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ABSTRACT In this paper, the finite-time tracking control problem of a class of multi-agent systems
with nonaffine functions and uncertain nonlinearity is investigated, which is different from the existing on
high-order multi-agent systems with pure feedback forms. The multi-agent systems considered in this paper,
moreover, the nonaffine functions and uncertain nonlinearities are completely unknown, and the input of
each follower agent is quantized through a hysteresis quantizer. Based on the help of the fuzzy logic systems
approximator, an adaptive fuzzy finite-time tracking control protocol with adaptive update laws is presented
by the backstepping technique. On the basis of the finite-time stability strategy and Bhat and Bernstein
theorem, the finite-time stability of designed control protocol is fully analyzed. Under the proposed control
protocol, it is indicated that the tracking error of each follower agent can press on a small neighborhood in
a finite time. Finally, the effectiveness of designed control protocol in this paper is analyzed by numerical
examples.

INDEX TERMS Finite-time tracking control, uncertain nonaffine mutli-agent systems, fuzzy logic systems,
input quantization.

I. INTRODUCTION
Over the past twenty years, the cooperative control prob-
lem of multi-agent systems has paid extensively attention
in many fields, such as multiple unmanned aerial vehicles,
flexible robot manipulator systems, wireless sensor networks
and large-scale systems [1]–[6]. The basis issue of cooper-
ative control problem is consensus, where the objective is
to achieve the agreement or track a given trajectory under
a designed control protocol. In the existing literature, there
are many results on the first- and second-order multi-agent
systems with undirected graph, directed graph and switch-
ing graph have been obtain, see [7]–[12] and references
therein.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaojie Su.

For the most practical systems, however, they need to
be modeled as the high-order system rather than simple
first- or second-order system. Moreover, the relevant results
on first- and second-order multi-agent systems cannot be
used in high-order multi-agent systems. The control prob-
lem of high-order multi-agent systems has been considered
in some literature. In [13], a reduced-order observer was
presented to solve the distributed tracking control problem
of high-order nonlinear multi-agent systems with hetero-
geneous leader. In [14], a distributed region regulator was
presented to deal with the synchronization problem of a
class of high-order multi-agent systems. For the high-order
nonlinear strict-feedback multi-agent systems, the authors
of [15] used the distributed extended state observer and
backstepping technique to solve the practical time-varying
output formation tracking problem, and in [16], [17],
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the consensus tracking problem of high-order multi-agent
systems with high-dimensional leader was firstly considered,
where a distributed robust adaptive consensus control pro-
tocol with local observer was designed. On the basis of the
results of [13]–[17], the containment tracking problem of
multi-agent systems with pure-feedback form was analyzed
in [18], where the distributed adaptive fuzzy control protocol
and local quanzied controller were considered. Based on
the advantages of the fuzzy control method, some control
problems are well solved by designing the control law based
on with the fuzzy control method [19], [20]. To the best of
author’s knowledge, however, only a few results focus on
the control problem of nonaffine multi-agent systems. For
instance, in [21], the agreement control of a class of non-
affinemulti-agent systemswas addressed, where a distributed
neural adaptive consensus control scheme with guaranteed
performance was designed. In [22], [23], the tracking prob-
lem of uncertain nonlinear nonaffinemulti-agent systemswas
studied, and the distributed output-feedback control protocol
with prescribed tracking performance and the distributed con-
tainment controller were investigated, respectively.

Referring to the literature of above-mentioned, it is easy
to found that the control problem of multi-agent systems
is based on the case that the control time is close to infi-
nite. In some cases, it is desirable that the control objec-
tive of a multi-agent system be achieved in a finite time.
Recent years, the finite-time control problem of multi-agent
systems has been greatly developed. The finite-time con-
trol scheme for the attitude tracking problem of the space-
craft systems was investigated in [24]. Considering the
input saturation, a sliding mode observer was designed to
solve the global finite-time tracking problem of second-
order multi-agent systems in [25]. For the heterogeneous
nonlinear high-order multi-agent systems with mismatched
disturbances, the authors of [26] designed the families of
consensus protocols and solved the finite-time output con-
sensus problem. Furthermore, the containment control of a
class of nonaffine pure-feedback multi-agent was addressed
in [27], where a distributed neural adaptive control strategy
was proposed. Moreover, the finite-time consensus tracking
control of a class of nonlinear multi-agent systems with
prescribed performance was studied in [28], where the error
constrained control was applied to obtain satisfactory control
performances. In addition, the finite-time control problems of
Markov jump systems and nontriangular stochastic nonlinear
systems are ananlyzed in [29]–[33]. However, it is worth
noting that the results above-mentioned cannot work for the
special case that input quantization. Therefore, it is necessary
to design a suitable control protocol for uncertain nonaffine
multi-agent systems with input quantization to achieve the
desired control objective in a finite time.

This observation inspires our current study. This paper
investigates the finite-time tracking control problem of a type
of nonaffine multi-agent systems with input quantization and
uncertain nonlinearity. The main contributions of this paper
are outlined as follows:

1. A class of uncertain nonaffine multi-agent systems with
input quantization is considered in this paper. Considering the
input of each agent is quantized by an introduced quantizer,
therefore, the design of control protocol is more difficult and
complex.

2. With the help of the differential midvalue theorem, the
nonaffine functions of multi-agent systems can be decom-
posed into a strict-feedback form. Therefore, the model
considered in this paper is more versatile than [26]–[28].
Furthermore, the nonaffine functions and uncertain nonlin-
earities are completely unknown.

3. Based on the fuzzy logic systems approximator and
backstepping technique, an adaptive fuzzy finite-time track-
ing control protocol with adaptive update laws is designed.
By the simulation analysis, the control protocol proposed in
this paper can guarantee the tracking error of each follower
agent converges to a small interval within a finite time.

The rest of this paper is planned as follows. In Section II,
the preliminaries and problem formulation are introduced.
The detailed process of adaptive fuzzy finite-time tracking
control protocol design is given in Section III, and Section IV
provides the simulation example to verify the effectiveness of
the theoretical analysis. Finally, the conclusions are drawn in
Section V.

II. PRELIMINARIES
A. GRAPH THEORY
Let the directed graph G = (V, E,A) represent the communi-
cation relationship among agents, where V = {v1, · · · , vn} is
the set of follower agents and E = {(i, j)|i, j ∈ V, and i 6= j}
is the set of edges. The adjacency matrix is denoted as
A =

[
aij
]
∈ RN×N . If there exists an edge between follower

agent i and j, then aij = 1, and aij = 0 otherwise. The neigh-
bors of follower agent i is defined as Ni =

{
vj : (vj, vi) ∈ E

}
with the information of follower agent j can be received by
follower agent i. The Laplacian matrix L is described as L =
D −A, where D = diag {d1, · · · , dN } with di =

∑Ni
j=1 aij.

Furthermore, let the augmented graph Ḡ consist of the
graph G and the leader agent. The connection matrix is given
as a diagonal matrix B = diag {b1, · · · , bN } with bi denoting
the connection between the leader agent and the follower
agent i. If the follower agent i obtains the information of
leader, one has bi = 1 and bi = 0 otherwise. It can be
obtained that H = L + B is a matrix associated with Ḡ.
The graph Ḡ is connected if there exists a spanning tree in
the graph Ḡ and the leader agent is the root node.

B. PROBLEM FORMULATION
Consider a class of uncertain nonaffine multi-agent systems
with N (N > 1) follower agents and one leader agent. The
number from 1 to N represents follower agent and 0 is leader
agent. The dynamics of the ith follower agent is given as:

χ̇i,m= φi,m
(
χ̄i,m, χi,m+1

)
+1i,m

(
χ̄i,m, t

)
,m=1, · · · , n− 1

χ̇i,n = φi,n
(
χ̄i,n,Q(ui)

)
+1i,n

(
χ̄i,n, t

)
yi = χi,1 (1)
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where χi,m ∈ R is the mth state of follower agent i,
χ̄i,m =

[
χi,1, · · · , χi,m

]T
∈ Rm is the state vector with

m = 1, · · · , n, yi ∈ R is the output, ui ∈ R is the control
input, φi,m

(
χ̄i,m, χi,m+1

)
: Rm+1→ R is an unknown smooth

function, 1i,m
(
χ̄i,m, t

)
represents the unknown uncertain

nonlinearity, and n is the order of follower agent i. Q(ui)
represents the quantized input, which is described as:

Q(ui)

=



αi,jsgn(ui)


αi,j

1+ β
< |ui| ≤ αi,j, u̇i < 0, or

αi,j < |ui| ≤
αi,j

1− β
, u̇i > 0

αi,j(1+β)sgn(ui)


αi,j < |ui| ≤

αi,j

1− β
, u̇i<0, or

αi,j

1−β
< |ui|≤

αi,j(1+β)
1− β

, u̇i>0

0


0 ≤ |ui| <

αmin

1+ β
, u̇i < 0, or

αmin

1+ β
≤ |ui| < αmin, u̇i > 0

Q(ui(t−)) otherwise
(2)

where αi,j = ρ1−jαmin(j = 1, 2, · · · ) and β = 1−ρ
1+ρ with

parameters αmin > 0 and 0 < ρ < 1 being the quantization
density.

According to the differential midvalue theorem [34],
the dynamics of follower agents (1) can be re-described as:

χ̇i,m = φi,m(χ̄i,m, 0)+ ϕi,m(χ̄i,m, ηi,m)χi,m+1 +1i,m(χ̄i,m, t)

χ̇i,n = φi,n(χ̄i,n, 0)+ ϕi,n(χ̄i,n, ηi,n)Q(ui)+1i,n(χ̄i,n, t)

yi = χi,1, (3)

where ϕi,m(χ̄i,m, ηi,m) = ∂φi,m(χ̄i,m, χi,m+1)
/
∂χi,m+1

|χi,m+1=ηi,m with ηi,m being some points between 0 and χi,m+1,
ϕi,n(χ̄i,n, ηi,n) = ∂φi,n(χ̄i,n,Q(ui))

/
∂Q(ui)|Q(ui)=ηi,n with ηi,n

being some points between 0 and Q(ui).
Assumption 1: The signs of ϕi,m(χ̄i,m, ηi,m) are known,

and ϕi,m(χ̄i,m, ηi,m) are bounded such that 0 < ϕi,m ≤∣∣ϕi,m(χ̄i,m, ηi,m)∣∣ ≤ ϕ̄i,m < ∞(m = 1, · · · , n). Without loss
of generality, it is assumed that ϕi,m(χ̄i,m, ηi,m) > 0.
Assumption 2: The uncertain nonlinearity 1i,m(χ̄i,m, t)

(m = 1, · · · , n) are bounded such that
∣∣1i,m(χ̄i,m, t)

∣∣ ≤ 1̄i,m
with 1̄i,m > 0 being unknown constants.
Lemma 1 [35]: The quantized input Q(ui) can be decom-

posed into as follows.

Q(ui) = H (ui)ui + G(t) (4)

where H (ui) and G(t) satisfy:

1− β ≤ H (ui) ≤ 1+ β, |G(t)| ≤ αmin (5)

In the subsequent analysis, some necessary lemmas will be
considered.
Lemma 2 [36]: Consider differential equation ˙̂ν(t) =
−aν̂(t) + bψ(t), where a > 0 and b > 0 represent design
parameters, if there exist ν̂(t0) ≥ 0 and ψ(t) ≥ 0, then one

has ν(t) ≥ 0 for t > t0, which also implies ν̂(t) > 0 for
t > t0.
Lemma 3 [37]:Consider the system ς̇ = f (ς, s) for smooth

positive definite function V (ς ) ∈ C1, if there exist constants
c > 0, d > 0 and µ ∈ (0, 1), satisfying that:

V̇ (ς ) ≤ −cVµ(ς )+ d,∀t ≥ 0 (6)

Then the system ς̇ = f (ς, s) is semi-global practical
finite-time stable (SGPFS).
Lemma 4 [38]: For ιk ∈ R(k = 1, · · · , n) and 0 < µ ≤ 1,

one has:(
n∑

k=1

ιk

)µ
≤

n∑
k=1

|ιk |
µ
≤ n1−µ

(
n∑

k=1

|ιk |

)µ
(7)

Lemma 5 [39]: For any real variables o and ω, the follow-
ing inequality is held:

|o|τ |ω|γ ≤
τ

τ + γ
% |o|τ+γ +

γ

τ + γ
%
−
τ
γ |ω|τ+γ (8)

where τ > 0, γ > 0 and % > 0 denote design parameters.
Lemma 6 [40]: For any h ∈ R and κ > 0, the hyperbolic

tangent function tanh(·) has the following property:

0 ≤ |h| − h tanh
(
h
κ

)
≤ 0.2785κ (9)

Lemma 7 [41]: Let F(x) : � → R be a continu-
ous function given on a compact set � ∈ Rn. Then, for
any constant ε > 0, there exist a fuzzy logic systems
W ∗Tξ (x) such that supx∈�

∣∣F(x)−W ∗T ξ (x)
∣∣ ≤ ε, where

W ∗ =
[
W ∗1 , · · · ,W

∗
L

]T is the ideal weight vector, and
ξ (x) = [ξ1(x), · · · , ξL(x)]T is fuzzy basis function composed
of Gaussian functions. L represents the number of fuzzy rules.

The control objective of this paper is to design the adaptive
fuzzy control law for each follower agent such that the output
of all follower agents can track the output trajectory of leader
agent.

III. ADAPTIVE FUZZY TRACKING CONTROL DESIGN
According to the multi-agent systems (3), the tracking error
of follower agent i can be designed as ei = yi − y0(i =
1, · · · ,N ) and y0 is the output of leader agent, then one has
e = [e1, · · · , eN ]T.

Let zi,1 be the local consensus error of follower agent i,
hence, we have:

zi,1 =
∑
j∈Ni

aij(yi − yj)+ bi(yi − y0) (10)

Furthermore, the entire consensus error ze,1 is given as:

ze,1 = (D −A)y+ B(y− 1y0) = (L+ B)e = He (11)

where 1 = [1, · · · , 1]T.
For (10), taking the time derivative of zi,1 gets:

żi,1 =
∑
j∈Ni

aij(ẏi − ẏj)+ bi(ẏi − ẏ0)

VOLUME 8, 2020 187625
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= (di + bi)

fi,1(Zi,1)− 1
di + bi

∑
j∈Ni

aij1j,1(χj,1, t)

+ ϕi,1(χi,1, ηi,1)χi,2 +1i,1(χi,1, t)
]

(12)

where fi,1(Zi,1) = − 1
di+bi

∑
j∈Ni

aij(φj,1(χj,1, 0) + ϕ(χj,1, ηj,1)

χj,2)+φi,1(χi,1, 0)− 1
di+bi

biẏ0 andZi,1=
[
χi,1,χj,1,χj,2,biẏ0

]T
with j ∈ Ni.

The adaptive fuzzy tracking control law for follower agent
i is designed by applying the backstepping technique with n
steps.
Step 1: According to the Lemma 7, over a compact set �,

the function fi,1(Zi,1) can be approximated by:

fi,1(Zi,1) = W ∗Ti,1 ξ (Zi,1)+ ε(Zi,1) (13)

where W ∗i,1 is the ideal weight, ε(Zi,1) is the approximation
error and satisfying

∣∣ε(Zi,1)∣∣ ≤ ε̄i,1 with ε̄i,1 > 0 being a
constant. Then, we have:

zi,1fi,1(Zi,1)

≤
∣∣zi,1∣∣ (12 ∥∥W ∗i,1∥∥2 ξT(Zi,1)ξ (Zi,1)+ 1

2
+ ε̄i,1

)
(14)

Define υi,1 =
1

2ϕ̄i,1

∥∥∥W ∗i,1∥∥∥2 and

δi,1 =
1
ϕ̄i,1

(
1

di+bi

∑
j∈Ni

aij1̄j,1+
1
2 + ε̄i,1 + 1̄i,1

)
. Due to υi,1

and δi,1 are unknown, let υ̂i,1 and δ̂i,1 be their estimates,
respectively, and their estimation error are defined as υ̃i,1 =
υi,1 − υ̂i,1 and δ̃i,1 = δi,1 − δ̂i,1. Thereafter, consider the
following Lyapunov function candidate

Vi,1 =
1

2ϕ̄i,1
z2i,1 +

1
2θi,1

υ̃2i,1 +
1

2πi,1
δ̃2i,1 (15)

where θi,1 > 0 and πi,1 > 0 are constants.
Taking the time derivative of Vi,1 and considering (12),

(14), υi,1 and δi,1, we have:

V̇i,1

=
zi,1żi,1
ϕ̄i,1

−
υ̃i,1 ˙̂υi,1

θi,1
−
δ̃i,1
˙̂
δi,1

πi,1

=
1
ϕ̄i,1

(di+bi)zi,1

fi,1(Zi,1)− 1
di+bi

∑
j∈Ni

aij1j,1(χj,1, t)

+1i,1(χi,1, t)
]
+

1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)χi,2

−
υ̃i,1 ˙̂υi,1

θi,1
−
δ̃i,1
˙̂
δi,1

πi,1

≤
1
ϕ̄i,1

(di + bi)
∣∣zi,1∣∣ [12 ∥∥W ∗i,1∥∥2 ξT(Zi,1)ξ (Zi,1)+ 1

2
+ ε̄i,1

+1̄i,1 +
1

di + bi

∑
j∈Ni

aij1̄j,1

− υ̃i,1 ˙̂υi,1
θi,1

−
δ̃i,1
˙̂
δi,1

πi,1

+
1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)χi,2

= (di + bi)
∣∣zi,1∣∣ υi,1ξT(Zi,1)ξ (Zi,1)+ (di + bi)

∣∣zi,1∣∣ δi,1
+

1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)χi,2−
υ̃i,1 ˙̂υi,1

θi,1
−
δ̃i,1
˙̂
δi,1

πi,1
(16)

Let the error variable zi,2 = χi,2 − σi,2, then we get:

V̇i,1 ≤ (di + bi)
∣∣zi,1∣∣ υi,1ξT(Zi,1)ξ (Zi,1)+ (di + bi)

∣∣zi,1∣∣ δi,1
+

1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)σi,2 −
υ̃i,1 ˙̂υi,1

θi,1

+
1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)zi,2 −
δ̃i,1
˙̂
δi,1

πi,1
. (17)

Design the virtual control law σi,2 as:

σi,2 = −ξ
T(Zi,1)ξ (Zi,1)υ̂i,1

× tanh
(
(di + bi)zi,1ξT(Zi,1)ξ (Zi,1)υ̂i,1

κ

)
−δ̂i,1 tanh

(
(di + bi)zi,1δ̂i,1

κ

)
−

1
di + bi

pi,1z
2µ−1
i,1

(18)

where pi,1 > 0 and µ = 2m−1
2m+1 (m ≥ 2,m ∈ n) are design

parameters, respectively.
The adaptive update laws of υ̂i,1 and δ̂i,1 are designed as:

˙̂υi,1 = θi,1(di + bi)
∣∣zi,1∣∣ ξT(Zi,1)ξ (Zi,1)

−qi,1υ̂i,1, υ̂i,1(0) ≥ 0
˙̂
δi,1 = πi,1(di + bi)

∣∣zi,1∣∣− ri,1δ̂i,1, δ̂i,1(0) ≥ 0 (19)

where qi,1 > 0 and ri,1 > 0 represent design constants.
According to the Lemma 2, we easily obtain υ̂i,1 ≥ 0 and

δ̂i,1 ≥ 0. Substituting (18) and (19) into (17) yields:

V̇i,1 ≤ (di + bi)
∣∣zi,1∣∣ ξT(Zi,1)ξ (Zi,1)υ̂i,1 + (di + bi)

∣∣zi,1∣∣ δ̂i,1
−
υ̃i,1 ˙̂υi,1

θi,1

+(di+bi)
∣∣zi,1∣∣ ξT(Zi,1)ξ (Zi,1)υ̃i,1+(di+bi) ∣∣zi,1∣∣ δ̃i,1

+
1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)σi,2 −
δ̃i,1
˙̂
δi,1

πi,1

+
1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)zi,2

≤ −pi,1z
2µ
i,1 + (di + bi)

∣∣zi,1∣∣ δ̂i,1 + (di + bi)

×

[∣∣zi,1∣∣ ξT(Zi,1)ξ (Zi,1)υ̂i,1 − zi,1ξT(Zi,1)ξ (Zi,1)υ̂i,1
× tanh

(
(di + bi)zi,1ξT(Zi,1)ξ (Zi,1)υ̂i,1

κ

)]
−(di + bi)zi,1δ̂i,1

× tanh

(
(di + bi)zi,1δ̂i,1

κ

)
−
υ̃i,1 ˙̂υi,1

θi,1
−
δ̃i,1
˙̂
δi,1

πi,1

+(di + bi)
∣∣zi,1∣∣ ξT(Zi,1)ξ (Zi,1)υ̃i,1 + (di+bi)

∣∣zi,1∣∣ δ̃i,1
187626 VOLUME 8, 2020
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+
1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)zi,2

≤ −pi,1z
2µ
i,1 + 0.557κ +

qi,1υ̃i,1υ̂i,1
θi,1

+
ri,1δ̃i,1δ̂i,1
πi,1

+
1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)zi,2 (20)

Step 2: Due to zi,2 = χi,2 − σi,2, then the time derivative
of zi,2 is given as:

żi,2 = φ(χ̄i,2, 0)+ ϕi,2(χ̄i,2, ηi,2)χi,3 +1i,2(χ̄i,2, t)− σ̇i,2
(21)

Considering (18), the derivative of σi,2 can be described as:

σ̇i,2 =
∂σi,2

∂χi,1

(
φ(χi,1, 0)+ ϕi,1(χi,1, ηi,1)χi,2

)
+ ϑi,2 + ζi,2

+

∑
j∈Ni

∂σi,2

∂χj,1

(
φ(χj,1, 0)+ ϕj,1(χj,1, ηj,1)χj,2

)
(22)

where ϑi,2 =
∂σi,2
∂y0

ẏ0 +
∂σi,2
∂ ẏ0

ÿ0 +
∂σi,2
∂υ̂i,1
˙̂υi,1 +

∂σi,2

∂δ̂i,1

˙̂
δi,1,

ζi,2 =
∂σi,2
∂χi,1

1i,1(χi,1, t)+
∑
j∈Ni

∂σi,2
∂χj,1

1j,1(χj,1, t).

Applying the Lemma 7, we get:

φi,2(χ̄i,2, 0)− σ̇i,2 +
1
ϕ̄i,1

ϕ̄i,2(di + bi)zi,1ϕi,1(χi,1, ηi,1)

= W ∗Ti,2 ξ (Zi,2)+ ε(Zi,2) (23)

where W ∗i,2 is the ideal weight, and ε(Zi,2) is the approxima-
tion error satisfying

∣∣ε(Zi,2)∣∣ ≤ ε̄i,2 with ε̄i,2 being a posi-
tive constant, Zi,2 =

[
χ̄i,2, χ̄j,2, zi,1, ϑi,2, ζi,2, (∂σi,2/∂χi,1),

(∂σi,2/∂χj,1)
]T with j ∈ Ni. Hence, we have:

zi,2

(
φi,2(χ̄i,2, 0)− σ̇i,2 +

ϕ̄i,2

ϕ̄i,1
(di + bi)zi,1ϕi,1(χi,1, ηi,1)

)
≤
∣∣zi,2∣∣ (12 ∥∥W ∗i,2∥∥2 ξT(Zi,2)ξ (Zi,2)+ 1

2
+ ε̄i,2

)
(24)

Define υi,2 = 1
2ϕ̄i,2

∥∥∥W ∗i,2∥∥∥2 and δi,2 = 1
ϕ̄i,2

( 1
2+ε̄i,2+1̄i,2

)
,

consider the following Lyapunov function candidate:

Vi,2 = Vi,1 +
1

2ϕ̄i,2
z2i,2 +

1
2θi,2

υ̃2i,2 +
1

2πi,2
δ̃2i,2 (25)

The time derivative of Vi,2 can be written as:

V̇i,2 = V̇i,1 +
zi,2żi,2
ϕ̄i,2

−
υ̃i,2 ˙̂υi,2

θi,2
−
δ̃i,2
˙̂
δi,2

πi,2

≤−
υ̃i,2 ˙̂υi,2

θi,2
−
δ̃i,2
˙̂
δi,2

πi,2
−

1
ϕ̄i,1

(di+bi)zi,1ϕi,1(χi,1, ηi,1)zi,2

+V̇i,1 +
1
ϕ̄i,2

∣∣zi,2∣∣ (12 ∥∥W ∗i,2∥∥2 ξT(Zi,2)ξ (Zi,2)+ 1
2

+ ε̄i,2 + 1̄i,2
)
+

1
ϕ̄i,2

zi,2ϕi,2(χ̄i,2, ηi,2)χi,3 (26)

Consider the error variable zi,3 = χi,3 − σi,3, υi,2 and δi,2,
then we have:

V̇i,2 ≤
∣∣zi,2∣∣ ξT(Zi,2)ξ (Zi,2)υi,2 + 1

ϕ̄i,2
zi,2ϕi,2(χ̄i,2, ηi,2)σi,3

+
1
ϕ̄i,2

zi,2ϕi,2(χ̄i,2, ηi,2)zi,3−
υ̃i,2 ˙̂υi,2

θi,2
−
δ̃i,2
˙̂
δi,2

πi,2
+ V̇i,1

−
1
ϕ̄i,1

(di + bi)zi,1ϕi,1(χi,1, ηi,1)zi,2 +
∣∣zi,2∣∣ δi,2 (27)

where pi,2 > 0 is a constant.
Design the virtual control law σi,3 as:

σi,3 = −ξ
T(Zi,2)ξ (Zi,2)υ̂i,2 tanh

(
zi,2ξT(Zi,2)ξ (Zi,2)υ̂i,2

κ

)
−δ̂i,2 tanh

(
zi,2δ̂i,2
κ

)
− pi,2z

2µ−1
i,2 (28)

The adaptive update laws υ̂i,2 and δ̂i,2 are designed as:
˙̂υi,2 = θi,2

∣∣zi,2∣∣ ξT(Zi,2)ξ (Zi,2)− qi,2υ̂i,2, υ̂i,2(0) ≥ 0
˙̂
δi,2 = πi,2

∣∣zi,2∣∣− ri,2δ̂i,2, δ̂i,2(0) ≥ 0 (29)

where qi,2 > 0 and ri,2 > 0 are design constants.
Substituting (28) and (29) into (27) has:

V̇i,2 ≤ V̇i,1 − zi,2ξT(Zi,2)ξ (Zi,2)υ̂i,2

× tanh
(
zi,2ξT(Zi,2)ξ (Zi,2)υ̂i,2

κ

)
−zi,2δ̂i,2 tanh

(
zi,2δ̂i,2
κ

)
−
υ̃i,2 ˙̂υi,2

θi,2
−
δ̃i,2
˙̂
δi,2

πi,2
+
∣∣zi,2∣∣ δ̂i,2

+
1
ϕ̄i,2

zi,2ϕi,2(χ̄i,2, ηi,2)σi,3+
1
ϕ̄i,2

zi,2ϕi,2(χ̄i,2, ηi,2)zi,3

−
1
ϕ̄i,1

(di+bi)zi,1ϕi,1(χi,1, ηi,1)zi,2+δ̃i,2
∣∣zi,2∣∣− pi,2z2µi,2

+
∣∣zi,2∣∣ ξT(Zi,2)ξ (Zi,2)υ̂i,2 + υ̃i,2 ∣∣zi,2∣∣ ξT(Zi,2)ξ (Zi,2)

≤ V̇i,1 +
1
ϕ̄i,2

zi,2ϕi,2(χ̄i,2, ηi,2)zi,3 +
qi,2υ̃i,2υ̂i,2

θi,2

+
ri,2δ̃i,2δ̂i,2
πi,2

−
1
ϕ̄i,1

(di+bi)zi,1ϕi,1(χi,1, ηi,1)zi,2+0.557κ − pi,2z
2µ
i,2

(30)

Considering (20), then:

V̇i,2 ≤ −
2∑

k=1

pi,kz
2µ
i,k +

2∑
k=1

qi,k υ̃i,k υ̂i,k
θi,k

+

2∑
k=1

ri,k δ̃i,k δ̂i,k
πi,k

+
1
ϕ̄i,2

zi,2ϕi,2(χ̄i,2, ηi,2)zi,3 + 2× 0.557κ (31)

Step m (m ∈ {3, · · · , n− 1}): The time derivative of
zi,m = χi,m − σi,m is given by:

żi,m = φi,k (χ̄i,m, 0)+ ϕi,m(χ̄i,m, ηi,m)χi,m+1
+1i,m(χ̄i,m, t)− σ̇i,m (32)

The derivative of σi,m can be written as:

σ̇i,m=

m−1∑
k=1

∂σi,k

∂χi,k

(
φi,k (χ̄i,k , 0)+ϕi,k (χ̄i,k , ηi,k )χi,k+1

)
+ ϑi,m

VOLUME 8, 2020 187627



X. Fan et al.: Adaptive Fuzzy Finite-Time Tracking Control

+

∑
j∈Ni

∂σi,m

∂χj,1

(
φj,1(χj,1, 0)+ ϕj,1(χj,1, ηj,1)χj,2

)
+ ζi,m

(33)

where ϑi,m =
∂σi,m
∂y0

ẏ0+
∂σi,m
∂ ẏ0

ÿ0+
m−1∑
k=1

∂σi,k
∂υ̂i,k
˙̂υi,k+

m−1∑
k=1

∂σi,k

∂δ̂i,k

˙̂
δi,k ,

ζi,m =
m−1∑
k=1

∂σi,k
∂χi,k

1i,k (χ̄i,k , t)+
∑
j∈Ni

∂σi,m
∂χj,1

1j,1(χj,1, t).

Applying the Lemma 7, we obtain:

φi,m(χ̄i,m, 0)

−σ̇i,m +
1

ϕ̄i,m−1
ϕ̄i,mzi,m−1ϕi,m−1(χ̄i,m−1, ηi,m−1)

= W ∗Ti,mξ (Zi,m)+ ε(Zi,m) (34)

whereW ∗i,m is the ideal weight, and ε(Zi,m) is the approxima-
tion error satisfying

∣∣ε(Zi,m)∣∣ ≤ ε̄i,m with ε̄i,m > 0 being
a constant. Zi,m =

[
χ̄i,m, χ̄j,2, zi,m−1, (∂σi,m

/
∂χi,1), · · · ,

(∂σi,m
/
∂χi,m), (∂σi,m

/
∂χj,1), ζi,m, ϑi,m

]T with j ∈ Ni. Thus,
we get:

zi,m
(
φi,m(χ̄i,m, 0)

+
1

ϕ̄i,m−1
ϕ̄i,mzi,m−1ϕi,m−1(χ̄i,m−1, ηi,m−1)− σ̇i,m

)
≤
∣∣zi,m∣∣ (12 ∥∥W ∗i,m∥∥2 ξT(Zi,m)ξ (Zi,m)+ 1

2
+ ε̄i,m

)
(35)

Let υi,m = 1
2ϕ̄i,m

∥∥∥W ∗i,m∥∥∥2 and δi,m= 1
ϕ̄i,m

(
1
2+ε̄i,m+1̄i,m

)
,

consider the following Lyapunov function candidate:

Vi,m = Vi,m−1 +
1

2ϕ̄i,m
z2i,m +

1
2θi,m

υ̃2i,m +
1

2πi,m
δ̃2i,m (36)

The derivative of Vi,m can be expressed as:

V̇i,m = V̇i,m−1 +
zi,mżi,m
ϕ̄i,m

−
υ̃i,m ˙̂υi,m

θi,m
−
δ̃i,m
˙̂
δi,m

πi,m

≤ V̇i,m−1+
1
ϕ̄i,m

∣∣zi,m∣∣ [12 ∥∥W ∗i,m∥∥2 ξT(Zi,m)ξ (Zi,m) + 1
2

+ ε̄i,m + 1̄i,m
]
+

1
ϕ̄i,m

zi,mϕi,m(χ̄i,m, ηi,m)χi,m+1

−
1

ϕ̄i,m−1
zi,m−1ϕi,m−1(χ̄i,m−1, ηi,m−1)zi,m

−
υ̃i,m ˙̂υi,m

θi,m
−
δ̃i,m
˙̂
δi,m

πi,m
(37)

Define the virtual control law zi,m+1 = χi,m+1 − σi,m+1,
and considering υi,m and δi,m, we have:

V̇i,m ≤
1
ϕ̄i,m

zi,mϕi,m(χ̄i,m, ηi,m)σi,m+1 + V̇i,m−1 +
∣∣zi,m∣∣ δi,m

−
1

ϕ̄i,m−1
zi,m−1ϕi,m−1(χ̄i,m−1, ηi,m−1)zi,m

+
1
ϕ̄i,m

zi,mϕi,m(χ̄i,m, ηi,m)zi,m+1 −
υ̃i,m ˙̂υi,m

θi,m

+
∣∣zi,m∣∣ υi,mξT(Zi,m)ξ (Zi,m)− δ̃i,m ˙̂δi,m

πi,m
(38)

Design the virtual control law σi,m+1 as:

σi,m+1

= −ξT(Zi,m)ξ (Zi,m)υ̂i,m tanh
(
zi,mξT(Zi,m)ξ (Zi,m)υ̂i,m

κ

)
−δ̂i,m tanh

(
zi,mδ̂i,m
κ

)
− pi,mz

2µ−1
i,m (39)

where pi,m > 0 is a constant.
The adaptive update laws υ̂i,mand δ̂i,m are designed as:

˙̂υi,m = θi,m
∣∣zi,m∣∣ ξT(Zi,m)ξ (Zi,m)− qi,mυ̂i,m, υ̂i,m(0) ≥ 0

˙̂
δi,m = πi,m

∣∣zi,m∣∣− ri,mδ̂i,m, δ̂i,m(0) ≥ 0 (40)

where qi,m > 0 and ri,m > 0 are design parameters.
Substituting (39) and (40) into (38) gets:

V̇i,m ≤ V̇i,m−1 − pi,mz
2µ
i,m + δ̃i,m

∣∣zi,m∣∣
+

[∣∣zi,m∣∣ ξT(Zi,m)ξ (Zi,m)υ̂i,m − zi,mξT(Zi,m)ξ
×(Zi,m)υ̂i,m tanh

(
zi,mξT(Zi,m)ξ (Zi,m)υ̂i,m

κ

)]
+

[∣∣zi,m∣∣ δ̂i,m − zi,mδ̂i,m tanh

(
zi,mδ̂i,m
κ

)]

−
υ̃i,m ˙̂υi,m

χi,m
−
δ̃i,m
˙̂
δi,m

πi,m

+
1
ϕ̄i,m

zi,mϕi,m(χ̄i,m, ηi,m)zi,m+1

+υ̃i,m
∣∣zi,m∣∣ ξT(Zi,m)ξ (Zi,m)

−
1

ϕ̄i,m−1
zi,m−1ϕi,m−1(χ̄i,m−1, ηi,m−1)zi,m

≤ −

m∑
k=1

pi,kz
2µ
i,k + 0.557mκ +

m∑
k=1

qi,k υ̃i,k υ̂i,k
θi,k

+

m∑
k=1

ri,k δ̃i,k δ̂i,k
πi,k

+
1
ϕ̄i,m

zi,mϕi,m(χ̄i,m, ηi,m)zi,m+1 (41)

Step n. This is the final step of follower agent i, similar
to step i,m, the dynamics of zi,n can be directly obtained by
replacing m with n in (32). Then we have:

zi,n
[
φi,n(χ̄i,n, 0)− σ̇i,n

+
1

ϕ̄i,n−1
ϕ̄i,nzi,n−1ϕi,n−1(χ̄i,n−1, ηi,n−1)

]
≤
∣∣zi,n∣∣ (12 ∥∥W ∗i,n∥∥2 ξT(Zi,n)ξ (Zi,n)+ 1

2
+ ε̄i,n

)
(42)

where W ∗i,n is the ideal weight, and ε(Zi,n) is the approxi-
mation error satisfying

∣∣ε(Zi,n)∣∣ ≤ ε̄i,n with ε̄i,n > 0 being
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a constant, Zi,n =
[
χ̄i,n, χ̄j,2, zi,n−1, (∂σi,n

/
∂χi,1), · · · ,

(∂σi,n
/
∂χi,n), (∂σi,n

/
∂χj,1), ζi,n, ϑi,n

]T with j ∈ Ni.

Let υi,n = 1
2ϕ̄i,n

∥∥∥W ∗i,n∥∥∥2 and δi,n = 1
ϕ̄i,n

(
1
2 + ε̄i,n + 1̄i,n

)
,

and consider the Lemma 1, hence, the time derivative of Vi,n
can be written as:

V̇i,n ≤ V̇i,n−1 +
1
ϕ̄i,n

zi,nϕi,n(χ̄i,n, ηi,n)H (ui)ui +
∣∣zi,n∣∣ δi,n

+
1
ϕ̄i,n

zi,nϕi,n(χ̄i,n, ηi,n)G(t)−
υ̃i,n ˙̂υi,n

θi,n

+
∣∣zi,n∣∣ υi,nξT(Zi,n)ξ (Zi,n)− δ̃i,n ˙̂δi,n

πi,n

−
1

ϕ̄i,n−1
zi,n−1ϕi,n−1(χ̄i,n−1, ηi,n−1)zi,n (43)

Design the control law ui as:

ui = −
1

1− β

[
zi,n
2
+ pi,nz

2µ−1
i,n + δ̂i,n tanh

(
zi,nδ̂i,n
κ

)

+ ξT(Zi,n)ξ (Zi,n)υ̂i,n tanh
(
zi,nξT(Zi,n)ξ (Zi,n)υ̂i,n

κ

)]
(44)

where pi,n > 0 is a constant.
The adaptive update laws υ̂i,n and δ̂i,n are designed as:
˙̂υi,n = θi,n

∣∣zi,n∣∣ ξT(Zi,n)ξ (Zi,n)− qi,nυ̂i,n, υ̂i,n(0) ≥ 0,
˙̂
δi,n = πi,n

∣∣zi,n∣∣− ri,nδ̂i,n, δ̂i,n(0) ≥ 0 (45)

Substituting (44) and (45) into (43) yields:

V̇i,n ≤ V̇i,n−1 − pi,nz
2µ
i,n −

z2i,n
2
+
pi,nυ̃i,nυ̂i,n

θi,n
+
ri,nδ̃i,nδ̂i,n
πi,n

+
∣∣zi,n∣∣G(t)− 1

ḡi,n−1
zi,n−1ϕi,n−1(χ̄i,n−1, ηi,n−1)zi,n

+2× 0.557κ. (46)

Due to
∣∣zi,n∣∣G(t) ≤ z2i,n

2 +
α2min
2 , and considering V̇i,n−1,

then we have:

V̇i,n ≤ −
n∑

k=1

pi,kz
2µ
i,k +

n∑
k=1

qi,k υ̃i,k υ̃i,k
θi,k

+

n∑
k=1

ri,k δ̃i,k δ̂i,k
πi,k

+
α2min

2
+ 0.557nκ. (47)

In what follows, the main work is shown in Theorem 1.
Theorem 1. Consider a network of uncertain nonaffine

multi-agent systems with input quantization (1), let the
assumptions 1 and 2 hold, and if the control law is designed
as (44) with the adaptive update laws (19), (29), (40) and (45),
all the follower agents can track the output of leader agent
after finite time, and the tracking error ei going to stay a
compact set, which is defined as:
�ei

=

{
(zi,n, υi,n, δi,n)

∣∣∣∣∣V (t) ≤
(

d
(1−$ )c

) 1
µ

,
1
2
< $ < 1

}
(48)

where c = min
{
(2ϕ̄i,k )µpi,k , qi,k , ri,k , k = 1, · · · , n

}
,

d =
α2min
2 + 0.557nκ + (1 − µ)µ

µ
1−µ

n∑
k=1

(qi,k + ri,k ) +

n∑
k=1

(
qi,kυ2i,k
2θi,k
+

ri,kδ2i,k
2πi,k

)
.

Proof. Due to qi,k υ̃i,k υ̂i,k
θi,k

≤ −
qi,k υ̃2i,k
2θi,k

+
qi,kυ2i,k
2θi,k

and
ri,k δ̃i,k δ̂i,k
πi,k

≤ −
ri,k δ̃2i,k
2πi,k

+
ri,kδ2i,k
2πi,k

, and considering Lemma 6, let

τ = µγ = 1 − µ, % = 1
/
µ, o = 1 and ω =

υ̃2i,k
2θi,k

or

ω =
δ̃2i,k
2πi,k

, we get qi,k

(
υ̃2i,k
2χi,k

)µ
≤

qi,k υ̃2i,k
2χi,k

+ qi,k (1−µ)µ
µ

1−µ ,

ri,k

(
δ̃2i,k
2πi,k

)µ
≤

ri,k δ̃2i,k
2πi,k
+ ri,k (1− µ)µ

µ
1−µ . Thus, (47) can be

re-written as:

V̇i,n≤−
n∑

k=1

(
pi,kz

2µ
i,k+qi,k

(
υ̃2i,k

2θi,k

)µ
+ri,k

(
δ̃2i,k

2πi,k

)µ)
+ d

(49)

Furthermore, considering the Lemma 4, we from (48) have:

V̇i,n ≤ −c
n∑

k=1

(
z2i,k
2ϕ̄i,k

+
υ̃2i,k

2θi,k
+

δ̃2i,k

2πi,k

)µ
+ d

= −cVµi,n + d (50)

According to [42], ∀(zi,n, υi,n, δi,n)∈̄�ei , for ∀t ∈
[
0, tf

]
,

we have Vi,n ≥
(

d
[(1−$ )c]

) 1
µ
, namely, d ≤ $cVµi,n for

∀t ∈
[
0, tf

]
. Hence, combining (50), for ∀t ∈

[
0, tf

]
,

the following relationship is obtained:

V̇i,n ≤ −c(1−$ )Vµi,n (51)

Considering Vi,n ≥
( d
$c

) 1
µ and (44), then we get:

tf ≤

(
Vi,n(t0)

)1−µ
c(1−$ )(1− µ)

(52)

Let t∗ = (Vi,n(t0))
1−µ

c(1−$ )(1−µ) , thus, it follows from Lemma 3 that
for t ≥ t∗, one has:

Vi,n(t) ≤
[

d
(1−$ )c

] 1
µ

(53)

which means that all signal in the closed-loop systems are
SGPFS.

Furthermore, according to the definition of Vi,n, for
∀t ≥ t∗, one gets:

∣∣zi,1∣∣2 ≤ 2ϕ̄i,1

[
d

(1−$ )c

] 1
µ

,
∥∥ze,1∥∥22

≤ 2Nϕmax

[
d

(1−$ )c

] 1
µ

(54)

where
∥∥ze,1∥∥22= n∑

i=1

∣∣zi,1∣∣2 and ϕmax = max
{
ϕ̄i,1, · · · , ϕ̄N ,1

}
.
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In view of ‖e‖2 ≤
1

λmin(H)

∥∥ze,1∥∥2, where λmin(H) repre-
sents the minimum eigenvalue of H, then we obtain:

‖e‖2 ≤
√
2Nϕmax

/
λmin(H)

(
d

(1−$ )c

) 1
2µ

(55)

and one has:

|yi − y0| ≤
√
2ϕmax

/
λmin(H)

(
d

(1−$ )c

) 1
2µ

,∀t ≥ t∗

(56)

It implies that the tracking error of each follower agent
converges to a small neighborhood of the origin and remains
there after the finite time t∗. The proof is completed.
Remark 1: Compared with the traditional methods which

the convergence time is usually t → ∞, we can obtain
convergence in a finite time, which implies that the control
method designed in this paper has a better convergence rate.
Remark 2:Throughout the analysis process and simula-

tion results (they are given below), we have obtained the
finite convergence time, namely tf ≤ t∗ and where t∗ =(
Vi,n(t0)

)1−µ/c(1−$ )(1− µ), which shows that the con-
trol laws designed in this paper are effective, and that
the fuzzy logic systems and adaptive parameters are also
convergent.

IV. SIMULATION RESULTS
In this part, a practical example with input quantization is
given to verify the effectiveness of theproposed control law.
Consider a class of uncertain nonaffine multi-agent systems
with four follower agents and one leader agent, where each
follower agent represents an inverted pendulum system and
the leader is used as a signal generator to generate tracking
signal. The communication graph among agents is shown as
Figure 1.

FIGURE 1. Communication graph among agents.

Example 1. The dynamic of the ith follower agent is
given as:

χ̇i,1 = χi,2 +
1− e−1−χi,1|cos(0.5)|

1+ e−1−χi,1|cos(0.5)|
, i = 1, 2, 3, 4

χ̇i,2 = (χ2
i,1 + χ

2
i,2)e
−|cos(0.5)|2

+ 9.8 sinχi,1
+0.1 sin(t)+ Q(ui(t))

yi,1 = χi,1 (57)

The dynamics of the leader agent is described as χ̇0,1 =
χ0,2 sin(χ0,1) + sin(t) and χ̇0,2 = sin(0.4π t), and the output
of leader agent is y0 = χ0,1.

The initial conditions for four follower agents are set
as [χ1,1(0), χ2,1(0), χ3,1(0), χ4,1(0)]T = [0.3, 1.0, 1.5, 3.0]T

and [χ1,2(0), χ2,2(0), χ3,2(0), χ4,2(0)]T= [0.1,0.5,0.3,0.4]T.
The initial conditions for the leader agent is set as
[χ0,1(0), χ0,2(0)]T = [0.7, 0.2]T. The other control param-
eters are set as: ρ = 0.1, αmin = 0.2, m = 2, κ = 2,
µ = 3

/
5, θ1,j = θ2,j = θ3,j = θ4,j = 2, π1,j = π2,j =

π3,j = π4,j = 1.5, q1,j = q2,j = q3,j = q4,j = 0.5,
r1,j = r2,j = r3,j = r4,j = 1, p1,j = p2,j = p3,j = p4,j = 0.5,
υ̂1,j(0) = υ̂2,j(0) = υ̂3,j(0) = υ̂4,j(0) = δ̂1,j(0) = δ̂2,j(0) =
δ̂3,j(0) = δ̂4,j(0) = 0, where j = 1, 2, 3, 4. In addition,
let the fuzzy logic systems W ∗Ti,j ξ (Zi,j) (i, j ∈ {1, 2, 3, 4})
contain 11 nodes with centers evenly spaced in the range
[−5, 5] and widths be set as 1.5.
Considering the control law (44) with the adaptive update

laws (19), (29), (40) and (45), the simulation results are given
as Figures 2-6.

FIGURE 2. Position tracking results of four agents.

The output response curves with four follower agents
and one leader agent under the general infinite-time con-
trol scheme and the finite-time control scheme are shown
as Figure 2. It can be found that four follower agents can
tracking the leader agent, and the better tracking effect can
be obtained by applying the control scheme designed in this
paper. The response curves for tracking error are given as
Figure 3, which can be seen that the tracking problem is
realized in finite time. The result also implies the validity of
the theoretical analysis from another aspect. In addition, it is
not difficult to find that the fuzzy logic systems and other
adaptive parameters converge in a finite time by analyzing
the simulation results. The reason is that the following four
agents can track the leading agent in a finite time, which
shows that the fuzzy logic system and adaptive parameters
also converge in a finite time.
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FIGURE 3. Tracking errors of four agents.

FIGURE 4. Control input and quantized control input.

FIGURE 5. Adaptive update law υ̂.

Under the hysteresis quantizer, the control input and quan-
tized control input are shown as Figure 4. Although the con-
trol input is quantized, the tracking control problem with the
finite-time control law designed in this paper can be achieved.
In addition, the response curves for the adaptive update laws
υ̂ and δ̂ are displayed as Figures 5-6.

FIGURE 6. Adaptive update law δ̂.

FIGURE 7. The comparative of tracking with other scheme.

FIGURE 8. The comparative of tracking errors with other scheme.

Example 2. In order to verify the effectiveness of the
designed control law (44) (scheme 1), a comparative study
with the finite-time control law (scheme 2) designed in liter-
ature [28] is given in this paper. The parameters setting are the
same as that of Example 1. The simulation results are shown
in Figures 7-8.

VOLUME 8, 2020 187631



X. Fan et al.: Adaptive Fuzzy Finite-Time Tracking Control

According to the Figure 7, the control scheme 1 designed
in this paper and the control scheme 2 designed in [28] can
realize the tracking control problem of given multi-agent
system in finite time. Compared with the scheme 2, however,
the control law designed in this paper can achieve the con-
trol result in a shorter time, and the control is better than
scheme 2. The comparative results of tracking errors are given
in Figure 8.

V. CONCLUSION
This paper has investigated the finite time tracking control
problem of a type of uncertain nonaffinemulti-agent systems.
Compared with the existing multi-agent systems, a more
general model with unknown nonaffine functions and uncer-
tain nonlinearity has been considered. The control input of
multi-agent systems has been quantized by the quantizer.
With the help of a fuzzy logic systems and the backstepping
technique, furthermore, the fuzzy finite-time tracking control
protocol has been proposed. Based on the presented control
protocol, it has been proved that the tracking error of all
follower agents can be held on a small enough neighborhood
in a finite time. Finally, the effectiveness of the proposed con-
trol law is shown by using simulation examples in simulation
part. It should be pointed out that the differential of virtual
control laws needs to be taken in this paper, which is going to
cause ‘‘explosion of complexity’’. To avoid this phenomenon,
the dynamic surface control method will be considered in our
follow-up work.
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