [32]. Nevertheless, needing to fit
only one, greatly reduces the complexity.

To further explain the method, the handwritten numbers of the MNIST dataset are used, see Figure
2.1. These images are grayscale, therefore choosing some threshold parameter, we can select the
pixels that have a value greater than this threshold to create a set of points. In the first step of Figure
2.1 this has been done for a hand drawn 6 with threshold equal to the average pixel intensity.

To obtain the locations of the balls, an ordering of the points needs to be chosen. In the example
figure the points are ordered from top to bottom and left to right. This ordering affects where the balls
appear. Starting with the first point, a ball is drawn of radius 𝜀. Afterwards, a second ball is drawn
around the next point of the chosen order that is not contained in the previously drawn ball. This is
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Figure 2.1: Using the Ball Mapper algorithm on the point cloud generated from an image of the MNIST dataset.

Figure 2.2: Example of a Voronoi diagram.

done iteratively until every point is contained in at least one ball. Every ball is considered a cluster,
which contains a set of points.

Finally, the resulting graph is made by creating a vertex for each cluster. Edges between two vertices
exist if at least one point is part of both the corresponding clusters. Note that vertices corresponding
to balls that overlap, but do not have a point in the overlapping area, are not connected. Finally, note
that while [17] states two algorithms, only the greedy algorithm is discussed and used.

2.3. Voronoi Diagrams
For the application in crystalline structures, the concept of Voronoi diagrams is needed. These are used
in two separate steps. First, they allow the generation of images like Figure 1.2b. Secondly, when an-
alyzing these images, they allow for an approximation that enables TDA methods. This approximation
is found by taking the centers of the cells formed by the red lines and using these centers as a point
cloud to create the Voronoi diagram, as is done in [43].

A Voronoi diagram can be made from a set of points by dividing the space into cells, where each
cell corresponds to a region closest to a certain point, see Figure 2.2.

Definition 2.3.1 (Voronoi cell). For a point cloud 𝒫 ⊂ ℝ𝑑 and a point 𝑝 ∈ 𝒫, the Voronoi cell of 𝑝 is
given by

𝑉(𝑝) ∶= {𝑥 ∈ ℝ𝑑 ∶ ||𝑥 − 𝑝|| ≤ ||𝑥 − 𝑞|| for all 𝑝 ≠ 𝑞 ∈ 𝒫}. (2.14)

Many ways exists to generate the artificial cross sections, however, only three are discussed here.
The goal of the application is to detect the generation process of the images. Note that the methods do
not necessarily create Voronoi diagrams, but are methods to sample point clouds. For the application
of this thesis these point clouds are however only used to create Voronoi diagrams.

The first method is the Poisson Voronoi (PV) diagram. It is based on the Poisson point process. For
a specified region 𝐴 ⊆ ℝ𝑑 and an intensity 𝜆 it is required that for every subregion 𝐵 of 𝐴, the number of
points sampled in that region follows 𝑃𝑜𝑖𝑠(𝜆⋅Vol(𝐵)). For a rectangular region 𝐴 = [𝑎1, 𝑏1]×⋯×[𝑎𝑑 , 𝑏𝑑],
this can be done by first sampling the number of points 𝑛 ∼ 𝑃𝑜𝑖𝑠(𝜆 ⋅ Vol(𝐴)). Afterwards, uniformly
sampling coordinates 𝑥𝑖 ∼ 𝑈(𝑎𝑖 , 𝑏𝑖) for each point 𝑝 = [𝑥1 … 𝑥𝑑].

While the microstructure of alloys is intrinsically a three dimensional object, it is visually observed in
two dimensional cross-sectional data. Therefore, instead of sampling a two dimensional PV diagram,
a three dimensional PV diagram is sampled and a cross section is taken. It can be shown that such
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(a) Poisson Voronoi cross section. (b) Cluster cross section. (c) Hard core cross section.

Figure 2.3: Cross sections of three dimensional Voronoi diagrams. Each is sampled using a different point cloud generation
method while the number of sampled points is kept to be between 225 and 275 over a unit cube.

Figure 2.4: Visualization of the most important concepts in TDA. Figure from [4].

a cross section is not itself a PV diagram [43], therefore this is different from sampling a 2D diagram.
See Figure 2.3a for an example of such a cross section.

Besides the PV diagrammethod, two more are analyzed. First, the cluster method, which instead of
uniformly sampling all points, creates clusters of points, see Figure 2.3b. This is done by first sampling
a pre-specified number of locations of clusters. Afterwards, the remaining points are sampled close to
the clusters. In this thesis all cluster processes are generated with 3 clusters and the remaining points
within a ball of radius 0.2 of each of the clusters.

Finally, the Hard Core (HC) method is used. This method does the opposite of the cluster process
and samples points more evenly spread over the volume, see Figure 2.3c. It requires that every two
points are at least a set distance away from one another. In this thesis the distance is chosen as 0.033,
which allows for the total number of points to be between 225 and 275.

2.4. Homology theory
2.4.1. Introduction to Standard and Persistent Homology
In this section, an intuitive introduction to the concepts used in TDA is given. For a mathematically
formal introduction, see the next two sections instead. For an intuitive understanding of many TDA
methods it is often helpful to visualize them. In Figure 2.4 most of the important concepts are therefore
drawn.

The idea of Topological Data Analysis is to use topology to describe datasets. However, most data
is in the form of point clouds, which inherently do not have a topological shape. Nevertheless, these
point clouds are often theorized to lie on some manifold. While this manifold is often unknown, it can
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be approximated. One of the most common ways to do this, is to generate a simplicial complex [35].
Simplicial complexes consist of simplexes of different dimensions, see Figure 2.4. Looking at the

simplexes section of the figure, from top to bottom, first a 0 dimensional simplex, or just 0-simplex is
drawn, which is represented by a point. The second simplex is a 1-simplex, represented by a line
segment. Afterwards, a 2-simplex is shown and represented by a filled triangle.

A collection of simplexes is called a simplicial complex if for every simplex, each lower dimensional
simplex that is part of it is also in the collection. For example, a 2-simplex is a triangle between three
points. In a simplicial complex, it is therefore required that these points are also in the complex, as well
as the edges of the triangle. An example can be seen in block a of Figure 2.4.

Note that a simplicial complex consisting only of 0-simplexes and 1-simplexes can be viewed as
a graph. See for example complex 𝐾 in block d of Figure 2.4. Furthermore, every graph can be
represented by a simplicial complex of only 0 and 1 dimensional simplices. Simplicial complexes can
therefore be seen as an extension to graphs, where simplexes of dimension greater than 1 are added.
Hence, for graph or network data, simplicial complexes can encode additional information in these
higher dimensional simplices. Whenever additional information is available in graph or network data, it
is therefore also common to extend the graph to a simplicial complex with higher dimensional simplices
to allow more information to be captured by Persistent Homology. In [1] multiple methods are described
to obtain the complex from a graph.

The same can be said when the data is in the form of a point cloud. Many different methods
exist to generate a simplicial complex from a set of points. One of the most commonly used methods
is to generate a Cech complex, see section b of Figure 2.4. Given a scalar 𝑟, a Cech complex is
formed by drawing balls around every data point of radius 𝑟 and forming a simplex whenever balls of
different points touch. If two balls touch, a 1-simplex connecting the corresponding points is added to
the simplicial complex, which happens in the figure at 𝑟 = 0.6 twice. When three balls all overlap with
each other, a filled triangle or 2-simplex is added, see 𝑟 = 0.8 for two examples.

The topological invariants that are analyzed, are called Betti numbers, often denoted by 𝛽𝑞, with
𝑞 the dimension. They are properties of a topological shape that remain intact under deformations
like stretching, twisting or bending. The zero dimensional Betti number is, for example, equal to the
number of connected components, while the one dimensional Betti number is the number of holes or
loops. The final Betti number that has an intuitive explanation is 𝛽2, which describes the number of
cavities or voids. See section d of Figure 2.4 for a visualization.

While Betti numbers in a Cech complex can be analyzed for some fixed 𝑟, the resulting complex and
therefore the Betti numbers, can vary greatly with respect to this parameter. See for example section
b of Figure 2.4, where the number of connected components changes at every value of 𝑟. Therefore,
instead of selecting one parameter, PH aims to look at all values of 𝑟 > 0. Note that, by increasing 𝑟,
the obtained simplicial complex will always contain more and more simplices. This is called a simplicial
filtration.

When analyzing a filtration of simplicial complexes, the Betti numbers can change. If a 0-simplex
is added, the number of connected components increases. We then say that a 0 dimensional feature
is born at the corresponding value of the filtration parameter. When that 0-simplex is connected to the
previously present simplices, the number of connected components decreases again, often described
as a 0 dimensional feature dying. For each feature this therefore allows us to describe it with an interval
of filtration parameters, where the feature exists within this interval.

These features for filtrations are described by persistent Betti numbers. The 𝑞 dimensional persis-
tent Betti number for a start time 𝑠 and end time 𝑡 in a filtration is equal to the number of 𝑞 dimensional
features that were born before 𝑠 and died after 𝑡. Note that this is different from computing the differ-
ence between the non-persistent Betti numbers at times 𝑠 and 𝑡. Computing this difference would not
be able to differentiate between a feature dying in the interval and another being born, and one feature
persisting for the entire interval.

The complete set of all of the intervals can be represented in the so called persistence barcode,
see section a of Figure 2.4. If samples consist of multiple points, the barcode is thought to describe
samples and can therefore be used to compare them. Furthermore, barcodes of whole datasets can be
used to compare different datasets. It can be shown that small changes in the dataset also correspond
to small changes in the barcode [5, 12, 19], therefore similar datasets should give similar barcodes,
indicating that these barcodes are a good descriptor for datasets and samples.
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2.4.2. Standard Homology
As was stated in the previous section, most of Topological Data Analysis (TDA) consists of analyzing
simplicial complexes. So let us first formally define these. The notation used in this thesis is mostly the
same as what the authors of [33] use and is most common among TDA papers.

Definition 2.4.1. (Simplex) For an ordered set of points 𝒫, a 𝑞 dimensional simplex 𝜎, often just called
𝑞-simplex, is defined as an ordered subset of 𝒫 of 𝑞+1 points, which adheres to the same ordering as
𝒫.

Note that this definition is often referred to as an ordered simplex. Unordered simplices also exist,
but are not used in this thesis, therefore ”simplex” will always refer to an ordered simplex. Visualizing
simplices of dimension lower than 3 is possible, see section c of Figure 2.4. A 0-simplex is often
represented by a point, a 1-simplex by an edge and a 2-simplex by a filled triangle. Higher dimensional
simplices are not used in the thesis.

Definition 2.4.2. (Simplicial Complex) A simplicial complex 𝐾 is a set of simplices, such that for any
𝜎 ∈ 𝐾 and 𝜏 ⊆ 𝜎, we have that 𝜏 ∈ 𝐾.

We denote by 𝑆𝐾𝑞 , the set of 𝑞-simplices in 𝐾 and 𝑛𝐾𝑞 ∶= |𝑆𝐾𝑞 |, the number of 𝑞-simplices in 𝐾.
The definition stated here is the definition of an abstract simplicial complex. When drawn and

therefore geometrically realized, it is also required that no two simplices intersect, except, possibly on
their boundaries.

Figure 2.5: Example of a representation of a simplicial complex. Points indicate 0-simplexes, edges indicate 1-simplexes and
the filled triangle indicates a 2-simplex.

Example 2.4.1. Consider the simplicial complex 𝐾 drawn in Figure 2.5. We have the 0-simplices
𝑆𝐾0 = {0̄, 1̄, 2̄, 3̄}. A bar is added in the notation to avoid confusion with scalars. Furthermore, we have
the 1-simplices 𝑆𝐾1 = {01, 03, 13, 23, 02}, here short notation is used to indicate the 1-simplices, so
01 = [0̄, 1̄]. Finally, a 2-simplex is also present, 𝑆𝐾2 = {013}.

In order to do any calculations with the simplices, we need to define a vector space over them.

Definition 2.4.3. (Chain Group) The 𝑞-th chain group 𝐶𝐾𝑞 is defined as the vector space over ℝ with
basis 𝑆𝐾𝑞 .

For 𝑐1, 𝑐2 ∈ 𝐶𝐾𝑞 , we can write 𝑐1 = ∑
𝑛𝐾𝑞
𝑖=1 𝑎1,𝑖𝜎𝑖 and 𝑐2 = ∑

𝑛𝐾𝑞
𝑖=1 𝑎2,𝑖𝜎𝑖 for some constants 𝑎1,𝑖 , 𝑎2,𝑖 ∈ ℝ

and simplices 𝜎𝑖 ∈ 𝑆𝐾𝑞 . 𝐶𝐾𝑞 is equipped with the inner product ⟨𝑐1, 𝑐2⟩ ∶= ∑
𝑛𝐾𝑞
𝑖=1 𝑎1,𝑖 ⋅ 𝑎2,𝑖.

Example 2.4.2. Let 𝐾 be the simplicial complex drawn in Figure 2.5. Consider the chains 𝑐1 = 02 −
3 ⋅ 03 + 2 ⋅ 01 ∈ 𝐶𝐾1 and 𝑐2 = 23 − 03 − 2 ⋅ 01 ∈ 𝐶𝐾1 . The inner product between the two chains is
⟨𝑐1, 𝑐2⟩ = 1 ⋅ 0 + 0 ⋅ 1 + (−3) ⋅ (−1) + 2 ⋅ (−2) = −1.

An important definition for homology is the boundary operator. It is an operator on the chain group
that relates a 𝑞-simplex to its 𝑞 − 1-subsets.
Definition 2.4.4. (Boundary Operator) Let 𝐾 be a simplicial complex and 𝑞 ∈ ℤ≥0 such that 𝑛𝐾𝑞 > 0.
For a simplex [𝑝0, … , 𝑝𝑞] = 𝜎 ∈ 𝑆𝐾𝑞 , the 𝑞-boundary operator 𝜕𝐾𝑞 ∶ 𝐶𝐾𝑞 → 𝐶𝐾𝑞−1 is defined as follows:

𝜕𝐾𝑞 (𝜎) ∶=
𝑞

∑
𝑖=0
(−1)𝑖𝑑𝑖𝜎. (2.15)

Where 𝑑𝑖𝜎 ∶= [𝑝0, … , 𝑝𝑖−1, 𝑝𝑖+1, … , 𝑝𝑞], the (𝑞 − 1)-simplex which omits point 𝑝𝑖 from 𝜎.
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The most important and well-known property is that the boundary of the boundary is zero, 𝜕𝐾𝑞 𝜕𝐾𝑞+1 =
0 [49]. This property is the basis of homology theory.

Using this boundary operator, we can define two subspaces of 𝐶𝐾𝑞 .
Definition 2.4.5. (Cycles & Boundaries) For a simplicial complex 𝐾 and some dimension 𝑞 ∈ ℤ≥0, the
cycles 𝑍𝐾𝑞 are defined by,

𝑍𝐾𝑞 ∶= ker𝜕𝐾𝑞 . (2.16)
Furthermore, the boundaries 𝐵𝐾𝑞 are defined by,

𝐵𝐾𝑞 ∶= Im𝜕𝐾𝑞+1 (2.17)

Note that 𝐵𝐾𝑞 ⊆ 𝑍𝐾𝑞 , because, for some 𝑏 ∈ 𝐵𝐾𝑞 , there exists a 𝑐 ∈ 𝐶𝐾𝑞+1 such that 𝜕𝐾𝑞 𝑏 = 𝜕𝐾𝑞 𝜕𝐾𝑞+1𝑐 = 0,
therefore 𝑏 ∈ 𝑍𝐾𝑞 . This shows that the homology group in the next definition, is well defined.
Definition 2.4.6. (Homology group & Betti number) For a simplicial complex 𝐾 and some dimension
𝑞 ∈ ℤ≥0, the homology group 𝐻𝐾𝑞 is defined by,

𝐻𝐾𝑞 ∶= 𝑍𝐾𝑞 /𝐵𝐾𝑞 . (2.18)

The dimension of this homology group is called the 𝑞-th Betti number of 𝐾, 𝛽𝐾𝑞 . Formally,

𝛽𝐾𝑞 ∶= dim𝐻𝐾𝑞 = dim𝑍𝐾𝑞 − dim𝐵𝐾𝑞 . (2.19)

Example 2.4.3. Consider again the simplicial complex 𝐾 drawn in Figure 2.5. We have a basis for the
1-cycles 𝑍𝐾1 = {01 − 03 + 13, 02 − 03 + 23}. This can be checked by computing 𝜕𝐾1 (01 − 03 + 13) =
(1̄ − 0̄) − (3̄ − 0̄) + (3̄ − 1̄) = 0 and 𝜕𝐾1 (02 − 03 + 23) = 0. Note that this basis is not unique as
{01 − 03 + 13, 01 + 13 − 23 − 02} is also valid. A basis for the 1-boundaries is unique as there is only
one and can be written as Im 𝜕𝐾2 = {𝜕𝐾2 (013)} = {01 − 03 + 13}. We can now compute a basis of the
1-homology 𝐻𝐾1 = {[02−03+23]}, where [⋅] represents the equivalence class. Finally we can compute
the dimension 1 Betti number by looking at the dimension of this homology group and conclude 𝛽𝐾1 = 1.
Visually this can be seen by the one hole 023 that is present.

For two distinct 𝑞-simplices 𝜎1, 𝜎2 in a simplicial complex 𝐾, we call them upper adjacent, denoted
by 𝜎1

𝑈∼ 𝜎2, if there is a 𝜏 ∈ 𝐾 such that 𝜎1, 𝜎2 ⊂ 𝜏. This 𝜏 is often called their common upper simplex
and 𝜎1 and 𝜎2 are said to be faces of 𝜏. Furthermore, if the sign of the two simplices in the boundary
𝜕𝐾𝑞+1(𝜏) of 𝜏 is the same, we say that they are similarly oriented and otherwise dissimilarly oriented.
Finally, the upper degree of a 𝑞-simplex 𝜎, deg𝑈(𝜎), is the number of (𝑞 + 1)-simplices in 𝐾 for which
𝜎 is a face.

In the same way, we call two 𝑞-simplices 𝜎1, 𝜎2 ∈ 𝐾 lower adjacent, denoted by 𝜎1
𝐿∼ 𝜎2, if there is a

(𝑞 − 1)-simplex 𝜏 ∈ 𝐾 such that 𝜏 ⊂ 𝜎1 and 𝜏 ⊂ 𝜎2. This 𝜏 is called their common lower simplex and is
said to be a similar common lower simplex if the sign in the boundaries 𝜕𝐾𝑞 (𝜎1) and 𝜕𝐾𝑞 (𝜎2) is the same.
Otherwise, 𝜏 is called a dissimilar common lower simplex.

In [24] it is proved that for a pair of simplices 𝜎1 and 𝜎2, the common lower simplex and the common
upper simplex are both unique. Furthermore, they prove an important Corollary.

Corollary 2.4.1 ([24], Corollary 3.2.7). Let 𝑞 > 0 be an integer. If two distinct 𝑞-simplices of a simplicial
complex are upper adjacent, then they are also lower adjacent.

Example 2.4.4. Consider the simplicial complex 𝐾 drawn in Figure 2.5 and let the ordering of the
point cloud be given by the names of the 0-simplices. The 1-simplices 03 and 13 are lower adjacent,
because they both contain the 0-simplex 3̄, so we write 03 𝐿∼ 13. The boundaries 𝜕𝐾1 (03) = 3̄ − 0̄ and
𝜕𝐾1 (13) = 3̄ − 1̄ both have a positive sign for 3̄, therefore 3̄ is a similar common lower simplex. The
1-simplices 01 and 13 are also lower adjacent as they share 1̄. However, the sign of 1̄ in the boundary
𝜕𝐾1 (01) = 1̄ − 0̄ is different from the boundary of 13, therefore 1̄ is a dissimilar common lower simplex
of the two.

All the discussed 1-simplices are part of the 2-simplex 013, therefore they are all upper adjacent to
each other, so 03 𝑈∼ 13 𝑈∼ 01. From the boundary 𝜕𝐾2 (013) = 13 − 03 + 01, we obtain that 13 and 01
are similarly oriented as their sign is the same. On the other hand the pairs 13 and 03, as well as 01
and 03, both have opposite sign and are therefore dissimilarly oriented.
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Figure 2.6: Example filtration of simplicial complexes. Points indicate 0-simplexes, edges indicate 1-simplexes and the filled
triangle indicates a 2-simplex.

Figure 2.7: Example of an alpha filtration for different scale parameters 𝑠, using the point cloud of the Voronoi example in Figure
2.2. All points are always included in the simplicial complexes as 0-simplices.

2.4.3. Persistent Homology
Instead of looking at a single complex 𝐾, persistent homology looks at a set of complexes and analyzes
the changing Betti numbers. In general, any set of complexes can be used [10], however for this thesis
only filtrations are relevant.

Definition 2.4.7. (Filtration) A filtration is a set of simplicial complexes {𝐾0, 𝐾1, … , 𝐾𝑁} for some 𝑁 > 0,
such that for any 0 ≤ 𝑖 < 𝑗 ≤ 𝑁, we have 𝐾𝑖 ⊆ 𝐾𝑗.

A filtration of two simplicial complexes 𝐾, 𝐿 is called a simplicial pair, their inclusion is denoted by
𝐾 ↪ 𝐿. For an example of a filtration, see Figure 2.6.

In practice, filtrations are often defined using some filtration parameter 𝑠, which does not need to
be an integer. To simplify notation, 𝐾𝑠 is often referred to as the simplicial complex that corresponds
to this filtration parameter. Given a minimum parameter value 𝑇𝑚𝑖𝑛 ∈ ℝ, a maximum parameter value
𝑇𝑚𝑎𝑥 ∈ ℝ and a finite discretization 𝑇𝑑𝑖𝑠𝑐 of the interval [𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥], we call {𝐾𝑠}𝑠∈𝑇𝑑𝑖𝑠𝑐 a filtration if
𝐾𝑠 ⊆ 𝐾𝑡 for all 𝑇𝑚𝑖𝑛 ≤ 𝑠 < 𝑡 ≤ 𝑇𝑚𝑎𝑥.

Finding a filtration
One of the most common ways of finding such a filtration is by forming the Cech filtration from a point
cloud 𝒫 ⊂ ℝ𝑑. For a scale 𝑠 ≥ 0, it is defined by the intersection of closed balls around the points,
where a closed ball is defined by 𝐵𝑠(𝑝) ∶= {𝑥′ ∈ ℝ𝑑 ∶ ||𝑝 − 𝑥′|| ≤ 𝑠}. Formally we can write

Cech𝑠(𝒫) ∶= {𝜎 ⊆ 𝒫 ∶ ⋂
𝑝∈𝜎

𝐵𝑠(𝑝) ≠ ∅}. (2.20)

For an example of the Cech filtration, see block b of Figure 2.4.
Instead of a Cech filtration in [43] an alpha filtration is used. The alpha complex is similar to the

Cech complex, but uses the Voronoi cells 𝑉(𝑝) from Definition 2.3.1. See Figure 2.7 for an example.
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Figure 2.8: Left a graph 𝐺, with on the right the corresponding clique complex 𝐶𝑙(𝐺).

Figure 2.9: Ball Mapper output graph with vertices weighted according to average 𝑦-value of points in the corresponding cluster.

Definition 2.4.8 (Alpha Complex). The alpha complex of a point cloud 𝒫 ⊂ ℝ𝑑 for a scale 𝑠 ≥ 0 is the
simplicial complex

Alpha𝑠(𝒫) ∶= {𝜎 ⊆ 𝒫 ∶ ⋂
𝑝∈𝜎
(𝑉(𝑝) ∩ 𝐵𝑠(𝑝)) ≠ ∅}, (2.21)

where 𝐵𝑠(𝑝) is the closed ball around 𝑝 with radius 𝑠.

In the applications of this thesis, images are converted into graphs where persistent homology is
applied to these graphs, see Section 2.2. While a graph can immediately be viewed as a simplicial
complex of only 0 and 1 dimensional simplices, it is common to instead also make use of higher di-
mensional simplices. Often the clique complex is used to this end, see Definition 2.4.9 and Figure 2.8.
It requires the notion of a clique, which is a set of vertices in the graph that are all connected to each
other. A 𝑘-clique is a set of 𝑘 vertices that are all connected.

Definition 2.4.9 (Clique complex [1]). For a graph 𝐺 = (𝑉, 𝐸), the clique complex 𝐶𝑙(𝐺) is a simplicial
complex where all vertices in 𝑉 are 0-simplices in 𝐶𝑙(𝐺) and every 𝑘-clique corresponds to a (𝑘 − 1)-
simplex in 𝐶𝑙(𝐺).

For persistent homology, a filtration of simplices is often required. Numerous methods have been
proposed to find such a filtration from a graph [1]. One of these is the vertex-based clique filtration,
which is probably the most intuitive for a vertex weighted graph. A vertex weighted graph 𝐺 = (𝑉, 𝐸)
is a graph, with 𝑉 the vertices and 𝐸 the edges, where we require a weight function 𝑤 ∶ 𝑉 → ℝ on the
vertices.

Definition 2.4.10 (Vertex-based clique filtration (VBCL), [1]). Let 𝐺 = (𝑉, 𝐸) be an undirected weighted
graph, with weight function 𝑤 ∶ 𝑉 → ℝ. For 𝛿 ∈ ℝ, the 1-skeleton 𝐺𝛿 = (𝑉𝛿 , 𝐸𝛿) ⊆ 𝐺 is defined
as the subgraph of 𝐺, where 𝑉𝛿 ∶= {𝑣 ∈ 𝑉 ∶ 𝑤(𝑣) ≤ 𝛿} and the edges 𝐸𝛿 ∶= {𝑒 = {𝑢, 𝑣} ∈ 𝐸 ∶
max(𝑤(𝑢), 𝑤(𝑣)) ≤ 𝛿}. The vertex-based clique filtration is defined as

{𝐶𝑙(𝐺𝛿) ↪ 𝐶𝑙(𝐺𝛿′)}0≤𝛿≤𝛿′ . (2.22)

Example 2.4.5. Consider the graph of the ball mapper output in Figure 2.1. As weight function on
the vertices, we will choose the average 𝑦-value of points in the corresponding cluster, see Figure 2.9.
Note that vertices in the figure can be lower, while having a higher weight because the average 𝑦-value
of the points in the ball may be lower than the middle of the ball. The resulting Vertex-Based clique
filtration can be seen in Figure 2.10.
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Figure 2.10: Vertex-Based Clique filtration of the weighted graph from Figure 2.9.

Analyzing the filtration
On a filtration, persistent homology looks at persistent Betti numbers. To formally define persistent
Betti numbers, we need the notion of a simplicial map. Let 𝐾 and 𝐿 be two simplicial complexes, a
simplicial map 𝑓 ∶ 𝐾 → 𝐿 is a function such that for every simplex [𝑝0, … , 𝑝𝑞] ∈ 𝑆𝐾𝑞 its image is a simplex
of 𝐿, [𝑓(𝑝0), … , 𝑓(𝑝𝑛)] ∈ 𝑆𝐿𝑞 , for every dimension 𝑞. A simplicial map induces a linear map in the chain
complexes 𝑓# ∶ 𝐶𝐾𝑞 → 𝐶𝐿𝑞 , defined by,

𝑓#(𝜎) ∶= {
𝑓(𝜎) if dim 𝑓(𝜎) = dim𝜎.
0 otherwise.

(2.23)

Furthermore, it is well known that a simplicial map also induces a well-defined map in homology 𝑓∗ ∶
𝐻𝐾𝑞 → 𝐻𝐿𝑞 defined by 𝑓∗([𝑐]) = [𝑓#(𝑐)], where [⋅] is the equivalence class of the quotient space.

We are now ready to define the main features that are tracked using persistent homology.

Definition 2.4.11. (Persistent Betti Number) For a simplicial pair 𝐾, 𝐿, we have the inclusion map 𝜄 ∶
𝐾 ↪ 𝐿, defined by 𝜄 ∶ 𝑥 ↦ 𝑥. This inclusion map is a simplicial map and therefore induces a map in
homology 𝑓𝐾,𝐿∗ ∶ 𝐻𝐾𝑞 → 𝐻𝐿𝑞 . The 𝑞-th persistent Betti number 𝛽𝐾,𝐿𝑞 is defined as the rank of this map,

𝛽𝐾,𝐿𝑞 ∶= dim Im 𝑓𝐾,𝐿∗ . (2.24)

To simplify notation for filtrations over a discretized interval, we denote 𝛽𝑠,𝑡𝑞 ∶= 𝛽𝐾𝑠 ,𝐾𝑡𝑞 , for 𝑠 < 𝑡.
The persistent Betti number 𝛽𝑠,𝑡𝑞 describes the 𝑞-dimensional features that are present in 𝐾𝑠 and still

appear in 𝐾𝑡. Every combination of 𝑠 ≤ 𝑡 yields a persistent Betti number. However, this is often too
much information and can be ”summarized” by only looking at when features appear and when they
disappear, often called born and die, respectively. This gives rise to the notion of persistent barcodes.

Definition 2.4.12. (Persistent Barcode) A persistent barcode of dimension 𝑞 for a filtration {𝐾𝑠}0≤𝑠≤𝑇 is
the set of intervals {[𝑠𝑖 , 𝑡𝑖]}𝑖, where the multiplicity 𝜇𝑠𝑖 ,𝑡𝑖𝑞 is positive. For an interval [𝑠, 𝑡], this multiplicity
can be calculated with the Betti numbers as follows,

𝜇𝑠,𝑡𝑞 ∶= (𝛽𝑠,𝑡−1𝑞 − 𝛽𝑠,𝑡𝑞 ) − (𝛽𝑠−1,𝑡−1𝑞 − 𝛽𝑠−1,𝑡𝑞 ) , 𝜇𝑖,∞𝑞 ∶= 𝛽𝑠,𝑇𝑞 − 𝛽𝑠−1,𝑇𝑞 . (2.25)

Each interval [𝑠, 𝑡] in the barcode captures a feature, where 𝑠 is often referred to as the birth time
of the feature and 𝑡 the death time. See section a of Figure 2.4 for a common way of visualizing the
barcode. Each bar corresponds to the ”lifespan” of a certain feature in the filtration visualized in section
b of the same figure.

The multiplicity equation (2.25) for finite intervals is split into two parts. The first part describes
the number of features that were born before 𝑠 and were still alive before 𝑡, but died at 𝑡, while the
second part describes the features that were alive already before 𝑠 and died at 𝑡. Subtracting these
two parts yields the features that were born at exactly 𝑠 and died at exactly 𝑡. Infinite intervals describe
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the features that are still alive at the end of the filtration, therefore we only care that the they were born
at exactly 𝑠, requiring only one subtraction.

An algorithm for computing the barcode is given in [49]. For a simplicial filtration of 𝑁 complexes,
where there is a single simplex added in each step and is started with a single simplex, the time com-
plexity of the standard algorithm to compute the barcode for all relevant dimensions is at most 𝑂(𝑁3)
[16].

Besides the bar plot, visualizing the barcode is often done in a persistence diagram. This is a scatter
plot, with on the x-axis the birth times 𝑠 and on the y-axis, the death times 𝑡. The multiplicity is often
not visualized, see Figure 2.11 for an example. For this thesis persistence diagrams are always used
instead of bar plots.

One of the main results of persistent homology is the stability of these barcodes in terms of the
bottleneck distance with respect to the filtration function [5, 12, 19]. The main point of PH is to analyze
the shape of the data. If two filtration functions are very similar, but PH would give very different
results for each function while the topology is not changed, we would mainly be able to detect the
filtration function and not the actual shape of the data. Therefore, in order for the results of PH to be
interpretable, this type of stability is needed.

To better understand the stability, we look at an intuitive interpretation of the bottleneck distance.
The distance compares two persistence diagrams by matching points of the first diagram with points of
the second diagram that are close. It is defined as the infimum cost of all possible matchings, where
the cost of a matching is equal to the maximum distance between the matched points. Points can also
be left unmatched, these have a cost equal to their distance to the diagonal. Therefore, points that are
far away from the diagonal are deemed more relevant.

While this subject of stability is very important, in this thesis it is not discussed beyond this expla-
nation. Instead, this is left for future research.

Example 2.4.6. We consider the filtration visualized in Figure 2.6. The persistence diagram corre-
sponding to this filtration can be seen in Figure 2.11. Each point in this diagram corresponds to an
interval of the barcodes. Some of these points are now discussed in more detail, however only an
intuitive interpretation is discussed.

Figure 2.11: The persistence diagram corresponding to the filtration of Figure 2.6. The blue points correspond to the 0 dimen-
sional features, while the red points corresponds to 1 dimensional features. Finally, points that lie on the black line have an
infinite lifetime.

We first look at the point at (0,∞). Starting at time 0, we see one connected component, so 𝛽00 = 1.
In all subsequent timesteps this connected component is still present, therefore the persistent Betti
number 𝛽0,𝑡0 = 1, for all 𝑡 ∈ [1, 9]. Using the multiplicity equation (2.25), we get 𝜇0,∞0 = 1 as 𝑠 − 1 does
not exist in this case.

If we instead look at the connected component that is born at time 2, we can see that at time 7 this
component gets merged with the component of point 0. If we were to calculate the multiplicity of this
possible interval, we would get 𝜇2,70 = (𝛽2,60 − 𝛽2,70 ) − (𝛽1,60 − 𝛽1,70 ) = (2− 1) − (1− 1) = 1 > 0 and can
therefore conclude that this interval belongs in the barcode.
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Figure 2.12: Persistence landscape based on the filtration visualized in Figure 2.6 and with corresponding persistence diagram
of Figure 2.11.

For dimension 1, a hole appears at time 6, which gets filled and therefore dies, at 9, resulting in the
multiplicity 𝜇6,91 = 1. Finally for this dimension, the hole that is born at time 8 does not die and therefore
𝜇8,∞1 = 1.

Persistence Landscapes
Like was said previously, two persistence diagrams can be compared using the bottleneck distance.
However, the distance is not easy to compute and therefore comparing diagrams with lots of points
can be time consuming. Furthermore, computing a ”mean diagram” is not well defined, even though it
would be of great use to many statistical methods.

Persistence landscapes [7] were proposed as an alternative to persistence diagrams that solve
some of these issues. They can be computed using a persistence diagram, 𝑃𝐷, where only points of
a single dimension 𝑞 are considered 𝑃𝐷(𝑞). Each point 𝑝 = (𝑏, 𝑑) in the diagram is transformed into
a simple linear function. Intuitively this function can be found by taking the persistence diagram and
drawing a vertical and a horizontal line from the point 𝑝 to the diagonal. Afterwards, tipping the diagram
such that the diagonal is on the x-axis. This then yields a triangular function Λ𝑝 for each point. Formally
the functions are defined by,

Λ𝑝(𝑡) = {
𝑡 − 𝑏 if 𝑡 ∈ [𝑏, 𝑏+𝑑2 ].
𝑑 − 𝑡 if 𝑡 ∈ (𝑏+𝑑2 , 𝑑].
0 otherwise.

(2.26)

Note that persistent points that correspond to infinite intervals do not have a well defined function and
are therefore not encoded in the landscape.

The persistence landscape is a function defined over the set of all triangular function {Λ𝑝}𝑝∈𝑃𝐷(𝑞).
In addition to taking a 𝑡, it requires some positive integer 𝑘 and is defined by,

𝜆𝑃𝐷(𝑞)(𝑘, 𝑡) = 𝑘max𝑝∈𝑃𝐷(𝑞)Λ𝑝(𝑡), (2.27)

where 𝑘max is the 𝑘-th largest value in the set.
An example of a landscape can be seen in Figure 2.12. Here the filtration of Figure 2.6 has been

used. Comparing it to the corresponding persistence diagram, see Figure 2.11, we can see that in
dimension 0, the two points furthest away from the diagonal are visible in 𝑘 = 0, while the third point
is only visible in the higher values of 𝑘. Like in the bottleneck distance, points further away from the
diagonal are therefore deemed to correspond to more relevant features. To obtain the intervals of the
barcode from such a landscape, one can look at the triangles. Each triangle corresponds to a features
which is born at the value of 𝑡 where the triangle first became positive and died where it returned to
zero.
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Comparing two diagrams can now be done by first computing the persistence landscapes and then
integrating the squared difference of each 𝜆(𝑘, ⋅). Formally, the distance between two persistence
diagrams 𝑃𝐷1 and 𝑃𝐷2 can be defined by the following equation, using their corresponding landscapes
𝜆𝑃𝐷1 and 𝜆𝑃𝐷2 ,

𝑑𝑙𝑎𝑛𝑑(𝑃𝐷1, 𝑃𝐷2) =∑
𝑞
[∑
𝑘
∫
𝑇

0
(𝜆𝑃𝐷1(𝑞)(𝑘, 𝑡) − 𝜆𝑃𝐷2(𝑞)(𝑘, 𝑡))2𝑑𝑡]

1
2

. (2.28)

The sum over 𝑘 can be taken over all values of where one of the two still is non-zero. This requires
𝑘max to be equal to 0 if 𝑘 is greater than the size of the set. On the other hand, the sum could also
be taken up to some pre-defined integer. Furthermore, the sum over 𝑞 is often taken as just a single 𝑞
which is deemed most important.

2.5. Laplacians
2.5.1. Introduction to Combinatorial Laplacians
In this section an intuitive introduction to combinatorial Laplacians is given, see the next section for
formal definitions. The combinatorial Laplacian is an operator on a topological shape. Unlike persistent
homology, it is only defined for a single shape and not a filtration. Nevertheless, it is also used to
interpret the shape of the data, therefore, it can be seen as a part of TDA. However, instead of only
focusing on topological invariants, it also encodes geometric information. To highlight the importance
of this information, first an example is discussed.

In section d of Figure 2.4, the simplicial complexes 𝐾 and 𝐿 have the same Betti numbers. There-
fore, topological information is not enough to distinguish them. Nevertheless, visually they appear very
different. Hence, they differ only in geometric information instead of the topological information of Betti
numbers. The combinatorial Laplacian contains both types of information. The number of zero eigen-
values or dimension of its kernel, is equal to the non-persistent Betti number and geometric information
is encoded in the remaining spectrum. It is worth noting that for the complexes in the figure, making a
filtration and applying PH, might be able to distinguish them without geometric information. However,
the example can still be used to explain the difference between the two types of information.

Combinatorial Laplacians are often denoted by Δ𝐾𝑞 , where 𝐾 is a simplicial complex and 𝑞 the di-
mension to be analyzed. Without going into the details, a matrix representation can be found for this
operator, denoted by [Δ𝐾𝑞 ]. Let 𝐾 and 𝐿 be the simplicial complexes visualized in section d of Figure
2.4. The following matrix representations can be found.

[Δ𝐾0 ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0 0 0 0
−1 4 −1 −1 −1 0 0
0 −1 1 0 0 0 0
0 −1 0 1 0 0 0
0 −1 0 0 3 −1 −1
0 0 0 0 −1 2 −1
0 0 0 0 −1 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[Δ𝐿0] =

⎡
⎢
⎢
⎢
⎢
⎣

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2

⎤
⎥
⎥
⎥
⎥
⎦

.

While an obvious difference between the entries of these two matrices can immediately be seen, it
is most common to interpret the eigenvalues of these matrices instead. In order to generate these
matrices, an ordering of the points was required. Depending on this order, the specific entries of the
matrix representation can differ. On the other hand, it has been proven that the eigenvalues of the
combinatorial Laplacian are independent of this choice [24]. Therefore these are mainly used instead.
Furthermore, because the number of eigenvalues of the combinatorial Laplacian is equal to the number
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of 𝑞-simplices, an aggregation function is needed to compare two complexes that differ in the number
of 𝑞-simplices. Common functions are the minimum non-zero eigenvalue or the maximum eigenvalue
[44, 46].

The eigenvalues of the 0 dimensional combinatorial Laplacian for the two discussed simplicial com-
plexes rounded to two decimals, are given by,

Spectrum(Δ𝐾0 ) = {0, 0.40, 1, 1, 3, 3.34, 5.26}
Spectrum(Δ𝐿0) = {0, 1, 1, 3, 3, 4}.

Note that both complexes have exactly one zero-eigenvalue, representing the zero dimensional Betti
number. Looking at the minimum non-zero eigenvalues, 0.40 is different from 1, therefore using the
combinatorial Laplacian it can be concluded that the geometry of these simplicial complexes is indeed
different.

In practice, often a simplicial complex needs to be made from data. The most common ways require
a parameter to make this complex and the resulting simplicial complex can vary greatly in the choice of
this parameter. Like in the case of persistent homology, it is therefore argued that instead of selecting
one value of this parameter, a set of possible values needs to be analyzed. Extending the combinatorial
Laplacian to this setting, yields the persistent Laplacian [44]. This operator is theorized to contain
the information of the changes in the geometry of the resulting simplicial complex when varying the
parameter. See Section 2.5.4 for a more detailed discussion on this operator and an example of its
usage.

2.5.2. Formal Definition of the Combinatorial Laplacian
For a graph (𝑉, 𝐸), with 𝑉 the ordered set of vertices of the graph and 𝐸 ⊆ 𝑉 × 𝑉 the set of edges, the
graph Laplacian 𝐿 is often defined as the difference between the degree matrix 𝐷 and the adjacency
matrix 𝐴, 𝐿 ∶= 𝐷 −𝐴. Here the |𝑉| × |𝑉| degree matrix 𝐷 is a diagonal matrix that contains the degrees
of all the vertices on the diagonal. The degree of a vertex is equal to the number of edges that have
an end point in the vertex. Note that this coincides with the upper degree of a 0-simplex in a simplicial
complex. Finally, the adjacency matrix 𝐴 is a symmetric binary matrix where the entry on row 𝑖 and
column 𝑗 contains a 1 when (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 and is otherwise 0.

This definition can be extended to simplicial complexes, called the combinatorial Laplacian.

Definition 2.5.1. (Combinatorial Laplacian) For a simplicial complex 𝐾, the 𝑞-combinatorial Laplacian
Δ𝐾𝑞 ∶ 𝐶𝐾𝑞 → 𝐶𝐾𝑞 is defined by

Δ𝐾𝑞 ∶= 𝜕𝐾𝑞+1(𝜕𝐾𝑞+1)∗

Δ𝐾𝑞,+

+ (𝜕𝐾𝑞 )∗𝜕𝐾𝑞
Δ𝐾𝑞,−

. (2.29)

With (𝜕𝐾𝑞+1)∗ ∶ 𝐶𝐾𝑞 → 𝐶𝐾𝑞+1, the Hermitian adjoint of the boundary operator 𝜕𝐾𝑞+1 on the inner product
space 𝐶𝐾𝑞+1. Furthermore, we define Δ𝐾𝑞,+ and Δ𝐾𝑞,− as the up- and down-Laplacian, respectively.

Note that, for a chosen basis of 𝐶𝐾𝑞 and 𝐶𝐾𝑞+1, we can write the matrix representation of (𝜕𝐾𝑞 )∗ as
[(𝜕𝐾𝑞 )∗] = [𝜕𝐾𝑞 ]𝑇, with (⋅)𝑇 the normal matrix transpose. Furthermore, by convention 𝜕𝐾0 ∶= 0 and
therefore Δ𝐾0 = 𝜕𝐾1 (𝜕𝐾1 )∗.

For the remainder of the thesis, the notation [𝐹] for an operator 𝐹 or a vector 𝐹 ∈ 𝐶𝐾𝑞 is used to
indicate the matrix representation of 𝐹. While 𝜕𝐾𝑞 is a function from 𝐶𝐾𝑞 → 𝐶𝐾𝑞−1, the matrix representation
[𝜕𝐾𝑞 ] is a function from ℝ𝑛𝐾𝑞 → ℝ𝑛𝐾𝑞−1 . If not specified, the matrix representation is assumed to be in the
trivial basis 𝑆𝐾𝑞 .

An expression for every element of the matrix representation of the combinatorial Laplacian was
found in [24]. This is formulated in the next Theorem.

Theorem 2.5.1 ([24], Theorem 3.3.4). Let𝐾 be a simplicial complex and let 𝑆𝐾𝑞 = {𝜎1, 𝜎2, … , 𝜎𝑛𝐾𝑞 } denote
the 𝑞-simplices of 𝐾. The entries of the matrix representation according to the basis formed by 𝑆𝐾𝑞 of
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the q-combinatorial Laplacian, can be described as,

𝑞 > 0, [Δ𝐾𝑞 ]𝑖,𝑗 =

⎧
⎪

⎨
⎪
⎩

deg𝑈(𝜎𝑖) + 𝑞 + 1, if 𝑖 = 𝑗.
1, if 𝑖 ≠ 𝑗, 𝜎𝑖

𝑈≁ 𝜎𝑗 and 𝜎𝑖
𝐿∼ 𝜎𝑗 with similar common lower simplex.

−1, if 𝑖 ≠ 𝑗, 𝜎𝑖
𝑈≁ 𝜎𝑗 and 𝜎𝑖

𝐿∼ 𝜎𝑗 with dissimilar common lower simplex.
0, if 𝑖 ≠ 𝑗 and either, 𝜎𝑖

𝑈∼ 𝜎𝑗 or 𝜎𝑖
𝐿≁ 𝜎𝑗 .

(2.30)

𝑞 = 0, [Δ𝐾𝑞 ]𝑖,𝑗 = {
deg𝑈(𝜎𝑖), if 𝑖 = 𝑗.
−1, if 𝑖 ≠ 𝑗, 𝜎𝑖

𝑈∼ 𝜎𝑗 .
0, otherwise.

(2.31)

We can see that the entries of the combinatorial Laplacian may depend on the orientation of the
simplices, which in the definitions given here, is completely defined by the chosen ordering of the points
in the point set 𝒫. However, it is proven [24] that the spectra of the 𝑞-combinatorial Laplacian are inde-
pendent of this choice of orientation. Therefore, the chosen ordering does not affect any conclusions
drawn from the spectra.

The reason, these Laplacians are interesting for TDA, is because of the next theorem. It shows
that the information we are interested in, namely Betti numbers, is completely described by the 0-
eigenspace of the Laplacian.

Theorem 2.5.2 ([18]). For each 𝑞 ∈ ℕ, 𝛽𝐾𝑞 = dimkerΔ𝐾𝑞 .

Example 2.5.1. Consider again the filtration visualized in Figure 2.6. We first look at the final simplicial
complex 𝐾9. To compute a matrix representation of the 1-combinatorial Laplacian Δ𝐾91 , we could use
Theorem 2.5.1 or use the definition. To illustrate the computation, we first compute it using the definition.
To do this, we need the matrix representations of the boundary functions 𝜕𝐾91 and 𝜕𝐾92 . Written in the
canonical basis, we get,

[𝜕𝐾91 ] =

01 03 13 23 02

( )
0̄ −1 −1 0 0 −1
1̄ 1 0 −1 0 0
2̄ 0 0 0 −1 1
3̄ 0 1 1 1 0

, [𝜕𝐾92 ] =

013

⎛
⎜

⎝

⎞
⎟

⎠

01 1
03 −1
13 1
23 0
02 0

.

The combinatorial Laplacian then follows,

[Δ𝐾91 ] = [𝜕𝐾92 ] [𝜕𝐾92 ]
𝑇
+ [𝜕𝐾91 ]

𝑇
[𝜕𝐾91 ] =

⎛
⎜

⎝

3 0 0 0 1
0 3 0 1 1
0 0 3 1 0
0 1 1 2 −1
1 1 0 −1 2

⎞
⎟

⎠

.

The eigenvalues of this matrix can be computed to obtain 𝜆1 = 4, 𝜆2 = 4, 𝜆3 = 3, 𝜆4 = 2, 𝜆5 = 0. Hence
we see only one zero eigenvalue and can determine that 𝛽𝐾91 = 1.

2.5.3. Visualizing and using the combinatorial Laplacian
The most straight forward way of visualizing the combinatorial Laplacian is to make a heatmap of
the matrix representation for each relevant time, see Figure 2.13. Even though we have a complete
description of the combinatorial Laplacian using Equation (2.30), it still might be more intuitive to look at
this heatmap. This is also done in [45]. They note that when the complex represents a more complete
graph, so when almost all possible 1-simplices are added, the off-diagonal entries of the 0-combinatorial
Laplacian converge to -1. This is also apparent from Equation (2.30) as for a complete graph, every
0-simplex will be upper adjacent to any other 0-simplex. Looking at the Laplacian for 𝑡 = 9, we see
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(a) Dimension 0.

(b) Dimension 1.

Figure 2.13: Heatmap of a matrix representation of the combinatorial Laplacian [Δ𝐾𝑡𝑞 ] for each time step 𝑡 of the filtration visu-
alized in Figure 2.6.
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that only 1 and 2 are not yet connected as their entry is still 0. Finally, for dimension 1, we can see that
the Laplacian converges to a diagonal matrix, which can also be concluded from Equation (2.30).

Using this representation, the changes in the matrix during the filtration become visible. However,
an exact meaning of what the changes represent is still unclear and comparing two filtrations is still
difficult as the matrices can vary in size. Furthermore, the specific entries in the matrix may depend on
the chosen order of the point cloud. For this, we would like to look at the eigenvalues of each of the
matrices, which are independent of the order of the points [24]. Because of Theorem 2.5.2, we know
the number of 0-eigenvalues corresponds to the Betti number and therefore the topological information.
However, persistent homology already captures this information. For the usage of the combinatorial
Laplacian to make sense, we require additional information. Therefore, we mainly look at the non-zero
eigenvalues.

To use the non-zero eigenvalues they are often aggregated into one value for each time step and
each dimension [44, 46]. Common ways are to either sum the eigenvalues, take their average or
compute the maximum or minimum non-zero eigenvalue. Using Equation (2.30) we can already say
something about the properties described by the sum and average. This allows us to disregard them
further and in the process clarify the information we are after.

The sum of the non-zero eigenvalues is equal to the trace of the matrix. For a simplicial complex
𝐾, we therefore get,

∑𝜆([Δ𝐾𝑞 ]) = 𝑇𝑟 [Δ𝐾𝑞 ] = {
2𝑛𝐾1 if 𝑞 = 0.
(𝑞 + 2)𝑛𝐾𝑞+1 + (𝑞 + 1)𝑛𝐾𝑞 if 𝑞 > 0. (2.32)

Here it is used that the sum of all the upper degrees of the 𝑞-simplices is equal to 𝑞 + 2 times the
number of (𝑞 + 1)-simplices, ∑𝜎∈𝑆𝐾𝑞 deg𝑈(𝜎) = (𝑞 + 2)𝑛

𝐾
𝑞+1. This is a result of double counting. Each

(𝑞 + 1)-simplex contains 𝑞 + 2 𝑞-simplices that are faces of it.
Note that instead of computing the combinatorial Laplacian and the trace or the sum of the eigen-

values, one could just look at the number of simplices instead and compute the same value. While
this yields some geometric information, the information could be obtained in a computationally less
complex way.

Now looking at the average of the non-zero eigenvalues, one could note that this is just the trace di-
vided by the number of non-zero eigenvalues. Δ𝐾𝑞 is a self-adjoint, non-negative operator and therefore
the algebraic and geometric multiplicities of the eigenvalues are all equal. Resulting in the number of
positive eigenvalues being equal to 𝑛𝐾𝑞 −𝛽𝐾𝑞 . We can therefore conclude that using the average of the
non-zero eigenvalues also encodes the topological information into the result. However, this means
that compared to standard homology only the number of simplices is added as information. Using other
algorithms to compute the Betti numbers and then adding the information of the number of simplices,
should therefore be the same.

This leaves the minimum or maximum non-zero eigenvalues as reasonable aggregation functions.
They are often plotted together with the Betti number [44, 46], see Figure 2.14 for the minimum eigen-
value. Note here that the minimum non-zero eigenvalue for dimension 0 and 1 is exactly the same.
This is caused by the fact that there are no 2-simplices before time 9. The 0-combinatorial Laplacian
is then equal to [𝜕1] [𝜕1]

𝑇, while the 1-combinatorial Laplacian is equal to [𝜕1]
𝑇 [𝜕1]. For any matrix

𝐴, the non-zero eigenvalues of 𝐴𝐴𝑇 are the same as the non-zero eigenvalues of 𝐴𝑇𝐴. Therefore,
these Laplacians have the same non-zero eigenvalues before time 9. At time 9, the minimum non-zero
eigenvalue could have been different, but apparently the method considers the 1 dimensional geometry
unchanged.

2.5.4. Persistent Laplacian
Again, instead of looking at one simplicial complex and analyzing its properties, we would like to look
at a filtration of complexes, allowing for more information to be captured. To use the combinatorial
Laplacian in this setting, the persistent Laplacian was proposed [44].

We define the persistent Laplacian for a simplicial pair 𝐾 ↪ 𝐿 as it can be naturally extended to a
filtration by repeatedly using this definition. For that, consider the subspace

𝐶𝐾,𝐿𝑞 ∶= {𝑐 ∈ 𝐶𝐿𝑞 ∶ 𝜕𝐿𝑞(𝑐) ∈ 𝐶𝐾𝑞−1} ⊆ 𝐶𝐿𝑞 , (2.33)
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Figure 2.14: Results for the filtration in Figure 2.6. Minimum non-zero eigenvalue of the combinatorial Laplacian 𝜆𝑞0 in blue,
together with the Betti number 𝛽𝑞 in red for each time step.

the 𝑞-chains in 𝐶𝐿𝑞 that have a boundary in 𝐶𝐾𝑞−1. We use the notation 𝑛𝐾,𝐿𝑞 ∶= dim𝐶𝐾,𝐿𝑞 . Finally, let the
boundary 𝜕𝐾,𝐿𝑞 denote the restriction of 𝜕𝐿𝑞 to 𝐶𝐾,𝐿𝑞 .

Definition 2.5.2 (Persistent Laplacian, [44]). For a simplicial pair 𝐾 ↪ 𝐿, the 𝑞-persistent Laplacian
Δ𝐾,𝐿𝑞 ∶ 𝐶𝐾𝑞 → 𝐶𝐾𝑞 is defined by

Δ𝐾,𝐿𝑞 = 𝜕𝐾,𝐿𝑞+1(𝜕𝐾,𝐿𝑞+1)∗

Δ𝐾,𝐿𝑞,+

+ (𝜕𝐾𝑞 )∗𝜕𝐾𝑞
Δ𝐾𝑞,−

. (2.34)

With Δ𝐾,𝐿𝑞,+ the up persistent Laplacian and Δ𝐾𝑞,−, the same down-Laplacian from the combinatorial Lapla-
cian of Definition 2.5.1.

Note that this is a self-adjoint, non-negative and compact operator on 𝐶𝐾𝑞 and therefore its eigen-
values are real and non-negative.

A representation such as Theorem 2.5.1 has not been found yet for the persistent Laplacian, how-
ever, the kernel result was recently proven [33].

Theorem 2.5.3 ([33], Theorem 2.6). For each 𝑞 ∈ ℕ, 𝛽𝐾,𝐿𝑞 = dimkerΔ𝐾,𝐿𝑞 .

Note that this means that the analysis of the persistent Laplacian is split into two objectives. First, we
want to know the number of zero-eigenvalues, often called harmonic spectra, to describe the topological
information. Secondly, the remaining non-zero-eigenvalues, often called non-harmonic spectra, could
contain additional useful information. For the non-harmonic spectra, not much is currently known,
however it is theorized that they contain geometric information instead of the topological information of
the harmonic spectra [46].

In general, a matrix representation of the boundary matrix 𝜕𝐾𝑞 is easy to compute as the canonical
basis 𝑆𝐾𝑞 can just be used. However, for the persistent Laplacian, we also require a matrix represen-
tation of the boundary 𝜕𝐾,𝐿𝑞 . Here, the basis is not necessarily trivial. A cycle 𝑐 in 𝐶𝐿𝑞 , may need to
consist of a linear combination of multiple simplices of 𝑆𝐿𝑞 , in order for the boundary to be in 𝐶𝐾𝑞 . This
complication is highlighted in the following example.

Example 2.5.2. We first highlight an example of an easy to compute persistent Laplacian. Consider
the persistent Betti number 𝛽6,91 . In order to calculate this Betti number with the persistent Laplacian, we
need a basis for 𝐶6,92 . Note that the boundary of the only 2-simplex in 𝐾9 is contained in 𝐶62 . Therefore,
𝐶6,92 = 𝐶92 , which means that the canonical basis available for 𝐶92 can also be used for 𝐶6,92 . Now the
computation is very similar to the one for the combinatorial Laplacian done in Example 2.5.1.
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A harder calculation is needed when trying to calculate the Betti number 𝛽2,70 . Here a basis for 𝐶2,71
is not trivial as the boundaries of 03, 13 and 23 are not contained in 𝐶20 . However, the boundaries of
01, 03− 13 and 03− 23 all are. From these vectors, an orthonormal basis needs to be made, which is
not necessarily unique. One way of obtaining such a basis is using the Gram-Schmidt procedure on a
linearly independent set. Using the set of boundaries mentioned before, note that 01 and 03 − 13 are
already orthogonal, however 03−13 needs to be normalized. This yields 𝑣1 = 01 and 𝑣2 =

1
√2(03−13).

Furthermore, 03−23 is also already orthogonal to 01. Therefore, the only thing that remains to be done,
is to orthogonalize 𝑣2 and 03 − 23 and normalize the outcome. Following Gram-Schmidt and writing
the vectors in the canonical basis, we obtain,

̃𝑣3 =
⎛
⎜

⎝

⎞
⎟

⎠

01 0
03 1

√2
13 − 1

√2
23 0

− ⟨⎛⎜

⎝

0
1
√2
− 1
√2
0

⎞
⎟

⎠

,(
0
1
0
−1
)⟩(

0
1
0
−1
) = ⎛⎜

⎝

0
1
21
2
−1

⎞
⎟

⎠

.

Normalizing this vector yields the following basis {01, 1√2(03 − 13),
1
√6(03 + 13 − 2 ⋅ 23)}. Using this

basis for the matrix representation of the boundary 𝜕2,71 , we obtain

[𝜕2,71 ] =

01 1
√2(03 − 13)

1
√6(03 + 13 − 2 ⋅ 23)

( )
0̄ −1 − 1

√2 − 1
√6

1̄ 1 1
√2 − 1

√6
2̄ 0 0 2

√6

.

The persistent Laplacian then follows,

[Δ2,70 ] = [𝜕2,71 ] [𝜕2,71 ]𝑇 = 1
3 (

5 −4 −1
−4 5 −1
−1 −1 2

) .

Computing the eigenvalues of this matrix yields 𝜆1 = 3, 𝜆2 = 1, 𝜆3 = 0. Therefore, only one zero-
eigenvalue is present and we can conclude 𝛽2,70 = 1.

Using the Schur complement
From Example 2.5.2, we can see that computing the persistent Laplacian can be quite complex. [33]
propose an algorithm to determine the matrix representation of Δ𝐾,𝐿𝑞 without needing to do Gramm
Schmidt. However, they note that this algorithm has a worst case time complexity of
𝑂 (𝑛𝐿𝑞(𝑛𝐿𝑞+1)2 + (𝑛𝐿𝑞+1)3 + (𝑛𝐾𝑞 )2), making it still quite slow.

To improve on this, they give a faster algorithm, that relies on the Schur complement. In [33],
the authors prove that the persistent up-Laplacian Δ𝐾,𝐿𝑞,+ can be defined as a Schur complement of the
combinatorial up-Laplacian of 𝐿. Before stating this theorem, we need some notation. For an integer
𝑛, we write [𝑛] = {1, 2, … , 𝑛}. Furthermore for a matrix 𝑀 ∈ ℝ𝑛×𝑚, some set of row indices 𝐼𝑟 ⊆ [𝑛] and
some set of column indices 𝐼𝑐 ⊆ [𝑚], we refer to 𝑀(𝐼𝑟 , 𝐼𝑐) as the submatrix of 𝑀 that contains the rows
and columns with indices 𝐼𝑟 and 𝐼𝑐, respectively.

Theorem 2.5.4 ([33], Theorem 4.6). Let 𝐾 ↪ 𝐿 be a simplicial pair. Assume that 𝑛𝐾𝑞 < 𝑛𝐿𝑞. Let
𝐼𝐾,𝐿𝑞 ∶= [𝑛𝐿𝑞] ∖ [𝑛𝐾𝑞 ]. Then,

[Δ𝐾,𝐿𝑞,+] = [Δ𝐿𝑞,+]/[Δ𝐿𝑞,+](𝐼𝐾,𝐿𝑞 , 𝐼𝐾,𝐿𝑞 ). (2.35)

Note that in the case of 𝑛𝐾𝑞 = 𝑛𝐿𝑞, we have that 𝐶𝐾𝑞 = 𝐶𝐿𝑞 and therefore any boundary of a vector
𝑐 ∈ 𝐶𝐿𝑞+1 is in 𝐶𝐾𝑞 . Which means that 𝐶𝐾,𝐿𝑞+1 = 𝐶𝐿𝑞+1 and therefore the persistent up-Laplacian is equal to
the combinatorial Laplacian of 𝐿, Δ𝐾,𝐿𝑞,+ = Δ𝐿𝑞,+.
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Using the Schur complement representation of the persistent up-Laplacian, [33] note that the time
complexity for computing the persistent Laplacian is reduced to worst case 𝑂 ((𝑛𝐿𝑞)3 + 𝑛𝐿𝑞+1). There-
fore, the new algorithm is faster when 𝑛𝐿𝑞 = 𝑂(𝑛𝐿𝑞+1), which they claim is often the case as, for example,
the Cech filtration adheres to this condition.

They also note that, for computing persistent Betti numbers, the rank of the null space needs to
be determined, which can be done in 𝑂 ((𝑛𝐿𝑞)3) time. Resulting in a total time complexity for the
computation of the persistent Betti number using the persistent Laplacian of 𝑂 ((𝑛𝐿𝑞)3 + 𝑛𝐿𝑞+1). They
compare this to the standard algorithm for computing persistent Betti numbers, which they say has a
time complexity of 𝑂 ((𝑛𝐿𝑞)2𝑛𝐿𝑞+1 + (𝑛𝐾𝑞−1)2𝑛𝐾𝑞 ) and conclude that the new algorithm is faster if again,
𝑛𝐿𝑞 = 𝑂(𝑛𝐿𝑞+1).

On the other hand, the authors of [16] note that often the persistent Betti number for every combi-
nation of birth and death times in multiple dimensions, needs to be calculated. They write that doing
this with the persistent Laplacian is time consuming. They compute that for a simplicial filtration of 𝑁
complexes, where a single simplex is added in each step and the first complex contains only one sim-
plex, the time complexity of the algorithm using the Schur complement representation of the persistent
Laplacian is 𝑂 (𝑁4/(𝑞 + 1)) with 𝑞 the maximum dimension that needs to be calculated. Comparing
this to the previously discussed standard algorithm time complexity of 𝑂(𝑁3), they conclude that the
new time complexity is asymptotically larger.



3
Extending persistent barcodes

To use the information captured by the Laplacian, in this chapter, a method to extend persistent bar-
codes is introduced. In order to do that, first a method to visualize the persistent Laplacian is proposed.
This gives a visual argument for the interest in the persistent multiplicity operator, see Equation (3.1)
and how it could be used to extend barcodes. In the next section, a new formulation of the persistent
Laplacian is obtained and analyzed, which allows for easier algebraic analysis of the multiplicity oper-
ator in the succeeding section. Furthermore, it gives an interpretation of the features tracked by the
persistent Laplacian. In the third section, the multiplicity operator is split into two parts and each part
is individually analyzed. Finally, in this section the full multiplicity operator is discussed and analyzed,
concluding with a discussion of its eigenvalues and their meaning, which gives rise to the adjusted
multiplicity operator, see Equation (3.32). A proposed usage of these operators is then discussed in
Section 3.4. To efficiently calculate the matrix representation of the multiplicity operator, an algorithm
is proposed in the final section.

3.1. Visualizing the persistent Laplacian
The combinatorial Laplacian was first visualized using a heat map in Figure 2.13. The same can
be done for the persistent Laplacian, but it requires plotting a lot of different images, see Figure 3.1
for dimension 0. Note that in this Figure, on the diagonal are the combinatorial Laplacians of Figure
2.13. While this representation is not very clear, it may provide some intuition on the functioning of the
operator.

To make it more clear, we again summarize the matrix by a single number using its eigenvalues.
The same previously discussed aggregation functions can be used. For the persistent Laplacian a
representation such as Equation (2.30) has not yet been found. Therefore, looking at the sum or aver-
age of the non-zero eigenvalues may still provide more information than just the number of simplices.
What we do know is that, by the same reasoning, the information added by the average over the sum
is determined by the persistent Betti number and the number of simplices.

A few of these aggregation functions have been plotted in Figure 3.2. Here every matrix seen in
Figure 3.1 is made into a rectangle with color equal to the aggregation function applied to the non-zero
eigenvalues of the persistent Laplacian Δ𝑠,𝑡𝑞 , with 𝑠 and 𝑡 equal to the x and y coordinates of the bottom
left point of the rectangle, respectively. The intervals of the persistent barcode are also visualized as
points to highlight their effect on the persistent Laplacian.

To clarify the representation, we look at an example. The point (2, 7) in dimension 0, corresponds
to the persistent interval of the connected component created by vertex 2 in the filtration of Figure 2.6.
By looking at the rectangle to the top right of this point in Figure 3.2, we can see that the persistent
Laplacian Δ2,70 has 2 non-zero eigenvalues. The minimum eigenvalue is equal to 1 and the maximum
is equal to 3 making their sum equal to 4. Finally, we can see that the persistent Betti number 𝛽2,70 = 1.

Now looking at the plot of Figure 3.2 in more detail, we can see the effect of the standard persistent
barcode on the Laplacian and the Betti numbers. In the right most plot of the figure, the intervals,
represented by points, are when the Betti number changes with respect to the Betti numbers of the
previous end time and the previous start time. This results in the points seemingly having effect on the
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Figure 3.1: Heatmaps of a matrix representation of the 0-persistent Laplacian [Δ𝑠,𝑡0 ] for different start times 𝑠 and end times 𝑡 for
the filtration visualized in Figure 2.6.

Figure 3.2: Representation of aggregation functions applied to the eigenvalues of the persistent Laplacian [Δ𝑠,𝑡𝑞 ] for different start
times 𝑠 on the x-axis and end times 𝑡 on the y-axis for the filtration visualized in Figure 2.6. White dots represent the standard
persistent barcode.
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rectangles below and to the right of it and in between. Whenever two of these ”effects” overlap the Betti
number increases.

Something similar can be said when looking at the sum of the eigenvalues of the persistent Lapla-
cian. Every point that corresponds to an interval affects the rectangles above and to the right of it and
in between. Again there seems to be some extra effect whenever these areas overlap. The fact that
these triangular patterns appear here is no surprise as whenever the Betti number decreases, a zero
eigenvalue has to become positive. This results in more non-zero eigenvalues, so some effect on the
sum should be expected.

What is more interesting is that there are more points that seem to satisfy the criteria of creating an
effect. Looking at the plot of the sum of eigenvalues, in (1, 6) and (1, 8) a similar pattern is observed.
Therefore, these points seem to be of relevance to the Laplacian as well. Although difficult to see now,
it will become clear that these points refer to new paths appearing between the vertices. (1, 6) looks
at the path between the simplex that appeared at 1, so vertex 1, and the vertices that were present
before it, in this case only 0. At 6 the path 03 − 13 becomes available, so here we see an effect in the
persistent Laplacian. At time 8, the path 02+23−13 appears for the first time, therefore we also have
an effect at (1, 8).

In order to calculate the location of these points, the same operation that is used to find the persistent
intervals from the persistent Betti numbers can be used. For persistent intervals, Equation (2.25) was
used to find their multiplicity and only intervals having positive multiplicity are considered part of the
barcode. Therefore, it is proposed to use the same equation on the persistent Laplacian, however
because the effect is upward instead of downward in the Figure, the signs are swapped. This comes
with several complications and the following equation is also not well defined yet. However, to give the
idea, it is stated here.

𝑀𝑠,𝑡
𝑞 ∶= (Δ𝑠,𝑡𝑞 − Δ𝑠,𝑡−1𝑞 ) − (Δ𝑠−1,𝑡𝑞 − Δ𝑠−1,𝑡−1𝑞 ) . (3.1)

Besides the effect in the plot, one more motivation is given for the relevance of this operator. For
most methods in TDA, persistent Betti numbers are not directly used, instead only the intervals defined
by the multiplicity equation are used. The topological interpretation of the persistent Laplacian Δ𝑠,𝑡𝑞
yields that the kernel corresponds to the persistent Betti number 𝛽𝑠,𝑡𝑞 . Therefore, it would make sense
to not directly use the persistent Laplacian and instead first apply the multiplicity operation on it. This
operation would be described by Equation (3.1).

Assuming this all works, we would get that the trace of the new multiplicity operator follows the
multiplicity equation as it is linear. Therefore, computing this trace gives us the points we are looking
for, together with some value. These can then be used to extend the standard persistent barcode.

3.2. Laplacians for simplicial pairs
In order to better understand the persistent Laplacian and the effect of the multiplicity operation, it
is useful to rewrite the equation using the Schur complement formula of Theorem 2.5.4. The next
Theorem introduces the matrices 𝐵𝐾,𝐿𝑞,1 and 𝐵𝐾,𝐿𝑞,2 , which are important for the remainder of the thesis.
After that, an interpretation of the new representation is discussed in the form of Corollary 3.2.3. This
shifts the focus to understanding the kernel of 𝐵𝐾,𝐿𝑞,2 , which results in the formulation of Lemma 3.2.4.

One of the main concepts used to prove the results is to exploit the structure of the matrix rep-
resentation of the boundary operator. For a simplicial pair 𝐾 ↪ 𝐿 and some dimension 𝑞, let 𝐼𝐾,𝐿𝑞+1 =
[𝑛𝐿𝑞+1] ∖ [𝑛𝐾𝑞+1]. Partitioning the matrix representation of [𝜕𝐿𝑞+1] into four blocks, we can write,

[𝜕𝐿𝑞+1] = [
[𝜕𝐿𝑞+1]([𝑛𝐾𝑞 ], [𝑛𝐾𝑞+1]) [𝜕𝐿𝑞+1](𝐼𝐾,𝐿𝑞 , [𝑛𝐾𝑞+1])
[𝜕𝐿𝑞+1]([𝑛𝐾𝑞 ], 𝐼𝐾,𝐿𝑞+1) [𝜕𝐿𝑞+1](𝐼𝐾,𝐿𝑞 , 𝐼𝐾,𝐿𝑞+1)

] .

Note that by definition the top left block is exactly equal to [𝜕𝐿𝑞+1]([𝑛𝐾𝑞 ], [𝑛𝐾𝑞+1]) = [𝜕𝐾𝑞+1]. Furthermore,
each column in the boundary matrix corresponds to a (𝑞 + 1)-simplex in 𝐿, where the boundary of the
simplex is described by the rows, such that each row corresponds to a 𝑞-simplex. Note that, because 𝐾
and 𝐿 are simplicial complexes, the boundary of a (𝑞+1)-simplex in 𝐿, which was also part of 𝐾 cannot
contain 𝑞-simplices that were not in 𝐾. Therefore, columns corresponding to these (𝑞 + 1)-simplices
can only be non-zero in rows corresponding to 𝑞-simplices in 𝐾. Hence, the bottom left block of the
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matrix must be zero [𝜕𝐿𝑞+1]([𝑛𝐾𝑞 ], 𝐼𝐾,𝐿𝑞+1) = 0. Which yields the following structure,

[𝜕𝐿𝑞+1] = [
[𝜕𝐾𝑞+1] [𝜕𝐿𝑞+1](𝐼𝐾,𝐿𝑞 , [𝑛𝐾𝑞+1])
0 [𝜕𝐿𝑞+1](𝐼𝐾,𝐿𝑞 , 𝐼𝐾,𝐿𝑞+1)

] .

Theorem 3.2.1. Let 𝐾 and 𝐿 be simplicial complexes, such that 𝐾 ⊆ 𝐿. The matrix representation of
the persistent up-Laplacian can be expressed as

[Δ𝐾,𝐿𝑞,+] = [Δ𝐾𝑞,+] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 )(𝐵𝐾,𝐿𝑞,1 )𝑇 , (3.2)

where 𝐵𝐾,𝐿𝑞,1 ∶= [𝜕𝐿𝑞+1]([𝑛𝐾𝑞 ], 𝐼𝐾,𝐿𝑞+1), 𝐵𝐾,𝐿𝑞,2 ∶= [𝜕𝐿𝑞+1](𝐼𝐾,𝐿𝑞 , 𝐼𝐾,𝐿𝑞+1) and † the Moore-Penrose inverse.

Proof. Note that we can write the matrix representation of the 𝑞 + 1 boundary operator on 𝐿 as:

[𝜕𝐿𝑞+1] = [
[𝜕𝐾𝑞+1] 𝐵𝐾,𝐿𝑞,1
0 𝐵𝐾,𝐿𝑞,2

] . (3.3)

We therefore get that the combinatorial up-Laplacian

[Δ𝐿𝑞,+] = [𝜕𝐿𝑞+1][𝜕𝐿𝑞+1]𝑇 = [
[𝜕𝐾𝑞+1][𝜕𝐾𝑞+1]𝑇 + 𝐵𝐾,𝐿𝑞,1 (𝐵𝐾,𝐿𝑞,1 )𝑇 𝐵𝐾,𝐿𝑞,1 (𝐵𝐾,𝐿𝑞,2 )𝑇

𝐵𝐾,𝐿𝑞,2 (𝐵𝐾,𝐿𝑞,1 )𝑇 𝐵𝐾,𝐿𝑞,2 (𝐵𝐾,𝐿𝑞,2 )𝑇
]. Next the Schur complement rep-

resentation of Theorem 2.5.4 is used. We get,

[Δ𝐾,𝐿𝑞,+] = [Δ𝐿𝑞,+]/([Δ𝐿𝑞,+](𝐼𝐾,𝐿𝑞 , 𝐼𝐾,𝐿𝑞 ))

= [𝜕𝐾𝑞+1][𝜕𝐾𝑞+1]𝑇 + 𝐵𝐾,𝐿𝑞,1 (𝐵𝐾,𝐿𝑞,1 )𝑇 − 𝐵𝐾,𝐿𝑞,1 (𝐵𝐾,𝐿𝑞,2 )𝑇 [𝐵𝐾,𝐿𝑞,2 (𝐵𝐾,𝐿𝑞,2 )𝑇]
† 𝐵𝐾,𝐿𝑞,2 (𝐵𝐾,𝐿𝑞,1 )𝑇

= [Δ𝐾𝑞,+] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )𝑇 [𝐵𝐾,𝐿𝑞,2 (𝐵𝐾,𝐿𝑞,2 )𝑇]
† 𝐵𝐾,𝐿𝑞,2 ) (𝐵𝐾,𝐿𝑞,1 )𝑇 .

We now first use the property of the pseudo inverse described by Equation (2.7) and rewrite using
𝑄 = (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 , to get,

[Δ𝐾,𝐿𝑞,+] = [Δ𝐾𝑞,+] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )𝑇((𝐵𝐾,𝐿𝑞,2 )†)𝑇(𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 ) (𝐵𝐾,𝐿𝑞,1 )𝑇

= [Δ𝐾𝑞,+] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − 𝑄𝑇𝑄) (𝐵𝐾,𝐿𝑞,1 )𝑇 .

Finally, the fact that 𝑄 is symmetric and idempotent, see Equations (2.4) and (2.9), can be used to
obtain,

[Δ𝐾,𝐿𝑞,+] = [Δ𝐾𝑞,+] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − 𝑄) (𝐵𝐾,𝐿𝑞,1 )𝑇

= [Δ𝐾𝑞,+] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 )(𝐵𝐾,𝐿𝑞,1 )𝑇 .

As a direct consequence of the previous Theorem, we get the following Corollary for the full persis-
tent Laplacian.

Corollary 3.2.2. Let 𝐾 and 𝐿 be simplicial complexes, such that 𝐾 ⊆ 𝐿. Then,

[Δ𝐾,𝐿𝑞 ] = [Δ𝐾𝑞 ] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 )(𝐵𝐾,𝐿𝑞,1 )𝑇 , (3.4)

where 𝐵𝐾,𝐿𝑞,1 ∶= [𝜕𝐿𝑞+1]([𝑛𝐾𝑞 ], 𝐼𝐾,𝐿𝑞+1), 𝐵𝐾,𝐿𝑞,2 ∶= [𝜕𝐿𝑞+1](𝐼𝐾,𝐿𝑞 , 𝐼𝐾,𝐿𝑞+1), 𝐼𝐾,𝐿𝑞+1 = [𝑛𝐿𝑞+1] ∖ [𝑛𝐾𝑞+1] and † the Moore-
Penrose inverse.

Proof. By definition, the persistent Laplacian is [Δ𝐾,𝐿𝑞 ] = [Δ𝐾𝑞,−]+ [Δ𝐾,𝐿𝑞,+] and the combinatorial Laplacian
is [Δ𝐾𝑞 ] = [Δ𝐾𝑞,−] + [Δ𝐾𝑞,+]. Substituting Equation (3.2) into the definition of the persistent Laplacian, we
obtain,

[Δ𝐾,𝐿𝑞 ] = [Δ𝐾𝑞,−] + [Δ𝐾𝑞,+] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 )(𝐵𝐾,𝐿𝑞,1 )𝑇

= [Δ𝐾𝑞 ] + 𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 )(𝐵𝐾,𝐿𝑞,1 )𝑇 .
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In order to understand the new representation of Equation (3.4), we can analyze and rewrite the
second part in the following Corollary. Here we see that this part of the equation is completely defined
by the following set of vectors: {𝐵𝐾,𝐿𝑞,1 𝑣 ∶ 𝑣 ∈ ker𝐵𝐾,𝐿𝑞,2 }.
Corollary 3.2.3. Let 𝐾 ↪ 𝐿 be a simplicial pair. Then,

𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 )(𝐵𝐾,𝐿𝑞,1 )𝑇 = ∑
𝑣∈[ker𝐵𝐾,𝐿𝑞,2 ]

𝐵𝐾,𝐿𝑞,1 𝑣(𝐵𝐾,𝐿𝑞,1 𝑣)𝑇 , (3.5)

where 𝐵𝐾,𝐿𝑞,1 ∶= [𝜕𝐿𝑞+1]([𝑛𝐾𝑞 ], 𝐼𝐾,𝐿𝑞+1), 𝐵𝐾,𝐿𝑞,2 ∶= [𝜕𝐿𝑞+1](𝐼𝐾,𝐿𝑞 , 𝐼𝐾,𝐿𝑞+1), 𝐼𝐾,𝐿𝑞+1 = [𝑛𝐿𝑞+1]∖ [𝑛𝐾𝑞+1], † the Moore-Penrose
inverse and [ker𝐵𝐾,𝐿𝑞,2 ] an orthonormal basis for the kernel of 𝐵𝐾,𝐿𝑞,2 .

Proof. Consider the singular value decomposition of 𝐵𝐾,𝐿𝑞,2 = 𝑈Σ𝑉𝑇, then by Theorem 2.1.1, (𝐵𝐾,𝐿𝑞,2 )† =
𝑉Σ†𝑈𝑇, where Σ† is the transpose of Σ with every non-zero entry on the diagonal (Σ†)𝑖,𝑖 =

1
(Σ)𝑖,𝑖

. We

can therefore write, (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 = 𝑉 [
𝐼𝑟 0
0 0] 𝑉

𝑇, with 𝑟 = Rank(𝐵𝐾,𝐿𝑞,2 ). Now we can simplify

𝐼 − (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 = 𝑉(𝐼 − [
𝐼𝑟 0
0 0])𝑉

𝑇

= ∑
𝑣∈[ker𝐵𝐾,𝐿𝑞,2 ]

𝑣(𝑣)𝑇 ,

where the last equality comes from the fact that we are using the vectors in 𝑉 that correspond to zero
singular values. 𝑉 contains the eigenvectors of (𝐵𝐾,𝐿𝑞,2 )𝑇𝐵𝐾,𝐿𝑞,2 , therefore the vectors that correspond to
zero singular values correspond to 0-eigenvectors of (𝐵𝐾,𝐿𝑞,2 )𝑇𝐵𝐾,𝐿𝑞,2 and are therefore vectors of the kernel
of 𝐵𝐾,𝐿𝑞,2 , as long as a orthonormal basis for the kernel is chosen. Finally, we get,

𝐵𝐾,𝐿𝑞,1 (𝐼 − (𝐵𝐾,𝐿𝑞,2 )†𝐵𝐾,𝐿𝑞,2 )(𝐵𝐾,𝐿𝑞,1 )𝑇 = 𝐵𝐾,𝐿𝑞,1 ( ∑
𝑣∈[ker𝐵𝐾,𝐿𝑞,2 ]

𝑣(𝑣)𝑇)(𝐵𝐾,𝐿𝑞,1 )𝑇

= ∑
𝑣∈[ker𝐵𝐾,𝐿𝑞,2 ]

𝐵𝐾,𝐿𝑞,1 𝑣(𝐵𝐾,𝐿𝑞,1 𝑣)𝑇 .

From this Corollary it becomes clear that, to understand this part of the equation is to understand
the set {𝐵𝐾,𝐿𝑞,1 𝑣 ∶ 𝑣 ∈ ker𝐵𝐾,𝐿𝑞,2 }. In order to do that, we first focus on ker𝐵𝐾,𝐿𝑞,2 . The following Lemma tells
us that this kernel describes the space of (𝑞 + 1)-simplices in 𝐿, which have a boundary in 𝐾, but are
not part of 𝐶𝐾𝑞+1.

Lemma 3.2.4. Let 𝐾 ↪ 𝐿 be a simplicial pair and let 𝐵𝐾,𝐿𝑞,2 ∶= [𝜕𝐿𝑞+1](𝐼𝐾,𝐿𝑞 , 𝐼𝐾,𝐿𝑞+1). Then,

𝐶𝐾,𝐿𝑞+1 ≅ 𝐶𝐾𝑞+1⊕ ker𝐵𝐾,𝐿𝑞,2 . (3.6)

Proof. For 𝑐 ∈ 𝐶𝐿𝑞+1, we can represent 𝑐 in the trivial orthonormal basis like 𝑐 = ∑𝑛
𝐿
𝑞+1
𝑖=1 𝑎𝑖𝜎𝑞+1𝑖 with

𝑎𝑖 ∈ ℝ and 𝜎𝑞+1𝑖 ∈ 𝑆𝐿𝑞+1 (the 𝑞 + 1 simplices of 𝐿). We denote by 𝑐𝐾 ∈ 𝐶𝐾𝑞+1, the part of 𝑐 in 𝐶𝐾𝑞+1. Using
the previous representation, we get 𝑐𝐾 = ∑

𝑛𝐾𝑞+1
𝑖=1 𝑎𝑖𝜎𝑞+1𝑖 . Finally, we denote by 𝑐𝐾,𝐿, the part of 𝑐 that is

not in 𝐶𝐾𝑞+1, which can be written as 𝑐𝐾,𝐿 = ∑
𝑛𝐿𝑞+1
𝑖=𝑛𝐾𝑞+1+1

𝑎𝑖𝜎𝑞+1𝑖 . It now remains to show that 𝑐 ∈ 𝐶𝐾,𝐿𝑞+1 if
and only if 𝑐𝐾,𝐿 ∈ ker𝐵𝐾,𝐿𝑞,2 .

First, note that for 𝑛𝐾𝑞 < 𝑗 ≤ 𝑛𝐿𝑞 and 𝑛𝐾𝑞+1 < 𝑖 ≤ 𝑛𝐿𝑞+1, 𝐵𝐾,𝐿𝑞,2 is defined like

(𝐵𝐾,𝐿𝑞,2 )𝑗−𝑛𝐾𝑞 ,𝑖−𝑛𝐾𝑞+1 = ⟨𝜕
𝐿
𝑞+1𝜎𝑞+1𝑖 , 𝜎𝑗⟩ .
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We now look at its multiplication with 𝑐𝐾,𝐿 by looking at the entries of the resulting vector:

(𝐵𝐾,𝐿𝑞,2 ⋅ [𝑐𝐾,𝐿])𝑗−𝑛𝐾𝑞 =
𝑛𝐿𝑞+1

∑
𝑖=𝑛𝐾𝑞+1+1

𝑎𝑖 ⟨𝜕𝐿𝑞+1𝜎𝑞+1𝑖 , 𝜎𝑗⟩ .

Hence, 𝑐𝐾,𝐿 ∈ ker𝐵𝐾,𝐿𝑞,2 if and only if ∑𝑛
𝐿
𝑞+1
𝑖=𝑛𝐾𝑞+1+1

𝑎𝑖 ⟨𝜕𝐿𝑞+1𝜎𝑞+1𝑖 , 𝜎𝑗⟩ = 0 for all 𝑛𝐾𝑞 < 𝑗 ≤ 𝑛𝐿𝑞.
We now show that 𝑐 ∈ 𝐶𝐾,𝐿𝑞+1 is also equivalent to this. Applying the boundary operator to 𝑐 yields

𝜕𝐿𝑞+1(𝑐) =
𝑛𝐿𝑞+1

∑
𝑖=1

𝑎𝑖𝜕𝐿𝑞+1𝜎𝑞+1𝑖

=
𝑛𝐿𝑞+1

∑
𝑖=1

𝑎𝑖
𝑛𝐿𝑞

∑
𝑗=1
⟨𝜕𝐿𝑞+1𝜎𝑞+1𝑖 , 𝜎𝑞𝑗 ⟩ 𝜎

𝑞
𝑗

=
𝑛𝐿𝑞

∑
𝑗=1

𝑛𝐿𝑞+1

∑
𝑖=1

𝑎𝑖 ⟨𝜕𝐿𝑞+1𝜎𝑞+1𝑖 , 𝜎𝑞𝑗 ⟩ 𝜎
𝑞
𝑗 .

Therefore, 𝑐 ∈ 𝐶𝐾,𝐿𝑞 and equivalently 𝜕𝐿𝑞+1(𝑐) ∈ 𝐶𝐾𝑞 if and only if ∑𝑛
𝐿
𝑞+1
𝑖=1 𝑎𝑖 ⟨𝜕𝐿𝑞+1𝜎𝑞+1𝑖 , 𝜎𝑞𝑗 ⟩ = 0 for all

𝑛𝐾𝑞 < 𝑗 ≤ 𝑛𝐿𝑞. Finally, note that whenever 𝑗 > 𝑛𝐾𝑞 , we have ⟨𝜕𝐿𝑞+1𝜎𝑞+1𝑖 , 𝜎𝑞𝑗 ⟩ = 0 for 𝑖 ≤ 𝑛𝐾𝑞+1 as a
(𝑞 + 1)-simplex in 𝐾 cannot have a boundary outside 𝐾. We therefore get the following equivalence
statement.

𝑐𝐾,𝐿 ∈ ker𝐵𝐾,𝐿𝑞,2 ⟺
𝑛𝐿𝑞+1

∑
𝑖=𝑛𝐾𝑞+1+1

𝑎𝑖 ⟨𝜕𝐿𝑞+1𝜎𝑞+1𝑖 , 𝜎𝑗⟩ = 0, ∀𝑗 > 𝑛𝐾𝑞 ⟺ 𝑐 ∈ 𝐶𝐾,𝐿𝑞+1.

Turning our attention again to the full set {𝐵𝐾,𝐿𝑞,1 𝑣 ∶ 𝑣 ∈ ker𝐵𝐾,𝐿𝑞,2 }, we would like to understand the
product 𝐵𝐾,𝐿𝑞,1 𝑣. With the new interpretation of the kernel, we get that a vector 𝑣 ∈ ker𝐵𝐾,𝐿𝑞,2 can be
extended to a chain 𝑐 ∈ 𝐶𝐾,𝐿𝑞+1 which contains no simplices of 𝑆𝐾𝑞+1. The matrix representation of this

chain in the trivial basis would be [𝑐] = [0𝑣]. The effect of the boundary 𝜕𝐿𝑞+1 on this chain 𝑐 is then

completely described by 𝐵𝐾,𝐿𝑞,1 as using Equation (3.3), we can see that [𝜕𝐿𝑞+1][𝑐] = [
𝐵𝐾,𝐿𝑞,1 𝑣
0 ]. Here 𝐵𝐾,𝐿𝑞,1 𝑣

can be interpreted as the boundary in 𝐾 of this chain 𝑐. In other words the set {𝐵𝐾,𝐿𝑞,1 𝑣 ∶ 𝑣 ∈ ker𝐵𝐾,𝐿𝑞,2 },
can be interpreted as new boundaries in 𝐾, which come from a combination of simplices in 𝐿.

We can now look at the implication of this representation for the trace of the persistent Laplacian,

𝑇𝑟(Δ𝐾,𝐿𝑞 ) = 𝑇𝑟(Δ𝐾𝑞 ) + ∑
𝑣∈[ker𝐵𝐾,𝐿𝑞,2 ]

||𝐵𝐾,𝐿𝑞,1 𝑣||22

= {
(𝑞 + 2)𝑛𝐾𝑞+1 + (𝑞 + 1)𝑛𝐾𝑞 + ∑𝑣∈[ker𝐵𝐾,𝐿𝑞,2 ] ||𝐵

𝐾,𝐿
𝑞,1 𝑣||22 if 𝑞 > 0.

2𝑛𝐾1 + ∑𝑣∈[ker𝐵𝐾,𝐿𝑞,2 ] ||𝐵
𝐾,𝐿
𝑞,1 𝑣||22 if 𝑞 = 0. (3.7)

Here Equation (2.32) is used in the second equality.
We would therefore like to find an interpretation of ||𝐵𝐾,𝐿𝑞,1 𝑣||22, which can be done in certain situations.

For example, see the two simplicial pairs in Figure 3.3. Note that their topological features are the
same as they both start with 2 connected components where one dies in 𝐿. Furthermore, note that
in 𝐿, they both contain a path from 0 to 1 consisting of 1-simplices. For any such path, we can find
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Figure 3.3: Two simplicial pairs 𝐾1 ↪ 𝐿1 and 𝐾2 ↪ 𝐿2.

a 𝑐 ∈ 𝐶𝐾,𝐿1 by choosing the sign such that the simplices in the middle disappear in the boundary. For
the 𝐾1 ↪ 𝐿1 the path would be 𝑐 = 02 − 12, while for the second simplicial pair, we can find the path
𝑐 = 02− 23+ 34− 45− 15. None of these 1-simplices appeared already in 𝐾, therefore using Lemma
3.2.4, this path is described by a 𝑣 ∈ ker𝐵𝐾,𝐿𝑞,2 . Like was said before, 𝐵𝐾,𝐿𝑞,1 𝑣, is the boundary of this
chain, which in both of these cases is just 1̄ − 0̄, resulting in ||𝐵𝐾,𝐿𝑞,1 𝑣||22 = 2. However, 𝑣 is not yet
normalized. Here lies the difference between the two simplicial pairs. For pair 𝐾1 ↪ 𝐿1, ||𝑣1||2 = √2,
while for the pair 𝐾2 ↪ 𝐿2, ||𝑣2||2 = √5. Multiplying with the normalization constant, we get for the
first pair 𝑇𝑟(Δ𝐾1 ,𝐿10 ) = 2

2 = 1, while for the second pair, we get 𝑇𝑟(Δ𝐾2 ,𝐿20 ) = 2
5 as the trace of the

combinatorial Laplacian is zero in both cases. Hence, using the trace of the persistent Laplacian, we
do see a difference between the two pairs.

We can make this case more general, by noting that for 𝑞 = 0, any chain 𝑐 ∈ 𝐶𝐿1 corresponding to a
path of 1-simplices in 𝐿 between two 0-simplices of𝐾 that does not cross any other 0-simplices of𝐾, has
a boundary in 𝐾. Therefore, we have 𝑐 ∈ 𝐶𝐾,𝐿1 . However, if it does not contain any 1-simplices already
in 𝐾, it does not have a part in 𝐶𝐾1 , which means it is completely described by a 𝑣 ∈ ker𝐵𝑞,2 according
to the previous lemma. The multiplication of 𝑣 with 𝐵𝐾,𝐿𝑞,1 then only contains the two 0-simplices in 𝐾 the
path connects. ||𝐵𝐾,𝐿𝑞,1 𝑣||22 is then equal to 2. If 𝑣 comes from an orthonormal basis instead, it needs
to be normalized first, resulting in 𝑣̃ = 1

||𝑣||2
𝑣, this causes ||𝐵𝐾,𝐿𝑞,1 𝑣̃||22 =

2
||𝑣||2

. Therefore, longer paths
correspond to a smaller effect on the trace of the persistent Laplacian.

For dimensions higher than 0, similar reasoning is more difficult as paths are harder to define.
For example, the boundary of a 2-simplex contains three 1-simplices. Making a path by connecting
another 2-simplex to it only cancels one of these simplices. For a selection of these simplices to have a
boundary in 𝐾 requires a very specific structure as many 1-simplices need to be in 𝐾 already. Therefore
most analysis is done in dimension 0, however an interpretation probably exists for higher dimensions
as well.

3.3. Persistent Laplacians in filtrations
Having looked at a different representation of the persistent Laplacian, we can now turn to applying it to
the multiplicity equation (3.1). This is done in 3 steps. First we look at the subtraction Δ𝑠,𝑡𝑞 −Δ𝑠,𝑡−1𝑞 , which
is relatively easy as both persistent Laplacians operate on the same space. The first subsection finds
some properties of this subtraction, which results in the notion of the horizontal operator. Afterwards,
the subtraction Δ𝑠,𝑡𝑞 − Δ𝑠−1,𝑡𝑞 is discussed. While it is not explicitly part of the multiplicity equation, the
idea of subtracting persistent Laplacians with different start times needs to be addressed. This is harder
as Δ𝑠,𝑡𝑞 and Δ𝑠−1,𝑡𝑞 operate on a different subspaces. After proposing a way to solve this issue, the same
structure of lemmas and theorem describing the properties is used to characterize the notion of the
vertical operator. Finally the full multiplicity equation is used and its properties are again discussed.

In this section and for the rest of the thesis some new notation is used. For a filtration of simplicial
complexes {𝐾𝑡}0≤𝑡≤𝑇, where 𝐾𝑡 ↪ 𝐾𝑡+1, we write 𝐼𝑠,𝑡𝑞 ∶= [𝑛𝑡𝑞] ∖ [𝑛𝑠𝑞]. Furthermore, to simplify notation,
we write 𝐵𝑠,𝑡𝑞,1 ∶= 𝐵𝐾𝑠 ,𝐾𝑡𝑞,1 , 𝐵𝑠,𝑡𝑞,2 ∶= 𝐵𝐾𝑠 ,𝐾𝑡𝑞,2 , 𝑛𝑠𝑞 = 𝑛𝐾𝑠𝑞 , 𝐶𝑠𝑞 ∶= 𝐶𝐾𝑠𝑞 , 𝐶𝑠,𝑡𝑞 ∶= 𝐶𝐾𝑠 ,𝐾𝑡𝑞 and Δ𝑠𝑞 ∶= Δ𝐾𝑠𝑞 .

3.3.1. Horizontal operator
In this subsection, we look at the subtraction ℋ𝑠,𝑡

𝑞 ∶= Δ𝑠,𝑡−1𝑞 − Δ𝑠,𝑡𝑞 . We look at a Lemma that simplifies
the matrix representation ofℋ𝑠,𝑡

𝑞 equation. After that, we look at its implications.
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Lemma 3.3.1. In a simplicial filtration {𝐾𝑡}0≤𝑡≤𝑇, we have that

[ℋ𝑠,𝑡
𝑞 ] = [Δ𝑠,𝑡𝑞 ] − [Δ𝑠,𝑡−1𝑞 ] = 𝐵𝑠,𝑡𝑞,1 ([

(𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0
0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

] − (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2) (𝐵𝑠,𝑡𝑞,1)𝑇 . (3.8)

Proof. In a simplicial filtration, we can write,

𝐵𝑠,𝑡𝑞,1 = [[𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑠,𝑡−1𝑞+1 ) [𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑡−1,𝑡𝑞+1 )] = [𝐵𝑠,𝑡−1𝑞,1 [𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑡−1,𝑡𝑞+1 )] . (3.9)

We now apply equation (3.4) twice, where we see that [Δ𝑠𝑞] disappears. Furthermore, we extend 𝐵𝑠,𝑡−1𝑞,1
to 𝐵𝑠,𝑡𝑞,1, without changing the result, like:

[Δ𝑠,𝑡𝑞 ] − [Δ𝑠,𝑡−1𝑞 ] = [𝐵𝑠,𝑡−1𝑞,1 [𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑡−1,𝑡𝑞+1 )] (𝐼 − (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2) [
(𝐵𝑠,𝑡−1𝑞,1 )𝑇

([𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑡−1,𝑡𝑞+1 ))𝑇
]

− [𝐵𝑠,𝑡−1𝑞,1 [𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑡−1,𝑡𝑞+1 )] (𝐼 − [
(𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
]) [ (𝐵𝑠,𝑡−1𝑞,1 )𝑇

([𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑡−1,𝑡𝑞+1 ))𝑇
]

=𝐵𝑠,𝑡𝑞,1 ([
(𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] − (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2) (𝐵𝑠,𝑡𝑞,1)𝑇 .

In order to prove the main theorem in this setting, we need the following important Lemma.

Lemma 3.3.2. In a simplicial filtration {𝐾𝑡}0≤𝑡≤𝑇, we have that

(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 = (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 [
(𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] = [(𝐵

𝑠,𝑡−1
𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2.

(3.10)

Proof. In a simplicial filtration, we can write,

𝐵𝑠,𝑡𝑞,2 = [
[𝜕𝑡𝑞+1](𝐼𝑠,𝑡−1𝑞 , 𝐼𝑠,𝑡−1𝑞+1 ) [𝜕𝑡𝑞+1](𝐼𝑠,𝑡−1𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )

0 [𝜕𝑡𝑞+1](𝐼𝑡−1,𝑡𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )
] = [𝐵

𝑠,𝑡−1
𝑞,2 [𝜕𝑡𝑞+1](𝐼𝑠,𝑡−1𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )
0 [𝜕𝑡𝑞+1](𝐼𝑡−1,𝑡𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )

] . (3.11)

Hence, for a vector 𝑣 ∈ ker𝐵𝑠,𝑡−1𝑞,2 , extending the vector with zeros, yields:

𝐵𝑠,𝑡𝑞,2𝑣 = [
𝐵𝑠,𝑡−1𝑞,2 [𝜕𝑡𝑞+1](𝐼𝑠,𝑡−1𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )
0 [𝜕𝑡𝑞+1](𝐼𝑡−1,𝑡𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )

] [𝑣0] = 0.

Now note that 𝑣 = [𝑣1𝑣2] ∈ ker [
(𝐵𝑠,𝑡−1𝑞,2 )𝑇𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] ⇒ 𝑣2 = 0 ⇒ 𝑣 ∈ ker𝐵𝑠,𝑡−1𝑞,2 , hence we have

that,

ker [(𝐵
𝑠,𝑡−1
𝑞,2 )𝑇𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] ⊆ ker𝐵𝑠,𝑡𝑞,2.

Finally, we use Equations (2.8) and (2.2) to get,

(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 = (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 [
(𝐵𝑠,𝑡−1𝑞,2 )𝑇𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
]
†

[(𝐵
𝑠,𝑡−1
𝑞,2 )𝑇𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
]

= (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 [
(𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] .

The final equality in equation (3.10) can be obtained by taking the transpose on both sides and realizing
that the relevant matrices are symmetric.

We are now ready to state and prove the main theorem. Note that for a subspace 𝑉 ⊆ 𝑆 of some
vector space 𝑆 , 𝑉⊥ = {𝑣 ∈ 𝑆 ∶ ⟨𝑣, 𝑤⟩ = 0∀𝑤 ∈ 𝑉} refers to the orthogonal complement of this vector
space.
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Theorem 3.3.3. Let Ψℎ ∶= ker𝐵𝑠,𝑡𝑞,2 ∩ (ker [
𝐵𝑠,𝑡−1𝑞,2 0
0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

])
⊥

and [Ψℎ] represent an orthonormal
basis for Ψℎ. We get,

[ℋ𝑠,𝑡
𝑞 ] = ∑

𝑣∈[Ψℎ]
𝐵𝑠,𝑡𝑞,1𝑣 (𝐵𝑠,𝑡𝑞,1𝑣)

𝑇 . (3.12)

Proof. We can use Lemmas 3.3.1 and 3.3.2, to get,

[Δ𝑠,𝑡𝑞 ] − [Δ𝑠,𝑡−1𝑞 ] = 𝐵𝑠,𝑡𝑞,1 ([
(𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] − [(𝐵

𝑠,𝑡−1
𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2) (𝐵𝑠,𝑡𝑞,1)𝑇

= 𝐵𝑠,𝑡𝑞,1 [
(𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] (𝐼 − (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2) (𝐵𝑠,𝑡𝑞,1)𝑇 .

Note that,

[(𝐵
𝑠,𝑡−1
𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] = [𝐵

𝑠,𝑡−1
𝑞,2 0
0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

]
†

[𝐵
𝑠,𝑡−1
𝑞,2 0
0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

] .

Therefore it projects onto (ker [𝐵
𝑠,𝑡−1
𝑞,2 0
0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

])
⊥

. Furthermore, 𝐼−(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 projects onto ((ker𝐵𝑠,𝑡𝑞,2)
⊥)
⊥
=

ker𝐵𝑠,𝑡𝑞,2, see Section 2.1. Now note that the projection matrices commute because of Lemma 3.3.2.
Therefore, their product is again a projection matrix that projects onto the intersection of the two spaces

[36], Ψℎ ∶= ker𝐵𝑠,𝑡𝑞,2 ∩ (ker [
𝐵𝑠,𝑡−1𝑞,2 0
0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

])
⊥

.

If we consider [Ψℎ] an orthonormal basis for Ψℎ, we can represent this projection by 𝑉𝑉𝑇, where
the columns of 𝑉 are the vectors in [Ψℎ]. This allows us to write,

[Δ𝑠,𝑡𝑞 ] − [Δ𝑠,𝑡−1𝑞 ] = 𝐵𝑠,𝑡𝑞,1 ∑
𝑣∈[Ψℎ]

𝑣𝑣𝑇(𝐵𝑠,𝑡𝑞,1)𝑇

= ∑
𝑣∈[Ψℎ]

𝐵𝑞,1𝑣 (𝐵𝑞,1𝑣)
𝑇 .

From this Theorem, it becomes clear the matrixℋ𝑠,𝑡
𝑞 is still symmetric and positive semi definite as

it is a sum of outer products. Furthermore, the trace can be calculated as follows, with || ⋅ ||2 the 𝐿2
norm,

𝑇𝑟([ℋ𝑠,𝑡
𝑞 ]) = ∑

𝑣∈[Ψℎ]
𝑇𝑟 (𝐵𝑠,𝑡𝑞,1𝑣 (𝐵𝑠,𝑡𝑞,1𝑣)

𝑇)

= ∑
𝑣∈[Ψℎ]

||𝐵𝑠,𝑡𝑞,1𝑣||22. (3.13)

Besides this, we can now also say something about the eigenvectors. For a vector 𝑐 ∈ 𝐶𝑠𝑞 , we have in
the trivial basis,

[ℋ𝑠,𝑡
𝑞 ][𝑐] = ∑

𝑣∈[Ψℎ]
𝐵𝑞,1𝑣 (𝐵𝑞,1𝑣)

𝑇 [𝑐] = ∑
𝑣∈[Ψℎ]

⟨𝐵𝑞,1𝑣, [𝑐]⟩ 𝐵𝑞,1𝑣. (3.14)

Hence thematrix representation ofℋ𝑠,𝑡
𝑞 applied to any vector 𝑐, results in a linear combination of vectors

of the set {𝐵𝑞,1𝑣 ∶ 𝑣 ∈ [ker𝐵𝑠,𝑡𝑞,2 ∩ (ker𝐵𝑠,𝑡−1𝑞,2 )⊥]}. If 𝑐 would be an eigenvector of ℋ𝑠,𝑡
𝑞 , we would need

[ℋ𝑠,𝑡
𝑞 ][𝑐] = 𝜆[𝑐] for some 𝜆 ≥ 0. If 𝜆 > 0, we can write [𝑐] = ∑𝑣∈[Ψℎ]

⟨𝐵𝑞,1𝑣,[𝑐]⟩
𝜆 𝐵𝑞,1𝑣 and therefore [𝑐]

would need to be a linear combination of vectors of this set. This allows us to obtain an upper bound
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Figure 3.4: Plot of different aggregation functions applied to the eigenvalues of ℋ𝑠,𝑡
𝑞 for the filtration visualized in Figure 2.6.

White dots represent the intervals of the standard persistent barcode.

on the number of positive eigenvalues equal to the number of linearly independent vectors of the set.
Where the number of independent vectors is again bounded by the total number of vectors in the set.

In the same way as before in Section 3.1, we can plot the eigenvalues of ℋ𝑠,𝑡
𝑞 , see Figure 3.4.

Here we see that compared to Figure 3.2, the number of non-zero eigenvalues is reduced. For every
rectangle with bottom left point (𝑠, 𝑡), the effect of the rectangle below it, corresponding to (𝑠, 𝑡 − 1),
has been removed. Now, we can clearly see what the new features are in 𝑡. However, these features
may still have appeared before 𝑠 already. For example, the rectangle corresponding to (2, 4) still has
a non-zero eigenvalue of 2, while this effect originates in (1, 4).

Nevertheless, looking at the added information over the standard persistent barcode, we can see
three more points that seem to be relevant. The points (1, 6) and (1, 8) were already noted in Section
3.1. However, now we see that (2, 8) , (3, 6) and (3, 7) seem to contain some information as well as
they are both different from their left adjacent rectangle. Looking at the visualization of the filtration in
Figure 2.6 and using the same interpretation as before. These points can be explained by new paths
of 1-simplices forming between the new 0-simplex of their starting time. In (2, 8), the 0-simplex 2̄ gets
connected in a direct path to one of the 0-simplices that appeared before it. Similarly in (3, 6) and (3, 7),
the 0-simplex 3̄ gets connected to a 0-simplex that appeared before it.

3.3.2. Vertical operator
In this section, the persistent up-Laplacian Δ𝑠−1,𝑡𝑞,+ is extended to operate on the space 𝐶𝑠𝑞 instead of 𝐶𝑠−1𝑞
such that the subtraction Δ𝑠,𝑡𝑞,+ − Δ𝑠−1,𝑡𝑞,+ is well-defined. Extending the down-Laplacian is not discussed.
This is due to the fact that in the multiplicity equation (3.1), twice Lemma 3.3.1 can be used, which
means the down-Laplacians cancel out and are not needed to solve the multiplicity equation. However,
for persistent Laplacians Δ𝑠,𝑡𝑞 , where 𝑠 = 𝑡, Δ𝑠,𝑡−1𝑞 does not exist and therefore the multiplicity equation
is not defined. In these cases, including the down-Laplacian could be useful. This is left for future
research.

Definition 3.3.1. For a filtration of simplicial complexes {𝐾𝑡}0≤𝑡≤𝑇 and 0 < 𝑠 < 𝑡 ≤ 𝑇, let 𝜄 ∶ 𝐾𝑠−1 ↪ 𝐾𝑠
the inclusion map and 𝑓𝜄 ∶ 𝐶𝑠−1𝑞 → 𝐶𝑠𝑞 the induced linear map. Furthermore, let (𝑓𝜄)∗ ∶ 𝐶𝑠𝑞 → 𝐶𝑠−1𝑞
the Hermitian adjoint of 𝑓𝜄. The persistent up-Laplacian Δ𝑠−1,𝑡𝑞,+ ∶ 𝐶𝑠−1𝑞 → 𝐶𝑠−1𝑞 can be extended to
Δ̃𝑠−1,𝑡𝑞,+ ∶ 𝐶𝑠𝑞 → 𝐶𝑠𝑞 by Δ̃𝑠−1,𝑡𝑞,+ = 𝑓𝜄 ∘ Δ𝑠−1,𝑡𝑞,+ ∘ (𝑓𝜄)∗.

Note that the matrix representation of this extension is given as follows, where 0𝑛×𝑚 ∈ ℝ𝑛×𝑚 rep-
resents the 𝑛 times 𝑚 zero matrix,

[Δ̃𝑠−1,𝑡𝑞,+ ] = [
𝐼𝑛𝑠−1𝑞

0(𝑛𝑠𝑞−𝑛𝑠−1𝑞 )×𝑛𝑠−1𝑞
] [Δ𝑠−1,𝑡𝑞,+ ] [𝐼𝑛𝑠−1𝑞 0𝑛𝑠−1𝑞 ×(𝑛𝑠𝑞−𝑛𝑠−1𝑞 )] = [

[Δ𝑠−1,𝑡𝑞,+ ] 0𝑛𝑠−1𝑞 ×(𝑛𝑠𝑞−𝑛𝑠−1𝑞 )
0(𝑛𝑠𝑞−𝑛𝑠−1𝑞 )×𝑛𝑠−1𝑞 0(𝑛𝑠𝑞−𝑛𝑠−1𝑞 )×(𝑛𝑠𝑞−𝑛𝑠−1𝑞 )

] .

(3.15)
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Figure 3.5: The boundary [𝜕𝑡𝑞+1] split into the different submatrices. Each block of the matrix that is zero is denoted by 0𝑚×𝑛 for
some𝑚 and 𝑛 representing the number of rows and columns that are zero respectively.

For the rest of this section, we focus on the operator𝒱𝑠,𝑡𝑞 ∶= Δ𝑠,𝑡𝑞,+−Δ̃𝑠−1,𝑡𝑞,+ . However, before discussing
any of its properties, we need some notation to make the results more readable.

𝐴𝑠,𝑡𝑞 ∶= [𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑠−1,𝑡𝑞+1 ) = [
𝐴𝑠,𝑡𝑞,11 𝐴𝑠,𝑡𝑞,12
𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22

] , (3.16)

𝐴𝑠,𝑡𝑞,11 ∶= [𝜕𝑡𝑞+1]([𝑛𝑠−1𝑞 ], 𝐼𝑠−1,𝑠𝑞+1 ), 𝐴𝑠,𝑡𝑞,12 ∶= [𝜕𝑡𝑞+1]([𝑛𝑠−1𝑞 ], 𝐼𝑠,𝑡𝑞+1),
𝐴𝑠,𝑡𝑞,21 ∶= [𝜕𝑡𝑞+1](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑠−1,𝑠𝑞+1 ), 𝐴𝑠,𝑡𝑞,22 ∶= [𝜕𝑡𝑞+1](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑠,𝑡𝑞+1),

𝐵𝑠−1,𝑡𝑞,1 = [𝐴𝑠,𝑡𝑞,11 𝐴𝑠,𝑡𝑞,12] , 𝐵𝑠,𝑡𝑞,1 = [
𝐴𝑠,𝑡𝑞,12
𝐴𝑠,𝑡𝑞,22

] .

In order to better understand these matrices, we look at how they all come from the boundary [𝜕𝑡𝑞+1] in
Figure 3.5.

Adhering to the same structure as the previous section, we can now state and prove the Lemma
that simplifies the subtraction. Afterwards, we discuss the implications of this derivation.

Lemma 3.3.4. In a simplicial filtration {𝐾𝑡}0≤𝑡≤𝑇, we have that

[𝒱𝑠,𝑡𝑞 ] = [Δ𝑠,𝑡𝑞,+] − [Δ̃𝑠−1,𝑡𝑞,+ ] = 𝐴𝑠,𝑡𝑞 ((𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 − [0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

]) (𝐴𝑠,𝑡𝑞 )𝑇 . (3.17)

Where 𝐴𝑠,𝑡𝑞 ∶= [𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑠−1,𝑡𝑞+1 ).
Proof. In a simplicial filtration, we have

[𝜕𝑠𝑞+1] = [
[𝜕𝑠−1𝑞+1] 𝐴𝑠,𝑡𝑞,11
0 𝐴𝑠,𝑡𝑞,21

] .

This allows us to rewrite [Δ𝑠,𝑡𝑞,+], using Theorem 3.2.1

[Δ𝑠,𝑡𝑞,+] = [𝜕𝑠𝑞+1][𝜕𝑠𝑞+1]𝑇 + 𝐵𝑠,𝑡𝑞,1(𝐵𝑠,𝑡𝑞,1)𝑇 − 𝐵𝑠,𝑡𝑞,1(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2(𝐵𝑠,𝑡𝑞,1)𝑇

= [[𝜕
𝑠−1
𝑞+1][𝜕𝑠−1𝑞+1]𝑇 + 𝐴𝑠,𝑡𝑞,11 (𝐴𝑠,𝑡𝑞,11)

𝑇 𝐴𝑠,𝑡𝑞,11 (𝐴𝑠,𝑡𝑞,21)
𝑇

𝐴𝑠,𝑡𝑞,21 (𝐴𝑠,𝑡𝑞,11)
𝑇 𝐴𝑠,𝑡𝑞,12 (𝐴𝑠,𝑡𝑞,12)

𝑇] + [
𝐴𝑠,𝑡𝑞,12 (𝐴𝑠,𝑡𝑞,12)

𝑇 𝐴𝑠,𝑡𝑞,12 (𝐴𝑠,𝑡𝑞,22)
𝑇

𝐴𝑠,𝑡𝑞,22 (𝐴𝑠,𝑡𝑞,12)
𝑇 𝐴𝑠,𝑡𝑞,22 (𝐴𝑠,𝑡𝑞,22)

𝑇] − 𝐴𝑠,𝑡𝑞 [0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

] (𝐴𝑠,𝑡𝑞 )𝑇

= [[Δ
𝑠−1
𝑞,+ ] 0
0 0] + 𝐴

𝑠,𝑡
𝑞 (𝐼 − [0 0

0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2
]) (𝐴𝑠,𝑡𝑞 )𝑇 .

Furthermore, note that we can write,

𝐵𝑠−1,𝑡𝑞,2 = [𝐴
𝑠,𝑡
𝑞,21 𝐴𝑠,𝑡𝑞,22
0 𝐵𝑠,𝑡𝑞,2

] .



36 3. Extending persistent barcodes

Therefore, ker𝐵𝑠−1,𝑡𝑞,2 ⊆ ker [𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22]. Using Equation (2.8), we get,

[𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22] = [𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22] (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 . (3.18)

Now using Theorem 3.2.1 and Equation (3.15), we can rewrite [Δ̃𝑠−1,𝑡𝑞,+ ],

[Δ̃𝑠−1,𝑡𝑞,+ ] = [[Δ
𝑠−1
𝑞,+ ] + 𝐵𝑠−1,𝑡𝑞,1 (𝐼 − (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 )(𝐵𝑠−1,𝑡𝑞,1 )𝑇 0

0 0]

= [[Δ
𝑠−1
𝑞,+ ] 0
0 0] + [

𝐴𝑠,𝑡𝑞,11 𝐴𝑠,𝑡𝑞,12
0 0 ] (𝐼 − (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 ) [(𝐴

𝑠,𝑡
𝑞,11)

𝑇 0
(𝐴𝑠,𝑡𝑞,12)

𝑇 0
]

= [[Δ
𝑠−1
𝑞,+ ] 0
0 0] + [

𝐴𝑠,𝑡𝑞,11 𝐴𝑠,𝑡𝑞,12
𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22

] (𝐼 − (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 ) [(𝐴
𝑠,𝑡
𝑞,11)

𝑇 (𝐴𝑠,𝑡𝑞,21)
𝑇

(𝐴𝑠,𝑡𝑞,12)
𝑇 (𝐴𝑠,𝑡𝑞,22)

𝑇] .

This allows for the following computation of the difference,

[Δ𝑠,𝑡𝑞,+] − ̃[Δ𝑠−1,𝑡𝑞,+ ] = 𝐴𝑠,𝑡𝑞 ((𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 − [0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

]) (𝐴𝑠,𝑡𝑞 )𝑇 .

In this setting, we can prove a similar Lemma to Lemma 3.3.2. It is important in the final theorem
of this section.

Lemma 3.3.5. In a simplicial filtration {𝐾𝑡}0≤𝑡≤𝑇, we have that

[0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

] = [0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

] (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 = (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 [0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

] . (3.19)

Proof. In the same manner as before in the horizontal operator, we rewrite the boundary matrix,

𝐵𝑠−1,𝑡𝑞,2 = [[𝜕
𝑡
𝑞+1](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑠−1,𝑠𝑞+1 ) [𝜕𝑡𝑞+1](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑠,𝑡𝑞+1)

0 [𝜕𝑡𝑞+1](𝐼𝑠,𝑡𝑞 , 𝐼𝑠,𝑡𝑞+1)
] = [[𝜕

𝑡
𝑞+1](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑠−1,𝑠𝑞+1 ) [𝜕𝑡𝑞+1](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑠,𝑡𝑞+1)

0 𝐵𝑠,𝑡𝑞,2
] .

We now have that,

𝑣 ∈ ker𝐵𝑠−1,𝑡𝑞,2 ⇒ 𝑣(𝐼𝑠,𝑡𝑞+1) ∈ ker𝐵𝑠,𝑡𝑞,2 ⇒ 𝑣(𝐼𝑠,𝑡𝑞+1) ∈ ker(𝐵𝑠,𝑡𝑞,2)𝑇𝐵𝑠,𝑡𝑞,2 ⟺ 𝑣 ∈ ker [0 0
0 (𝐵𝑠,𝑡𝑞,2)𝑇𝐵𝑠,𝑡𝑞,2

] . (3.20)

And therefore ker𝐵𝑠−1,𝑡𝑞,2 ⊆ ker [0 0
0 (𝐵𝑠,𝑡𝑞,2)𝑇𝐵𝑠,𝑡𝑞,2

], which allows us to use Equations (2.2) and (2.8) again,
to get,

[0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

] = [0 0
0 (𝐵𝑠,𝑡𝑞,2)𝑇𝐵𝑠,𝑡𝑞,2

]
†
[0 0
0 (𝐵𝑠,𝑡𝑞,2)𝑇𝐵𝑠,𝑡𝑞,2

]

= [0 0
0 (𝐵𝑠,𝑡𝑞,2)𝑇𝐵𝑠,𝑡𝑞,2

]
†
[0 0
0 (𝐵𝑠,𝑡𝑞,2)𝑇𝐵𝑠,𝑡𝑞,2

] (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2

= [0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

] (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 .

Again, the final equality in equation (3.19), can be acquired by taking the transpose of this and realizing
that the matrices are symmetric.

Finally, we get a Theorem similar to Theorem 3.3.3.
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Theorem 3.3.6. Let Ψ𝑣 ∶= ker [
0(𝑛𝑠𝑞+1−𝑛𝑠−1𝑞+1)×(𝑛𝑠𝑞+1−𝑛𝑠−1𝑞+1) 0

0 𝐵𝑠,𝑡𝑞,2
] ∩ (ker𝐵𝑠−1,𝑡𝑞,2 )⊥ and [Ψ𝑣] represent an

orthonormal basis for Ψ𝑣. We get,

[𝒱𝑠,𝑡𝑞 ] = ∑
𝑣∈[Ψ𝑣]

𝐴𝑠,𝑡𝑞 𝑣 (𝐴𝑠,𝑡𝑞 𝑣)
𝑇 . (3.21)

Proof. The same approach as Theorem 3.3.3 is used. Using Lemmas 3.3.4 and 3.3.5, we can write,

[Δ𝑠,𝑡𝑞,+] − ̃[Δ𝑠−1,𝑡𝑞,+ ] = 𝐴𝑠,𝑡𝑞 (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 (𝐼 − [0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

]) (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 (𝐴𝑠,𝑡𝑞 )𝑇 . (3.22)

Note that,

[
0(𝑛𝑠𝑞+1−𝑛𝑠−1𝑞+1)×(𝑛𝑠𝑞+1−𝑛𝑠−1𝑞+1) 0

0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2
] = [0 0

0 𝐵𝑠,𝑡𝑞,2
]
†
[0 0
0 𝐵𝑠,𝑡𝑞,2

] .

Therefore 𝐼−[0 0
0 𝐵𝑠,𝑡𝑞,2

] projects onto ker [0 0
0 𝐵𝑠,𝑡𝑞,2

]. Furthermore, (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 projects onto (ker𝐵𝑠−1,𝑡𝑞,2 )⊥,
see Section 2.1. Now note that the projection matrices commute because of Lemma 3.3.5. Therefore,
their product is again a projection matrix that projects onto the intersection of the two spaces [36],

Ψ𝑣 ∶= ker [0 0
0 𝐵𝑠,𝑡𝑞,2

] ∩ (ker𝐵𝑠−1,𝑡𝑞,2 )⊥.
If we consider [Ψ𝑣] an orthonormal basis for Ψ𝑣, we can represent this projection by 𝑉𝑉𝑇, where the

columns of 𝑉 are the vectors in [Ψ𝑣]. This allows us to write,

[Δ𝑠,𝑡𝑞 ] − [Δ̃𝑠−1,𝑡𝑞 ] = 𝐴𝑠,𝑡𝑞 ∑
𝑣∈[Ψ𝑣]

𝑣𝑣𝑇(𝐴𝑠,𝑡𝑞 )𝑇

= ∑
𝑣∈[Ψ𝑣]

𝐴𝑠,𝑡𝑞 𝑣 (𝐴𝑠,𝑡𝑞 𝑣)
𝑇 .

Note that this Theorem again shows that 𝒱𝑠,𝑡𝑞 is a positive semi definite operator. We can plot the
eigenvalues of the operator in the same way as before, see Figure 3.6. Here we can see that for every
rectangle, instead of removing the effect of the rectangle below it, now the effect of the rectangle to
the left of it has been removed. All the previously discussed points where the persistent up-Laplacian
changes are also visible here. The goal now is to do both these operations and remove both the vertical
as well as the horizontal effect to get an operator that has a non-zero eigenvalue on only the points
where the persistent Laplacian changes. This is done in the next section.

3.3.3. Finite barcodes
In this section, we focus on the multiplicity equation for persistent Laplacians, see Equation (3.1). The
same structure as the previous two sections is used, however some results can not be obtained in this
setting. To obtain results in a similar fashion, the adjusted multiplicity operator is proposed together
with a discussion on why it may be useful.

Note that in Equation (3.1), the down Laplacians all disappear. By definition of the persistent Lapla-
cian, we have,

(Δ𝑠,𝑡𝑞 − Δ𝑠,𝑡−1𝑞 ) − (Δ𝑠−1,𝑡𝑞 − Δ𝑠−1,𝑡−1𝑞 ) = Δ𝑠𝑞,− + Δ𝑠,𝑡𝑞,+ − (Δ𝑠𝑞,− + Δ𝑠,𝑡−1𝑞,+ ) − (Δ𝑠−1𝑞,− + Δ𝑠−1,𝑡𝑞,+ − (Δ𝑠−1𝑞,− + Δ𝑠−1,𝑡−1𝑞,+ ))
= (Δ𝑠,𝑡𝑞,+ − Δ𝑠,𝑡−1𝑞,+ ) − (Δ𝑠−1,𝑡𝑞,+ − Δ𝑠−1,𝑡−1𝑞,+ ) .

Therefore, down-Laplacians are not discussed in this section.
Because the multiplicity equation contains Laplacians with different start times, the extension of

Definition 3.3.1 needs to be used. We obtain,

𝑀𝑠,𝑡
𝑞 ∶= (Δ𝑠,𝑡𝑞,+ − Δ𝑠,𝑡−1𝑞,+ ) − (Δ̃𝑠−1,𝑡𝑞,+ − ̃Δ𝑠−1,𝑡−1𝑞,+ ) . (3.23)
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Figure 3.6: Plot of different aggregation functions applied to the eigenvalues of 𝒱𝑠,𝑡𝑞 for the filtration visualized in Figure 2.6.
White dots represent the intervals of the standard persistent barcode.

Note that the extension is linear, therefore the subtraction between the two extended up persistent
Laplacians can be done before extending. Formally, Δ̃𝑠−1,𝑡𝑞,+ − ̃Δ𝑠−1,𝑡−1𝑞,+ = ̃Δ𝑠−1,𝑡𝑞,+ − Δ𝑠−1,𝑡−1𝑞,+ . This allows
for the simplification of the matrix representation of the multiplicity operator in the next Theorem.

Theorem 3.3.7. For a filtration of simplicial complexes {𝐾𝑡}0≤𝑡≤𝑇, let 0 < 𝑠 < 𝑡 < 𝑇 be some start
and end times and 𝑞 a specified dimension. The matrix representation of the multiplicity operator from
Equation (3.23) can be written as

[𝑀𝑠,𝑡
𝑞 ] = 𝐴𝑠,𝑡𝑞 ([

0𝑛𝑠𝑞+1−𝑛𝑠−1𝑞+1 0 0
0 (𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0
0 0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

] − [
0𝑛𝑠𝑞+1−𝑛𝑠−1𝑞+1 0

0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2
]

− [(𝐵
𝑠−1,𝑡−1
𝑞,2 )†𝐵𝑠−1,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] + (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 )(𝐴𝑠,𝑡𝑞 )𝑇 . (3.24)

Where 𝐴𝑠,𝑡𝑞 = [𝜕𝑡𝑞+1]([𝑛𝑠𝑞], 𝐼𝑠−1,𝑡𝑞+1 ) and 0𝑛 ∈ ℝ𝑛×𝑛, the square zero matrix.

Proof. Note that ker [(𝐵
𝑠−1,𝑡−1
𝑞,2 )𝑇𝐵𝑠−1,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] ⊆ ker𝐵𝑠−1,𝑡𝑞,2 ⊆ ker [𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22], see the proofs

of Lemmas 3.3.5 and 3.3.1. In addition to Equation (3.18), by Equation (2.8) we therefore have,

[𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22] = [𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22] [
(𝐵𝑠−1,𝑡−1𝑞,2 )†𝐵𝑠−1,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] .

Hence, we obtain the following,

[ 0 0
𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22

] ([(𝐵
𝑠−1,𝑡−1
𝑞,2 )†𝐵𝑠−1,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] − (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 ) [0 (𝐴𝑠,𝑡𝑞,21)𝑇

0 (𝐴𝑠,𝑡𝑞,22)𝑇
] = 0.
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Using equation (3.8) twice and using the notation of equation (3.16), we obtain

[𝑀𝑠,𝑡
𝑞 ] =(𝐵𝑠,𝑡𝑞,1 ([

(𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0
0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

] − (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2) (𝐵𝑠,𝑡𝑞,1)𝑇

− [𝐼𝑛𝑠−1𝑞
0 ] (𝐵𝑠−1,𝑡𝑞,1 ([(𝐵

𝑠−1,𝑡−1
𝑞,2 )†𝐵𝑠−1,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] − (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 ) (𝐵𝑠−1,𝑡𝑞,1 )𝑇) [𝐼𝑛𝑠−1𝑞 0]

= [𝐴
𝑠,𝑡
𝑞,11 𝐴𝑠,𝑡𝑞,12
𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22

] ([
0 0 0
0 (𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0
0 0 𝐼

] − [0 0
0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2

]) [(𝐴
𝑠,𝑡
𝑞,11)

𝑇 (𝐴𝑠,𝑡𝑞,21)
𝑇

(𝐴𝑠,𝑡𝑞,12)
𝑇 (𝐴𝑠,𝑡𝑞,22)

𝑇]

− [𝐴
𝑠,𝑡
𝑞,11 𝐴𝑠,𝑡𝑞,12
𝐴𝑠,𝑡𝑞,21 𝐴𝑠,𝑡𝑞,22

] ([(𝐵
𝑠−1,𝑡−1
𝑞,2 )†𝐵𝑠−1,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] − (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 ) [(𝐴

𝑠,𝑡
𝑞,11)

𝑇 (𝐴𝑠,𝑡𝑞,21)
𝑇

(𝐴𝑠,𝑡𝑞,12)
𝑇 (𝐴𝑠,𝑡𝑞,22)

𝑇] .

The previous theorem shows that applying the multiplicity equation to the persistent Laplacians
translates to applying the same equation for the 𝐵𝑞,2 matrices. To simplify notation, these projection
matrices are written in the following form,

𝑃𝑠,𝑡𝑞 ∶= [
0𝑛𝑠𝑞+1−𝑛𝑠−1𝑞+1 0

0 (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2
] , 𝑃𝑠,𝑡−1𝑞 ∶= [

0𝑛𝑠𝑞+1−𝑛𝑠−1𝑞+1 0 0
0 (𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0
0 0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

] , (3.25)

𝑃𝑠−1,𝑡𝑞 ∶= (𝐵𝑠−1,𝑡𝑞,2 )†𝐵𝑠−1,𝑡𝑞,2 , 𝑃𝑠−1,𝑡−1𝑞 ∶= [(𝐵
𝑠−1,𝑡−1
𝑞,2 )†𝐵𝑠−1,𝑡−1𝑞,2 0

0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1
] .

In this notation, we have [𝑀𝑠,𝑡
𝑞 ] = 𝐴𝑠,𝑡𝑞 (𝑃𝑠,𝑡−1𝑞 − 𝑃𝑠,𝑡𝑞 − 𝑃𝑠−1,𝑡−1𝑞 + 𝑃𝑠−1,𝑡𝑞 ) (𝐴𝑠,𝑡𝑞 )𝑇. Important here is that

the superscript is somewhat ill defined as, for example, 𝑃1,20 and 𝑃1,3−10 could have different shapes.
Furthermore, note that the projection matrix 𝑃𝑠,𝑡𝑞 projects onto the complement of the kernel of 𝐵𝑠,𝑡𝑞,2
extended to be on the same space as 𝐵𝑠−1,𝑡𝑞,2 , see Section 2.1. Finally, it is well known that the kernel
of a projection matrix is the orthogonal complement of the image. Therefore, without concern for the
extension of the subspace, we get, ker𝑃𝑠,𝑡𝑞 = ((ker𝐵𝑠,𝑡𝑞,2)⊥)

⊥ = ker𝐵𝑠,𝑡𝑞,2.
For these projection matrices, we can obtain a few calculation rules using Lemmas 3.3.5 and 3.3.2.

𝑃𝑠,𝑡𝑞 = 𝑃𝑠,𝑡𝑞 𝑃𝑠,𝑡−1𝑞 = 𝑃𝑠,𝑡−1𝑞 𝑃𝑠,𝑡𝑞 , (3.26)
𝑃𝑠,𝑡𝑞 = 𝑃𝑠,𝑡𝑞 𝑃𝑠−1,𝑡𝑞 = 𝑃𝑠−1,𝑡𝑞 𝑃𝑠,𝑡𝑞 , (3.27)
𝑃𝑠,𝑡𝑞 = 𝑃𝑠,𝑡𝑞 𝑃𝑠−1,𝑡−1𝑞 = 𝑃𝑠−1,𝑡−1𝑞 𝑃𝑠,𝑡𝑞 . (3.28)

Note here that there is no rule for the product 𝑃𝑠,𝑡−1𝑞 𝑃𝑠−1,𝑡𝑞 , which becomes important later on in the
thesis.

Besides these equations, we can find a connection between the kernels of three of the projection
matrices, which provide some insight into the function they have. This is formulated in the following
lemma.

Lemma 3.3.8. We have,
ker𝑃𝑠−1,𝑡−1𝑞 = ker𝑃𝑠,𝑡−1𝑞 ∩ ker𝑃𝑠−1,𝑡𝑞 . (3.29)

Proof. Let 𝑣 ∈ ker𝑃𝑠−1,𝑡−1𝑞 , from the proofs of Lemmas 3.3.2 and 3.3.5, we get that 𝑣 ∈ ker𝑃𝑠,𝑡−1𝑞 and
𝑣 ∈ ker𝑃𝑠−1,𝑡𝑞 , therefore ker𝑃𝑠−1,𝑡−1𝑞 ⊆ ker𝑃𝑠,𝑡−1𝑞 ∩ ker𝑃𝑠−1,𝑡𝑞 .

Now let 𝑣 ∈ ker𝑃𝑠,𝑡−1𝑞 ∩ker𝑃𝑠−1,𝑡𝑞 , we again exploit the structure of the boundary matrices. We can
write,

𝐵𝑠−1,𝑡𝑞,2 = [
[𝜕𝑡𝑞](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑠−1,𝑠𝑞+1 ) [𝜕𝑡𝑞](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑠,𝑡𝑞+1) [𝜕𝑡𝑞](𝐼𝑠−1,𝑠𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )

0 𝐵𝑠,𝑡−1𝑞,2 [𝜕𝑡𝑞](𝐼𝑠,𝑡−1𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )
0 0 [𝜕𝑡𝑞](𝐼𝑡−1,𝑡𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )

],
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Figure 3.7: Plot of different aggregation functions applied to the eigenvalues of 𝑀𝑠,𝑡
𝑞 for the filtration visualized in Figure 2.6.

White dots represent the intervals of the standard persistent barcode.

where the highlighted part of the matrix is 𝐵𝑠−1,𝑡−1𝑞,2 . Now note that 𝑣 ∈ ker𝑃𝑠−1,𝑡𝑞 = ker𝐵𝑠−1,𝑡𝑞,2 . Fur-

thermore, 𝑣(𝐼𝑡−1,𝑡𝑞+1 ) = 0 as 𝑣 ∈ ker𝑃𝑠,𝑡−1𝑞 = ker [
0 0 0
0 (𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 0
0 0 𝐼𝑛𝑡𝑞+1−𝑛𝑡−1𝑞+1

]. Therefore, we obtain

[𝐵
𝑠−1,𝑡−1
𝑞,2 0
0 𝐼] 𝑣 = 0. Hence, 𝑣 ∈ ker𝑃

𝑠−1,𝑡−1
𝑞 .

Note that a direct consequence of this lemma is that (ker𝑃𝑠−1,𝑡−1𝑞 )⊥ = (ker𝑃𝑠,𝑡−1𝑞 )⊥+(ker𝑃𝑠−1,𝑡𝑞 )⊥.
Furthermore, the lemma tells us that the features that are part of (𝑠 − 1, 𝑡 − 1) are exactly the features
that are both in (𝑠, 𝑡 − 1) and (𝑠 − 1, 𝑡). If 𝑃𝑠,𝑡−1𝑞 and 𝑃𝑠−1,𝑡𝑞 would commute, their product would equal
𝑃𝑠−1,𝑡−1𝑞 , however this is not always true.

Now the same plots as before in Figures 3.4 and 3.6 can be made, see Figure 3.7. Here it can be
seen that themultiplicity operator for dimension 0 is non-zero on exactly the previously discussed points.
However, for the points (2, 8), (3, 6) and (3, 7), the minimum eigenvalue is negative. Furthermore, on
these points, there are two eigenvalues present. This is because, in these points, there is both a vertical
as well as a horizontal effect. It also shows that the matrix is not necessarily positive semi definite as
it can have a negative eigenvalue.

Because the matrix is no longer positive semi definite, finding a representation of [𝑀𝑠,𝑡
𝑞 ] in terms of

outer products of a certain set of vectors, like in Theorems 3.3.6 and 3.3.3 is not possible. However,
we can still try to formulate a similar expression with the previously defined calculation rules,

[𝑀𝑠,𝑡
𝑞 ] = 𝐴𝑠,𝑡𝑞 ((𝐼 − 𝑃𝑠,𝑡𝑞 ) 𝑃𝑠,𝑡−1𝑞 − (𝐼 − 𝑃𝑠−1,𝑡𝑞 ) 𝑃𝑠−1,𝑡−1𝑞 ) (𝐴𝑠,𝑡𝑞 )𝑇

= ∑
𝑤∈[ker𝑃𝑠,𝑡𝑞 ∩(ker𝑃𝑠,𝑡−1𝑞 )⊥]

𝐴𝑠,𝑡𝑞 𝑤(𝐴𝑠,𝑡𝑞 𝑤)𝑇 − ∑
𝑣∈[ker𝑃𝑠−1,𝑡𝑞 ∩(ker𝑃𝑠−1,𝑡−1𝑞 )⊥]

𝐴𝑠,𝑡𝑞 𝑣(𝐴𝑠,𝑡𝑞 𝑣)𝑇 . (3.30)

Here we can see that instead of being a sum of outer products of a single set of vectors, it is now the
difference between sums of two different sets. Namely 𝑉−1 ∶= {𝐴𝑠,𝑡𝑞 𝑣 ∶ 𝑣 ∈ ker𝑃𝑠−1,𝑡𝑞 ∩ (ker𝑃𝑠−1,𝑡−1𝑞 )⊥}
and 𝑉 ∶= {𝐴𝑠,𝑡𝑞 𝑤 ∶ 𝑤 ∈ ker𝑃𝑠,𝑡𝑞 ∩(ker𝑃𝑠,𝑡−1𝑞 )⊥}. It can be determined that when the second set is empty,
the first set is as well, the proof of this is left for future research. Therefore, when 𝑉−1 is empty [𝑀𝑠,𝑡

𝑞 ]
can be written as one sum and the matrix is positive semi definite. However, this does not need to be
the case. In Figure 3.7 on the points (2, 8), (3, 6) and (3, 7), the two sets are both non-empty causing
the eigenvalues and eigenvectors of the two sets to interact, which makes them difficult to interpret.
This also causes additional non-zero eigenvalues to appear. The filtration of Figure 2.6 only differs by
one simplex in each step, however at the aforementioned points, there are two non-zero eigenvalues.
Therefore, the eigenvalues no longer correspond to specific features.

If we instead look at the trace, using the calculation rules of the projection matrices, the following
expression can be found which has been formulated into a Corollary.
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Corollary 3.3.9. The trace of the matrix representation of the multiplicity operator 𝑀𝑠,𝑡
𝑞 can be written

as,

𝑇𝑟([𝑀𝑠,𝑡
𝑞 ]) = ∑

𝑤∈[ker𝑃𝑠,𝑡𝑞 ∩(ker𝑃𝑠−1,𝑡−1𝑞 )
⊥
]

||𝐴𝑠,𝑡𝑞 𝑤||22 − ||𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡−1𝑞 )𝑤||22 − ||𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠−1,𝑡𝑞 )𝑤||22. (3.31)

Proof. Let 𝑃 = 𝑃𝑠−1,𝑡−1𝑞 −𝑃𝑠,𝑡𝑞 , using Theorem 3.3.7 and the calculation rules of the projection matrices
(3.26), we get

[𝑀𝑠,𝑡
𝑞 ] = 𝐴𝑠,𝑡𝑞 (𝑃𝑠,𝑡−1𝑞 − 𝑃𝑠,𝑡𝑞 − 𝑃𝑠−1,𝑡−1𝑞 + 𝑃𝑠−1,𝑡𝑞 ) (𝐴𝑠,𝑡𝑞 )𝑇

= 𝐴𝑠,𝑡𝑞 (𝑃 − (𝐼 − 𝑃𝑠,𝑡−1𝑞 )𝑃(𝐼 − 𝑃𝑠,𝑡−1𝑞 ) − (𝐼 − 𝑃𝑠−1,𝑡𝑞 )𝑃(𝐼 − 𝑃𝑠−1,𝑡𝑞 )) (𝐴𝑠,𝑡𝑞 )𝑇 .

Note that 𝑃 projects onto ker𝑃𝑠,𝑡𝑞 ∩ (ker𝑃𝑠−1,𝑡−1𝑞 )⊥, therefore in the same way as before, it can be
represented as a sum.

[𝑀𝑠,𝑡
𝑞 ] = ∑

𝑤∈[ker𝑃𝑠,𝑡𝑞 ∩(ker𝑃𝑠−1,𝑡−1𝑞 )
⊥
]

𝐴𝑠,𝑡𝑞 (𝑤𝑤𝑇 − (𝐼 − 𝑃𝑠,𝑡−1𝑞 )𝑤𝑤𝑇(𝐼 − 𝑃𝑠,𝑡−1𝑞 ) − (𝐼 − 𝑃𝑠−1,𝑡𝑞 )𝑤𝑤𝑇(𝐼 − 𝑃𝑠−1,𝑡𝑞 )) (𝐴𝑠,𝑡𝑞 )𝑇 .

This yields the following equation for the trace

𝑇𝑟([𝑀𝑠,𝑡
𝑞 ]) = ∑

𝑤∈[ker𝑃𝑠,𝑡𝑞 ∩(ker𝑃𝑠−1,𝑡−1𝑞 )
⊥
]

||𝐴𝑠,𝑡𝑞 𝑤||22 − ||𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡−1𝑞 )𝑤||22 − ||𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠−1,𝑡𝑞 )𝑤||22.

Therefore, the trace can be interpreted as follows. Each 𝑤 represents an effect that was present
at (𝑠, 𝑡) but not at (𝑠 − 1, 𝑡 − 1). The trace sums the impacts of these effects ||𝐴𝑠,𝑡𝑞 𝑤||22, but, for each
𝑤, it removes the effect it had on step (𝑠, 𝑡 − 1) and (𝑠 − 1, 𝑡) by subtracting ||𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡−1𝑞 )𝑤||22 and
||𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠−1,𝑡𝑞 )𝑤||22 respectively.

Finally, note that in dimension 1, the multiplicity operator is 0 on all points except for (6, 9). While the
persistent Laplacian did change on more points, see Figure 3.2, the changes in this dimension mainly
came from the down Laplacian as no 2-simplices exist before 𝑡 = 9. Note that these changes start
at the diagonal, so from the combinatorial Laplacian. At the diagonal only a vertical operator could be
made. Like was said in the previous section, for the vertical operator, only the up-persistent Laplacian
is used, which means these changes are not captured by the multiplicity operator. As the only effect
that is not captured by the multiplicity operator originates from the diagonal, or when 𝑠 = 𝑡, we note that
this is equivalent to saying that the information of the combinatorial Laplacian is not captured by the
multiplicity operator. Adding this information to a model based on the multiplicity operator is attempted
in the application of the MNIST dataset in Section 4.1.2.

Now a decision can be made on how to continue. Either the previous multiplicity operator is used
and only the trace is interpreted, or a new operator can be defined that solves some of the issues. One
could look for an operator that contains no more non-zero eigenvalues than the number of simplices
appearing in a certain step. For the remainder of this section, a new operator is discussed that achieves
this, however the trace is altered in some points. An operator that has the same trace and less non-zero
eigenvalues has not been found.

Interpretable eigenvalues
Our goal is now to create a matrix that has non-zero eigenvalues on the same points as 𝑀𝑠,𝑡

𝑞 , but with
”interpretable” and positive eigenvalues. Formally, we seek a matrix 𝑀̃𝑠,𝑡

𝑞 , that satisfies the following
criteria:

1. 𝑀𝑠,𝑡
𝑞 = 0 ⟹ 𝑀̃𝑠,𝑡

𝑞 = 0.

2. The eigenvalues of 𝑀̃𝑠,𝑡
𝑞 are real and non-negative.
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3. The number of positive eigenvalues should correspond with the number of new features, which
cannot exceed the number of simplexes being added. Formally, let 𝑛 ∶= 𝑛𝑡𝑞+1 − 𝑛𝑡−1𝑞+1, so exactly
𝑛 (𝑞 + 1)-simplices are added at time 𝑡. We require dim Im (𝑀̃𝑠,𝑡

𝑞 ) ≤ 𝑛.

Theorem 3.3.10. The matrix 𝑀̃𝑠,𝑡
𝑞 defined below, satisfies criteria 1 and 2. Furthermore, it satisfies

criterion 3 if it is diagonalizable.

𝑀̃𝑠,𝑡
𝑞 ∶= 𝐴(𝑃𝑠,𝑡−1(𝐼 − 𝑃𝑠,𝑡)𝑃𝑠−1,𝑡)𝐴𝑇 = 𝐴(𝑃𝑠,𝑡−1𝑃𝑠−1,𝑡 − 𝑃𝑠,𝑡)𝐴𝑇 . (3.32)

Proof. Criterion 1: We can rewrite the representation found in Theorem 3.3.7 and assume it is zero
to get,

[𝑀𝑠,𝑡
𝑞 ] = 𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡𝑞 ) (𝑃𝑠,𝑡−1𝑞 + 𝑃𝑠−1,𝑡𝑞 − 𝑃𝑠−1,𝑡−1𝑞 ) (𝐴𝑠,𝑡𝑞 )𝑇 = 0
⟹ 𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡𝑞 ) (𝑃𝑠,𝑡−1𝑞 + 𝑃𝑠−1,𝑡𝑞 − 𝑃𝑠−1,𝑡−1𝑞 ) = 0.
⟹ 𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡𝑞 )𝑃𝑠,𝑡−1𝑞 = 𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡𝑞 ) (𝑃𝑠−1,𝑡𝑞 − 𝑃𝑠−1,𝑡−1𝑞 )

Furthermore, for 𝑀̃𝑠,𝑡
𝑞 a similar representation can be found,

𝑀̃𝑠,𝑡
𝑞 = 𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡𝑞 )𝑃𝑠,𝑡−1𝑃𝑠−1,𝑡(𝐴𝑠,𝑡𝑞 )𝑇

= 𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡𝑞 ) (𝑃𝑠−1,𝑡𝑞 − 𝑃𝑠−1,𝑡−1𝑞 ) 𝑃𝑠−1,𝑡𝑞 (𝐴𝑠,𝑡𝑞 )𝑇 = 0.

Criterion 2: We can write
𝑀̃𝑠,𝑡
𝑞 = 𝐴𝑃̃𝑠,𝑡−1𝑃̃𝑠−1,𝑡𝐴𝑇 ,

with 𝑃̃𝑠,𝑡−1 ∶= 𝑃𝑠,𝑡−1(𝐼 − 𝑃𝑠,𝑡), the orthogonal projection matrix corresponding to the projection onto
ker𝑃𝑠,𝑡 ∩ (ker𝑃𝑠,𝑡−1)⊥ and 𝑃̃𝑠−1,𝑡 ∶= 𝑃𝑠−1,𝑡(𝐼 − 𝑃𝑠,𝑡) corresponding to the projection onto ker𝑃𝑠,𝑡 ∩
(ker𝑃𝑠−1,𝑡)⊥.

First note that 𝑃̃𝑠,𝑡−1 and 𝑃̃𝑠−1,𝑡 are orthogonal projection matrices and therefore positive semi-
definite. We define two cases:

Case 1: 𝑃̃𝑠−1,𝑡 is non-singular. This means that we can write it as 𝑃̃𝑠−1,𝑡 = 𝑃1/2𝑃1/2 for some
invertible and symmetric 𝑃1/2. The matrix 𝑋 ∶= 𝑃̃𝑠,𝑡−1𝑃̃𝑠−1,𝑡 is then similar to 𝑋′ ∶= 𝑃1/2𝑃̃𝑠,𝑡−1𝑃1/2,
as 𝑋′ = 𝑃1/2𝑋𝑃−1/2. 𝑋 therefore shares the same eigenvalues and eigenvectors as 𝑋′. Further-
more, 𝑋′ is congruent to 𝑃̃𝑠,𝑡−1, which means that for some 𝑥, we have 𝑥𝑇𝑋′𝑥 = 𝑥𝑇𝑃1/2𝑃̃𝑠,𝑡−1𝑃1/2𝑥 =
(𝑃1/2𝑥)𝑇𝑃̃𝑠,𝑡−1(𝑃1/2𝑥) ≥ 0. Therefore, 𝑋′ is also positive semi-definite and has non-negative eigenval-
ues, which in turn shows that 𝑋 has non-negative eigenvalues. 𝑀̃𝑠,𝑡

𝑞 is congruent to 𝑋 as 𝑀̃𝑠,𝑡
𝑞 = 𝐴𝑋𝐴𝑇

and therefore 𝑀̃𝑠,𝑡
𝑞 is also positive semi-definite and has real positive eigenvalues.

Case 2: 𝑃̃𝑠−1,𝑡 is singular. Now instead consider 𝑃𝜀 ∶= 𝑃̃𝑠−1,𝑡 + 𝜀𝐼 and 𝑀𝜀 ∶= 𝐴𝑃̃𝑠,𝑡−1𝑃𝜀𝐴𝑇. Because
𝑃𝜀 is non-singular for any 𝜀 > 0, we can use the same argument as before and conclude that 𝑀𝜀 has
real non-negative eigenvalues. Now using the property that eigenvalues of a matrix are continuous
[29] and lim𝜀→0+ 𝑀𝜀 = 𝑀̃𝑠,𝑡

𝑞 , we obtain the required result that the eigenvalues of 𝑀̃𝑠,𝑡
𝑞 are real and

non-negative.
Criterion 3: We start by proving that every eigenvector 𝑣 of 𝑀̃𝑠,𝑡

𝑞 is a linear combination of the
vectors 𝑉 ∶= {𝐴𝑤 ∶ 𝑤 ∈ [ker𝑃𝑠,𝑡 ∩ (ker𝑃𝑠,𝑡−1)⊥]}.

Let 𝑣 be an eigenvector of 𝑀̃𝑠,𝑡
𝑞 , with corresponding eigenvalue 𝜆. We get,

𝑀̃𝑠,𝑡
𝑞 𝑣 = ∑

𝑤∈[ker𝑃𝑠,𝑡∩(ker𝑃𝑠,𝑡−1)⊥]
𝐴𝑤𝑤𝑇𝑃̃𝑠−1,𝑡𝐴𝑇𝑣

= ∑
𝑤∈[ker𝑃𝑠,𝑡∩(ker𝑃𝑠,𝑡−1)⊥]

𝐴𝑤⟨𝐴𝑃̃𝑠−1,𝑡𝑤, 𝑣⟩ = 𝜆𝑣

⟺ 𝑣 = ∑
𝑤∈[ker𝑃𝑠,𝑡∩(ker𝑃𝑠,𝑡−1)⊥]

⟨𝐴𝑃̃𝑠−1,𝑡𝑤, 𝑣⟩
𝜆 𝐴𝑤.

Because we have assumed that 𝑀̃𝑠,𝑡
𝑞 is diagonalizable, the eigenvectors are linearly independent.

Which means that the number of eigenvectors with non-negative eigenvalues is upper bounded by
dim 𝑆𝑝𝑎𝑛(𝑉).
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Figure 3.8: Plot of different aggregation functions applied to the eigenvalues of 𝑀̃𝑠,𝑡
𝑞 for the filtration visualized in Figure 2.6.

White dots represent the intervals of the standard persistent barcode.

It now remains to show that the dimension of this span is less than or equal to (𝑛𝑡𝑞+1 − 𝑛𝑡−1𝑞+1). Note
that the number of vectors in 𝑉 is equal to dim (ker𝑃𝑠,𝑡 ∩ (ker𝑃𝑠,𝑡−1)⊥) = dimker𝑃𝑠,𝑡−dimker𝑃𝑠,𝑡−1
because of Lemma 3.3.2. We have that,

dim (ker𝑃𝑠,𝑡 ∩ (ker𝑃𝑠,𝑡−1)⊥) = dimker𝑃𝑠,𝑡 − dimker𝑃𝑠,𝑡−1

= dimker𝐵𝑠,𝑡𝑞,2 − dimker𝐵𝑠,𝑡−1𝑞,2

= dim𝐶𝑠,𝑡𝑞+1 − dim𝐶𝑠,𝑡−1𝑞+1 .

Here, the last equality follows from Lemma 3.2.4. Because every 𝑐 ∈ 𝐶𝑡𝑞+1 can at most create one
𝑐̃ ∈ 𝐶𝑠,𝑡𝑞+1, we have that

dim (ker𝑃𝑠,𝑡 ∩ (ker𝑃𝑠,𝑡−1)⊥) = dim𝐶𝑠,𝑡𝑞+1 − dim𝐶𝑠,𝑡−1𝑞+1
≤ 𝑛𝑡𝑞+1 − 𝑛𝑡−1𝑞+1.

The dimension of 𝑆𝑝𝑎𝑛(𝑉) is less than or equal to the number of vectors in 𝑉, which means that we
have found the required bound.

Note that, while it has not been proven that 𝑀̃𝑠,𝑡
𝑞 is diagonalizable, in practice it has always been

the case.
Using this modified multiplicity matrix on the example filtration from Figure 2.6, we obtain Figure

3.8. Here we can see that now only one non-zero eigenvalue is present for each of the points (𝑠, 𝑡).
Furthermore, the trace of the matrix is the same as the trace of [𝑀𝑠,𝑡

𝑞 ] for all points where that matrix
had only one non-zero eigenvalue. The points (2, 8), (3, 6) and (3, 7), which had both a vertical and a
horizontal effect, do have a different trace, however.

To understand why this is the case, we write 𝑀̃𝑠,𝑡
𝑞 in terms of the matrix representation of 𝑀𝑠,𝑡

𝑞 ,

𝑀̃𝑠,𝑡
𝑞 = 𝐴𝑠,𝑡𝑞 (𝑃𝑠,𝑡−1𝑞 𝑃𝑠−1,𝑡𝑞 − 𝑃𝑠,𝑡𝑞 ) (𝐴𝑠,𝑡𝑞 )𝑇

= 𝐴𝑠,𝑡𝑞 (𝑃𝑠−1,𝑡𝑞 + 𝑃𝑠,𝑡−1𝑞 − 𝑃𝑠−1,𝑡−1𝑞 − 𝑃𝑠,𝑡𝑞 + (𝐼 − 𝑃𝑠,𝑡−1𝑞 )(𝑃𝑠−1,𝑡−1𝑞 − 𝑃𝑠,𝑡𝑞 )(𝐼 − 𝑃𝑠−1,𝑡𝑞 )) (𝐴𝑠,𝑡𝑞 )𝑇

= [𝑀𝑠,𝑡
𝑞 ] + 𝐴𝑠,𝑡𝑞 ((𝐼 − 𝑃𝑠,𝑡−1𝑞 )(𝑃𝑠−1,𝑡−1𝑞 − 𝑃𝑠,𝑡𝑞 )(𝐼 − 𝑃𝑠−1,𝑡𝑞 )) (𝐴𝑠,𝑡𝑞 )𝑇 .

This shows that the adjusted multiplicity operator is equal to the standard multiplicity operator plus
some matrix. This added matrix contains the product 𝑃𝑠,𝑡−1𝑞 𝑃𝑠−1,𝑡𝑞 , which is not necessarily a projection
matrix. Therefore, it is hard to interpret its function.

Nevertheless, we can still look at the trace to see if this has any interpretability. Using Equation
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Figure 3.9: Colored persistence diagram containing the information of the trace of the multiplicity operator [𝑀𝑠,𝑡
𝑞 ] applied to the

filtration of Figure 2.6. Crosses correspond to points in the standard persistence diagram of Figure 2.11. Previous representation
of this trace can be seen in Figure 3.7.

(3.31) and the singular value decomposition of 𝑃𝑠−1,𝑡−1𝑞 − 𝑃𝑠,𝑡𝑞 , we have,

𝑇𝑟(𝑀̃𝑠,𝑡
𝑞 ) = 𝑇𝑟([𝑀𝑠,𝑡

𝑞 ]) + 𝐴𝑠,𝑡𝑞 ((𝐼 − 𝑃𝑠,𝑡−1𝑞 )(𝑃𝑠−1,𝑡−1𝑞 − 𝑃𝑠,𝑡𝑞 )(𝐼 − 𝑃𝑠−1,𝑡𝑞 )) (𝐴𝑠,𝑡𝑞 )𝑇)

= 𝑇𝑟([𝑀𝑠,𝑡
𝑞 ]) + ∑

𝑤∈[ker𝑃𝑠,𝑡𝑞 ∩(ker𝑃𝑠−1,𝑡−1𝑞 )
⊥
]

⟨𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠,𝑡−1𝑞 )𝑤, 𝐴𝑠,𝑡𝑞 (𝐼 − 𝑃𝑠−1,𝑡𝑞 )𝑤⟩. (3.33)

Note that the added part over the trace of the standard multiplicity operator, is again a sum over the
features from (𝑠, 𝑡), which did not appear in (𝑠 − 1, 𝑡 − 1). It sums for each of the features the inner
product between the horizontal and vertical effect of that feature. Therefore, if one of these effects is
0, it does nothing. Furthermore, it can be conluded that the trace of 𝑀̃𝑠,𝑡

𝑞 is the same as the trace of
[𝑀𝑠,𝑡

𝑞 ] if features in (𝑠, 𝑡) either come from a vertical effect or a horizontal effect and not both.

3.4. Using the multiplicity operators
In order to apply the multiplicity operator in practice, the spectra corresponding to two different filtrations
need to be compared. Being able to compare two filtrations then yields a type of distance between two
shapes. For the handwritten digit dataset, this distance could be used to check whether images of a
certain digit have a smaller distance to each other than to other digits. If this is true, this distance could
then be used to classify the numbers. In this section, a proposed distance is therefore given.

First a new visualization of the multiplicity operator is discussed. The operator is only non-zero at
some points (𝑏, 𝑑), we can therefore represent it as a colored persistence diagram. Colors are needed
because the points still have a certain weight. Note that, like discussed, using the standard multiplicity
operator [𝑀𝑏,𝑑

𝑞 ] only an interpretation for the trace was found and should therefore be used. This
means that every combination of start and end times (𝑏, 𝑑) only corresponds to one point. However, if
one uses the modified multiplicity matrix 𝑀̃𝑠,𝑡

𝑞 , specific eigenvalues can have an interpretable meaning.
Nevertheless, using these separate eigenvalues in some way has not been done yet and is left for
future research.

Plotting the trace of [𝑀𝑠,𝑡
𝑞 ] in a colored persistence diagram is done in Figure 3.9. From now on,

we refer to such a diagram as a persistent Laplacian diagram. Note that this figure contains the exact
same information as the ”Sum of eigenvalues” part of Figure 3.7. However, now it can more easily
be compared to the standard persistence diagram as it is also a point cloud. This also allows for the
usage of methods based on persistence diagrams, where only a slight adjustment needs to be made
regarding the weight.

3.4.1. Landscapes for the multiplicity operators
One of these methods is the persistence landscape, see Section 2.4.3. It provides an easy way of
comparing two diagrams by representing the diagrams as landscapes. For each point in the persistence
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Figure 3.10: Persistent Laplacian landscape for 𝑘 ∈ {0, 1, 2}, based on the filtration visualized in Figure 2.6 and corresponding
persistent Laplacian diagram 3.9. See also Figure 2.12 for the corresponding persistence landscape.

diagram 𝑝 = (𝑏, 𝑑) it formulates a simple function based on that point Λ𝑝. Adapting this method to work
for the Laplacian diagram from the multiplicity operator, requires reformulating the functions Λ𝑙𝑝 to work
for points with a weight 𝑝 = (𝑏, 𝑑, 𝑤).

It is proposed that this weight can be incorporated into the functions, using the following equation:

Λ𝑙𝑝(𝑡) ∶=
⎧

⎨
⎩

𝑤
𝑞+2(𝑡 − 𝑏) if 𝑡 ∈ [𝑏, 𝑏+𝑑2 ].
𝑤
𝑞+2(𝑑 − 𝑡) if 𝑡 ∈ (𝑏+𝑑2 , 𝑑].
0 otherwise.

(3.34)

Where 𝑞 is the dimension of the considered points. Note that this formulation is just Λ𝑙𝑝(𝑡) ∶=
𝑤
𝑞+2Λ𝑝(𝑡).

Therefore, higher weighted points correspond to larger function values. This is motivated by Equation
3.31 as here it was concluded that the trace is higher when more effect came from the step (𝑠, 𝑡) and
lower when some effect already appeared in (𝑠 −1, 𝑡) or (𝑠, 𝑡 − 1). Dividing the weight by 𝑞 +2 is done
to be able to compare two diagrams of different dimensions. Because the same division is done for
every point, it should not affect the comparison of two diagrams with the same dimension.

This allows for the same structure as before, where a persistent Laplacian landscape 𝜆𝑙 is a function
defined over the set of all triangular functions {Λ𝑙𝑝}𝑝∈𝐿𝐷 for a persistent Laplacian diagram 𝐿𝐷. Again,
it also requires a positive integer 𝑘.

𝜆𝑙𝐿𝐷(𝑘, 𝑡) = 𝑘max
𝑝∈𝐿𝐷

Λ𝑙𝑝(𝑡). (3.35)

In Figure 3.10 the persistent Laplacian landscape corresponding to the filtration of Figure 2.6 is
plotted. Here only 𝑘 = 0, 1, 2 are shown to more easily compare it to the persistence landscape of
Figure 2.12. Note that these landscapes are quite similar as they both contain two large peaks in
𝑘 = 0. However, the largest peak of the persistence landscape corresponds to the feature (2, 7), while
the largest peak of the persistent Laplacian landscape corresponds to (2, 8) as can be seen by the value
of 𝑡 where this peak stops. At 𝑡 = 7, the 0 dimensional feature corresponding to point 2 dies. However,
it is still ”far” away from 0 and 1, while at 𝑡 = 8, the point connects directly to the main component.

3.5. Efficient algorithm
Like was said in Section 2.5.4, while computing one persistent Laplacian is not very time consuming,
computing them for every combination of start times and end times can be. The formulation of the
multiplicity operator in Theorem 3.3.7 does help with reducing the number of matrix multiplications,
however it is still required to find the pseudo inverses of all the 𝐵𝑠,𝑡𝑞,2 matrices. Therefore, in this section
a method is proposed that finds (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 for each combination of start times 𝑠 and end times 𝑡.
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Afterwards, calculating the multiplicity operator or the modified multiplicity operator 𝑀̃𝑠,𝑡
𝑞 only requires

2 or 3 matrix multiplications respectively.
In a filtration, subsequent 𝐵𝑞,2 matrices differ only slightly. Therefore, it seems unnecessary to

recalculate the pseudo inverse every time. From Figure 3.5, we can see that subsequent steps in the
end time 𝑡 follow the following pattern,

𝐵𝑠,𝑡𝑞,2 = [
𝐵𝑠,𝑡−1𝑞,2 [𝜕𝑡𝑞+1](𝐼𝑠,𝑡−1𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )
0 [𝜕𝑡𝑞+1](𝐼𝑡−1,𝑡𝑞 , 𝐼𝑡−1,𝑡𝑞+1 )

] .

Assuming (𝐵𝑠,𝑡−1𝑞,2 )† is known, we would like to find a formula for (𝐵𝑠,𝑡𝑞,2)†. This is done in two steps.

First the pseudo inverse of [𝐵
𝑠,𝑡−1
𝑞,2
0 ] is found, formulated in Lemma 3.5.1. With this inverse, the full

(𝐵𝑠,𝑡𝑞,2)† can be acquired, which is done with Greville’s form [14]. Finally the full algorithm can be formu-
lated that deals with when each method needs to be used, see Algorithm 1.

Lemma 3.5.1. For a matrix 𝐴 ∈ ℝ𝑚×𝑛, the pseudo inverse of [𝐴0] is given by,

[𝐴0]
†
= [𝐴† 0] . (3.36)

Proof. Following definition 2.1.1, we check the properties.

[𝐴0] [𝐴
† 0] [𝐴0] = [

𝐴𝐴†𝐴
0 ] = [𝐴0] ,

[𝐴† 0] [𝐴0] [𝐴
† 0] = [𝐴†𝐴𝐴† 0] = [𝐴† 0] ,

([𝐴0] [𝐴
† 0])

𝑇
= [(𝐴𝐴

†)𝑇 0
0 0] = [

𝐴𝐴† 0
0 0] = [

𝐴
0] [𝐴

† 0] ,

([𝐴† 0] [𝐴0])
𝑇
= (𝐴†𝐴)𝑇 = 𝐴†𝐴 = [𝐴† 0] [𝐴0] .

With the ability to extend the pseudo inverse over the added rows, now adding columns is discussed.
The used method uses an old theorem from Greville, which provides a method to obtain the pseudo
inverse of 𝐴𝑘 = [𝐴𝑘−1 𝑎𝑘] for some 𝐴𝑘−1 ∈ ℝ𝑚×𝑛 and some vector 𝑎𝑘 ∈ ℝ𝑚, provided the pseudo
inverse of 𝐴𝑘−1 is known. Iteratively using the method then yields an algorithm to add any number of
columns to the matrix and to compute the pseudo inverse. The method for one column can be found
in Theorem 3.5.2.

Theorem 3.5.2 (Greville’s form [14]). For a matrix 𝐴𝑘−1 ∈ ℝ𝑚×𝑛 and a vector 𝑎𝑘 ∈ ℝ𝑚, with known
pseudo inverse 𝐴†𝑘−1. Let 𝑑𝑘 ∶= 𝐴†𝑘−1𝑎𝑘 and 𝑐𝑘 ∶= 𝑎𝑘 − 𝐴𝑘−1𝑑𝑘. Furthermore, define

𝑏𝑘 = {
𝑐†𝑘 if 𝑐𝑘 ≠ 0.

1
1+𝑑𝑇𝑘𝑑𝑘

𝑑𝑇𝑘𝐴𝑘−1 if 𝑐𝑘 = 0.
(3.37)

Then
[𝐴𝑘−1 𝑎𝑘]

† = [𝐴
†
𝑘−1 − 𝑑𝑘𝑏𝑘

𝑏𝑘
] . (3.38)

Note that the pseudo inverse of 𝑐𝑘 is relatively easy to obtain, as for a vector, the pseudo inverse is
given by 𝑐†𝑘 =

1
||𝑐𝑘||22

𝑐𝑇𝑘 .
Using Lemma 3.5.1 first and then iteratively adding columns with Theorem 3.5.2, we obtain an

algorithm to compute 𝐵𝑠,𝑡𝑞,2 using the pseudo inverse of 𝐵𝑠,𝑡−1𝑞,2 . Thereby reducing the number of pseudo



3.5. Efficient algorithm 47

inverses to be calculated to the number of time steps, as for every 𝑠 still one pseudo inverse needs to
be calculated. The full algorithm to compute 𝐵𝑠,𝑡𝑞,2 for every 𝑠 and 𝑡 is formulated in Algorithm 1. This
algorithm also deals with the fact that 𝐵𝑠,𝑡𝑞,2 does not exist if 𝑛𝑠𝑞+1 = 𝑛𝑡𝑞+1.

Finally, note that time complexity can be further reduced by realizing that 𝑀𝑠,𝑡
𝑞 = 0 if 𝑛𝑡𝑞+1 = 𝑛𝑡−1𝑞+1

or if 𝑛𝑠𝑞 = 𝑛𝑠−1𝑞 . By Theorem 3.3.10, this also means that 𝑀̃𝑠,𝑡
𝑞 = 0. Therefore, in these cases, the

required matrix multiplications to obtain the matrices are not needed and no eigenvalues need to be
found. However, (𝐵𝑠,𝑡𝑞 )† still needs to be computed as it is needed for (𝐵𝑠,𝑡+1𝑞 )† if it exists.
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Algorithm 1: Computing the pseudo inverses
Data: [𝜕𝑞], [𝜕𝑞+1]
Result: {(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2}𝑇𝑠𝑡𝑎𝑟𝑡≤𝑠,𝑡≤𝑇𝑒𝑛𝑑
for 𝑠 ← 𝑇𝑠𝑡𝑎𝑟𝑡 to 𝑇𝑒𝑛𝑑 do

Obtained_B22 ← False;
for 𝑡 ← 𝑠 to 𝑇𝑒𝑛𝑑 do

if Obtained_B22 = False then
if 𝑛𝑠𝑞+1 = 𝑛𝑡𝑞+1 then

(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 ← []
else

if 𝑛𝑠𝑞 = 𝑛𝑡𝑞 then
(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 ← [0];

else
𝐴𝑘−1 ← [𝜕𝑞+1](𝐼𝑠,𝑡𝑞 , 𝐼𝑠,𝑡𝑞+1);
𝐴†𝑘−1 ← (𝐴𝑘−1)† (𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 ← 𝐴†𝑘−1𝐴𝑘−1;
𝑡𝐴 ← 𝑡;
Obtained_B22 ← True;

end
end

else
Changed_B22=False;
if 𝑛𝑡𝑞 > 𝑛𝑡𝐴𝑞 then

𝐴𝑘−1 ← [
𝐴𝑘−1
0 ];

𝐴†𝑘−1 ← [
𝐴†𝑘−1
0 ];

Changed_B22=True;
end
if 𝑛𝑡𝑞+1 > 𝑛𝑡𝐴𝑞+1 then

for 𝑐 ← 𝑛𝑡𝐴𝑞+1 to 𝑛𝑡𝑞+1 do
𝑎𝑘 ← [𝜕𝑞+1](𝐼𝑠,𝑡𝑞 , 𝑐)𝑑𝑘 ← 𝐴†𝑘−1𝑎𝑘;
𝑐𝑘 ← 𝑎𝑘 − 𝐴𝑘−1𝑑𝑘;

𝑏𝑘 ← {
𝑐𝑇𝑘/||𝑐𝑘||22, if ||𝑐𝑘||22 ≠ 0
(1 + ||𝑑𝑘||22)−1𝑑𝑇𝑘𝐴†𝑘−1 otherwise

;

𝐴†𝑘−1 ← [
𝐴†𝑘−1 − 𝑑𝑘𝑏𝑘

𝑏𝑘
];

𝐴𝑘−1 ← [𝐴𝑘−1 𝑎𝑘];
Changed_B22=True;

end
end
if Changed_B22 then

𝑡𝐴 ← 𝑡;
(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 ← 𝐴†𝑘−1𝐴𝑘−1;

else
(𝐵𝑠,𝑡𝑞,2)†𝐵𝑠,𝑡𝑞,2 ← (𝐵𝑠,𝑡−1𝑞,2 )†𝐵𝑠,𝑡−1𝑞,2 ;

end
end

end
end



4
Applications

In this chapter two possible applications of the persistent Laplacian are discussed, where the use of
standard persistent homology is compared with using the multiplicity operators defined in Section 3.3.3.

4.1. MNIST Dataset
In this section the multiplicity operator is applied to the MNIST dataset [2]. The dataset contains 70.000
images, but in this thesis just a random sample of 7000 images is used. Each image is made into a
graph using the Ball Mapper method discussed in Section 2.2. The vertices of the resulting graph are
given a weight equal to the average 𝑥 value or 𝑦 value of the points in its corresponding cluster. Thereby
creating a vertex weighted graph 𝐺 = (𝑉, 𝐸) with weight function 𝑤 ∶ 𝑉 → ℝ≥0. This allows us to use
the vertex-based clique filtration (VBCL), see Definition 2.4.10.

For the 6 represented in Figure 2.1 the resulting filtration is plotted in Figure 4.1. Here the average
𝑦 value is used as weight for the vertices in the Ball Mapper graph. Points on top of the image have
the lowest 𝑦-values, therefore it can be seen that first the stem of the 6 appears in the filtration and the
cycle is closed only at the very end. Note that the filtration is different from the filtration of Figure 2.10,
because the radii of the balls are different.

Using this filtration, we can apply standard persistent homology. The landscape corresponding to
the filtration is shown in Figure 4.2. Here it can be seen that only one finite interval is found in the
barcode as only one non-zero function is present across both dimensions. While a cycle appears in
the filtration of the 6, it is not shown in the landscape as it does not die. The function that is present in
the landscape is due to the fact that the drawing is tilted a bit, such that at some values of 𝑦, there are
two connected components.

If we instead look at the Laplacian landscape, see Figure 4.3, we can see a bit more information.
Because the persistent Laplacian encodes geometric information, it changes more often and the land-
scape contains more noise. Therefore visually the diagrams become harder to interpret. However,
what we can see from the figure is that the second highest peak is maximal at the exact same time
as the peak in the persistence landscape. Furthermore, after the two connected components merge,
topologically nothing more happens, but in the Laplacian landscape, we do see some more features.
The final function of the landscape is zero at 𝑡 = 19, which means some of these features correspond
to the cycle. The dimension 1 landscape also contains two features, however these are thought to
mainly be due to noise and no interpretation was found.

4.1.1. Building a first classifier
In order to build a classifier, for each image in the dataset, both a persistence landscape as well as a
Laplacian landscape are computed. The images are split into a training set and a test set. The training
set contains 80% of the images (5600 images), while the test set contains the remaining 20% (1400
images). Landscapes of the training set are used to compute a mean landscape for each digit, like is
done in [43]. If 𝜆𝑞,𝑖 is the landscape corresponding to image 𝑖 of the training set, the mean landscape
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Figure 4.1: Vertex-based clique filtration of the graph output by Ball Mapper, with 𝜀 = 3, on the point cloud in Figure 2.1. Weights
of the vertices of the graph are given by the average 𝑦 value of the points in the corresponding cluster. Points at the top of the
figure have the lowest 𝑦 value. Only the timesteps where a simplex is added are shown.

Figure 4.2: Persistence landscape for the filtration of Figure 4.1.
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Figure 4.3: Laplacian landscape for the filtration of Figure 4.1.

𝜆̄𝑞,𝑑 corresponding to digit 𝑑 is given by

𝜆̄𝑞,𝑑(𝑘, 𝑡) =
1
𝑛

𝑛(𝑑)

∑
𝑖=1

𝜆𝑞,𝑖(𝑘, 𝑡), (4.1)

where 𝑛(𝑑) is the amount of samples of digit 𝑑 in the training set. The same can be done for Laplacian
landscapes to get

𝜆̄𝑙𝑞,𝑑(𝑘, 𝑡) =
1
𝑛

𝑛(𝑑)

∑
𝑖=1

𝜆𝑙𝑞,𝑖(𝑘, 𝑡). (4.2)

Because these mean landscapes are again a landscape, for each digit, we can plot them to see how
they look, see Figure 4.4. Here we can see a clear difference in the average landscape of the different
digits. For the persistence landscapes, only 𝑘 = 0 yields something relevant, however mostly within
one standard deviation of 0. Only the 4 has values of 𝑡, where it is significantly above zero. This is
due to the fact that the 4 is often drawn with two stems, like in Figure 1.1. Therefore, it often starts with
two connected components yielding this plot. The same feature can also be seen in the corresponding
Laplacian landscape, however some additional information is added after it dies.

Looking at the mean persistent Laplacian landscapes of the 6 and the 9, we can see that they are
almost flipped horizontally. This makes intuitive sense as scanning the digits from top to bottom visually
is almost exactly inverted. Using the interpretation of the previous chapter, it can also be explained.
The multiplicity operator is non-zero whenever a new path between vertices appears. So whenever
the cycle in the 6 or the 9 closes, the 0-simplices that appeared at the top of the cycle have a new
path which travels along the boundary of the cycle. For the 9, this happens with simplices that appear
early and get connected again around halfway. For the 6 the first simplices of the loop appear halfway
and get connected at the end. This explains the most prominent features of these persistent Laplacian
landscapes.

To make a prediction of the digit in a new image, the distance 𝑑𝑙𝑎𝑛𝑑 between the corresponding
landscape and each of the mean landscapes is computed, see Section 2.4.3. The smallest distance
is then considered the predicted digit. This can be done for both the persistence landscape and the
Laplacian landscape. Finally a combination of the two is analyzed, where the distances between the
persistence landscapes and the Laplacian landscapes are normalized to be between 0 and 1 and then
added together. Thereby creating a new distance for each digit, where the smallest is chosen as the
predicted number.

This is done for each of the images in the test set and the accuracies are denoted in Table 4.1.
Note that the same experiment is done with different sizes 𝜀 of the balls in Ball Mapper. Furthermore,
the experiment is also repeated by instead giving weights based on the average 𝑥 value of points in a
cluster, i.e. scanning the image from left to right instead of from top to bottom.
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Figure 4.4: Mean persistence landscapes in the top row and persistent Laplacian landscapes in the bottom row with sample
standard deviation around the mean. Landscapes are computed for the digits 4, 6 and 9 based on 5600 samples of the MNIST
dataset. 𝜀 = 2 is used for the Ball Mapper parameter and the average 𝑦-value of the points in a cluster is used as the weight of
the corresponding vertex in the graph.

Table 4.1: Classification performance obtained by applying the landscape methods to the first 7000 images in the MNIST
dataset. 5400 are used to train the classifier and 1600 are used to obtain the noted accuracy. Persistent landscapes from
persistent homology (PH) are compared to Laplacian landscapes from the trace of the multiplicity operator [𝑀𝑠,𝑡

𝑞 ] (MULT). Finally
a combination of the two classifiers is used (COMBI). Different sizes of the Ball Mapper parameter 𝜀 are tested, together with
different weight function for the VBCL. Here, x stands for taking the average x-value of points within a cluster and y for taking
the average y-value of points within a cluster.

𝜀 1.5 2 2.5 3
Weight function x y x y x y x y
PH 29.6% 33.2% 28.2% 32.0% 27.6% 30.2% 25.4% 28.1%
MULT 38.5% 53.2% 42.7% 58.2% 36.4% 50.5% 36.4% 45.9%
COMBI 45.5% 56.4% 46.8% 61.2% 43.1% 55.8% 41.3% 50.9%

Table 4.2: Classification performance of each digit applying the landscapemethods to the first 7000 images in the MNIST dataset.
5400 are used to train the classifier and 1600 are used to obtain the noted accuracy. 𝜀 = 2 is used as size of the Ball Mapper
parameter. The weight function for the VBCL is taken as the average y-value of points within a cluster. Persistent landscapes
from persistent homology (PH) are compared to Laplacian landscapes from the trace of the multiplicity operator [𝑀𝑠,𝑡

𝑞 ] (MULT).
Finally a combination of the two classifiers is used (COMBI).

Type\Digit 0 1 2 3 4 5 6 7 8 9
PH 0.0% 98.8% 12.1% 34.1% 79.3% 17.0% 30.3% 17.0% 8.2% 2.3%

MULT 78.2% 48.8% 44.7% 39.1% 64.3% 51.9% 67.6% 61.2% 67.2% 60.8%
COMBI 73.9% 53.5% 47.7% 41.3% 80.0% 52.6% 63.4% 62.6% 70.5% 68.5%
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From Table 4.1, it becomes clear that the multiplicity operator outperforms standard persistent ho-
mology, achieving the best classification performance and it was better in every configuration tested.
This can be explained by the fact that PH often failed to find any features that appear in the persis-
tence landscape. Which could happen for many of the numbers and every time it happened, using this
method, the prediction would be the same. Therefore, many numbers are misclassified this way. It
therefore may not be completely fair to compare the two methods, however it does show the additional
information that can be captured by the persistent Laplacian.

It is however interesting that using a combination of the two methods yielded the best accuracy,
also across every tested configuration. This would suggest that not all the topological information is
encoded in the Laplacian landscape and adding that information can be of benefit. Note that only one
function was tested to combine the two methods while numerous options exist. One could for example
add a weight to prefer one method over the other, which was not done here.

Furthermore, it can be seen that 𝜀 = 2 seems to be the optimal parameter for the ball size for the
Laplacian landscapes. Increasing and decreasing the parameter value seemed to all decrease the total
classification performance. However, for persistent landscapes, the accuracy seemed to increase the
lower the value of 𝜀. This is theorized to be because at lower values of the parameter, more geometric
information is captured as the filtration is more sensitive to smaller changes.

Finally, it is interesting that the weight function which took the average 𝑥 value of the points in each
cluster performed considerably worse. Apparently scanning the images from left to right does not give
many interpretable features independent of using persistence landscapes or Laplacian landscapes.
Intuitively this seems to make sense as most numbers are drawn top to bottom.

Fixing 𝜀 = 2 and scanning the images from top to bottom, we can obtain the per digit accuracies of
each of the models, see Table 4.2. Here it becomes clear that the persistent homology based model
mainly predicts a 1, probably whenever no features are found. Therefore, its classification performance
on the 1 is very high, but most of the other accuracies are low. Only the 4 it can predict well, which is
due to the previously discussed two stems commonly used to draw the digit.

The Laplacian landscape and combination models both perform reasonably consistent across the
different numbers. However, the digits without a cycle still appear to be more difficult. Here the 3
attains the lowest classification performance, probably due to its similarity to the 5. When half the image
has been scanned the numbers are the same up to horizontal symmetry. This method is invariant to
these symmetries, so the landscapes should look very similar at the start. The number 4 yielded the
highest classification performance in the combination model, which can mainly be explained by the
persistence landscape. Finally, the 0 obtained the highest classification performance for the Laplacian
model, probably because the gap in the 0 is often relatively big and should always be visible in the Ball
Mapper graph.

4.1.2. Comparing multiplicity to the persistent Laplacian
Using the persistent Laplacian without the multiplicity operator works differently. As it cannot be used in
the same way and while technically a landscape could still be made, it would have a very high number
of triangular functions, making any operations very slow. Therefore, to compare the multiplicity operator
to the persistent Laplacian, a new classifier needs to be defined.

In [16], the authors extract a feature vector from the persistent Laplacians, which is then used to train
a simple linear classifier. In order to create the feature vector, they select a set of filtration parameters
and compute for each combination the persistent Laplacian. They concatenate the eigenvalues of all
the Laplacians and use that as their feature vector. However, because some Laplacians have more
eigenvalues, they sometimes need to append zeros or remove some of them to keep all feature vectors
the same size. In order to simplify the process, in this thesis the minimum non-zero eigenvalue of each
persistent Laplacian is used instead.

The set of filtration parameters used is 𝑆 = {0, 1, … , 28}, so all possible pixel locations. The start
time 𝑠 is iterated from 0 to 28 and then the end time 𝑡 from 𝑠 to 28, afterwards the process is repeated for
dimension 1. Therefore, the first entry in the vector corresponds to the minimum eigenvalue of [Δ0,00 ],
while the second entry corresponds to the minimum eigenvalue of [Δ0,10 ]. The 30-th entry in the vector
corresponds to the minimum eigenvalue of [Δ1,10 ] and the 436-th (29⋅302 + 1) entry corresponds to the
minimum eigenvalue of [Δ0,01 ].

For each image, the persistent Laplacian and the multiplicity operator are only calculated between
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(a) Minimum eigenvalue of the persistent Laplacian.

(b) Sum of eigenvalues of the multiplicity operator.

Figure 4.5: Feature vectors using the filtration of Figure 4.1. First half of each of the vectors corresponds to dimension 0, the
second half to dimension 1.

values of the filtration parameter where a simplex is added. Most of the time this is not on exactly the
values in 𝑆. Therefore, for 𝑠, 𝑡 ∈ 𝑆 where 𝑠 ≤ 𝑡, the used persistent Laplacian is the one that was
computed with a start time closest to 𝑠 and end time closest to 𝑡. Furthermore, note that most digits in
the dataset do not use the first and last few pixels, therefore the persistent Laplacian is often 0.

The two vectors can be analyzed by plotting the entries, see Figure 4.5. Note that the multiplicity
operator is zero for the whole of dimension 1, while the landscape in Figure 4.3 indicates that two
features do exists. However, because only the evaluations at the points in 𝑆 are captured in the vector,
it may be possible that some non-integer timesteps are skipped. If between two integer timesteps three
or more evaluations exist, the middle one does not appear in the feature vector.

To understand the effect of the multiplicity operator, we still want to compare the two vectors. The
idea of the multiplicity operator is to only be non-zero on the points where the persistent Laplacian
changes. However, in the previous chapter, it was already noted that information from the down Lapla-
cian is not encoded. Comparing the two vectors like this is therefore hard as in the persistent Laplacian
vector, it is unclear which information came from the down Laplacian. However, it is clear that repre-
senting the multiplicity operator this way yields an almost zero vector.

Besides using persistent Laplacian and the multiplicity operator, also a vector is obtained using
the combinatorial Laplacian. Where the persistent Laplacian requires a start and end time, the com-
binatorial Laplacian only requires one time. Computing the minimum eigenvalue of the combinatorial
Laplacian on every step in 𝑆 therefore yields a smaller vector. Nevertheless, this may still provide useful
information.

Computing the feature vectors for each image in the dataset, we obtain a dataset of feature vectors
with corresponding labels. To now make predictions any classification Machine Learning method can
be used. The focus of this thesis is on the feature vector and not on the ML method, therefore a simple
Logistic Regression (LR) model is chosen. The dataset is again split into a training set of 5400 images
and a test set of 1600 images. The LR model is trained on the feature vectors of the training set and
then tested on the feature vectors of the test set. The resulting accuracies can be seen in Table 4.3.

It can be seen that the persistent Laplacian method, as well as the combinatorial Laplacian both
outperform the multiplicity operator in this way. It is theorized that this is because of the effect seen
in Figure 4.5b. There, no features can be seen in dimension 1 because of the chosen set 𝑆. This
does not effect the persistent Laplacian as much as at every timestep it contains the effect of all the
previous steps. However, the multiplicity operator is designed to only contain information of the actual
step, therefore using it in this way, most of the information is lost.

Instead, it should be used in the same way as persistent homology. Therefore, a second feature
vector is made using the Laplacian landscapes. In order to keep the vector roughly the same size as
the persistent Laplacian vectors, the landscape is summed over all values of 𝑘, Σ𝜆𝑙𝐿𝐷(𝑡) = ∑𝑘 𝜆𝑙𝐿𝐷(𝑘, 𝑡).
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Table 4.3: Accuracies on the test set for the models that extract a feature vector based on a selection of filtration parameters and
use Logistic Regression (LR) to do predictions. Feature vectors are extracted using the sum of eigenvalues of the multiplicity
operator [𝑀𝑠,𝑡

𝑞 ] (MULT), using the minimum non-zero eigenvalue of the persistent Laplacian Δ𝑠,𝑡𝑞 (PL) and the minimum non-zero
eigenvalue of the combinatorial Laplacian Δ𝑠𝑞 (CL). Finally, feature vectors are obtained from the summed Laplacian landscape
on 333 locations in each dimension (LAPLAND). Training of the LR model is done on 5400 images and testing on 1600 images.
Different sizes of the Ball Mapper parameter 𝜀 are tested, together with different weight function for the VBCL. Here, x stands
for taking the average x-value of points within a cluster and y for taking the average y-value of points within a cluster.

𝜀 1.5 2 2.5 3
Weight function x y x y x y x y
PL 65.1% 77.4% 64.5% 75.2% 62.0% 75.4% 57.8% 75.6%
CL 52.9% 67.5% 51.4% 68.2% 46.5% 66.0% 43.9% 66.1%
MULT 42.9% 66.4% 42.3% 60.9% 36.4% 58.0% 40.7% 58.0%
LAPLAND 56.8% 75.9% 53.1% 74.3% 45.0% 61.8% 42.5% 59.8%
LAPLAND+CL 72.4% 81.9% 67.6% 81.1% 64.4% 76.9% 59.1% 75.3%

Afterwards the interval [0, 28] is discretized to obtain 333 values of 𝑡, where this summed landscape
is evaluated. Doing this for both dimension 0 as well as dimension 1, a feature vector is obtained of
length 666. This vector is used in the same way as the other feature vectors to make predictions with
a LR model. The results can also be found in Table 4.3.

We can see that this greatly increases the accuracy of the multiplicity based models and it now
closely matches the accuracies obtained from the persistent Laplacian. Still it remains a bit less accu-
rate, especially at higher values of 𝜀. This is thought to be because the information of the combinatorial
Laplacian is not encoded into the multiplicity operator and therefore also not in the Laplacian landscape.
For high values of 𝜀, the step in each subsequent complex in the filtration contains more information
as each simplex corresponds to more pixels. In the combinatorial Laplacian, the information of each
complex is encoded. The multiplicity operator does not encode any information of the combinatorial
Laplacian, so of Δ𝑠,𝑡𝑞 , where 𝑠 = 𝑡 and instead only describes when it changes in a subsequent time
step 𝑡 > 𝑠. Therefore it misses this information.

To test the validity of the previous statement, a final feature vector is used, which is the concatena-
tion of the vector obtained from the landscape and the vector from the combinatorial Laplacian. The
resulting vector has a size of 724, which is still less than the vector from the persistent Laplacian. In
Table 4.3 accuracies of this vector are also noted. It can be seen that this final vector gave the best
results in almost every configuration tested and therefore supports the previous argument. While for a
linear model this concatenation is easily done, for more complex models, it would be better to include
the information directly in the multiplicity operator.

4.2. Identifying crystalline structures
We now turn to the problem of classifying crystalline structures, see Figure 1.2 for an example. These
images are made by slicing an alloy in half and taking a picture using a microscope. The focus of this
application is on the red lines, which represents Kernel Average Misorientation (KAM). The pattern of
these lines is thought to contain information about the type of alloy and its properties.

While the methods are meant to be used on real images of cross sections of alloys, data for this
can be hard to acquire. Therefore, certain point processes are used to artificially generate the location
of the centers of the cells, see Section 2.3. The goal of this application is to detect the underlying
generation process for the artificial cross sections. The images are made using either the standard
Poisson-Voronoi diagram (PV), cluster method or the Hard-Core method (HC).

4.2.1. Alpha filtration
In order to use TDA methods, the authors of [43] describe these types of images by an alpha filtration,
see Definition 2.4.8. An alpha filtration requires a point cloud, which is obtained by taking the center
of each of the cells in the cross section. Because the structure of the cells is thought to be similar to a
Voronoi diagram, the alpha complex may be relevant for describing this structure as it also relies on a
Voronoi diagram.

Taking the center of each of the clusters in the artificially generated images of Figure 2.3, we obtain
the point clouds visualized in Figure 4.6. These point clouds can be used to make an alpha filtration.
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(a) Poisson Voronoi centers. (b) Cluster centers. (c) Hard core centers.

Figure 4.6: Centers of the cells in the cross sections of three dimensional Voronoi diagrams. Each is sampled using a different
point cloud generation method while the amount of sampled points is kept to be between 225 and 275 over a unit cube.

(a) Persistence landscape of PV. (b) Persistence landscape of cluster. (c) Persistence landscape of HC.

Figure 4.7: Persistence landscapes of the point clouds visualized in Figure 4.6 using an alpha filtration.

However, visualizing this filtration was too complex as there are too many simplicial complexes which
all contain too many simplices.

Instead, we can look at the corresponding persistence landscapes of the alpha filtration of the point
clouds, see Figure 4.7. Here, we can already see that the landscapes corresponding to the PV and
HC point processes are quite similar, however the persistence landscape of the cluster point process
does seem to be different as in both dimensions it is non-zero for longer. This is because in the cluster
process there are some sections which have very few cells and therefore cell centers. These points
only get connected at higher values of 𝑟 and therefore still generate features at higher values of 𝑟.

Instead of looking at one landscape, we instead focus on finding a mean landscape again. For
each point process method 100 images are made and for each one a persistence landscape and
Laplacian landscape are computed. The mean together with standard deviation can be seen in Figure
4.8. Interesting here is that the dimension 1 persistence landscape is very similar in shape to the
Laplacian landscape. This shows that not many additional features are found using the multiplicity
operator.

For dimension 0 a difference can be seen. Note that points can only be connected in the alpha
complex if their corresponding Voronoi cells are adjacent. If a cell extends far in a certain direction,
this connection is made at a late state, after all of the points are already connected and therefore
do not correspond to a topological feature. Geometrically, these connections all correspond to a new
immediate path between two 0-simplices, therefore in themultiplicity operator a high weight is attributed.
This would explain features up to a value of around 𝑡 = 0.5 as the probability that these cells are bigger
than that is very low. Nevertheless, some features can still be found for higher values of 𝑡 with the
multiplicity operator. This is because the boundary of the figure is not taken into consideration, therefore
the cells extend beyond the unit square, which can make very big cells. A good solution to prevent this
was not found, the only thing done is to only consider values of 𝑡 up to 1 as this is a theoretical max
bound for cells within the square. Note that this causes the dimension 0 Laplacian landscapes of all
the different generation methods to be very similar, which is an issue later on.

In order to see the difference between the multiplicity operator [𝑀𝑠,𝑡
𝑞 ] and the adjusted multiplic-

ity operator 𝑀̃𝑠,𝑡
𝑞 , the same mean Laplacian landscape is computed for the trace of 𝑀̃. Because the

landscapes are very similar, only the difference is plotted in Figure 4.9. A positive value in this figure
corresponds to the trace of 𝑀̃ to be bigger, while a negative value would correspond to the trace of
[𝑀] to be bigger, however the latter was never found. The domain and range of the plot are kept the
same as the plot in Figure 4.8. One can note that the landscapes are nearly identical, therefore mod-
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Figure 4.8: Mean persistence landscapes in the top row andmean Laplacian landscapes on the bottom row with sample standard
deviation. Landscapes are computed for cross sections of Poisson Voronoi, Cluster and Hard Core point processes, using an
alpha filtration. Mean and standard deviation are taken over 100 samples per plot.

Figure 4.9: Difference between the mean Laplacian landscape based on the trace of 𝑀̃𝑠,𝑡
𝑞 and the trace of [𝑀𝑠,𝑡

𝑞 ], together with
standard deviation of the difference. Positive values correspond to the trace of 𝑀̃𝑠,𝑡

𝑞 to be higher and negative values to the trace
of [𝑀𝑠,𝑡

𝑞 ] to be higher, however the latter is never obtained and therefore only positive values are shown. The image follows the
same structure as Figure 4.8 and is also taken over 100 samples per landscape.

els based on either trace should give very similar results. This is true at least when using this alpha
filtration approach.

Instead of making a classifier like was done for theMNIST dataset, a few test statistics are proposed,
similar to [43]. For each generation method𝑚, 𝐿𝑚0 and 𝐿𝑚1 are based either on the found 0 dimensional
features or the 1 dimensional features, respectively.

𝐿𝑚0 ∶= ||𝜆̂0 − 𝜆̄0,𝑚||2 = [
∞

∑
𝑘=1

∫
𝑇

0
(𝜆̂0(𝑘, 𝑡) − 𝜆̄0,𝑚(𝑘, 𝑡))2𝑑𝑡]

1
2

, (4.3)

𝐿𝑚1 ∶= ||𝜆̂1 − 𝜆̄1,𝑚||2 = [
∞

∑
𝑘=1

∫
𝑇

0
(𝜆̂1(𝑘, 𝑡) − 𝜆̄1,𝑚(𝑘, 𝑡))2𝑑𝑡]

1
2

, (4.4)

where 𝜆̂𝑞 is the q-dimensional landscape of a new cross section and 𝜆̄𝑞,𝑚 the mean landscape of gen-
eration method𝑚. In the same way, the test statistics 𝐿𝑙,𝑚0 and 𝐿𝑙,𝑚1 can be defined by using a Laplacian
landscapes based on the trace of the persistent multiplicity operator instead of the persistence land-
scape. Finally, 𝐿𝑎,𝑚0 and 𝐿𝑎,𝑚1 are defined using Laplacian landscapes based on the trace of the adjusted
multiplicity operator.

Let the null hypothesis be that 𝜆̂ corresponds to generation method 𝑚. We would like to find the
critical region of the test statistic such that the hypothesis can be rejected. An approximation of this
critical region can be found using the generated cross sections by finding realizations of the test statistic
under the null hypothesis. Like in [43], a ’leave one out’ procedure is used. Therefore realizations are
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Table 4.4: Fraction of rejections for different tests based on different null hypotheses and test statistics. For each test, the critical
value is chosen with confidence level 𝛼 = 0.95 over 100 samples. Rejections are counted over 100 samples each. Type and 𝑞
refer to the statistic used. Here PH refers to 𝐿𝑚𝑞 , MULT to 𝐿𝑙,𝑚𝑞 and ADJ to 𝐿𝑎,𝑚𝑞 .

(a) Null hypothesis: PV

Type 𝑞 cluster HC
PH 0 1.00 0.04
MULT 0 0.02 0.05
ADJ 0 0.02 0.05
PH 1 0.96 0.07
MULT 1 0.97 0.05
ADJ 1. 0.97 0.06

(b) Null hypothesis: cluster

Type 𝑞 PV HC
PH 0 0.60 0.76
MULT 0 0.07 0.05
ADJ 0 0.07 0.05
PH 1 0.14 0.16
MULT 1 0.09 0.07
ADJ 1 0.14 0.16

(c) Null hypothesis: HC

Type 𝑞 PV cluster
PH 0 0.13 1.00
MULT 0 0.05 0.02
ADJ 0 0.05 0.02
PH 1 0.06 0.94
MULT 1 0.10 1.00
ADJ 1 0.06 0.96

obtained as follows:

𝑙𝑚0(𝑖) ∶= [
∞

∑
𝑘=1

∫
𝑇

0
(𝜆̂0(𝑖)(𝑘, 𝑡) − 𝜆̄0,𝑀(−𝑖)(𝑘, 𝑡))2𝑑𝑡]

1
2

,

𝑙𝑚1(𝑖) ∶= [
∞

∑
𝑘=1

∫
𝑇

0
(𝜆̂1(𝑖)(𝑘, 𝑡) − 𝜆̄1,𝑀(−𝑖)(𝑘, 𝑡))2𝑑𝑡]

1
2

.

Here, 𝜆̂0(𝑖)(𝑘, 𝑡) and 𝜆̂1(𝑖)(𝑘, 𝑡) correspond to cross section 𝑖 of method𝑚, 𝜆̄0,𝑀(−𝑖)(𝑘, 𝑡) and 𝜆̄1,𝑀(−𝑖)(𝑘, 𝑡)
are the mean landscapes, computed using all sections leaving out the 𝑖-th.

Selecting a significance level 𝛼, a critical value for the test statistic is found by computing the cor-
responding quantile of the realizations under the null hypothesis. As the test statistic corresponds to a
distance, small values should correspond to not rejecting the null-hypothesis. Therefore, a one sided
test is used. To estimate the power of the resulting test, the statistic is computed for samples of the
other generation methods and the fraction of rejections is noted in Table 4.4.

In this table it can be seen that the tests based on standard persistent homology almost always
outperform the Laplacian based tests. Nevertheless, in testing under the null hypothesis of PV or
HC, the resulting tests have comparable power. Here cluster point processes are easily rejected, but
differentiating between PV and HC using these landscapes is near impossible as hypothesized. It can
also be noted that no significant difference between the standard persistent multiplicity operator and
the adjusted version is found. While their results are not exactly equal, they are not different enough
to draw any conclusions.

Furthermore, it can be seen that the tests based on the multiplicity operators in dimension zero
perform very poorly, which is due to the previously discussed similarity of the Laplacian landscapes in
this dimension. The tests based on the cluster null hypothesis seem to need dimension 0 features to
be of any power, which means that the Laplacian based tests do not function well. This is theorized to
be because detecting the larger cells in the cluster cross sections is done when the filtration parameter
is large enough to connect it another cell, creating a feature in dimension 0. Dimension 1 geometric
features do not capture it as the length of edge is not encoded into the simplicial complex.

4.2.2. Using Ball Mapper
Because the alpha filtration did not seem to add many geometric features, the filtration used in the
handwritten number recognition is also tested. Interpreting the images of Figure 2.3 as grey-scale and
taking the pixels that have a value greater than some threshold as points, one can use Ball Mapper
to create a graph. To create a filtration from this graph the VBCL is used. However, instead of using
the average x or y value of the points in a cluster as the weight function, here we can use additional
information normally found in real cross sections, see Figure 1.2. Not every edge in this structure has
the same intensity of KAM, therefore the average KAM intensity could also be used to create a filtration,
thereby encoding more information of the cross section into the filtration.

Translating this to the artificially generated images of Figure 4.6 means that an intensity for each
edge can be chosen. Two options are considered for this. We can apply a gradient coloring, thereby
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(a) Poisson Voronoi cross section. (b) Cluster cross section. (c) Hard core cross section.

Figure 4.10: Cross sections of three dimensional Voronoi diagrams where the edges are given a random intensity. Each is
sampled using a different point cloud generation method while the amount of sampled points is kept to be between 225 and 275
over a unit cube.

Figure 4.11: Laplacian Landscapes based on the trace of [𝑀𝑠,𝑡
𝑞 ] for the filtrations generated by different colorings of the edges of

generated cross sections based on different generation methods. Mean landscape is taken over 100 samples per configuration,
each is generated with a Ball Mapper parameter 𝜀 = 15.

effectively doing the same thing as taking the average 𝑥-value. This is done in the previously discussed
figure. On the other hand, we could also randomly assign a weight to each edge based on a uniform
distribution, see Figure 4.10. Both of these coloring methods are analyzed to see if there are any
difference. Note furthermore that this gives an added benefit over the alpha complex method as now
more information can be encoded.

To compare the differences between the gradient and random coloring, the mean Laplacian land-
scapes are computed and are shown in Figure 4.11. Here it can be seen that a clear difference exists
as the gradient landscape seems to contain more noise, while the random coloring is more smooth.
This is thought to be because the gradient landscape encodes more information about the actual struc-
ture, which can vary greatly from image to image. For example, in the cluster process, it would matter
where the clusters are in the image. On the other hand, the random coloring more evenly distributes
the edge weights through the image, therefore it is less dependent on where certain sections of close
cells appear and it only encodes if they appear.

Finally, it can be seen that, fixing a color, the landscapes corresponding to different generation
processes all look very similar, indicating that it is probably hard for a model to differentiate between
them. Nevertheless, the same statistical tests as before can be made and analyzed for each different
coloring method. Additionally, different values for the Ball Mapper parameter 𝜀 are used to compare
the results. The results can be found in Tables 4.5 and 4.6, which correspond to gradient and random
coloring of the edges respectively.

It is worth noting that the maximum obtained power of these tests is in most cases not as high
as using the alpha complex method. Furthermore, note that the standard error of the estimation of
the power is quite high as the amount of tested samples is relatively low. It can be computed by
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𝑆𝐸 = √𝑝(1−𝑝)
100 , which is maximal for 𝑝 = 0.5, returning a standard error of 𝑆𝐸 = 0.05.

However, still some results can be obtained. The models based on the trace of [𝑀𝑠,𝑡
𝑞 ] and 𝑀̃𝑠,𝑡

𝑞 seem
to be very similar and are often within standard error. Therefore, the added inner product in the trace,
found in Equation (3.33) seems to not affect the results in a significant way. This supports the usage of
the adjusted multiplicity operator as even if not all eigenvalues are separately used, it still performs as
well as𝑀𝑠,𝑡

𝑞 . However, both the persistent Laplacian based method seem to not significantly outperform
standard persistent homology.

Furthermore, the tests created under the null hypothesis of the underlying generation process being
of the cluster type, were mostly not able to reject PV or HC processes when the gradient coloring
is used. This would support the hypothesis that the gradient coloring encodes the locations of the
clusters. Therefore, landscapes corresponding to these generated cross sections could vary greatly
from the mean landscape. In practice, this could be seen as an advantage, as it may be relevant to
encode where certain high intensity KAM groups appear first and analyze the cells corresponding to
these groups separately.

Finally, it seems to be difficult to set an optimal value of the Ball Mapper parameter 𝜀. The Persistent
Homology based tests, in general, seem to perform best on lower values of this parameter. However,
the multiplicity based tests often achieve higher power in higher values. One possible reasoning could
be that the geometric features contain more noise in lower values of 𝜀 as more simplices appear that
can change these features. On the other hand PH only looks at topological features, which are less
sensitive to the amount of simplices and instead perform better with additional information.
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Table 4.5: Fraction of rejections for different statistical tests based on different null hypotheses and test statistics, coloring of the
edges is done using a GRADIENT. For each test, the critical value is chosen with confidence level 𝛼 = 0.95 over 100 samples.
Rejections are counted over 100 samples each. Type and 𝑞 refer to the statistic used. Here PH refers to 𝐿𝑚𝑞 , MULT to 𝐿𝑙,𝑚𝑞 and
ADJ to 𝐿𝑎,𝑚𝑞 . Furthermore, different values of Ball Mapper parameter 𝜀 are tested.

Null hypothesis PV cluster HC
Type 𝜀 𝑞 cluster HC PV HC PV cluster
PH 15 0 0.21 0.02 0.01 0.00 0.15 0.32
MULT 15 0 0.33 0.03 0.01 0.01 0.08 0.40
ADJ 15 0 0.25 0.02 0.04 0.02 0.11 0.42
PH 20 0 0.17 0.01 0.01 0.01 0.07 0.23
MULT 20 0 0.44 0.03 0.01 0.00 0.11 0.60
ADJ 20 0 0.43 0.03 0.03 0.00 0.15 0.60
PH 25 0 0.33 0.09 0.00 0.00 0.03 0.26
MULT 25 0 0.57 0.06 0.00 0.01 0.02 0.51
ADJ 25 0 0.53 0.04 0.00 0.02 0.07 0.61
PH 15 1 0.18 0.06 0.01 0.00 0.03 0.18
MULT 15 1 0.40 0.06 0.01 0.01 0.06 0.40
ADJ 15 1 0.40 0.06 0.01 0.01 0.04 0.39
PH 20 1 0.16 0.01 0.01 0.01 0.08 0.24
MULT 20 1 0.38 0.06 0.00 0.00 0.02 0.36
ADJ 20 1 0.38 0.06 0.00 0.00 0.02 0.36
PH 25 1 0.13 0.06 0.01 0.00 0.05 0.13
MULT 25 1 0.50 0.11 0.00 0.00 0.02 0.42
ADJ 25 1 0.50 0.11 0.00 0.00 0.02 0.42

Table 4.6: Fraction of rejections for different statistical tests based on different null hypotheses and test statistics, coloring of
the edges is done RANDOMLY. For each test, the critical value is chosen with confidence level 𝛼 = 0.95 over 100 samples.
Rejections are counted over 100 samples each. Type and 𝑞 refer to the statistic used. Here PH refers to 𝐿𝑚𝑞 , MULT to 𝐿𝑙,𝑚𝑞 and
ADJ to 𝐿𝑎,𝑚𝑞 . Furthermore, different values of Ball Mapper parameter 𝜀 are tested.

Null hypothesis PV cluster HC
Type 𝜀 𝑞 cluster HC PV HC PV cluster
PH 15 0 0.45 0.07 0.30 0.31 0.04 0.43
MULT 15 0 0.36 0.04 0.02 0.01 0.08 0.37
ADJ 15 0 0.36 0.03 0.01 0.04 0.07 0.45
PH 20 0 0.37 0.06 0.16 0.12 0.04 0.30
MULT 20 0 0.47 0.04 0.07 0.05 0.06 0.49
ADJ 20 0 0.49 0.04 0.11 0.11 0.09 0.56
PH 25 0 0.26 0.06 0.15 0.15 0.05 0.26
MULT 25 0 0.37 0.03 0.18 0.15 0.16 0.59
ADJ 25 0 0.42 0.04 0.24 0.20 0.12 0.56
PH 15 1 0.24 0.04 0.00 0.00 0.02 0.24
MULT 15 1 0.21 0.07 0.01 0.01 0.02 0.14
ADJ 15 1 0.21 0.07 0.01 0.01 0.02 0.14
PH 20 1 0.26 0.06 0.01 0.01 0.04 0.23
MULT 20 1 0.17 0.03 0.00 0.00 0.11 0.22
ADJ 20 1 0.17 0.03 0.00 0.00 0.11 0.22
PH 25 1 0.22 0.04 0.00 0.00 0.07 0.30
MULT 25 1 0.23 0.08 0.01 0.01 0.03 0.21
ADJ 25 1 0.23 0.08 0.01 0.01 0.04 0.21
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Conclusion and Discussion

The field of Topological Data Analysis has seen a lot of attention in recent years. Especially Persistent
Homology has been extensively studied and shown its capabilities in many applications. Nevertheless,
its focus on only topological features, which are not affected by stretching, twisting or bending, may not
be enough for every application. It was already shown that for handwritten number recognition, using
the persistent Laplacian, which introduces geometric features, an improvement could be found [16].

However, using the persistent Laplacian is still an open problem requiring new methods to extract
its information. Many papers look into making a feature vector from the operator [13, 16], nevertheless
this requires some non-trivial choices being made. Because the field of Persistent Homology (PH) has
seen a lot of attention, many different ways of using it have been proposed. Combining the two fields
therefore shows a lot of promise as then the information of the persistent Laplacian can be combined
with the ease of use of persistent homology.

For this, a slight change in calculation is proposed in terms of the multiplicity operator 𝑀𝑠,𝑡
𝑞 , see

Section 3.3.3. It has been shown that the trace of this operator has an interpretable meaning in terms of
the features it captures. The operator describes geometry through the connections of (𝑞+1)-simplices
between 𝑞-cycles. This also gives an interpretation of the non-zero spectra of the persistent Laplacian
operator as 𝑀𝑠,𝑡

𝑞 describes when it changes.
Nevertheless, the new operator is no longer positive semi-definite, therefore some of its eigenvalues

can become negative. This was shown to happen at locations of start times 𝑠 and end times 𝑡, where
new features exist at (𝑠, 𝑡), (𝑠−1, 𝑡) and (𝑠, 𝑡−1). At these locations the eigenvalues are not individually
interpretable and only for the trace an interpretation could be found.

As a solution, the adjusted multiplicity operator 𝑀̃𝑠,𝑡
𝑞 is proposed, see Section 3.3.3. It has been

shown that this operator is zero on the same locations as 𝑀𝑠,𝑡
𝑞 , thereby also describing the locations

where the persistent Laplacian changes. Furthermore, it was shown that the eigenvalues of this opera-
tor could not be negative and the amount of non-zero eigenvalues could not be higher than the amount
of simplices appearing at a certain time. This means that every non-zero eigenvalue corresponds to at
least one changing simplex. Finally, the trace of 𝑀̃𝑠,𝑡

𝑞 was analyzed and shown to be slightly adjusted
from the trace of [𝑀𝑠,𝑡

𝑞 ], however the consequences could not easily be described.
Using the standard multiplicity operator 𝑀𝑠,𝑡

𝑞 on the MNIST dataset, containing images of handwrit-
ten numbers, outperformed classical persistent homology and could closely match the performance of
the persistent Laplacian, see Section 4.1. It also showed the ease of use of the operator as a PH based
method, persistent landscapes, could easily be altered to also work on the trace of the new operator.
Nevertheless, the tests showed that adding the topological information of PH or the information of the
combinatorial Laplacian to the multiplicity operator could yield even better results. This indicates that
some topological information as well as the information from the combinatorial Laplacian is still missing
in the operator.

Finally in Section 4.2 the operators were applied to images of artificially generated cross sections
of crystalline structures often found in alloys. For the alpha filtration in Section 4.2.1, both of the new
operators seemed to not provide any additional information and would decrease the accuracy due to
the noise in dimension 0. Similarly using Ball Mapper to create a graph and analyzing this graph did
not provide an improvement over using standard persistent homology. However, from this data it did
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become clear that using the trace of the adjusted multiplicity operator 𝑀̃𝑠,𝑡
𝑞 is not significantly different

from using the trace of [𝑀𝑠,𝑡
𝑞 ], therefore the adjusted operator can be used even in situations where the

eigenvalues are not interpreted separately.
To conclude, it is worth noting that anymethod based on the persistent Laplacian brings an additional

computational cost. Therefore for the usage of the multiplicity operator to make sense in practice, it
has to outperform persistent homology based methods. In this thesis it is shown that this can be the
case, however it requires choosing a filtration that contains geometric features. If this can be found, the
additional time complexity can make sense if not much data is available or if more information about
the existing data needs to be extracted for a specific task.

Future research
Because it was shown that adding information of the combinatorial Laplacian to the multiplicity operator
can yield to better performing models, it could be useful to encode this information directly into the
operator. In Section 3.3.2 it was noted that the down-Laplacian is not used because it is not needed for
the multiplicity equation. However, for locations (𝑠, 𝑡), where 𝑠 = 𝑡, (𝑠, 𝑡−1) does not exist and therefore
the down-Laplacian would not disappear. Instead in the multiplicity equation the down-Laplacian Δ𝑠𝑞,−
would be left. This would give a natural way of including the information, however now there are some
points on the diagonal. Standard PH methods such as the persistence landscapes would not be able to
use these points as all points in a standard persistence diagram are above the diagonal. To circumvent
this, all points could be moved up one spot to represent intervals where the persistent Laplacian is
constant.

Using TDA on the MNIST dataset has been attempted often in literature, however often cubical
complexes are used. Simplices in simplicial complexes all consist of triangles, whereas in cubical
complexes they would consist of cubes. It has been shown that this works well for describing the digits of
theMNIST dataset as pixels aremore easily described by cubes than by triangles [21]. Therefore, future
research could attempt to use these complexes instead. Furthermore, the same cubical complexes
could also be used on the analysis of crystalline structures as the process is very similar.

Some results exist on the stability of the eigenvalues of the persistent Laplacian [33], however they
are not as strong as the results for regular persistent homology. It would therefore be interesting to see
if anything can be said about the stability of the multiplicity operator and its eigenvalues. This might
give a new interpretation of the meaning of the eigenvalues and could be a strong argument for using
the method.

Finally it is noted that the distance used between landscapes 𝑑𝑙𝑎𝑛𝑑, introduced in Section 2.4.3,
sums over all dimensions, but landscapes of different dimensions could have greatly varying sizes.
Therefore more emphasis is put on dimensions with large landscapes, while these may not always
contain the most important features, as can be seen in Section 4.2.1. Therefore, the distance of each
dimension should probably first be normalized before summing.
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