
Labeling AI-generated Content on Short-Form Video Platforms

A Cross-Platform Analysis of YouTube Shorts and TikTok

EPA2942: Master Thesis EPA Maaike Kuipers

Labeling AI-generated Content on Short-Form Video Platforms

A Cross-Platform Analysis of YouTube Shorts and TikTok

by

Maaike Kuipers 4882466

Chair: Prof. dr. M.E. (Martijn) Warnier (TU Delft)
First Supervisor: Dr. S. (Savvas) Zannettou (TU Delft)

External Supervisor: Rogier Schröder (KPMG)
Project Duration: February, 2025 - June, 2025

Faculty: Faculty of Technology, Policy and Management

Program: MSc Engineering and Policy Analysis

Cover: Illustration generated with OpenAl DALL·E (ChatGPT, 2025)
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

During my Bachelor's in Systems Engineering, Policy Analysis and Management, I developed a passion for socially relevant issues and an interest in programming and data science. This combination led me to choose the Master's programme in Engineering and Policy Analysis at TU Delft, where I further refined my analytical abilities and explored the intersection of technology and policy.

When Savvas Zannettou suggested researching AI labels on short-form video platforms, I was immediately drawn to the topic. It combined my interests in social media and data-driven research. Earlier in my studies, I had written an essay on TikTok's algorithmic impact on body image. That work, together with my personal experience as a social media user, made this project both exciting and relatable.

As the research progressed, the relevance of the topic became even more apparent. News about Algenerated content surfaced regularly, and people around me began saying things like, "I honestly can't tell anymore what is AI and what isn't." It felt meaningful to contribute to this discussion by examining how AI-generated content is currently labeled on social media, and whether users can rely on those labels.

I would like to sincerely thank Savvas Zannettou for his continuous and dedicated guidance throughout this thesis. His expertise in social media research and his thoughtful feedback were invaluable at every stage of the project. I am especially grateful for his weekly support and his willingness to engage with all my questions and ideas. I also thank KPMG for the opportunity to write my thesis within the organization. In particular, I am grateful to Rogier Schröder for his weekly guidance and valuable feedback, even though the topic was outside his usual area of expertise. Finally, I would like to thank Martijn Warnier for stepping in as chair during the graduation process and for contributing valuable insights and support to the committee.

Writing this thesis has been an exciting and fulfilling way to conclude my student years. I found it particularly interesting to transition from being a social media user to taking on the role of a researcher. this gave me a fresh perspective on the platforms I engage with daily. I hope this work provides valuable insights into the challenges and opportunities of AI-generated content on social media, encourages readers to think critically about their own social media habits, and invites them to reflect on the risks involved. Most of all, I hope they enjoy reading this thesis and find it relatable.

Maaike Kuipers Delft. June 2025

Executive Summary

The growing capabilities of generative AI are making it increasingly difficult for users to distinguish between human-created and machine-generated content. This development challenges users' ability to critically assess online media and raises pressing concerns about the spread of misinformation, the erosion of public trust, and potential disruptions to democratic processes. These risks are especially pronounced on short-form video platforms such as TikTok and YouTube Shorts, where content circulates rapidly through algorithm-driven feeds and is often consumed with minimal context.

In response to these challenges, both TikTok and YouTube Shorts have introduced Al labels to increase transparency and help users identify Al-generated content. However, it remains unclear how frequently these labels are used, how consistently they follow platform policies, and whether they influence user engagement.

This thesis investigates these questions through a cross-platform analysis of labeling practices. A dataset of over 12,000 videos was collected using Al-related hashtags. A mixed-method approach was applied combining statistical tests with manual validation and thematic coding. This study examines the prevalence of Al labels, their alignment with official platform guidelines, and their relationship to user engagement metrics.

The results show substantial differences between TikTok and YouTube Shorts in how Al labels are applied. On TikTok, the majority of labels are applied by creators themselves. Across the full dataset, very few cases were identified in which TikTok appeared to have applied a label. YouTube Shorts Al labels were applied more frequently, but no distinction is made between labels added by creators and those applied by the platform. Most labels on YouTube appear in low-visibility locations, such as the expanded video description. An exception was found in a small number of videos marked as sensitive, where the label appeared more prominently.

Labeling accuracy is limited on both platforms, but for different reasons. On TikTok, many videos that should receive an Al label according to the platform's own guidelines do not have one. On YouTube Shorts, labels are applied more frequently, but often to content that does not meet the platform's own labeling criteria. The analysis of user engagement reveals small but statistically significant differences between labeled and unlabeled videos. These differences concern likes, comments, and shares in relation to views, as well as the view counts themselves. However, only one non-negligible effect was found: TikTok videos with an Al label have a higher median view count than those without a label. Overall, Al labels are applied inconsistently. Both platforms show clear gaps between what their official policies state and how labeling is implemented in practice.

At the policy level, the findings reveal clear gaps between regulation and platform practice. While the Digital Services Act and EU AI Act aim to promote transparency, they do not impose a direct obligation on platforms to label AI-generated content. As a result, labeling remains inconsistent and poorly aligned with regulatory goals. Although both TikTok and YouTube Shorts support metadata standards such as C2PA, platform-applied labels are rare.

As generative AI continues to be used in politically and emotionally sensitive domains, voluntary or inconsistent labeling is no longer sufficient. This thesis identifies key weaknesses in current labeling practices and offers concrete directions for improving transparency, accountability, and platform governance in the age of AI. In doing so, it provides the first large-scale, cross-platform study of AI labeling on short-form video platforms, contributing to both academic research and policy discussions on responsible AI communication.

Contents

Summary 1 Introduction 2 Literature Review						ii
2 Literature Review						11
						1
 2.1 Literature Search Strategy	 on SQ2) of Al La	 	 		 	3 4 4 5 6 7 7 8 9 10
3 Data Collection 3.1 Data Collection Cycle		 	 	 		 12 13 15
4 Methodology 4.1 Data Cleaning and Preprocessing 4.1.1 Merging Datasets 4.1.2 NaN likes 4.1.3 Platform-Specific Labels and Missing Values 4.1.4 Time-Based Filtering 4.1.5 VPN Locations and Engagement Metrics 4.2 Methodology for Sub-Question 3 4.2.1 Platform specific Approach 4.2.2 Engagement Analysis Approach 4.3 Methodology for Sub-Question 4 4.3.1 Data Sampling and Data Cleaning 4.3.2 Thematic Coding 4.3.3 Inter-rater Reliability 4.3.4 Assessing Labeling Consistency						18 18 18 19 19 20 21 21 22 23
5 Results 5.1 Exploratory Data Analysis	· · · · · · · · · · · · · · · · · · ·	 	 		 	25 25 26 27 28 28 31 31

Contents

	5.4	Key Takeaways	33
6			
ь			35 35
	6.1	-, -	35
			35
			36
	6.2	· · · · · · · · · · · · · · · · · · ·	37
	6.3	,	38
	6.4		38
	0.4		39
	6.5		40
	0.0		40
		the state of the s	40
		<u> </u>	40
			41
7	Con	nclusion	42
Re	fere	nces	44
Α	Sea	arch Queries/Methods	51
В	Dot	a Collection and Processing Details	53
Ь	В .1	y	53
	B.2		54
	B.3	3.0	56
		9	
С			61
			61
	C.2	Categories – TikTok	62
D	Eng	gagement Hypotheses	63

List of Figures

2.1	Structured Literature Review Approach	3
2.2	C2PA Label Application Process by TikTok [63]	8
	Platform-applied Al labels on TikTok and YouTube	
3.1	Overview of the Data Collection Cycle	13
3.2	High-Level Overview of the Data Collection Process Scripts	17
4.1	Na Likes on YouTube Shorts	18
5.1	Al label application trends over time for YouTube Shorts and TikTok	26
5.2	Percentage of Videos with Hashtag per Platform (YouTube Shorts vs. TikTok)	27
5.3	Al Label Distribution Among the Overlapping Creators	27
5.4	Percentage of Labeled vs. Non-Labeled Videos per Platform	28
5.5	Cumulative Distribution Functions of Engagement Metrics for YouTube Videos	29
5.6	Cumulative Distribution Functions of Engagement Metrics for TikTok Videos	30
5.7	Share of videos classified as Al-generated per platform, based on thematic coding	33
B.1	Distribution of Engagement Metrics on YouTube Shorts and TikTok	54

List of Tables

3.1	Final Hashtag Set Used for Data Collection	15
4.1 4.2		19
	Second Sample)	22
4.3	Codebook Main Categories	23
4.4	Confusion matrix used to assess consistency of AI label application	24
5.1	Distribution of Al Labels by Platform (in %)	28
5.2	Summary Statistics YouTube (significance level $\alpha=0.05$)	29
5.3	Summary Statistics TikTok (significance level $\alpha=0.05$)	30
5.4	Cohen's Kappa Scores for Inter-Rater Reliability on Al Category Classification and Label	
	Appropriateness	31
5.5	Labelling Consistency YouTube	31
5.6	Labelling Consistency TikTok	31
5.7	Performance metrics thematic coding	32
A.1	Search Queries Used in Literature Review	52
B.1	Column Structure of the Final Dataset	53
B.2	Top 18 hashtags for #ai, #aiart, and #aigenerated (1-3 of 25)	56
B.3	Top 18 hashtags for #aicat, #aivideo, and #aiedtis (4-6 of 25)	56
B.4	Top 18 hashtags for #artificialintelligence, #aitools, and #aivfx (7-9 of 25)	57
B.5	Top 18 hashtags for #aibaby, #aifashionmodel, and #aigeneratedfilm (10-12 of 25)	57
B.6	Top 18 hashtags for #aistorytelling, #creativeai, and #aiinnovation (13-15 of 25)	58
B.7		58
B.8	Top 18 hashtags for #aitrends, #aicommunity, and #aistory (19-21 of 25)	59
	Top 18 hashtags for #airevolution, #aiartcommunity, and #aiartwork (22-24 of 25)	59
B.10	Top 18 hashtags for #aiartwork (25 of 25)	60

1

Introduction

In recent years, the rise of generative AI has fundamentally changed the way digital content is created and consumed. Where it was once easy to recognize whether content was created by a machine or a human, today's advanced AI tools have blurred this distinction. Recent studies confirm that users increasingly struggle to reliably identify AI-generated content [1]–[3]. Meanwhile, the growing competition among major tech companies is driving the rapid advancement of AI tools [4]. These ongoing developments are expected to further complicate the identification of AI-generated content in the near future.

This trend is particularly concerning because generative AI is increasingly used to create misleading or harmful content. Deepfake technology has enabled the creation of politically sensitive or abusive videos. For instance, in 2022, a deepfake of Ukrainian president Volodymyr Zelensky appeared online in which he announced Ukraine's surrender to Russia [5]. In 2024, a parody ad featuring Kamala Harris went viral, portraying her as a "diversity hire" who "may not know the first thing about running the country" [6]. French president Emmanuel Macron has also been the subject of deepfake satire, with videos portraying him giving hair tutorials or appearing at an '80s-themed party [7]. These are not isolated incidents. Research shows that deepfakes represent a serious threat to democratic processes [8]. Beyond political misuse, other individuals have also been targeted. For example, Taylor Swift was victimized by the spread of non-consensual pornographic deepfakes [9].

What these scandals have in common is that they were all disseminated through social media platforms. The global reach of these platforms amplifies both the societal influence of such content and the urgency of ensuring transparent communication about its origin. While harmful Al-generated content can spread across many channels, short-form video platforms in particular play a central role in its virality and impact. Their algorithmic recommendation systems, large user bases, and highly visual formats make them especially powerful amplifiers of Al-generated content. To illustrate, in 2024, short-form video platforms YouTube and TikTok reported over 2 billion and over 1.5 billion monthly active users [10].

In response to these rapid developments in artificial intelligence, the European Commission has adopted the EU AI Act [11]. However, this legalization primarily targets content generation tools and places limited responsibility on platforms that distribute this content. To enhance transparency, TikTok and YouTube Shorts have implemented AI labels that inform users when content has been modified or generated by AI. These labels may be added manually by content creators or automatically by the platforms based on machine-readable metadata required under the EU AI Act.

Despite these legal efforts, AI labels vary significantly across platforms in terms of visibility, wording, and source. This raises questions about their effectiveness and practical implementation. For example, TikTok uses the label "AI-generated" and displays it in the video player. YouTube Shorts usually uses the label "modified or synthetic content", which is often displayed in less prominent places. While prior qualitative studies have explored user perceptions of AI labeling [12], [13], there is limited research done on the actual frequency and consistency of AI label implementation across platforms.

Furthermore, the effect of AI labels on user behavior remains unclear. Some studies suggest that labeled content is perceived as less credible and receives lower engagement [14]. Other studies indicate that labels may stimulate curiosity and increase user interaction [15]. These mixed findings underline

the importance of platform context and highlight the need for quantitative, comparative research in the area of Al labels on short-form video platforms.

Given the increasing difficulty of distinguishing Al-generated content and the damage its misuse causes in the real world, it is crucial that platforms adopt clear, visible, and consistent labeling practices. Inaccurate or inconsistent labels can undermine user trust, mislead the public, or even contribute to the spread of misinformation. Yet little is known about how often and how accurately these labels are actually applied.

This research investigates how AI labeling practices differ between YouTube Shorts and TikTok, focusing on their prevalence, consistency, and impact on user engagement. To address these questions, a mixed-method approach was applied, combining quantitative techniques (such as descriptive statistics and hypothesis testing) with qualitative methods (including manual label validation and thematic coding). By integrating these perspectives, the study explores a complex, multi-actor policy challenge at the intersection of platform governance and AI regulation. The topic is highly relevant to the field of Engineering and Policy Analysis due to the growing use of generative AI in politically and socially sensitive domains. As it becomes harder to distinguish between human- and machine-generated content, transparent labeling is essential. This thesis contributes to both societal and scientific debates by offering the first large-scale, cross-platform empirical analysis of AI labeling on short-form video platforms. It provides evidence-based insights that support responsible policy development and guide platform design beyond perception-based studies.

Accordingly, the central research question of this thesis is as follows:

How do Al labeling practices on TikTok and YouTube Shorts differ in prevalence and consistency, and how do these labels impact user engagement?¹

To answer this main research question, four sub-questions have been formulated:

- 1. What content moderation techniques are currently applied on short-form video platforms, and what are their main challenges according to literature?
- 2. How are Al labels applied on TikTok and YouTube Shorts, what are their characteristics, and what does existing research say about their application and user perception?
- 3. How prevalent are Al labels on TikTok and YouTube Shorts for videos with selected hashtags, and how is their presence related to user engagement within each platform?
- 4. How accurately and consistently are Al labels applied in practice compared to platform-specific guidelines across and within short-form video platforms?

The outline of this thesis is as follows: Chapter 2 addresses Sub-Questions 1 and 2 through a structured literature review. This review explores existing research on content moderation strategies, the use of warning labels, and current practices and challenges related to Al labeling. Chapter 3 describes the data collection process, including the selection of relevant hashtags, the scraping of TikTok and YouTube Shorts data, and the preparation of the dataset for analysis. Chapter 4 outlines the analytical methods used to address Sub-Questions 3 and 4. This includes statistical analyses to examine their relationship with user engagement and thematic coding to evaluate their application consistency. Chapter 5 presents a brief exploratory data analysis, followed by the outcomes of the analytical approach introduced in Chapter 4. Finally, Chapter 6 interprets the results in light of the existing literature and discusses their implications for platforms and policy development.

¹Throughout this thesis, AI labeling/AI labels is used as a generic term covering both the implementation of TikTok's 'AI-generated content' label [16] and YouTube Shorts' 'altered or synthetic content' label [17].

Literature Review

This chapter presents the approach and findings of the structured literature review conducted to answer Sub-Question 1 and Sub-Question 2. This review mainly focused on content moderation, Al labeling practices, and related challenges on short-form video platforms. Scopus was used as the primary academic database as it provides a broad range of peer-reviewed articles. In addition, backward snowballing was applied during the review process. This means that when a referenced article in the bibliography of a reviewed study was considered relevant, it was also included in the literature for this thesis. Besides academic sources, official documentation from the reviewed platforms was consulted to include platform-specific information. For statistical data, Statista was used as an additional non-academic source.

This chapter first discusses the literature search strategy (Section 2.1), followed by the review of literature for Sub-Question 1 in Section 2.2 and for Sub-Question 2 in Section 2.3. Finally, Section 2.4 presents the knowledge gaps identified through this study.

2.1. Literature Search Strategy

This section explains how the literature was selected and reviewed. A structured and transparent approach was followed to make the review process both comprehensive and reproducible. This structured literature approach is visualized in Figure 2.1.

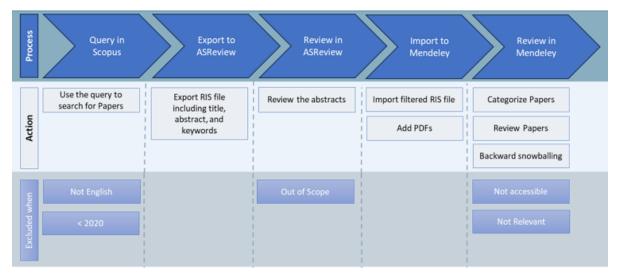


Figure 2.1: Structured Literature Review Approach

The same structured approach was applied to both sub-questions:

1. A search query was performed in Scopus (see Table A.1 for the specific queries).

2. Articles were excluded when:

- The article had a publication year before 2020.
- · The article was not written in English.
- 3. The identified articles were exported as a RIS file from Scopus. This RIS file included citation information and abstracts.
- 4. The RIS file was imported into ASReview, an AI-powered tool designed to streamline article selection [18]. This tool allowed for the import of the RIS file with the abstracts. These abstracts were presented one by one for screening. Each abstract was classified as relevant or irrelevant to the sub-question. ASReview stored these decisions and made it possible to export a RIS file with only the articles which were classified as relevant.
- 5. This RIS file was then imported into Mendeley, a reference management software [19]. In Mendeley, articles were categorized into folders corresponding to the respective research questions.
- 6. The full-text PDFs of the selected articles were added manually, followed by additional filtering based on the following criteria:
 - If an article was not publicly accessible, the TU Delft database was consulted.
 - If the article was unavailable in all sources, it was excluded.
- 7. Relevant parts of the studies were highlighted in Mendeley and added to a notebook in Mendeley where those quotes or parts were categorized.
- 8. Additional articles were identified through backward snowballing, where relevant studies found in the reference lists of included articles were included in the review.

2.2. Content Moderation and Its Challenges (SQ1)

This section reviews the literature to answer the first sub-question:

What content moderation techniques are currently applied on short-form video platforms, and what are their main challenges according to literature?

Firstly, the concept and types of content moderation will be explained. Subsequently, important issues such as bias, transparency and inconsistencies in warning labels are discussed. Table A.1 presents the specific Scopus query and shows the number of articles identified, marked as relevant, and ultimately included.

The query included social media platforms and keywords associated with content moderation. The platforms included were the parent company of Instagram and Facebook (Meta), YouTube and TikTok. These platforms were selected because they are the most widely used short-form video platforms based on monthly active users [10].

2.2.1. Content Moderation

Combating disinformation on social media has long been a major challenge [20]. To address this issue, several regulatory frameworks have been introduced. Within the EU, the most prominent is the Digital Services Act (DSA). This framework includes stronger transparency rules for very large online platforms (VLOPs) [21]–[23].

In response to these regulatory pressures, content moderation strategies have been implemented by social media platforms. Content moderation refers to the process of monitoring or intervening in online discussions to ensure compliance with platform policies [24]. Moderation practices can be categorized based on their restrictiveness (hard vs. soft moderation), level of automation (automated vs. manual moderation), and governance structure (platform-based vs. community-based moderation). This section examines the current moderation techniques employed by platforms by highlighting both their effectiveness and the challenges they face.

Hard vs. Soft Moderation

One of the main differences in content moderation is between hard and soft moderation. Hard moderation refers to the outright removal of content or accounts. This is often in response to serious policy violations such as hate speech or misinformation. Examples of hard moderation are the de-platforming

of U.S. President Donald Trump on X and the removal of harmful content related to misinformation [25], [26]. Since these techniques typically occur after content has been seen by users, they are considered post-exposure interventions [27].

Soft moderation, in contrast, seeks to reduce the visibility or perceived credibility of content without removing it entirely. A widely used soft moderation strategy is the application of warning labels, which provide contextual information without restricting access [28]. These labels function as pre-exposure interventions, ensuring that users are aware of potential misinformation before engaging with content [27]. Warning labels have been applied across multiple domains, including COVID-19 misinformation [26], [29], (e-)cigarette health risks [30]–[32], abortion-related content [33], self-harm awareness [34], and political misinformation [35].

Manual vs. Automated Approaches to Moderation

Manual moderation involves human moderators who review flagged content. However, research shows that these moderators often work under poor conditions and face psychological stress due to prolonged exposure to disturbing material [36], [37]. To reduce this burden, many platforms have adopted automated moderation systems. These AI-based systems can automatically detect and flag harmful content. Yet, their effectiveness is limited, particularly when it comes to understanding context, sarcasm, and implicit bias [38], [39].

Because of these limitations, AI moderation is not accurate enough to operate independently, especially in detecting nuanced violations such as coded hate speech or misleading narratives [37]. As a result, most platforms use a semi-automated approach that combines automated content filtering with human oversight [40]. This hybrid model remains the dominant strategy, as it aims to balance the speed and scale of automation with the contextual understanding of human moderators.

Platform-Based vs. Community-Based Moderation

Another key distinction in content moderation practices is between centralized (platform-controlled) moderation and decentralized (community-based approaches). Platform-based moderation refers to moderation policies and enforcement mechanisms implemented directly by social media companies.

In contrast, community-based moderation is user-driven. This method relies on peer enforcement through reporting systems, comment flagging, and volunteer moderators. As Seering [41] argues, incorporating community-based moderation is important because it empowers users to self-regulate their online spaces. Nowadays, most large platforms rely on a combination of both community-based and centralized moderation strategies [42], [43]. However, their enforcement remains largely centralized, with final decisions made by platform authorities rather than community members.

Remarkably, Meta recently fired all third-party moderators (often referred to as fact-checkers) due to concerns about political bias. The company has since adopted a similar system to X, which employs a decentralized community note system [44], [45].

2.2.2. Criticisms and Challenges in Content Moderation

Although the previous section described the main types of content moderation strategies, their practical implementation has not been without problems. In practice, these strategies are often criticized for being inconsistent, opaque or even discriminatory. This section examines the most prominent challenges short video platforms face in implementing moderation practices, including bias and exclusion, user resistance, inconsistent labeling and lack of transparency.

Bias, Exclusion and Limitations of Content Moderation

A lot of major platforms shifted to the strategy of 'reducing' rather than 'removing' over the last years. Meta and YouTube applied this by reducing the visibility of flagged content [46], [47]. However, these platforms seem to struggle with ensuring fairness and transparency in their moderation processes.

Research has shown that TikTok's moderation system disproportionately impacts marginalized communities, particularly LGBTQ+ and black creators. These users report that their content is being deprioritized for no apparent reason, which is also known as shadow banning [48], [49]. Similar concerns have been raised regarding YouTube and Meta, which are also mentioned in the literature for employing comparable shadow banning practices [46], [50], [51]. Moreover, algorithmic moderation does not perform equally well across different languages and cultural contexts. This leads to weaker enforcement in non-English-speaking regions, further exacerbating existing inequalities on global platforms [52].

In addition to social and cultural bias, political bias has also been observed in moderation practices. Studies indicate that right-wing content is more frequently removed. This pattern is often attributed to the presence of hate speech, although this remains a highly debated and politically sensitive issue [40].

Finally, current moderation strategies have also shown limitations in terms of technical accuracy. For example, research found that Instagram's classifier was able to detect only 27% of the comments that users perceived as toxic [53].

In response to shadow banning and perceived bias in moderation systems, users have developed strategies to avoid detection. One example is the use of "algospeak" on TikTok. Algospeak refers to intentionally changing words (e.g., "le\$bean" instead of "lesbian") to avoid being flagged or hidden [50].

In addition to changing their language, some users choose to migrate to alternative platforms with looser moderation policies. Inaccurate information removed from platforms like TikTok or YouTube often resurfaces on less regulated sites like BitChute and Odysee. On these platforms, engagement with such content remains high [54].

Labeling inconsistencies and Transparency Issues

A study by Ling, Gummadi, and Zannettou [29] on TikTok's COVID-19 warning labels found several inconsistencies. In some cases, unrelated content was incorrectly labeled, while harmful posts were not labeled at all. These errors can confuse users and reduce the effectiveness of labeling strategies.

A related problem is the so-called "implied truth effect." This means that users often see unlabeled content as more trustworthy, simply because they assume that if there is no warning the content must be accurate [20], [55]. On the other hand, wrongly labeling legitimate content can also damage trust, especially in credible sources. In addition, Zhang, Zaleski, Kailley, *et al.* [56] warns that flawed moderation systems may do more harm than good.

These labeling problems are part of a broader concern about transparency on social media platforms. According to their own statements, companies like TikTok and YouTube comply with the EU Digital Services Act (DSA). However, it often remains unclear how these platforms apply moderation and labeling in practice, especially when algorithms are involved [21], [47].

Even when platforms attempt to adjust their algorithms to promote reliable sources, research shows that institutional actors such as the WHO or NHS are frequently overshadowed by popular independent creators. This suggests that visibility on these platforms continues to be driven more by popularity than by expertise [57].

Meta has done some efforts to enhance transparency, such as the creation of its oversight board. However, this has also faced criticism. Researchers argue that these efforts often lack real accountability and diversity [58]–[61].

2.2.3. Conclusion

This section described the main content moderation strategies currently used on short video platforms. These strategies include both hard moderation (content removal and de-platforming), as well as soft moderation (warning labels that aim to inform rather than restrict access) [25], [28].

To apply these strategies, platforms make use of semi-automated systems combining AI detection with human oversight [40]. However, these implementations are found to have bias, and some groups feel like they are deprioritized without a reason. So, users often find ways to bypass moderation. One way to do this is through "algospeak" or by switching to less-regulated platforms [50], [54].

Transparency remains a major concern, as platforms frequently fail to disclose the criteria behind their moderation decisions [21], [62]. The EU Digital Services Act (DSA) has been established to improve accountability and transparency in content moderation. However, its practical impact remains limited, particularly when algorithmic decision-making is involved [21], [23].

In addition, research finds that warning labels are applied inconsistently [29]. This inconsistency may reinforce the implied truth effect, leading to higher perceived trustworthiness of unlabeled content. Incorrect labeling, in turn, can undermine trust in credible sources [20], [55].

In conclusion, this section answered the first sub-question by outlining current moderation strategies on short-form video platforms and identifying their main challenges. The findings point to an urgent need for more transparent, fair and consistent moderation practices to combat misinformation effectively and maintain user trust.

2.3. AI Labeling Practices on TikTok and YouTube Shorts (SQ2)

This chapter addresses Sub-Question 2 by examining how Al labels are implemented on short-form video platforms:

How are Al labels applied on TikTok and YouTube Shorts, what are their characteristics, and what does existing research say about their application and user perception?

It focuses on the technical and regulatory frameworks behind these labels and explores differences in their application, visibility, and impact. The technical implementation is specifically examined for YouTube and TikTok, as these are the platforms included in the empirical analysis of this research. Further justification for this platform selection is provided at the beginning of Chapter 3.

The literature review was based on a structured search using keywords related to three main categories: (1) Al-generated content and labeling on short-form video platforms, (2) the technique both TikTok and YouTube use to support Al labeling (C2PA) [63], [64], and (3) the potential influence of Al labels on engagement, prevalence, perception, and trust. The search query included terms such as "Al-generated," "synthetic media," "C2PA," "label," "engagement," and "trust," and targeted platforms TikTok and YouTube. The full search query is shown in Table A.1, along with the number of articles identified, marked as relevant, and used.

2.3.1. AI Labels

Al labels are a type of warning label designed to alert users that certain posts have been generated, altered, or enhanced using artificial intelligence. They represent a form of soft content moderation. This approach does not remove or block content but adds contextual information to influence user interpretation, as discussed in Section 2.2. Their main goal is to increase transparency and reduce the likelihood that users will misinterpret Al content as human-created [65].

The reduction of misinterpretations is especially important given the growing difficulty of distinguishing Al-generated content from that created by humans in the current media landscape [66], [67]. Such challenges are reflected in research showing that users often fail to detect Al-generated media, whether it involves tweets [1], visual profiles [2], or even faces in deepfake videos [3]. These trends underline the growing importance of clear and consistent labeling. The need for such labels is further reinforced by the increasing ease and scale with which Al-generated content can now be produced [68]. This makes effective labeling especially important in sensitive domains like healthcare and politics, where the risks of misinformation are higher [69].

To address the growing concerns surrounding artificial intelligence, the European Union has introduced comprehensive legal frameworks. The Artificial Intelligence Act (Al Act) represents the first comprehensive legal framework worldwide focused specifically on artificial intelligence. Although the Act came into force in 2024, it will only become fully applicable in 2026 [11]. The Act requires Algenerating content tools to ensure that such content is clearly labeled in a machine-readable format [11], [70]. For example, this means that tools like ChatGPT or other Al content generators must include a label in the metadata of the generated content, allowing platforms and systems to automatically recognize and disclose its Al origin. Additionally, the Act introduces transparency obligations for deployers of Al-generated content. However, according to the Act, this obligation does not apply to individuals using Al purely for personal and non-professional purposes [71].

Furthermore, TikTok and YouTube do not explicitly cite regulatory compliance as the main reason for introducing Al labels. Instead, they emphasize goals such as transparency, responsible Al use, and supporting both content creators and users [16], [63], [64]. Although these motives are consistent with EU policy objectives, both platforms present their initiatives as voluntary.

2.3.2. Standardization Through C2PA

To support transparency goals and ensure consistent labeling practices, both TikTok and YouTube are taking a dual approach to moderating Al-generated content. On the one hand, the platforms allow creators to voluntarily label their content as Al-generated. On the other hand, the platforms apply Al labels themselves by using the Coalition for Content Provenance and Authenticity (C2PA) standard [63], [64].

This standard enables platforms to read the machine-readable labels that AI content generation tools must include, as discussed in the previous chapter. These embedded labels contain metadata

that specify whether the content has been generated or modified [72]–[74].

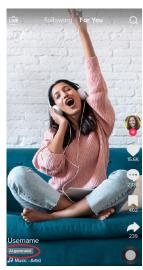
Figure 2.2 illustrates TikTok's automated AI labeling process based on the C2PA standard. The user generates content using an AI tool and uploads it to TikTok. During the upload, TikTok detects the machine-readable metadata embedded in the file and automatically applies the 'Generated with AI' label.

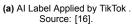
Figure 2.2: C2PA Label Application Process by TikTok [63].

2.3.3. Platform Differences in Labeling Practices

Although both platforms apply Al labels and rely on the C2PA standard, their approaches differ in terms of transparency of the source, placement, and disclosure requirements.

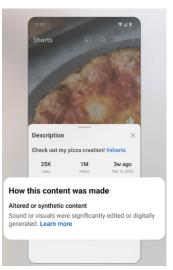
TikTok


TikTok applies two types of AI labels. The first is automatically added when AI-generated or manipulated content is detected via embedded C2PA metadata (see Figure 2.2). This 'AI-generated' label appears directly below the username (Figure 2.3a).


The second type is creator-applied and appears in the same place. If users voluntarily disclose the use of AI, TikTok adds the label 'Creator-labeled as AI-generated' (Figure 2.3b) [63].

YouTube Shorts

YouTube also applies Al labels, but its approach differs in multiple aspects. For example, it uses a different term: "Altered or Synthetic Content". Moreover, the label appears in the expanded video description (Figure 2.3c). For sensitive topics, the label also appears directly in the video player (Figure 2.3d) [64].


Creators can choose to label their content, but unlike TikTok, YouTube does not indicate whether a label was added by the creator or the platform. Additionally, not all Al-generated content requires labeling; clearly unrealistic content does not require a label [64].

(b) Al Label Applied by TikTok Creator . Source: [16].

(c) Al Label in the Expanded Description on YouTube Shorts . Source: [64].

(d) Al Label Visible in the Video Player on YouTube Shorts (Sensitive Topic) . Source: [64].

Figure 2.3: Platform-applied Al labels on TikTok and YouTube

Comparison of AI Labeling Practices

Although both TikTok and YouTube rely on the C2PA standard, they differ in how they implement and display Al labels.

- Transparency of Source: TikTok distinguishes between platform-applied and creator-applied labels, while YouTube does not.
- Label Text: TikTok uses Al-generated, while YouTube uses synthetic or altered content.
- Label Placement: TikTok's labels appear in the main interface, directly under the username. YouTube shows the warning only in the expanded description unless the topic is sensitive.
- Disclosure Requirements: On YouTube, clearly unrealistic content does not require labeling. However, on TikTok, nearly all Al-generated content must be labeled.

These differences reveal broader inconsistencies in how Al-generated content is labeled across platforms, despite shared technical foundations and regulatory pressures. While platform policies and technical frameworks determine how and if Al labels are applied, their actual effectiveness depends on how users perceive and interact with labeled content.

2.3.4. Engagement, Trust, and Transparency Effects of AI Labels

A growing body of research examines how Al labels influence user perception and engagement, but findings remain mixed. Some studies suggest that people perceive content without Al labels as more authentic [75], [76], while Al labeled content is often viewed as less credible [65] and shared less frequently [14]. Although this reduction in sharing may seem counterproductive for user engagement, it can help limit the spread of potentially misleading synthetic media [77].

However, Li and Yang [78] found no significant main effects of Al labels on perceived sharing intentions. Yet, they observed significant effects of the information type, indicating that the effectiveness of such labels depends on the content type and informational context.

Adding to this complexity, some studies report positive effects of Al labeling. A research shows that labeling Al-generated content can significantly increase behavioral engagement even though it does not affect users' psychological perceptions [15]. This increased engagement is attributed to users' curiosity about Al-generated content, which motivates them to interact more frequently with labeled material.

Despite these insights, most quantitative research on AI labeling focuses on text-based content, and studies examining its effects on user behavior on short video platforms remain limited. Although some

research has explored user engagement with Al-generated images, such as paintings and photographs [79], the role of labeling in these contexts has not been examined.

In addition to these quantitative studies, qualitative research has explored which types of AI labels are considered most appropriate and effective for different user groups [12], [13]. These studies underscore that it is important to design AI labels that are both clear and consistent, while also accounting for platform-specific characteristics, target audiences, and content types.

Beyond user engagement, trust and perceived transparency also play a key role in how effective Al labels are. Studies show that trust in such labels varies across user groups and contexts. For example, young adults are more likely to trust credibility markers issued by reputable organizations than those added by content creators themselves [80].

The ethical value of AI labeling further depends on how clearly and visibly this information is presented. Labels that are hard to notice or understand can create a false sense of transparency, allowing deceptive practices to persist [81].

Finally, as generative AI becomes more advanced, concerns grow that it may reinforce social biases [82] and unintentionally shape public opinion [83]. In this context, clear and consistent labeling is an essential tool for content moderation, helping users better assess where content comes from and how it was created.

2.3.5. Conclusion

This section examined how TikTok and YouTube implement AI labels, highlighting differences in technical standards, label visibility, and enforcement criteria. Both platforms use the C2PA standard to support content traceability [73], [84]. However, their implementation differs significantly. TikTok applies both platform- and creator-assigned labels, which appear visibly in the main interface [16]. YouTube, by contrast, usually shows labels only in the video description and only in the player for sensitive topics. It also does not indicate whether the label was applied by the platform or the creator [64].

Existing research on AI labels shows that user perception is highly context-dependent. Labeled posts are often perceived as less trustworthy [14], [65], and may be shared less frequently. However, some studies find the opposite effect: labeling can increase behavioral engagement—such as likes and shares—driven by user curiosity about AI-generated content [15]. Trust in AI labels also varies by source; users generally place more trust in labels from platforms or institutions than in those added by individual creators [80].

Despite these developments, inconsistencies remain in how labels are applied and understood. Research highlights the importance of consistent and clear labeling practices to avoid the illusion of transparency [81], yet current platform strategies vary in execution and effectiveness.

This section answered Sub-Question 2 by providing an overview of how AI labels are technically implemented on TikTok and YouTube, what their main characteristics are, and how users perceive and respond to them according to existing research. Building on these insights, the next section discusses the key gaps found in the literature and presents how this study contributes to addressing them.

2.4. Knowledge Gaps

Al labels are increasingly used to improve transparency and inform users about Al-generated content. However, their implementation across platforms remains inconsistent in terms of visibility, criteria, and enforcement [16], [64]. While TikTok and YouTube both rely on the C2PA standard, they differ significantly in label placement, user disclosure requirements, and whether they distinguish between platformand creator-applied labels.

Although several qualitative studies have explored perceptions and preferences of Al labels [12], [13], little is known about the actual prevalence of these labels and whether they are applied consistently and in accordance with platform-specific guidelines. Existing research tends to focus on related areas, such as misinformation labels [29] or Al content on other platforms like Pixiv [79], but rarely on Al labels themselves, and not in a cross-platform comparison.

Given prior findings on inconsistencies in warning label application [29], similar issues may arise with Al labels. Yet to date, no study has systematically compared how frequently Al labels are used, whether they follow platform rules, and how these factors influence user engagement, which is the focus of this research.

Furthermore, some studies focused on how users perceive Al labels in terms of credibility, authen-

ticity, and trust [75], [76], [80]. A smaller but growing number of studies has examined behavioral engagement, such as likes, shares, and comments. The findings are mixed. Some studies report that labeled content receives less engagement because users see it as less credible [14]. Others find the opposite: labeled content can attract more interaction, possibly due to curiosity [15]. These differences show that the impact of Al labels depends strongly on the context and platform, and they underline the need for more focused research on short-form video.

In addition, user trust in AI labels is known to be context-dependent and influenced by factors such as label visibility and source credibility [20], [80]. These inconsistencies risk undermining transparency efforts and the implied truth effect may unintentionally reinforce misinformation beliefs [55].

Addressing these gaps is essential to understanding how AI labels work in practice, how they affect user behavior and how consistently they are applied. This study quantitatively examines the prevalence of AI labels and their relationship with user engagement on TikTok and YouTube. In addition, a qualitative analysis of platform guidelines assesses whether these labels are applied consistently and in line with stated policies. The findings aim to contribute to academic debates and provide policymakers and the social media platforms with recommendations for more standardized, transparent, and effective labeling practices.

Data Collection

This chapter discusses the method used to collect the data for this thesis. In Section 2.2, multiple short-form video platforms were considered. Specifically, the four most widely used platforms were examined: YouTube, Instagram/Facebook (Meta), and TikTok [10]. Due to time constraints, this study focuses on two platforms. This allows for a cross-platform analysis while keeping the data collection process manageable. Including a third platform would have required the development and execution of an additional data collection pipeline, which was deemed too time-consuming.

YouTube Shorts was selected because it provides a publicly accessible API [85]. TikTok was chosen as it is the only major platform that exclusively features short-form video content, making it particularly relevant for this research.

For the purpose of this thesis, the dataset needed to include the following types of information for each video:

- 1. The presence of an Al label
- 2. Engagement metrics (e.g., likes, shares, comments, views)

This chapter describes the approach used to collect the dataset for this thesis. The data collection consisted of six main steps: (1) hashtag selection, (2) URL collection, (3) metadata collection, (4) data merging, (5) data filtering, and (6) iteration (see Figure 3.1). These steps were repeated for 25 Al-related hashtags, resulting in a dataset with metadata of 13,163 YouTube Shorts and TikToks. For each video, the process captured the presence of an Al label (TikTok only) and key engagement metrics (views, likes, comments, shares). For YouTube Shorts, additional steps were required to gather Al label information. The six steps are outlined first, followed by a general explanation of how these steps were implemented in Python.¹ All data was collected between March 21 and March 31, 2025.

¹All corresponding code is available at https://github.com/maaikekuipers/thesis, including additional steps for the YouTube Shorts Al label scraping. The repository includes a detailed README file explaining the installation of required Python packages and how to execute the scripts.

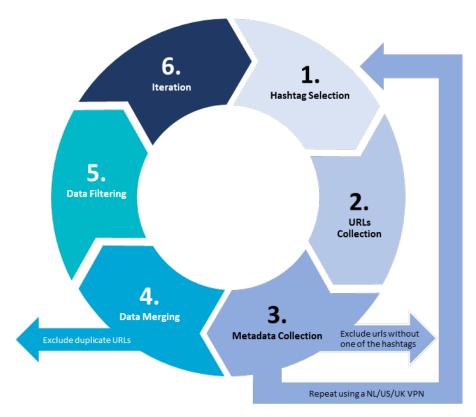


Figure 3.1: Overview of the Data Collection Cycle

3.1. Data Collection Cycle

Step 1: Hashtag Selection

Hashtags enable platforms to group related content together and are frequently used by creators to identify the theme of a video [86]. Since both YouTube Shorts and TikTok allow the usage of hashtags, these served as the primary entry point for collecting AI related videos in this study. This approach was also used in another research to collect COVID-19 related videos on TikTok [29].

The data collection started with the hashtag #ai. This hashtag was chosen because it contained over 9 million videos on both platforms as of March 21, 2025 [87], [88]. In the following iterations, new hashtags were added based on their co-occurrence and assessed relevance to Al-generated content.

Step 2: URLs Collection

A custom scraping script was developed as part of this thesis to collect the data from both platforms. This script was implemented as uniformly as possible across platforms. It directly visits specific hashtag pages of TikTok or YouTube Shorts. Hashtag pages are publicly accessible web pages that display a feed of videos associated with a specific hashtag (e.g., https://www.tiktok.com/tag/ai or https://www.youtube.com/hashtag/ai). These pages were visited in private and logged out mode, to reduce the algorithmic bias in the data collection. When visiting these pages, it required manual CAPTCHA solving for TikTok. CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Humans Apart) are mechanisms designed to distinguish between humans and automated systems [89]. For YouTube Shorts, manual cookie rejection was required. After manually completing the CAPTCHA (TikTok) or rejecting cookies (YouTube Shorts), the script scrolled through the hashtag page to collect video URLs. For this, the scrolling algorithm described by Steel and Abrahams [90] was used.

Although both (un)official APIs support hashtag-based queries, these often returned large numbers of videos only loosely related to the specified hashtags. Since the aim was to include only videos explicitly tagged with at least one selected hashtag, this resulted in many API calls with limited usable results. A clear example of these limitations is YouTube's API. It imposes a strict daily quota of 10,000 calls, which was often exceeded using this method. In addition, the API frequently returned regular

YouTube videos instead of Shorts. The only available query parameter to limit this was duration = 'short', which proved insufficient.

Given the scope of this thesis and the objective to compare YouTube Shorts with TikTok, this still resulted in many unnecessary API calls. Hence, scraping was preferred over API use for URL collection.

However, TikTok limits each hashtag page to approximately 250 videos per session. To bypass this limit and collect more data, a VPN-based approach was used. By simulating user locations in different countries, the same hashtag page could be accessed multiple times. Besides the home country (the Netherlands), VPN servers from the United Kingdom and the United States were used. These locations were chosen to maintain relevance to English-language hashtags. This method enabled the retrieval of approximately 250 videos per hashtag from the Netherlands and the UK, and around 150 from the US. Although some overlap occurred between sessions, this approach substantially increased the overall volume of collected data.

To ensure robustness and prevent data loss, URLs were periodically saved to external files. This intermediate step served two primary purposes:

- 1. Saving URLs at regular intervals made it possible to resume the metadata collection from saved files if crashes occurred.
- 2. Storing URLs enabled a comprehensive check against the finalized hashtag set.
- 3. This approach also prevented the need to redo the scrolling process if interruptions occurred between URL collection and metadata retrieval.

These files were temporarily stored on the TU Delft project drive. Further elaboration on data storage and privacy considerations can be found in Section 6.4.1.

Step 3: Metadata Retrieval

For all collected URLs, metadata was retrieved using the official YouTube API [85] and an unofficial TikTok API [91]. The following metadata was collected:

- URL
- Views
- Likes
- Comments
- · Publish Date
- Hashtags (extracted from the description and/or title)
- Creator

For TikTok, shares and the Al label type were also extracted. The YouTube API did not provide this information; therefore, a separate script was developed to check all URLs after completing the data gathering cycle. This script is described in more detail in the script implementation section.

URLs that did not contain any of the relevant hashtags were excluded from further processing. Steps 1–3 were repeated separately for each VPN location: the Netherlands, the United States, and the United Kingdom. These regions were selected to maintain relevance to English-language hashtags and increase the dataset size. Usernames were extracted exclusively to enable a comparison of creator populations between platforms.

Step 4: Data Merging

The data from the three VPN locations were merged in a central Jupyter notebook. In this notebook, the number of videos per VPN location and the total size of the dataset was recorded. During the merging process, duplicate videos were automatically removed. Due to the size of the individual datasets and the final merged dataset, it became clear that a significant number of duplicates existed between countries.

Step 5: Data Filtering

In the same notebook, hashtags were extracted from the merged dataset. Variations in capitalization (e.g., #AI, #ai, #Ai) were standardized. Initially, the top 15 most frequently co-occurring hashtags were considered for expanding the hashtag set. However, during early iterations, this threshold sometimes resulted in no new relevant hashtags being identified. To address this and maintain growth of the dynamic hashtag set, the threshold was increased to the top 18 co-occurring hashtags. This adjustment successfully captured additional relevant AI-related hashtags that had not yet been included.

Only hashtags explicitly related to AI were retained. In cases where multiple variations of a hashtag existed (e.g., #AIvideo vs. #AIvideos), only the most frequently used variant was added to avoid duplication.

All identified hashtags and their classifications are presented in Section B.3. In these tables, the specific search hashtag is shown alongside its top 18 co-occurring hashtags. A color-coding was applied to visualize the filtering decisions:

- Green: Newly identified and relevant Al-related hashtags, which were immediately added to the dynamic hashtag set during the current iteration.
- Orange: Hashtags already identified through co-occurrence with a different search hashtag; these
 were not added again.
- Light Green: Hashtags similar in meaning or form to previously identified hashtags. These were not added.

Step 6: Iteration

The process was repeated for each newly identified hashtag until a total of 25 unique hashtags were collected. These hashtags are listed in Table 3.1.

Because TikTok returned a relatively small number of videos per country, each hashtag page was visited twice for every VPN location (Netherlands, United Kingdom, and United States). This approach enabled to expand the dataset.

In total, metadata from 13,163 videos was collected using the 25 selected hashtags. This included 7.092 TikToks and 6.071 YouTube Shorts.

#ai #aicat	#aiart #aiedits	#aigenerated #aivfx	#aivideo #aitools	#artificialintelligence #aibaby
#aifashionmodel #aicontent #airevolution	#aigeneratedfilm #aiinnovation #aicommunity	#aistorytelling #aianimation #aiartcommunity	#aistory #aiproductions #aiartwork	#creativeai #aitrends #aiartist

Table 3.1: Final Hashtag Set Used for Data Collection

3.2. Final Hashtag Check

To ensure the completeness of the final dataset, an additional script was developed which identifies any video URLs that had been scraped earlier but were missing from the consolidated dataset. The script scanned all the the intermediate saved files (organized by hashtag and country) and compared them to the merged dataset.

This additional check was necessary because the hashtag set used to filter relevant videos was expanded iteratively during the data collection process. As a result, some videos that did not contain any of the selected hashtags at an earlier stage may have become relevant later, after new co-occurring hashtags were added. By rerunning these URLs through the updated hashtag set, previously excluded but now relevant videos were recovered.

3.3. Implementation of Data Collection scripts

Figure 3.2 displays a high-level overview of the scripts used in the data-gathering process. All scripts were written in Python and developed specifically for this thesis. They make use of the Playwright library and build upon the scrolling behavior and data extraction techniques described in the unofficial TikTok API documentation [91]. The approach was adapted for use on YouTube Shorts as well.

Steps 1, 2, and 3 of the data collection cycle were implemented using a platform-specific Hashtag Search script. This script was configured manually by specifying both the target hashtag and the VPN country, enabling automated navigation to the corresponding hashtag page and ensuring that the retrieved data was stored during the cycle. Depending on the platform, the script then called either the YouTube API or TikTok API module.

These designed YouTube/TikTok API script consisted of two main components:

- 1. Scraper class (TikTokScraper / YouTubeScraper)
 - Encodes the hashtag, so it could be used in the hashtag page url (e.g., https://www.tiktok.com/tag/ai Or https://www.youtube.com/hashtag/ai).
 - Utilizes Playwright to launch a browser and scroll through the platform-specific hashtag page and extract video URLs.
 - Scrolling continues until a target number of videos is reached, with delays added to avoid aggressive behavior. The scrolling is based on the method developed by Steel and Abrahams [90].
 - Returns the unique URLs to the main script, which executes the function to gather the metadata of the extracted URLs.
- 2. API class (TikTokAPI / YouTubeAPI)
 - Retrieves video metadata for the collected URLs via either the official YouTube API or the unofficial TikTok API.
 - Since the API responses contained large amounts of unstructured data, filtering was applied to extract only the relevant metrics.
 - Applies a filtering step to exclude videos that do not contain any of the selected hashtags.
 - Returns a DataFrame with relevant metadata such as views, likes, comments, publish date, and hashtags.
 - For TikTok, Al labels and share/save metrics are also included; YouTube Short Al labels are gathered later via a separate script.

After repeating this for all of the hashtags and the VPN locations, the information about the presence of Al Labels on YouTube were collected since that information was not provided by the YouTube API. For this, the third class within the YouTube API class was called (LabelCheckerYouTube). After inspecting the elements in the HTML code, there were two elements found which indicates whether an (sensitive) Al label was present. Therefore, this class looked for the following elements in the HTML code:

- 1. ytwHowThisWasMadeSectionViewModelHost
 - Indicates that an Al label has been applied in the expanded video description.
- 2. Altered or synthetic content/
 - Indicates that the content is related to a sensitive topic, such as politics or health, and has a
 visible label in the video player as well.

If either element was detected, the script recorded the presence of an Al label. The second element additionally triggered a separate flag indicating that the content related to a sensitive topic. Some videos had become inaccessible (e.g., deleted, set to private, or region-blocked) in the time between initial data collection and label retrieval, and were therefore excluded from further analysis. To avoid data loss, the dataset with and without YouTube labels were kept separate during this process and merged at once during the data cleaning phase.

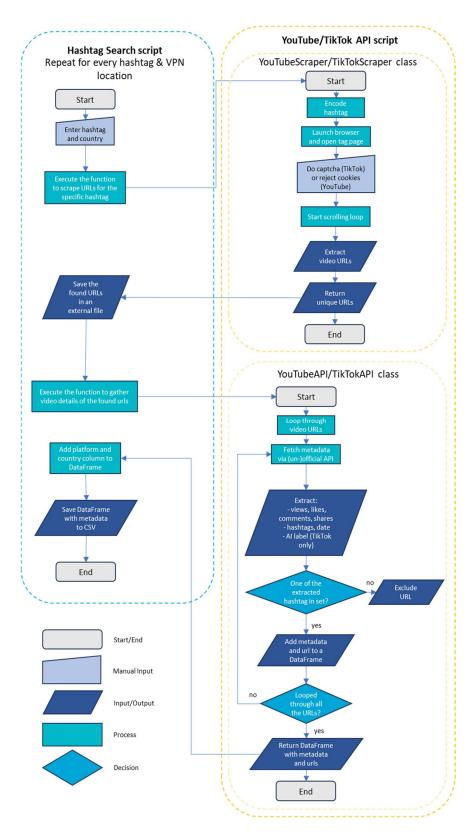


Figure 3.2: High-Level Overview of the Data Collection Process Scripts

Methodology

Following the data collection process described in the previous chapter, this chapter consists of three parts. First, Section 4.1 outlines the data cleaning and preprocessing steps. Second, Section 4.2 presents the methodology used to answer Sub-Question 3, which focuses on the prevalence of Al labels and their relationship with engagement metrics. Third, Section 4.3 explains the approach used to answer Sub-Question 4, which concerns the consistency of label application in relation to each platform's policies.

4.1. Data Cleaning and Preprocessing

After initial filtering during data collection, further data cleaning was conducted following the merging of intermediate datasets. During the collection of Al labels for YouTube Shorts, the dataset without Al labels was kept separate from the dataset with added Al labels. This approach enabled a one-time merge, allowing for easier verification of the process and reducing the risk of errors during the update.

4.1.1. Merging Datasets

The datasets with and without YouTube AI labels were merged into one dataset. During this merging process, special care was taken to avoid accidentally deleting valid rows. The only rows that were explicitly deleted were those without AI labels. Further investigation revealed that these deleted rows corresponded to videos that had either been removed or made private on YouTube Shorts between the initial scraping phase and the label-checking stage, as discussed in Section 3.1. Consequently, excluding these rows from the final merged dataset was considered justified. In addition, the merged dataset was checked for duplicate entries. None were found, indicating that the merging process was successful.

4.1.2. NaN likes

After validating some of the data points, several rows were found to have zero likes despite a high number of views in the non-labeled dataset. Upon further inspection, it was determined that YouTube had hidden the like counts (see Figure 4.1). Since the goal of Sub-Question 3 is to analyze the relationship between the dataset and engagement metrics, these rows were removed.

Figure 4.1: Na Likes on YouTube Shorts

4.1.3. Platform-Specific Labels and Missing Values

A manual check of a subset of the data revealed that TikTok distinguishes between two types of Al labels: a value of '1' for creator-applied labels and '2' for platform-applied labels. YouTube, by contrast, does

not differentiate between these label types. To allow for meaningful comparisons between platforms while retaining TikTok's label detail, the labeling scheme was adjusted as follows:

- Creator-applied TikTok labels were recoded as '2', and platform-applied labels as '3'.
- For cross-platform comparisons, both label types can be aggregated and recoded as '1' to align with YouTube's undifferentiated labeling system.

The resulting label structure is summarized in Table 4.1.

Table 4.1: Al Label Structure in the Final Dataset

Label Status	YouTube	TikTok
No Label Applied	0	0
Label Applied by YouTube/Creator)	1	N/A
Label Applied by Creator	N/A	2
Label Applied by TikTok	N/A	3

4.1.4. Time-Based Filtering

To ensure meaningful comparisons between TikTok and YouTube Shorts, the datasets were aligned in terms of publication date. Since Al labels were only introduced on TikTok in September 2023 [16] and on YouTube in November 2023 [42], both datasets were filtered to include only videos published from November 2023 onward.

4.1.5. VPN Locations and Engagement Metrics

The column indicating the VPN country used during data collection was removed, as it was only relevant for dataset merging during the collection phase (Section 3.1) and not required for subsequent analysis.

To better account for the large variation in view counts across individual videos, three normalized engagement metrics were introduced: like/view ratio, comment/view ratio, and share/view ratio (the latter specific to TikTok only). These ratios allow for more meaningful comparisons when evaluating the potential impact of AI labeling on user interaction.

During data validation, several TikTok videos were found to contain invalid values for the like_view_ratio and comment_view_ratio. These cases were manually reviewed. Videos that genuinely had no views, likes, or comments were removed from the dataset, while others were corrected based on the available metadata.

Additionally, it was found that the like/view ratio on TikTok occasionally exceeded 1. Upon closer inspection, two videos had more likes than reported views. In one case, the discrepancy could not be resolved because the engagement metrics had increased significantly between the original data collection and the manual validation, making the original values unverifiable. In the other case, the video genuinely had more likes than views, likely due to a platform bug or inconsistency in how TikTok tracks views. As these values were not considered reliable, both rows were removed. After cleaning, all engagement metric distributions were found to be highly left-skewed, as shown in Figure B.1.

These cleaned and normalized engagement statistics formed the basis for the statistical analyses described in the following sections.

After cleaning, the final dataset consisted of metadata from 12,315 videos: 6,276 TikToks and 6,039 YouTube Shorts. An overview of the final column structure is provided in Table B.1, which also indicates which variables are platform-specific.

4.2. Methodology for Sub-Question 3

The goal of Sub-Question 3 is to assess how prevalent Al labels are and what their potential impact is on user engagement metrics. Section 2.3 revealed clear differences in how TikTok and YouTube apply these labels. On TikTok, the user can see whether labels are applied by the creators themselves or by the platform. In contrast, YouTube does not distinguish between creator- and platform-applied labels, making it impossible to determine the source of each label. Additionally, YouTube often does not display the label within the video player, whereas TikTok does.

The prevalence of Al labels was measured by calculating the proportion of videos with any type of label (creator- or platform-applied) on TikTok and YouTube Shorts. For TikTok, separate percentages were calculated for creator- and platform-applied labels. For YouTube, only a single aggregated label value was used due to the platform's undifferentiated labeling.

This section outlines the analytical approach used to examine the relationship between Al label presence and user engagement metrics within each platform. By analyzing labeled and non-labeled videos separately for TikTok and YouTube Shorts, the methodology enables a platform-specific assessment of potential differences in engagement outcomes.

4.2.1. Platform specific Approach

Given the differences in how TikTok and YouTube implement and display Al labels, a platform-specific analytical approach was adopted to examine their relationship with user engagement.

TikTok

For TikTok, the potential impact of Al labels on engagement metrics was analyzed using the creatorapplied labels only. These labels are voluntarily added by creators at the time of upload and cannot be altered afterwards. This provides a clearer basis for interpreting their potential influence on engagement, as the label is known to be present when users first interact with the content.

YouTube Shorts

For YouTube Shorts, it is not possible to determine whether AI labels were applied by the platform or the content creator, nor whether they were present at the time of user engagement. As a result, the analysis is limited to comparing engagement metrics between labeled and non-labeled videos, without drawing any causal conclusions.

It is also important to keep in mind that YouTube's AI labels are typically only visible in the expanded video description. An exception is made for sensitive content, where the label appears directly in the video player (see Section 2.3). In this dataset, only 0.4% of videos were flagged as sensitive. When considering all AI-labeled videos, only 0.8% featured a label that was visible in the video player. This further limits the interpretability of any observed differences in engagement, as users are unlikely to be aware of the label in most cases.

4.2.2. Engagement Analysis Approach

The engagement metrics considered in this analysis are: total views, like/view ratio, comment/view ratio, and (for TikTok only) share/view ratio. These variables were constructed during the data cleaning phase (Section 4.1). It is essential to select an appropriate statistical approach to assess the potential relationship between Al labels and user engagement. Many statistical tests assume that the data is normally distributed. However, the engagement metrics were found to be highly left-skewed, see Figure B.1. Visual inspection suggests that the distributions of engagement metrics are similar in shape for both Al-labeled and non-Al-labeled videos.

Given this non-normality, the Mann–Whitney U test was selected to test the potential relationship between Al labels and engagement metrics. This is a non-parametric test which does not assume normality and is suitable for skewed distributions [92]. With this test, it is possible to compare two independent groups [93]. This aligns with the structure of this study: the independent variable (label presence) divides the sample into two distinct, non-overlapping groups (labeled and non-labeled videos). A significance level of p < 0.05 was applied in line with conventional statistical standards [94]. Although the use of this threshold has been debated, it remains generally accepted for exploratory research and hypothesis testing.

Literature emphasizes that p-values alone are not sufficient for interpreting results [95], [96]. Therefore, the standardized effect size r was also calculated (see Equation 4.1). As discussed by Pautz, Olivier, and Steyn [97], the equation was originally introduced by Rosenthal [98].

Reporting effect sizes is particularly important, as Farmus, Beribisky, Martinez Gutierrez, *et al.* [96] found that 93% of reported values were not interpreted using standard thresholds. This study follows the guidelines of Cohen [99], which define effect sizes as follows:

r = 0.1 to 0.3: Small effect
 r = 0.3 to 0.5: Medium effect

• *r* > 0.5: Large effect

In Python, the mannwhitneyu function from the scipy.stats package was used to perform the Mann-Whitney U test. This results in both the U-statistic and the p-value.

The formula shown in Equation 4.1 [97] was utilized to calculate the effect size r. In this formula, n_a and n_b indicate the sizes of the samples of the two independent groups. The U-statistic is standardized to a Z-score using its expected value m_U and standard deviation s_U , as defined in the same equation. The standardized Z is then divided by $\sqrt{n_a+n_b}$ to obtain the effect size r:

$$r=\frac{Z}{\sqrt{n_a+n_b}}$$
 where $Z=\frac{U-m_U}{s_U},\quad m_U=\frac{n_an_b}{2},\quad s_U=\sqrt{\frac{n_an_b(n_a+n_b+1)}{12}}$

As discussed in the literature review (Section 2.3), previous findings of the impact of AI labels are mixed. Some studies report reduced engagement due to lower perceived credibility, while others observe increased interaction driven by user curiosity. Given these conflicting results, this study does not assume a specific direction of effect. Instead, it tests whether the presence of a label is associated with any statistically significant difference in user engagement.

As a result, multiple hypotheses were tested in this study. This was done for each engagement metric (like/view, comment/view, share/view and views). The general null hypothesis for each test was that there is no significant difference in median engagement between labeled and non-labeled videos. A full overview of these hypotheses can be found in Appendix D.

The methodology described in this chapter provides a robust framework for evaluating whether the presence of Al labels is associated with differences in user engagement. In the following section. the results of this analysis are presented.

4.3. Methodology for Sub-Question 4

The goal of Sub-Question 4 is to evaluate how consistently Al labels are applied in practice, and whether this application aligns with platform-specific guidelines. As outlined in Section 2.3, TikTok and YouTube Shorts differ not only in how they display Al labels, but also in how their documentation defines when such labels are required. This raises concerns about the clarity and enforceability of these policies.

This section presents the data sampling and the methodological approach used to assess labeling consistency on both platforms. The methodological approach includes a structured thematic coding procedure, inter-rater reliability analysis, and a classification-based comparison of expected versus observed label presence. These steps allow for a systematic evaluation of whether Al labels are applied in accordance with each platform's own rules.

4.3.1. Data Sampling and Data Cleaning

To assess labeling consistency for Sub-Question 4, a data was required that included both the actual label status and an assessment of whether a label would have been appropriate. The information about the actual label status was gathered from the full dataset collected in the previous section. This sample was then reviewed for the label appropriateness, further explained in Section 4.3. First, 1% of the data was reviewed by two researchers, and after reaching an appropriate level of agreement, a total of 5% was reviewed by one coder.

Data Sampling

An initial sample of 140 videos (slightly over 1% of the full dataset collected in the last section) was selected to assess inter-rater reliability. This number allowed for an equal distribution across four groups of 35 videos each. To account for potential video removals between data collection and sampling, a

larger initial pool of 180 videos—45 per group—was drawn. In the case of TikTok, the labeled group included both creator-applied and platform-applied labels.

After reaching an appropriate level of agreement based on the inter-rater reliability analysis, the full sample of 5% was reviewed by one coder. As with the initial round, a slightly larger pool was drawn in advance to account for potential video removals or privacy changes.

When expanding the sample to approximately 5% of the full dataset, the earlier 35 reviewed videos were retained. To avoid duplicate coding, the entire set of 45 initially sampled videos per group, including those not ultimately coded, was excluded from the second sampling round. From the remaining pool, 109 additional videos per group were randomly selected using stratified sampling, resulting in a total of 154 videos per group. Table 4.2 presents the distribution of all reviewed videos, combining both coding rounds into a single overview.

Table 4.2: Overview of Reviewed Videos by Platform, Al Label Status, and Coding Round (First vs. Second Sample)

Platform	Al Label	First Sample		Second Sample		Total Videos Reviewed
		# in sample	# reviewed (2 coders)	# in sample	# reviewed (1 coder)	
YouTube	Without Al label	45	35	140	119	154
YouTube	With Al label	45	35	140	119	154
TikTok	Without Al label	45	35	140	119	154
TikTok	With Al label	45	35	140	119	154
Total						616

Data Cleaning

After each reviewing round, the corresponding dataset was cleaned. Several steps were taken to prepare the data for analysis:

- The Excel sheet was manually adjusted to ensure that only completed coding rows were included.
- Datasets were split by platform (YouTube Shorts and TikTok), and columns with irrelevant suffixes (e.g., '.1', '.2') or unnamed placeholders were removed.
- Videos flagged as unavailable (e.g., deleted or set to private) were excluded from further analysis.
- Consistency checks ensured that subcategories were only assigned when the video was marked as Al-generated, and vice versa. No mismatches were found during this process.
- The two coding files were aligned based on shared video IDs. Some rows appeared in only one
 of the two files, due to video removals between the time of coding. These unmatched cases were
 excluded to ensure a fair and complete comparison.

After each cleaning round, only those video entries that were (a) available on the platform, (b) present in both coding files, and (c) internally consistent, were retained. The cleaned dataset from the first sample was used for the inter-rater reliability analysis, and the final cleaned dataset after the second sample expansion served as the basis for the labeling consistency analysis. Both analyses are presented in the following sections.

4.3.2. Thematic Coding

Determining whether a video should have an AI label is subjective: it requires interpreting both the video content and the platform's often vaguely formulated guidelines. Adding to the complexity, TikTok and YouTube Shorts differ in both the definition and enforcement of AI labeling.

To reduce subjectivity and ensure a structured basis for evaluation, a deductive thematic coding approach was adopted. Thematic coding is a qualitative technique for detecting and organizing recurring patterns within a dataset [100].

To limit interpretive variance, the coding process was guided by a predefined codebook derived from official platform documentation [17], [64], [101]–[104]. This deductive (top-down) approach relies on predefined categories to classify content, in contrast to inductive methods where categories emerge from the data itself [105]. The main code categories are summarized in Table 4.3, and the full codebook

is provided in Appendix C. To ensure clarity and consistency, the codebook was reviewed by two researchers prior to implementation. The sensitive topic categorization is only included for YouTube, since this influences the location of the Al label.

Code (YouTube Shorts)	Description
Code (TouTube Shorts)	Description
Y1	Al-generated Content
Y2	Sensitive Topic
Code (TikTok)	Description
T1	Al-generated Content

Table 4.3: Codebook Main Categories

The initial sample of 140 videos, described in Table 4.2, was independently coded by two researchers. Each coder first determined whether the content was Al-generated¹. If the content was Al-generated, the coder then assigned the appropriate category. Finally, the coders noted the presence of sensitive content for YouTube Shorts.

Based on these assigned subcategories and the official platform documentation, a derived variable was added to indicate whether an Al label was required for each video. This labeling decision was not made manually by the coders; instead, it followed directly from the applied categories. In Appendix C, it can be found which of the sub-categories require a label.

4.3.3. Inter-rater Reliability

To assess the reliability of the coding process, inter-rater reliability (IRR) was calculated. IRR reflects the degree of agreement between coders analyzing the same content. According to Gisev, Bell, and Chen [106], selecting a suitable IRR statistic depends on the characteristics of the data. Given that the coding categories were nominal and two coders were involved, Cohen's Kappa was selected as the most suitable statistic. Although percentage agreement is a commonly reported IRR measure [107], it does not account for agreement occurring by chance. To account for chance agreement, Cohen's Kappa offers a more robust estimate. The formula for Cohen's Kappa is provided below [107]:

$$\kappa = \frac{p_a - p_e}{1 - p_e} \tag{4.2}$$

In Equation 4.2, p_a denotes the observed agreement, while p_e represents the expected agreement by chance. The calculation was performed in Python using the cohen_kappa_score function from the sklearn.metrics module.

To assess the reliability of the coding process, inter-rater reliability (IRR) was calculated for two variables:

- 1. The classification of Al-generated content.
- 2. The derived column indicating whether a label was appropriate.

Following Landis and Koch [108], a threshold of $\kappa \geq 0.61$ was considered to reflect substantial agreement. Agreement on this derived "label appropriate" column was treated as a condition for using the data in the next stage of analysis, as this variable directly relates to the core research question on labeling consistency.

Disagreements on whether a label was required were discussed between the two coders. After consensus was reached, the subcategories were adjusted where necessary. One coder then proceeded to label the remainder of the dataset, amounting to approximately 5% of the total data.

4.3.4. Assessing Labeling Consistency

Following the resolution of disagreements and completion of coding, the full dataset was analyzed to assess whether Al labels were applied in accordance with platform-specific guidelines. For each video, the actual label status was compared to the expected status derived from the assigned subcategories. This allowed classification into four categories:

¹On TikTok, it is referred to as Al-generated content, while on YouTube it is described as synthetic or altered content. For clarity, only Al-generated content is used throughout this thesis to refer to both.

- 1. True Positives (TP): Videos with an Al label, where a label was appropriate.
- 2. False Positives (FP): Videos with an Al label, where no label was appropriate.
- 3. True Negatives (TN): Videos without an Al label, where no label was appropriate.
- 4. False Negatives (FN): Videos without an Al label, where a label was appropriate.

These categories, summarized in Table 4.4, form the basis for evaluating the consistency of Al label application across platforms.

Table 4.4: Confusion matrix used to assess consistency of Al label application

	Al Label Appropriate	Al Label Not Appropriate
Al Label Applied No Al Label Applied	True Positive (TP) False Negative (FN)	False Positive (FP) True Negative (TN)

Because each video is assigned both an expected label status (required or not required) and an actual observed status (present or absent), the task can be treated as a binary classification problem. This enables the use of standard performance metrics [109]. Following Marioriyad and Ramazi [109], these metrics are defined in Equation 4.3 and can be used to assess the consistency of Al label application relative to platform guidelines.

Each metric captures a different aspect of labeling consistency:

- 1. *Accuracy:* The proportion of videos for which the Al label status is correctly applied, whether it is present when required or absent when not.
- 2. Specificity: The proportion of videos without Al-generated content that are correctly not labeled.
- 3. *Precision:* The proportion of labeled videos that actually contain Al-generated content, indicating how often a present label is appropriate.
- 4. *Recall:* The proportion of Al-generated videos that are correctly labeled, reflecting how often required labels are actually applied.

The methodologies outlined in this chapter provide a structured approach to evaluate how accurately and consistently AI labels are applied to short-form video platforms. Through thematic categorization based on platform documentation, an expected label status was assigned to each video. Afterwards, this was compared to the observed status. By applying classification metrics to these comparisons, the methodology allows for a quantifiable assessment of labeling practices relative to platform-specific guidelines. The following chapter outlines the analysis results and compares TikTok and YouTube Shorts in terms of their similarities and differences.

5

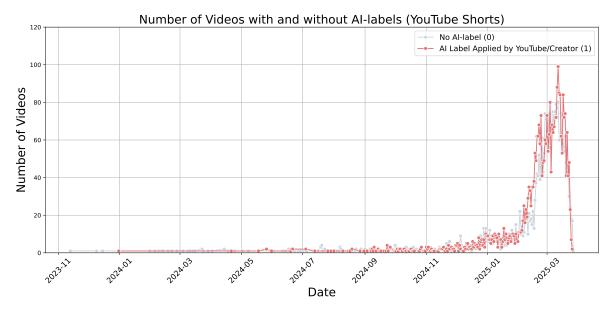
Results

This chapter presents the results of the data analyses described in Chapter 4. Before formal statistical tests were performed, an exploratory data analysis (EDA) was conducted to better understand the structure of the dataset. The EDA results are presented in Section 5.1.

Following the EDA, Section 5.2 addresses Sub-Question 3, focusing on the prevalence of Al labels and their possible relationship with user engagement on TikTok and YouTube Shorts. Section 5.3 presents the results for Sub-Question 4, which examines the consistency of Al labeling practices on both platforms.

5.1. Exploratory Data Analysis

This section examines the structure and key features of the cleaned dataset to provide initial insights into the use of AI labels and platform-specific engagement patterns. These findings inform and contextualize subsequent statistical analyses.


After data cleaning (see Chapter 4), metadata from a total of 12,315 videos was retained for analysis. This included 6,039 YouTube Shorts and 6,276 TikToks.

5.1.1. Filtering by Time Range

To contextualize the data and identify trends in Al label adoption, the number of labeled and non-labeled videos was plotted over time for each platform (see Figure 5.1). As described in Section 4.1, the dataset was pre-filtered to only include videos published from November 2023 onward, which is the month when Al labels were officially introduced on both platforms.

As shown in Figure 5.1b, most Al-labeled TikTok videos appear to have been labeled by creators themselves. In contrast, YouTube Shorts (Figure 5.1a) does not differentiate between creator- and platform-applied labels.

Furthermore, visual trends differ between platforms in terms of the total number of videos collected over time. YouTube Shorts shows a clear peak, with a rapid increase followed by a decline. TikTok, on the other hand, shows a more gradual upward trend. These differences may reflect variations in how each platform ranks and displays videos on hashtag pages, for example by favoring popular videos on TikTok versus showing more recent uploads on YouTube.

(a) Al label application on YouTube Shorts over time

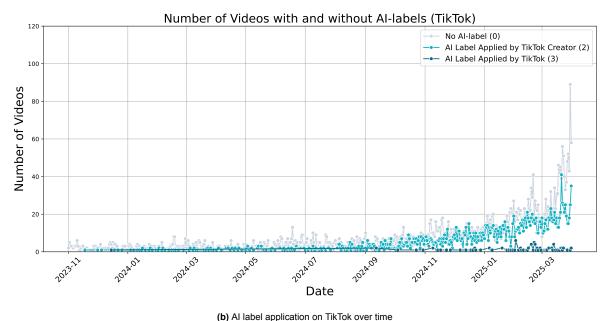


Figure 5.1: Al label application trends over time for YouTube Shorts and TikTok

5.1.2. Hashtag Usage per Platform

To better understand the differences in Al-related hashtag usage between TikTok and YouTube Shorts, the distribution of hashtags in the collected datasets was analyzed. As described in Section 3.1, the hashtag set was constructed iteratively. It started from the core hashtag #ai and was expanded with frequently co-occurring, Al-related hashtags identified during the scraping process. Figure 5.2 shows the percentage of videos per platform that include each Al-related hashtag from the hashtagset (Table 3.1. The figure highlights two key observations:

- On both platforms, a substantial share of videos included the hashtag #ai. This suggests that using #ai as the core hashtag was a reasonable starting point for capturing Al-related content.
- YouTube Shorts appears to use a broader variety of Al-related hashtags than TikTok. This suggests that YouTube videos are more likely to include multiple Al-related hashtags within a single title or description.

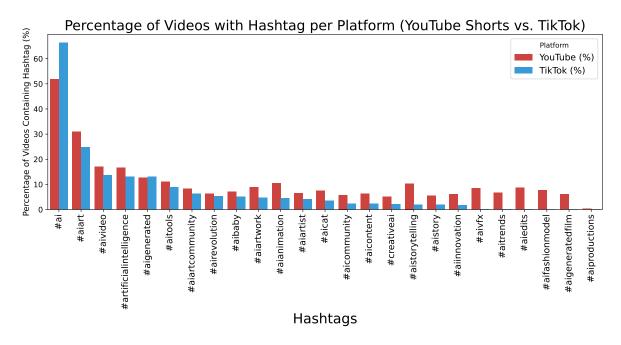


Figure 5.2: Percentage of Videos with Hashtag per Platform (YouTube Shorts vs. TikTok)

5.1.3. Overlapping Creators Across Platforms

To protect privacy, all the names of the creators in the dataset are anonymized for this analysis. To explore the population of the creators across platforms, the overlapping creators are plotted in Figure 5.3. This revealed only eight creators who were active on both TikTok and YouTube Shorts. Within this small subset, labeling inconsistencies were observed. For example, almost all YouTube Shorts by user_334 were labeled, whereas almost none of their TikToks were.

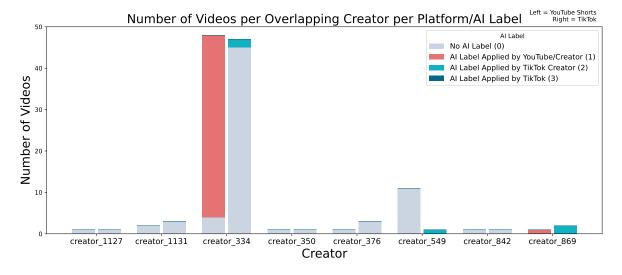


Figure 5.3: Al Label Distribution Among the Overlapping Creators

These exploratory findings not only shaped the design of subsequent statistical analyses but also serve as context for interpreting the results discussed in the next sections and in the discussion chapter.

5.2. AI Label Prevalence and Impact on Engagement (SQ3)

This section presents the results addressing Sub-Question 3, which focuses on the prevalence of Al labels and their potential relationship with user engagement on TikTok and YouTube Shorts.

5.2.1. Prevalence of AI Labels

To explore how Al labels are used across platforms, the proportion of labeled and non-labeled videos was visualized in Table 5.1 and Figure 5.4.

The results show a clear difference in the absence of Al labels between platforms. On TikTok, the majority of videos (63.13%) did not include an Al label, compared to 48.10% of the YouTube Shorts. Additionally, as discussed in Section 4.1, YouTube Shorts does not differentiate between label sources. On TikTok, most Al labels were applied by creators (35.34%), and only a small proportion by the platform itself (1.53%). When combining both creator- and platform-applied labels to enable cross-platform comparison, 36.87% of TikTok videos contained an Al label, which remains lower than the prevalence observed on YouTube Shorts (51.90%). It was also found that only 25 videos (0.41% of the total YouTube Shorts dataset) had a "sensitive topic" label, indicating that such labels are very rare. These descriptive findings set the stage for further analysis of how label presence might relate to user engagement.

Label Status	YouTube Shorts (%)	TikTok (%)
No Label (0)	48.10%	63.13%
Applied by YouTube/Creator (1)	51.90%	N/A
Label Applied by Creator (2)	N/A	35.34%
Label Applied by TikTok (3)	N/A	1.53%

Table 5.1: Distribution of Al Labels by Platform (in %)

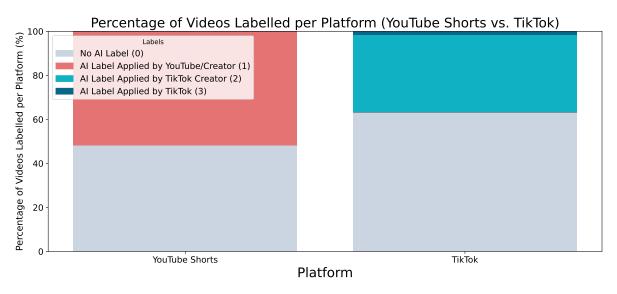


Figure 5.4: Percentage of Labeled vs. Non-Labeled Videos per Platform

5.2.2. Impact of AI Labels on Engagement Metrics

To examine possible differences in engagement associated with Al labels, Cumulative Distribution Plots (CDF) were first inspected. Subsequently, the Mann-Whitney U test was conducted as described in Section 4.2 to assess whether the observed differences were statistically significant. The resulting p-values are used to evaluate significance, and the tested hypotheses are listed in Appendix D.

YouTube Shorts

The CDF plots in Figure 5.5 show differences in the distributions of the like/view ratio (Figure 5.5a) and the comment/view ratio (Figure 5.5b). For both metrics, higher ratios are observed for videos without

an Al label across most of the distribution. In the case of views (Figure 5.5c), the CDF curves show that videos without an Al label are more common at lower view counts (below approximately 1,000 views). Videos with an Al label are more frequent between 1,000 and 1,000,000 views. For very high view counts, the distributions converge again.

The Mann-Whitney U test results (Table 5.2) show that the null hypothesis is rejected for all engagement metrics (p < 0.05). This indicates statistically significant differences between the groups. The median like/view and comment/view ratios are lower for videos with an AI label, indicating a higher probability that a randomly selected video without an AI label has a higher like/view or comment/view ratio than a video with an AI label. However, according to the interpretation guidelines of Cohen [99], the effect sizes for all metrics remain below the threshold for a small effect and are therefore considered negligible.

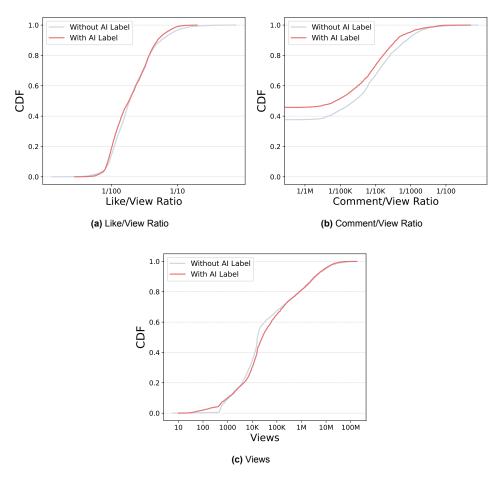


Figure 5.5: Cumulative Distribution Functions of Engagement Metrics for YouTube Videos

Table 5.2: Summary Statistics YouTube (significance level $\alpha = 0.05$)

Metric	p-value	Effect size (r)	Direction (median)	H ₀ Rejected?
Like/View Ratio	p < 0.05	0.04	Label < No Label	Yes
Comment/View Ratio	p < 0.05	0.09	Label < No Label	Yes
Views	p < 0.05	0.04	Label > No Label	Yes

TikTok

The CDF plot in Figure 5.6a shows minimal differences in the like/view ratio distribution between videos with and without an Al label. Where differences occur, videos without an Al label tend to have slightly higher ratios. In contrast, the comment/view ratio (Figure 5.6b) is generally higher for videos with an Al label across most of the distribution. A similar, though less pronounced, pattern is observed for the

share/view ratio (Figure 5.6c). For views (Figure 5.6d), videos with an Al label consistently achieve higher view counts throughout the distribution.

The Mann-Whitney U test results (Table 5.3) show that the null hypothesis is rejected for the like/view ratio, comment/view ratio, and views metrics (p < 0.05), indicating statistically significant differences between the groups for these metrics. No significant difference was found for the share/view ratio.

Regarding the direction of the differences, the results indicate a higher probability that a randomly selected video without an AI label has a higher like/view ratio than a labeled video. For the comment/view ratio and views, the opposite is observed: a randomly selected video with an AI label is more likely to have a higher comment/view ratio and view count than a video without an AI label.

According to the interpretation guidelines in Section 4.2, the effect sizes for the like/view ratio and comment/view ratio are below the threshold for a small effect and are therefore considered negligible. Only the effect size for views reaches the threshold for a small effect.

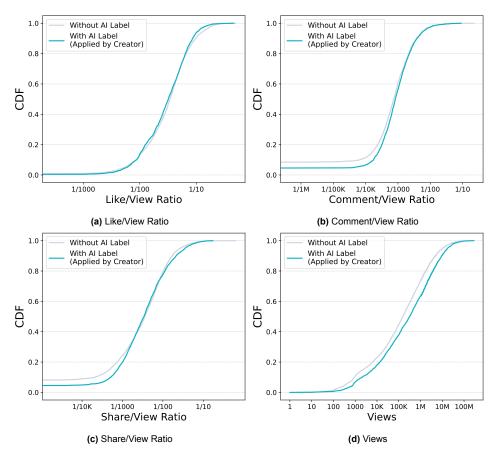


Figure 5.6: Cumulative Distribution Functions of Engagement Metrics for TikTok Videos

Table 5.3: Summary Statistics TikTok (significance level $\alpha=0.05$)

Metric	p-value	Effect size (r)	Direction (median)	H_0 Rejected?
Like/View Ratio	p < 0.05	0.03	Label < No Label	Yes
Comment/View Ratio	p < 0.05	0.06	Label > No Label	Yes
Share/View Ratio	p > 0.05	0.02	Label < No Label	No
Views	p < 0.05	0.11	Label > No Label	Yes

5.3. Assessing AI Labeling Consistency (SQ4)

To address Sub-Question 4, this section presents the outcomes of the labeling consistency analysis. It evaluates whether Al labels were applied in accordance with platform guidelines, based on a coded sample of TikTok and YouTube Shorts videos. The results provide insight into the frequency of both overlabeling and underlabeling across platforms.

5.3.1. Inter-rater Reliability

As described in Section 4.3, Cohen's Kappa was applied to evaluate the reliability of the coding process. Following the first round of coding, agreement was calculated for two variables: (1) the classification of Al-generated content and (2) the derived column indicating whether an Al label was appropriate.

Table 5.4 presents the resulting scores. Both values fall within the range that Landis and Koch [108] interpret as indicating substantial agreement ($\kappa \geq 0.61$). These results confirmed that the coding scheme was sufficiently reliable to proceed with the remaining dataset. Based on this outcome, one coder completed the annotation of the full 5% sample used for the consistency analysis.

Table 5.4: Cohen's Kappa Scores for Inter-Rater Reliability on Al Category Classification and Label Appropriateness

Category of Agreement	Cohen's Kappa
Category	0.68
Label	0.69

5.3.2. Labeling Consistency

Each video in the sample outlined in Table 4.2 was evaluated by comparing its actual label status to the label status that was deemed appropriate based on the assigned subcategories and platform policies.

The results are interpreted using the binary classification framework introduced in Table 4.4, which distinguishes between four categories: true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).

The performance metrics precision, recall, accuracy, and specificity were calculated for each platform to evaluate labeling consistency. These metrics, defined in Equation 4.3, provide a structured basis for comparing actual versus expected label application.

Table 5.5: Labelling Consistency YouTube

 Table 5.6: Labelling Consistency TikTok

Platform	Metric	Count	%	•	Platform	Metric	Count	%
YouTube	True Positives (TP)	49	15.91%		TikTok	True Positives (TP)	151	49.03%
	False Positives (FP)	105	34.09%			False Positives (FP)	3	0.97%
	True Negatives (TN)	125	40.58%			True Negatives (TN)	80	25.97%
	False Negatives (FN)	29	9.42%			False Negatives (FN)	74	24.03%
	Total	308	100%	-		Total	308	100%

YouTube Shorts

Table 5.5 presents the absolute and relative frequencies of correct and incorrect label applications on YouTube Shorts:

- True Positives (TP): In 15.91% of cases, an Al label was correctly applied.
- False Positives (FP): In 34.09% of cases, an Al label was applied when it was not required, indicating a strong tendency toward overlabeling.
- True Negatives (TN): In 40.58% of cases, no Al label was applied, and this was correct. This represents the most frequent outcome.
- False Negatives (FN): In 9.42% of cases, no Al label was applied when one was actually required, pointing to a smaller but noticeable degree of underlabeling.

Overall, the results suggest that overlabeling occurs more frequently than underlabeling, and that correctly not applying a label is the most consistent outcome.

TikTok

Table 5.6 shows the distribution of label consistency outcomes for TikTok videos:

- True Positives (TP): In 49.03% of cases, an Al label was applied correctly.
- False Positives (FP): Only 0.97% of videos were incorrectly labeled as Al-generated when a label was not required, suggesting minimal overlabeling.
- True Negatives (TN): In 25.97% of cases, no label was applied and this was appropriate.
- False Negatives (FN): In 24.03% of cases, a required Al label was missing, indicating some degree of underlabeling.

These results suggest that correct labeling is most often achieved when a label is required, and incorrect labeling is relatively rare. However, about a quarter (24.03%) of TikTok videos remain unlabeled despite requiring an Al label, suggesting that Al labels are still not applied frequently enough.

Performance Metrics

Table 5.7 presents the performance metrics for both platforms. For YouTube Shorts, the relatively low precision (0.3180) suggests that many applied labels were unnecessary, consistent with the observed overlabeling. The recall (0.6280) shows that approximately 63% of videos requiring a label were correctly labeled. While the accuracy (0.5650) and specificity (0.5430) indicate moderate overall labeling performance, this means that just over half of all videos were labeled correctly (accuracy), and only about 54% of videos without Al-generated content correctly received no label (specificity).

In contrast, TikTok achieves a very high precision (0.9810), indicating that nearly all applied labels were appropriate. The recall (0.6710) shows that most, but not all, required labels were correctly applied. TikTok also demonstrates higher accuracy (0.7500) and specificity (0.9640), reflecting more consistent and precise labeling outcomes compared to YouTube Shorts. An accuracy of 75% means that three out of four videos were labeled correctly, regardless of whether a label was required. The high specificity of 96.40% further indicates that in most cases, videos that do not require an Al label remain unlabeled.

Table 5.7: Performance metrics thematic coding

Platform	Precision	Recall	Accuracy	Specificity
YouTube	0.3180	0.6280	0.5650	0.5430
TikTok	0.9810	0.6710	0.7500	0.9640

Types of wrongly classified videos

False Positives

For YouTube Shorts, 99% of the false positives (105 out of 106) were classified as *Y1.5: Clearly unre- alistic content*. According to YouTube's guidelines, as shown in Appendix C, this type of content does not require an Al label. The remaining false positive was classified as *Y1.7: Adding elements to the video*. This video depicted a human digestive system and was also the only video in the entire YouTube Shorts sample (1 out of 308) classified as sensitive content.

For TikTok, only three false positives were identified. Two involved videos classified as *Y1.7: Effects/Filters*, where Al filters were applied to images or videos, or synthetic voices in another language were added. TikTok's guidelines do not require a label for such content. The remaining case was a video explaining how to create a storyboard using Al tools. Based on the coding guidelines agreed during thematic analysis, this type of instructional content was not considered Al-generated.

False Negatives

False negatives were more common on both platforms. On TikTok, 85% of the 74 false negatives were classified as *Clearly unrealistic content (T1.5)*. Unlike YouTube, TikTok requires creators to label this type of content, yet labels were still frequently missing.

The remaining cases on both platforms involved similar types of content:

• Using the likeness of a realistic person (T1.1/Y1.1): Celebrities were altered to perform unrealistic actions, such as dancing or heroic acts. Although this content often appeared animated and

clearly unrealistic, it was classified under this category because it featured recognizable public figures.

- Altering footage of real events or places (T1.2/Y1.2): Content using real event footage, such as
 talent shows, with unrealistic elements digitally added. Examples include contestants appearing to transform from lions into humans, people or vehicles compressed like a sponge, or dogs
 appearing to fly.
- Generating realistic scenes (T1.3/Y1.3): Content featuring highly realistic but non-famous individuals, making it difficult to assess whether it was Al-generated. This also included "spot the Al" challenges and surreal scenes, such as creatures attacking boats.

Classification of AI-Generated Content

Figure 5.7 presents the percentage of videos classified as Al-generated content on each platform. These values reflect the share of videos identified as Al-generated during the thematic coding process. It is important to note that this figure does not consider whether the application of an Al label was appropriate according to the platforms' guidelines.

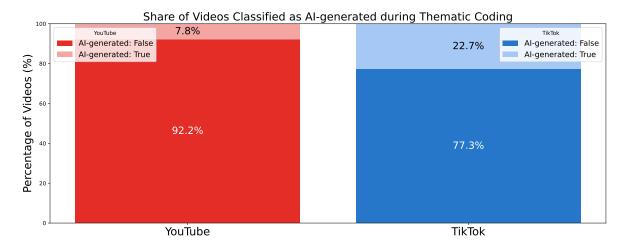


Figure 5.7: Share of videos classified as Al-generated per platform, based on thematic coding

5.4. Key Takeaways

The exploratory and statistical analyses reveal notable differences between YouTube Shorts and Tik-Tok:

- Al Label Prevalence: Al labels are more frequently applied on YouTube Shorts (51.90%) than on TikTok (36.87%).
 - On YouTube, only 0.41% of these labels appear directly in the player; 51.49% are shown in the expanded description.
 - On TikTok, 35.34% of labels were creator-applied, and only 1.53% were applied by the platform.
- Impact on Engagement: Statistically significant differences ($\alpha=0.05$) were found for all metrics except the share/view ratio on TikTok. However, effect sizes remain negligible for most comparisons.
 - For both platforms, there is a higher probability that a randomly selected non-labeled video has a higher like/view ratio than a labeled video.
 - Comment/view ratios show mixed results: higher probability for non-labeled videos on YouTube, but the opposite on TikTok.
 - Only the views metric on TikTok showed a small effect size (r>0.1) and reached statistical significance. This indicates that a randomly selected labeled video is more likely to have a higher view count than a non-labeled video.

- Labeling Consistency: TikTok applies Al labels more precisely and consistently than YouTube Shorts.
 - TikTok achieved a precision of 98.10% and accuracy of 75.00%, meaning nearly all applied labels were appropriate and three out of four videos were labeled correctly.
 - YouTube Shorts had a low precision of 31.80% and an accuracy of 56.60%, indicating that many applied labels were unnecessary.
 - YouTube showed a strong tendency toward overlabeling (34% false positives), while TikTok showed more underlabeling (24% false negatives).

These findings indicate that AI labels are becoming increasingly common. However, their visibility, consistency, and potential impact on engagement vary considerably across platforms. In the next chapter, these results will be further interpreted and discussed.

6

Discussion

This chapter interprets the main findings of this study in light of existing literature, platform policies, and the broader regulatory landscape. It examines the practical implications of the observed differences in Al labeling between TikTok and YouTube Shorts, particularly with regard to labeling prevalence, consistency, and their impact on user engagement. The chapter also explores how current practices align with platform guidelines and EU legislation, including the Digital Services Act (DSA) and the EU Artificial Intelligence Act (Al Act). Furthermore, it discusses key limitations of the study and provides targeted recommendations for platforms, policymakers, and future research.

6.1. Key Findings

This section summarizes the key findings from the previous chapter and relates them to insights from the existing literature.

6.1.1. Prevalence of AI Labels

Within the dataset of this study, AI labels were found to be more prevalent on YouTube Shorts than on TikTok. More than half of the YouTube Shorts included an AI label (51.9% of the 6,039 videos), whereas only 37.8% of the 6,276 TikTok videos were labeled. Of the TikTok labels, just 1.5% were applied by the platform itself, indicating that labeling on TikTok is more creator-driven.

As discussed in Chapter 2, both platforms use the C2PA standard to detect and apply Al labels. Despite this shared technical approach, the prevalence of Al labels differs substantially. One possible explanation is that the nature of the content differs between platforms: Figure 5.7 shows that a larger share of YouTube Shorts was classified as Al-generated compared to TikTok during the thematic coding. This may suggest that TikTok users produce less Al-generated content while using Al-generated hashtags, which could partially account for the lower labeling rate.

Additionally, thematic coding revealed that TikTok creators tend to underlabel their content. The combination of a potentially lower share of Al-generated content and a higher degree of underlabeling may explain the lower prevalence of Al labels on TikTok. However, it is important to note that these observations are based on a sample of the data and may not fully represent the entire dataset. Moreover, the exploratory data analysis showed limited creator overlap between the platforms (Figure 5.3). Consequently, differences in labeling prevalence may also result from variations in how different creator groups label content on each platform.

In addition, the role of transparency should be considered. YouTube does not disclose whether Al labels are applied by the platform or by content creators. This lack of disclosure makes it difficult to assess whether the higher number of labels on YouTube is due to proactive creator behavior or platform content moderation practices.

6.1.2. Impact of AI Labels on Engagement Metrics

As shown in Figure B.1, the engagement measures show similar distributions between labeled and unlabeled videos within each platform. In such cases, differences identified by the Mann-Whitney U test can be interpreted as differences in median values [93]. This complements the probability-based

6.1. Key Findings 36

interpretation discussed in Section 5.3.

However, the potential relationship between AI labels and engagement should be interpreted with caution. Unlike TikTok, YouTube rarely displays AI labels directly in the video player. Within this dataset, only 0.8% of labeled videos included a visibly displayed label in the video player itself. Therefore, limited label visibility may reduce their impact on user behavior, as users may not notice the label.

Additionally, YouTube does not disclose whether a label was applied by the creator or the platform, nor when it was added. Some videos may have received engagement before labeling, complicating causal interpretations. For TikTok, this issue was mitigated by analyzing only creator-applied labels, which cannot be removed or added after posting.

Despite these limitations, the statistical analysis reveals noteworthy patterns. The Mann-Whitney U test identified statistically significant differences in the like/view ratio, comment/view ratio, and view counts for both platforms. Only the share/view ratio (available exclusively for TikTok) showed no significant difference.

For both platforms, the median like/view ratio was lower for Al-labeled videos, suggesting that the median of like/view ratio is lower for labeled content. The effect on the comment/view ratio differs between platforms: on YouTube Shorts non-labeled videos had a higher median, while on TikTok, labeled videos had a higher median. This may indicate that Al-labeled content on TikTok encourages more comments relative to views. This aligns with the research of Du, Zhang, and Ge [15], who attributed this effect to increased user curiosity toward labeled content. The share/view ratio showed no significant difference, indicating Al labels do not affect sharing behavior on TikTok. This finding is consistent with Li and Yang [78], who found no significant impact of Al labels on sharing intentions.

Finally, both platforms showed higher median view counts for labeled videos, but only on TikTok did the effect size exceed 0.1. This indicates a small but practically meaningful effect. In all other cases, effect sizes remained below 0.1. According to Cohen [99], this suggests negligible practical significance. A possible reason for the higher median view counts of labeled content is algorithmic influence. As discussed in Chapter 2, platform algorithms affect content visibility through moderation practices and recommendation systems. The finding that Al-labeled videos receive more views on both platforms suggests that algorithms may contribute to the increased visibility of such content. However, based on the current data, it remains unclear whether this results directly from algorithmic prioritization or from increased user interest in labeled content. Although only TikTok showed a practically significant effect, the higher view counts for labeled videos on both platforms may indicate some level of algorithmic prioritization.

Overall, it remains unclear to what extent the observed differences in engagement are directly caused by the presence of Al labels. Since there is a variation in label visibility and wording suggest that these effects may partly result from content characteristics rather than labeling alone.

6.1.3. Labeling Consistency

To evaluate how well each platform applies its AI labeling policy, we used standard classification metrics. These include precision and accuracy, as introduced in Section 4.3. They show how often labels are correctly applied, based on whether they are actually required. The labeling consistency analysis revealed clear differences between the two platforms. TikTok applies AI labels more accurately, with a precision of 98.10% and an accuracy of 75.00%. In contrast, YouTube Shorts shows much lower performance, with a precision of only 31.80% and an accuracy of 56.60%.

This lower performance for YouTube Shorts reflects frequent overlabeling, with a false positive rate of 34.09%. Of these cases, 99% fell under category Y1.5: Clearly Unrealistic Content. According to YouTube's policies [17], this type of content does not require a label. This overlabeling may result either from confusion among creators, who incorrectly label clearly unrealistic content, or from YouTube's automated detection systems applying labels regardless of the policy. In contrast, TikTok mandates labeling for this category. This likely contributes to its much lower false positive rate of 0.97% and suggests that clearly defining labeling requirements for unrealistic content can help reduce unnecessary labeling.

In terms of underlabeling, YouTube Shorts showed a relatively low false negative rate (9.42%). This suggests that in most cases where a label was appropriate, it was applied. TikTok had a higher false negative rate (24.03%), primarily for category *T5: Clearly Unrealistic Content*. While underlabeling in this category may be less problematic, false negatives on both platforms also occurred in critical cases, such as the use of the likeness of real people, altered footage of real events, and realistic synthetic

scenes. These instances raise concerns given the potential for user deception.

An additional explanation for TikTok's lower labeling rates emerged during thematic coding. A notable share of TikTok videos were tutorials or demonstrations explaining how to create Al-generated content. These were classified as instructional rather than Al-generated, which may partly explain the lower proportion of labeled content on TikTok, as shown in Figure 5.4.

These results echo the findings of Ling, Gummadi, and Zannettou [29], who observed inconsistent COVID-19 labeling on TikTok. While their study focused on platform-applied labels in a health context, this analysis concerns labels for Al-generated content. Nonetheless, both studies highlight a broader issue: content labels are often used inconsistently across short-form video platforms, regardless of topic. Furthermore, the presence of false negatives (9.42% on YouTube Shorts; 24.03% on TikTok) is particularly concerning in light of the "implied truth effect" described by Freeze, Baumgartner, Bruno, et al. [20] and Pennycook, McPhetres, Zhang, et al. [55]. This phenomenon suggests that users may perceive unlabeled content as more credible. Unnecessarily labeled videos are also problematic. As Zhang, Zaleski, Kailley, et al. [56] notes, flawed or inconsistent content moderation may ultimately undermine user trust and do more harm than good. This risk is further amplified by the significant differences in labeling practices across platforms.

It is important to note that the labeling consistency metrics reported here are based on thematic coding and official platform guidelines. As such, they reflect a reasoned interpretation of labeling accuracy rather than an objective ground truth. Moreover, the analysis was based on a 5% sample of the dataset, which limits the generalizability of the findings.

6.2. Policy Implications and Platform Governance

The findings from this study raise important considerations for platform governance and EU policy initiatives. Despite the existence of regulatory frameworks, such as the Digital Services Act (DSA) and the EU Artificial Intelligence Act (EU AI Act), the implementation of AI labeling on TikTok and YouTube Shorts remains inconsistent and often lacks practical visibility.

As introduced in Section 2.2, the DSA is the primary policy for content moderation in the European Union [110]. While it does not explicitly mandate AI labeling, it does require Very Large Online Platforms (VLOPs) to identify and mitigate systemic risks which includes the spread of misinformation [21]. Given the increasing role of generative AI in content creation, AI labeling could be considered part of a platform's risk mitigation strategy. Especially since AI-generated content is seen more and more in policital and abusive situations [5], [7], [9]. These findings suggest that AI-generated content may contribute to systemic risks as defined under the DSA, thereby justifying a stronger emphasis on AI labeling in future risk assessments and platform audits.

The EU AI Act, introduced in Section 2.3, complements the DSA by establishing transparency obligations for both AI content providers (e.g., tools such as ChatGPT) and deployers (e.g., users who publish AI-generated content). While the Act came into force in 2024, it will only become fully enforceable in 2026 [11]. The EU AI Act requires that AI content providers include machine-readable metadata indicating its artificial origin. Deployers must also disclose the use of AI when sharing such content. An exception applies to artistic, satirical, fictional, or editorial content. In these cases, a more subtle or contextual disclosure is permitted, provided that it does not interfere with the viewing experience [71].

However, this study finds that current platform practices do not visibly implement these exemptions. On TikTok, Al labels are always shown in the video player, including for fictional or humorous content. On YouTube Shorts, labels appear only when content is deemed sensitive. Neither platform appears to differentiate based on content type, suggesting a uniform labeling approach rather than a context-sensitive one as envisioned by the Al Act.

Both platforms rely on the C2PA standard to detect embedded metadata, but there is a clear gap between the capabilities of this technology and the platforms' labeling policies. C2PA can indicate whether content was generated or modified using AI, but it cannot assess whether the result is realistic or potentially misleading. For example, a cartoon image and a realistic AI-generated deepfake would receive the same label.

Moreover, the practical impact of C2PA also appears to be limited. In this study, only 1.5% of TikTok videos featured a platform-applied Al label. This low percentage may point to several factors: limited use of C2PA-compliant tools by creators, technical immaturity of the standard, or the deliberate removal of metadata. The latter aligns with prior research showing that users often attempt to evade platform

moderation systems, for example by altering keywords, a practice commonly referred to as "algospeak" [50]. A similar situation may exist on YouTube Shorts, but this could not be confirmed as the platform does not specify whether labels are applied by the platform itself or by creators. It is worth noting that the EU AI Act will only be fully enforceable in 2026. The current gaps in AI labeling may therefore reflect a transitional phase in regulatory compliance.

In conclusion, while the DSA and AI Act represent important steps toward more transparent and accountable content governance, their current design limits their effectiveness in practice. The DSA does not directly address AI-generated content, and the AI Act excludes platforms from its core obligations. As a result, the governance of AI-generated content remains fragmented. This study shows that without platform-level standardization and oversight, the transparency aims of these regulatory frameworks may not be fully realized. Particularly in fast-moving environments like short-form video platforms.

6.3. Scientific Contribution

This study addresses several key knowledge gaps in the academic literature on Al labeling on short-form video platforms.

First, while previous research has explored user perceptions and attitudes towards AI labels [12], [13], no quantitative research was done about how frequently these labels actually occur across platforms. This study fills that gap by providing the first large-scale, cross-platform analysis of AI label prevalence on TikTok and YouTube Shorts. The findings reveal substantial differences in labeling rates between the two platforms. Furthermore, this study identified platform-level differences in label attribution: TikTok showed very few platform-applied labels, indicating a dominantly creator-driven approach.

Second, prior work has raised concerns about inconsistent application of content labels in other domains, such as health misinformation [29]. However, no study to date has systematically examined whether AI labels are applied in accordance with platform-specific policies. This research addresses that gap through thematic coding and policy comparison, revealing high rates of overlabeling on YouTube and underlabeling on TikTok. These findings extend earlier concerns about labeling inconsistency to the domain of AI-generated content.

Third, earlier studies on label impact on engagement have reported conflicting findings. Some suggest lower engagement due to reduced credibility [14], while others report higher engagement driven by user curiosity [15]. A third study [78] found no significant impact on sharing intention, perceived credibility, or message credibility. This study contributes to this debate by comparing engagement metrics between labeled and non-labeled videos. While some statistically significant differences were observed, most effect sizes were negligible. Only the median number of views on TikTok showed a small but meaningful effect. These results suggest that AI labels have a limited impact on engagement behavior.

Together, these contributions offer a more complete understanding of how Al labels are applied on short-form video platforms, what their impact is on user engagement, and how consistently they are implemented in practice.

6.4. Limitations

This research has several limitations that should be considered. First, the dataset was collected based on Al-related hashtags. This introduces a selection bias toward content explicitly tagged with these hashtags, which could have limited the diversity of the dataset. Creators wanting to avoid detection of Al-generated content may purposely avoid using these hashtags. In contrast, creators who are more transparent about their use of Al may be more likely to include Al-related hashtags and to label their content accordingly. This dynamic may have resulted in an over-representation of labeled videos.

Second, there may be a bias caused by platform algorithms that favor popular or recent content. As shown in the exploratory data analysis, the two platforms seem to differ in how content is displayed on the hashtag pages. YouTube showed an increase in videos around the data collection date. In contrast, TikTok showed a steeper curve which may suggest that TikTok prioritizes popular content more. These algorithmic preferences may have affected engagement metrics. Newer videos may have received less engagement due to limited exposure time, and popular videos may showed more engagement.

Third, the sample may have limited representativeness due to country-specific communication styles and engagement behavior on social media. AlAfnan [111] shows that social media engagement

6.4. Limitations

varies across national and cultural contexts. Although this study used multiple VPN locations to simulate different geographic regions during data collection, it was not possible to determine the cultural or national background of the users engaging with the content. As a result, potential variation in engagement behavior across user groups was not captured. Moreover, while both TikTok and YouTube operate globally [10], this study focused on regulatory frameworks within the European Union. The dataset may include content that was primarily produced for or consumed in non-EU markets, which may limit the direct applicability of findings to EU policy discussions. In addition to geographic diversity, other demographic factors such as age were not taken into account. Given that TikTok and YouTube Shorts have different user bases in terms of age distribution, and that age may influence how users interact with content, this may also have affected the results.

Fourth, this study did not account for engagement behavior influenced by follower relationships. This may represent a relevant limitation, as prior research suggests that users tend to engage more with content from creators they already follow [112]. This potentially places greater weight on social familiarity than on the presence of Al labels. Since this study did not distinguish between followers and non-followers when measuring engagement, this dynamic may have affected the observed results.

Fifth, although this study identified a small number of creators active on both TikTok and YouTube Shorts (Figure 5.3), no further analysis was conducted to assess whether the observed labeling patterns arise from platform policies or differences in creator populations across platforms. Since YouTube does not indicate whether Al labels are applied by the platform or the creator, it was not possible to determine whether individual creators label their content differently across platforms. Therefore, the differences in label prevalence may partly reflect labeling behavior of creators rather than platform enforcement alone.

Moreover, the data only covers a specific time period from 01-11-2023 to 31-03-2025. This period was chosen because both platforms introduced Al labeling policies in November 2023 [16], [101]. However, it should be noted that several events within this time frame that may have influenced the outcomes of this research:

- According to TikTok's official platform documentation of C2PA was only implemented from May 2024 [63]. This may explain the under-representativeness of platform-applied Al labels on TikTok. However, at least one video posted in late 2023 was found with a platform applied Al label. This suggests that the automatic labeling system may have been applied retroactively, but this is not further verified. For YouTube, it is not officially documented when the automated Al labeling began.
- The EU AI Act came into force during the time period of the data and will be fully applicable only in 2026 [11]. As discussed, the AI Act requires AI content generators to apply machine-readable labels. However, given that the law is still in a transitional phase, this requirement may not yet be systematically enforced. This, combined with the gradual implementation of the C2PA standard on both platforms, may have influenced the number of videos with platform-applied AI labels.

Lastly, the thesis did not control for the actual presence of Al-generated content in the engagement analysis. Instead, it only compared engagement between labeled and non-labeled videos. As thematic coding revealed, a proportion of the non-labeled videos were not Al-generated. This introduces a potential distorting factor, as differences in engagement may be driven by content type rather than the presence of absence of a label.

6.4.1. Ethical Considerations

This research has taken several measures to ensure that ethical considerations were fully integrated into the research process. There was a official application submitted for ethical approval to the Human Research Ethics Committee (HREC) at TU Delft and a Data Management Plan (DMP) was developed.

The study relied exclusively data from social media platforms that was publicly available. Although this data is public, some information could potentially lead to the re-identification of users or individuals appearing in videos. To mitigate this risk, no videos were downloaded or stored; only URLs and metadata were collected. However, since TikTok URLs contain usernames, the dataset is not publicly shared and is securely stored on the TU Delft Project Data Storage (U: drive). Access to the dataset was restricted to the research team.

Although scraping may violate the platform's terms of service, data collection was done responsibly and non-intrusively. Scraping methods were carefully applied by manually resolving captchas, rejecting

6.5. Recommendations 40

cookie pop-ups and avoiding the use of headless browser applications. These measures attempted to minimize platform load. All data was collected solely for academic research purposes.

6.5. Recommendations

This research showed significant differences in how YouTube Shorts and TikTok apply Al labels. These differences include label visibility, source disclosure and application requirements. These findings led to the following recommendations for the platforms, policymakers, and future research.

6.5.1. Transparency and Platform-Applied AI Labels

YouTube Shorts currently does not distinguish between creator- and platform-applied Al labels. However, research shows that young adults tend to trust creator-applied labels less than those applied by platforms [80]. To enhance trust and transparency in terms of label source, YouTube Shorts should indicate whether a label was applied by the platform or the content creator.

In contrast, TikTok does make a distinction between creator- and platform-applied Al labels. However, this study found that only 1.5% of TikTok videos in the dataset had a platform-applied label. Since YouTube Shorts and TikTok both adopt the same method for applying platform labels, the assumption is that YouTube Shorts also has a really low rate of label applied by the platform. Therefore, both platforms would benefit from applying platform labels more frequently since they are seen as more credible.

If the C2PA standard does not detect sufficient Al-generated content, YouTube Shorts and TikTok could explore additional automated detection systems or invest in human moderation to improve labeling coverage. Such efforts would demonstrate leadership in responsible Al governance and help the platforms stay ahead of evolving regulatory requirements.

Moreover, both platforms publicly state that their AI labeling initiatives aim to combat misinformation and promote responsible content creation [16], [64]. However, without transparent disclosure of label sources and a higher prevalence of platform-applied labels, these commitments risk being perceived as superficial. Increasing the visibility and credibility of AI labels is therefore not only beneficial for compliance but also essential to maintain user trust and protect the platforms' reputations in an increasingly AI-driven content landscape.

6.5.2. Standardization of Labeling Guidelines

Thematic coding revealed an inconsistent application of Al labels, particularly on YouTube Shorts. Nearly 35% of the YouTube Shorts sample was unnecessarily labeled, leading to a high rate of false positives. A likely cause is that YouTube Shorts does not mandate creators to label "Clearly Unrealistic Content" [64]. As a result, many videos receive a label even though they do not require one under YouTube Shorts's current guidelines.

In contrast, TikTok explicitly requires labeling for clearly unrealistic content and shows a significantly lower false positive rate (less than 1%). To reduce inconsistency and improve label accuracy, it is recommended that YouTube Shorts at least mandates labeling for clearly unrealistic content, aligning its policy with TikTok's clearer approach.

In addition, to promote uniformity between creator-applied and platform-applied labels, both platforms should consider extending their labeling requirements to all forms of Al-modified content. This includes:

- The use of Al-generated effects and filters.
- The addition of Al-generated elements to videos.

Currently, such modifications fall outside the labeling requirements of both platforms, even though they may be detectable through embedded metadata using the C2PA standard. However, whether Al-generated effects and filters consistently include such metadata depends on the specific tools used and their compliance with C2PA. By including these types of content modifications under their labeling policies, platforms can reduce user confusion and promote a more consistent application of Al labels.

6.5.3. Extending AI Labeling Obligations to Platforms

The policy implications identified in this thesis point to a broader regulatory gap in the governance of Al-generated content. The EU Artificial Intelligence Act (Al Act) currently mandates that Al content

6.5. Recommendations 41

generation tools embed machine-readable labels in the content they produce. However, this obligation does not extend to the online platforms that host and distribute such content. Although the Digital Services Act (DSA) requires platforms to take effective measures against systemic risks, including misinformation [23], it does not explicitly mandate the disclosure or labeling of Al-generated content.

While Al-generated content does not always constitute misinformation, increasing evidence suggests that users should be clearly informed when content is created with the help of Al. This need is reinforced by research showing that distinguishing between human- and machine-generated content is becoming increasingly difficult [1]–[3], [66], [67].

Given the inconsistent labeling practices observed in this study, it is recommended that policymakers establish a clear and enforceable obligation for online platforms to disclose Al-generated content. This could be achieved by either extending the scope of the Al Act or explicitly incorporating such requirements into the Digital Services Act (DSA).

Furthermore, considering the variation in how AI labels are currently displayed and described across platforms, it is advisable to introduce standardized guidelines for label placement and terminology. Prior research warns that unclear or hidden labels can create a false sense of transparency and undermine user trust [81]. Standardization would help ensure that AI labels are consistently visible, understandable, and effective across different platforms.

6.5.4. Recommendations for Further Research

Based on the findings and limitations of this study, several directions for future research are recommended:

- Investigate whether the higher median views for Al-labeled videos result from algorithmic prioritization in recommendation systems.
- Explore the contextual factors that may moderate the relationship between AI labels and user
 engagement. Given that prior studies report mixed results depending on content type and user
 motivations [15], [78], future research should investigate whether specific content categories influence how AI labels affect user behavior. This could help explain why this study found negligible
 engagement effects despite earlier conflicting findings in the literature.
- Include additional engagement metrics, such as watch time and video completion rates, to gain deeper insights into user behavior on short-form video platforms.
- Since there was only limited overlap in content creators across platforms, future research could examine whether differences in label prevalence are influenced by variations in creator populations and their labeling behavior.
- Expand the dataset with a broader and more diverse range of hashtags, including non-Al-related topics, to assess whether Al-related hashtags influence labeling practices.
- Explore whether content creators strategically avoid Al labels. Prior research on content moderation avoidance through "algospeak" [50] suggests similar strategies may emerge. Especially given the availability of tools that can remove embedded metadata.
- Assess how much Al-generated content contains misinformation and whether this type of content is frequently labeled, to better understand the effectiveness of Al labels in combating misinformation.
- Examine the practical implementation of the C2PA standard on short-form video platforms, including how and when C2PA metadata is embedded. Additionally, assess whether its implementation is consistent with the platforms' own labeling policies.

7

Conclusion

This study examined how AI labeling practices differ between TikTok and YouTube Shorts in terms of prevalence, consistency, and their influence on user engagement. The analysis was based on metadata from 12,315 videos, including 6,039 YouTube Shorts and 6,276 TikToks. Data was collected using a combination of scraping techniques and (un)official API access, targeting AI-related hashtags. This thesis was guided by four sub-questions, which will now be answered individually, followed by a reflection on the main research question.

SQ1: What content moderation techniques are currently applied on short-form video platforms, and what are their main challenges according to literature?

Short-form video platforms apply both hard moderation (e.g., content removal) [25], [26] and soft moderation (e.g., warning labels) [27], [28], often through semi-automated systems combining AI and human oversight [36]–[39]. Warning labels are applied to various topics, including health and political content [29]–[35]. However, these systems face recurring challenges such as bias, lack of transparency, and inconsistent application. Such shortcomings may also affect AI labeling, for example by reinforcing the implied truth effect [20], where unlabeled content appears more credible. Moreover, users may respond to moderation by adopting evasive tactics like "algospeak" [50] or by migrating to less moderated platforms [54]. These issues underline the need for transparent and consistent moderation. Not only to inform users, but also to maintain platform credibility.

SQ2: How are Al labels applied on TikTok and YouTube Shorts, what are their characteristics, and what does existing research say about their application and user perception?

Although both platforms rely on the C2PA standard [63], [64], their implementation and source disclosure differ. TikTok applies both creator- and platform-generated Al labels, which are clearly visible under the username. YouTube Shorts displays less visible labels in the expanded description and does not indicate who applied them. Research shows that users trust platform-applied labels more than those from creators [65]. When labels are inconsistent or unattributed, they may lose effectiveness and create a false sense of transparency. This highlights the need for reliable, visible, and clearly sourced Al labels to support informed user judgments.

SQ3: How prevalent are Al labels on TikTok and YouTube Shorts for videos with selected hashtags, and how is their presence related to user engagement within each platform?

Al labels appeared more frequently on YouTube Shorts than on TikTok. On TikTok, only 1.53% of videos had a platform-applied label, compared to 35.34% with a creator-applied label. This points to limited platform enforcement. YouTube Shorts does not disclose who applied the label, but given both platforms use C2PA, platform-applied labels are likely rare there too. Al labels showed mixed effects on engagement. While some differences in views, likes, and comments were statistically significant, only TikTok view counts (for creator-applied labels) showed a meaningful effect size. This may reflect

algorithmic boosting. Overall, the practical impact of Al labeling on engagement appears minimal, and underlying causes remain unclear.

SQ4: How accurately and consistently are AI labels applied in practice compared to platform-specific guidelines across and within short-form video platforms?

Labeling consistency was limited on both platforms. YouTube Shorts showed frequent overlabeling, likely due to the absence of a requirement to label clearly unrealistic content. TikTok had more underlabeling, with many qualifying videos left unmarked. Both platforms' policies also contradict the capabilities of C2PA, which can detect Al-generated content via metadata. Despite adopting this standard, platforms do not require labeling in all detectable cases. This highlights a gap between technical potential and actual enforcement, suggesting that current policies do not ensure accurate or consistent Al labeling.

Based on the findings of the four sub-questions, this thesis aimed to answer the following overarching research question:

How do Al labeling practices on TikTok and YouTube Shorts differ in prevalence and consistency, and how do these labels impact user engagement?

This study found that AI labeling on TikTok and YouTube Shorts differs substantially in prevalence and consistency, with limited overall impact on user engagement. Platform-applied AI labels are rare on TikTok, while creator-applied labels are more common but still appear in only a minority of videos. On YouTube Shorts, more than half of the videos contained an AI label, although the origin of the label is not disclosed. AI labeling is applied inconsistently on both platforms: YouTube Shorts often displays unnecessary labels, while on TikTok, videos that should be labeled frequently remain unlabeled. Although both platforms use the same automatic detection method (C2PA), their platform guidelines for assigning labels differ. Most notably, YouTube explicitly exempts clearly unrealistic content from labeling, while TikTok requires such content to be labeled. The overall impact of AI labels on user engagement is minimal. Only on TikTok, a meaningful and statistically significant increase in the median view count was observed for labeled videos.

These findings raise important concerns about the current effectiveness of Al labeling on YouTube Shorts and TikTok. If Al labels are not clearly visible or easily understood, they risk creating a false sense of transparency [81]. In addition, when labels are applied inconsistently and users are unaware of these inconsistencies, the implied truth effect may lead users to incorrectly perceive unlabeled content as more trustworthy [20], [55]. This is particularly problematic on TikTok, where underlabeling was observed, increasing the likelihood that users will misinterpret unlabeled content as authentic. To maintain user trust and effectively moderate Al-generated content, platforms must prioritize improving the visibility, credibility, and consistency of their Al labeling practices.

Moreover, this study underscores the need for ongoing policy efforts to establish clearer guide-lines for AI content labeling and to strengthen platform accountability. Current European Commission policies primarily target AI content generation tools, while placing less emphasis on the platforms responsible for disseminating that content. However, this research shows that TikTok relies heavily on creator-applied labels, with limited oversight from the platform itself. It is likely that YouTube follows a similar approach, given its reliance on comparable labeling mechanisms. Future research should explore the drivers of user engagement with AI-labeled content, assess the role of algorithmic prioritization of AI labeled videos, and examine how technical standards like C2PA are applied in practice. Additionally, more research is needed on labeling effectiveness in combating misinformation and the strategies creators use to avoid AI labels.

These findings highlight an urgent need for more robust AI labeling policies. As generative AI becomes more integrated into online video content, platforms must not only define clear labeling guidelines, but also apply them consistently in practice. Currently, platform-applied labels are used rarely and creator-applied labels are used inconsistently, undermining their credibility and potentially confusing users. In addition, regulatory frameworks should be strengthened to ensure that AI-generated content is labeled accurately and visibly. Without such improvements, inconsistent labeling will continue to mislead users and erode trust in digital media.

- [1] A. Dmonte, M. Zampieri, K. Lybarger, M. Albanese, and G. Coulter, "Classifying Human-Generated and Al-Generated Election Claims in Social Media," in *Proceedings of the International Conference on Security and Cryptography*, 2024, pp. 237–248. DOI: 10.5220/0012797900003767.
- [2] S. Rossi, Y. Kwon, O. H. Auglend, R. R. Mukkamala, M. Rossi, and J. Thatcher, "Are Deep Learning-Generated Social Media Profiles Indistinguishable from Real Profiles?" In *Proceedings of the Annual Hawaii International Conference on System Sciences*, vol. 2023-January, 2023, pp. 134–143.
- [3] S. D. Bray, S. D. Johnson, and B. Kleinberg, "Testing human ability to detect 'deepfake' images of human faces," *Journal of Cybersecurity*, vol. 9, no. 1, 2023. DOI: 10.1093/cybsec/tyad011.
- [4] C. Criddle and H. Murphy, *Meta debuts AI filmmaker in challenge to OpenAI's Sora*, Oct. 2024. [Online]. Available: https://www.ft.com/content/00c9ce12-68f7-4fdd-a35f-8a66cc63420d?.
- [5] J. Wakefield, *Deepfake presidents used in Russia-Ukraine war*, Mar. 2022. [Online]. Available: https://www.bbc.com/news/technology-60780142.
- [6] A. Swenson, A parody ad shared by Elon Musk clones Kamala Harris' voice, raising concerns about Al in politics, Jul. 2024. [Online]. Available: https://apnews.com/article/parody-ad-ai-harris-musk-x-misleading-3a5df582f911a808d34f68b766aa3b8e.
- [7] I. Rahman-Jones, *Macron shares his deepfakes for AI summit attention*, Feb. 2025. [Online]. Available: https://www.bbc.com/news/articles/c3e1kne7q1qo.
- [8] V. Dan, "Deepfakes as a Democratic Threat: Experimental Evidence Shows Noxious Effects That Are Reducible Through Journalistic Fact Checks," *International Journal of Press/Politics*, pp. 1–26, 2025, ISSN: 19401620. DOI: 10.1177/19401612251317766.
- [9] E. Saner, Inside the Taylor Swift deepfake scandal: 'It's men telling a powerful woman to get back in her box', Jan. 2024. [Online]. Available: https://www.theguardian.com/technology/2024/jan/31/inside-the-taylor-swift-deepfake-scandal-its-men-telling-a-powerful-woman-to-get-back-in-her-box.
- [10] S. J. Dixon, *Global social networks ranked by number of users 2024*. Jul. 2024. [Online]. Available: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/.
- [11] European Comission, *Al Act*, Dec. 2024. [Online]. Available: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai.
- [12] O. Burrus, A. Curtis, and L. Herman, "Unmasking AI: Informing Authenticity Decisions by Labeling AI-Generated Content," *Interactions*, vol. 31, no. 4, pp. 38–42, Aug. 2024. DOI: 10.1145/3665321.
- [13] C. Wittenberg, Z. Epstein, A. J. Berinsky, and D. G. Rand, "Labeling Al-Generated Content: Promises, Perils, and Future Directions," *An MIT Exploration of Generative AI*, 2024. DOI: 10. 21428/e4baedd9.0319e3a6.
- [14] S. Altay and F. Gilardi, "People are skeptical of headlines labeled as Al-generated, even if true or human-made, because they assume full Al automation," *PNAS Nexus*, vol. 3, no. 10, 2024. DOI: 10.1093/pnasnexus/pgae403.
- [15] D. Du, Y. Zhang, and J. Ge, "Effect of Al Generated Content Advertising on Consumer Engagement," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics*), vol. 14039 LNCS, 2023, pp. 121–129. DOI: 10.1007/978-3-031-36049-7{_}9.

[16] TikTok, New labels for disclosing Al-generated content, Sep. 2023. [Online]. Available: https://newsroom.tiktok.com/en-us/new-labels-for-disclosing-ai-generated-content.

- [17] YouTube Help, Disclosing use of altered or synthetic content, 2025. [Online]. Available: https://support.google.com/youtube/answer/14328491#zippy=%2Cexamples-of-content-that-creators-dont-have-to-disclose%2Cexamples-of-content-that-creators-need-to-disclose.
- [18] ASReview, Join the movement towards fast, open, and transparent systematic reviews, 2025. [Online]. Available: https://asreview.nl/.
- [19] Mendeley, *Mendeley Reference Manager*, 2025. [Online]. Available: https://www.mendeley.com/reference-management/reference-manager.
- [20] M. Freeze, M. Baumgartner, P. Bruno, *et al.*, "Fake Claims of Fake News: Political Misinformation, Warnings, and the Tainted Truth Effect," *Political Behavior*, vol. 43, no. 4, pp. 1433–1465, Dec. 2021, ISSN: 15736687. DOI: 10.1007/s11109-020-09597-3.
- [21] L. Kosters and O. J. Gstrein, "TikTok and Transparency Obligations in the EU Digital Services Act (DSA) A Scoping Review," *Zeitschrift fur Europarechtliche Studien*, vol. 27, no. 1, pp. 110–145, 2024. DOI: 10.5771/1435-439X-2024-1-110.
- [22] B. Botero Arcila and R. Griffin, "Social media platforms and challenges for democracy, rule of law and fundamental rights," European Union, Tech. Rep., 2023.
- [23] European Commission, *The Digital Services Act*, 2025. [Online]. Available: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/digital-services-act_en.
- [24] S. Wright, "Government-run online discussion fora: Moderation, censorship and the shadow of control," *British Journal of Politics and International Relations*, vol. 8, no. 4, pp. 550–568, Nov. 2006, ISSN: 13691481. DOI: 10.1111/j.1467-856X.2006.00247.x.
- [25] S. Jhaver, C. Boylston, D. Yang, and A. Bruckman, "Evaluating the Effectiveness of Deplatforming as a Moderation Strategy on Twitter," *Proceedings of the ACM on Human-Computer Interaction*, vol. 5, no. CSCW2, Oct. 2021, ISSN: 25730142. DOI: 10.1145/3479525.
- [26] T. Hong, Z. Tang, M. Lu, Y. Wang, J. Wu, and D. Wijaya, "Effects of #coronavirus content moderation on misinformation and anti-Asian hate on Instagram," *New Media and Society*, Feb. 2023, ISSN: 14617315. DOI: 10.1177/14614448231187529.
- [27] T. Dobber, S. Kruikemeier, F. Votta, N. Helberger, and E. P. Goodman, "The effect of traffic light veracity labels on perceptions of political advertising source and message credibility on social media," *Journal of Information Technology and Politics*, vol. 22, no. 1, pp. 82–97, 2025. DOI: 10.1080/19331681.2023.2224316.
- [28] S. Atreja, L. Hemphill, and P. Resnick, "Remove, Reduce, Inform: What Actions do People Want Social Media Platforms to Take on Potentially Misleading Content?" *Proceedings of the ACM on Human-Computer Interaction*, vol. 7, no. CSCW2, 2023. DOI: 10.1145/3610082.
- [29] C. Ling, K. P. Gummadi, and S. Zannettou, ""Learn the Facts about COVID-19": Analyzing the Use of Warning Labels on TikTok Videos," *Proceedings of the International AAAI Conference on Web and Social Media*, vol. 17, no. 1, 2023. DOI: 10.1609/icwsm.v17i1.22168.
- [30] D. N. Lee, M. A. Bluestein, E. M. Stevens, A. P. Tackett, A. J. Mathews, and E. T. Hébert, *Impact of Financial Disclosures and Health Warnings on Youth and Young Adult Perceptions of Pro-Ecigarette Instagram Posts*, Feb. 2024. DOI: 10.1093/ntr/ntad219.
- [31] J. Phua and D. Lim, "Can warning labels mitigate effects of advertising message claims in celebrity-endorsed Instagram-based electronic cigarette advertisements? Influence on social media users' E-cigarette attitudes and behavioral intentions," *Journal of Marketing Communications*, vol. 29, no. 5, pp. 455–475, 2023, ISSN: 14664445. DOI: 10.1080/13527266.2022.2037008.
- [32] N. A. Silver, P. Kucherlapaty, A. Bertrand, R. N. Falk, and J. M. Rath, "Improving Enforcement Measures and Establishing Clear Criteria: A Content Analysis of Tobacco-Brand-Owned Instagram Accounts," *Nicotine and Tobacco Research*, vol. 26, no. 9, pp. 1175–1182, Aug. 2024, ISSN: 1469-994X. DOI: 10.1093/ntr/ntae052.

[33] F. Sharevski, J. V. Loop, P. Jachim, A. Devine, and E. Pieroni, "Talking Abortion (Mis)information with ChatGPT on TikTok," in *Proceedings - 8th IEEE European Symposium on Security and Privacy Workshops, Euro S and PW 2023*, 2023, pp. 594–608. DOI: 10.1109/EuroSPW59978. 2023.00071.

- [34] I. Russell, Debate: More, not less social media content moderation? How to better protect youth mental health online, Sep. 2024. DOI: 10.1111/camh.12717.
- [35] J. Nassetta and K. Gross, "State media warning labels can counteract the effects of foreign disinformation," *Harvard Kennedy School Misinformation Review*, vol. 1, no. 7, 2020. DOI: 10. 37016/mr-2020-45.
- [36] T. Gillespie, "Content moderation, AI, and the question of scale," *Big Data and Society*, vol. 7, no. 2, Jul. 2020, ISSN: 20539517. DOI: 10.1177/2053951720943234.
- [37] E. Wan, "Laboring in Electronic and Digital Waste Infrastructures: Colonial Temporalities of Violence in Asia," Tech. Rep., 2021, pp. 2631–2651. [Online]. Available: http://ijoc.org..
- [38] R. Gorwa, R. Binns, and C. Katzenbach, "Algorithmic content moderation: Technical and political challenges in the automation of platform governance," *Big Data and Society*, vol. 7, no. 1, 2020. DOI: 10.1177/2053951719897945.
- [39] F. Saurwein and C. Spencer Smith, "Automated trouble: The role of algorithmic selection in harms on social media platforms," *Media and Communication*, vol. 9, no. 4, pp. 222–233, 2021. DOI: 10.17645/mac.v9i4.4062.
- [40] S. Jiang, R. E. Robertson, and C. Wilson, "Reasoning about political bias in content moderation," in *AAAI 2020 34th AAAI Conference on Artificial Intelligence*, 2020, pp. 13669–13672. DOI: 10.1609/aaai.v34i09.7117.
- [41] J. Seering, "Reconsidering Community Self-Moderation: The Role of Research in Supporting Community-Based Models for Online Content Moderation," *Proceedings of the ACM on Human-Computer Interaction*, vol. 4, no. CSCW2, 2020. DOI: 10.1145/3415178.
- [42] TikTok, Our approach to content moderation, 2025. [Online]. Available: https://www.tiktok.com/transparency/en/content-moderation/.
- [43] M. Halprin and J. Flannery O'Connor, *On policy development at YouTube*, Dec. 2022. [Online]. Available: https://blog.youtube/inside-youtube/policy-development-at-youtube/.
- [44] C. Vallance, *Meta is ditching fact checkers for X-style community notes. Will they work?* Jan. 2025. [Online]. Available: https://www.bbc.com/news/articles/c4g93nvrdz7o.
- [45] L. McMahon, Z. Kleinman, and C. Subramanian, Facebook and Instagram get rid of fact checkers, Jan. 2025. [Online]. Available: https://www.bbc.com/news/articles/cly74mpy8klo.
- [46] A. Johns, F. Bailo, E. Booth, and M. A. Rizoiu, "Labelling, shadow bans and community resistance: did meta's strategy to suppress rather than remove COVID misinformation and conspiracy theory on Facebook slow the spread?" *Media International Australia*, 2024, ISSN: 1329878X. DOI: 10.1177/1329878X241236984.
- [47] R. M. Santini, D. Salles, and B. Mattos, "Recommending instead of taking down: YouTube hyperpartisan content promotion amid the Brazilian general elections," *Policy and Internet*, vol. 15, no. 4, pp. 512–527, Dec. 2023, ISSN: 19442866. DOI: 10.1002/poi3.380.
- [48] E. Steen, K. Yurechko, and D. Klug, "You Can (Not) Say What You Want: Using Algospeak to Contest and Evade Algorithmic Content Moderation on TikTok," *Social Media and Society*, vol. 9, no. 3, 2023. DOI: 10.1177/20563051231194586.
- [49] C. Harris, A. G. Johnson, S. Palmer, D. Yang, and A. Bruckman, ""Honestly, I Think TikTok has a Vendetta Against Black Creators": Understanding Black Content Creator Experiences on TikTok," *Proceedings of the ACM on Human-Computer Interaction*, vol. 7, no. CSCW2, 2023. DOI: 10.1145/3610169.
- [50] D. Klug, E. Steen, and K. Yurechko, "How Algorithm Awareness Impacts Algospeak Use on TikTok," in *ACM Web Conference 2023 Companion of the World Wide Web Conference, WWW 2023*, 2023, pp. 234–237. DOI: 10.1145/3543873.3587355.

[51] D. Delmonaco, S. Mayworm, H. Thach, J. Guberman, A. Augusta, and O. L. Haimson, ""What are you doing, TikTok?": How Marginalized Social Media Users Perceive, Theorize, and "Prove" Shadowbanning," *Proceedings of the ACM on Human-Computer Interaction*, vol. 8, no. CSCW1, 2024. DOI: 10.1145/3637431.

- [52] H. H. Nigatu and I. D. Raji, ""I Searched for a Religious Song in Amharic and Got Sexual Content Instead": Investigating Online Harm in Low-Resourced Languages on YouTube.," in 2024 ACM Conference on Fairness, Accountability, and Transparency, FAccT 2024, Association for Computing Machinery, Inc, Jun. 2024, pp. 141–160, ISBN: 9798400704505. DOI: 10.1145/3630106.3658546.
- [53] D. Kumar, P. Kelly, S. Consolvo, *et al.*, "Designing Toxic Content Classification for a Diversity of Perspectives," USENIX Association, Aug. 2021, ISBN: 9781939133250. [Online]. Available: https://www.usenix.org/conference/soups2021/presentation/kumar.
- [54] O. Papadopoulou, E. Kartsounidou, and S. Papadopoulos, "COVID-Related Misinformation Migration to BitChute and Odysee," *Future Internet*, vol. 14, no. 12, Dec. 2022, ISSN: 19995903. DOI: 10.3390/fi14120350.
- [55] G. Pennycook, J. McPhetres, Y. Zhang, J. G. Lu, and D. G. Rand, "Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention," *Psychological Science*, vol. 31, no. 7, pp. 770–780, Jul. 2020, ISSN: 14679280. DOI: 10.1177/0956797620939054.
- [56] C. C. Zhang, G. Zaleski, J. N. Kailley, et al., Debate: Social media content moderation may do more harm than good for youth mental health, Feb. 2024. DOI: 10.1111/camh.12689.
- [57] N. Marchal and H. Au, ""Coronavirus EXPLAINED": YouTube, COVID-19, and the Socio-Technical Mediation of Expertise," Social Media and Society, vol. 6, no. 3, 2020. DOI: 10.1177/2056305 120948158.
- [58] M. E. Price and J. M. Price, "Building Legitimacy in the Absence of the State: Reflections on the Facebook Oversight Board," *International Journal of Communication*, vol. 17, pp. 3315–3325, 2023. [Online]. Available: http://ijoc.org..
- [59] P. S. Martín, "Meta's Oversight Board: Challenges of Content Moderation on the Internet," Erasmus Law Review, vol. 2023, no. 2, pp. 124–139, 2023, ISSN: 22102671. DOI: 10.5553/ELR.000253.
- [60] A. de Bittencourt Siqueira, "Automated detection of infringing content in Meta's Oversight Board : How online content moderation is shaping new limits of freedom of expression," in *Lecture Notes in Informatics (LNI), Proceedings Series of the Gesellschaft fur Informatik (GI)*, vol. 352, Gesellschaft fur Informatik (GI), 2024, pp. 183–197, ISBN: 9783885797463. DOI: 10.18420/inf2024{_}13.
- [61] D. Wong and L. Floridi, "Meta's Oversight Board: A Review and Critical Assessment," *Minds and Machines*, vol. 33, no. 2, pp. 261–284, 2023. DOI: 10.1007/s11023-022-09613-x.
- [62] C. L. Cook, A. Patel, and D. Y. Wohn, "Commercial Versus Volunteer: Comparing User Perceptions of Toxicity and Transparency in Content Moderation Across Social Media Platforms," Frontiers in Human Dynamics, vol. 3, 2021. DOI: 10.3389/fhumd.2021.626409.
- [63] TikTok, Partnering with our industry to advance AI transparency and literacy, May 2024. [Online]. Available: https://newsroom.tiktok.com/en-us/partnering-with-our-industry-to-advance-ai-transparency-and-literacy.
- [64] YouTube, How we're helping creators disclose altered or synthetic content, Mar. 2024. [Online]. Available: https://blog.youtube/news-and-events/disclosing-ai-generated-content/.
- [65] Y. Liu, S. Wang, and G. Yu, "The nudging effect of AIGC labeling on users' perceptions of automated news: evidence from EEG," *Frontiers in Psychology*, vol. 14, 2023. DOI: 10.3389/ fpsyg.2023.1277829.
- [66] B. Chomanski and L. Lauwaert, "Automated Propaganda: Labeling Al-Generated Political Content Should Not be Required by Law," *Journal of Applied Philosophy*, 2025. DOI: 10.1111/japp. 70002.

[67] S. A. Fisher, "Something Al Should Tell You – The Case for Labelling Synthetic Content," *Journal of Applied Philosophy*, vol. 42, no. 1, pp. 272–286, 2025. DOI: 10.1111/japp.12758.

- [68] M. R. Shoaib, Z. Wang, M. T. Ahvanooey, and J. Zhao, "Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models," in *ICCA 2023 2023 5th International Conference on Computer and Applications, Proceedings*, Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 9798350303254. DOI: 10.1109/ICCA59364.2023. 10401723.
- [69] S. Monteith, T. Glenn, J. R. Geddes, P. C. Whybrow, E. Achtyes, and M. Bauer, "Artificial intelligence and increasing misinformation," *British Journal of Psychiatry*, vol. 224, no. 2, pp. 33–35, Feb. 2024, ISSN: 14721465. DOI: 10.1192/bjp.2023.136.
- [70] O. J. Gstrein, N. Haleem, and A. Zwitter, "General-purpose AI regulation and the European Union AI Act," *Internet Policy Review*, vol. 13, no. 3, 2024, ISSN: 21976775. DOI: 10.14763/ 2024.3.1790.
- [71] Future of Life Institute, Article 50: Transparency Obligations for Providers and Deployers of Certain Al Systems, 2025. [Online]. Available: https://artificialintelligenceact.eu/article/50/.
- [72] F. Temmermans and L. Rosenthol, "Adopting the JPEG universal metadata box format for media authenticity annotations," in *Proceedings of SPIE The International Society for Optical Engineering*, vol. 11842, 2021. DOI: 10.1117/12.2597651.
- [73] Coalition for Content Provenance and Authenticity, "Content Credentials C2PA Technical Specification," Tech. Rep., Sep. 2024. [Online]. Available: https://c2pa.org/specifications/specifications/1/index.html.
- [74] K. Balan, S. Agarwal, S. Jenni, A. Parsons, A. Gilbert, and J. Collomosse, "EKILA: Synthetic Media Provenance and Attribution for Generative Art," in *IEEE Computer Society Conference* on Computer Vision and Pattern Recognition Workshops, vol. 2023-June, 2023, pp. 913–922. DOI: 10.1109/CVPRW59228.2023.00098.
- [75] P. Pataranutaporn, V. Danry, J. Leong, *et al.*, "Al-generated characters for supporting personalized learning and well-being," *Nature Machine Intelligence*, vol. 3, no. 12, pp. 1013–1022, Dec. 2021, ISSN: 2522-5839. DOI: 10.1038/s42256-021-00417-9.
- [76] H. T. Bui, V. Filimonau, and H. Sezerel, "Al-thenticity: Exploring the effect of perceived authenticity of Al-generated visual content on tourist patronage intentions," *Journal of Destination Marketing and Management*, vol. 34, 2024. DOI: 10.1016/j.jdmm.2024.100956.
- [77] M. Bickert, Our Approach to Labeling Al-Generated Content and Manipulated Media, Apr. 2024. [Online]. Available: https://about.fb.com/news/2024/04/metas-approach-to-labeling-ai-generated-content-and-manipulated-media/.
- [78] F. Li and Y. Yang, "Impact of Artificial Intelligence-Generated Content Labels On Perceived Accuracy, Message Credibility, and Sharing Intentions for Misinformation: Web-Based, Randomized, Controlled Experiment," *JMIR Formative Research*, vol. 8, 2024. DOI: 10.2196/60024.
- [79] Y. Wei and G. Tyson, "Understanding the Impact of Al-Generated Content on Social Media: The Pixiv Case," in *MM 2024 Proceedings of the 32nd ACM International Conference on Multimedia*, 2024, pp. 6813–6822. DOI: 10.1145/3664647.3680631.
- [80] E. Shusas, "Designing Better Credibility Indicators: Understanding How Emerging Adults Assess Source Credibility of Misinformation Identification and Labeling," in DIS 2024 Proceedings of the 2024 ACM Designing Interactive Systems Conference, 2024, pp. 41–44. DOI: 10. 1145/3656156.3665126.
- [81] T. Flattery and C. B. Miller, "Deepfakes and Dishonesty"," *Philosophy and Technology*, vol. 37, no. 4, Dec. 2024, ISSN: 22105441. DOI: 10.1007/s13347-024-00812-1.
- [82] A. K. Saxena, "Quantitative Measurement of Bias in Al-Generated Content: A Comprehensive Narrative Literature Review," in *International Symposium on Technology and Society, Proceedings*, 2024. DOI: 10.1109/ISTAS61960.2024.10732696.

[83] H. Ma, W. Huang, and A. R. Dennis, "Unintended Consequences of Disclosing Recommendations by Artificial Intelligence versus Humans on True and Fake News Believability and Engagement," *Journal of Management Information Systems*, vol. 41, no. 3, pp. 616–644, 2024. DOI: 10.1080/07421222.2024.2376381.

- [84] J. Mo, X. I. N. Kang, Z. Hu, H. Zhou, T. Li, and X. Gu, "Towards Trustworthy Digital Media In The Aigc Era: An Introduction To The Upcoming IsoJpegTrust Standard," *IEEE Communications Standards Magazine*, vol. 7, no. 4, pp. 2–5, 2023. DOI: 10.1109/MCDMSTD.2023.10353009.
- [85] YouTube, YouTube Data API, 2025. [Online]. Available: https://developers.google.com/youtube/v3.
- [86] N. Izotova, M. Polishchuk, and K. Taranik-Tkachuk, "Discourse analysis and digital technologies: (TikTok, hashtags, Instagram, YouTube): universal and specific aspects in international practice," *Revista Amazonia Investiga*, vol. 10, no. 44, pp. 198–206, Sep. 2021. DOI: 10.34069/ai/2021. 44.08.19.
- [87] TikTok, #ai, 2025. [Online]. Available: https://www.tiktok.com/tag/ai.
- [88] YouTube, #ai, 2025. [Online]. Available: https://www.youtube.com/hashtag/ai/shorts.
- [89] Google, What is CAPTCHA? 2025. [Online]. Available: https://support.google.com/a/answer/1217728?hl=en.
- [90] B. Steel and A. Abrahams, networkdynamics/pytok: Initial working version of library, Jul. 2024. DOI: 10.5281/zenodo.12802714. [Online]. Available: https://doi.org/10.5281/zenodo.12802714.
- [91] D. Teather, *TikTokAPI (Version 7.0.0) [Computer software]*, 2025. [Online]. Available: https://github.com/davidteather/tiktok-api.
- [92] K. Y. Tai, J. Dhaliwal, and V. Balasubramaniam, "Leveraging Mann–Whitney U test on large-scale genetic variation data for analysing malaria genetic markers," *Malaria Journal*, vol. 21, no. 1, Dec. 2022, ISSN: 14752875. DOI: 10.1186/s12936-022-04104-x.
- [93] R. M. Conroy, "What hypotheses do "nonparametric" two-group tests actually test?" Tech. Rep. 2, 2012, pp. 182–190.
- [94] C. Andrade, "The P Value and Statistical Significance: Misunderstandings, Explanations, Challenges, and Alternatives Website: Quick Response Code," Tech. Rep., 2019.
- [95] G. M. Sullivan and R. Feinn, "Using Effect Size—or Why the P Value Is Not Enough," *Journal of Graduate Medical Education*, vol. 4, no. 3, pp. 279–282, Sep. 2012, ISSN: 1949-8349. DOI: 10.4300/jgme-d-12-00156.1.
- [96] L. Farmus, N. Beribisky, N. Martinez Gutierrez, U. Alter, E. Panzarella, and R. A. Cribbie, "Effect size reporting and interpretation in social personality research," *Current Psychology*, vol. 42, no. 18, pp. 15752–15762, Jun. 2023, ISSN: 19364733. DOI: 10.1007/s12144-021-02621-7.
- [97] N. Pautz, B. Olivier, and F. Steyn, "The use of nonparametric effect sizes in single study musculoskeletal physiotherapy research: A practical primer," *Physical Therapy in Sport*, vol. 33, pp. 117–124, Sep. 2018, ISSN: 18731600. DOI: 10.1016/j.ptsp.2018.07.009.
- [98] R. Rosenthal, "Meta-analytic procedures for social science research," *Educational Researcher*, vol. 15, no. 8, pp. 18–20, Oct. 1986, ISSN: 0013-189X. DOI: 10.3102/0013189X015008018.
- [99] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Routledge, 1988, ISBN: 9781134742707.
 DOI: 10.4324/9780203771587.
- [100] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, "Coding In-depth Semistructured Interviews: Problems of Unitization and Intercoder Reliability and Agreement," Sociological Methods and Research, vol. 42, no. 3, pp. 294–320, Aug. 2013, ISSN: 00491241. DOI: 10.1177/0049124113500475.
- [101] J. Flannery O'Connor and E. Moxley, *Our approach to responsible AI innovation*, Nov. 2023. [Online]. Available: https://blog.youtube/inside-youtube/our-approach-to-responsible-ai-innovation/.

[102] YouTube Help, YouTube's Community Guidelines, 2025. [Online]. Available: https://support.google.com/youtube/answer/9288567?hl=en.

- [103] TikTok Help Center, *About Al-generated content*, 2025. [Online]. Available: https://support.tiktok.com/en/using-tiktok/creating-videos/ai-generated-content.
- [104] TikTok, Community Guidelines, Apr. 2024. [Online]. Available: https://www.tiktok.com/community-guidelines/en/overview.
- [105] K. Proudfoot, "Inductive/Deductive Hybrid Thematic Analysis in Mixed Methods Research," *Journal of Mixed Methods Research*, vol. 17, no. 3, pp. 308–326, Jul. 2023, ISSN: 15586901. DOI: 10.1177/15586898221126816.
- [106] N. Gisev, J. S. Bell, and T. F. Chen, *Interrater agreement and interrater reliability: Key concepts, approaches, and applications*, May 2013. DOI: 10.1016/j.sapharm.2012.04.004.
- [107] M. L. McHugh, "Interrater reliability: the kappa statistic.," *Biochemia medica*, vol. 22, no. 3, pp. 276–82, 2012, ISSN: 1330-0962.
- [108] J. R. Landis and G. G. Koch, "The Measurement of Observer Agreement for Categorical Data," Tech. Rep. 1, 1977, pp. 159–174. [Online]. Available: https://about.jstor.org/terms.
- [109] A. Marioriyad and P. Ramazi, "Optimizing Accuracy, Recall, Specificity, and Precision Using ILP," *Mathematics*, vol. 13, no. 7, Apr. 2025, ISSN: 22277390. DOI: 10.3390/math13071059.
- [110] European Commission, *The impact of the Digital Services Act on digital platforms*, Apr. 2024. [Online]. Available: https://digital-strategy.ec.europa.eu/en/policies/dsa-impact-platforms.
- [111] M. A. AlAfnan, "Cultural and Behavioral Insights into European Social Media Users: Platform Preferences and Personality Types," *Studies in Media and Communication*, vol. 13, no. 1, pp. 17–30, Mar. 2025, ISSN: 2325808X. DOI: 10.11114/smc.v13i1.7306.
- [112] S. Zannettou, O. Nemes-Nemeth, O. Ayalon, et al., "Analyzing User Engagement with TikTok's Short Format Video Recommendations using Data Donations," in Conference on Human Factors in Computing Systems - Proceedings, New York: Association for Computing Machinery, May 2024, ISBN: 9798400703300. DOI: 10.1145/3613904.3642433.

A

Search Queries/Methods

Table A.1: Search Queries Used in Literature Review

Sub-Question	Search Query/Method	Criteria	Identified	Relevant	Used
(1) Content Moderation	TITLE-ABS-KEY (("content moderation" OR "misinformation label" OR "moderation techniques" OR "warning label" OR "fact-check label") AND ("short-video platform" OR "TikTok" OR "Meta" OR "YouTube"))	>2020 English	n = 140	n = 51	n = 33
	Backward Snowballing	>2020			n = 6
	Grey Literature	Only official websites			n = 5
(2) Al labels	TITLE-ABS-KEY (("AI-generated" OR "AIGC" OR "synthetic media" OR "AI") AND label* AND ("TikTok" OR "YouTube" OR "social media" OR "short-form video platforms"))	>2020	n = 193	n = 24	n = 12
	OR TITLE-ABS-KEY ("C2PA" OR "Coalition for Content Provenance and Authenticity")				
	OR TITLE-ABS-KEY (label* AND ("AI-generated" OR "AIGC" OR "synthetic media") AND (engagement OR prevalence OR perception OR trust))				
	Backward Snowballing	>2020			n = 10
	Grey Literature	Only official websites or reports			n = 8

 $\mathbb B$

Data Collection and Processing Details

B.1. Final Dataset Structure

Table B.1: Column Structure of the Final Dataset

Column Name	Present for YouTube	Present for TikTok
url	Х	X
ai_label	X	
views	X	Χ
likes	X	X
comments	X	X
shares		X
saved		X
hashtags	X	X
platform	X	X
publishedAt	X	X
sensitive_topic	X	
<pre>publishedAt_date</pre>	X	X
<pre>publishedAt_day</pre>	X	X
<pre>publishedAt_month</pre>	X	X
like_view_ratio	X	X
comment_view_ratio	X	X

B.2. Distribution of Engagement Metrics

Distribution of Engagement Metrics on YouTube and TikTok

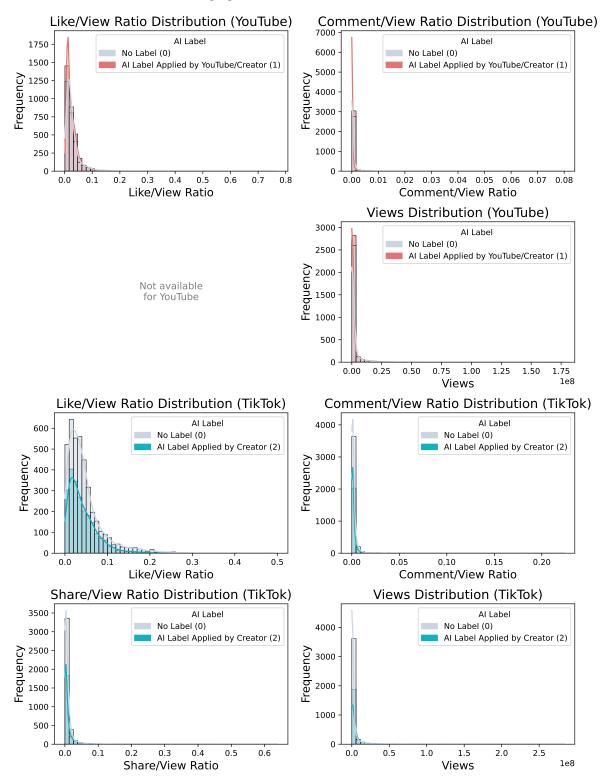


Figure B.1: Distribution of Engagement Metrics on YouTube Shorts and TikTok

B.3. Hashtag Selection

Search Hashtag	Top 18 Co- occurring Hashtags	Count
#ai	#ai	1133
	#shorts	376
	#fyp	193
	#aiart	182
	#trending	167
	#cute	152
	#cat	125
	#funny	125
	#aigenerated	124
	#viral	124
	#squidgame	108
	#squidgame2	97
	#aivideo	97
	#animals	80
	#artificialintelligence	75
	#love	70
	#marvel	70
	#spiderman	69
#aiart	#aiart	982
	#ai	739
	#cat	432
	#cute	429
	#fyp	315
	#shorts	278
	#catsoftiktok	264
	#viral	258
	#tiktok	219
	#catlover	210
	#funny	198
	#aigenerated	154
	#poorcat	150
	#aivideo	142
	#cats	140
	#aicat	136
	#kitten	136
	#cutecat	128
#aigenerated	#ai	757
"algorioratoa	#aigenerated	727
	#marvel	654
	#avengers	645
	#spiderman	555
	#shorts	542
	#trending	362
	#urending #viral	362
	#virai #dc	264
	#superheroes	260
	#aiart	239
	#dog	204
	#aivideo	180
	#fyp	165
	#cartoonfinalamazing	138
	#puppy	137
	#doglover	135
	#midjourney	110

Table B.2: Top 18 hashtags for #ai, #aiart, and #aigenerated (1-3 of 25)

Used Hashtag	Top 1	-	Count
	occurring	Hashtags	
#aicat	#cat		1140
	#cute		861
	#aicat		651
	#ai		625
	#catsoftikto	k	578
	#viral		527
	#tiktok		452
	#fyp		430
	#shorts		406
	#kitten		394
	#cutecat		380
	#catlover		378
	#funny		350
	#cats		332
	#aiart		299
	#trend		227
	#unitedstat	es	224
#airrial a a	#india		220 650
#aivideo	#ai		598
	#aivideo		210
	#aiart		174
	#fyp #aigenerate	ad	174
	#aigeneraii #automobil		152
	#automobil #shorts	е	142
	#aiedits		108
	#aieuits #aivfx		97
	#trending		86
	#automotiv	eedit	83
	#artificialint		80
	#funny	cingeries	78
	#viral		70
	#aivideos a		66
	#cat		64
	#hornsound	d	64
	#viralvideo	.	61
#aiedtis	#ai		716
	#aiedits		564
	#aivideo		454
	#aivfx		416
	#automobil	е	409
	#automotiv		375
	#aivideos		115
	#fyp		112
	#aiart		67
	#edit		63
	#transform	ers	59
	#aigenerate	ed	57
	#viral		54
	#foryou		45
	#aitools		38
	#artificialint	telligence	35
	#monster		34
	#foryoupag	ie.	32

Table B.3: Top 18 hashtags for #aicat, #aivideo, and #aiedtis (4-6 of 25)

^aToo much alike as #aivideo

Used Hashtag	Top 18 Co- occurring Hashtags	Count
#artificialintelligence	#artificialintelligence	718
	#ai	530
	#trendingshorts	440
	#babyfashion	221
	#ytshorts	220
	#aibaby	219
	#trendybaby	219
	#babystyle	218
	#cutebabyclothes	216
	#aifashionmodel	212
	#viralbaby	211
	#aifashionshow ^a	208
	#aibabayfashionshow ^b	204
	#shorts	203
	#adorableoutfits	199
	#babywardrobe	198
	#babyclothingtrends	196
	#babyfashioninspo	195
#aitools	#aitools	788
	#ai	648
	#chatgpt	192
	#shorts	177
	#artificialintelligence	166
	#aiart	147
	#youtubeshorts	102
	#trending	91
	#aivideo	90
	#film	87
	#aigeneratedfilm	86
	#coding	58
	#viral	58
	#productivity	54
	#aistorytelling	54
	#aitool ^c	53
	#college	51
	#content	49
#aivfx	#ai	806
	#aiedits	585
	#aivideo	578
	#aivfx	546
	#automobile	486
	#automotiveedit	439
	#vfx	196
	#aiart	128
	#aivideos	116
	#transformers	103
	#shorts	81
		70
	#fyp	- 1
	#aitools	67
	#artificialintelligence	60
	#aigenerated	58
	#monster	56
	#vfxvideo	56
	#vfxmagicvideo	56

Table B.4: Top 18 hashtags for #artificialintelligence, #aitools, and #aivfx (7-9 of 25)

Used Hashtag	Top 18 Co- occurring Hashtags	Count
#aibaby	#aibaby	842
	#trendingshorts	830
	#babyfashion	444
	#aifashionmodel	427
	#ytshorts	409
	#trendybaby	402
	#viralbaby	402
	#aifashionshow	401
	#ai	400
	#cutebabyclothes	398
	#babystyle	389
	#babywardrobe	382
	#stylishbabies	382
	#babyfashiontips	379
	#babyoutfits	379
	#fashiontipsforparents	378
	#littlefashionista	378
	#fashionforbabies	378
#aifashionmodel	#trendingshorts	764
	#ai	508
	#aifashionmodel	406
	#ytshorts	381
	#aifashionshow	380
	#fashiontipsforparents	363
	#littlefashionista	362
	#aiedits	340
	#adorableoutfits	331
	#artificialintelligence	313
	#aibaby	311
	#babyfashion	310
	#cutebabyclothes	306
	#trendybaby	306
	#babystyle	305
	#viralbaby	298
	#babywardrobe	295
	#stylishbabies	292
#aigeneratedfilm	#aigeneratedfilm	840
_	#film	743
	#aiart	602
	#aitools	413
	#ai	389
	#aistorytelling	379
	#shortfilm	377
	#scifi	375
	#sciencefiction	366
	#future	364
	#cinematography	362
	#content	360
	#filmproduction	360
	#digitalfrontier	359
	#scifishortfilm	357
	#experimentalfilm	357
	#aivideo	152
	#aigenerated	138

Table B.5: Top 18 hashtags for #aibaby, #aifashionmodel, and #aigeneratedfilm (10-12 of 25)

^aToo much alike as #aifashionmodel

 $[^]b$ Too much alike as #aifashionmodel

^cToo much alike as #aitools

Used Hashtag	Top 18 Co- occurring Hashtags	Count
#=:=+===+=!!:===		440
#aistorytelling	#aistorytelling	448
	#ai	445
	#aiart	266
	#shorts	226
	#artificialintelligence	164
	#aistory	146
	#fyp	142
	#creativeai	138
	#aigenerated	136
	#aicontent	115
	#aiinnovation	113
	#chatgpt	112
	#aianimation	98
	#youtubeshorts	90
	#aishorts ^a	87
	#digitalcreativity	84
	#aivideo	82
	#aiproductions	77
#creativeai	#ai	591
	#aiart	488
	#creativeai	472
	#shorts	289
	#artificialintelligence	272
	#digitalart	188
	#chatgpt	187
	#aistorytelling	185
	#aigenerated	163
	#aivideo	160
	#aicontent	156
	#aianimation	153
	#aiinnovation	141
	#fyp	140
	#openai	130
	#sora	125
	#digitalcreativity	116
	#gpt	113
#aiinnovation	#ai	540
	#aiinnovation	440
	#artificialintelligence	434
	#shorts	326
	#halloween	199
	#trending	199
	#aiart	184
	#aitrends	177
	#shortsfeed	176
	#innovation	159
	#aigenerated	159
	#machinelearning	156
	#aistorytelling	153
	#airevolution	149
	#aicommunity	148
	#aicontent	147
	#creativeai	143
	#chatgpt	137
	36.	

Table B.6: Top 18 hashtags for #aistorytelling, #creativeai, and #aiinnovation (13-15 of 25)

#aicontent ## ## ## ## ## ## ##	shorts artificialintelligence aiart aigenerated aivideo aiinnovation	505 478 361 251 248 204 167
## ## ## ## ## ## ## ##	ai shorts artificialintelligence aiart aigenerated aivideo aiinnovation	478 361 251 248 204
#3 #4 #4 #4 ## ## ##	shorts artificialintelligence aiart aigenerated aivideo aiinnovation	361 251 248 204
#4 #4 #4 #4 #4	artificialintelligence aiart aigenerated aivideo aiinnovation	251 248 204
## ## ## ## ##	aiart aigenerated aivideo aiinnovation	248 204
## ## ## ##	aigenerated aivideo aiinnovation	204
#4 #4 #4	aivideo aiinnovation	-
#4 #4 #4	aiinnovation	
#4		133
#4		133
	aistorytelling	124
	chatgpt viralvideo	
**		118
	creativeai	116
	fyp	105
	openai	100
	aishorts	100
	aianimation	98
	digitalcreativity	95
	youtubeshorts	91
	artificialintelligence	492
#6	chatgpt	481
#6	creativeai	425
#4	openai	420
#3	aistorytelling	414
#:	aicontent	412
#:	sora	405
#4	aiinnovation	402
#	aiproductions	401
	digitalcreativity	397
	gpt	396
	movieprompts	396
	promptedmovies	396
	sorachannel	396
	sorageneratedvideos	396
	faz3	350
	fazza	350
#:		326
	aianimation	566
#3		410
	shorts	282
	aiart	275
	cat	153
	fyp	126
	aigenerated	110
	catlover	108
	funnycats	104
	aivideo	103
	cats	100
#	catvideos	92
#1	funny	92
#4	cuteanimals	90
#:	animation	88
#ı	petlovers	73
	viralcats	72
#:	apt	72

Table B.7: Top 18 hashtags for #aicontent, #aiproductions, and #aianimation (16-18 of 25)

^aYouTube-specific: only on YouTube it is called 'shorts'

Used Hashtag	Top 18 Co-	Count
	occurring Hashtags	
#aitrends	#ai	726
	#aitrends	547
	#shorts	341
	#trending	307
	#artificialintelligence	246
	#shortsfeed	235
	#halloween	232
	#aigenerated	224
	#aiart	221
	#aivideo	181
	#aicommunity	178
	#viral	175
	#fyp	175
	#aishorts	167
	#aisnorts #aiinnovation	
		163
	#youtubeshorts	151
	#machinelearning	147
	#deeplearning	134
#aicommunity	#ai	713
	#aicommunity	576
	#aiart	546
	#shorts	277
	#midjourney	258
	#artificialintelligence	244
	#halloween	235
	#trending	208
	#aigenerated	201
	#aitrends	181
	#shortsfeed	177
	#aivideo	176
	#aiartcommunity	164
	#fyp	147
	#capcut	143
	#beauty	133
	#machinelearning	131
	#shorteo	_
#aiatam:		124
#aistory	#aistory	771
	#ai	599
	#shorts	449
	#hen	219
	#cat	162
	#youtubeshorts	139
	#fyp	133
	#story	126
	#catstory	119
	#animals	112
	#aiart	110
	#trending	109
	#aivideo	107
	#aicat	102
	#chicken	101
	#pigeon	94
	#cartoon	91
	#viral	90
		50

Table B.8: Top 18 hashtags for #aitrends, #aicommunity, and #aistory (19-21 of 25)

Used Hashtag	Top 18 Co- occurring Hashtags	Count
#airevolution	#airevolution	874
	#ai	685
	#artificialintelligence	387
	#shorts	349
	#machinelearning	268
	#trending	223
	#youtubeshorts	214
	#futuretech	194
	#techinnovation	186
	#aiinnovation	183
	#halloween	173
	#deeplearning	165
	#futureofai #viralvideo	160 158
	#shortsfeed	150
	#aicommunity	145
	#aitrends	135
	#viral	134
#aiartcommunity	#aiart	833
#alartoommanity	#aiait	793
	#aiartcommunity	732
	#aiartwork	533
	#aiartist	488
	#cat	481
	#cute	325
	#catlovers	294
	#pets	263
	#catart	253
	#catshorts	251
	#funny	244
	#aigenerated	242
	#bing	236
	#digitalart	216
	#illustration	204
	#love	198
#aiartwork	#graphicdesign	194 785
#aiai twoi k	#aiart	771
	#aiartwork	628
	#cat	442
	#aiartcommunity	438
	#aiartist	417
	#cute	300
	#funny	286
	#catlovers	262
	#pets	247
	#catart	229
	#catshorts	206
	#aigenerated	205
	#bing	198
	#love	182
	#shorts	176
	#illustration	170
İ	#digitalart	163

Table B.9: Top 18 hashtags for #airevolution, #aiartcommunity, and #aiartwork (22-24 of 25)

Used Hashtag	Top 18 Co-	Count
	occurring Hashtags	
#aiartwork	#ai	959
	#cat	678
	#aiart	643
	#aiartist	619
	#aiartwork	534
	#cute	476
	#aiartcommunity	471
	#catlovers	412
	#pets	379
	#catart	367
	#funny	349
	#catshorts	343
	#bing	305
	#illustration	279
	#love	267
	#graphicdesign	259
	#aicat	252
	#shorts	228

Table B.10: Top 18 hashtags for #aiartwork (25 of 25)

C

Codebooks

C.1. Categories – YouTube

Y1) AI-generated Content

Y1.1 Using the likeness of a realistic person [Label]

- Digitally generating or altering content to replace the face of one individual with another's 1
- Simulating audio to make it sound as if a medical professional gave advice when the professional did not actually give that advice¹
- Cloning someone else's voice for voiceovers or dubs¹
- Digitally altering audio to make it sound as if a popular singer missed a note in their live performance¹
- Depicting a public figure stealing something that they did not steal or admitting to stealing something when they did not make that admission¹

Y1.2 Altering footage of real events or places [Label]

- Such as making it appear as if a real building caught fire, or altering a real cityscape to make it appear different than in reality ²
- Synthetically generating extra footage of a real place, like a video of a surfer in Maui for a promotional travel video¹

Y1.3 Generating realistic scenes [Label]

- Digitally altering a famous car chase scene to include a celebrity who wasn't in the original film¹
- Synthetically generating extra footage of a real place, like a video of a surfer in Maui for a promotional travel video¹
- Showing a realistic depiction of fictional major events, like a tornado moving toward a real town²
- Making it look like a real person has been arrested or imprisoned¹
- Showing a realistic depiction of a missile fired towards a real city¹
- Making it appear as if hospital workers turned away sick or wounded patients¹

Y1.4 Generating music [Label]

Synthetically generating music¹

Y1.5 Clearly unrealistic content

- Animation or someone riding a unicorn through a fantastical world²
- Green screen used to depict someone floating in space¹

¹YouTube Help [17]

²YouTube [64]

Y1.6 Effects / filters

- Using effects to enhance previously recorded audio¹
- Color adjustment or lighting filters²
- Special effects like background blur or vintage effects²
- Beauty filters or other visual enhancements²
- Video sharpening, upscaling or repair, and voice or audio repair¹

Y1.7 Adding elements to a video

• Synthetically generating or extending a backdrop to simulate a moving car¹

Y1.8 Improve videos or AI help

- Production assistance, like using generative AI tools to create or improve a video outline, script, thumbnail, title or infographic¹
- Caption creation¹
- Idea generation¹

Y1.9 Synthetic self-likeness

Cloning one's own voice to create voiceovers or dubs¹

Y2) Sensitive Topic

Y2.1 Discusses sensitive topics

Elections, conflicts, public health crises, or officials³

C.2. Categories - TikTok

T1) AI-generated Content

T1.1 Using the likeness of a realistic person⁴ [Label]

- Video featuring a real person speaking, whose image, voice, and/or words are altered or modified by Al⁵
- The primary subjects are portrayed doing something they didn't do, for example, dancing⁵
- The primary subjects are portrayed saying something they didn't say, for example, Al-generated speech⁵
- The appearance of the primary subject(s) has been substantially altered, such that the original subject(s) is no longer recognizable, for example, with an AI face-swap⁵

T1.2 Altering footage of real events or places [Label]

- Video or image featuring a scene or event that occurred in the real world, but has been altered or modified by Al⁵
- T1.3 Generating realistic scenes [Label]
- T1.4 Generating Music [Label]
- T1.5 Clearly unrealistic content [Label]
 - Entirely Al-generated videos or images of real or fictional people, places, and events⁵
- T1.6 Minor retouching⁵
- T1.7 Effects/filters⁶

³Flannery O'Connor and Moxley [101]

⁴TikTok Help Center [103]

⁵TikTok [104]

D

Engagement Hypotheses

The following null (H_0) and alternative (H_1) hypotheses were tested using Mann-Whitney U tests. Each hypothesis examines whether there is a statistically significant difference of engagement metrics between videos with and without an AI label within a specific platform.

YouTube

- H_0 : There is no difference in the like/view ratio between labeled and non-labeled.
 - H_1 : There is a difference in the like/view ratio between labeled and non-labeled YouTube videos.
- H_0 : There is no difference in the comment/view ratio between labeled and non-labeled YouTube videos.
 - ${\it H}_1$: There is a difference in the comment/view ratio between labeled and non-labeled YouTube videos.
- H_0 : There is no difference in the number of views between labeled and non-labeled YouTube videos.
 - H_1 : There is a difference in the number of views between labeled and non-labeled YouTube videos.

TikTok

- ullet H_0 : There is no difference in the like/view ratio between labeled and non-labeled TikTok videos.
 - H_1 : There is a difference in the like/view ratio between labeled and non-labeled TikTok videos.
- H_0 : There is no difference in the comment/view ratio between labeled and non-labeled TikTok videos.
 - ${\it H}_1$: There is a difference in the comment/view ratio between labeled and non-labeled TikTok videos.
- H_0 : There is no difference in the share/view ratio between labeled and non-labeled TikTok videos.
 - H_1 : There is a difference in the share/view ratio between labeled and non-labeled TikTok videos.
- H_0 : There is no difference in the number of views between labeled and non-labeled TikTok videos.
 - H_1 : There is a difference in the number of views between labeled and non-labeled TikTok videos.