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ABSTRACT With the expanding share of wind energy in power grids, accurate forecasting has become
critical for maintaining system stability and operational efficiency. Notwithstanding, forecasting accuracy
is compromised by uncertainties from fluctuating wind speeds and meteorological conditions. This paper
proposes a novel multi-phase short-term wind power forecasting framework (multi-step ahead forecasting
over a 1-hour horizon). Thus, decomposition of the wind power signal and feature extraction are initially
implemented using Variational Mode Decomposition (VMD) and Principal Components Analysis (PCA),
respectively, aiming to enhance input quality and reduce computational burden. The proposed forecasting
model is built on a hybrid DL architecture merging a Convolutional Neural Network (CNN), Attention
Mechanism (AM), and Deep Feedforward Neural Network (DFFNN). Given the impact of decomposition
levels and extracted PCA components count on forecasting performance, a search-based scheme is devel-
oped to explore a pre-defined space (maximum decomposition level and extracted components count) to
determine the optimal configuration for each interval. In the next phase, a Fuzzy Decision-Making (FDM)
technique is employed to select a balanced and optimal configuration for the proposed model across the
year. To demonstrate the proposed architecture’s efficacy and generalizability, the model is tested on two
real-world data from La Haute Borne wind farm in France and Hill of Towie wind farm in Scotland. Results
demonstrate that the proposed architecture with the selected configurations achieves significant accuracy
and generalization, with average NRMSEs and NMAE:s values of 0.428% and 0.333% for La Haute Borne
wind farm and 0.502% and 0.381% for Hill of Towie wind farm.

INDEX TERMS Attention mechanism, fuzzy decision making, hybrid deep learning model, multi-step
forecasting, variational mode decomposition, wind power forecasting.

I. INTRODUCTION

Forecasting renewable sources power generation is of
paramount significance in energy systems since it affects
not only operational costs, but also the optimum planning
and management of energy resources. Accurate forecast of
wind power generation helps grids maximize energy distri-
bution, remove unwanted interruptions, and reduce the cost
of supply of electricity. In this regard, the application of
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contemporary technologies including Artificial Intelligence
(AI) and notably Machine Learning (ML) can be rather effec-
tive. Complex electricity usage patterns influenced by several
elements including wind speed, wind direction, and temporal
condition can be captured and analyzed using ML models.
This capability enhances the efficiency of power system and
improves the forecasting accuracy.

Numerous studies have been conducted to develop fore-
casting model and accuracy using different approach. This
section reviews recent contributions and key advancements
in ML methods, feature extraction, and signal process-
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ing techniques. In [1], a long short-term memory (LSTM)
model along with the empirical Fourier decomposition (EFD)
method and the gray wolf optimization algorithm were
employed to accurately predict the short-term and single-
step wind speeds. In [2], the Bi-LSTM and CNN models
along with a graph-based data reconstruction approach were
adopted. What makes this approach unique is that it com-
bines these methods for short-term forecasting with multiple
steps. The authors of [3] used the Double Attention-based
Spatial-Temporal Network (DA-STNet) and the Attentional
Graph Network (GAT) to learn how to correlate space and
time focusing on the extraction of both spatial and temporal
features at the same time as the innovations of this work.
In [4], the Generalized Matrix Factorization (GMF) method
and Sequential-to-Sequential (Seq2Seq) model were used
based on LSTM for ultra-short term and multi-step forecast-
ing. The authors, in [5], combined short-term and multi-step
wind power forecasting using LSTM model and SCADA data
simultaneously. A model called SSA-VMD-Seq2Seq was
suggested in [6] consisting of a CNN and a two-way Gated
Recurrent Unit for short-term multi-step forecasting. In [7],
CNN-LSTM-AM model was proposed to forecast the power
of offshore wind turbines without using meteorological data.

Feature selection and extraction are of utmost importance
for wind turbine power generation prediction, as the data
related to atmospheric conditions and wind behavior can be
complex and volatile. By selecting appropriate features such
as wind speed, wind direction, temperature, and air pres-
sure, relevant information can be extracted from raw signals
and help forecasting models identify more accurate patterns.
Some other research conducted in the field of wind power
generation prediction with feature selection or extraction
methods are reviewed. In [8], the use of temporal convolu-
tional network (TCN) and hyperparameter optimization with
orthogonal representations has brought a certain innovation in
automating the extraction of complex features and improving
multi-step wind power forecasting. The research conducted
in [9] described a GRU-CNN hybrid model that used CNN
layers for automatic feature extraction leading to very accu-
rate forecasting in very short amounts of time. The main
innovation is the creation of a hybrid model that combines
CNN and GRU to improve accuracy and speed. In [10],
the authors used both convolutional and recurrent networks
together to create a focused hybrid model. This model utilized
meteorological data and features extracted from time series
data to make accurate medium- and long-term predictions
of wind power. The main innovation of this research is the
use of three optimization algorithms, Scikit-opt, Optuna, and
Hyperopt, for hyperparameters, which optimized the per-
formance of CNN and LSTM by analyzing the effects of
investigated methods for tuning hyperparameters to improve
forecasting accuracy The research conducted in [11] used a
novel approach to decompose eigenstates with the aim of
extracting frequency features that were applied to the LSTM
model. This innovative approach has significantly increased
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the accuracy of the model in predicting wind power by
reducing the data noise. In [12], two optimization algorithms,
Stochastic Fractal Search (SFS) and Particle Swarm Opti-
mization (PSO), were used to fine-tune the parameters of
the LSTM model for improving the short-term forecast of
wind power resulting in an increase in the accuracy of multi-
step forecasts. However, PCA only captures linear latent
features as it is a linear technique, it offers the benefits of
denoising and reducing redundancy in input dataset [13].
Actually, employing non-linear PCA techniques (e.g., Kernel
PCA and Autoencoders) are more computationally expen-
sive. Nonetheless, integrating PCA with non-linear architec-
tures that capture non-linearity contributes to both computa-
tional burden reduction and accuracy improvement, accord-
ing to [14] and [15].

Accurate prediction is fundamentally supported by sig-
nal processing, as it facilitates the extraction of meaning-
ful patterns and features from raw data. For the extrac-
tion of more particular data features, the authors, in [16],
used the discrete wavelet transform (DWT) to break the
wind signal into subseries of different frequencies. On the
other hand, [17] used both DWT and Euclidean distance
concurrently to decompose the wind time series, therefore
acting as techniques for dimensionality reduction and data
processing. Similarly, in [18], the wavelet transform created
much subseries by breaking down the wind speed data. Two
techniques were used in [19] and [20] to deconstruct the
wind power time series into discrete intrinsic mode functions
(IMFs): VMD and Full Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN). In [21], VMD was employed,
alongside additional techniques such as Singular Spectrum
Analysis (SSA) for enhanced signal processing and noise
elimination. In [22], the Fourier series method and the Recur-
sive Kalman Filter were employed to process and decompose
the requisite signals. In [23], the isolated forest technique
was employed to detect outliers in the dataset for processing
high-frequency Supervisory Control and Data Acquisition
(SCADA) data, being a form of signal processing aimed at
mitigating the impact of anomalous data. In [24], the authors
additionally utilized the Ensemble Empirical Mode Decom-
position (EEMD) technique aiming to address the issue of
mode mixing inherent in EMD as an enhanced version of the
EMD technique.

In most of the existing research in the field of wind power
generation forecasting, simultaneous consideration of signal
processing methods and feature selection/extraction has been
neglected, which leads to lower accuracy, increased computa-
tional burden, increased learning time, and misleading of the
learning machine. Therefore, noise in the feature signal will
lead to reduced model accuracy and increased computational
complexity. However, disregarding the relationships between
the input features and the target variable, namely wind power
generation, may result in increased computational complexity
and extended processing time for forecasting architectures.
Proper consideration of these interdependencies is essen-
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tial to optimizing model performance and ensuring efficient
resource utilization. Although some studies considered both
signal processing and feature extraction, they often lacked a
systematic approach for optimizing the parameters associated
with these methods. In this paper, the wind power forecasting
is accomplished using the proposed DL architecture. The
contributions of this paper are:

e An integrated framework is proposed for signal pro-
cessing, feature extraction, and a DL architecture with
the aim of determining the optimal configuration of the
proposed forecasting framework.

e Implementing and assessing advanced signal process-
ing methods on wind power generation time series
with 10-minute steps, in order to find a more effective
approach for denoising the wind power signal.

e Proposing an innovative DL architecture that integrates
CNN, AM, and DFFNN for multi-step forecasting of
farm-level wind power, validated on two different wind
farms to demonstrate its generalizability and robust-
ness.

e Proposing an algorithm, called ESA, to examine all
feasible configurations of decomposition levels and
extracted components.

e Employing an FDM approach to select an optimal
framework that minimizes the forecasting errors across
the whole year.

The remainder of this paper is structured as follows. Sec-
tion I provides a description of the La Haute Borne wind farm
and wind power penetration in France. Section II presents
the design and implementation of the forecasting framework.
Section III reviews the state-of-the-art methods used for
comparison. Section IV details the experimental setup. Sec-
tion V discusses the results of the study. Finally, Section VI
concludes the paper, emphasizing the key contributions and
findings.

Il. DESCRIPTION OF LA HAUTE BORNE AND HILL OF
TOWIE WIND FARMS

The La Haute Borne wind farm, located near Vaudeville-
le-Haut in the Grand Est region of France, has four MMS§2
turbines, each with a capacity of 2 MW, resulting in a total
rated capacity of 8 MW. The onshore turbines were designed
by Maia Eolis and managed by ENGIE. The location serves
as a research site. The data obtained from the site is freely
accessible for scientific research, allowing academics glob-
ally to utilize it for their studies in wind energy. The plant
is acknowledged as a successful instance of collaboration
between industry and academia. By 2023, France will possess
an installed capacity of approximately 23 GW for wind tur-
bines. Additionally, France has contributed around 37.9 TWh
to the nation’s energy consumption, representing 8.3% of the
total electricity consumption, derived from wind energy [25].
France, a leading country in Europe’s renewable energy
sector, aims to enhance its wind energy capacity, targeting
an installed capacity of 35 GW to 44 GW by 2030. The
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historical data pertaining to the wind power plant considered
in this study originates from 2016, with a time interval of
10 minutes, provided in [26]. To validate the robustness and
generalizability of the proposed framework, a dataset from
Hill of Towie wind farm is also adopted. Hill of Towie wind
farm is located in Dufftown in Scotland with nominal power
of 48.3 MW with 21 SWT-2.3-93 turbines (each with capacity
of 2.3 MW). The dataset includes historical wind speed,
wind direction, ambient temperature and generated power at
10-minutes step intervals for 2024 [27].

Fig. 1 presents the correlation matrix of La Haute Borne
wind farm, illustrating the principal correlations. A signif-
icant and deep correlation exists between wind speed and
wind turbine apparent power (0.91%). This aligns with the
wind power principle (Powerc Speed®) and indicates that
variations in wind speed account for approximately 83% of
the fluctuations in output power. The negative correlation
of temperature with apparent power (-0.25) and wind speed
(-0.22) indicates the effect of reduced air density at high
temperatures, therefore reducing the kinetic energy available
for the wind turbine. The small correlation of wind direction
with other components (0.02 to 0.12) suggests that the yaw
control system of the La Haute Borne wind farm efficiently
changes the orientation of the turbine in line with the wind.
Exploratory data analysis of input signals and target vari-
ables is shown in Fig. 2. The scatter plot matrix reveals a
strong non-linear positive correlation between wind speed
and power generation, with the relationship approaching a
saturation plateau at higher speeds. This indicates that wind
speed is the primary determinant of power generation. As it
is clear from, the distribution of the apparent power is right-
skewed, suggesting that most observations correspond to low
power levels. In contrast, both temperature and wind direction
exhibit much weaker and more indirect influences on power
generation. High power outputs are observed across a broad
range of temperatures and in all wind directions, implying
that these factors act as secondary drivers or that their effects
are mitigated by operational control mechanisms, such as the
turbine yaw control system. Figs. 3(a)-(d) illustrates the input
signals of La Haute Borne wind farm in 2016.

Ill. DESIGN AND IMPLEMENTATION OF FORECASTING
FRAMEWORK

This research proposes a multi-phase framework for farm-
scale short-term multi-step wind power forecasting. The
forecasting is performed using a multi-step 1-hour ahead
approach, continuously predicting for a 24-hour horizon with
a single training session, achieving a satisfactory forecast-
ing accuracy. Initially, the historical wind power generation
signal is preprocessed using VMD in order to eliminate
inherent noise. Subsequently, the resultant features, such as:
the decomposed power modes, wind speed, wind direction,
and ambient temperature are fed to the feature extraction
technique (PCA) to diminishing computational burden and
rising learnability of DL models by reducing the dimension-
ality of dataset. Then, the preprocessed signals are fed to
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FIGURE 1. Correlation matrix showing the strength and direction of
relationships among temperature, speed, direction, and apparent power
of dataset from La Haute Borne wind farm.
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FIGURE 2. Visualization of bivariate correlations and univariate
distributions of dataset from La Haute Borne wind farm.

the proposed DL architecture (CNN-AM-DFFNN) to learn
the inherent wind power generation pattern. Give the impact
of the decomposition levels by VMD and the number of
extracted components by PCA, and Exhaustive Searching
Algorithm is proposed in order to explore into the predefined
search space to monitor their impact on the proposed archi-
tectures’ accuracy. Finally, the FDM technique is employed
to select a configuration contributing to the optimal perfor-
mance and accuracy throughout the year.

A. THE PROPOSED VMD-PCA-CAF MODEL
The forecasting framework outlined in this study is illustrated
in Fig. 4. Initially, the aforementioned signal processing
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FIGURE 3. Input dataset acquired from measurement sensors from La
Haute Borne wind farm in 2016: (a) wind power; (b) wind speed; (c) wind
direction; (d) ambient temperature.

techniques are employed to denoise and decompose the
wind power signal. Given that the target variable (wind
power) is not entirely influenced by all input features,
features with higher correlation should be prioritized.
Although considered features have non-linear relations and
PCA captures linear latent features, this feature extrac-
tion technique is selected due to its efficiency, stability,
and strong ability to reduce redundancy among corre-
lated features. While nonlinear methods (e.g., kernel PCA,
autoencoders) can extract richer patterns, our hybrid model
already handles nonlinear dependencies. Thus, PCA serves
as a fast and effective preprocessing step that comple-
ments the deep model while keeping computational cost
manageable.

This study uses a multi-phase forecasting method based
on a single training approach to achieve a highly accurate
1-hour forecasting over a 24-hour, with low and accept-
able errors. The prediction accuracy is influenced by the
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hyperparameters, belonging to the signal processing tech-
niques, the feature extraction technique, and the learning
architecture. The objective is to select the architecture that
yields the maximum accuracy across all seasons by conduct-
ing the training and forecasting process using data from four
specific months of the year. To enable the practical imple-
mentation of the proposed model by the wind farm operator,
an FDM method is employed to determine the optimal con-
figuration comprising the decomposition level and number
of extracted components that yields the lowest forecasting
error.

1) VARIATIONAL MODE DECOMPOSITION (VMD)

It is a modern and powerful method in signal processing
that decomposes non-linear and non-stationary signals into
band-limited intrinsic mode functions. The VMD is built
on an optimization framework and simultaneously calculates
the modes and their corresponding frequencies. This feature
makes VMD very effective in analyzing nonlinear, complex,
and multiscale data [28], specifically wind power. The goal of
VMD is to decompose a signal f(¢) into several sub-signals
or modes p(t), each of which covers a distinct frequency
band. In this study, the wind power modes are extracted in
such a way that their energy is concentrated within specific
frequency band. The mathematical structure of VMD is given
in (1) [29].

K
F@ =m0 M

k=1

Ur(t) represents the k-th wind power signal IMF, while
wy denotes its corresponding center frequency. A(¢) is the
Lagrange multiplier enforcing the reconstruction constraint
of the original wind power signal, and « is the weight-
ing parameter controlling the balance between data fidelity
and spectral compactness in the decomposition. f{z) is the
original wind power signal, and o (¢)+j/(7.f) corresponds to
the Hilbert kernel used to construct the analytic signal. The
operator 9(t) denotes the time derivative, and exp(-j.wg.t) is
the complex exponential used for frequency shifting. VMD is
investigated in this study, due to some advantages. Given the
nonlinear and non-stationary nature of wind power signals,
VMD is considered an efficient technique, as it provides
simultaneous mode extraction, greater stability against noise
and unstable signals, and more precise control over mode
frequencies through optimization.

arg miny; ..

K
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2) PRINCIPAL COMPONENT ANALYSIS (PCA) FOR FEATURE
EXTRACTION

Various dataset obtained from measurement sensors and
Supervisory Control and Data Acquisition (SCADA) Sys-
tem can be employed in wind power forecasting problem.
In this paper, features including wind power, wind speed,
wind direction, and temperature are adopted. These signals
are often interrelated and may contain noise. Feature extrac-
tion converts raw data into a lower-dimension and extracts
more significant features that improve the prediction accu-
racy. Additionally, employing PCA in wind power forecasting
problem results in a more meaningful feature set by extract-
ing the components that explain the greatest variance in the
data. These components typically capture more significant
and impactful information in wind power forecasts. Noise
is prevalent in wind power due to unpredictable external
factors, including wind turbulence and other meteorologi-
cal conditions. PCA improves the quality of the data by
removing less significant variations and focuses on the main
components. PCA is an unsupervised dimensionality reduc-
tion method that maps multidimensional data to a lower-
dimensional space [30], preserving most of the variance in
the data, specifically in seasons with volatile condition (fluc-
tuating wind speed and direction). Steps for PCA implemen-
tation are as follows: standardizing the decomposed wind
power modes, wind speed, wind direction, and tempera-
ture, determining vectors and eigenvalues, and then, creating
a covariance matrix. Actually, covariance depicts features
interdependence, contributing to the selection of the principal
components. Ultimately, the data is converted into a lower-
dimension space.

3) CONVOLUTIONAL NEURAL NETWORK (CNN)

Wind power has complex temporal dependencies as it is
characterized by nonlinear and nonstationary fluctuations,
yielded by varying atmospheric condition (wind speed, and
direction). This work integrates a one-dimensional CNNd
coupled with an AM layer and a DFFNN for multi-step wind
power forecasting. One-dimensional CNNs are a variation
of CNNs specifically built for handling sequential or time-
series data. Rather than considering two-dimensional inputs
like images, these networks extract spatiotemporal patterns
from one-dimensional data using convolutional layers. The
CNN model contains convolutional, pooling, and activation
layers, extracting features from the input dataset together.
Each filter is a sliding window with a defined kernel size
that identifies information such as recurring patterns or rapid
changes through the convolution operation applied to each
time interval. The fundamental aspect of the 1-dimensional
convolution layer is its capacity to identify local correlations
inside the data over a defined time interval. By changing the
number of filters, and parameters, including kernel size and
stride, the model would be able to capture either long-term or
short-term trends in the wind power data. This layer produces
a feature map for forecasting that can be fed to following
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etrics Calculation

layers: AM and DFFNN. The mathematical depiction of the input data into smaller segments. The aggregation oper-

1-dimensional convolution layer is described in (3) [31]. ator is often Max Pooling or Average Pooling. This layer is
Overall, the essential temporal pattern of wind power can used to reduce the dimensionality of the data and extract key
be effectively captured by CNN, contributing to solid basis features without losing the original information of the spa-

for the following models. x[i+k] denotes the input inside the tiotemporal patterns. The mathematical relationship of Pool-
spatial range of the filter, b provides the bias value, y[i] shows ing and its variants are presented in (4)-(6). y'[i] denotes the
the output at index i, k is the kernel number, and SX is the output at position i after applying Pooling. x[i : i+P] denotes
kernel size. the part of the input data that falls into the Pooling window.
K x[j]1s the value of the input signal (or input sequence) at index
. . . P denotes the size of the Pooling window, which determines
ylil= Z x[i+k]-olk]+b 3 {mw many elements of the inp%lt data are considered for

k=0 calculations at each step.

The 1-dimensional Pooling layer is characterized by two . ) o
primary components: an aggregation operator applied to each y[il = Pooling (x[i : i + P]) )
segment, and a sliding window of predefined size that divides Max Pooling(x[i : i + P])
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=max(x[i],x[i +1],...,x[i + P —1]) 5)
i+P—1
Average Pooling(x[i: i+ P]) = P Z;‘ x[j1 (6

4) ATTENTION MECHANISM (AM)

The AM is an advanced DL approach for wind power fore-
casting. It enables the model to focus on the most critical parts
of the time series, capture long-term dependency, filter the
noise, and learn the complex nonlinear interactions among
features. This method calculates the dynamic weights at each
time point in the input data (including wind speed, wind direc-
tion, and temperature) to determine the relative importance of
each factor in predicting the output power of wind turbines.
Under this scheme, the learnable coefficients first convert the
nxd input data into n x dy matrices Q, K, and V. The attention
score is then computed by means of the inner product Q.K*
and a scaling factor of \/Ld? is employed to obtain the final
attention weights via SoftMax [32]. In essence, this process
lets the model detect intricate patterns and nonlinear corre-
lations in the wind data and generate accurate forecasts of
the output power. Since this method models the nonlinear
interactions and the complex time dependencies in the wind
data, it shows a notably greater performance than conven-
tional techniques for time series forecasting.

Equations (7)-(10) represent the AM. «;; is the relative
significance of every key vector ; to the query vector g;. Inner
multiplication of ¢; and k; computes the attention weight c;;.
Then, it is normalized using the SoftMax smoothing function.
This normalization process yields a single total attention
weight for each query vector. Finally, the weight «;; is applied
dynamically to the V (value vector) to get the AM layer’s out-
put. The larger o;; is, the more influential the corresponding
input data point (key) is in the final forecasting.

0=X -Wop,K=X -Wg,V=X-Wy @)
Attention (Q, k, V) ft (Q KT) vV ®
ention (Q, k, V) = soft max .
Vg
aik/
P\ Va
iy = ik ®)
n L]
on ()
n
Output = Zaij -V (10)
j=1

5) DEEP FEEDFORWARD NEURAL NETWORK (DFFNN)

A Deep Feedforward Neural Network (DFFNN) is an exten-
sion of the standard DFFNN, characterized by increased
depth and multiple hidden layers. In wind power forecast-
ing problems, a single DFFNN can be a competing model,
because of its low architectural complexity, ease of imple-
mentation, and stability across different data. In this archi-
tecture, the time-series data flows unidirectionally from the
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input to the output layer without loops or feedback. Each
neuron computes its output using a weighted sum of its
inputs followed by a nonlinear activation function, commonly
sigmoid, tanh, or ReLU . The additional hidden layers enable
the network to capture intricate patterns and hierarchical
features in the data, which is especially valuable for modeling
the nonlinear and dynamic nature of wind power generation.
A DFFNN can be represented in (11) [33]. Wl denotes the
weight matrix in the [/-th layer, a[/] and all — 1] denote the
outputs of neurons in the /-th and (I-1)-th layers, and b/l is
the bias vector in the /-th layer.

all =f (Wil @ =114 pi1) (11

B. THE PROPOSED EXHAUSTIVE SEARCHING
ALGORITHM (ESA)

A primary problem in wind power prediction through
DL is the effective selection of preprocessing parameters.
The decomposition levels, and the number of components
extracted through PCA all influence the forecasting accuracy
of the learning architectures. Thus, optimizing each com-
ponent alone does not guarantee the minimum forecasting
accuracy for the learning model. The selection of the optimal
signal decomposition levels, and the number of extracted of
features significantly influence prediction accuracy. Conven-
tional approaches typically employ a predetermined number
of modes and extracted components, potentially resulting in
the omission of critical information or the incorporation of
irrelevant data.

Thus, this study presents an algorithm to address this
challenge by carefully assessing all potential combina-
tions of decomposition levels and the number of extracted
components through an Exhaustive Searching Algorithm,
represented in Algorithm 1. The algorithm explores in a
predefined search space and is applied to all specified inter-
vals. Unlike heuristic or stochastic methods (e.g., random
or Bayesian search), the ESA systematically evaluates all
feasible VMD-PCA configurations within a tractable space,
ensuring the true optimum is identified without risk of prema-
ture convergence. Its novelty lies in jointly optimizing signal
decomposition and feature extraction with the DL model.
This method facilitates the identification of the optimal
configuration for achieving maximum forecasting accuracy,
while simultaneously reducing the necessity for manual tun-
ing (like through trial and error) via an automated framework.

C. FUZZY DECISION MAKING (FDM) FOR FINAL MODEL
SELECTION

To comprehensively evaluate and demonstrate the efficacy
of the proposed method, the algorithm is applied to four
different intervals of the year. These intervals, which include
the months of January-February, May-June, July-August,
and November-December, are selected as representative of
diverse weather conditions in different seasons of the year.
This intelligent selection allows evaluating the performance
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Algorithm 1 The Proposed ESA Algorithm for Exploring
All 546 Configurations

Input: Raw features, S

Input: Target variable, papparent power

Output: The optimal framework configuration, Coptimal
Require: Initial feature numbers (N'eatures)

Require: Min. and Max. decomposition levels [NMin—VMD
NMaX—VMD]

Require: Min. and Max. extracted components numbers
[NMil‘lfPCA’ NMaxfl)CA]
Require: Sliding window size (Wiength, Sstep)
Initialize Coptimal < NULL, Neounter « | Neonfie . 546
for i =1 to 4 do > Loop through predefined time intervals
for j from NMin=VMD o NMax=VMD {5 1 1 00p through
VMD
Dpower—modes <— VMD (Papparcntpowcr’j )
> Apply VMD for Decomposition
Diew < Concatenation (Dpower—modes» S)
> Concatenating decomposed modes to the dataset
Drormalized < MinMaxScaler (Dpew)
> Normalize the resulting data
(X, Y) < SlidingWindow (Dnormatized> Wiength> Sstep)
> Create feature/target sets
(Xtrains Yirain)s (Xest> Yeest) < SplitData (X, Y)
> Create train and test sets
while Ncounter < Nconfig
if (Ncoumer _ j_NfCatLll'CS) < 0 do
> Loop through PCA
PCA <« FitPCA (Xirain) &> Apply PCA for feature extraction
Xirain—pca < Transform (PCA, Xiain)
Xtest—pca < Transform (PCA, Xies)
Mirained <= CAF (Xtrain—pcas Y train)
> Train the proposed architecture (CAF)
Yrorecasted <= CAF (Miraineds Xtest—pca)
> Forecast with the trained architecture
Erecorded < Errors (Yforecasted Ytest)
> Calculate the NRMSE, NMAE
end if
Ncounter — Ncounter+1
end while
end for
end for
Coptimal < FDM (Erecorded)
> Apply the employed FDM to identify the
configuration with the lowest Error across all months
return Coptimal

of the algorithm under different atmospheric conditions,
including temperature changes, and wind patterns in different
seasons. The algorithm is applied independently for each time
period, and the performance of all possible configurations are
recorded for the subsequent analysis.
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To address the operational demand for a single and opti-
mal forecasting model, an FDM technique is designed and
implemented for the ultimate model selection in this paper.
This intelligent system selects a configuration that not only
has superior performance but also provides the most stable
and reliable results under variable weather conditions. It is
achieved by considering the forecasting metrics obtained by
the proposed integrated search algorithm in all the intervals.

Decision-making based on fuzzy set theory operates such
that each value is assigned a degree of membership in the
interval [0, 1], rather than belonging entirely to a single
set. In the wind power forecasting problem, choosing the
best combination of the decomposition levels (in signal pro-
cessing step) and the number of components (in feature
extraction step) is important, the FDM can help identify
the most optimal configuration to be applied to the fore-
casting model across all months. The NAME and NRMSE
are the main metrics used to evaluate the learning models.
Based on the membership functions, these errors are catego-
rized into three groups: low error, medium error, and high
error. Finally, the fuzzy results are converted into a definite
value through the defuzzification method, which indicates
the final rank of the model. In this paper, the simple aver-
aging defuzzification process is selected, which is defined
using (12) and (13) [34], where N¢ denotes the number of
configurations.

>V NMAE,

Average NMAE = Ne (12)
NL‘
NRMSE,
Average NRMSE = 2. =1 NRMSE. (13)
g Ne

IV. STATE-OF-THE-ART METHODS

A number of DL models and strong signal processing tech-
niques are employed as benchmarks in this study, as described
below.

A. SIGNAL PROCESSING

Significant variations and volatility in the power output
of wind power facilities can misguide the learning algo-
rithm. Consequently, the signal processing techniques must
be adopted for the purification process by eliminating noise
from the features, including power output, wind speed, wind
direction, and ambient temperature [35].

This paper employs some of the most potent signal process-
ing methods to enhance the data quality through the feature
analysis including EMD, and Wavelet Transform. Wavelet
transform is one of the effective methods that allows the
noise removal and extraction of important features by decom-
posing the signal into high and low-frequency components.
Moreover, these signal processing techniques enhance the
quality of the input data and reduce the models’ learning
time by diminishing the complexity of the patterns within
the data. The application of EMD technique to identify the
inherent components of the input signals enhances one’s
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understanding of the system’s dynamic behavior. The previ-
ous findings demonstrated that employing these signal pro-
cessing techniques markedly improves the prediction accu-
racy and bolsters the models stability amongst noisy data.

1) EMPIRICAL MODE DECOMPOSITION (EMD)

In signal processing, the EMD is a potent method for breaking
down non-stationary and complicated dataset into a collection
of intrinsic modes (IMFs). Analyzing the local maxima and
minima of the signal and envelopes of curves help with
obtaining such modes [36]. By breaking down input signals
into simpler components, EMD helps identify hidden pat-
terns, reduces noise, and increases the accuracy of forecasting
models in the field of wind energy forecasting. EMD is dif-
ferent from other signal decomposition techniques, because
it can separate nonlinear and non-stationary signals without
requiring prior knowledge of basis functions. Hence, EMD is
a suitable method for processing wind power signal, as it has
non-linear and non-stationary nature. This approach divides
the signal into a collection of IMFs, each with a different tem-
poral scale by iteratively screening it. Moreover, EMD allows
more exact investigation of the dynamic behavior of complex
systems including wind turbines by preserving the physical
properties of the original signal during the decomposition
process. The mathematical relationship of EMD technique
is based on the decomposition of a signal x(f) into a set
of intrinsic modes and a residual trend r(¢) as expressed
in (14) [34], where c¢;(t) is the i-th intrinsic mode, r(¢) is the
residual value representing the overall trend of the signal, and
n represents the number of intrinsic modes.

x)=> c®+r@ (14)

i=1

2) WAVELET TRANSFORM (WT)

In signal processing, the wavelet transform is a pow-
erful tool that enables simultaneous analysis of nonlin-
ear and non-stationary signals in both the time and fre-
quency domains [37]. In wind power forecasting, the wavelet
transform is very useful, because of its ability to extract
time-frequency characteristics of the wind and identify com-
plex patterns. This approach provides information about both
high-frequency and low-frequency variations concurrently by
separating the original signal into wavelet components at
several scales. In wind dynamics analysis, noise reduction,
and forecast accuracy enhancement, the WT method proves
to be highly efficient. The continuous WT is given (15). s(z)
is the original wind power signal, and W(a,b) is the wavelet
coefficients that indicates the correlation between the wind
power signal and the wavelet at scale a (which is the inverse
of the frequency and determines the level of details) and the
transfer parameter is shown with b (which is in the time
domain). Furthermore, * is the complex conjugate of the
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parent wavelet.
+00 « 1~ b
Wi, b)y=[I3s@) -¢y" | —— )dt (15)
a

In practice, the discrete WT is often used, in which the
signal is divided into a set of detail coefficients (high detail)
and approximation coefficients (low detail). This process is
performed recursively at different levels. The discrete WT is
used in wind power forecasting to eliminate noise in signals
and pull out the important features. Because, it offers higher
computational efficiency, and lower redundancy compared to
continuous WT, which is computationally demanding. The
discrete WT is expressed in (16), where D; ; represents the
wavelet coefficients at scale j and translation parameter k. s(t)
is the original wind power signal, and ; x (¢) is the scaled and
translated wavelet of the parent wavelet.

Djk = /TR s @) Wi () dt (16)

B. OTHER ARCHITECTURES

This paper proposed an architecture, called CAF, that utilizes
CNN, AM, and DFFNN. Furthermore, to prove the higher
efficiency and accuracy of the proposed architecture in wind
power forecasting compared to other powerful ones, some
other models (RNN, GRU, LSTM, Transformer-based Net-
work and Temporal Convolutional Network) are also studied
and are explained in the following subsection.

1) RECURRENT NETWORKS (RNN, GRU, AND LSTM)

Due to complex nonlinear behavior of wind power and mete-
orological factors, learning models must be capable of iden-
tifying these trends and high-frequency variations. RNNs are
widely used DL models for sequence and time series data, due
to their ability to capture temporal dependencies. However,
vanilla RNNs suffer from issues such as gradient instability
and difficulty in learning long-term patterns. To address these
limitations, advanced architectures like Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) have been
developed. LSTM employs input, output, and forget gates
to manage information flow and effectively capture long-
term dependencies. GRU, a simplified version of LSTM with
update and reset gates, offers lower computational complex-
ity while maintaining competitive performance. These prop-
erties make LSTM and GRU well-suited for wind power fore-
casting, where data are nonlinear, volatile, and require models
with both accuracy and adaptability. Given their inherent
capability for capturing complex trends and fluctuation, these
models were selected for this present analysis.

The mathematical formulation of RNN shown in (17)
and (18) illustrates how the hidden and output layers are
calculated at each time step ¢. In this network, the hidden
state h; combines the information about the current input x;
and the previous hidden state 4;_1 and is updated using the
weights W), and Uj, and the bias vector by. This operation
applies an activation function ¢ such as ReLU, and the tanh
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function. It also applies weights Wy, bias by, and correspond-
ing activation function ¢ to calculate the network y; from
the new hidden state h;. This operation enables the RNN
model to absorb information from previous time steps and
learn temporal relationships for the purpose of processing or
predicting sequential input.

hy=0cWy-x,+Up-h—1+bp) (17
yi = ¢ (Wy.hy + by) (18)

The update and reset gates are updated with the new hid-
den state at each time step according to (19) and (20) [38].
In GRU, there are several parameters that play a role in
the updating process and control the information flow. Two
update gates z; and reset r; define major parameters. Every
gate updates the different weights and biases. The weights
consist of W, to update gates and also W, and U, focus on
resetting gates. Apart from every gate having a calculated
value of the gate, bias vectors b, and b, help calibrate the
models for each gate. The sigmoid activation function then
appends a nonlinear function to the computed gate value
and to the inputs. These settings enable the GRU network to
maintain valuable knowledge in past states without including
the new data in the hidden state.

=0 W, x; +U; - hy—1 +b2) (19)
re=0Wr-xt + Uy hi—1 + by) (20)

Equations (21)-(26) describe the LSTM model. The LSTM
network consists of a set of parameters that are used to learn
temporal dependencies and accurately predict data. The input
at each time step x; and the hidden state of the previous step
h;—1 along with the previous cell state ¢;_1 are used as input
data for the calculations. The weights consist of matrices
Wy, W;, and W, for the inputs of forget gate, input gate, and
candidate cell state, respectively. Uy, U;, and U, are weight
matrices that handle information from previous hidden states
h;—1 and apply to the respective components of the forget,
input, and candidate cell gates. Each gate is also provided
with bias vectors b. Such values enable the LSTM to retain
core information for valid forecasting and retrieve long and
short-term dependencies. c; is the cell state of the LSTM
network at time step . O, is the output gate value. It is clear
from the formulation that unnecessary information can be
filtered out during learning, improving the model’s ability to
identify patterns and key meteorological data.

ﬁ:O’(Wf"xt+Uf'ht—l+bf) (21)
ir=0 Wi x; + Ui h—1 + bi) (22)
¢, =tanh (W, - x; + U - hy—1 + be) (23)
a=frOc1 +it®C; (24)
Oy =0Wo-xs+Up-hi—1 + bo) (25)
h; = O; © tanh(c;) (26)
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2) TRANSFORMER-BASED NETWORK

The Transformer is DL model that is primarily based on
self-attention [39]. The Transformer architecture has been
recently utilized for wind power forecasting as an alternative
to recurrent and convolutional models. The Transformer’s
self-attention mechanism adaptively captures both local vari-
ations and long-range dependencies in wind power time
series, while positional encodings preserve sequential order.
The Transformer is a scalable and efficient framework that
improves forecasting accuracy for not stationary or stable
renewable energy dataset. It involves multi-head attention,
position-wise feed-forward networks, and residual normal-
ization.

3) TEMPORAL CONVOLUTIONAL NETWORK (TCN)

Temporal Convolutional Networks (TCNs) are a type of DL
model that uses causal and dilated convolutions to model
sequential data. It enables capturing long-range temporal
dependencies without using recurrent connections. Unlike
traditional recurrent networks, TCNs process the whole input
sequence at the same time. This framework contributes to
more efficiency and avoids vanishing gradients. Actually, the
receptive field grows exponentially with depth with dilated
convolutions. It allows network to learn both short-term
changes and long-term trends. TCNs are effective at capturing
the nonlinear temporal patterns of power generation, which
improves accuracy of short-term and medium-term forecast-
ing. TCNs are a great tool for forecasting wind energy as
they are able to capture complex changes with high training
efficiency. The details and structure of TCN are described
in [40].

V. EXPERIMENTAL SETUP

A. FORECASTING PERFORMANCE METRICS

In the field of wind power forecasting, it is essential to use
multiple evaluation criteria to accurately evaluate the per-
formance of forecasting models. The power generation rate
in wind power plants fluctuates greatly due to changes in
wind speed, and atmospheric conditions. MSE (mean square
of error) is more sensitive to sharp changes in the forecast
of generated power and is useful for identifying large fore-
casting errors. NMAE, by normalizing the mean absolute
magnitude of the errors, allows for a comparison of the
performance of models in forecasting wind power. Another
metric termed NRMSE (normalized root mean squared error),
provides a suitable benchmark for evaluating both long-term
and short-term wind power forecasts. The simultaneous use
of these metrics helps with holistic evaluation of the wind
power forecasting architectures performance from multiple
perspectives and enhances the reliability of forecasts for
generation planning and grid management. The metrics used
in this paper are shown in (27)-(30) [41]. The value of the
forecasted target variable and its actual value are represented
by y”, and y;, respectively. y. denotes the capacity of the wind
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TABLE 1. Architectures parameters.

Models Hyperparameters
Units = 256
Hidden Layer 1 Activation = ReLU
Drop Out 1 =0.3
DFENN Units = 32
Hidden Layer 2 Activation = ReLU
Drop Out2=10.2
DFFNN Output Layer Units = 6
RNN Layer 1 Units = 256
RNN Layer 2 Units = 128
RNN-DFFNN Units = 64
DFFNN Layer 1 S
Activation = ReLU
DFFNN Output Layer Units = 6
GRU Layer 1 Units = 128
GRU Layer 2 Units = 64
GRU-DFFNN
DFFNN Layer 1 Units = 64
DFFNN Output Layer Units =6
LSTM Layer 1 Units = 256
LSTM Layer 2 Units = 128
LSTM-DFFNN Units = 64
DFFNN Layer 1 S
Activation = ReLU
DFFNN Output Layer Units = 6
Filters = 64
Kernel Size =3
TCN Dilation Rates =[1, 2, 4, 8]
DeepTCN-Net Drop Out=0.1
DFFNN Layer 1 Units = 64
DFFNN Output Layer Units = 6
Filters = 128
. Kernel Size =3
Convolution Layer 1 Padding = Valid
Strides =3
Filters = 128
Convolution Layer 2 Kernel Size = 1
Padding = Valid
Strides = 1

CTrans-Net

Multi-Head Attention
Layer

Attention Units = 128
Attention Heads = 4
Activation = tanh

DFFNN L ) Units = 64
ayer Activation = ReLU
Units = 6
DFFNN Layer 2 Activation = Linear
Filters = 128
. Kernel Size =3
Convolution Layer 1 Padding = Valid
Strides = 3
Filters = 128
. Kernel Size =1
Convolution Layer 2 Padding = Valid
CNN-AM-DFFNN Strides = 1

Attention Layer

DFFNN Layer 1

DFFNN Layer 2

Attention Units = 128

Units = 64
Activation = ReLU

Units = 6

farm, and n denotes the number of samples.
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B. DATA RECONSTRUCTION AND STANDARDIZATION
(DATA SCALING)

In multi-step forecasting, especially for wind power fore-
casting, it is necessary to create a time series using the
sliding window approach to leverage past information for
predicting the future values. This method allows the model
to capture patterns and temporal relationships between the
data and provides more accurate forecasts for different time
steps. For this purpose, the first 10 minutes of data, including
features such as wind speed, wind direction, temperature, and
generated power, must be converted into time-series input.
A fixed time window (1 hours, 6 samples) of the past data is
slid forward continuously. For each window, the inputs and
forecast variable for the next time steps (wind power forecast
1 hour later) are defined. After this step, the data should be
divided into training, validation, and test sets. Furthermore,
to improve the performance of the model, data normalization
is performed using the Min-Max Scaling method so that
features with different scales do not negatively affect the
performance of the model. Data standardization using the
Min-Max scaling method is depicted in (31), where X$caled
represents the standardized value of the data, X represents the
input signal’s value, and X”"* and X™" represent the upper
and lower limits of the data, respectively.

. X — xmin
Xsuzlcd — W (31)
C. MODEL CONFIGURATIONS
The architecture and configuration specifications of the key
components used in the proposed model are comprehensively
represented in Fig. 5 and TABLE 1, respectively.

To track temporal interdependence in wind power data,
the proposed CAF architecture is meticulously designed.
The first convolutional layer (configured with 128 filters,
a kernel size of 3, and stride of 3) extracts short-term tem-
poral variations with simultaneous reduction of redundancy
through down-sampling. This attribute enables the model to
capture rapid variation in wind power without overwhelming
computational burden. The features extracted from the first
layer are employed in the second convolutional layer (with
128 filters, a kernel size of 1 and stride of 1). The convo-
lutional layer acts as a feature projection mechanism and
preserves expressive capacity. These integrated convolutional
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FIGURE 5. Graphical representation of the proposed CAF architecture.

layers create a comprehensive hierarchical representation that
strikes a balance between scalability ands accuracy.

To further enhance forecasting accuracy, an attention
mechanism with 128 units is used, which provides the abil-
ity to assign importance weights to extracted features from
convolutional layers. It enhances the model’s potential to
prioritize informative time steps and suppresses irrelevant
fluctuations. This improves both interpretability and robust-
ness against noisy input features. Subsequently, the dense
feed-forward layers integrate the existent features into a non-
linear latent space. The first dense layer, with 64 neurons
and activation, captures higher-order nonlinear dependencies
while ensuring efficient training and avoiding vanishing gra-
dient issues, whereas the final dense layer outputs the six-
step-ahead (1-hour ahead) forecast. The parameter choices
(number of filters, kernel size, stride, and units) were decided
to balance expressive capacity with generalization capability,
ensuring that the model remains computationally efficient
while delivering accurate and stable multi-step forecast.

D. COMPUTATIONAL ENVIRONMENT

The experiments were performed on a computer with Intel(R)
Core (TM) 15-7500 CPU @ 3.40 GHz and 16 GB RAM with
Windows 10 64-bit operating system with Python language
and Tensorflow, and Scikit-Learn libraries.

VI. RESULTS AND DISCUSSION

This section evaluates the proposed VPCAF data-driven fore-
casting architecture and its accuracy in forecasting wind
power generation in three phases. To evaluate and validate
the generalizability the proposed architecture, two datasets
from La Haute Borne in France and Hill of Towie in Scotland
are adopted. For the first wind farm, training periods include
[January 5 to February 5], [July 4 to August 4], [May 13 to
June 13], and [November 24 to December 24]. Forecasts are
then conducted for the day following each period: February 6,
June 14, August 5, and December 25. The training periods for

193564

M
(o

a2 Value 2

[TITTTTTTTTITITT)

Flatten Laﬁer

[TTTITTITITTIT T

TABLE 2. Case studies for ablation study.

Architecture

Case Studies VMD PCA CNN AM DFENN
Case 1 x x v * Y
Case 2 % v v * Y
Case 3 v x v * Y
Case 4 v v v * Y
Case 5 X x x d Y
Case 6 x v X d Y
Case 7 v X * v Y
Case 8 v v X d Y
Case 9 x x v v Y
Case 10 X v v d Y
Case 11 v x v v Y
Case 12 v v v v Y

the second wind farm are [December 5 to January 5], [April
12 to May 12] and [July 27 to August 27]. The forecasts are
performed for January 6, May 13 and August 28, respectively.
This approach is designed to evaluate the accuracy of the fore-
cast under different meteorological and temporal conditions.

In this study, a set of advanced signal processing tech-
niques, including EMD (with decomposition into 10 intrin-
sic modes), WT (with decomposition into 3 levels that
include an approximation coefficient, and 3 detail coef-
ficients), and VMD (with decomposition into 6 modes),
are used to denoise and decompose input apparent power
signal and forecast wind power in a 1-hour time horizon
(through the multi-step scheme). To validate the superiority
of VMD for denoising and decomposition of wind power
signal, its performance is compared with EMD and WT
in the first phase. For this purpose, after training the pro-
posed CNN-AM-DFFNN model with data from July 4 to
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FIGURE 6. Ablation Study for 12 Case Studies: Forecasting performance analysis under different model variations.

Evaluation of Ablation Study Cases

W NRMSE
W NMAE

10.7%

Error (%)

Best Case

Case 1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case 10 Case 11 Case 12
Case Study

FIGURE 7. NRMSE and NMAE evaluation of ablation study cases.

August 4, the forecast for wind power generation on the next
day (August 5) is performed. In addition to the proposed
model, several benchmark models were also evaluated for
comparison.

In the second phase of the study, all configurations are
independently assessed across all time intervals using the
proposed ESA. Specifically, for each period, the DL model is
trained and conducts forecasting with all feasible configura-
tions of decomposition and feature extraction for each month,
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aiming to identify and select the best configuration matched
with the trend of that specific month.

In the third phase of the study, considering the operational
demand of the wind farm to use a single and optimal forecast-
ing architecture throughout the year, an FDM scheme based
on simple averaging is proposed in this study to select the
optimal configuration that can provide acceptable forecast
accuracy for each month. This approach is designed to ensure
the accuracy and efficiency of the model under different
temporal and atmospheric conditions. The aforementioned
phases utilize the dataset from La Haute Borne wind farm.
For validation, the dataset from Hill of Towie wind farm is
employed.

A. PHASE 1: SIGNAL PROCESSING, TRAINING, AND
FORECASTING USING THE PREDICTIVE MODELS

In the initial phase, the ablation study of the proposed model
and efficacy of DL-based models (DFFNN, RNN, GRU,
LSTM, DeepTCN-Net, CTrans-Net and the proposed archi-
tecture) combined with different signal processing techniques
are investigated. In the next part, the results for forecasts
using the proposed and baseline architectures are presented.
Finally, computational complexity of the proposed model in
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TABLE 3. Results of forecasting based on architectures and signal processing techniques.

Models VMD EMD WT

MSE NMAE (%) NRMSE (%) MSE NMAE (%) NRMSE (%) MSE NMAE (%) NRMSE (%)
DFFNN 0.1119 2.5608 3.3449 0.7058 6.5759 8.4014 0.2036 3.4101 45119
RNN-DFFNN  0.0197 1.0493 1.4034 0.4943 53628 7.0306 0.1639 3.2405 4.0487
GRU-DFFNN  0.0204 1.0353 1.4276 0.6201 5.7280 7.8744 0.1254 27214 3.5413
LSTM-DFFNN  0.0251 1.1275 1.5836 0.6120 5.9949 7.8227 0.1549 3.0202 3.9354
DeepTCN-Net  0.0597 1.8865 24434 0.6623 63990 8.1384 0.1509 3.0994 3.8856
CTrans-Net 0.1095 2.6517 3.3086 0.3471 1.3291 5.8919 0.3098 42173 5.5663
CAF 0.0166 0.9474 1.2899 0.4859 5.4275 6.9705 0.2122 3.4362 4.6065

terms of training time, inference time and number of trainable
hyperparameters is discussed.

1) ABLATION STUDY

In order to demonstrate the efficacy of the proposed method
and each element’s contribution to the enhancement of the
forecasting accuracy, an ablation study is implemented in
12 case studies shown in TABLE 2.

To demonstrate the superiority and effectiveness and of the
proposed DL architecture (case 12), a comparative analysis
of ablation study is carried out. The results for forecasts and
corresponding error values are illustrated in Figs. 6 and 7.
Architectures without VMD or PCA (e.g., cases 1, 2, 5, 6,
9, and 10) present relatively higher errors, with NRMSE and
NMAE values exceeding 8% and 6%, respectively, which are
the sign of their limited forecasting capability. The adoption
of VMD and PCA integrated with the proposed CAF model
significantly improves performance, as observed in cases 3, 4,
7, and 8, with NRMSE values between 1.7% and 3.3%. As it
is demonstrated, the proposed model (CAF) in case 12 out-
performs other cases with the lowest NMRSE and NMAE
values (1.087% and 0.812%). Nonetheless, the synergistic
use of VMD and PCA for signal decomposition and feature
extraction, and CNN and AM for temporal feature learning,
and DFFNN for prediction leads to robust and superior accu-
racy, proving the advantage of the proposed architecture.

2) PERFORMANCE COMPARISON WITH BASELINE
ARCHITECTURES

The results of the forecasting criterion obtained from
the investigated combinations are displayed in TABLE 3.
Figs. 8(a)-(g) illustrate the forecasting results. The forecast-
ing results obtained using VMD technique clearly demon-
strate that the proposed CAF model significantly outper-
forms other methods, achieving the lowest errors across all
evaluation metrics, with an MSE of 0.0166, an NMAE of
0.9474%, and an NRMSE of 1.2899%. Other hybrid architec-
tures outperformed the RNN-DFFNN model, which achieved
an MSE of 0.0197, an NMAE of 1.0493%, and an NRMSE
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of 1.4034%. The GRU-DFFNN model ranked third, with an
MSE of 0.0204, an NMAE of 1.0353%, and an NRMSE
of 1.4276%. Despite the intricate architecture of LSTM-
DFFNN, it exhibited suboptimal performance with an MSE
0f 0.0251, an NMAE of 1.1275%, and a NRMSE of 1.5836%.
The DeepTCN-Net model recorded higher errors compared
with these hybrid architectures, with an MSE of 0.0597,
an NMAE of 1.8865%, and an NRMSE of 2.4434%. The
CTrans-Net model exhibited even weaker performance, with
an MSE of 0.1095, an NMAE of 2.6517%, and an NRMSE of
3.3086%. The DFFNN model had the weakest performance
among all models, with an MSE values of 0.1119, an NMAE
of 2.5608%, and an NRMSE of 3.3449%, indicating a sub-
stantial performance gap. The results clearly indicate the
superiority of the proposed model (CAF) in the first phase
of this study over hybrid architectures, due to its strong
VMD-based feature processing capacity.

The implementation of the EMD technique, combined with
the proposed CAF model, exhibited superior performance
relative to the other analyzed models, with an MSE of 0.4859,
an NMAE of 5.4275%, and an NRMSE of 6.9705%. The
RNN-DFFNN model ranks second, exhibiting a marginal per-
formance difference from the CAF, with an MSE of 0.4943,
an NMAE of 5.3628%, and an NRMSE of 7.0306%. The
CTrans-Net model recorded the next best performance, with
an MSE of 0.5471, an NMAE of 5.9591%, and an NRMSE
of 7.8919%. In contrast,

DeepTCN-Net produced much higher errors, with an
MSE of 0.6623, an NMAE of 6.3990%, and an NRMSE
of 8.1384%. The LSTM-DFFNN and GRU-DFFNN mod-
els exhibited comparable performance, with an MSEs of
0.612 and 0.6201, respectively. The DFFNN model has
the weakest performance among all examined architectures,
yielding the greatest errors, including an MSE of 0.7058,
an NMAE of 6.5759%, and an NRMSE of 8.4014%. The
forecasting results demonstrates that integrating EMD with
CAF yields high forecasting accuracy. While the relatively
close performance of RNN-DFFNN model highlights posi-
tive contribution of EMD to signal decomposition, the CAF
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FIGURE 8. Results for multi-step forecasting (August 5) using different models and signal processing techniques: (a) DFFNN; (b) RNN-DFFNN;

(c) GRU-DFFNN; (d) LSTM-DFFNN; (e) DeepTCN-Net; (f) CTrans-Net; (g) the

model still outperforms all others, confirming its superior
forecasting capability.

The WT technique is employed for signal processing of
the apparent power. The GRU-DFFNN model demonstrated
exceptional performance, achieving the lowest error metrics,
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proposed model (CNN-AM-DFFNN).

with an MSE of 0.1254, an NMAE of 2.7214%, and an
NRMSE of 3.5413%. After that, the LSTM-DFFNN model
ranks next with an MSE of 0.1549, an NMAE of 3.0202% and
an NRMSE of 3.9354%. The DeepTCN-Net model followed
closely with an MSE of 0.1509, an NMAE of 3.0994%,
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TABLE 4. Model complexity and computational cost of the proposed and
baseline architectures.

Training Time Inference Time Total Trainable

Models per Epoch (ms) per Forecast (ms) Hyperparameters
DFFNN 169 50 65126
RNN-DFFNN 980 54 126022
GRU-DFFNN 1510 58 95174
LSTM-DFFNN 3590 70 478150
DeepTCN-Net 626 71 93446
CTrans-Net 880 59 185158
CAF 568 60 118982

Feature Count vs. Training Performance: Example for August 5

Training Time (s)

15 20 25 30
Feature Count

FIGURE 9. Scalability Analysis of the propose architecture: Effect of
Feature Count on Training Time and NRMSE for August 5.

and an NRMSE of 3.8856%. The RNN-DFFNN model also
showed acceptable performance by recording an MSE of
0.1639, an NMAE of 3.2405% and an NRMSE of 4.0487%.
The CTrans-Net model recorded larger errors compared with
these, with an MSE of 0.3098, an NMAE of 4.2173%, and
an NRMSE of 5.5663%. Using the VMD signal process-
ing technique and the forecasting architecture proposed in
this paper has led to superior outcomes relative to other
combination of signal processing techniques and forecasting
models. This combination is able to extract complex features
and distinct frequency modes from the input data with high
accuracy, which in turn leads to improved performance of the
forecasting model and a significant reduction in forecasting
errors. Compared with other signal processing techniques and
other forecasting models, the proposed architecture in this
paper has been able to achieve the most accurate results in
various evaluations, including MSE, NMAE, and NRMSE,
and shows significant superiority. These findings indicate
the high effectiveness of combining VMD with the proposed
CAF model in processing and analyzing complex data. Signal
processing-based forecasting with the proposed forecasting
model using the VMD method has provided significantly
better results than the results obtained by using the empirical
mode decomposition and wavelet transform methods, which
can be attributed to several reasons. First, VMD, using the
adaptive decomposition method, allows for the extraction
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FIGURE 10. Results for NRMSE based on different VMD and PCA
configuration for four intervals: (a) February 6; (b) June 14; (c) August 5;
(d) December 25.

of signal frequency components, which tend to overlap less
with each other. This feature leads to better separation of
dynamic patterns in the data. On the other hand, the empirical
mode decomposition and wavelet transform methods may not
get key signal information correctly, as they are sensitive to
noise. The second thing is that VMD made the forecasting
model work better by keeping time-frequency coherence.
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TABLE 5. Forecast wind power using the FDM-recommended configuration (Njeye; =26 and Neomponents =28)-

February 5 Junel4 August 5 December 25
Time (h)
Forecasted (kVA) Actual (kVA) Forecasted (kVA) Actual (kVA) Forecasted (kVA) Actual (kVA) Forecasted (kVA)  Actual (kVA)
1 1899.81 1940.87 1438.46 1443.74 1754.05 1756.79 1894.57 1875.81
2 2093.79 2105.95 1486.27 1497.33 3532.98 3505.60 1535.69 1514.44
3 2047.52 2048.84 2132.51 2123.80 1258.98 1244.72 1867.25 1846.89
4 1606.60 1553.45 1084.25 1117.07 1416.15 1421.18 2134.23 2102.07
5 1708.10 1669.48 1519.84 1523.13 1003.38 1006.90 3907.33 3886.01
6 2243.43 2202.17 2456.97 2454.11 1539.09 1558.65 2562.80 2523.37
7 1513.23 1483.88 1847.07 1892.26 3147.88 3144.13 3007.81 2993.07
8 2914.02 2921.54 480.26 815.31 778.32 2247.65 2217.55
9 2737.46 2720.03 300.60 1438.26 1418.89 3824.82 3819.29
10 2859.00 2878.23 658.48 670.55 679.04 2482.47 2445.24
11 2294.40 2281.99 950.46 576.17 583.46 3002.21 2976.25
12 2295.61 2270.65 2480.54 2499.53 942.33 936.71 3521.74 3502.81
13 2341.92 2281.52 2190.21 2198.00 797.13 799.32 2575.89 2576.36
14 2588.62 2542.37 1341.24 1330.55 1761.19 1731.59 2696.87 2715.81
15 2615.99 2586.02 1010.66 1029.20 767.39 747.60 3301.32 3325.67
16 2862.97 2783.99 409.81 1491.53 1475.27 2243.43 2255.41
17 2321.69 2271.80 377.81 1002.96 990.59 3512.95 3531.13
18 2350.23 2258.72 284.88 643.44 638.64 6032.07 5951.86
19 2634.59 2679.33 513.52 1286.06 1274.66 5520.78 5497.63
20 3115.10 3157.02 507.16 699.27 704.72 5900.56 5890.20
21 2968.36 2908.51 305.00 943.89 946.77 6723.22 6693.02
22 2400.33 2275.51 763.92 1194.59 1185.15 7905.38 7910.68
23 2361.22 2274.44 1248.17 1249.10 816.45 823.98 7855.22 7821.54
24 1621.29 1582.68 577.20 1370.60 1353.46 8033.71 7996.75

This makes it easier to look at complicated data like wind
power generation. According to the results obtained from
comparisons, the combined VMD-PCA-CAF approach is
selected as the optimal architecture proposed in this paper.

3) COMPUTATIONAL COMPLEXITY

TABLE 4 compared the proposed and baseline architectures
in term of complexity and computational cost. Model com-
plexity is assessed based on training time per epoch, inference
time per forecast and total number of trainable hyperparame-
ters.

Results show that DFFNN has the lowest complexity due
to its shallow structure, whereas LSTM-DFFNN indicates the
highest complexity that has yielded significantly longer train-
ing time (3590 ms/epoch) and a much larger trainable param-
eter set (~478k). Given the trainable hyperparameter counts
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of DeepTCN-Net and CTrans-Net (~93k and ~185k), the
training times reached to 628 ms/epoch and 880 ms/epoch.
Despite the superior performance of CAF compared to
LSTM-DFFNN, it has moderately lower complexity and less
trainable parameters (~119k) achieving training time and
inference time of 568 ms/epoch and 60 ms/forecast, respec-
tively.

The results indicate that the CAF framework achieves
a favorable balance between complexity and performance,
being more computationally efficient than recurrent (LSTM,
GRU, and RNN) and temporal architectures (DeepTCN-Net
and CTrans-Net) while achieving superior forecasting
accuracy.

Fig. 9 shows the effect of the number of input features
on the training performance and forecasting error of CAF
architecture. It indicates that the increasing feature count
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FIGURE 11. Results for multi-step forecasting (next 1 hour) using the proposed architecture (CAF) with optimal decomposition level and
extracted components: (a) February 6; (b) August 5; (c) June 14; (d) December 25.

contributes to higher training time as computational burden
increases. However, NRMSE does not consistently decrease
with more input features, suggesting that additional fea-
tures raise computational burden without guaranteeing higher
accuracy. This underlines the need to carefully choose the
right set of features so the model achieves a good balance
between accuracy and efficiency, making it both practical and
scalable for real-world applications.

B. PHASE 2: APPLYING THE PROPOSED ESA
As proven in the previous section, the combination of VMD
and the CAF leads to the highest forecasting accuracy. Algo-
rithm 1 illustrates the design of the proposed ESA, which
aims to evaluate all configurations of decomposition levels
and extracted components in a predefined space. The ESA
systematically explores all possible decomposition levels and
number of extracted components using VMD and PCA for
each month independently. Then, this configuration is applied
to the preprocessing step of the input signals. Following
preprocessing, the new dataset is fed into the CAF archi-
tecture. Next, the desired forecasting metrics are calculated
after training and forecasting. Results for NRMSE Based
on Different VMD and PCA Configurations are shown in
Figs. 10(a)-(d).

In this work, the effect of the model’s dependency to the
decomposition levels and number of extracted components
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are extensively studied. The forecast for February 5 shows
that higher accuracy can be achieved with more extracted
components (like 29 or 32) and more decomposition levels
(like 29 or 28), as shown in Fig. 10(a). Notably, the low-
est error is achieved with the combination of 29 levels for
decomposition and 29 components after feature extraction,
resulting in an NRMSE of 0.399%. The results revealed that
increasing the number of decomposition level and extracted
components leads to improved forecasting accuracy. Due to
the nature of wind power pattern in February, using a more
of decomposition levels helps the model overcome fluctu-
ations. In addition, the large number of features extracted
by PCA caused more information to be retained from the
original data. Then, the model has a greater ability to learn the
complex behavior of the signal. At the same time, the com-
bination with 18 decomposition levels and 19 components
also demonstrated relatively good performance (an NRMSE
of 0.412%), implying that for data with less details, it is
acceptable to choose a lower number of decomposition levels
and components. However, selecting a decomposition level
and number of extracted components close to 28 and 29,
respectively, generally yields desirable performance. These
results indicate the necessity for a more comprehensive study
to extract additional information from the signal, particu-
larly in months such as February that exhibit more intri-
cate patterns. This elucidates the rationale for employing
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FIGURE 12. Forecasting results for Hill of Towie wind farm using the
proposed architecture (CAF) and optimally identified configuration:
(a) January 6; (b) August 28; (c) May 13.

a higher number of decomposition levels and extracted
components.

The forecast results for June 14 (illustrated in Fig. 10(b))
indicate that employing 28 decomposition levels and 31 com-
ponents derived from PCA yields optimal model perfor-
mance, achieving the minimum NRMSE of 0.24%. These
results emphasize how crucial careful feature selection and
accurate signal decomposition are to raising model accu-
racy. June is typically marked by gradual changes and the
emergence of more stable trends. With 28 decomposition
level, VMD enables a finer-grained signal decomposition,
facilitating the model to distinguish subtle changes. Further-
more, selecting 31 decomposition levels help the model to
keep its complex structure and learn important information
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in the raw data. However, combinations such as Nijeye] =27
and Ncomponents=30 also perform well (an NRMSE of
0.265%). Nonetheless the configuration with 28 decomposi-
tion levels and 31 final components also provides the most
accurate forecast.

As it is shown in Fig. 10(c), the forecast for August
5 shows that the configuration with 27 decomposition lev-
els and 26 PCA-extracted features achieves the lowest
NRMSE, which is 0.380%. The model demonstrated superior
performance because of its capacity to learn and adapt to
the complex variations and existent noise in the data for this
day. It is deduced that better results arise from decomposition
levels ranging from 25 to 30 and number of extraction com-
ponents between 24 and 29. The observed benefits stem from
the inherent characteristics of summer wind patterns, which
can include localized thermal effects, leading to significant
short-term fluctuations in wind speed.

The December 25 forecast shows that the best model
with 26 decomposition levels and 29 PCA-extracted fea-
tures achieves the lowest NRMSE, which is 0.467%, as it
is depicted in Fig. 10(d). The model demonstrated superior
performance because of its capacity to learn and adapt to
the complex variations and noise present in the data for
this month. It is deduced that better results usually arise
from decomposition levels ranging from 24 to 28 and extrac-
tion components between 27 and 31. The observed benefits
stem from the inherent fluctuations in winter winds during
December, which leads to variation in wind speed and erratic
patterns.

C. PHASE 3: IMPLEMENTATION OF THE FDM FOR
IDENTIFYING THE OPTIMAL AND FINAL FORECASTING
FRAMEWORK

This study employed the simple averaging FDM method
to identify the optimal configuration from all possible
combinations. This scheme analyzes the normalized values
of performance indices (NRMSE) from four distinct time
intervals. Each interval contains 546 NRMSE values, collec-
tively forming a 2184-dimensional decision-making space.
The goal of this proposed system is to comprehensively ana-
lyze the performance of all models in this multidimensional
space and select the configuration that not only has the best
overall performance, but also shows the most stable behavior
under variable weather conditions.

The analysis of the results proves that the configuration
Niever=26 and Ncomponenss=28 is identified as the optimal
configuration for the preprocessing step. The forecasts with
the selected configuration for four months are shown in
Figs. 11(a)-(d). Also, the denormalized values of the forecasts
are presented in TABLE 5. This selection is based on the mean
value of the performance index (NRMSE), which is calcu-
lated as 0.428. The NRMSE values for periods are 0.43%
on 5 February, 0.281% on 14 June, 0.383% on 5 August, and
0.617% on 25 December, respectively. These values indicate
that the selected framework has an acceptable performance
in all time periods. Similar to the outcome obtained from
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considering the NRMSE metric, applying FDM to the NMAE
values also selects the configuration with Ny =26 and
Neomponens=28. The average NMAE value for this configu-
ration is 0.333%, comprising 0.333 on January 5, 0.214% on
May 13, 0.291% on July 4, and 0.494% on November 24.

These results demonstrates that the selected combination
of decomposition levels and number of final components
delivers superior performance across all time periods, achiev-
ing a very low error is some cases like on 13 May. Although
arelative increase in the error rate is observed on 24 Novem-
ber, the model generally shows good stability across dif-
ferent periods. Therefore, the configuration Nj.;=26 and
Neomponens=28 is identified as the optimal and most stable
combination.

D. PERFORMANCE VALIDATION ON THE SECOND WIND
FARM

To further evaluate the generalization capability and robust-
ness of the proposed framework, comprising VPCAF with
the proposed ESA and employed FDM technique, the second
dataset from Hill of Towie wind farm in Scotland is adopted
for validation. The second dataset is fed into the ESA to
conduct training and forecasting using the proposed CAF
architecture across all combinations of decomposition level
and extracted features counts. Finally, the FDM technique
is applied to identify the most optimal combination over the
investigated intervals, presenting each season.

The results for forecasts are shown in Figs. 12(a)-(c). The
configuration Njeye;=28 and Neomponenss=31 is determined as
the optimal combination. With such decomposition levels and
extracted feature count, CAF architecture performs forecasts
with the average NRMSE of 0.502% (0.585% for May 13,
0.692% for August 28 and 0.229% for January 6) and NMAE
of 0.381% (0.434% for May 13, 0.53% for August 28 and
0.178% for January 6). It demonstrates that the trained model
successfully tracks variations and forecasts the wind power
generation with substantially high accuracy and precision
throughout all seasons.

VII. CONCLUSION

This research presents an innovative deep learning frame-
work, termed VPCAF-FDM, for multi-step short-term
(1)-hour) wind power forecasting. The benchmark systems
adopted in this study are derived from La-Haute-Borne and
Hill of Towie wind power plants, which provide reliable
and representative real-world datasets. A multi-phase frame-
work is designed to tackle the substantial issues of forecast
accuracy caused by fluctuating wind speeds and uncertain
weather conditions. The framework begins with advanced
data preprocessing analysis, in which VMD is proved to
surpass other techniques in phase 1. The VMD technique
is utilized to decompose the historical wind power signal,
followed by PCA for feature extraction and noise removal.
The core of the proposed forecasting methodology is the DL
architecture, termed CAF, which integrates CNN, AM, and
DFFNN and has demonstrated the superior accuracy. This
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work proposed an integrated algorithm during the second
phase of this study, called ESA, to examines different key
hyperparameters of VMD and PCA, specifically the decom-
position levels and the number of extracted components. The
model’s generalizability and robustness were evaluated using
data from four distinct months, which encompassed all four
seasons of the year. In the final phase, the FDM technique
was implemented to determine a configuration that provides
the most balanced and appropriate forecasting efficacy across
all seasons. Using the dataset from La-Haute-Borne wind
farm, the results confirm the effectiveness accuracy of the
proposed framework by identifying and then applying the
optimal configuration of Nieye;=26 and Neomponens=28 to
the signal decomposition and feature extraction steps. The
identified configuration exhibits extraordinary accuracy, with
average NRMSE and NMAE values of 0.428% and 0.333%,
respectively, for the four studied intervals. The forecasts using
CAF model with the identified configuration for the dataset
from Hill of Towie wind farm (Njeye; =28 and Neomponents=31)
provides the average NRMSE and NMAE of 0502% and
0.381%, respectively.

Future work will focus on applying Deep Reinforcement
Learning (DRL) for probabilistic forecasting of wind power
generation with deep risk assessments and prediction drift
analysis.
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