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Abstract

The Model Predictive Control (MPC) method provides a control strategy providing inherent
robustness and improved capabilities in handling constraints while guaranteeing the satisfac-
tion of the control objective. In recent years, Model Predictive Control (MPC) has started to
see more application for the purpose of Rendezvous and Docking (RVD) with an uncoopera-
tive target. This is both due to the increased capability of online solver algorithms and the
increased interest and need for autonomous RVD to an uncooperative target for Active De-
bris Removal (ADR) and in orbit servicing. Acknowledging the potential applications of these
developments, this thesis seeks to close the gap between research and real-time application of
an MPC aimed at minimizing propellant consumption for such a RVD mission. In this thesis,
an MPC strategy with the aim of decreasing propellant consumption is developed for an RVD
mission. First, an overview will be given of some related orbital theory and the three relative
orbital dynamics models, which will be used as prediction models for the MPC strategies.
These models are the Clohessy Wiltshire (HCW) model, Xu-Wang model in Cartesian coor-
dinates, model and STM developed by Yamanaka and Ankersen in ROE. An overview will
be provided on the available MPC strategies developed until now. Second, the various MPC
formulations that will be evaluated, for each mission phase, and their related constraints and
cost function are presented. Next, the results of the all the MPC formulations for the different
mission phases are presented. Finally, it is shown that the use of more accurate prediction
models does not add any significant benefit in terms of propellant consumption and error for
all mission phases. However, the use of robust techniques and the inclusion of disturbances
in the prediction models is shown to have a clear benefit for all prediction models in terms of
propellant consumption and error. The use of incremental input cost function is not shown
to consistently improve the propellant use and error. It is determined that a robust MPC for-
mulation using the HCW model with a disturbance estimator provides the best performance
in terms of propellant use and error from far range to proximity operations.
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Chapter 1

Introduction

In this research, the most suitable Model Predictive Control (MPC) strategy to control the
Rendezvous and Docking (RVD) of a chaser spacecraft to an uncooperative target space-
craft will be determined from various proven strategies. The objective of Rendezvous and
Docking (RVD) is to allow two spacecraft orbiting a central body to reach a desired relative
configuration when in proximity. It has been an area of research since the early 1960s. The
space industry has greatly expanded in the last decade thanks to many private entities enter-
ing the market and satellites becoming considerably cheaper due to standardization. With
plans for constellations, planetary exploration, Active Debris Removal (ADR), and in-orbit
servicing being mission architectures of the future, autonomous rendezvous and docking re-
mains a key field of interest, specially regarding RVD with an uncooperative target (dead
satellites, debris).

A typical rendezvous mission consist of several phases, each phase with different objectives
and constraints. This research focuses on a 3 phase mission representative of a possible
ADR mission, starting from orbit insertion at long range up to RVD. The guidance laws
for a rendezvous mission are complex due to the relative orbital dynamics, different hard
constraints for the different mission phases and fine margins for error during the docking phase.
The main component of the guidance laws is thus the choice of which, relative dynamics,
model to use. Historically and still to this day, the majority of guidance laws are based on
the Clohessy Wiltshire (HCW) equations. The HCW equations are an early Linear Time
Invariant (LTI) relative orbital dynamics model based on the assumptions of the satellites
being in an unperturbed circular orbit and the distance between the two satellites being
small compared to the orbit radius. In the context of a RVD, satellites and debris will not
be under these assumptions, meaning a modelling error will be involved in the guidance laws.
Small eccentricities are enough to induce significant positions errors, but the rich history of
successful RVD missions as well as a wide variety of research has shown that these errors are
not limiting to the completion of a RVD mission.

More complete models have since been developed and proven to be suitable in research but
have not seen much flight heritage due to the good performance of HCW based guidance
laws and heavier computational load. Thanks to improvements in technology, modern and
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2 Introduction

recent satellites can handle greater computational loads, creating an opportunity for more
accurate models and more complex control algorithms to be applied. Traditionally, RVD
missions were, carried out with pre-computed burns and small adjustments carried out by
the astronauts. With more automation, classical control schemes such as bang-bang and
Proportional Integral Derivative (PID) were applied. These control schemes are still not
optimal for RVD missions as they are not able to handle complex constraints, but were still
successful. Traditional feedback gains are not able to handle constraints which are an integral
part of the RVD problem. MPC is proposed as it is able to take constraints into account in
its formulation and compute an input that allow for them to be satisfied while optimizing
the control objective. Thanks to modern computing power and the current speed of real-time
solvers MPC is thus also a viable strategy for spacecraft applications such as RVD missions,
which require slow to fast dynamics depending on the mission phase. Even though real-life
application is still limited, various research MPC applications for RVD exist, but there has
not been a comparative overview on what the best MPC strategy is for RVD with respect to
propellant consumption for real-time application. In this thesis, a comparative overview of
the performance of multiple MPC formulations using 3 different relevant prediction models
will be presented.

1-1 Problem Statement

With the future looking to have a high demand for ADR, these missions could benefit from
a proven general MPC strategy aimed at diminishing propellant use without sacrificing ac-
curacy. ADR missions will mostly have to deal with uncooperative targets, not designed
to be captured, increasing the complexity and required accuracy of the control strategy.
Furthermore, ADR missions often include strict constraints such as approach trajectories,
Line-of-Sight (LOS), holding points and soft-docking constraints. Due to limited knowledge
of the exact state of the target, it is highly likely that parameters and constraint swill change
during the mission itself requiring an adaptable closed loop strategy that MPC provides. A
representative mission profile for ADR mission is the European Space Agency (ESA) On-line
Reconfiguration Control System and Avionics Techniques (ORCSAT) mission presented in
[22], but adapted to an uncooperative tumbling Earth orbiting satellite. This was deemed the
most appropriate choice as there is detailed information on all the safety and reliability con-
straints as designed and deemed fit by an established space agency. The constraints involved
in the terminal to capture phase will be adapted to include Line-of-Sight (LOS) constraints as
the research is focused towards the capture of an uncooperative rotating or tumbling target.
Thus, various MPC strategies for RVD proven for research applications will all be brought
under the same baseline simulation and compared to determine which is best suited for such
an ADR mission.

1-2 Report Outline

The structure of this report aims to provide more insight on the problem mentioned above.
First, the heritage and relevance of the problem is presented by reviewing the history, current
and future of RVD in Chapter 2. Next, the theoretical background and existing literature of
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the relative orbital dynamic models as well as MPC is outlined in Chapter 3. In Chapter 4,
the main research objectives and questions are presented. Next, in Chapter 5, the method-
ological approach to complete the research objectives is introduced by developing all the MPC
formulations that will be evaluated for each mission. Chapter 6 will present all the results
produced by this research. Finally, in Chapter 7, the conclusions drawn from the results,
discussion, and recommendations for future research are presented.
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Chapter 2

Historical Context and Rendezvous
and Docking Heritage

This chapter will provide the historical context for defining this research problem, by presentin
an overview of the RVD heritage. Next, a small overview of relevant past, current and future
missions is given. The space debris problem is presented, introducing the problems involved
with ADR missions and the need for a general automated solution. Finally, a mission profile
is presented under which all the MPC strategies performance will be evaluated.

2-1 Background Information-Rendezvous and Docking

The objective of RVD is to allow two spacecraft orbiting a central body to reach a desired
relative configuration when in proximity. It has been an area of research since the early
1960s. The former Soviet Union first attempted automated RVD with the Vostok program,
but ultimately the United States would be successful first with manual RVD with the Gemini
program. Both these programs were geared towards preparing the respective institutions
for the moon landing, and so were the technology demonstration programs. The National
Aeronautics and Space Administration (NASA) opted to go for a manual RVD approach as it
deemed a manual approach would allow greater flexibility and would require less redundancy
and complexity [59]. The success of the Gemini mission can be attributed to Clohessy and
Wiltshire, who used Hill’s equations describing the motion of the moon with respect to Earth,
to describe the motion of a satellite relative to another in orbit. Furthermore, the Gemini
missions reaffirmed NASA’s worries about an automated approach, but soon enough the
Russians achieved an automated approach in 1967 with the Soyuz program. This automated
approach achieved the first ever automated RVD between two unmanned spacecraft, Kosmos
186 and 188. Since then autonomous RVD has been carried out in countless missions with
notable names being the Apollo program, Skylab mission, Russian Salyut & Mir Space Station
program, the Space Shuttle program and International Space Station (ISS) program and
servicing missions carried out by the various servicing vehicles [15]. It is to be noted that
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6 Historical Context and Rendezvous and Docking Heritage

the majority of these RVD missions have been with a cooperative or collaborative target,
meaning the target is either actively controlled or designed in a manner as to assist the RVD
procedure.

The space industry has greatly expanded in the last decade thanks to a lot of private entities
entering the market and satellites becoming considerably cheaper due to standardization.
With plans for constellations, planetary exploration, active space debris removal, and in-orbit
servicing being the expected mission architectures of the future, autonomous rendezvous and
docking remains a key field of interest especially regarding RVD with an uncooperative target
(dead satellites, debris). The recent SpaceX Dragon 2 ISS servicing mission and the planned
European Space Agency (ESA) Clear Space mission being a current example of the continuing
research in automated RVD missions [15].

2-2 Past, Recent, and Future missions

As mentioned earlier, most of the missions and research in RVD has been carried out by
the Soviet and American programs, with only recently more private entities coming into
play. The chosen approaches have been different from each other, and the technology has
developed from human controlled to fully automated. In this section various examples will be
discussed in details as to present the growth and evolution of the RVD approach. First, the
manual approach used by the Gemini program will be presented. Second, the semi automated
RVD approach carried out by the Space Shuttle will be presented, and finally the automated
approach planned for the Deutsche Orbitale Servicing (DEOS) mission will be discussed.
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8 Historical Context and Rendezvous and Docking Heritage

-

2-2-1 The Gemini Program

By 1961 the Americans had determined that rendezvous was feasible considering the existing
technology. During the Mercury program experiments were carried out allowing astronauts
to estimate the state of targets based on eyesight, the related results were then used for the
organization of the Gemini program. One of the main objectives of the Gemini program was
to carry out RVD.

The first rendezvous was completed by Gemini 5 and 6 in 1965, where they were manoeuvred
within 30 cm of each other. Then in 1966, Gemini 8 successfully docked with the unmanned
Agena target spacecraft. The Gemini program is of great relevance as it was the first to
demonstrate RVD, closed loop manned piloting, nominal and off nominal scenario planning,
reduced out-of-plane insertion error through launch window selection and the development of
contingency procedures. The program was used as a technology demonstrator and the results
and experiences would be used for the development of the Apollo program.

The computation of the chaser orbital adjustments was carried out by using ground based orbit
determination for the target and chaser spacecrafts. To account for the accuracy limitations
of the ground tracking, it was chosen to make use of closed-loop manned piloting techniques
for the terminal mission phase. The chaser was fitted with a rendezvous radar and the
target with the corresponding transponder as to determine the range, relative velocity and
Line-of-Sight (LOS) angles. The required manoeuvres were computed using the Clohessy
Wiltshire (HCW) equations through the on-board computer once the chaser was within radar
range. The docking port on the target consisted of a cone with latches as to capture 3 fittings
on the nose of the chaser spacecraft. This method was chosen due to its relative simplicity and
reliability, allowing for a quick development time. Looking at Gemini 6, 3 possible mission
profiles were studied, which are also visualized in Figure 2-1 [20] [32].

1. Tangetial Orbit: The Gemini spacecraft was inserted into an elliptical orbit, tangential
to the target spacecraft. This would ensure a rendezvous near the apogee of the fourth
orbit. This profile did not guarantee proper lighting conditions or consistent relative
dynamics during the terminal phase. This profile is illustrated in Subfigure 1 of Figure
2-1.

2. Coelliptic Orbit: This method relied on placing the Gemini spacecraft in a co-elliptic
orbit with respect to the target orbit. The intercept is then carried out once a certain
criterion, like sufficient lighting, is met. This profile is illustrated in Subfigure 2 of
Figure 2-1.

3. Direct Rendezvous: As the name states, the Gemini spacecraft would be placed on an
intercept trajectory by its launch vehicle, Titan II. This in turn restricted the possible
launch window and a final state which, is highly sensitive to ascent trajectory deviations.
Another draw back is that the rendezvous occurs within the first orbit around Earth,
giving less time for in-orbit system checks and the rendezvous procedure. This profile
is illustrated in Subfigure 3 of Figure 2-1.

Tommaso Fricano Master of Science Thesis



2-2 Past, Recent, and Future missions 9

(a) Phase 1: Tangential orbit

(b) Phase 2: Co-elliptical orbit

(c) Phase 3: Direct Rendezvous

Figure 2-1: Gemini 6 Mission phases [32] [20] [4]

The Coelliptic Orbit profile was chosen as the most adequate for the Gemini 6 mission as it
provided plenty of time and control over the rendezvous procedure. These 3 mission profiles
would go on to serve as the basis for future missions. The mission planning and piloting
techniques developed during the Gemini program would then be used for the Apollo program.
The Apollo program was the first program to require RVD for the completion of its mission
objective, the Lunar Module (LM) required docking with the Command Service Module
(CSM) after ascent from the moon. However, new rendezvous profile concepts before terminal
phase initiation were required for Apollo. It is to be noted that if the LM was not able to
carry out the rendezvous, the CSM would become the active spacecraft, thus both vehicles
were fitted with the necessary sensors and equipment. The Apollo program would also make
use of the co-elliptic profile and a short rendezvous profile capable of saving two hours [62]
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10 Historical Context and Rendezvous and Docking Heritage

[20].

2-2-2 Space Shuttle

The Space Shuttle was in service from 1983 to 2011, during this period it carried out 78
missions for, which RVD was part of the mission objective. The RVD technology was proven
by the Gemini and Apollo program, so the RVD was no longer the primary objective as the
Space Shuttle’s main service was related to its payload. The Space Shuttle however, represents
the first program to carry out RVD with passive targets. The majority of rendezvous targets
of Space Shuttle were not designed for rendezvous, docking (retrieval) or in-orbit servicing.
Besides not being designed for RVD the rendezvous targets were often smaller than the Space
Shuttle (barring the Mir and ISS), compared to the Gemini and Apollo program where chaser
and target were roughly the same size. Furthermore, due to the tighter tolerances on docking
time and contact velocity for the Mir and ISS the docking velocity was an order of magnitude
smaller compared to the 0.3 m/s used for the Gemini and Apollo missions. Lastly, the Space
Shuttle made use of cameras compared to the LOS approach used by the Gemini and Apollo
mission, it becomes clear that the Space Shuttle represented a significant increase in RVD
capabilities and complexity [19] [20].
The challenges posed by this increased complexity were unfortunately only gradually recog-
nized during the 1970s as the majority of the Space Shuttle design was finished. This resulted
in the Space Shuttle missions requiring extensive mission specific procedures and trajectories,
regardless of the advanced flexibility and capability provided by the Space Shuttle. This
prevented routine or general practices being developed, as well as hardware or software devel-
opment, due to cost and time constraints. The mission profiles of the Space Shuttle missions
thus varied from mission to mission, but certain common practices were developed. The mis-
sion profile for ISS rendezvous is one of those examples, the Space Shuttle took up to 3 days
from insertion to docking with the aid of 4 astronauts. The RVD was split into three phases:
far-field, mid-field and proximity operations. During the far-field phase, the position of the
Space Shuttle was computed using IMUs and star trackers together with ground based radar
updates. The burn manoeuvres were then computed by the ground crew and uploaded to the
Shuttle, which would then execute it automatically. During the mid-field phase, the crew was
responsible for initiating targeting routines. Navigation was thus carried out from on-board
the shuttle through built-in sensors and co-coordinated through a predefined timeline. Dur-
ing the final phase, the translation dynamics of the Shuttle were controlled manually, while
the attitude control was automated. The relative position and velocities used by the crew
were determined through the use of cameras and laser rangefinders. The docking was carried
out by 4 astronauts, who had trained together for months. The Lambert targeting approach
was used, just as for the Apollo program. A typical mission profile for Mir and ISS RVD is
presented in Figure 2-2. It is to be noted that the Automated Transfer Vehicle (ATV) would
later on carry out a fully automated approach to the ISS, thereby significantly decreasing the
complexity and costs involved in ISS and Mir missions.

2-2-3 ClearSpace One Mission

Having taken a look at two historic programs, the mission representing the future of automated
RVD with an uncooperative target will be discussed. This mission in question being ESA’s
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2-3 Space Servicing-Debris 11

Figure 2-2: space Shuttle mission profile for Mir or ISS RVD [19]

ClearSpace-1 mission as it represents an application, which will be used more in the future, this
will be discussed with more detail in the next section. The ClearSpace-1 mission’s objective is
to test technologies for the rendezvous, capture and de-orbit for End-of-Life (EOL) satellites,
by rendezvousing and capturing a derelict Vega Secondary Payload Adapter (VESPA) and
finally destructively de-orbit itself and the captured satellite.

Being an unmanned mission, it will carry out a fully automated RVD with an uncooperative
target. The Orbital Express mission was able to demonstrate robotic autonomous RVD as
well as in-orbit refuelling and servicing but still with a passive target [8]. As the majority of
space "junk" are uncooperative targets the ClearSpace-1 mission will be of great importance
for the future for the accessibility. ClearSpace-1 will make use of cameras to visually recognize
the target and 4 robotic arms to capture it.The VESPA was chosen as a target due to being
similar to a small satellite in size and having a simple shape, making the capture relatively
simple for a first mission. The exact mission profile is not available, but it is likely that the
autonomous RVD will be split into various mission phase, with flags that can be activated
from the ground station so as to allow the satellite to proceed with the next mission phase.
After this mission the intention is to develop the ClearSpace spacecraft towards multi object
capture [12].

2-3 Space Servicing-Debris

Society have continuously become more reliant on space technology for everyday life opera-
tions such as telecommunications, navigation and national security. With the privatisation of
the space market, technological developments and the increasing possibilities of space appli-
cation, it is inevitable that the space industry will continue to grow. Examples of this are the
5G constellations and the interplanetary missions being developed. The amount of satellite
launches per year are increasing exponentially from an average of around 100-200 launches
per year until 2010 to an average of around 400-500 launches in the last 3 years and this is
expected to keep increasing [14]. Many of these satellites are still functional (≈ 2700) however
there is a large and growing amount of defunct satellites (≈ 2850), discarded rocket stages
(≈ 1950) and debris objects (≈ 21000), which continue to orbit around Earth. It is to be
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12 Historical Context and Rendezvous and Docking Heritage

noted these are only the tracked objects and statistical models estimate millions more to be
present [13]. Due to the Kessler effect and current functional satellites becoming defunct this
number will only continue to grow and thus there is a need for solutions to ensure Low Earth
Orbit (LEO) and Geosynchronous Earth Orbit (GEO) remain safe and operational. Further-
more, with the growing number of constellations that will be in orbit the same technology
can be used for the inspection and servicing of faulty spacecraft.

If all future launches were to be cancelled the Kessler effect dictates that the amount of space
debris shall continue due to collisions creating more debris and thus increasing the probability
of another collision. This was verified through estimation in [31]. An example of this was the
accidental collision between the operational satellite Iridium 33 and the defunct satellite
Kosmos 2251 in 2009. Due to the collision both satellites were destroyed and over 1300
pieces of debris larger than 10 cm were created [52]. If launches are to continue without any
mitigation solutions then the number of space debris will rise at an exponential rate, as shown
in Figure 2-3.

Figure 2-3: Projected growth of the ≥ 10 cm object population in LEO,MEO and GEO for the
next 200 years. 1-LEO (200-2000 km altitude); 2-MEO (2000-35,586 km altitude); and 3-GEO
(35,586-35,986 km altitude) [30]

To mitigate this issue the Inter-Agency Space Debris Coordination Committee (IADC) de-
termined and imposed the Post Mission Disposal (PMD) rule as way to limit the orbital
longevity of spacecraft. The PMD rule dictates that a spacecraft in the LEO should de-orbit
itself within 25 years of mission completion and that a spacecraft in GEO is raised to a grave-
yard orbit after mission completion [23]. This mitigation will help slow down the growth of
space debris objects but unfortunately it will not be enough to solve the problem, due to
older satellites not having this capability. There is thus dire a need for Active Debris Re-
moval (ADR) to ensure that LEO and GEO remain safe for use. It is estimated that through
actively removing five space debris objects per year from orbit, it becomes possible to stabilize
the growth of space debris [31]. ADR involves the use of spacecraft specifically designed to
find and de-orbit debris or defunct spacecraft, such as the ClearSpace 1 satellite mentioned
in the previous section. ADR will be especially use-full for clearing defunct satellites from
already clustered orbits in high demand, which are mostly LEO such as the ISS orbit. This
is because satellites represent objects with the potential of creating large amounts of smaller
debris, which is much harder to capture, in case of a collision. Various concepts of de-orbiting
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spacecraft have been developed as the capture mechanism, de-orbiting method and the mis-
sion profile, can vary. For example, the ClearSpace 1 satellite was designed with a net to
capture the target satellite instead of a robotic arm as it was deemed to simplify and reduce
the risk of the capture manoeuvre.

In the previous section it was discussed that even though there is plenty of heritage with RVD
missions, they are limited to rendezvous and docking with a co-operative or passive target,
not for an uncooperative target. This means that the target spacecraft is not designed for
RVD, since it does not possess sensors for relative navigation (maybe even absolute navigation
sensors) and mechanisms or systems to facilitate the capture. Furthermore, the target satellite
will have attitude control and may be rotating or tumbling, which considering the likely
presence of solar array and antennas, increases the risk of a collision. The danger of a collision
or damage to the target satellite is further aggravated due to the possible presence of unused
volatile energy sources such as propellant. The lack of accurate knowledge on the state of
the target spacecraft due it being defunct will often require an inspection to be carried out
of the target. This is done in order to evaluate if the capture can be carried out as planned
or if it must be adjusted. The requirement of communication, illumination, holding points,
inspection manoeuvres, safety zones, approach trajectories and relative state constraints are
a result of these challenges. Strict requirements on the precision and reliability of the chaser
satellite are also required as otherwise the risk of a collision will negate the possible benefits.

It is also important that the de-orbiting satellites are designed to have flexibility as to allow
the capture and de-orbit of different target spacecrafts, target orbits and time frames. If
this is not done each mission will require elaborate mission specific planning just as the
Space Shuttle needed, which would considerably increase the costs and manpower required
for each mission. It is pretty clear that it would be unlikely and unreliable that a manually
controlled spacecraft could comply with all these requirements. Therefore, there is a need for
autonomous RVD for ADR missions [4] [42] [63] [59] [39].

2-4 Mission Design

The scope of this research is to evaluate the most appropriate MPC strategy for RVD with
respect to propellant consumption and completion time in general and not for a specific
mission. It is therefore necessary that the chosen mission profile will be representative of
the future ADR missions. In the last decade, the nano (1-10 kg) and micro (10-100 kg)
satellite market has seen the largest growth. A major contributor to this is the growth of
private companies producing standardized components for these satellites such that it is not
necessary to design mission specific hardware and so significantly reducing the cost involved.
This market is bound to continue growing with launch and component costs continuing to
decrease with an estimated 2000 launches in the next 5 years. The small satellite (100-1000
kg) industry is also expected to grow thanks to constellations such as OneWeb and Starlink
[48]. Many of these nano to small satellites that have been and will be launched are designed
to comply with the PMD regulations, but do not possess active de-orbiting components. As
mentioned in the previous section, this will not be enough to stabilize the Kessler effect. It was
so decided to simulate the capture of a (rotating and tumbling) uncooperative nano-satellite
in LEO orbit, as the LEO region is currently heavily clustered and remains the region with
most demand. This likely means it will also be the region were ADR will be of higher demand.

Master of Science Thesis Tommaso Fricano



14 Historical Context and Rendezvous and Docking Heritage

The exact orbit is not of importance. This is because there is a need for a general approach and
not a mission specific approach as highlighted in the previous section. Because of this, one of
the areas of evaluation will be the performance of certain prediction models under eccentric
orbits, it will be fruit full to carry out the evaluation of the control schemes for different
eccentricities. It was chosen to use the mission profile of the ESA On-line Reconfiguration
Control System and Avionics Techniques (ORCSAT) mission presented in [22], but adapted
to an uncooperative tumbling Earth orbiting satellite. This was deemed the most appropriate
choice as there is detailed information on all the safety and reliability constraints as designed
and deemed fit by an established space agency. The mission profile is divided in three phases:
intermediate range, short range and terminal to capture phase. They will be explained in
detail in Chapter 5 respectively. The constraints involved in the terminal to capture phase will
be adapted for to include Line-of-Sight (LOS) constraints as the research is focused towards
the capture of an uncooperative rotating or tumbling target.

2-5 Conlcusion

In this Chapter, the heritage and required background information for RVD missions has been
reviewed. Through this review, conclusions are drawn.

RVD has been an important field of research since the beginning days of the space missions.
Being a critical component of being able to land on the moon, extensive research and method-
ology was developed during the Gemini program, with RVD being one of the main mission
objectives. The Gemini program served as the baseline for the RVD strategies of the Apollo
program. The RVD manoeuvres were, however, carried out manually by the pilots from
the computations done by the onboard computer and relied on the then newly developed
HCW equations. With the Space Shuttle, the RVD techniques became more automated but
were still not fully automated and approached were still developed for specific missions. The
ATV would be the firs to carry out fully automated RVD with the ISS greatly reducing the
development costs and complexity of ISS and Mir missions.

With the continued growth of the space industry, more applications for RVD have appeared.
Due to the shear amount of satellites that have been and are being launched, the space debris
problem has created a dire need for satellites with RVD capabilities. If the Kessler effect is to
be combatted, satellites able to de-orbit defunct satellites or debris are needed due to the lack
of authority there is over space. Furthermore, with the increasing amount of constellations,
there will also be a need for in orbit servicing in order to troubleshoot malfunctioning satellites
or to examine causes of failure. There is a vast amount of research and development being
carried out to develop general RVD techniques that can be applied to various scenarios.

Due to the majority of space debris being located in, LEO it is chosen to compare MPC
formulations for the RVD with an uncooperative tumbling target satellite in LEO. In the
following chapter, an overview will be given of the necessary scientific theory for this research.
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Chapter 3

Theoretical background and literature
review

The previous chapter presented an overview of Rendezvous and Docking (RVD) missions,
from beginning to current technology, concluding with a valid mission profile to use as a
comparison baseline. This chapter will present the necessary theoretical background relevant
to the disciplines and topics that are covered in this field of research.

3-1 Modelling

An important aspect of the problem at hand is the choice of model for relative dynamics,
which will be the basis of the guidance law used. The choice of model will determine the way
the MPC will predict state evolution, and so directly affects the solution to the optimization
problem. First, the reference frames relevant to this problem will be introduced. Next, an
overview will be given of the possible choice of as relative dynamics model. Finally, the chosen
models will be presented.

3-1-1 Reference Frames

There are two main reference frames that are relevant when dealing with relative dynamics
of chaser and target.

The first reference frame is the Earth-centred Inertial. The ECI frame has its origin at the
centre of mass of the Earth. As indicated by the name, the frame is inertial, meaning that it
is not undergoing any rotation or acceleration. Due to the fact that the Earth is rotating, the
coordinated system of the ECI frame is defined through an epoch and thus there are many
possibilities. The most common is the Earth Mean Equator and Equinox frame, also named
the J2000/EME2000 frame. The right-handed coordinate system of the frame is defined
with the X -axis directed towards the J2000 vernal equinox, the Z-axis pointing towards the
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celestial North Pole and the Y-axis completes the right-handed coordinate system as shown
in Figure 3-1 [55].

Figure 3-1: Earth-centred Inertial frame, FI [49]

The second reference frame and the most important, due to relative dynamics often being
expressed in this frame, is the Local-Vertical, Local-Horizontal (LVLH). Being a body-fixed
frame, its origin is located at the centre of mass of the spacecraft. The coordinate system of
the frame is defined with the X -axis is in the orbit radius direction, also known as the R-bar,
and the Z-axis pointing parallel to the orbit momentum vector in the orbit normal direction,
also known as the H-bar, and the Y-axis completes the right-handed coordinate system, also
known as the V-bar. It is to be noted that the R-bar and V-bar together define the orbital
plane, as can be seen in Figure 3-2.

Figure 3-2: Local-Vertical, Local-Horizontal (LVLH) frame, FO [56]

3-1-2 Perturbations

There is a vast list of perturbations that occur in orbit around Earth. The magnitude of
these perturbations is often small enough that they can be neglected as can be seen in Figure
3-3. From Figure 3-3 it also becomes clear that for Low Earth Orbit (LEO) the two most
significant perturbations are the J2 effect and atmospheric drag.
The J2 perturbation is caused due to the Earth not actually being a perfect sphere, but an
irregular shaped ellipsoid. This results in the Earth’s mass not being evenly distributed and
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3-1 Modelling 17

Figure 3-3: Magnitude of accelerations due to perturbations on Earth orbiting Satellites [36]

so causing the gravitational potential to be varying with latitude. The J2 is just one of the
perturbations caused by the irregularities in the gravity potential, the higher order terms
are neglected due to being various orders of magnitudes smaller. The gravitational potential
including the J2 perturbation is given by (3-1), where kJ2 = 3J2µR

2
e/2, Re is earth’s radius,

J2 is the second zonal harmonic coefficient of the Earth and γ is the geocentric latitude.

Pgrav,J2 = −µ
r
− kJ2

r3 (1
3 − sin γ2) (3-1)

The magnitude of the atmospheric drag on a satellite will depend on the altitude and the
cross-sectional area of the satellite. The exact atmospheric density is not easy to find, as there
are many models available that yield different results. Furthermore, the cross-sectional area
of a satellite will be changing with the orientation of the satellite, making it quite complex to
model the drag. An estimate of the drag and other J2 terms will be added to the simulation
according to 3-3. The drag will be added as a constant disturbance in the direction of motion
and a further randomly distributed disturbance will be added on all three axes will be added.

These perturbations can thus be included in the dynamics model of the controller or chosen
to be ignored. These perturbations can be included in the three models discussed in this
section resulting in more complex models. The benefits of including them should be a lower
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model error, but that will depend on the other assumptions the model is based on. Their
inclusion on the controlled prediction model will further be discussed in the next section.

3-1-3 Relative Orbital Dynamics Models

An important part of the problem is the choice of model for relative dynamics. The choice of
model will determine the way the MPC will predict state evolution and so directly affect the
solution to the optimization problem. A vast amount of research involving relative dynamics
in space has made use of the classical Clohessy Wiltshire (HCW) equations due to their
simplicity and good accuracy considering the assumption of a circular reference orbit, small
separations distances between the satellites and short time intervals. However, in reality many
satellites, asteroids, and debris do not act under these assumptions so more complete models
should be considered regardless of the flight heritage and success of the HCW equations.

For relative control with large separations and time intervals more exact models are required as
to decrease modelling error which, causes excessive propellant consumption. There are various
potential candidates. First, the Yamanaka-Ankersen (YA) model [61] which is numerically
identical to the HCW equations but provides a State Transition Matrix that is also valid
for elliptical orbits [61]. Next, Breger and How provide a State Transition Matrix based on
Gauss’ Variational Equalities (GVEs) expanded to include the J2 effects [6], but this model is
computationally expensive. Finally, the nonlinear Xu-Wang model [60] which, is very accurate
but hasn’t been compared directly to the simpler HCW and YA model compared to the Koenig
and D’Amico STM [28] which has been compared to the other models and provides increased
accuracy for relative simplicity. The Koenig STM, YA model and the Breger and How GVE’s
are described in Relative Orbital Elements (ROE) which, is favourable for orbit design but
requires transformation to the local frame for MPC implementation. The YA model further
makes use of the true anomaly as an independent variable instead of time, requiring an extra
computation, nonetheless it has been proven in application [22]. The Xu-Wang model on
the other hand describes the relative motion directly in the local coordinate frame making it
suitable for controller design, although it has only been applied for swarm-keeping strategies
[37] it is very promising for the RVD application.

Based on the fact that Tillerson and How provided proof that the use of HCW will provide sig-
nificant prediction errors and so increased fuel consumption [24]. The increased performance
versus the increased complexity of these models must be evaluated. It is however to be noted
that due to the potential performance improvement in propellant consumption is diminished
for the terminal to capture phase due to the small relative separation. The potential benefit in
the terminal to capture phase will be in terms of docking accuracy. The models that are com-
pared are the HCW, YA and Xu-Wang model with disturbances for all three mission phases.
These provide a good range of complexity as well as practical and research implementation,
without being too computationally expensive or requiring any transformation matrices.

Clohessy-Wiltshire Equations (HCW)

The HCW equations have been the most frequently used in practice and in theoretical studies
for RVD as well as formation flying [18] [50] [41] [7]. This is due to their simplicity and
computational efficiency for control strategies. Regardless of its simplicity flight heritage and
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theoretical studies have shown that it provides more than suitable accuracy to carry out a
RVD mission.

The HCW equations are composed of three linearized differential equations developed in the
LVLH frame. The differential equations are presented in (3-2).

ẍ− 3n2x− 2nẏ = ax

ÿ + 2nẋ = ay

z̈ + n2z = az

(3-2)

where n is the mean motion of the orbit. The Centripetal acceleration is represented by the
terms including the squared mean motion, while the Coriolis acceleration is represented by the
terms including 2n [57]. As was discussed already in Subsection ?? the HCW model does not
include perturbations or eccentricity. Furthermore, as the nonlinear equations are linearized
with respect to the distance between target and chaser spacecraft, the model is only valid
for separation of a few hundred meters between the two spacecraft [57]. Furthermore, clear
from the differential equations that the x − y plane motion is coupled, which makes sense
considering that it is the orbital plane.

An analytical solution to eq::hcw exists and can be formulated in an STM, as presented in
[56]. Through the STM it is thus possible to propagate the relative motion of the spacecraft
over time. The HCW model then takes the following form:

Q̇(t) = Ψ(∆t)Q(t0) (3-3)

where Q = [x, y, z, ẋ, ẏ, ż] is the state vector, ∆t is the elapsed time and t0 the initial time.
Finally, Ψ denotes the STM, which is given by:

Ψ(∆t) =



4− 3 cosn∆t 0 0 sinn∆t/n 2(1−cosn∆t)
n 0

6(sinn∆t− n∆t) 1 0 2(cosn∆t−1)
n

4 sinn∆t
n − 3∆t 0

0 0 cosn∆t 0 0 sinn∆t
n

3n sinn∆t 0 0 cosn∆t 2 sinn∆t 0
6n(cosn∆t− 1) 0 0 −2 sinn∆t 4 cosn∆t− 3 0

0 0 −n sinn∆t 0 0 cosn∆t


(3-4)

It should be noted that if ẏ0 = −2nx0 all secular terms will go to zero on so the resulting
trajectory is periodic. The discrete time state space form of the HCW equations is presented
in (3-5) [18].
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x(k+1) =



4− 3C 0 0 S/n 2(1−C)
n 0

6(S − nTs) 1 0 2(C−1)
n

4S−3nTs
n 0

0 0 C 0 0 S
n

3nS 0 0 C 2S 0
6n(C − 1) 0 0 −2S 4C − 3 0

0 0 −nS 0 0 C


︸ ︷︷ ︸

A

x(k)+



1−C
n2

2nTs−2S
n2 0

2(S−nTs)
n2 −3T 2

s
2 + 41−C

n2 0
0 0 1−C

n2
S
n 21−C

n 0
2C−1

n −3Ts + 4Sn 0
0 0 S

n


︸ ︷︷ ︸

B

u(k)

(3-5)

where, C = cosnTs and S = sinnTs.

Yamanaka and Ankersen Model

The direct relative dynamics model developed by YAhas been used for theoretical design of
MPC controllers for RVD [22] and will soon have flight heritage aboard the ESA PROBA-3
mission [2]. The model is a further development of the HCW to include eccentricity. The
derivation is similar but for the fact that while HCW started from the EOM for a circular
unperturbed orbit, YAused the EOM for a unperturbed eccentric orbit. The derivation relies
on the assumption that the relative distance of the two satellites is negligible compared tot he
orbital radius, just like the HCW model. The resulting equation of the relative in the target’s
satellite reference frame are the following:

ẍÿ
z̈

 =

−kω
3
2x+ 2ωż + ω̇ + ω2x

−kω
3
2 y

2kω
3
2 z − 2ωẋ− ω̇x+ ω2z

+ af + acd − atd (3-6)

The solution to these equations is found depending on the assumption that the chaser satellite
is flying in free motion, af = 0, and that the external forces on chaser and target satellite are
identical, acd = atd. Before determining the solution to the EOM, YAsimplified (3-6) to obtain
the simplest final form. This is done by adopting the true anomaly of the target spacecraft,
θ, as an independent variable instead of time, t and adopting the following transformation:

x̃ỹ
z̃

 = (1 + e cos θ)

xy
z

 = ρ

xy
z

 (3-7)

The resulting simplified EOM for relative motion becomes:

x̃′′ = 2z̃′

ỹ′′ = −ỹ
z̃′′ = 3z̃/ρ− 2x̃′

(3-8)

In this form YA developed a solution by integrating the equation for, X̃, and the equation for
ỹ as it is that of a harmonic oscillator. The problem is then reduced to solving a preceding
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differential equation for z̃. YAdid this by proposing their own integral term in order to avoid
singularities and achieve a STM simple for engineering use [61]. The solution so allows the
propagation of the relative motion of a chaser and target spacecraft with true anomaly. The
STM form of the solution is given by:

Q̃(θ) = Φθ
θ0Q̃(θ0) = ΦθΦ−1

θ0
Q̃(θ0) (3-9)

where Q̃ is the transformed state vector excluding the out of plane components, Φ is the
STM given by the multiplication of two matrices and θ and θ0 are the initial and final true
anomaly. The matrices compromising the STM are given below in (3-10) and (3-11).

Φθ =


1 − cos θ(ρ+ 1) sin θ(ρ+ 1) 3ρ2J
0 ρ sin θ ρ cos θ (2− 3eρ sin θJ)
0 2ρ sin θ 2ρ cos θ − e 3(1− 2eρ sin θJ)
0 cos θ + e cos 2θ −(sin θ + e sin 2θ) −3e(J(cos θ + e cos 2θ) + sin θ/ρ)

 (3-10)

Φ−1
θ0

= 1
1− e2


1− e2 3e sin θ0(1 + 1/ρ) −e sin θ0(ρ+ 1) 2− eρ cos θ0

0 −3 sin θ0(1 + e2/ρ) sin θ0(ρ+ 1) ρ cos θ0 − 2e
0 −3(cos θ0 + e) cos θ0(ρ+ 1) + e −ρ sin θ0
0 3ρ+ e2 − 1 −ρ2 eρ sin θ0

 (3-11)

where J = h(t− t0)/ρ2. The out of plane relative state is then computed through:[
ỹt
ṽyt

]
= 1
ρ∆θ

[
cos ∆θ sin ∆θ
− sin ∆θ cos∆θ

] [
ỹ0
ṽy0

]
(3-12)

where ∆θ = θ − θ0. The YASTM was shown to obtain a lower model error compared to the
HCW model [51] at the cost of computational power. For control and simulation purposes one
wishes to have the states propagated with time, but due to the true anomaly being used as
independent variable the use of this model requires an extra computation. It is thus necessary
to solve Kepler’s equation at every time step to obtain the time, nonetheless this model has
been implemented in real time MPC controllers, so this is not a limiting factor [22]. The
resulting Linear Time Variant (LTV) discrete time state space model is presented in (3-13)
as in [22].

x(k + 1) = Φθ
θ0︸︷︷︸

A(t)

x(k) + Φθ
θ0

[
03x3
I3x3

]
︸ ︷︷ ︸

B(t)

u(k) (3-13)

however, here the inputs are impulsive ∆V. It is to be noted that the LVLH frame in which
these equations are defined varies from the definition given in Subsection 3-1-1. The relation
between the LVLH frame shown in Figure 3-2 and the one used by the ‘equations is:xYA

yYA
zYA

 =

 yLVLH
−zLVLH
−xLVLH

 (3-14)
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Xu-Wang Model

The Xu-Wang model was found not to have been used for theoretical or implementation
studies for RVD, but it has been used for theoretical research of formation flight [10] [33]
[7]. The model was futher expanded to include atmospheric drag by Morgan as explained
in the previous subsection [37]. Before we expand on the model the Reference Satellite
Variables (RSV) must be explained. This model developed by Xu and Wang proposed a set
of variables named the Reference Satellite Variables (RSV) [60]. These variables could also
be used to represent the motion of a target satellite, although they were not initially designed
for that use. They are presented in this subsection due top their possible benefits for our
scope. The full relative dynamic model will be presented with the other relative dynamic
model later on.

The model is compromised of six differential equations describing the motion of the satellite
using the RSV. The Reference Satellite Variables are the following:

• r: Orbital radius

• vx: Radial velocity

• h: Angular momentum

• θ: True Anomaly

• i: Orbit inclination

• Ω: Right Ascension of the Ascending Node

It is to be noted that the first five variables are independent of the Ω and thus the first five
variables are named the compact RSV. The six differential equations describing the variables
are given in (3-15).

ṙ = vx

v̇x = − µ
r2 + h2

r3 −
kJ2

r4 (1− 3 sin i2 sin θ2)

ḣ = −kJ2 sin i2 sin 2θ2

r3

θ̇ = h

r2 −
2kJ2 cos i2 sin θ2

hr3

i̇ = −kJ2 sin 2i sin 2θ
2hr3

Ω̇ = −2kJ2 cos i sin θ2

hr3

(3-15)

The model was developed based on the Lagrange Equation presented in (3-16).

d
dt (∂L

∂r )− ∂L
∂r = Fgen (3-16)
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where L = K − P is the Lagrangian, representing the difference between the kinetic and
potential energy, and Fgen is the generalized force in each direction. The kinetic energy of the
chaser spacecraft can be determined through Kchs = 1

2 ṙᵀchsṙchs, with the velocity of the chaser
spacecraft ṙchs, being in the ECI frame. The J2 perturbed gravity potential is given by (3-1)
and thus combining these together resulted in the relative dynamics model given in (3-17).
The chaser spacecraft variables are denoted with the chs subscript, while for simplicity the
target spacecraft variables have no subscript. It is to be noted that the variables of this model
are the RSVs given by (3-15).

ẍchs = 2ẏchsωz − xchs(η2 − ω2
z) + ychsaz − zchsωxωz − (ζchs − ζ) sin i sin θ − r(η2

chs − η2) + Fchs,x

ÿchs = −2ẋchsωz + 2żchsωx − xchsaz − ychs(η2
chs − ω2

z − ω2
x) + zchsax − (ζchs − ζ) sin i cos θ + Fchs,y

z̈chs = −2ẏchsωx − xchsωxωz − ychsax − zchs(η2
chs − ω2

x)− (ζchs − ζ) cos i+ Fchs,z
(3-17)

where ωx and ωz are the orbital and steering rates, ax and az are the orbital and steering
accelerations and Fchs,.. are the control forces of the chaser spacecraft. Furthermore, the
accelerations ζchs and ζ are given by:

ζchs = 2kJ2rchs
r5

chs

ζ = 2kJ2 sin i sin θ
r4

(3-18)

The angular velocities ηchs and η are on the other hand given by:

η2
chs = µ

r3
chs

+ kJ2

r5
chs
− 5kJ2r

2
chs

r7
chs

η2 = µ

r3 + kJ2

r5 −
5kJ2 sin i2 sin θ2

r5

(3-19)

where rchs,z is the distance from the chaser satellite to the equatorial plane. With the EOM
being a second order differential equation, combining these with (3-15) results in the entire
model. The model can then be described through 11 first order differential equations, 6 first
order equations derived from (3-17) and the 5 first order equations for the RSV presented
in (3-15). This model was shown to achieve higher accuracy than the HCW, Tschauner-
Hempel [54], Schweighart-Sedwick [47] and a non-linear unperturbed model developed by
Gurfill [21] by the comparison carried out in [58]. This result is not surprising, as the Xu-
Wang model is an exact perturbed nonlinear model, making it the most complete out of the
models considered. The performance of the Xu-Wang model is however, not known compared
to other exact nonlinear perturbed models high fidelity models.

As mentioned before, Morgan expanded this model in order to include atmospheric drag.
This was done by replacing the control force vector F with a generalized force vector, Fgen as
atmospheric drag is a non-conservative force. The expression for the generalized force vector
is found in Apendix B of Morgan’s paper, where it is named as Qn [37].
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A linearized version of the Xu-Wang model is presented in [58]. Wang notes that the only
nonlinear terms are η2

chs and ζchs and thus by applying the Gegenbauer polynomial technique
a linearized model of the Xu-Wang is obtained. The linearized model is presented in (3-20).
For simplicity sx = sin x and cx = cosx.

ẍchs = 2ẏchsωz + xchs (2η2 + ω2
z + 2kJ2

r5 (1− s2
i s

2
θ)) + ychs (az + 4kJ2s

2
i s2θ

r5 )− 5zchsωxωz + achs,x

ÿchs = −2ẋchsωz + 2żchsωx + xchs (4kJ2s
2
i s2θ

r5 − az )− ychs (2kJ2s
2
i c

2
θ

r5 + η2 − ω2
z − ω2

x )+

zchs (ax −
kJ2s2icθ
r5 ) + achs,y

z̈chs = −2ẏchsωx − 5xchsωxωz − ychs (kJ2s2icθ
r5 + ax )− zchs (2kJ2c

2
i

r5 + η2 − ω2
x ) + achs,z

(3-20)

For the simulation the non-linear equations will be used, but for the MPC formulations a
discrete time LTV state space form will be needed. So (3-20) will be discretized and put into
matrix form for the controllers.

3-2 Controlling the Satellite

Controlling the RVD operation means computing the optimal accelerations required by the
thrusters to achieve the various mission phase objectives and eventually dock to the target.
This research is based on evaluating different MPC strategies, so an overview will be given
of MPC theory. Traditional feedback gains aren’t able to handle constraints which are an
integral part of the RVD problem. MPC is proposed as it is able to take constraints into
account in its formulation and compute an input that allows for them to be satisfied while
optimizing the control objective. The advantage of an online MPC compared to a library of
offline computed manoeuvres is that less memory is required and MPC is able to determine
the optimum solution for the specific situation at that time interval as well as account for
disturbances

3-2-1 Model Predictive Control

Model Predictive Control (MPC) is a class of computer-controlled algorithms, which make
use of an explicit model to determine the most adequate control action based on the plant’s
predicted future response. The main concept of the MPC strategy is shown in Figure 3-4. A
discrete time setting is used, and the figure shows the desired set point trajectory rj (green),
past state evolution (purple), the predicted state evolution (red) and control input (blue).
The event (xj , uj) represents, the plant’s state xj , the control input uj at the current time
step j. The MPC makes use of the internal discrete time model of the plant to predict the
plant’s behaviours, from the current time step over the prediction horizon mp (often Np)
. Subsequently, through an optimization problem the MPC computes (online) the optimal
control sequence based on the chosen cost function, from the current time step over the
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control horizon mc (often Nc), which will result in predicted state evolution (red line). From
the computed input sequence, the first one is the only one to be sent to the plan, the entire
process is then carried out again for the following time step [45].

Figure 3-4: MPC formulation: (a) schematics (b) receding horizon control strategy [25]

MPC provides an advantage compared to traditional offline computation of a state feedback
control law u = κ(x), such as an Proportional Integral Derivative (PID) controller, in that
it is able to control moving processes with hard (dynamic) constraints [35]. Something that
traditional offline computed controllers are not able take into account. Furthermore, MPC
allows one to implement a Dynamic Programming (DP) solution even though the plant is
nonlinear and constrained or the state dimension is high [45].

The constrained MPC formulation is the simplest formulation besides the unconstrained MPC
formulation. The unconstrained formulation will not be discussed separately as it is not of use
to the rendezvous and docking problem. If a discrete time deterministic model of a system is
cons“idered as in (3-21).

x(k + 1) = f(x(k), u(k))
y(k) = h(x(k), u(k))

(3-21)

where k denotes the time step, x ∈ Rnx are the states of the system, u ∈ Rnu are the
control inputs and y ∈ Rny are the outputs of the system. Furthermore, f(•) and h(•) are
continuous functions with the desired equilibrium of f(0, 0) = 0 and it is assumed that the
states are measurable. This model is necessary to the MPC formulation as the computation
of the optimal control sequence is based on a prediction of the system outputs through an
explicit model as explained in the previous subsection. A problem is that in reality systems
and processes are described through Continuous-Time (CT) differential equations. In order to
implement a MPC formulation, which functions in discrete time due to the nature of computer
controlled processes, an adequate sampling time must be chosen for the CT system. Sampling
is a result of computers storing CT signals by sequence of data points for each sampling
instance. In the majority of applications the sampling instant is constant, in which case
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the sampling period is often denoted by h or Ts. The choice of sampling period can have
significant effects on the digital reconstruction of the CT signals, thus it will have to be taken
into consideration in the MPC formulation [16]. The predicted outputs, future states and
future control inputs of the MPC formulation can be denoted as:

~x =
[
x(k|k) x(k + 1|k) . . . x(k +Np − 1|k)

]ᵀ
~y =

[
y(k|k) y(k + 1|k) . . . y(k +Np − 1|k)

]ᵀ
~u =

[
u(k|k) u(k + 1|k) . . . u(k +Nc|k)

]ᵀ (3-22)

where y(k+ i|k) is the predicted output at time instant k+ i based on the system information
at time step y(k) , Np is the prediction horizon and Nc is the control horizon. The prediction
horizon determines the amount of time intervals taken into account in the optimization,
while the control horizon determines the amount of control variables to be included in the
optimization. The prediction horizon is thus always larger or equal to the control horizon,
Nc ≤ Np. As the optimization variables are the control inputs, it is useful to express the
predicted state evolution in terms of the input sequence. This will often be dependent on
the model of the system. If the system can be expressed as a state space model, the state
evolution is determined sequentially using the control inputs. Considering the simplest case
of a discrete Linear Time Invariant (LTI) system shown in (3-23).

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

(3-23)

Through the state space matrices future state variables can thus be expressed in terms of the
future control inputs as shown below:

x(k + 1|k) = Ax(k) +Bu(k)
x(k + 2|k) = Ax(k + 1) +Bu(k + 1)

= A2x(k) +ABu(k) +Bu(k + 1)
...

x(k +Np|k) = ANpx(k) +
Nc∑
i=1

Ai−1Bu(k +Nc − i)

(3-24)

Using the relations presented in (3-24) and the fact that y = Cx, it is possible to express the
predicted output variables in terms of the control inputs. If the relations for the future output
variables are stacked, the prediction model will be in the matrix form presented below:

~y = Tx(0) + S~u (3-25)
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where matrices T and S are defined as:

T =


C
CA
CA2

...
CANp−1

 , S =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
...

...
CANp−1B CANp−2B · · · CANp−NcB D

 (3-26)

This matrix form of the prediction model will be of use for the cost function. The MPC
formulation is dependent on a minimization problem for which the resulting computed control
inputs result in the minimum value of the cost function. Typically, the cost function for the
optimal control problem is the sum of the cost of the future responses over the prediction
interval [k, k +Np]. This type of cost of function is expressed as:

J(x(k), u(k)) =
Np−1∑
j=0

l(x(k + j|k), u(k + j|k)) (3-27)

where l(x, u) represents the stage cost, which is often a quadratic cost function of the form:

l(x(k), u(k)) = ||x(k)||2Q + ||u(k)||2R = xᵀ(k)Qx(k) + uᵀ(k)Ru(k) (3-28)

where Q and R are respectively positive semi-definite and positive definitive weighting ma-
trices. The use of weighting matrices allows for many tuning options and trade-offs [17].
Another variation of cost function (3-27) is often used, which includes the terminal stage cost
together with a terminal constraint in order to achieve nominal stability [45]. This terminal
stage cost is a separate stage cost for the terminal state x(k +Np) and has the form:

lN (x(k +Np)) = x(k +Np)ᵀPx(k +Np) (3-29)

where P is a positive definite matrix, and is often chosen as the solution to the Ricati equation
for matrices (A,B,Q,R). Next to the terminal stage cost a constraint will be imposed on the
terminal state x(k +Np) ∈ Xf, where Xf is a positive invariant set [45].

The majority of systems in real life have physical and control limitations. These limitations are
taken into consideration through constraints in the MPC formulation. These limitations can
be formulated into three main types of constraints: hard, soft and set-point approximation,
as is presented in Figure 3-5. Hard constraints are constraints which can not be violated.
They are defined by closed and compact sets for the state and input, and are formulated as
inequalities as presented in (3-30).

x ∈ X ⊂ Rnx , xmin ≤ x(k) ≤ xmax

u ∈ U ⊂ Rnu , umin ≤ u(k) ≤ umax
(3-30)

On the other hand, soft constraints, as the name suggests, allow some violation of the con-
straint boundary at the expense of an added penalty to the cost function. This way the
optimization problem will favour the constraints not being violated but violations can occur
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if necessary. These type of constraints can be included into the MPC formulation through
the implementation of slack variables or a penalty functions in the cost function [26]. Slack
variables are implemented in the hard constraints inequalities resulting in inequalities (3-31).

xmin − ε ≤ x(k) ≤ xmax + ε

umin − ε ≤ u(k) ≤ umax + ε
(3-31)

where, ε are the slack variables. The penalty related to the use of slack variables is then
added to the original cost function, resulting in the following:

Jslack = J(x(k), u(k)) + ρ||e|| (3-32)

where ρ is the constraint violation penalty weight. It is to be noted that the slack variables
will increase the dimension of the optimization problem. Exact penalty functions can be
implemented into the MPC formulation in a similar manner, by explicitly adding the functions
to the cost function without the definition of extra variables. Considering the function c(·)
represents the magnitude of the constraint violation then the cost function becomes:

Jpen,f = J(x(k), u(k)) + ρ||c(x(k), u(k))|| (3-33)

Finally, the set-point approximation is another soft constraint type. A set point is defined
for each soft constraints and so a penalty function for both sides to the constraint is added
to the cost function.

The use of the stage cost function is aimed at minimizing the (squared) error of the state with
respect to the origin of the system. This is functional for a standard regulator problem, but
in practical applications reference tracking problem is very common. The cost will then be
aimed at minimizing the (squared) error between the reference and state trajectory. Just as
for the constraints there are various methods in which a reference trajectory can be defined
and they are presented in Figure 3-6. The four methods are the set-point, zone, reference
trajectory and funnel method, the shaded area in the figures represents the tracking error.
The set-point reference trajectory corresponds to a constant reference trajectory i.e. r(k) = r,
∀k, penalty is awarded for above or below the reference. The second method is zone control
tracking, which is aimed at keeping the state within certain bounds i.e. rmin ≤ r(k) ≤ rmax.
They are ultimately state constraints and is implemented as such. The third method is the
reference trajectory, which is ultimately a time varying set-point reference where all deviations
from the trajectory are penalized. Lastly, the funnel method is the combination of the zone
and reference trajectory method. The bounds of the reference zone are thus defined by two
separate reference trajectories. The slope of the funnel is a tuning parameter that will affect
the controller performance.

The cost function for the reference tracking problem is constructed in a similar manner as the
regulator problem. Besides the vectors presented in (3-22), if we also consider the reference
trajectory vector below:

~r =
[
r(k|k) r(k + 1|k) r(k + 2|k) · · · r(k +Np − 1|k)

]ᵀ
(3-34)
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Figure 3-5: Hard, Soft and Set-point
approximation constraints [43]

Figure 3-6: Set-point, zone, reference
and funnel reference trajectories [43]

Defining the tracking error as, e(k) = r(k)−x(k), the stage cost function (3-28) then becomes:

l(e(k), u(k)) = ||e(k)||2Q + ||u(k)||2R = eᵀ(k)Qe(k) + uᵀ(k)Ru(k) (3-35)

All the elements necessary for the constrained optimal control problem have been defined,
and Can consequently be formulated. Considering the defined sequences, constraints, and
cost function, the constrained optimal control problem is then defined as:

min
u
J(x(k|k), u(k|k))

subject to:
x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)
xmin ≤ x(k) ≤ xmax or other
umin ≤ u(k) ≤ umax or other

(3-36)
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3-3 Conclusion

In this Chapter, all the required existing theory was reviewed in order to provide a basis of
understanding of the current knowledge and approaches. From this review, conclusions were
drawn.

Relative Dynamic models are mostly described in the LVLH frame centred around the target
satellite. The most significant disturbances to affect LEO satellites are the J2 effect and
atmospheric drag. These will be added to the simulation as to improve the accuracy of
the investigation. Extensive research has been carried out in the development of relative
dynamic models, but there are too many to compare in this thesis. Three models are chosen
of increased complexity to compare. The HCW model is chosen as the baseline due to its
flight heritage and representing the industry standard. Next, the YA model will be the second
step, as it presents a further development of the HCW model to include eccentricity and has
been applied for this purpose in research. Finally, the Xu-Wang model will be the final step.
It is an exact model including eccentricity and the J2 effect, but its propagation performance
has not been compared to the other two models before and has not been applied for control
applications yet. All three models rely on expressing the relative position and velocity in the
LVLH frame. The HCW is a LTI model while the YA model is LTV. The Xu-Wang model
is also LTV, but also requires the propagation of 6 RSV and is the most computationally
expensive but deemed to be able to be real time applicable within the constraints of the
mission.

Control of the chaser spacecraft is dependent on the mission phase objectives. The measure-
ment and estimation of all the required variables for the control of the chaser spacecraft will
not include in this research, as it is not relevant to the comparison of different MPC formula-
tions. MPC provides a useful control strategy that is able to handle constraints and assures
that they will be satisfied while optimizing the control objective. As an online optimization
control scheme it provides the ability to compute the optimum solution for the specific in-
stance compared to offline control schemes. Considering that RVD missions include a wide
range of hard constraints that must be satisfied for mission success, MPC is well suited for
this problem. Besides the choice of prediction model, the type of MPC formulation is depen-
dent on the cost function and constraints that are used. The choice of prediction model to
be evaluated has been made, but the choices regarding constraints, cost functions and robust
or non-linear formulations will be presented further on.

To conclude, with an overview of all the required knowledge regarding RVD heritage, relative
dynamic models and MPC the problem will be formulated in the coming chapter. Before
developing the methodology.
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Chapter 4

Problem Formulation

The historical context, as well as the existing and future challenges of RVD were explained in
Chapter 2. Next, the research context and theoretical background were presented in Chapter
3. From this, it became evident that even though there have been theoretical and research
applications for Model Predictive Control (MPC) in RVD missions, there is a gap of knowledge
present about combining aspects from these applications and comparing them under the same
baseline. In the last two decades various researchers have developed MPC controllers for
rendezvous and docking due to the growing interest and feasibility of autonomous rendezvous
and docking as mentioned in Chapter 1. The goal of this research is to fill this knowledge gap
by integrating this knowledge and comparing it under the same baseline to determine the most
appropriate Model Predictive Control (MPC) strategy for Rendezvous and Docking (RVD) to
an uncooperative target with respect to propellant consumption and completion time, while
being real-time applicable. This research will specifically aim to combine all the produced
knowledge in determining the optimal controller for propellant use and docking accuracy for
real-time implementation.

4-1 Research Objectives

The primary objective of this research is to determine an optimal MPC formulation for pro-
pellant use and docking accuracy for real-time application. The control strategy must be able
to of guiding the chaser spacecraft to the target spacecraft and dock with it. The control strat-
egy must be able to satisfy each mission phase objective while minimizing fuel consumption.
In order to realize the main objective, the following sub-objectives must be achieved:

• Develop and compare prediction models describing the relative dynamics between the
chaser and target satellite. The models must capture all the necessary processes that
affect the chaser and target. Then one can determine which prediction model describing
the dynamics of the chaser and target satellite is best suited for minimizing propellant
use while maintaining accuracy.
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• Determine if the inclusion of processes that are not included in the in prediction models
can improve the propellant consumption of the chaser target. Frameworks must be
chosen on how to captivate these processes and how to introduce them in the prediction
models.

• Develop various suitable MPC formulations for controlling the chaser satellite. The
formulations must be able to generate an optimal control sequence to ensure the chaser
satisfies its constraints and is able to dock with the target satellite.

4-2 Research Questions

From the objectives explained above, we are able to elaborate research questions that will
function as the scope of this thesis.

4-2-1 Main Research Question

What type of model predictive control strategy is best suited for real-time application in the
complete rendezvous and docking problem, to minimize propellant use while maintaining ad-
equate completion time?

4-2-2 Sub Research Questions

1. What type of relative orbital dynamics model allows for the best description of the target
and chaser spacecraft in orbit as to minimize propellant consumption and completion
time?

• Does the use of a more accurate model compared to the Clohessy Wiltshire (HCW)
model provide any significant propellant savings and docking accuracy improvement
for each mission phase while retaining real-time applicability?

• Does the modelling of disturbances provide any increase in propellant use through-
out the mission and docking performance during the terminal phase?

2. How can (LP, Time-Varying, Non-Linear, Stochastic and Robust) an MPC algorithm
be constructed to carry out rendezvous and docking mission with an uncooperative (still,
rotating or tumbling) target?

• What type of MPC strategy is best suited for the various mission phases for the
designated MPC strategy?

• What are the limitations imposed on the chaser spacecraft for the various ren-
dezvous and docking mission phases, and how can we transform these to input and
state constraints?

• What type of cost function will guarantee the best compromise between propellant
use and docking strategy for each mission phase?
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Chapter 5

Methodological approach

Having reviewed all the necessary heritage and theory as well as having presented the problem
formulation. The exact methodological approach developed using the theory and heritage, to
answer the research questions will be presented. In this Chapter the various mission phases
and their Model Predictive Control (MPC) strategy for each mission phase will be presented.

5-1 Intermediate Range

The objective of the first phase of a rendezvous and docking mission will be to synchronise
the orbit of the chaser with that of the target spacecraft. The objective must be completed
in finite time while minimizing fuel consumption. The controller must so be able to bring the
chaser to within 20 km. Launchers have an orbit-insertion accuracy of ±30 km, so similar as
in [22] the chaser satellite will begin around 300 km behind the target with a 30 km deviation
in semi major axis. The orbital initial conditions are presented in Table 5-1.

Table 5-1: Orbital Parameters for Target and Chaser

Orbital Parameters Target Chaser
Semi Major axis [km] 6918.6 6888.6
Eccentricity 0.013611 0.013611
Inclination [deg] 60 60
Argument of Perigee [deg] 103.89 103.89
Right Ascension of the Ascending Node [deg] 123.61 123.61
True Anomaly [deg] 5 2

5-1-1 State Constraints

This mission phase is the least complex in terms of the constraints involved. There are only 2
state constraints involved. The idea of including a free drift trajectory constraint, as done in
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[22] was not done because on Mars there are no other satellites to take into account in Low
Earth Orbit (LEO) ensuring the chaser satellite does not crash with the target in free drift,
still allow the risk for a collision to remain. It would thus not impact the possible collateral
damage caused due to loss of control, and that would be best solved through backup systems
or other safety systems. The first constraint is a running constraint ensuring the chaser
remains behind the target and is presented in (5-1).

[
0 1 0 0 0 0

]
︸ ︷︷ ︸

Afreedrift

x(k) ≤ 0 (5-1)

Finally, the second and last state constraint is a terminal constraint set on the along track
distance between the chaser and target. As the objective of this mission phase is to get the
chaser within 20 km of the target, the terminal constraint imposes that the chaser be within
30 km and 10 km as shown in (5-2).

[
0 −1 0 0 0 0
0 1 0 0 0 0

]
︸ ︷︷ ︸

Aterminal

x(Np) ≤
[

30× 103

−10× 103

]
︸ ︷︷ ︸

bterminal

(5-2)

it is to be noted that the constraints will differ for the Yamanaka-Ankersen (YA) prediction
model due to the different definition of the LVLH reference frame as explained in Subsection
3-1-1.

5-1-2 Input Constraints

The input constraints are defined in the form of a maximum deliverable acceleration on each
input vector element, as presented in (5-33).

−ulim ≤ ui(j|t) ≤ ulim, i ∈ {1, 2, 3}

ulim = Dτ
Fc
m

ulim YA = Dτ
FcTs
m

(5-3)

where Fc N is the force capacity, m kg is the mass of the chaser craft and Dτ is the thruster
duty cycle as the fraction of the sampling period. As the YA model requires ∆V as an input,
its bound is represented by ulim YA.

5-1-3 Disturbance Estimator

The three prediction models used are of different degrees of accuracy. The HCW model
includes no disturbances and eccentricity, the YA model includes eccentricity but no distur-
bances, while the Xu-Wang model includes eccentricity and the J2 effect. As was mentioned
in Sub-Section 3-1-2 the most significant disturbances for LEO are atmospheric drag and the
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J2 effect meaning a constant disturbance of 10−4 m/s2 will be added to the along track direc-
tion to represent drag as well as random normally distributed disturbances in all directions
of 10−5 m/s2 to represent other disturbances according to Figure 3-3.

Disturbance estimators will be added to the prediction models to evaluate if they can provide
performance benefits in terms of propellant consumption. The inclusion of a disturbance in
the prediction model will tighten state and input constraints. Most robust techniques make
use of the worst possible disturbance at the cost of performance, but the current estimated
disturbance will be used instead. Two types of disturbance estimators will be used. The first
is the simplest form of the disturbance estimators and is presented in (5-4).

x̂(k + 1) = Ax̂(k) +Bu(k) + δ(k)
δ(k) = x(k)− x̂(k)

(5-4)

The second disturbance estimator used is one presented in [22] as it has been proven to work
and will useful to compare its performance compared to a classical one. The disturbance
estimator is presented in (5-4).

x̂(k + 1) = Ax̂(k) +Bu(k) + δ(k)
δ(k) = δ(k − 1) +W ∗ (x(k)− x̂(k))

(5-5)

5-1-4 Delay

The MPC formulation functions under the assumption that the optimal input is determined
for the current time step and is then applied, however in real life it will take time to process
sensor data, solve the optimization problem and apply the desired input. A delay will thus
be present in the system, on SmallSats and CubeSats processing power is no longer limiting,
but it will still be advantageous to see if the system can function with one-step delay. The
delayed prediction model is presented in (5-36).

[
x̂(k + 1)
u(k)

]
=
[
A B
0 0

] [
x̂(k)

u(k − 1)

]
+
[
0
I

]
u(k) (5-6)

As an incremental input cost function will also be evaluated, a delayed prediction model
formulation including incremental input must also be used and is presented in (5-7):

[
x̂(k + 1)
u(k)

]
=
[
A B
0 I

] [
x̂(k)

u(k − 1)

]
+
[
0
I

]
∆u(k) (5-7)

5-1-5 Cost Function

The two cost functions that will be evaluated are the standard quadratic cost function repre-
sented by (5-37) with a terminal stage cost. The second cost function that will be evaluated
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will be a quadratic cost function with terminal stage cost but also including a penalty on the
change in input, also referred to as incremental input cost function, shown in (5-38).

J(x(k), u(k))u =
Np−1∑
k=1

((x(k)− r(k))ᵀQ(x(k)− r(k)) + uᵀ(k)Ru(k)) + x(Np)ᵀPx(Np) (5-8)

J(x(k), u(k))∆u =
Np−1∑
k=1

((x(k)− r(k))ᵀQ(x(k)− r(k)) + ∆uᵀ(k)R∆u∆u(k) + uᵀ(k)Ru(k))

+x(Np)ᵀPx(Np)
(5-9)

5-1-6 MPC Formulations

With the three different prediction models, two robust models and two cost functions it will
result in more than 10 MPC formulations to be compared. We will not explicitly state all of
them due to redundancies but all their performance will be shown in the results. The non
delayed formulations will have form (5-10), while the delayed formulations will have form
(5-11).

min
u
J(x(k), u(k)) or J(x(k), u(k))∆u

subject to:
x(0) = xintial

x(k + 1) = Ax(k) +Bu(k) or x(k + 1) = Ax(k) +Bu(k) + δ(k), k ∈ [0, Np)
Afreedriftx(k) ≤ 0, ∀k
Aterminalx(k) ≤ bterminal, k = Np

umin ≤ u(k) ≤ umax, k ∈ [0, Np)

(5-10)

min
u
J(x(k), u(k)) or J(x(k), u(k))∆u

subject to:
x(0) = xintial & u(−1) = uinitial

x(k + 1) = Ax(k) +Bu(k − 1) or x(k + 1) = Ax(k) +Bu(k − 1) + δ(k), k ∈ [0, Np)
Afreedriftx(k) ≤ 0, ∀k
Aterminalx(k) ≤ bterminal, k = Np

umin ≤ u(k − 1) ≤ umax, k ∈ [0, Np)
(5-11)
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5-2 Short Range

The objective of the short range phase is to reduce the along track separation between the
chaser and target spacecraft from 10− 30 km to a few hundred meters. This objective must
again be satisfied while minimizing fuel consumption. This will be done through controlling
the satellite to a 100 m within the target while remaining in field of view of the target and
then for it to stay at a holding point there until the next mission phase is activated, similar
as was done for the Mars sample return mission [22].

5-2-1 State Constraints

This mission phase will thus have a terminal constraint related to the holding point at then
end. The constraint requires the chaser spacecraft to be in a box, centred on the point xhp,
with an in-plane width of xhp and out of plane width of xhp. This as so to prevent large
overshoot when switching to the capture controller. The constraint takes the form:

[
I 0
−I 0

]
x(jN ) ≤ chp(jN ) (5-12)

where jN = t + NpTs. Similar constraints are formulated for the chaser position after 1/4,
1/2, 3/4 orbits in terms of true anomaly.

[
I 0
−I 0

]
A(jN : jN + ∆T )x(jN ) ≤ chp(jN + ∆T ), ∀∆T ∈ {T1/4, T1/2, T3/4T} (5-13)

The corresponding true anomaly for the 1/4, 1/2, 3/4 and 1 orbits can be easily computed
as a full orbit is 2π. Using these values and through the mean anomaly (5-14), where ∆t
is the time since the last passing of the perigee and ntgt is the mean anomaly rate [57], the
corresponding time for the orbits is then determined through (5-15), where Torb is the orbital
period of the target.

Mtgt(t) = 2 tan−1
√

1− etgt tan θtgt(t)/2

etgt
√

1− e2
tgt −

√
1+etgt sin θtgt(t)

(1+etgt) cos θtgt(t)

= ntgt∆t (5-14)

T1/4 = ((∆t(jNp + T1/4)−∆t(jNp) mod Torb)
T1/2 = ((∆t(jNp + T1/2)−∆t(jNp) mod Torb)
T3/4 = ((∆t(jNp + T3/4)−∆t(jNp) mod Torb)

(5-15)

Then chp(t) is defined by (5-16).

chp(t) =



−xhp/2 + |δxhref |
xhp/2

xhp/2 + |δzhref |
3 ∗ xhp/2 + |δxhref |

0.3xhp/2
xhp/2 + |δzhref |


(5-16)
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where δxhref and δzhref are tolerances representing the upper bound for the propagation of
the worst-case sensor uncertainty through the prediction model, and thus further tighten the
constraints of a robust MPC formulation. As shown in (5-17), where wmax is the victory
containing the maximum absolute navigation errors and A+(t) is a matrix whose elements
are the absolute values of the corresponding elements in A(t).δxhref

δyhref

δzhref

 = A+(j : j + Ts)wmax (5-17)

it is to be noted that the constraints will differ for the YA prediction model compared to the
HCW and Xu-Wang model due to the different definition of the LVLH reference frame as
explained in Subsection 3-1-1.

5-2-2 Input Constraints

The input constraints are defined in the form of a maximum deliverable acceleration on each
input vector element, as presented in (5-33).

−ulim ≤ ui(j|t) ≤ ulim, i ∈ {1, 2, 3}

ulim = Dτ
Fc
m

ulim YA = Dτ
FcTs
m

(5-18)

where Fc N is the force capacity, m kg is the mass of the chaser craft and Dτ is the thruster
duty cycle as the fraction of the sampling period. As the YA model requires ∆V as an input,
its bound is represented by ulim YA.

5-2-3 Disturbance Estimator

The three prediction models used are of different degrees of accuracy. The HCW model
includes no disturbances and eccentricity, the YA model includes eccentricity but no distur-
bances, while the Xu-Wang model includes eccentricity and the J2 effect. As was mentioned
in Sub-Section 3-1-2 the most significant disturbances for LEO are atmospheric drag and the
J2 effect meaning a constant disturbance of 10−4 m/s2 will be added to the along track direc-
tion to represent drag as well as random normally distributed disturbances in all directions
of 10−5 m/s2 to represent other disturbances according to Figure 3-3.

Disturbance estimators will be added to the prediction models to evaluate if they can provide
performance benefits in terms of propellant consumption. The inclusion of a disturbance in
the prediction model will tighten state and input constraints most robust techniques make
use of the worst possible disturbance at the cost of performance, but the current estimated
disturbance will be used instead. Two types of disturbance estimators will be used. The first
is the simplest form of the disturbance estimators and is presented in (5-19).
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x̂(k + 1) = Ax̂(k) +Bu(k) + δ(k)
δ(k) = x(k)− x̂(k)

(5-19)

The second disturbance estimator used is one presented in [22] as it has been proven to work
and will useful to compare its performance compared to a classical one. The disturbance
estimator is presented in (5-19).

x̂(k + 1) = Ax̂(k) +Bu(k) + δ(k)
δ(k) = δ(k − 1) +W ∗ (x(k)− x̂(k))

(5-20)

5-2-4 Delay

The MPC formulation functions under the assumption that the optimal input is determined
for the current time step and is then applied, however in real life it will take time to process
sensor data, solve the optimization problem and apply the desired input. A delay will thus
be present in the system, on SmallSats and CubeSats processing power is no longer limiting,
but it will still be advantageous to see if the system can function with one-step delay. The
delayed prediction model is presented in (5-36).

[
x̂(k + 1)
u(k)

]
=
[
A B
0 0

] [
x̂(k)

u(k − 1)

]
+
[
0
I

]
u(k) (5-21)

5-2-5 Cost Function

The two cost functions that will be evaluated are the standard quadratic cost function repre-
sented by (5-37) with a terminal stage cost. The second cost function that will be evaluated
will be a quadratic cost function with terminal stage cost but also including a penalty on the
change in input, also referred to as incremental input cost function, shown in (5-38).

J(x(k), u(k)) =
Np−1∑
k=1

((x(k)− r(k))ᵀQ(x(k)− r(k)) + uᵀ(k)Ru(k) + x(Np)ᵀPx(Np) (5-22)

J(x(k), u(k))∆u =
Np−1∑
k=1

((x(k)− r(k))ᵀQ(x(k)− r(k)) + ∆uᵀ(k)R∆u∆u(k) + uᵀ(k))Ru(k)

+x(Np)ᵀPx(Np)
(5-23)
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5-2-6 MPC Formulations

With the three different prediction models, two robust models and two cost functions it will
result in more than 10 MPC formulations to be compared. We will not explicitly state all
of them due to redundancies, but all their performance will be shown in the results. The
non delayed formulations will have form (5-24), while the delayed formulations will have form
(5-25).

min
u
J(x(k), u(k)) or J(x(k), u(k))∆u

subject to:
x(0) = xintial

x(k + 1) = Ax(k) +Bu(k) or x(k + 1) = Ax(k) +Bu(k) + δ(k), k ∈ [0, Np)
Ahpx(k) ≤ bhp, k = Np

umin ≤ u(k) ≤ umax, k ∈ [0, Np)

(5-24)

min
u
J(x(k), u(k)) or J(x(k), u(k))∆u

subject to:
x(0) = xintial & u(−1) = uinitial

x(k + 1) = Ax(k) +Bu(k − 1) or x(k + 1) = Ax(k) +Bu(k − 1) + δ(k), k ∈ [0, Np)
Ahpx(k) ≤ bhp, k = Np

umin ≤ u(k) ≤ umax, k ∈ [0, Np)
(5-25)

5-3 Terminal to Capture

The objective of the terminal to capture phase is to reduce the along track separation to
between chaser and target and dock to the target or remain at a safe distance. If the target is
rotating, then the chaser is to dock to the target without any collisions, The chaser will start
100 m behind the target as that is where the previous mission phase will leave it and approach
while remaining within a field of view cone. For this phase, it is assumed the orientation of
the chaser is taken care of by the ADCS unit of the satellite as to point the chaser in the
desired direction, thorough reaction wheels.

As the reference for the cost function will be the position of the docking port if the target is
rotating, this will not be constant. The state space system is thus augmented to include the
position of the docking port and the offset between chaser and docking port, as done in [11].
The discrete dynamics of the docking port are presented in (5-26).

rx(k + 1)
ry(k + 1)
rz(k + 1)

 = Arot(θ(k))

rx(k)
ry(k)
rz(k)

 (5-26)
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where Rrot(θ(k)) is an Euler Rotation matrix. For a target rotation about it z axis this is:

Arot(θ(k)) =

cos(θ(k)) − sin(θ(k)) 0
sin(θ(k)) cos(θ(k)) 0

0 0 1

 (5-27)

The distance to the docking port is then defined as:

σx(k)
σy(k)
σz(k)

 =

x(k)
y(k)
z(k)

−
rx(k)
ry(k)
rz(k)

 (5-28)

Resulting in the state vector:

~x(k) =
[
x(k) y(k) z(k) vx(k) vy(k) vz(k) rx(k) ry(k) rz(k) . . .
σx(k) σy(k) σz(k)

]ᵀ
(5-29)

augmented state space system presented in (5-30).

~x(k + 1) =

 ARD(k) 03×3 03×3
03×6 Arot(θ(k)) 03×3

I3×3 03×3 −I3×3 03×3

 ~x(k) +
[
BRD(k)

06×3

]
~u(k) (5-30)

where ARD(k) and BRD(k) represent the relative dynamics state space matrices.

5-3-1 State Constraints

This mission phase will include one main running constraint related to the docking port.
They are modelled as a rectangular cone placed along the docking port. These are then
expressed as tetrahedral forbidden zones described by a set of linear equations for each plan
as shown in Figure 5-1 to retain simplicity.Through, Lossless convexification (LCvx) non-
linear Line-of-Sight (LOS) constraints can be formulated as linear LOS constraints given by
(5-31).


cx 1 0
−cx 1 0

0 1 cz
0 1 −cz
0 1 0


︸ ︷︷ ︸

Alos

x(k)
y(k)
z(k)


︸ ︷︷ ︸
~xpos

≤


cx0
cx0
cz0
cz0
cy0


︸ ︷︷ ︸
blos

(5-31)

If the target is rotating, these constraints must be transformed to take into account the new
orientation of the target satellite in the LVLH frame. This is done by rotating the first three
columns of, Alos as shown in (5-32), assuming knowledge of the rotation angle θ is known.
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Figure 5-1: Line-of-Sight (LOS) constraint [44]

AlosRrot(θ(k))︸ ︷︷ ︸
Alos,rot

~xpos(k) ≤ blos (5-32)

It is thus assumed the angular rate of the target satellite is known in order to predict the
location of the docking port. It is to be noted that the constraints will differ for the YA
prediction model compared to the HCW and Xu-Wang model due to the different definition
of the LVLH reference frame as explained in Subsection 3-1-1.

5-3-2 Input Constraints

The input constraints are defined in the form of a maximum deliverable acceleration on each
input vector element, as presented in (5-33).

−ulim ≤ ui(j|t) ≤ ulim, i ∈ {1, 2, 3}

ulim = Dτ
Fc
m

ulim YA = Dτ
FcTs
m

(5-33)

where Fc N is the force capacity, m kg is the mass of the chaser craft and Dτ is the thruster
duty cycle as the fraction of the sampling period. As the YA model requires ∆V as an input,
its bound is represented by ulim YA.

5-3-3 Disturbance Estimator

The three prediction models used are of different degrees of accuracy. The HCW model
includes no disturbances and eccentricity , the YA model includes eccentricity but no distur-
bances, while the Xu-Wang model includes eccentricity and the J2 effect. As was mentioned
in Sub-Section 3-1-2 the most significant disturbances for LEO are atmospheric drag and the
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J2 effect meaning a constant disturbance of 10−4 m/s2 will be added to the along track direc-
tion to represent drag as well as random normally distributed disturbances in all directions
of 10−5 m/s2 to represent other disturbances according to Figure 3-3.

Disturbance estimators will be added to the prediction models to evaluate if they can provide
performance benefits in terms of propellant consumption. The inclusion of a disturbance in
the prediction model will tighten state and input constraints most robust techniques make
use of the worst possible disturbance at the cost of performance, but the current estimated
disturbance will be used instead. Two types of disturbance estimators will be used. The first
is the simplest form of the disturbance estimators and is presented in (5-34).

x̂(k + 1) = Ax̂(k) +Bu(k) + δ(k)
δ(k) = x(k)− x̂(k)

(5-34)

The second disturbance estimator used is one presented in [22] as it has been proven to work
and will useful to compare its performance compared to a classical one. The disturbance
estimator is presented in (5-34).

x̂(k + 1) = Ax̂(k) +Bu(k) + δ(k)
δ(k) = δ(k − 1) +W ∗ (x(k)− x̂(k))

(5-35)

5-3-4 Delay

The MPC formulation functions under the assumption that the optimal input is determined
for the current time step and is then applied, however in real life it will take time to process
sensor data, solve the optimization problem and apply the desired input. A delay will thus
be present in the system, on SmallSats and CubeSats processing power is no longer limiting,
but it will still be advantageous to see if the system can function with one-step delay. The
delayed prediction model is presented in (5-36).

[
x̂(k + 1)
u(k)

]
=
[
A B
0 0

] [
x̂(k)

u(k − 1)

]
+
[
0
I

]
u(k) (5-36)

5-3-5 Cost Function

The two cost functions that will be evaluated are the standard quadratic cost function repre-
sented by (5-37) with a terminal stage cost. The second cost function that will be evaluated
will be a quadratic cost function with terminal stage cost but also including a penalty on the
change in input, also referred to as incremental input cost function, shown in (5-38).

J(x(k), u(k)) =
Np−1∑
k=1

((x(k)− r(k))ᵀQ(x(k)− r(k)) + uᵀ(k)Ru(k) + x(Np)ᵀPx(Np) (5-37)
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J(x(k), u(k))∆u =
Np−1∑
k=1

((x(k)− r(k))ᵀQ(x(k)− r(k)) + ∆uᵀ(k)R∆u∆u(k)) + uᵀ(k)Ru(k)

+x(Np)ᵀPx(Np)
(5-38)

5-3-6 MPC Formulations

With the three different prediction models, two robust models and two cost functions, it will
result in more than 10 MPC formulations to be compared. We will not explicitly state all
of them due to redundancies, but all their performance will be shown in the results. The
non delayed formulations will have form (5-39), while the delayed formulations will have form
(5-40).

min
u
J(x(k), u(k)) or J(x(k), u(k))∆u

subject to:
x(0) = xintial

x(k + 1) = Ax(k) +Bu(k) or x(k + 1) = Ax(k) +Bu(k) + δ(k), k ∈ [0, Np)
Alos,rot(k)~xpos(k) ≤ blos, ∀k
umin ≤ u(k) ≤ umax, k ∈ [0, Np)

(5-39)

min
u
J(x(k), u(k)) or J(x(k), u(k))∆u

subject to:
x(0) = xintial & u(−1) = uinitial

x(k + 1) = Ax(k) +Bu(k − 1) or x(k + 1) = Ax(k) +Bu(k − 1) + δ(k), k ∈ [0, Np)
Alos,rot(k)~xpos(k) ≤ blos, ∀k
umin ≤ u(k) ≤ umax, k ∈ [0, Np)

(5-40)

5-4 Conclusion

In this Chapter, the methodological approach developed to answer the research questions was
presented. The result is a compilation of MPC formulations that will be evaluated for each
mission phase. The mission was divided into three mission-phases. Intermediate range, close
range and terminal to capture phase.

The objective of the intermediate range is to bring the chaser satellite within 20 km of the
target after orbit insertion. The constraints involved in this mission phase are relatively sim-
ple. The chaser is required to stay behind the target at all times, and the chaser must end
up between 30 and 10 km behind the target. The inputs are constrained by the maximum
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deliverable thrust and a chosen duty cycle. Besides the different prediction models, a delayed
MPC formulation will be developed for each prediction model as it is not possible for the
target spacecraft to apply the input at the same time it obtains its measurements. Furth-
more, for each prediction model besides the delayed formulation two more formulations will
be developed using two different disturbance estimators. Finally these formulations will be
evaluated with the traditional quadratic cost function and an incremental input cost function.
This will result in 7 different MPC formulation per prediction model.

The objective of the short range phase is to bring the chaser satellite to within a 100 m of the
target satellite and place the chaser satellite in a holding point until the next mission phase is
activated. The constraints in this mission phase are slightly more complex due to the holding
point, which are formulated as a terminal constraint. The input constraints remain the same
as for the intermediate range as well ass the delayed formulation, disturbance estimators and
cost functions that will be used. Resulting again in 7 MPC formulations per prediction model.

Lastly, the objective of the terminal to capture phase is for the chaser to approach the target
and dock while remaining in LOS of the target. In order to carry out docking, all three
prediction models are augmented to include the position of the docking port and the relative
distance between chaser and target port. This mission phase is the most demanding in terms
of constraints. LOS constraints are formulated as running and terminal constraint. Input
constraints are kept the same except for excluding the duty cycle due to the short sampling
period involved in this mission phase. The delayed formulation, disturbance estimators and
cost functions that will be used are kept the same, resulting in 7 MPC formulations per
prediction model.
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Chapter 6

Implementation and Results

This chapter contains the implementation and testing of the MPC algorithm for real problem
instances, in order to obtain a valid assessment of the performance of the controller. The
implementation of the MPC algorithm is done for two cases. Since there are also different
parameters to be defined, multiple runs for each climate log is performed.

6-1 Simulation

As mentioned in Subsection 3-1-3 the nonlinear Xu-Wang model will be used as the envi-
ronment simulation due to it being the most complete model. The Xu-Wang model includes
J2 accelerations and can include drag. It was chosen to however model drag as a constant
disturbance in the direction of flight according to Figure 3-3, resulting in an acceleration of ≈
6.67× 10−4 m/s2, and to account for other disturbances a randomly distributed disturbance
with variance of 1× 10−5 m/s2 is added to all three axes.
Furthermore, the maximum allowable thrust in each direction is chosen to be 20 N as that is a
realistic thrust value for possible thrusters that could fit on a RVD satellite such as the ELSA-d
satellite [1] [27]. Although thrusters are not fully throttleable, with an 8 thruster configuration
such as on the ELSA-d satellite wide ranges are producible through differential thrust. A limit
is set at 1 N of differential thrust and that is used as a Minimum Impulse Bit (MIB). By
setting the duty cycle in the input constraints, Dτ = 1/

√
2 this imposed 1-norm constraint

can be used to conservatively guarantee satisfaction of a 2-norm constraint on the maximum
deliverable thrust in any direction. Lastly, the navigation uncertainties are presented in Table
6-1, where beyond visual range they are the uncertainties of GPS and within visual range an
assumption based on performance on Light Detection and Ranging (LIDAR) and cameras.

6-2 Intermediate Range FITG

In this Section the results of the controllers for Intermediate range presented in Section 5-1
will be presented. For simplicity, the initial conditions are presented again in Table 6-2.
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Table 6-1: Navigation Uncertainty σ

Direction Beyond Visual Range (> 100 m) < 100 m
x 4 0.1
y 4 0.1
x 4 0.1
vx 0.001 0.001
vy 0.001 0.001
vz 0.001 0.001

Table 6-2: Orbital Parameters for Target and Chaser

Orbital Parameters Target Chaser
Semi Major axis [km] 6918.6 6948.6
Eccentricity 0.013611 0.013611
Inclination [deg] 60 60
Argument of Perigee [deg] 103.89 103.89
Right Ascension of the Ascending Node [deg] 123.61 123.61
True Anomaly [deg] 5 2

These initial conditions results in the following offsets in distance, m, and velocity, m/s in
the LVLH frame;

x(0) =
[
29174.95 −357344.63 0 −5.41 −49.57 0

]ᵀ
(6-1)

It was chosen to ensure that the combination of sampling time and prediction horizon result
in a prediction of 1.5 orbits.

6-2-1 HCW LMPC controllers

In this subsection, the results of the Clohessy Wiltshire (HCW) based LMPC formulations
will be presented. It is to be noted that with the use of the HCW prediction model, using a
sampling time of 340 seconds and a prediction horizon of, Np = 25 steps was not possible for
the delayed controllers, thus a smaller sampling period was chosen of 200 seconds combined
with a prediction horizon of Np = 43 was used to still have a prediction horizon of 1.5 orbits.
The cost matrices Q and R used for the simulations are presented below:

Q = diag
(
1× 10−6 1× 10−6 1× 10−6 1× 10−1 1× 10−1 1× 10−1

)
P = diag

(
15000 15000 15000

) (6-2)

Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-1. The trajectory in the orbital plane is presented in 6-2.
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It can be seen from the figures that regardless of the smaller sampling period, the delayed
controller is slower and has more of an overshoot. The out of plane oscillations in the Z axis
can be damped at the cost of more propellant use but for the scope of the first mission phase
it is not required or important. The total ∆V required by the controllers will be presented
at the end, with the remainder of the controllers.

Delayed LMPC with disturbance estimators

Next, in Figure 6-3 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-1-3 are presented. Their
trajectory in the orbital plane is shown in Figure 6-4.

The W of the disturbance estimator presented in (5-5) was set to:

W = 1× 10−3 ∗ Inx (6-3)

From the figures, it is clear that the classical disturbance estimator presented in (5-4) is able
to increase the speed of the delayed controller. The W matrix disturbance estimator does not
seem to provide many benefits except a slight increase in response time. Completion time is
not of importance for this mission phase, but is an important observation.

Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-5 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the two disturbance estimators presented in
Subsection 5-1-3 are presented. The same W matrix was used as for the delayed controllers.
In Figure 6-6 the orbital plane trajectory of the controllers is presented. The disturbance
estimators can be seen to have the same effect as for the normal delayed case.
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∆V and Steady state error

As the simulation did not include a time varying mass and modelled thrusters, it is best suited
to compare required ∆V in order to not introduce more assumptions. The steady state error
was computed as the Root Mean Squared (RMS) error from the 10000 to 25000 seconds in
the simulation. From the figures, it is clear that by 10000 seconds the chaser has arrived at
its first objective of 20 km behind the target. Measuring the RMS from that point gives an
indication of the steady state error after the chaser has settled and awaits to begin the second
mission phase.
The required ∆V and RMS errors for each controller are presented in Table 6-3. It is clear
from the table that the delayed LMPC reduces performance in terms of ∆V required and error
regardless of its smaller sampling time. Even though translation error is in itself not an issue
for the first mission phase, LEO orbits can be quite full, and it is important that the chaser
can be controlled with accuracy. Furthermore, it can be seen that the classical disturbance
estimator provides a significance performance benefit both in terms of ∆V and steady state
error while the W matrix disturbance estimator presented in [22] degrades performance for
the delayed controller and only provides an δV improvement for the incremental input delayed
controllers. Lastly, it is to be noted that while the incremental input cost function does not
provide any significant improvement to the classical one. However, the combination of the
incremental input cost function with the classical disturbance estimator is able to provide the
best performance in terms of ∆V and error even with respect to the non-delayed quadratic
cost function LMPC, almost halving the required ∆V .

Table 6-3: Results for HCW Intermediate Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
LMPC 610.55 64.73 183.76 13.79
delayed LMPC 728.24 220.91 307.53 90.53
delayed LMPC + δ est 539.66 84.66 59.91 18.03
delayed LMPC + W δ est 731.79 416.99 594.77 96.01
∆u delayed LMPC 728.13 218.66 307.75 72.88
∆u delayed LMPC + δ est 539.42 87.42 44.17 26.97
∆u delayed LMPC + W δ est 731.74 424.85 594.30 81.93

6-2-2 Yamanaka-Ankersen LMPC controllers

In this subsection, the results of the Yamanaka-Ankersen (YA) based LMPC formulations
will be presented. It is to be noted that with the use of the YA prediction model, using a
sampling time of 340 seconds and a prediction horizon of, Np, 25 was possible for the delayed
controllers, but to have a fair comparison a smaller sampling period of 200 seconds combined
with a prediction horizon of Np = 43 was used just as for the HCW intermediate range
controllers. The cost matrices Q and R used for the simulations are presented below:

Q = diag
(
1× 10−3 1× 10−3 1× 10−3 1× 103 1× 103 1× 103

)
P = diag

(
15000 15000 15000

) (6-4)
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Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-7. The trajectory in the orbital plane is presented in 6-8.

It can be seen from the figures that regardless of the smaller sampling period, the delayed
controller is slower, but unlike for the HCW there is no increase in overshoot. The out of
plane oscillations in the Z axis can be damped at the cost of more propellant use, but for the
scope of the first mission phase it is not required or important. Furthermore, unlike for the
HCW controllers, the trajectory of the delayed controller does not change as radically, as the
form and approach is still the same except for a larger deviation in the radial direction. The
total ∆V required by the controllers will be presented at the end, with the remainder of the
controllers.

Delayed LMPC with disturbance estimators

Next, in Figure 6-9 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-1-3 are presented. Their
trajectory in the orbital plane is shown in Figure 6-10.

The W of the disturbance estimator presented in (5-5) was set to:

W = 1× 10−3 ∗ Inx (6-5)

From the figures, it is clear that both estimators help improve the performance of the LMPC
is able to increase the speed of the delayed controller. The W matrix disturbance estimator
is, unlike for the HCW, able to provide an increase in performance and, as can be seen from
Figure 6-10 its trajectory has less deviation than that the classical disturbance estimator.
This provides insight on how the YA model is more sensitive to disturbances. Completion
time is not of importance for this mission phase, but is an important observation.

Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-11 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the two disturbance estimators presented in
Subsection 5-1-3 are presented. The same W matrix was used as for the delayed controllers.
In Figure 6-12 the orbital plane trajectory of the controllers is presented. The disturbance
estimators can be seen to have the same effect as for the normal delayed case, but the incre-
mental input is able to do decrease the deviation in the radial direction of the trajectory.
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∆V and Steady state error

As the simulation did not include a time varying mass and modelled thrusters, it is best suited
to compare required ∆V in order to not introduce more assumptions. The steady state error
was computed as the Root Mean Squared (RMS) error from the 10000 to 25000 seconds in
the simulation, with the same reasoning that was done for the HCW controllers.

The required ∆V and RMS errors for each controller are presented in Table 6-4. The results
are similar to those for the HCW controller. It is clear from the table that the delayed LMPC
reduces performance in terms of ∆V required and error regardless of its smaller sampling
time. Even though translation error is in itself not an issue for the first mission phase, LEO
orbits can be quite full, and it is important that the chaser can be controlled with accuracy.
Furthermore, it can be seen that the disturbance estimators provide a significance performance
benefit both in terms of ∆V and steady state error, with the classical disturbance estimator
providing better ∆V performance but the W disturbance estimator better performance in
terms of RMS. Furthermore, unlike for the HCW controller, it is to be noted that the
incremental input cost function and its combination with disturbance estimators does not
provide any significant improvement to the classical one. Lastly, an important observation is
that the RMS of the YA controllers is considerably larger than that of the HCW controllers,
but with a better performance in terms of ∆V . Thus even though the YA model takes
eccentricity into account and is a higher fidelity model for propagation, it does not seem to
be suited for control.

Table 6-4: Results for YA Intermediate Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
LMPC 428.17 612.52 919.95 26.60
delayed LMPC 650.14 760.49 845.46 113.58
delayed LMPC + δ est 474.74 411.51 371.02 57.07
delayed LMPC + W δ est 572.14 493.04 261.41 41.47
∆u delayed LMPC 664.34 605.19 820.63 211.84
∆u delayed LMPC + δ est 586.54 615.01 616.89 27.87
∆u delayed LMPC + W δ est 599.24 380.28 965.96 4.65

6-2-3 Xu-Wang LMPC controllers

In this subsection, the results of the Xu-Wang based LMPC formulations will be presented.
It is to be noted that with the use of the Xu-Wang prediction model, using a sampling time
of 340 seconds and a prediction horizon of, Np, 25 was possible for the delayed controllers,
but to have a fair comparison a smaller sampling period of 200 seconds combined with a
prediction horizon of Np = 43 was used just as for the HCW intermediate range controllers.
The cost matrices Q and R used for the simulations are presented below:

Q = diag
(
1× 10−6 1× 10−6 1× 10−6 1× 10−1 1× 10−1 1× 10−1

)
P = diag

(
15000 15000 15000

) (6-6)
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Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-13. The trajectory in the orbital plane is presented in 6-14.

It can be seen from the figures that the delayed controller is only slightly slower, and out of
the three prediction model it is the one where the delay has the least effect in term of response
and trajectory.

Delayed LMPC with disturbance estimators

Next, in Figure 6-15 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-1-3 are presented. Their
trajectory in the orbital plane is shown in Figure 6-16.

The W of the disturbance estimator presented in (5-5) was set to:

W = 1× 10−3 ∗ Inx (6-7)

From the figures, it is clear that the classical disturbance estimator presented in (5-4) is able
to increase the speed of the delayed controller at the expense of a larger deviation in the radial
direction X. The W matrix disturbance estimator does not seem to provide many benefits.

Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-15 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the two disturbance estimators presented in
Subsection 5-1-3 are presented. The same W matrix was used as for the delayed controllers.
In Figure 6-18 the orbital plane trajectory of the controllers is presented. The disturbance
estimators can be seen to have the same effect as for the normal delayed case, and it can be
seen that the combination of the incremental input cost function combined with the classical
disturbance estimator is able to have the smallest steady state offset.
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∆V and Steady state error

As the simulation did not include a time varying mass and modelled thrusters, it is best suited
to compare required ∆V in order to not introduce more assumptions. The steady state error
was computed as the Root Mean Squared (RMS) error from the 10000 to 25000 seconds in the
simulation, with the same reasoning that was done for the HCW and YA controllers. From
the figures, it is clear that by 10000 seconds the chaser has arrived at its first objective of 20
km behind the target. Measuring the RMS from that point gives an indication of the steady
state error after the chaser has settled and awaits to begin the second mission phase.

The required ∆V and RMS errors for each controller are presented in Table 6-5. It is clear
from the table that the delayed LMPC reduces performance in terms of ∆V required and er-
ror regardless of its smaller sampling time, although the reduction in performance is minimal
compared to the other prediction models. Even though translation error is in itself not an
issue for the first mission phase, LEO orbits can be quite full, and it is important that the
chaser can be controlled with accuracy. Furthermore, it can be seen that the classical distur-
bance estimator provides a significance performance benefit both in terms of ∆V and steady
state error while the W matrix disturbance estimator presented in [22] degrades performance
for the delayed controller and only provides an δV improvement for the incremental input
delayed controllers. Lastly, it is to be noted that while the incremental input cost function
does not provide any improvement to the classical one. However, the combination of the
incremental input cost function with the classical disturbance estimator is able to provide the
best combined performance in terms of ∆V and error even with respect to the non-delayed
quadratic cost function LMPC.

Table 6-5: Results for Xu-Wang Intermediate Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
LMPC 668.85 197.45 191.42 110.65
delayed LMPC 700.23 212.51 228.54 53.69
delayed LMPC + δ est 610.54 90.13 50.64 20.10
delayed LMPC + W δ est 704.17 323.93 144.44 51.22
∆u delayed LMPC 718.52 266.17 279.66 94.71
∆u delayed LMPC + δ est 608.56 129.63 65.62 82.80
∆u delayed LMPC + W δ est 703.73 324.54 138.23 38.23

6-2-4 Conclusion

In this section, we will compare the best controllers for each of the tree prediction models.
The best performing controllers are presented in Table 6-6. It is clear from the table that
the inclusion of a disturbance estimator has clear benefits in terms of ∆V and RMS for
the intermediate range phase. The usage of a more accurate prediction model does also
not guarantee a decrease in ∆V or steady state error. The YA controller provided the best
performance in terms ∆V but at the expense of the worst steady state error even though it
represents a more complete model than the HCW model. This is likely due to the YA STM
being computed based on the assumption that the chaser satellite is flying in free motion,
and that the external forces on chaser and target satellite are identical, which is not so under
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control. The Xu-Wang model provided the best performance in terms of steady state error,
which is to be expected as the simulation is based on its non-linear counterpart, however it
did not provide better ∆V performance than the YA and HCW controllers. This is likely due
to the controller compensating for disturbances included in the model to achieve this better
steady state error. Overall, the HCW controllers provide the best compromise in performance
between ∆V and steady state error. Considering that both the YA and Xu-Wang require
the integration of the RSV’s at every computation being LTV systems, the HCW model
provides better performance for no computational expense. Furthermore, it is clear that the
use of robust techniques improves performance for all models, as the inclusion of disturbance
estimator proved a significant difference for all prediction models as expected.

Table 6-6: Results for the Intermediate Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
HCW ∆u delayed LMPC + δ est 539.42 87.42 44.17 26.97
YA delayed LMPC + δ est 474.74 411.51 371.02 57.07
Xu-Wang delayed LMPC + δ est 610.54 90.13 50.64 20.10

The compared responses and trajectories of the three controllers are presented in Figures 6-19
and 6-20.
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6-3 Short Range INTG

In this Section the results of the controllers for the Short range phase presented in Section
5-2 will be presented. The initial conditions for this phase are presented below, with a slight
offset in each axis to represent the RMS error of the controllers in the first phase.

x(0) =
[
100 −20100 100 0 0 0

]ᵀ
(6-8)

Due to the shorter nature of this mission phase, sampling time and prediction horizon were
chosen to account for one orbital period.

6-3-1 HCW LMPC controllers

In this subsection, the results of the HCW based LMPC formulations will be presented. It
is to be noted that with the use of the HCW prediction model, using a sampling time of 200
seconds and a prediction horizon of, Np = 29 steps was not possible for the delayed controllers,
thus a smaller sampling period was chosen of 150 seconds combined with a prediction horizon
of Np = 38 was used to still have a prediction horizon of 1 orbit. The cost matrices Q and R
used for the simulations are presented below:

Table 6-7: Cost matrices for HCW Short Range Controllers

Controller Qx Qẋ Ru or R∆u
LMPC 1× 101 1× 106 1000
delayed LMPC 1× 10−1 1× 105 1000
delayed LMPC + δ est 1× 100 1× 105 1000
delayed LMPC + W δ est 1× 10−1 1× 105 1000
∆u delayed LMPC 1× 10−1 1× 105 1000
∆u delayed LMPC + δ est 1× 10−1 1× 105 1000
∆u delayed LMPC + W δ est 1× 10−1 1× 105 1000

Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-21. The trajectory in the orbital plane is presented in 6-22 and 6-23.

It can be seen from the figures that regardless of the smaller sampling period, the delayed
controller is slower and has more of an overshoot. The out of plane oscillations in the Z axis
can be damped at the cost of more propellant use, but for the scope of this mission phase it
is not required or important. Furthermore, it is clear that the delayed controller is not able
to control and keep the chaser satellite within the rectangular holding point. The total ∆V
required by the controllers will be presented at the end, with the remainder of the controllers.
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Delayed LMPC with disturbance estimators

Next, in Figure 6-24 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-1-3 are presented. Their
trajectory in the orbital plane is shown in Figure 6-25 and 6-26.

The W of the disturbance estimator presented in (5-5) was set to:

W = 1× 10−3 ∗ Inx (6-9)

From the figures, it becomes evident that the classical disturbance estimator presented in
(5-4) is able to increase the speed of the delayed controller, and is able to satisfy the terminal
holding point constraint. TheW matrix disturbance estimator does not seem to provide many
benefits except a slight increase in response time. Completion time is not of importance for
this mission phase, but is an important observation.

Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-27 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the two disturbance estimators presented in
Subsection 5-1-3 are presented. The same W matrix was used as for the delayed controllers.
In Figure 6-28 and 6-29 the orbital plane trajectory of the controllers is presented. The
disturbance estimators can be seen to have the same effect as for the normal delayed case,
meaning the use of an incremental input model and cost function by itself does not help with
satisfying the holding point constraint, but the use of the classical disturbance estimator does.
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∆V and Steady state error

As the simulation did not include a time varying mass and modelled thrusters, it is best suited
to compare required ∆V in order to not introduce more assumptions. The steady state error
was computed as the Root Mean Squared (RMS) error from the 10000 to 15000 seconds in
the simulation. From the figures, it is clear that by 10000 seconds the chaser has arrived at
its first objective of 20 km behind the target. Measuring the RMS from that point gives an
indication of the steady state error after the chaser has settled and awaits to begin the second
mission phase.

The required ∆V and RMS errors for each controller are presented in Table 6-8. It is clear
from the table that the delayed LMPC reduces performance in terms of ∆V required and
error regardless of its smaller sampling time. The reduction in performance is such that it
is not feasible for this mission phase as it is not able to keep the chaser within the desired
holding point as was explained. This was the case for all delayed controllers except the two
making use of a classical disturbance estimator. This can be seen in Table 6-8 significance
performance benefit in terms of steady state error while the W matrix disturbance estimator
presented in [22] doesn’t offer any benefit compared to the delayed LMPC. The delayed
LMPC with classical disturbance estimator is able to satisfy the holding point constraint, but
at the cost of more ∆V usage compared to the normal LMPC. Lastly, it is to be noted that
while the incremental input cost function does not provide any significant improvement to
the classical one. However, the combination of the incremental input cost function with the
classical disturbance estimator is able to provide the best performance in terms of ∆V and
error even with respect to the non-delayed quadratic cost function LMPC, requiring less ∆V
while also satisfying the holding point constraint.

Table 6-8: Results for HCW Intermediate Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
LMPC 125.58 17.32 22.30 7.11
delayed LMPC 95.95 91.60 229.78 36.26
delayed LMPC + δ est 174.45 10.96 11.13 14.99
delayed LMPC + W δ est 95.89 91.26 235.98 37.00
∆u delayed LMPC 95.46 92.27 232.03 38.06
∆u delayed LMPC + δ est 98.20 26.74 19.89 24.11
∆u delayed LMPC + W δ est 96.06 93.88 232.40 39.83

6-3-2 Yamanaka-Ankersen LMPC controllers

In this subsection, the results of the YA based LMPC formulations will be presented. It is to
be noted that with the use of the YA prediction model, using a sampling time of 200 seconds
and a prediction horizon of, Np = 28 was possible for the delayed controllers, but to have a
fair comparison a smaller sampling period of 150 seconds combined with a prediction horizon
of Np = 31 was used just as for the HCW short range controllers. The cost matrices Q and
R used for the simulations are presented below:

Master of Science Thesis Tommaso Fricano



88 Implementation and Results

Table 6-9: Cost matrices for YA Short Range Controllers

Controller Qx Qẋ Ru or R∆u
LMPC 1× 101 1× 106 1000
delayed LMPC 1× 100 1× 106 1000
delayed LMPC + δ est 1× 10−3 1× 104 1000
delayed LMPC + W δ est 1× 10−1 1× 105 10000
∆u delayed LMPC 1× 10−1 1× 105 1000
∆u delayed LMPC + W δ est 1× 10−1 1× 105 1000

Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-30. The trajectory in the orbital plane is presented in 6-31 and 6-32.

It can be seen from the figures that regardless of the smaller sampling period, the delayed
controller is slower, but unlike for the HCW there is no increase in overshoot. The out of
plane oscillations in the Z axis can be damped at the cost of more propellant use, but for the
scope of the first mission phase it is not required or important. Furthermore, unlike for the
HCW controllers, the trajectory of the delayed controller does not change as radically, as the
form and approach is still the same except for a larger deviation in the radial direction. It
is to be noted that neither the normal nor delayed controller are able to satisfy the holding
point constraint, meaning both controllers are not viable options for this mission phase.

Delayed LMPC with disturbance estimators

Next, in Figure 6-33 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-2-3 are presented. Their
trajectory in the orbital plane is shown in Figure 6-34 and 6-35. The W of the disturbance
estimator presented in (5-5) was set to:

W = 1× 10−3 ∗ Inx (6-10)

From the figures, it becomes evident that both estimators do not help improve the performance
of the delayed LMPC. None of the controllers again are able to keep the chaser inside the
holding point accurately. This follows the trend that the YA model is more sensitive and
results in more offset. It is also to be noted that the classical disturbance estimator hard to
tune and make functioning due to the controller becoming even more sensitive.
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Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-36 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the W matrix disturbance estimator pre-
sented in Subsection 5-2-3 are presented. The same W matrix was used as for the delayed
controllers. In Figures 6-37 and 6-38 the orbital plane trajectory of the controllers is pre-
sented. The classical disturbance estimator was not included as it was not able to control the
satellite and keep it close to the holding point. The disturbance estimator can be seen to not
improve performance and not satisfy the holding point constraint again. It can be concluded
that the YA model is too sensitive for application in this mission phase.

∆V and Steady state error

As the simulation did not include a time varying mass and modelled thrusters, it is best suited
to compare required ∆V in order to not introduce more assumptions. The steady state error
was computed as the Root Mean Squared (RMS) error from the 10000 to 15000 seconds in
the simulation, with the same reasoning that was done for the HCW controllers.
The required ∆V and RMS errors for each controller are presented in Table 6-10. Even
though none of the controllers using the YA model were able to satisfy the mission phase
constraints, the results are still presented. The main conclusion that we can draw is not from
the numbers, but that the YA prediction model

Table 6-10: Results for YA Short Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
LMPC 125.27 84.00 96.59 60.02
delayed LMPC 121.91 142.95 131.81 35.46
delayed LMPC + δ est 84.45 120.24 654.68 14.06
delayed LMPC + W δ est 122.13 166.81 121.99 47.92
∆u delayed LMPC 113.46 133.50 158.09 60.31
∆u delayed LMPC + W δ est 101.18 209.44 188.30 64.48

6-3-3 Xu-Wang LMPC controllers

In this subsection, the results of the Xu-Wang based LMPC formulations will be presented for
the short range phase. It is to be noted that with the use of the Xu-Wang prediction model,
using a sampling time of 200 seconds and a prediction horizon of, Np, 29 was possible for the
delayed controllers, but to have a fair comparison a smaller sampling period of 150 seconds
combined with a prediction horizon of Np = 38 was used just as for the HCW intermediate
range controllers. The cost matrices Q and R used for the simulations are presented in Table
6-11.

Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-39. The trajectory in the orbital plane is presented in Figures 6-40 and
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Table 6-11: Cost matrices for Xu-Wang Short Range Controllers

Controller Qx Qẋ Ru or R∆u
LMPC 1× 100 1× 104 15000
delayed LMPC 1× 100 1× 105 15000
delayed LMPC + δ est 1× 100 1× 105 15000
delayed LMPC + W δ est 1× 100 1× 105 15000
∆u delayed LMPC 1× 100 1× 105 15000
∆u delayed LMPC + δ est 1× 100 1× 105 15000
∆u delayed LMPC + W δ est 1× 100 1× 105 15000

6-41.

It can be seen from the figures that the delayed controller is only slightly slower, and unlike
the HCW model the delayed controller is still able to satisfy the holding point constraint. It
is also to be noted though that the delayed controller takes a much more direct trajectory to
the holding point.

Delayed LMPC with disturbance estimators

Next, in Figure 6-39 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-1-3 are presented. Their
trajectory in the orbital plane is shown in Figures 6-43 and 6-44. The W of the disturbance
estimator presented in (5-5) was set to:

W = 1× 10−3 ∗ Inx (6-11)

From the figures, it becomes evident that the classical disturbance estimator presented in (5-4)
is able to increase the speed of the delayed controller at the expense of a larger deviation
in the radial direction X. The W matrix disturbance estimator does not seem to provide
many benefits and prevents the controller from satisfying the holding point constraint. The
classical disturbance estimator is however able to follow a more direct trajectory that does
not overshoot the holding point and also satisfy the terminal constraint.

Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-45 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the two disturbance estimators presented in
Subsection 5-1-3 are presented. The same W matrix was used as for the delayed controllers.
In Figures 6-46 and 6-47 the orbital plane trajectory of the controllers is presented. Firstly,
it is clear from the figures that the incremental input cost function by itself prevents the
controller from satisfying the holding point constraint. The disturbance estimators can then
be seen to have the same effect as for the normal delayed case, and it can be seen that the
combination of the incremental input cost function combined with the classical disturbance
estimator is able to have the smallest steady state offset and satisfy the terminal constraint.
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∆V and Steady state error

As the simulation did not include a time varying mass and modelled thrusters, it is best suited
to compare required ∆V in order to not introduce more assumptions. The steady state error
was computed as the Root Mean Squared (RMS) error from the 10000 two 15000 seconds in
the simulation, with the same reasoning that was done for the HCW and YA controllers. From
the figures, it becomes evident that by 10000 seconds the chaser has arrived at a stationary
holding position. Measuring the RMS from that point gives an indication of the steady state
error after the chaser has settled and awaits to begin the second mission phase.

The required ∆V and RMS errors for each controller are presented in Table 6-12. It is clear
from the table that the delayed LMPC reduces performance in terms of error regardless of
its smaller sampling time, although ∆V required by the delayed controller is significantly
less. This is likely explained by the non-delayed controller having a lower cost on the relative
velocity components. Furthermore, it can be seen that the classical disturbance estimator does
not provide a significance performance benefit both in terms of ∆V and steady state error as
for the first mission phase. The W matrix disturbance estimator presented in [22] degrades
performance for the delayed controller and for the incremental input delayed controllers.
Lastly, it is to be noted that while the incremental input cost function does not provide any
improvement to the classical one. However, the combination of the incremental input cost
function with the classical disturbance estimator is able to provide performance improvement
in terms of steady state error even with respect to the non-delayed quadratic cost function
LMPC.

Table 6-12: Results for Xu-Wang Intermediate Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
LMPC 162.62 14.50 26.30 6.94
delayed LMPC 101.72 21.39 19.56 10.40
delayed LMPC + δ est 122.63 11.53 14.67 25.25
delayed LMPC + W δ est 121.77 31.59 75.51 18.87
∆u delayed LMPC 123.86 37.45 79.98 5.89
∆u delayed LMPC + δ est 125.27 12.69 14.87 25.33
∆u delayed LMPC + W δ est 123.95 36.23 77.42 8.80

6-3-4 Conclusion

In this section, we will compare the best controllers for each of the tree prediction models.
The best performing controllers are presented in Table 6-13. The YA controllers are left out,
as by not being able to satisfy the holding point constraint, they are not feasible controllers.
This is likely due to the YA STM being computed based on the assumption that the chaser
satellite is flying in free motion, and that the external forces on chaser and target satellite
are identical, which is not so under control. x It is clear from the table that the inclusion of a
disturbance estimator has clear benefits in terms of ∆V and RMS for the short range phase
too. The usage of a more accurate prediction model does also not guarantee a decrease in
∆V or steady state error. The HCW controller provided the best performance in terms ∆V
but at the expense of steady state error compared to the Xu-Wang controller. The Xu-Wang
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model provided the best performance in terms of steady state error, which is to be expected
as the simulation is based on its non-linear counterpart, however it did not provide better ∆V
performance than the HCW controllers. This is likely due to the controller compensating for
disturbances included in the model to achieve this better steady state error, which can be seen
in Figures 6-79 and 6-80 with the trajectory of the Xu-Wang controller being more direct.
Overall, the HCW controllers provide the best compromise in performance between ∆V and
steady state error. Considering that the Xu-Wang model requires the integration of the RSV’s
at every computation being LTV systems, the HCW model provides better performance for
no computational expense. Furthermore, it is also evident that constraint tightening through
robust methods by itself did not guarantee constraint satisfaction but through the modelling
of the disturbance in the prediction model performance was improved and the holding point
was satisfied.

Table 6-13: Results for the Intermediate Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
HCW ∆u delayed LMPC + δ est 98.20 26.74 19.89 24.11
XU delayed LMPC + δ est 122.63 11.53 14.67 25.25

The compared responses and trajectories of the three controllers are presented in Figures
6-78, 6-79 and 6-80
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6-4 Terminal to Capture Phase

In this Section the results of the controllers for the Short range phase presented in Section
5-3 will be presented.
The initial conditions for this phase are presented below, with a slight offset in each axis to
represent the RMS error of the controllers in the first phase.

x(0) =
[
15 −115 20 0 0 0

]ᵀ
(6-12)

Due to the shorter nature of this mission phase, sampling time and prediction horizon were
chosen to account for the satellite to reach the target. This resulted in a sampling time of
3 seconds and a prediction horizon of, Np, 25 steps. The simulation shown is for a target
satellite rotating at 1 deg/s around the Z axis of the LVLH frame.
The state vector is enlarged for this mission phase to include the docking port location and
the relative distance to the docking port, as explained in Section 5-3. The resulting state
vector is:

~x(k) =
[
x(k) y(k) z(k) vx(k) vy(k) vz(k) rx(k) ry(k) rz(k) . . .
σx(k) σy(k) σz(k)

]ᵀ
(6-13)

6-4-1 HCW LMPC controllers

In this subsection, the results of the HCW based LMPC formulations will be presented. The
cost matrices Q and R used for the simulations are presented in Table 6-14

Table 6-14: Cost matrices for HCW Terminal to Capture Controllers

Controller Qx Qẋ Qr Qσ Ru or R∆u
LMPC 0 1× 102 0 1× 101 500
delayed LMPC 0 1× 102 0 1× 101 500
delayed LMPC + δ est 0 1× 100 0 1× 100 500
delayed LMPC + W δ est 0 1× 102 0 1× 101 500
∆u delayed LMPC 0 1× 101 0 1× 100 500
∆u delayed LMPC + δ est 0 1× 101 0 1× 100 500
∆u delayed LMPC + W δ est 0 1× 101 0 1× 100 500

Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-51. The trajectory in the orbital plane is presented in 6-52 and 6-53.
It can be seen from the figures that the delayed controller is slightly slower. Furthermore, it
is clear that the delayed controller requires longer to accomplish docking. Although it follows
a similar trajectory to the normal controller, the delayed controller follows the docking port
for a few samples before making contact. From the approach, it is also visible how the chaser
makes sure to stay within the LOS constraints.
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Delayed LMPC with disturbance estimators

Next, in Figure 6-54 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-3-3 are presented. Their
trajectory in the orbital plane is shown in Figure 6-55 and 6-56.

The W of the disturbance estimator presented in (5-5) was set to:

W = 1× 10−5 ∗ Inx (6-14)

From the figures, it becomes evident that the classical disturbance estimator presented in (5-4)
results in a more damped approach and directly approaches the docking port without any
loop. The W matrix disturbance estimator on the other hand maintains a similar approach,
but creates slightly more overshoot. Both disturbance estimators increase the completion
time of the docking manoeuvre.

Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-57 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the two disturbance estimators presented in
Subsection 5-3-3 are presented. The same W matrix was used as for the delayed controllers.
In Figure 6-28 and 6-59 the orbital plane trajectory of the controllers is presented. The
disturbance estimators can be seen to have the same effect as for the normal delayed case in
terms of trajectory and completion time. The ∆V performance will be evaluated in the next
subsection.
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∆V and Steady state error

As the simulation did not include a time varying mass and modelled thrusters, it is best suited
to compare required ∆V in order to not introduce more assumptions. Due to the nature of
the terminal to capture phase, there is no steady state offset to evaluate. The distance from
the centre of the docking port and the point of contact will be evaluated instead.
The required ∆V and docking errors for each controller are presented in Table 6-15. It is clear
from the table that the delayed LMPC reduces performance in terms of error and slightly in
terms of ∆V . Regardless of the greater error, the delayed controller is able to dock within
the 20 by 20 cm docking port. The inclusion of a disturbance estimator to the delayed MPC
was able to improve the required ∆V . However, only the classic disturbance estimator seems
to improve the docking error, resulting in a smaller docking error than the non-delayed MPC.
The W matrix disturbance estimator presented in [22] doesn’t offer any benefit compared to
the delayed LMPC in terms of docking error and actually increases the docking error. Lastly,
it is to be noted that the incremental input cost function is able to decreases the docking
error but marginally and it does not provide any benefits in terms of ∆V . Adding disturbance
estimators to the incremental input cost function controllers results in worse performance than
the delayed controller with disturbance estimators

Table 6-15: Results for HCW Terminal to capture controllers

Controller ∆V [m/s] Docking error x [cm] Docking error y [cm] Docking error z [cm]
LMPC 23.01 8.26 7.39 0.55
delayed LMPC 23.14 8.24 16.26 0.40
delayed LMPC + δ est 20.19 0.82 1.44 2.80
delayed LMPC + W δ est 20.40 13.56 13.96 0.35
∆u delayed LMPC 23.05 5.76 15.66 0.66
∆u delayed LMPC + δ est 29.55 0.33 5.16 1.06
∆u delayed LMPC + W δ est 21.99 4.21 22.60 1.63

6-4-2 Yamanaka-Ankersen LMPC controllers

In this subsection, the results of the YA based LMPC formulations will be presented. It is to
be noted that with the use of the YA prediction model, using a sampling time of 3 seconds
was not possible for the YA controllers due to their larger error, a smaller sampling period
of 2 seconds combined with a prediction horizon of Np = 38 was used to still have the same
prediction horizon as for the HCW terminal to capture phase controllers. The cost matrices
Q and R used for the simulations are presented in Table 6-16.

Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-60. The trajectory in the orbital plane is presented in 6-61 and 6-62.
It can be seen from the figures that the delayed controller is slower, but unlike for the HCW
there is no increase in overshoot. Even though the delayed controller has a slightly slower
response, it is able to dock more precisely, as seen in Figure 6-62.
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Table 6-16: Cost matrices for YA Terminal to Capture Controllers

Controller Qx Qẋ Qr Qσ Ru or R∆u
LMPC 0 2× 101 0 1× 10−1 500
delayed LMPC 0 2× 101 0 1× 10−1 500
delayed LMPC + δ est 0 2× 101 0 1× 10−1 500
delayed LMPC + W δ est 0 2× 101 0 2× 10−1 500
∆u delayed LMPC 0 2× 101 0 1× 10−1 500
∆u delayed LMPC + δ est 0 2× 101 0 1× 100 500
∆u delayed LMPC + W δ est 0 2× 101 0 1× 10−1 500

Delayed LMPC with disturbance estimators

Next, in Figure 6-63 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-3-3 are presented. Their
trajectory in the orbital plane is shown in Figure 6-64 and 6-65. The W of the disturbance
estimator presented in (5-5) was set to:

W = 1× 10−3 ∗ Inx (6-15)

From the figures, it is unclear clear whether the estimators help improve the performance
of the delayed LMPC. The responses are very similar, so the ∆V and docking error will be
compared later in this section.

Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-66 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the W matrix disturbance estimator pre-
sented in Subsection 5-3-3 are presented. The same W matrix was used as for the delayed
controllers. In Figures 6-67 and 6-68 the orbital plane trajectory of the controllers is pre-
sented. From the figures, it can be seen that the disturbance estimators do not provide an
improvement to the delayed controller with incremental input cost function. The classical
disturbance estimator is able to dock with more delicacy, but at the cost of a significantly
longer time to docking.
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∆V and Steady state error

As the simulation did not include a time varying mass and modelled thrusters, it is best suited
to compare required ∆V in order to not introduce more assumptions. Due to the nature of
the terminal to capture phase, there is no steady state offset to evaluate. The distance from
the centre of the docking port and the point of contact will be evaluated instead, as was done
for the HCW controllers.

The required ∆V and RMS errors for each controller are presented in Table 6-17. Firstly, it
can be seen that the delayed controller has a significantly lower docking error than the normal
case. This is likely due to tuning, as they ∆V are very similar, and the normal controller
should be more accurate. ext, it is clear that the use of a classic disturbance estimator
improves docking accuracy, while the W matrix disturbance estimator presented in [22] does
not. The use of an incremental input cost function also improves the docking accuracy with
respect to the normal delayed case, but the addition of a disturbance estimator to it does not
improve docking accuracy. It is interesting to see how in this case with the smaller relative
distances the YA model is able to fulfil the constraints and dock with great accuracy. This
is likely due to propagation error decreasing with the shorter relative distances between, but
this is also a result of the smaller sampling time.

Table 6-17: Results for YA Terminal to capture phase controllers

Controller ∆V [m/s] Docking error x [cm] Docking error y [cm] Docking error z [cm]
LMPC 9.76 12.03 11.43 3.64
delayed LMPC 9.74 1.16 4.73 6.90
delayed LMPC + δ est 9.81 0.82 0.70 4.85
delayed LMPC + W δ est 9.75 1.95 5.70 4.37
∆u delayed LMPC 9.85 0.00 1.50 4.50
∆u delayed LMPC + δ est 17.84 0.75 5.32 3.91
∆u delayed LMPC + W δ est 9.84 4.35 8.90 17.76

6-4-3 Xu-Wang LMPC controllers

In this subsection, the results of the Xu-Wang based LMPC formulations will be presented
for the Terminal to Capture phase. The same sampling time of 3 seconds and prediction
horizon, Np, of 25 steps was used just as for the HCW terminal to capture phase controllers.
The cost matrices Q and R used for the simulations are presented in Table 6-18.

Normal vs Delayed LMPC

Firstly, the trajectory and commanded input of the normal LMPC vs the delayed LMPC are
presented in Figure 6-69. The trajectory in the orbital plane is presented in Figures 6-70 and
6-71.

It can be seen from the figures that the delayed controller is only slightly slower, and the
delayed controller is still able to dock while satisfying the constraints. It can however be seen
that the docking takes longer time to complete in the delayed case.
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Table 6-18: Cost matrices for Xu-Wang Terminal to Capture Controllers

Controller Qx Qẋ Qr Qσ Ru or R∆u
LMPC 0 1× 101 0 5× 100 500
delayed LMPC 0 1× 101 0 4× 100 500
delayed LMPC + δ est 0 1× 101 0 2× 100 500
delayed LMPC + W δ est 0 1× 101 0 5× 100 500
∆u delayed LMPC 0 1× 102 0 2× 100 500
∆u delayed LMPC + δ est 0 2× 101 0 8× 10−1 500
∆u delayed LMPC + W δ est 0 1× 101 0 3× 100 500

Delayed LMPC with disturbance estimators

Next, in Figure 6-69 the trajectory and commanded input of the delayed LMPC vs the delayed
LMPC with the two disturbance estimators presented in Subsection 5-1-3 are presented. Their
trajectory in the orbital plane is shown in Figures 6-43 and 6-74.

The W of the disturbance estimator presented in (5-5) was set to:

W = 1× 10−5∗Inx(6-16)

From the figures, it is clear that the classical disturbance estimator presented in (5-4) is able
to decrease the required time for docking. The W matrix disturbance estimator also does the
same, but not to the same extent.

Incremental Input Delayed LMPC with disturbance estimators

Finally, in Figure 6-75 the trajectory and commanded input of the incremental input delayed
LMPC vs incremental input delayed LMPC with the two disturbance estimators presented in
Subsection 5-1-3 are presented. The sameW matrix was used as for the delayed controllers. In
Figures 6-46 and 6-47 the orbital plane trajectory of the controllers is presented. Firstly, it is
clear from the figures that the use of an incremental input cost function results in a smoother
trajectory. The chaser directly approaches the target without any loop as the seen for the
other cases. Adding the classical disturbance estimator is able to improve the trajectory and
have a more direct approach. TheW matrix disturbance estimator has the opposite effect and
again results in a trajectory with a small loop before docking. Both disturbance estimators
increase the time for docking, but for a more accurate docking.
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∆V and Steady state error

As for the YA and HCW controllers, the performance was evaluated based on required ∆V
and docking error. The results of the various controllers are presented in 6-19. From the table,
it can be seen how the delayed controller is not able to provide the same docking accuracy
as the nominal case as expected. The inclusion of a disturbance estimator is however able to
improve the docking accuracy, but there is no significant improvement in required ∆V .

The use of an incremental input cost function is able to provide an improvement in required
∆V but with no improvement in docking accuracy. The combination of incremental input
cost function and the classical disturbance estimator is able to provide an improvement in
both required ∆V and docking error. The combination of incremental input cost function
and W matrix disturbance estimator does not provide any benefits, but actually decreases
the performance of the controller.

Table 6-19: Results for XU Terminal to capture phase controllers

Controller ∆V [m/s] Docking error x [cm] Docking error y [cm] Docking error z [cm]
LMPC 23.68 4.83 13.12 0.68
delayed LMPC 23.76 6.95 18.58 1.35
delayed LMPC + δ est 21.61 8.35 12.15 0.70
delayed LMPC + W δ est 23.74 13.47 14.44 0.09
∆u delayed LMPC 19.61 11.27 19.37 0.17
∆u delayed LMPC + δ est 20.44 1.88 3.76 1.33
∆u delayed LMPC + W δ est 26.72 1.44 25.3 5.25

6-4-4 Conclusion

In this section, we will compare the best controllers for each of the three prediction models.
The best performing controllers are presented in Table 6-20. It is to be noted that for
the docking phase, the YA controllers were able to satisfy the constraints and dock safely.
Regardless of the fact that the YA STM being computed based on the assumption that the
chaser satellite is flying in free motion, and that the external forces on chaser and target
satellite are identical, which is not so under control. This is likely due to the smaller relative
distance between chaser and target combined with the smaller sampling time, decreasing the
effects of model error.

It is clear from the table that the inclusion of a disturbance estimator has clear benefits in
terms of ∆V and docking error for the terminal to capture phase too, again proving that
the use of robust methods has clear benefits. The usage of a more accurate prediction model
does also not guarantee a decrease in ∆V or docking error. The YA controller provided the
best performance in terms ∆V and docking error. The HCW controller provided similar
performance in terms of docking error but requiring double the ∆V compared to the YA
controller. The Xu-Wang model provided similar performance to the HCW controller, but
marginally worse. This is surprising considering that the simulation makes used of the non-
linear version of the Xu-Wang model. This is likely due to the controller compensating for
disturbances included in the model to achieve this better steady state error, which can be seen
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in Figures 6-79 and 6-80 with the trajectory of the Xu-Wang controller being more direct.
Overall, the HCW controllers provide the best compromise in performance between ∆V and
steady state error. Considering that the Xu-Wang model requires the integration of the RSV’s
at every computation being LTV systems, the HCW model provides better performance for
no computational expense.

Table 6-20: Results for the Intermediate Range controllers

Controller ∆V [m/s] RMS error x [m] RMS error y [m] RMS error z [m]
HCW delayed LMPC + δ est 20.19 0.82 1.44 2.80
YA delayed LMPC + δ est 9.81 0.82 0.70 4.85
XU ∆u delayed LMPC + δ est 20.44 1.88 3.76 1.33

The compared responses and trajectories of the three controllers are presented in Figures
6-78, 6-79 and 6-80
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Chapter 7

Conclusion, Discussion, and
Recommendations

Having presented the methodological approach and the obtained results, conclusions can be
drawn and evaluated to determined the validity of this research. In this Chapter the work
reported and presented in this thesis will be reviewed. Firstly, the conclusion to the research
question will be presented, followed by a discussion on the validity and representations of
the results. Finally. recommendations for future research will be discussed at the end of the
chapter.

7-1 Conclusion

The main objective of this research was to determine the most suitable Model Predictive
Control (MPC) strategy for Rendezvous and Docking (RVD) of a chaser spacecraft to an
uncooperative target spacecraft from various proven strategies. This objective was split into
several sub-objectives, from which research questions were formulated. By answering these
research questions, the primary objective can then be fulfilled. From the objectives explained
above, it became possible to elaborate research questions that provide the scope of this thesis.

Main Research Question

What type of model predictive control strategy is best suited for real-time application in the
complete rendezvous and docking problem, to minimize propellant use while maintaining ad-
equate completion time?
The sub-research questions and their respective answers are presented below:

1. What type of relative orbital dynamics model allows for the best description of the target
and chaser spacecraft in orbit as to minimize propellant consumption and completion
time?
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Extensive research hjas been done in the development of relative orbital dynamics mod-
els of satellites. There are too many to compare them all within the constraints of
this thesis, but three models with flight heritage and of large interests in the future
have been examined. The Clohessy Wiltshire (HCW), Yamanaka-Ankersen (YA) and
Xu-Wang (XU) models were presented in Section 3-1-3. The HCW and YA model are
described by a six-state differential equation representing the relative position and ve-
locity, while the XU is described by a 11 state differential equation as it includes the
five Reference Satellite Variables (RSV). Besides the choice of relative orbital dynamics,
two disturbance estimators were evaluated for all three mission phases.

For the Intermediate Range phase, the HCW model proved to provide the best com-
bination of Root Mean Squared (RMS) error, required ∆V and completion time. The
YA model was able to provide the lowest propellant consumption but at the cost of
significantly larger errors, so it was not deemed a feasible option. The XU controller
provided similar performance in terms of RMS error to the HCW model, but at the cost
of increased required ∆V . For all three models, the inclusion of a classical disturbance
estimator provided significant improvement in required ∆V and RMS error. The W
matrix disturbance estimator only provided benefit for the YA model but still not to
the same extent as the classical disturbance estimator, The use of a more complete and
accurate model did not provide any significant benefits compared to the standard HCW
model, but the inclusion of disturbances in the model improved required ∆V and RMS
error.

For the close range phase, the same trend was seen. The XU model provided the
best performance in terms of error but at the cost of an increased required ∆V , The
YA model error while in closed loop control was too high to fulfil the mission phase
constraints and objectives, resulting in it not being a viable option. The HCW model
required the least ∆V but had a slightly higher RMS error than the XU model, while
satisfying the mission phase constraints and objectives. The inclusion of disturbance in
the prediction model had the same effect as for the intermediate range. Consequently,
even for the intermediate range phase, the use of a more complete and accurate model
did not provide any significant benefits compared to the standard HCW model, but the
inclusion of disturbances in the model improved required ∆V and RMS error.

For the terminal to capture phase, the relative distance to the docking port is of im-
portance, and thus the three relative dynamics models are expanded by six states to
include the target satellite docking port position and relative position to the chasers
docking port. The findings for the terminal capture phase were quite different. The
YA model required the least amount of ∆V for docking while providing similar docking
error of the HCW and XU model. As for the first two mission phases, the inclusion of
the classical disturbance estimator improved required ∆V and docking error, but this
did not count for the W matrix disturbance estimator as it only provided benefit for
the YA model. The use of a more accurate model was thus able to provide significant
benefits, half the required ∆V to be compared to the HCW model, and the inclusion of
disturbances in the model improved required ∆V and RMS error.

Overall, the use of a more accurate and complete model does not appear to provide
significant benefits in terms of propellant consumption and completion time, with re-
spect to the HCW model. This contradicts the findings presented in [53], as the chosen
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reference orbit was nearly circular as meaning the benefits of modelling eccentricity are
diminished. Even though the YA model required half the ∆V for the terminal to cap-
ture phase, the terminal to capture phase accounts for less than 2% of the total mission
∆V . Even if the chaser is inserted relatively close to the target and the intermediate
range phase is not needed, the difference would be 10% between HCW and YA model,
while the XU model always requires more ∆V . The models do not differ significantly
in completion times either, thus the added benefit of a more complete model is minimal
or actually negative in terms of the XU model. The inclusion of disturbances in the
model improved the required ∆V , RMS error and docking error for all three phases
when using the classical disturbance estimator.

2. How can (LP, Time-Varying, Non-Linear, Stochastic and Robust) an MPC algorithm
be constructed to carry out rendezvous and docking mission with an uncooperative (still,
rotating or tumbling) target?
The MPC relies on a predictor model, which will be a model to predict the relative
dynamics up to a certain defined horizon. The relative dynamics models which are used
in discretized version for predictors are the HCW, YA and XU model. The predictors
are augmented for the terminal to capture phase to include the target’s docking port
position and the relative position between the two docking ports. The prediction horizon
is equal to the required time to complete each mission phase objectives. The predictor
is then able to capture the future behaviour of chaser, target, and docking port based
on the dynamics by also including the future control inputs. The number of control
inputs for this problem is small and constant, thus the increased computational effort
of including the inputs in the full prediction horizon is small.
The simulation models the thruster input to be continuous, thus there is no need for a
Hybrid formulation. Hard constraints are set on the maximum and minimum accelera-
tion or ∆V depending on the model. This is because a satellite will be thrust limited
and consequently acceleration or ∆V limited. However, the constraints are formulated
as such, including a duty cycle in the limit as to represent the thrusters only being able
to be used 1/

√
2 per sample period for the first two mission phases due to their large

sampling periods.
The cost functions are the standard quadratic cost function with terminal cost and the
same but for incremental input penalty instead of the input. These have been tested and
proven to be effective in previous literature. The 1 norm cost function is not suitable
as it is very sensitive to noise and state error and has been shown to result in higher
required ∆V . The penalties are applied to the relative position, velocity, and input. For
the terminal stage, the penalty is on the relative docking port position instead of the
relative position. A squared sum penalty will thus incur for any required acceleration
or ∆V and if the relative position and velocity deviate from the reference.
The intermediate range, imposes terminal linear hard constraints on the position of the
satellite to be within a certain range of the target. The short range phase similarly
imposes a linear hard constraint on the position of the chaser satellite in order for it to
remain within a holding point until the go ahead is given for the next mission phase.
Finally, the terminal to capture phase imposes running linear hard constraints on the
position of the chaser for it to remain within the Line-of-Sight (LOS) of the target and
outside a keep out zone as to prevent a collision. All three prediction models are linear
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and linear constraints are present for all three mission phases. The optimization problem
within the optimizer of the MPC algorithm is classified as a Quadratic Programming
(QP) problem. The Appropriate formulations are LMPC, delayed LMPC and Robust
LMPC.
From the simulations, it becomes evident that the majority of the MPC formulations
are able to control the chaser satellite to fulfil the various objectives of each mission
phase. The first mission phase was controlled using a sampling period of 200 s and
prediction horizon of Np = 43 steps to have a prediction horizon of 1.5 orbits. The
second using, 150 s and a prediction horizon of Np = 38 steps to have a prediction
horizon of 1 orbit. Finally, the final phase with 3 s and a prediction horizon Np = 25
to have a prediction horizon large enough to include the whole docking manoeuvre.
The YA MPC formulations failed to complete the mission objectives for the short range
phase. The Robust formulations including a disturbance in their predictor provided the
best performance for all prediction models and mission phases.

7-2 Discussion and recommendations

The work presented in this thesis and the conclusions drawn are all related to the methodology
and assumptions made throughout. The interpretation and relevance of this work has to be
discussed, which will be done in this section, including recommendations for future work to
achieve a better understanding for future research.

7-2-1 Relative Orbital Dynamics, Simulation and Satellite Models

The relative orbital dynamics models presented and evaluated in this paper are well docu-
mented, and previous research has been undertaken to compare their relative performance.
Three models were chosen to compare under closed loop form use for Model Predictive Con-
trol (MPC), from the simplest to an example of a more advanced relative dynamics model,
but many more are present which have not been compared for this use. The input to these
models is either acceleration or ∆V and not the actual thrust required by the thrusters on the
chaser. From a practical point of view, thrust results in acceleration, but thrusters usually
are not throttleable and if so usually not from 0% to 100%. For the purpose of comparing
multiple models, it was not deemed necessary to model binary thrusters and a continuous
input was used, which could be achieved through differential thrust.

Next, the models used and evaluated only represent translational dynamics. The assumption
is made that the attitude of the satellite will be controlled through the ADCS system of
the satellite, as the scope of this research was to compare relative dynamics models. This is
possible, but in reality, reaction wheels and magnetometers are slow actuators and are not
optimal for the terminal and docking stage. Missions often use multiple thrusters in a certain
orientation, in order to control the translational and kinematic dynamics together, but the
design of an optimal configuration for this theoretical mission was deemed unnecessary and
outside the scope of this thesis.

Based on the limitations mentioned above, a recommendation would be to expand the compar-
ison to more relative dynamics models at least for the firs two mission phases as to have more
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data points to make a stronger conclusion. Furthermore, the modelling of binary thrusters
should be evaluated in order to verify that the same tendencies determined by this research
hold. Next to the thrusters, a recommendation would be to augment the models to also
include the kinematics of the chaser, in order to allow the thrusters to control the translation
and kinematic dynamics of the chaser satellite. Then one could also evaluate the effect of a
more precise kinematic prediction model compared to a simpler one and if the results from
this research change at all.

7-2-2 Simulation and Model based-predictive control Strategy

This research combined the models and simulation into a framework to evaluate different
model-based predictive control strategies for optimizing propellant consumption during Ren-
dezvous and Docking (RVD). However, certain assumptions limit the application of the
framework for certain situations. The models used, as well as the control strategy, relied on
variables which were assumed to be measured as mentioned above. The simulation used for
this research also did not include the kinematics of the chaser and target satellite, as it was as-
sumed that the target would be rotating with a constant velocity and as the controller did not
control the attitude of the chaser there was no need for it. Furthermore, the simulation used
for the research comprised of the Non-Linear (NL) Xu-Wang (XU) relative dynamics model.
This model is exact for eccentric orbits under J2 perturbation, however does not include other
perturbations such as drag or the other J terms. In practice, however, the target and chaser
will be undergoing different forces of drag, solar radiation and other disturbances which have
now been added as random disturbances to the simulation. The simulation also does not take
into account eclipses, as it was deemed that the docking could be carried out fast enough for
the lack of light not to be a problem. Rendezvous and Docking (RVD) satellites make use of
cameras, radar, and GPS to determine its position and attitude with respect to the target.
These aspects were not included in the simulation as such a simulation was not readily avail-
able and the scope of this research was not for application but theoretical comparison. This
was replaced by navigation uncertainties being added to the measured variables so as not to
have a perfect simulation, however an inaccurate estimation of these values could severely
affect the control performance.

Based on the limitations of the simulation mentioned above, a recommendation would be
to expand the simulation in order to have more accurate results and provide a platform to
evaluate RVD strategies for real time application. Ideally, one would simulate two independent
satellites in orbit and their kinematics, including all relevant disturbances. The simulation
should then also simulate varying mass, attitude sensors, camera, radar, and GPS signals
from which the chaser can estimate its relative position and attitude. This would constitute
almost a complete mission simulation, from which more accurate comparisons can be carried
out to develop the optimal control solution for RVD, and not just translational dynamics
control. This would allow one to simulate a whole mission as well as evaluate failure scenarios
such as contact with the target altering its state or a failed docking resulting in having to
wait through an eclipse till the next opportunity.
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Glossary

List of Acronyms

MPC Model Predictive Control
ISS International Space Station
HCW Clohessy Wiltshire
LTV Linear Time Variant
LTI Linear Time Invariant
NL Non-Linear
ECI Earth-centred Inertial
LVLH Local-Vertical, Local-Horizontal
RAAN Right Ascension of the Ascending Node
EOM Equations of Motion
LEO Low Earth Orbit
RSV Reference Satellite Variables
STM State Transition Matrix
ROE Relative Orbital Elements
GVE Gauss’s Variational Equations
ESA European Space Agency
PID Proportional Integral Derivative
DP Dynamic Programming
CT Continuous-Time
QP Quadratic Programming
LMPC Linear MPC
LIDAR Light Detection and Ranging
GPS Global Positioning System
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166 Glossary

ORCSAT On-line Reconfiguration Control System and Avionics Techniques
LOS Line-of-Sight
MIB Minimum Impulse Bit
QP Quadratic Programming
RVD Rendezvous and Docking
NASA National Aeronautics and Space Administration
DEOS Deutsche Orbitale Servicing
LM Lunar Module
YA Yamanaka-Ankersen
CSM Command Service Module
IMU Internal Measurement Unit
ATV Automated Transfer Vehicle
EOL End-of-Life
LEO Low Earth Orbit
GEO Geosynchronous Earth Orbit
IADC Inter-Agency Space Debris Coordination Committee
PMD Post Mission Disposal
ADR Active Debris Removal
VESPA Vega Secondary Payload Adapter
LCvx Lossless convexification
ORCSAT On-line Reconfiguration Control System and Avionics Techniques
RMS Root Mean Squared
XU Xu-Wang

List of Symbols

n Mean Motion

B Body-centered Rotating Frame
B Body-fixed Frame
I Earth-Centered Inertial
R Earth-Centered Rotating
chs Chaser Satellite
tgt Target Satellite

F Frame of reference

n
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