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A B S T R A C T

The perturbed transitional area between the nanoparticle and matrix shapes the properties of polymer nano-
composites. Due to the stochastic nature of these interphase regions, their size and physical properties are
intricately linked. For instance, a higher interphase modulus, Eint , might result from a thinner interphase, and
vice versa. The inherent randomness can introduce variability in the interphase modulus with respect to inter-
phase thickness, tint . This challenges the practicality of conventional micromechanical approaches, which assume
the interphase modulus to be either a constant or a function of filler and matrix properties when predicting the
elastic modulus of polymer nanocomposites. Unlike conventional approaches, which simply used interphase
quantification to predict global stiffness and treated the interphase modulus independently of its thickness, this
study aims, for the first time, to consider the stochastic nature of the interphase, seeking to exclusively explore
the interdependencies within the Eint − tint relationship in polystyrene/SiO2 nanocomposites. Simulations were
conducted using finite element analysis, FEA, providing high accuracy and flexibility. To manage the large
number of simulations, FEA was streamlined with a customized Python scripting, generating a spectrum of (Eint ,
tint) solutions for varying SiO2 contents based on experimental measurements and a rigorous methodology.
Subsequently, empirical equations were formulated, unveiling the relationship between Eint and tint per
composition. The FEA-driven interphase intercorrelation scheme was compared to the results obtained from a
modified three-phase Halpin-Tsai model. Additionally, the FEA scheme was utilized to modulate the HT model
by adjusting its relevant interphase terms.

1. Introduction

Nano-reinforced polymer composites are garnering much interest
due to their exceptional mechanical properties such as tensile modulus
and strength, attained even with addition of small volume fraction of
dispersed nano-phases [1–5]. To fully maximize the potential of
nano-additives in bolstering the mechanical properties of the base
polymer, it is crucial to ensure two primary factors: the even distribution
of nanoparticles and the constitution of robust interactions between the
nanoparticles and the host matrix [6]. Uniform dispersion amplifies the
surface area of nanoparticles within the polymer, while sturdy bonding

enables efficient load transfer from the matrix to these rigid nano-
particles [7]. Engineering the polymer-filler interaction hence holds
significant importance in augmenting the overall properties [8]. The
goal is to design an efficient interphase that modulates the interaction
between nanoparticles and the matrix by increasing the attraction be-
tween filler and polymer while surpassing interparticle forces [9].
Evaluating the strength of particle bonding involves inspecting the
characteristics of the interphase area where the nanoparticle engages
with the surrounding material [10]. Interphase quantification can serve
as a robust indicator of the bonding effectiveness, indicating how effi-
ciently the composite system attains its intended performance [11].
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Direct assessment of mechanical properties within an interphase
region requires specialized techniques like instrumented nano-
indentation testing (IIT) and atomic force microscopy (AFM). Howev-
er, the limitations imposed by the close proximity of the nanoparticle
restrict both elastic and plastic deformation during indentations, making
it challenging to solely analyze interphase effects in isolation [12]. The
influence of compatibilizers and surface modifications can also lead to
uncertainty in defining interphase domains and present challenges in
accurately characterizing the interphase characteristics [13]. Moreover,
these techniques predominantly rely on localized measurements, lack-
ing the ability to provide effective quantities that reflect the overall
physical properties of the interphase [14].

One pragmatic method for determining the physical traits of the
polymer-filler interaction involves conducting an inverse analysis by
correlating the macro-level experimental measurements to the inter-
phase properties at the microscale via homogenization techniques such
as analytical schemes (e.g., Mori-Tanaka and Halpin-Tsai), finite
element analysis (FEA), or combination of the two [15–18]. In the
framework of analytical formulations, Zare et al. [19] modified the
Maxwell model by incorporating tint and Eint terms to the model, aiming
to predict the tensile modulus and strength of nanocomposites with
spherical particles. Through systematic assessments at various tint and
Eint values, they observed variations in the tensile properties predicted
by the developed model. Their findings suggested that the integration of
a thick interphase, characterized by a high elastic modulus, significantly
contributes to the improvement of the composite material’s tensile
properties. Jamali et al. [20] adapted the Pukanszky model to determine
the interphase thickness and strength within polymer/diamond nano-
composites. While explicit and closed-form solutions offer computa-
tional advantages by simplifying calculations and assuming ideal
conditions for heterogeneous media, this inherent simplicity constrains
computational efficiency and prediction accuracy, thus limiting the ac-
curate description of diverse features.

FEA is a versatile computational tool that surpasses traditional
analytical and semi-analytical solutions, offering enhanced design flex-
ibility in terms of geometry, phase quantities, and constitutive equa-
tions. FEA provides a balance between precise micromechanical
accuracy and adaptable geometry, enabling a realistic representation of
composite materials without excessive computational demands. FEA has
been used to simulate interphase properties across various nanoparticle-
reinforced polymer systems [21–24]. For instance, Banerjee et al. [25]
employed FEA to examine the impact of interphase modulus and
thickness on the mechanical properties of single-walled carbon nano-
tube/polymer matrix composites by modeling a three-phase represen-
tative volume element (RVE). Furthermore, FEA has been extensively
combined with molecular dynamics (MD) and continuum mechanics to
characterize the mechanical properties of polymer nanocomposites
using a multi-scale approach, particularly focusing on the
particle-matrix interface [26–28]. Odegard et al. [29] proposed an
equivalent-continuum approach to model the nanotube/polymer inter-
face by defining an effective continuum fiber. This method facilitates
constitutive modeling of nanotube-reinforced polymer composites,
allowing for the prediction of bulk mechanical properties through
micromechanical analysis. Yang et al. [30] employed a scale-bridging
method to quantify mechanical properties. Initially, they utilized
micromechanics to incorporate the particle-matrix interface. Subse-
quently, they estimated the interface thickness and elastic properties
through atomistic structure using MD simulations. Cho et al. [31]
introduced an effective interface concept that incorporated particle-size
effects on the elastic modulus of nanocomposites. This model accurately
predicted interfacial properties influenced by particle size, out-
performing micromechanics-based scale bridging methods. Choi et al.
[32] integrated MD with 3D FEA to predict global stiffness and the
polymer-to-particle load transfer. This was achieved by incorporating an
interphase identification procedure that aligned the energy density of
the interphase with values predicted by MD simulations. The model

effectively represented stress distribution within the interphase and
matrix regions at the atomistic level, while also accounting for the
particle-size dependent stiffness of the nanocomposite. Shin et al. [33]
employed an equivalent cluster-based homogenization method, char-
acterizing the percolated interphase region near particle clusters with
MD and FEA. This approach achieved high computational efficiency
without compromising accuracy. Baek et al. [34] introduced a modified
interphase model using a multiscale bridging technique, which
accounted for interfacial overlapped zones with properties distinct from
those of non-overlapped regions. This new model effectively incorpo-
rated the effects of particle agglomeration, producing results that
qualitatively aligned with experimental trends observed in epoxy/SiC
nanocomposites. All the aforementioned studies have aimed to predict
the elastic modulus of polymer nanocomposites by incorporating
interphase characteristics, such as interphase thickness and modulus,
utilizing multiscale techniques based on FEA, MD, and continuum me-
chanics. While interfacial quantification was majorly utilized for pre-
dicting mechanical properties, none of these scholarly works exclusively
explored the intrinsic interrelationship between interphase modulus and
thickness independently within the interphase region. Instead, these
interfacial features were majorly treated independently of each other.
Moreover, the potential impact of this interdependence on previously
proposed micromechanical models has not been thoroughly
investigated.

To fill this research gap, this study addresses the inherent interde-
pendence of interfacial features resulting from the stochastic nature of
the interphase. Specifically, the variability of the interphase modulus
was investigated with respect to its thickness in polystyrene (PS)/SiO2
polymer nanocomposite using an extensive series of FEAs, marking the
first attempt to account for these complex interactions. This interde-
pendent behavior was then factored into the micromechanical predic-
tive modeling of the elastic modulus in the nanocomposites. FEAs were
performed on an RVE containing a single particle. The weight fractions
of particles were set to match those found in the tested compositions,
aiming to ascertain the effective modulus. The simulations determined
the elastic modulus across various interphase thicknesses and moduli.
An automated Python scripting procedure was developed to facilitate
the execution of numerous FEAs. Based on experimental findings and
FEA results, a methodology was devised to establish the correlation
between interphase modulus and thickness across various compositions.
The FEA-based interdependency relations served as reference guides to
adjust the interphase terms in a modified three-phase Halpin-Tsai
model. Additional coefficients were integrated into the model using this
reference, offering a potent method to enhance the precision of inter-
phase quantities within micromechanical models through FEA
assistance.

2. Methodology

2.1. FEA

To ascertain the tensile modulus of the nanocomposite, an RVE was
constructed. This RVE comprised a single spherical particle positioned at
its center, encased by the interphase material, which, in turn, was sur-
rounded by the matrix. A general-purpose linear brick element with
reduced integration (C3D8R) was employed to mesh all three compo-
nents—matrix, particles, and the interphase—featuring three trans-
lational degrees of freedom per node. Surface-based tie constraint
connection type was introduced at the particle-interphase and
interphase-matrix interphase regions to establish links between the RVE
constituents and inhibit inter-component decoherence under tension,
simulating prefect bonding conditions. To facilitate the conduction of
numerous FE simulations, an automated Python script was developed
and integrated into the Abaqus software to generate the RVEmodels and
conduct the simulations.

The elastic moduli and Poisson’s ratios for both the polymer
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(polystyrene - PS) and fillers (SiO2 nanoparticles) were established at
specific, fixed values: (3.12 GPa, 0.34) for PS and (80 GPa, 0.17) for SiO2
nanoparticles with a radius of 8 nm, as defined in Ref. [35]. Table 1
outlines the weight fractions of nanoparticles in PS/SiO2 nano-
composites alongside their respective measured elastic moduli under
uniaxial tensile test for each concentration, as derived from the refer-
enced paper. To align with each concentration, the RVE size was cali-
brated accordingly to match the particular loading fraction. The
simulations entailed a predefined range of interphase modulus and
thickness values, determined through the analytical approach outputs,
as elucidated in subsequent sections.

Considering that both the matrix and the rigid spherical inclusion
exhibit isotropic characteristics—their properties are not dependent on
direction or specific planes of symmetry—the resulting microstructure
can demonstrate an isotropic behavior, which can be represented by the
elasticity tensor as expressed below [36]:

C=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0
(C11 − C12)

2
0 0

0 0 0 0
(C11 − C12)

2
0

0 0 0 0 0
(C11 − C12)

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

Following the computation of the stiffness matrix stated above, the
elastic characteristics of the material—such as the tensile modulus (E)
and Poisson’s ratio (υ)—can be derived using the following procedure:

E=C11 −
2C2

12
C11 + C12

(2)

υ= C12

C11 + C12
(3)

To calculate the stiffness tensor components, the RVE undergoes a
uniform average strain εij (i, j = 1,2,3). The external strain applied, ε̂ ij,
consists of six components derived from enforcing specific boundary
conditions on the displacement vector as follows [37]:
⎡

⎣
u1(L, x2, x3)
u2(L, x2, x3)
u3(L, x2, x3)

⎤

⎦ −

⎡

⎣
u1( − L, x2, x3)
u2( − L, x2, x3)
u3( − L, x2, x3)

⎤

⎦=2L

⎡

⎣
ε̂11
ε̂21
ε̂31

⎤

⎦,0≤ x2, x3 ≤ L (4)

⎡

⎣
u1(x1, L, x3)
u2(x1, L, x3)
u3(x1, L, x3)

⎤

⎦ −

⎡

⎣
u1(x1, − L, x3)
u2(x1, − L, x3)
u3(x1, − L, x3)

⎤

⎦=2L

⎡

⎣
ε̂12
ε̂22
ε̂32

⎤

⎦, 0≤ x1, x3 ≤ L (5)

⎡

⎣
u1(x1, x2, L)
u2(x1, x2, L)
u3(x1, x2, L)

⎤

⎦ −

⎡

⎣
u1(x1, x2, − L)
u2(x1, x2, − L)
u3(x1, x2, − L)

⎤

⎦=2L

⎡

⎣
ε̂13
ε̂23
ε̂33

⎤

⎦, 0≤ x1, x2 ≤ L (6)

Due to the intricate strain field formed within the RVE under the
applied external strain, ε̂ij in Eqs. (4)–(6), a volume-based averaging
scheme was used to derive the average strain developed within the RVE
according to the subsequent formulation [38]:

εij =
1
|ω|

∫

εij dω = ε̂ij (i, j= 1,2, 3) (7)

In Eq. (7), ω stands for the RVE volume in microscopic domain.
Computing the average strain, εij, the constitutive relation between
average stress, for a homogenous composite material can be expressed as
below:

σp =Cpqεq (p, q= 1,2,…,6) (8)

Here, σp represents the average macroscopic stress exerted on the RVE,
while Cpq stands for the microscopic constitutive tensor as defined in Eq.
(1) for the isotropic state. Using the displacement-based approach, the
elements in each column of tensor Cpq can be obtained by solving one of
six distinct elastic models for the RVE. Each model corresponds to spe-
cific columns of the stiffness tensor Cpq, derived under particular
boundary conditions outlined in Eqs. (4)–(6). To compute the compo-
nents of each column, only a single non-zero strain component, ε̂q is
considered, with the remaining elements intentionally set to zero. By
assigning a unit value to the non-zero strain term and after imple-
menting the specified boundary conditions in Eqs. (4)–(6), the resulting
computed average stress tensor field, σp, will align with a single column
of the elastic matrix. This column corresponds to the index of the non-
zero strain component as stated below:

Cpq = σp =
1
|ω|

∫

σp(x1, x2, x3) dω, ε̂q =1 (9)

The integration process outlined in Eq. (9) is numerically executed at
every integration point of an element using the Gauss-Legendre quad-
rature approach in FE simulation.

Due to the isotropic nature of the examined RVE, obtaining the
elastic components in the initial column of the elastic tensor (i.e., C11
and C12) can allow for the computation of E and ν, based on Eqs. (2) and
(3). Accordingly, a value of 1 was assigned to the external strain field in
the x1 direction (ε̂1 = 1), corresponding to the first column of the elastic
tensor (Cp1 in Eq. (9)), while the remaining components were set to zero.
These values were subsequently applied to the boundary conditions
outlined in Eqs. (4)–(6). To reduce the computational cost and due to the
symmetrical features of the RVE in terms of geometry and constraints,
the analysis focused on the top-right-back section of the RVE, consti-
tuting one-eighth of the structure, as shown in Fig. 1. Consequently, the
boundary conditions in Eqs. (4)–(6) were modified as per Table 2,
wherein L represents half the length of the RVE along all three axes (x1,
x2, x3), depicted in Fig. 1. The stress-based displacement conditions,
stated in Table 2, do not require direct implementation in the FE soft-
ware. This is because the displacement-based formulation on cube faces
inherently satisfies crucial stress-based boundary conditions on the

Table 1
SiO2 nanoparticle weight fractions in PS/SiO2 nanocomposites and corre-
sponding elastic moduli measured via uniaxial tensile tests (Ref. [35]).

SiO2 content (wt.
%)

0.1 0.2 0.75 2 5 10

Elastic modulus
(GPa)

3.1437 3.1503 3.1830 3.2540 3.4900 3.6040

Fig. 1. The configuration of the RVE model defined within the FE simulation.

B.H. Soudmand et al.
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surface boundaries [37].

2.2. Analytical approach

Halpin and Tsai [39] presented a mathematical framework for pre-
dicting the effective modulus of polymer composites with diverse ge-
ometries. For spherical inclusions, this model can be represented as
below [40]:

Ec =Em

[
1+ 2ηϕf

1 − 2ηϕf

]

(10)

η=
Ef
Em

− 1
Ef
Em + 2

(11)

In Eq. (10), the indices m and f pertain to the matrix and filler,
respectively. E stands for the tensile modulus, and ϕ indicates the vol-
ume fraction. To incorporate the interphase between the particle surface
and the adjacent matrix, it is essential to adapt Eq. (10) by introducing
the relevant interphase characteristics. The primary factor to consider is
the volume fraction of the interphase, ϕint , which can be computed as
described below, assuming a spherical structure [41]:

ϕint =

[(
tint + rf

rf

)3

− 1

]

ϕf (12)

Here, tint represents the thickness of the interphase, and rf stands for the
radius of the particle. Adding the interphase elastic modulus, denoted as,
Eint, to Eq. (10) leads to the following expression [41]:

Table 2
Boundary conditions set at various faces of the cubic RVE to enforce specific
displacement and stress fields.

0 ≤ x2,x3 ≤ L 0 ≤ x1,x3 ≤ L 0 ≤ x1,x2 ≤ L

u1(L,x2,x3) = L
u1(0,x2,x3) = 0
σ12(L,x2,x3) = 0
σ12(0,x2,x3) = 0
σ13(L, x2, x3) = 0
σ13(0, x2, x3) = 0

u2(x1,L,x3) = 0
u2(x1,0,x3) = 0
σ21(x1,L,x3) = 0
σ21(x1,0,x3) = 0
σ23(x1, L, x3) = 0
σ23(x1,0, x3) = 0

u3(x1,x2,L) = 0
u3(x1,x2,0) = 0
σ31(x1,x2,L) = 0
σ31(x1,x2,0) = 0
σ32(x1, x2, L) = 0
σ32(x1, x2,0) = 0

Fig. 2. (a) A comparative analysis between experimental [35] and predicted elastic modulus values for PS/SiO2 nanocomposites, (b) illustration of the interphase
modulus dependency on the polymer-filler interphase thickness, and (c) dependency of interphase volume fraction, ∅int , on the interphase thickness, tint .
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Ec =Em

[
1+ 2ηϕf + 2ηintϕint

1 − ηϕf − ηintϕint

]

(13)

ηint =

Eint
Em

− 1
Eint
Em

+ 2
(14)

3. Results and discussion

3.1. Correlation between interphase thickness and modulus based on
modified Halpin-Tsai model

The experimental elastic modulus data, as documented in Ref. [35],
were compared with the predictive results generated by the modified
Halpin-Tsai analytical model (Eqs. 12–14) for polystyrene (PS)/SiO2
nanocomposites, as depicted in Fig. 2a. The adopted micromechanical
model introduces two adjustable parameters, namely interphase
modulus, Eint , and interphase thickness, tint . By finely tuning these two
variables, a remarkable alignment between the predicted and measured
elastic modulus results was achieved across all particle concentrations,
as evident in Fig. 2a. Notably, a range of (Eint , tint) solutions exists for
each composite, illustrating a continuous variation as shown in Fig. 2b
for different nano-SiO2 contents.

In Fig. 2b, it is evident that a range of solutions exist per sample
corresponding to its specific Ec, across various loading fractions. This is
presented in terms of the variation in the relative interphase modulus,
Eint/Em, against tint . As observed in Fig. 2b, a noteworthy exponential
decrease in interphase modulus occurs as the interphase thickness in-
creases, particularly at lower particle loadings. This phenomenon can be
explained by considering that, at greater interphase thicknesses, a larger
number of polymer chains are available to contribute to the overall
stiffness (Ec), reducing the degree of chain suppression and resulting in a
lower Eint within the interphase region.

Generally, as the filler loading increases, there is a consistent
reduction in the developed Eint , as shown in Fig. 2b. This trend is
attributed to the higher volume fraction of the interphase with increased
particle loading, which distributes a fixed degree of polymer chain
immobilization, represented by a given Ec per sample, over a wider
interphase region. This trend is clearly visible in Fig. 2c, where higher
particle loading corresponds to higher interphase volume fractions.
Furthermore, based on Fig. 2b, it is evident that above 0.75 wt% SiO2,
the interphase modulus, Eint , remains relatively constant and insensitive
to interphase thickness. These samples exhibit relatively similar values
for higher particle concentrations, approaching a minimum Eint . This
threshold indicates that there exists a minimum level of chain densifi-
cation within the interphase that is necessary for participating in load
transfer from the matrix to the particle, especially at higher interphase
volume fractions. Importantly, this requirement remains consistent
regardless of variations in interphase thickness (Fig. 2b and c).

3.2. Derivation of interphase modulus and thickness via the automated
FEA

To investigate the impact of interphase parameters—specifically
modulus and thickness—on the effective modulus of the nanocomposite,
simulations were carried out across a range of Eint and tint values. The
minimum interphase layer thickness was set at 2 nm, while the
maximum thickness was determined as 8 nm. This upper limit was opted
specifically for comparing the FEA results against those derived from the
analytical model. The interphase modulus values ranged from the
minimum possible magnitude of Em to the maximum achievable value,
which equaled Ef . Each incremental step for tint and Eint was set at 0.5 nm
and Em/2, respectively, resulting in a total of 650 simulation runs for
each composite. Fig. 3 presents the simulation results derived from the
FEA applied to the single-particle RVE that represents the nano-
composite, detailed in section 2.1. The results portray the effective

modulus variation in relation to Eint , where each curve corresponds to
distinct interphase thicknesses.

Fig. 3 exhibits a consistent rise in the elastic modulus of the nano-
composites as the concentration of nano-SiO2 particles rises, when
contrasted with lower levels of SiO2 incorporation. The pattern is
ascribed to the higher rigidity of the inorganic particles in contrast to the
polymer matrix, introducing further stiffness to the nanocomposite
system as the concentration of nano-SiO2 rises. According to Fig. 3,
increasing the interphase thickness resulted in a consistent rise in
effective modulus across all compounds, given a constant Eint . This
relationship is rooted in thicker interphases accommodating a greater
portion of entangled polymer chains, thereby enhancing the interphase
area’s ability to bear loads and significantly contributing to stress
redistribution within the nanocomposite. In Fig. 3, it’s clear that across
all compositions, when the interphase size is extremely small (e.g., tint =

2 nm), the change in elastic modulus concerning the interphase modulus
appears to be minimal compared to thicker interphases. This suggests
that in these narrow transition zones from particle to host polymer, the
impact of chain immobilization on the load-bearing capacity seems
limited, regardless of the densification degree. Conversely, within larger
interphase, stress redistribution occurs more readily under external
force, allowing for a more efficient response.

Moreover, in a set interphase layer thickness, a higher interphase
modulus leads to an increased effective modulus across all compositions.
This occurs due to a greater chain densification that reinforces the
interphase load-bearing capacity and augments overall stiffness. At
lower Eint values, a noticeable rise in effective modulus occurs, espe-
cially with greater interphase thicknesses. However, beyond a specific
threshold value (Eint ≈ 17 − 18 GPa), a more gradual trend emerges,
indicating the limited impact of Eint on the composite modulus once this
threshold is surpassed. At this point, the interphase thickness takes
precedence in altering Ec. This suggests that while the entanglement of
polymer chains within the interphase can elevate load-bearing capacity
to a certain extent, the size of the interphase area imposes no limit on
enhancing Ec.

To investigate load-bearing characteristics within interphase re-
gions, von Mises stress values were computed at individual integration
points under the specified displacement loads. Fig. 4 illustrates stress
distribution within an octant of a typical interphase material. Analysis
across various compounds unveiled two primary areas of maximum
stress concentration within each interphase material: the central region
and the edges, as shown in Fig. 4a and b respectively. To precisely map
stress distribution, specific symmetric paths were defined within these
high-stress regions, aligning with the positions of maximum stress ele-
ments, as visualized in Fig. 4.

Fig. 5 illustrates von Mises stress distribution diagrams acquired
along predefined paths based on maximum stress, for different com-
pounds and interphase thicknesses, while maintaining a constant
interphase modulus (Eint = 30 GPa). As depicted in Fig. 5, nano-
composites, containing 0.1 and 0.2 wt% SiO2, exhibited notably sharp
stress peaks across all interphase layer thicknesses, displaying a
maximum stress profile configuration similar to the one depicted in
Fig. 4a, corresponding to type-I. The type-I stress peaks were more
pronounced in thinner interphases compared to thicker ones. Typically,
thinner interphases experience heightened stress concentration due to
more localized stress distribution and prominent high-stress zones at
their peripheral regions.

With the increase in layer thickness, a reduction in stress localization
was observed in Fig. 5a and b in the high-stress areas, indicated by a
stress peak depression for thicker interphases. In the 0.75 wt% sample
(Fig. 5c), however, thicker interphases exhibited much broader and
smoother stress profiles within high-stress regions, denoted as type-II in
Fig. 4b. This contradicts the patterns observed in thinner interphases of
identical composition or samples with lower amounts of SiO2 (Fig. 5a
and b). The suppression of the stress peak can be ascribed to heightened
stress-bearing capacity within thick interphases. This sustains elevated
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stress levels across a greater number of elements located within the
thicker regions, resulting in a broader distribution of high-stress ele-
ments rather than a distinct peak (Fig. 5c). The alteration in stress dis-
tribution led to the occurrence of maximum stress throughout the
thickness and near the RVE edge, as shown in Fig. 4b.

Based on Fig. 5, a critical interphase thickness, tint,c, can be defined
beyond which, the stress distribution profile shifts from type-I with a

sharp, localized peak at the interphase periphery (Fig. 4a) to type-II,
characterized by a broader and smoother peak developed around its
thickness (Fig. 4b). This transition correlates with the increased inter-
phase volume fraction (∅int) described in Eq. (12), stemming from a rise
in the particle volume fraction (∅f ). A larger interphase radius, with a
constant thickness, demonstrates better resistance to higher stress levels
by spreading stress across higher number of elements. Improved

Fig. 3. Relationship between effective modulus and interphase modulus across various interphase layer thicknesses in PS/SiO2 nanocomposites with differing nano-
SiO2 contents: (a) 0.1, (b) 0.2, (c) 0.75, (d) 2, (e) 5, and (f) 10 wt%.
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resilience of the interphase facilitates more effective stress redistribution
within the material, preventing localized concentration in specific re-
gions. Higher stress intensity is noticeable in the type-II stress profile
when compared to type-I (excluding those at the peak area). Type-I
exhibits a sharp peak with the remaining elements experience signifi-
cantly lower stress intensities (Fig. 5c–e). As ∅f increases further, this
trend persists, revealing a consistent decrease in tint,c, reaching values
equal to or less than 2 nm (tint,c ≤ 2 nm), as depicted in Fig. 5e and f,
respectively.

In Fig. 5, the type-I profile displays a decrease in stress intensity with
increasing tint at lower SiO2 concentrations (Fig. 5a–c). Conversely, the
type-II stress distribution consistently rises between 2 and 10 wt% SiO2
(Fig. 5d–f) concerning tint , showing a sharper peak at thicker in-
terphases. The heightened stress intensity, particularly evident in the
thicker interphases of the type-II profile (seen in Fig. 5d–f), is due to a
notable increase in the ∅f/∅m ratio. This disparity significantly am-
plifies stress between the matrix and filler due to substantial differences
in their elastic moduli. Consequently, this intensified stress concentra-
tion at the filler-polymer boundary directly impacts the interphase,
leading to more pronounced high-stress regions. The higher Ec at higher
nanoparticle fractions (Fig. 3e and f) necessitates a more intense stress
redistribution process within the interphase, resulting in more severe
stress localization and intensity among the high-stress-bearing elements.
This phenomenon is particularly emphasized with thicker interphases,
as depicted in the diagrams of Fig. 5d–f.

A methodology was employed to derive a spectrum of potential (Eint ,
tint) solutions for various compounds, leveraging the FEA outputs

showcased in Fig. 3. Using the PS/0.75SiO2 compound as an example,
this methodology illustrates the process in Fig. 6. For each composition,
the intersection between the y = Eexp line (representing the experi-
mental elastic modulus) and the Ec − Eint curves offer multiple potential
(Eint , tint) solutions. The intersection points form a 2D curve per sample,
exemplified in Fig. 6. To enhance precision in determining the inter-
section point, the Ec − Eint curves for each interphase layer thickness
underwent interpolation, resulting in a dataset of 106 data points within
its range.

Fig. 7 displays the resulting outputs obtained from the methodology
outlined in Fig. 6, displaying the variation of Eint/Em in relation to the
interphase thickness for various compounds. To ensure clarity and
coherence within the diagram, an initial value of tint at 3.5 nm was
chosen. This decision aimed to enhance visualization, as certain samples
failed to yield a viable (Eint , tint) solution below this threshold.

In Fig. 7, it’s apparent that thinner interphase layers demand a
higher interphase modulus to achieve the desired elastic modulus in the
nanocomposite. A higher interphase modulus, at a constant interphase
layer thickness, signifies the superior performance of the nanocomposite
in forming a robust interphase, shown by higher Eint/Em ratios. Notably,
increasing SiO2 content consistently enhances interphase bonding in
nanocomposites across various interphase layer thicknesses, especially
up to a 5 wt% SiO2 loading. The consistent increase in interphase
modulus due to the addition of nanoparticles, maintaining higher Eint
values even at elevated concentrations, highlights the effective inte-
gration of nanoparticles into the matrix. This integration, in terms of
bonding and distribution, suggests an absence of significant negative

Fig. 4. Symmetric path delineation to illustrate maximum stress contours within an octant of the interphase material, highlighting distinct occurrences at two key
positions: (a) Center (type-I) and (b) edge (type-II).
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effects typically caused by particles, like poor interfacial adhesion or
dispersion, both of which can degrade the quality of the polymer-filler
interphase.

However, in the case of PS/10SiO2, the effectiveness diminishes,
likely due to potential nanoparticle dispersion deterioration at the 10 wt
% SiO2 concentration. This aggregation weakens the polymer-filler
adhesion, leading to lower Eint/Em ratios and hindering the Ec |exp from
increasing in line with the rise in nanoparticle loading. Based on Fig. 7,
when tint values are extremely low (tint ≤ 4nm), the required interphase

modulus to achieve the specified Ec |exp increases exponentially, sur-
passing the matrix values significantly. This becomes impractical in real-
world scenarios. Hence, a viable solution is to ensure that the interphase
thickness exceeds a minimum tint (e.g., 4 nm). This compensates for the
necessity of excessively high interphase modulus.

To establish empirical relations between interphase modulus and
thickness across various compositions, FEA was employed, leveraging
the curves presented in Fig. 7. Eqs. 15–20 represent the derived
empirical relationships Eint − tint for distinct compounds. These

Fig. 5. Von Mises stress profiles along predefined symmetric paths, delineated in Fig. 4, including diverse interphase thicknesses while maintaining a constant
interphase modulus of Eint = 30 GPa, for different nano-SiO2 contents: (a) 0.1, (b) 0.2, (c) 0.75, (d) 2, (e) 5, and (f) 10 wt%.
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equations were derived by fitting high-order (degree 8) polynomials to
each curve, yielding coefficients that characterize the relationships. The
units utilized for the interphase modulus and thickness were selected as
GPa and nm, respectively, aligning with those specified in Fig. 7.

E0.1 wt.%
int = Em

(
9.2 t6int − 100 t5int + 667.9 t4int − 2816 t3int +7311.8 t2int

− 10694.1 tint +6764.9
)

(15)

E0.2 wt.%
int = Em

(
4.3 t6int − 49.4 t5int + 352.4 t4int − 1594.5 t3int +4471.2 t2int

− 7110.8 tint +4931.9
)

(16)

E0.75 wt.%
int = Em

(
− 2.1 t7int + 42.5 t6int − 483.6 t5int + 3406.2 t4int − 15200 t3int

+41963.5 t2int − 65536.3 tint +44358.2
)

(17)

E2 wt.%
int =Em

(
− 1.1 t7int + 23.5 t6int − 279.1 t5int + 2059.7 t4int − 9662.4 t3int

+28141.5 t2int − 46536.6 tint +33485.7
)

(18)

E5 wt.%
int =Em

(
− 1.8 t7int + 37.7 t6int − 450.1 t5int + 3338.6 t4int − 15744.9 t3int

+46105.5 t2int − 76660.2 tint +55448.6
)

(19)

Fig. 8 presents a comparison between the Eint-tint curves obtained
from FEA (Fig. 7) and the analytical Halpin-Tsai model (Fig. 2b) across
various compositions. The findings clearly demonstrate that the FE
model effectively addresses the limitations of the HTmodel by extending
the Eint-tint relation to lower interphase thickness values and higher
magnitudes of interphase modulus, Eint . Based on Fig. 8, while there’s a
consistency in the relative alignment between FEA and HT results for
lower concentrations at larger tint values (tint ≥ 7 nm), the data, espe-
cially at higher filler loadings (≥2 wt%), lack proper alignment when
compared against each other. The positioning of curves representing
each sample’s composition in relation to others varies notably between
the two models. In the HT model, there’s a trend of lower Eint/Em ratios
for higher levels of SiO2 incorporation at a given tint . Conversely, the FEA
results provide an opposing trend, where higher concentrations gener-
ally lead to increased magnitudes of Eint/Em for a fixed interphase
thickness. Moreover, the Eint-tint interconnection curves derived from the
HT model indicate a relatively steady Eint/Em ratio across various
interphase thickness values, displaying a remarkable insensitivity to this
parameter. In contrast, the FEA-based curves offer a more holistic and
applicable (Eint-tint) solution curve for each composition, regardless of
the nanoparticle concentration.

Fig. 6. Derivation of the Eint − tint plots for each sample, obtained from the Ec − Eint plots alongside the experimentally determined elastic modulus, Ec |exp, specific to
each composition.

Fig. 7. Variation of Eint/Em ratio against interphase thickness derived from FEA
results across different compounds.

E10 wt.%
int =Em

(
− 0.13 t7int + 2.4 t6int − 24.9 t5int + 156.9 t4int − 620.1 t3int + 1502.5 t

2

int − 2046.2 tint +1215.4
)

(20)
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The findings from Fig. 8 suggest that the modified Halpin-Tsai
model, incorporating interphase terms such as the interphase modulus
and thickness in Eqs. 12–14, exhibit significant limitations in effectively
relating the interphase thickness to the resulting modulus, particularly
when compared to the outcomes derived from FEA. To resolve the issue,
the interphase term, ηint , outlined in Eq. (14) can be substituted with the
term, η∗int, as articulated below:

η∗
int =

α1

(
Eint
Em
|FEM

)β1
+ γ1

α2

(
Eint
Em |FEM

)β2
+ γ2

(21)

Here, the term Eint
Em |FEM denotes the y-axis values extracted from the

Eint − tint curves generated through FEA as depicted in Fig. 5. To
augment the density of data points within the curve range, 100 data
points were interpolated for each curve in Fig. 7. The constants
(α1,α2, β1, β2, γ1, γ2) represent the adjustment parameters meticulously
crafted to govern the following equation:

Ec |exp =Em

[
1+ 2ηϕf + 2η∗

intϕint

1 − ηϕf − η∗
intϕint

]

(22)

To determine the unknown constants in the equation above, a pro-
cess was utilized involving six randomly selected sample points per
compound from the interpolated curves in Fig. 7. The tint values for each
point were substituted into the interphase volume fraction term, ϕint , as
outlined in Eq. (12). Subsequently, the Eint

Em values corresponding to these
points were inserted into Eq. (22) to derive the associated interphase
term, η∗

int , as defined in Eq. (21). To uncover the unknown terms, the
following minimization procedure was established:

Find: α1,α2,β1,β2, γ1, γ2.

Minimize : f
(

tint ,
Eint

Em
|FEM

)

= Ec |exp − Em

[
1+ 2ηϕf + 2η∗

intϕint

1 − ηϕf − η∗
intϕint

]

(23)

(

tint , EintEm |FEM

)

= Six random data points extracted from the interpo-

lated Eint − tint curves (Fig. 7)
After applying the minimization algorithm outlined in Eq. (23), six

distinct formulations were derived in Eqs 24–29, each tailored to ac-
count for the pertinent η∗int value to predict the elastic modulus of the

corresponding composition using the proposed HT-FEA approach, as
described below:

η∗
int |0.1 wt.% =

2.3979
(

Eint
Em |FEM

)− 0.14401
+ 2.3129

− 2.3524
(

Eint
Em
|FEM

)0.0066

+ 2.7072
(24)

η∗
int |0.2 wt.% =

0.6735
(

Eint
Em
|FEM

)0.8926

+ 0.8117

0.5569
(

Eint
Em |FEM

)1.1036

+ 3.2960
(25)

η∗
int |0.75 wt.% =

0.4434
(

Eint
Em
|FEM

)0.7964

+ 0.4879

0.0248
(

Eint
Em
|FEM

)2.0967

+ 2.5407
(26)

η∗
int |2 wt.% =

1.0367
(

Eint
Em
|FEM

)0.9141

+ 1.2802

0.0794
(

Eint
Em |FEM

)1.5586

+ 1.3637
(27)

η∗
int |5 wt.% =

1.0476
(

Eint
Em
|FEM

)0.6843

+ 1.2398

1.3140
(

Eint
Em
|FEM

)0.6629

+ 1.2202
(28)

η∗
int |10 wt.% =

1.7439
(

Eint
Em
|FEM

)0.4365

+ 1.7856

0.1065
(

Eint
Em |FEM

)1.3009

+ 4.4386
(29)

4. Conclusion

The inherent variability in interphase properties, depending on the
polymer-filler interaction quality, induces inherent correlations be-
tween the elastic modulus and thickness of the transitional region.
However, existing micromechanical models to date have not taken into
account this interplay when predicting the elastic modulus in polymer

Fig. 8. Comparative plot depicting Eint-tint interconnection curves derived from both analytical Halpin-Tsai and FEA models for different compounds.
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nanocomposites. Instead, they largely treated the interphase modulus
independently of its dimensions, disregarding the stochastic nature of
the interphase. To address this concern, this study focuses on exploring
the intrinsic variability in the Eint − tint relationship via a series of FEAs.
Subsequently, this variability is incorporated into the micromechanical
predictive modeling of the elastic modulus in polystyrene (PS)/SiO2
nanocomposites. Python script was generated to automate the FEA,
facilitating multiple simulations on the RVE model. These RVEs repli-
cate particle fractions similar to those observed in experimental samples,
varying in interphase thicknesses and elastic moduli. Numerous FEAs
were carried out to generate Ec − Eint diagrams including a range of
interphase thicknesses for each composition. The diagrams depicted a
steady rise in elastic modulus with the addition of particles. Addition-
ally, thicker interphases with greater elastic moduli correlated with
higher composite moduli. Analysis of stress distribution within the
interphase revealed that interphase thickness and particle fraction
significantly determined whether stress localized or distributed
smoothly. Additionally, both interphase factors impacted the location of
maximum stress occurrence. The Ec − Eint diagrams were further
employed to formulate Eint − tint curves using a practical methodology.
This method offered a range of potential solutions (Eint , tint) for different
compounds by employing Ec − Eint diagrams. For each composition, the
solutions were derived by intersecting these curves with a horizontal
line that represented the experimental elastic modulus of the respective
sample. The interphase diagrams of Eint − tint indicated that thinner in-
terphases demanded higher interphase moduli to develop the required
modulus for a specific composition, while thicker interphases demon-
strated the opposite trend. Additionally, following the interphase dia-
grams, the interphase modulus consistently increased with higher
particle loadings for a specified thicker interphase layer. This trend
signifies a consistent enhancement in interphase bonding within nano-
composites, aligning with the increased concentration of nanoparticles.
Comparing interphase diagrams using FEA and the initial Halpin-Tsai
model across different compositions showed that the FE model effec-
tively overcame the limitations of the HT scheme. It extended the Eint-tint
relation to smaller interphase thickness values and higher Eint , display-
ing a more coherent trend across various samples compared to the
micromechanical model. Finally, the interphase diagrams (Eint-tint) were
employed to refine the HT model within the new FEA framework. The
procedure involved establishing a modified interphase term, η∗int , inte-
grating the FE-centered interphase relationship specific to each
composition.

5. Limitations, challenges, and future scope

The present paper introduces an innovative, rigorous, and precise
approach to deriving the interfacial interrelationship using FEA,
experimental data, and a micromechanical model. However, there are
several issues that can be addressed in future studies, as follows:

• Despite the model’s high accuracy, it relies on specific volume
fractions of nanocomposite samples with known elastic moduli.
Future work can enhance the model by considering the filler volume
fraction, ∅f , as a variable. This would allow for interfacial interre-
lation analysis as a function of nanofiller volume fraction, increasing
the model’s scalability and generalizability.

• A primary challenge in enhancing the generalizability of this hybrid
model lies within the FEA process, which needs to be customized to
the material model. This customization necessitates independent
runs whenever material properties change. Developing a general
model to predict interfacial interdependency in nanocomposite sys-
tems using a high-fidelity FEA approach requires addressing this
limitation. This is particularly critical for systems lacking experi-
mental data and having arbitrary volume fractions. Consequently, a
comprehensive dataset is indispensable, including both FEA and
experimental results across a wide range of nanocomposite systems.

Such a dataset would enable the construction of intricate multivar-
iate surface response models using data-driven approaches, such as
machine learning.

• The current methodology represents an initial step toward a more
accurate demonstration of interfacial interdependency. Further work
is needed to refine the model and extend its application to a broader
range of nanocomposite systems. This includes considering various
volume fractions, filler geometries (e.g., platelets, nanotubes, fibers),
interfacial qualities, and other factors. Additionally, more intricate
FE modeling can be employed to simulate complex interparticle in-
teractions, particle distribution uniformity, and the presence of ag-
gregates. These simulations can help investigate their role in altering
interfacial interdependency in diverse polymer nanocomposite
systems.
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