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“Just like a single cell, the character of our lives is determined not by our genes, 

but by our responses to the environmental signals that propel life.” 

 

 Bruce H. Lipton in 

 The biology of belief: Unleashing the power of consciousness, matter and miracles. 
Mountain of Love/Elite Books (2005). 



 
 

 
 



 
 

 
 

Preface 

 

This was how it all began. A very important e-mail, a very important day, which was the start 

of an unforgettable journey.  

My decision to pursue a PhD in Biotechnology was mainly driven by some very passionate 

people in the field, whom I had the luck to meet and work with, at the Bioenergy Group of 

Prof. Angelidaki, at the Technical University of Denmark, for the purpose of my Diploma 

thesis. My supervisors (whom I personally thank in the Acknowledgements section) showed 

me the irresistible side of scientific research and motivated my career choices.   

September 1st, 2015 was the first day I walked into the Department of Biotechnology in TU 

Delft, our old but beloved building, of major historical significance in the world of 

microbiology. A day of too many thoughts and feelings: Was that the right choice? Am I ever 

going to be a “Doctor”? How can it be so cold and rainy in the first day of September?! 

4.5 years later, I definitely know the answer to my first two questions. The last one will 

probably require many more years of research to be answered, surely not by me. 

My research was characterized by both successes and failures, moments of pride and 

moments of disappointment, challenges, self-development, friendships and collaborations, 

all worth it. This PhD thesis is a tiny piece of the puzzle of understanding bacterial metabolism. 

I am optimistic that it will provide new knowledge to the readers, form critical opinions, 

inspire and engage more people to get involved with scientific research. If none of these 

happens, I at least hope that you will enjoy the reading! 

Eleni Vasilakou 

Delft, May 2020



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

 
 

Days in the lab 

 

 

 
Figure 1. My beloved reactor, with 

which I spent 4 full years (days and 

nights). This is the setup needed to 

grow bacterial cells (yes they are 

inside the yellow broth!). 

 

 

 
Figure 2. Science is often full of 

surprises. This is what happens 

after forgetting an LB media for 

many days in the fridge. 

Microorganisms created their 

own art. 
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Abbreviations 

2PG 2-phosphoglycerate Lys Lysine 

3PG 3-phosphoglycerate M1P Mannitol-1-phosphate 

6PG 6-phosphogluconate M6P Mannose-6-phosphate 

ADP Adenosine diphosphate Mal Malate 

AEC Adenylate energy charge Meth Methionine 

AIC Akaike information criterion MOMA Minimization of metabolic adjustment 

aKG Alpha-ketoglutarate mRNA Messenger ribonucleic acid 

Ala Alanine MS Mass spectrometry 

AMP Adenosine monophosphate NMR Nuclear magnetic resonance 

Asn Asparagine ODE Ordinary differential equation 

Asp Aspartate PEP Phosphoenolpyruvate 

ATP Adenosine triphosphate pfk Phosphofructokinase 

BPG Bisphosphoglyceric acid PFR Plug flow reactor 

BWF Block-wise feeding pgi Phosphoglucoisomerase 

cAMP Cyclic adenosine monophosphate pgk Phosphoglycerate kinase 

CCR Carbon catabolite repression Phe Phenylalanine 

CDW Cell dry weight ppk Polyphosphate kinase 

Cit Citrate PPP Pentose phosphate pathway 

Cys Cysteine Pro Proline 

DHAP Dihydroacetonephosphate PTS Phosphotransferase system 

DNA Deoxyribonucleic acid PWA Piecewise affine 

DO Dissolved oxygen pyk Pyruvate kinase 

E4P Erythrose-4-phosphate RCF Reference constant feeding 

eno Enolase Rib5P Ribose-5-phosphate 

F6P Fructose-6-phosphate rRNA Ribosomal ribonucleic acid 

FBA Flux balance analysis S7P Sedoheptulose-7-phosphate 

fba Fructose biphosphate aldolase SEM Scanning electron microscopy 

FBP Fructobiphosphate Ser Serine 

Fum Fumarate SRE Stimulus response experiment 

G1P Glucose-1-phosphate STR Stirred tank reactor 

G6P Glucose-6-phosphate Suc Succinate 

GAP Glyceraldehydephosphate T6P Trehalose-6-phosphate  

gap Glyceraldehyde 3-phosphate TCA Tricarboxylic acid 

GC Gas chromatography Thr Threonine 

GDP Guanosine diphosphate tmRNA Transfer-messenger ribonucleic acid 

Gln Glutamine TOC Total organic carbon 

Glu Glutamate tpi Triosephosphate isomerase 

Gly Glycine Tre Trehalose 

GTP Guanosine triphosphate tRNA Transfer ribonucleic acid 

His Histidine Trp Tryptophan 

iCit Isocitrate Tyr Tyrosine 

IDMS Isotope dilution mass spectrometry UDP Uridine diphosphate 

Ile Isoleucine UTP Uridine triphosphate 

LC Liquid chromatography Val Valine 

Leu Leucine Xyl5P Xylose-5-phosphate 
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Summary 

Dynamic environmental conditions govern microbial metabolism and affect cellular growth. 

Many applications in biotechnology require cultivating microorganisms in large-scale 

bioreactors. These environments are commonly characterized by physicochemical gradients, 

due to imperfect mixing and have been the cause of reduced performance of cell factories in 

industry. Changes in substrate and gas concentrations, pH and temperature are some 

example of the generated gradients.  

The aim of this thesis is to unravel and understand the effects of repetitive substrate 

fluctuations on the cellular behaviour of Escherichia coli K12 MG1655, using experimental and 

modelling approaches. 

Chapter 1 is a general introduction to biotechnology and its applications, with a focus on 

upstream bioprocesses. In addition, the role of the bacterium Escherichia coli as a model 

organism, as well as a working horse of biotechnology, is discussed. 

In Chapter 2, the quantitative experimental and kinetic modelling approaches, currently used 

for studying microbial metabolism under dynamic conditions, are summarized and discussed. 

Current challenges and future perspectives finalize this chapter.  

In the experimental Chapter 3, a block-wise feeding regime was applied to an aerobic E.coli 

culture, with the aim to grow cells under substrate (glucose) gradients, following a reference 

chemostat (steady-state) growth. This regime was called “fast feast-famine”, as cells 

experienced periods of substrate excess, limitation and depletion in a time-scale of seconds. 

The regime was characterized by repetitive cycles of 20 s feeding and 380 s without feeding. 

The perturbations were applied for at least 8 generations, allowing the cells to adapt to the 

dynamic environment (highly reproducible cellular response). The specific substrate and 

oxygen consumption (average) rates increased during the feast-famine regime, compared to 

the reference steady-state cultivation. The increased rates at same (average) growth rate led 

to a reduced biomass yield (30% lower), while there was no significant by-product formation. 

Such observation suggests the emergence of energy spilling reactions. With the increase in 

extracellular substrate concentration, the cells rapidly increased their uptake rate. Within 10 

seconds after the beginning of the feeding, the glucose uptake rate was higher (4.68 

μmol/gCDW/s) than reported during batch growth (3.3 μmol/gCDW/s). The high uptake led to 

an accumulation of several intracellular metabolites, during the feast phase, accounting for 

up to 34% of the carbon supplied. Although the intracellular metabolite concentrations 

changed rapidly, the cellular energy charge remained homeostatic, suggesting a well-

controlled balance between ATP producing and ATP consuming reactions.  
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The importance of combining experimental perturbation studies and kinetic modelling, in 

order to reveal metabolic strategies for coping with dynamic conditions is highlighted in the 

following Chapter 4. 

In Chapter 4, a published kinetic model for central carbon metabolism by Peskov K, et al. was 

used to investigate if the experimental observations from Chapter 3 could be reproduced with 

a model originating from steady-state calibration. Only after parameter optimization, with 

significant changes, could the data be reproduced, highlighting significant alterations in the 

enzymatic kinetics of glycolysis during feast-famine, compared to steady-state growth. 

Post-transcriptional modifications were assumed to explain the sudden decrease in the 

substrate uptake rate, observed while glucose was still in excess. To reflect such change in the 

modelling approach, the feast-famine cycle was split into two phases and the experimental 

uptake rate was used as fixed input. Nevertheless, this was not yet sufficient to fully 

reproduce the experimental observations. The time course of the glycolytic intermediates 

could only be reproduced when introducing glycogen synthesis and assimilation in the model. 

Here, glycogen acted as a storage pool, providing carbon and energy to reinitiate growth 

during famine conditions. Furthermore, ATP-spilling reactions were needed to reproduce the 

observed adenylate energy homeostasis. Additionally, a continuous draining of ATP 

supported the hypothesis of increased maintenance during the feast-famine regime. 

In Chapter 5, multi-omics approaches, i.e. shotgun cellular proteomics and 13C-labelled 

metabolomics were used for untargeted analysis and generation of new hypotheses on 

cellular regulatory mechanisms, when cells were subjected to fluctuations in substrate 

availability. The extracellular dynamics were expected to trigger global stress responses, in 

line with the observed reduced biomass yield. Surprisingly, this was not the case – 

stress-related proteins did not alter from steady-state to feast-famine conditions. On the 

other hand, the cellular proteome adjusted for specific functional categories, including 

biosynthesis and translation processes (ribosomes). This increase can be explained by either 

increased protein production to support the rapid growth changes, during the short time of 

substrate availability, or ribosome stalling due to amino acid limitation during the famine 

phase. During substrate-limited growth (constant feeding) cells have an overcapacity of 

metabolic enzymes (involved in central carbon pathways), which is used under nutrient up-

shift to handle rapid increase in metabolic fluxes. The down-regulation of several enzymes in 

glycolysis, TCA cycle and pentose phosphate pathway, as well as, transporter proteins, 

revealed that cells respond more to the substrate excess period than the starvation period 

during the block-wise feeding regime. This is also in accordance with the observed down-

regulation of the glyoxylate-shunt enzymes. Moreover, the increased levels of polyphosphate 

kinase indicated the use of a polyphosphate pool as a putative buffer for energy homeostasis. 
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Glycogen production and degradation was verified by the proteomic and 13C tracing analysis 

and is suggested to contribute to the ATP spilling (biomass yield losses), along with the 

increased protein turnover, which was identified by an increased section of the cellular 

proteasome. 

The generated insights of the whole thesis are summarized in Chapter 6. Additionally, open 

questions are discussed. The future challenges include scale-down experiments, research on 

the effects of dynamics on production hosts, the use of mutant strains for validation 

experiments and data integration toward multi-scale modeling.  
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Samenvatting 

De dynamische condities in de omgeving van een cel bepalen het microbiële metabolisme en 

hebben invloed op de celgroei. Vele biotechnologische toepassingen vereisen de cultivatie 

van micro-organismen in grootschalige bioreactoren. Deze reactoren worden gewoonlijk 

gekarakteriseerd door fysisch-chemische gradiënten, die ontstaan door onvolledige menging. 

Dit veroorzaakt een verminderde productopbrengst van in industriële biotechnologische 

processen. Gradienten in concentraties van  substraat en zuurstof, pH en temperatuur zijn 

enkele voorbeelden van dergelijke gradiënten. 

Het doel van dit proefschrift was het ontrafelen en begrijpen van de effecten van repetitieve 

substraatfluctuaties op het cellulaire gedrag van Escherichia coli K12 MG1655, door gebruik 

te maken van zowel experimentele als modelmatige benaderingen. 

Hoofdstuk 1 is een algemene introductie tot de biotechnologie en haar toepassingen, met 

een focus op upstream bioprocessen. Daarnaast wordt ook de rol van de bacterie Escherichia 

coli als modelorganisme en als werkpaard van de biotechnologie besproken. 

In Hoofdstuk 2 worden de kwantitatieve experimentele en kinetische modelmatige 

benaderingen, die op dit moment in gebruik zijn voor het onderzoeken van het microbieel 

metabolisme onder dynamische condities, samengevat en besproken. Dit hoofdstuk wordt 

afgesloten met een overzicht van huidige uitdagingen en toekomstperspectieven. 

In het experimentele Hoofdstuk 3, is een bloksgewijs voedingsregime opgelegd aan een 

aerobe E.coli cultuur, met het doel om de cellen te laten groeien onder substraat (glucose) 

gradiënten, na een initiële chemostaat (steady-state) groei als referentieconditie. Dit regime 

werd “fast feast-famine” genoemd, aangezien cellen perioden van substraatovervloed,  en 

substraatuitputting ervaren op een tijdsschaal van seconden. Het regime werd 

gekarakteriseerd door repetitieve cycli van 20 s voeding en 380 s zonder voeding. Deze 

verstoringen werden minimaal 8 generaties lang toegepast, om de cellen de kans te geven 

om zich aan te passen aan de dynamische omgeving. De specifieke (gemiddelde) substraat en 

zuurstof consumptiesnelheden namen gedurende het feast-famine regime toe in vergelijking 

met de referentie steady-state cultivatie. Deze toegenomen snelheden bij dezelfde 

(gemiddelde) groeisnelheid leidden tot een gereduceerde biomassaopbrengst (30% lager), 

terwijl er geen significante productie van bijproducten was. Een dergelijke observatie 

suggereert het ontstaan van energieverspillende reacties. Met de verhoging in extracellulaire 

substraatconcentratie verhoogden de cellen vlug hun opnamesnelheid. Binnen 10 seconden 

na het begin van de voeding was de opnamesnelheid hoger (4.68 μmol/gCDW/s) dan wordt 

gerapporteerd voor de maximale snelheid tijdens batchgroei (3.3 μmol/gCDW/s). Deze hoge 

opnamesnelheid leidde tot een accumulatie van verscheidene intracellulaire metabolieten, 
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die, gedurende de feast-fase, goed was voor 34% van de aangeboden koolstof. Alhoewel de 

intracellulaire metabolietconcentraties snel veranderden, bleef de cellulaire energiestatus 

homeostatisch, hetgeen suggereert dat er een bijzonder gecontroleerd evenwicht bestaat 

tussen ATP-producerende en ATP-consumerende reacties. 

In het volgende Hoofdstuk 4 wordt het belang van het combineren van experimentele 

verstoringsstudies en kinetisch modellen, om metabole strategieën voor het omgaan met 

dynamische condities te bestuderen, benadrukt. 

In Hoofdstuk 4 is een door Peskov et al. gepubliceerd model voor het centrale 

koolstofmetabolisme gebruikt om te onderzoeken of de experimentele waarnemingen uit 

Hoofdstuk 3 gereproduceerd konden worden met een model dat op steady-state condities 

gekalibreerd is. Enkel na parameteroptimalisatie, met significante veranderingen, konden de 

data gereproduceerd worden, hetgeen de significante aanpassingen in de enzymatische 

kinetiek van de glycolyse gedurende feast-famine ten opzichte van steady-state groei 

benadrukt. Post-transcriptionele modificaties werden verondersteld om de plotselinge 

vermindering in de substraatopnamesnelheid, geobserveerd terwijl glucose nog steeds in 

overmaat aanwezig was, te verklaren. Om een dergelijke verandering in de modelmatige 

benadering te kunnen reflecteren, is de feast-famine cyclus opgesplitst in twee fases en is de 

experimentele opnamesnelheid gebruikt als invoerparameter. Desalniettemin was dit niet 

voldoende om de experimentele observaties volledig te kunnen reproduceren. Het 

tijdsverloop van de glycolytische intermediairen kon alleen worden gereproduceerd wanneer 

glycogeen synthese en assimilatie in het model werden geïntroduceerd. In dit geval trad 

glycogeen op als een opslagpool, die koolstof en energie verschaft om de groei tijdens de 

famine-condities mogelijk te maken. Verder waren ATP-verspillende reacties nodig om de 

geobserveerde adenylaat energiehomeostase te kunnen reproduceren. Dit continue 

aftappen van ATP ondersteunt bovendien de hypothese dat de onderhoudsenergie behoefte 

tijdens feast-famine hoger is. 

In Hoofdstuk 5 werden multi-omics benaderingen, dat wil zeggen, shotgun cellular 

proteomics en 13C-labelled metabolomics, gebruikt voor ongerichte analyse en generatie van 

nieuwe hypotheses over cellulaire regulatie mechanismen, wanneer cellen blootgesteld 

werden aan fluctuaties in substraatbeschikbaarheid. De verwachting was dat de 

extracellulaire dynamiek globale stress reacties op gang zou brengen, in lijn met de 

geobserveerde verlaagde biomassaopbrengst. Verrassend genoeg was dit niet het geval – 

stressgerelateerde eiwitten veranderden niet tussen steady-state en feast-famine condities. 

Anderzijds paste het cellulaire proteome zich wel aan in specifieke functionele categorieën, 

waaronder biosynthese en translationele processen (ribosomen). Deze toename kan 



 
Samenvatting 

 

9 
 

verklaard worden door enerzijds een verhoogde eiwitproductie om de snelle veranderingen 

in groei tijdens de korte tijdsinterval van substraatbeschikbaarheid mogelijk te maken of 

anderzijds door het vastlopen van de translatie naar eiwitten door beperkingen in de 

beschikbaarheid van aminozuren tijdens de famine-fase. Tijdens de substraatgelimiteerde 

groei (constante voeding) hebben cellen een overcapaciteit aan metabole enzymen 

(betrokken bij de centrale koolstofroutes), die wordt gebruikt om tijdens nutriënttoename de 

snelle verhoging in metabole fluxen te kunnen verwerken. De neerwaartse regulatie van 

verscheidene eiwitten in de glycolyse, citroenzuurcyclus en pentosefosfaatroute en ook van 

transport eiwitten, laat zien dat cellen meer reageren op de periode van substraatovervloed 

dan op de periode van verhongering tijdens het bloksgewijze voedingsregime. Dit is ook in 

overeenkomst met de geobserveerde neerwaartse regulatie van de glyoxylaat-shunt 

eiwitten. Bovendien wijzen de verhoogde niveaus van polyfosfaatkinase op het gebruik van 

een polyfosfaatpool als vermoedelijke buffer voor energiehomeostase. Glycogeen productie 

en degradatie werd geverifieerd door de proteomics analyse en 13C tracing analyses en draagt 

vermoedelijk bij aan de ATP verspilling (biomassaopbrengstverliezen), samen met de 

verhoogde eiwitomzetting, die geïdentificeerd werd op basis van een verhoogde sector van 

het cellulaire proteasoom.  

De gegenereerde inzichten van het gehele proefschrift zijn samengevat in Hoofdstuk 6. 

Hiernaast worden open vragen besproken. De toekomstige uitdagingen omvatten nieuwe 

scale-down experimenten, onderzoek naar de effecten van dynamische condities op 

industriële productiestammen, het gebruik van mutantstammen voor validatie-experimenten 

en data-integratie in de richting van multi-scale modelleren. 
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1.1 The power of Biotechnology 

1.1.1 Definition and landmarks 

Hungarian agricultural engineer Karl Ereky was the first one to introduce the term 

“Biotechnology” in 1919, as the technology to convert raw materials to useful products, 

utilizing living organisms [1]. However, the applications of biotechnology dated several 

thousand years back, when people were for example using microorganisms to bake bread or 

brew beer and vinegar in ancient civilizations (Egypt, Greece, Mesopotamia). Since then, 

biotechnology has developed to a broader field, which combines various disciplines, such as 

biology, chemistry, physics and mathematics, with the aim to develop processes and high 

value-added products, exploiting organisms, cells or cellular components. 

Crop breeding, beer and wine brewing, as well as producing bread are some of the oldest 

examples of biotechnology [2]. Nevertheless, the study of biotechnology began at the 17th 

century, when Antonie van Leeuwenhoek discovered bacteria and protozoa using the first 

microscope in 1677 [3]. Significant scientific breakthroughs in the field occurred in the next 

centuries, including the first smallpox vaccine by Edward Jenner in 1798 [4], the discovery of 

the bacterial nature of fermentation by Louis Pasteur in 1862 [5] and the discovery of genetic 

inheritance laws by Gregor Mendel in 1863 [6]. Biotechnology in the 20th century was also 

characterized by major contributions, such as the discovery of penicillin, the first antibiotic, 

by Alexander Fleming in 1928 [7], the development of submerged fermentation as a 

cultivation method by Albert J. Kluyver [8], the description of the DNA structure by James D. 

Watson and Francis Crick in 1953 [9] and the first successful recombinant DNA experiment 

with bacterial genes by Stanley N. Cohen and Herbert Boyer in 1973 [10]. The biotechnological 

progress continues in the current century, where several advances already occurred. The first 

draft sequence of the human genome (led by Craig Venter) [11] is an example of the recent 

scientific developments in the field. More landmarks of biotechnology are well reviewed in 

the work of Bhatia S [12]. 

1.1.2 Range of biotechnological applications 

Biotechnology provides products and technologies to improve the quality of life, while 

reducing environmental impact, mainly related to [12, 13]: 

1. Environment: development of technologies to clean contaminated water, air and soil 

through oxidation or reduction of the contaminants by microorganisms. 

2. Health (“red biotechnology”): development of tools to detect diseases and 

treatments, as well as, medicines to combat them. 
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3. Agriculture (“green biotechnology”): advances in agriculture for higher crop yields, 

increased farming sustainability and development of nutrient-rich nutrition. 

4. Biorefineries (“white biotechnology”): use of enzymes and microbes in fermentation 

processes in order to produce biofuels and biochemicals (reducing use of 

petrochemicals and contributing to the decrease of greenhouse gas emissions), utilize 

biomass waste products and optimize manufacturing process efficiency. 

This thesis specifically contributes to industrial biotechnology, which is the sector of 

biotechnology referring to the large-scale manufacturing of bioproducts (ranging from food 

to antibiotics and polymers) from renewable raw materials, employing microorganisms and 

enzymes. These processes are based on the ability of microbial cells to convert nutrients 

(mainly sugars) into products through their metabolism. In addition, enzymes which are 

involved in these metabolic processes can be used as biocatalysts, for example in detergent 

production.  

1.1.3 Bioprocesses in a nutshell 

All bioprocesses consist of upstream processing, including all the steps until fermentation, 

and downstream processing, which characterizes the purification and recovery of the final 

product [14]. Figure 1.1 shows a simplified outline of the main steps in both upstream and 

downstream processing. More steps may be included depending on the nature and the needs 

of each process. In addition, during upstream processes, raw material development and strain 

engineering are interconnected in several steps, to achieve economic efficiency. 
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Figure 1.1 Schematic outline of upstream and downstream bioprocesses. 

1.1.4 Fermentation and cultivation environment 

The focus of this thesis is the last step of the upstream processing, the fermentation. In 

industrial terms, fermentation is the enzymatic decomposition of organic sources 

(“substrates”) by microorganisms or eukaryotic cells and their subsequent conversion to 

products (e.g. acids and alcohols). In large-scale production, this is occurring inside tanks with 

various sizes and geometries, called “bioreactors”. Continuous stirred tank reactors and 

bubble columns are some of the most frequently used types of bioreactors.  

The performance of microbial cells is influenced by the cultivation environment, which in 

industrial bioprocesses represents the inside of a bioreactor. During a microbial cultivation, 

several physical or chemical extracellular parameters may vary over time and lead to the 

formation of a “dynamic” environment. The large scale of industrial bioreactors (hundred to 

several thousand litres), necessary to enable sufficient production capacity with low costs, 

usually causes microorganisms to experience dynamic gradients during their cultivation [15]. 

For example, imperfect mixing can lead to heterogeneities in different parts of the reactor 

(e.g. substrate and dissolved gas concentrations, pH, temperature, shear stress and more) 

[16]. Since substrates are added at only one point in the reactor, they represent the largest 
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gradients. The effects of substrate gradients on cellular behaviour constitute the subject of 

this thesis. 

1.2 The protagonist of this thesis: Escherichia coli 

A wide range of microorganisms are used in bioprocesses, such as bacteria, yeast and fungi. 

One of the most studied microbes and with numerous applications in biotechnology, is the 

bacterium Escherichia coli (E.coli), the central “character” of this thesis.  E.coli is a 

gram-negative, facultative anaerobic bacterium (i.e. respiration takes place in the presence 

of oxygen and fermentation in its absence), discovered in 1885 by Theodor Escherich, to 

whom owes its name [17]. The term “coli” was derived by the common natural habitat of 

E.coli, which is the colon (lower intestine) of vertebrates [18]. Cells are rod-shaped and their 

sizes vary, depending on the particular strain and growth conditions, with an average length 

of 2 μm and diameter ranging from 0.25–1 μm [19, 20] (Figure 1.2). E.coli is a member of the 

Enterobacteriaceae group and while it is mostly harmless, some pathogenic strains have also 

been identified [21]. 

 

Figure 1.2 How do they look like? A) Digitally-colorized scanning electron micrograph (SEM) depicts numbers of 

E.coli bacteria. Produced by the National Institute of Allergy and Infectious Diseases (NIAID) 

(https://phil.cdc.gov/Details.aspx?pid=18160). B) SEM digitally-colorized image of a growing cluster of O157:H7 

pathogenic E.coli bacterial strain, under a high magnification of 6836X. Credits to Janice Haney Carr. Image was 

provided by the National Escherichia, Shigella, Vibrio Reference Unit at CDC 

(https://phil.cdc.gov/Details.aspx?pid=10068). C) Optical microscope image of E.coli cells published by 

Konokhova AI, et al. [22]. D) Three-dimensional (3D), computer-generated image of a group of E.coli 

extended-spectrum ß-lactamase-producing (ESBLs) bacteria. The artistic recreation was based upon SEM 

imagery. Visual example of the long, whip-like, peritrichous flagella, sprouting from what appear to be random 

points on the organism’s exterior, as well as the numerous shorter, and finer fimbriae, imparting a furry look to 

the bacteria. Created by Alissa Eckert (2016) and provided by CDC/ Antibiotic Resistance Coordination and 

Strategy Unit (https://phil.cdc.gov/Details.aspx?pid=21915).  

https://phil.cdc.gov/Details.aspx?pid=18160
https://phil.cdc.gov/Details.aspx?pid=21915
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E.coli is considered one of the most important model organisms in microbiology, in which 

DNA cloning was first developed [10], which laid the foundations of metabolic engineering 

and shaped the future of biotechnology [23, 24]. E.coli possesses some distinct traits which 

make it a popular host for the industrial production of various compounds. These properties 

include: 

 Rapid growth, doubling time of about 20 minutes [25] 

 Ability to grow in high cell density cultures [26] , particularly useful for achieving high 

volumetric productivities 

 Capability of synthesizing all essential amino acids and vitamins, thus growing on 

inexpensive culture medium 

 Extensive knowledge of its genome, which was sequenced in 1997 (for E.coli K12 

MG1655) [27], as well as transcriptome, proteome and metabolome. 

 Availability of genetic tools for strain engineering, such as gene deletion approaches 

[28] 

The widespread use of E.coli in biotechnology has led to the development of various industrial 

strains (especially K12 and B types), used as cell factories in large-scale bioprocesses. E.coli is 

a very popular host in the biopharmaceutical industry and produces nearly 30% of the 

approved therapeutic recombinant proteins [29], with significant advantages over other 

microbes, such as the yeast Saccharomyces cerevisiae [30, 31]. The first recombinant 

pharmaceutical compound to enter the market was insulin, as treatment to diabetes, 

produced in E.coli in 1982 [32]. In addition, more bio-based products, derived by genetically 

engineered E.coli, include amino acids for the food industry and biopolymers. A detailed 

review on all the biochemicals, produced so far by engineered E.coli, has been published by 

Chen X, et al. [24] and a metabolic estimate of its potential on producing even more 

non-native compounds has been computationally investigated by Zhang X, et al. [33].  

Representing a microbe of high industrial interest, E.coli was chosen as the working horse of 

this study. The laboratory K12 MG1655 strain was chosen, due to the considerable amount of 

information known about its physiology and genome.  
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1.2.1 A peek inside E.coli cell factories 

 

Figure 1.3. Schematic representation of the bacterial aerobic metabolism. Catabolism of carbon sources (sugars) 

leads to intermediates for biomass synthesis and (by-)products, as well as, energy generation (direct and via 

respiration). The intermediates and energy are used to generate biomass components (anabolism). 

Metabolism is a set of chemical reactions occurring inside the cell, which controls its survival. 

The main characteristics of bacterial aerobic metabolism are shown in Figure 1.3 and will be 

briefly explained. Cells receive nutrients from their extracellular environment, such as sugars 

(carbon) and oxygen (energy). These nutrients are then converted to metabolic 

intermediates, through a series of chemical reactions, which compose catabolism. Catabolism 

requires the transfer of electrons from organic compounds to electron acceptors (such as 

oxygen) (via redox factors) and produces energy in the form of adenosine triphosphate (ATP) 

molecules. At the same time by-products are produced and excreted out of the cell, such as 

carbon dioxide, organic acids and ethanol. All these chemical reactions are categorized in 

different metabolic pathways, such as glycolysis, pentose phosphate pathway, tricarboxylic 

acid cycle and the respiratory chain. The energy and precursors derived by catabolism are 

subsequently used for anabolism, where macromolecules (proteins, polysaccharides, lipids, 

nucleic acids) are synthesized by building block compounds (amino acids, monosaccharides, 

fatty acids and nucleotides). Finally, these macromolecules are assembled in the cellular 

structure generating cellular growth. 

With the growing needs of the bio-industry, higher productivities and lower costs need to be 

achieved. One way to accomplish these goals is the construction of more powerful and robust 

strains. However, one of the main requirements is a deep understanding of cellular functions 

under different cultivation environments. Despite the overwhelming and detailed knowledge 
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of E.coli biology, the integration of all mechanisms, composing the dynamic cellular 

regulation, is not yet fully unravelled. Novel insights related to E.coli metabolism come to light 

almost every day, as confirmed by very recent publications [34-39]. The full potential and 

capabilities of E.coli in biotechnology will still continue to surprise us. 

1.3 Scope of the thesis 

Microbial metabolism responds to different types of gradients occurring simultaneously in 

industrial large-scale cultivations (e.g. nutrients, dissolved gases, pH etc.), due to imperfect 

mixing. The purpose of this thesis was to investigate the behaviour of E.coli cells under these 

dynamic environmental conditions, with a particular interest on the effects of fluctuations in 

substrate availability, separate from the other gradients. Except from a better understanding 

of the cell factory, this work aims to demonstrate how experimental observations and 

metabolic models can be integrated towards designing methods to develop better performing 

strains for industrial applications. 

 

Figure 1.4. Schematic outline of the chapters of this thesis. 

The cellular responses to environmental stimuli have been extensively studied. Thus, in 

Chapter 2, the quantitative experimental and kinetic modelling approaches used for studying 

dynamic metabolism, as well as the current challenges, were reviewed. 

In Chapter 3, glucose perturbations were enforced in an E.coli lab-scale aerobic cultivation, 

by block-wise feeding, with the aim to mimic the aspect of substrate gradients in large-scale 

conditions. Short time-scales were used for the applied perturbations, similar to the industrial 

mixing timeframes, but also able to allow for sampling and process monitoring. This approach 

allowed to study the cellular adaptation of cells, which experienced dynamics for several 

generations. Their physiological and metabolic responses were monitored in vivo under this 
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so-called feast-famine regime and were compared to a reference continuous feeding 

cultivation. Metabolomics were also employed to estimate intracellular fluxes under the 

different cultivation conditions. Several metabolic strategies were revealed, including the 

importance of storage metabolism and energy-spilling mechanisms. 

The challenge of combining experimental perturbations with dynamic kinetic modelling was 

addressed in Chapter 4. A published kinetic model [40], which was developed under 

steady-state conditions, was used to evaluate its ability in predicting the dynamic cellular 

responses quantified in Chapter 3. Kinetic parameter optimization and the implementation of 

storage pathways in the model were used as approaches to unravel significant cellular 

functions under block-wise substrate feeding conditions. 

A multi-omics analysis was then performed in Chapter 5, consisting of untargeted proteomics 

and 13C-tracing metabolomics, for a deeper understanding of the cellular regulatory 

mechanisms under dynamic conditions. The aim was to identify and locate the main 

components and routes of dynamic regulation inside the cell, when block-wise substrate 

feeding was applied. 

Finally, Chapter 6 describes the major contributions of this work and discusses open questions 

and challenges for future research.  
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Abstract 

While the stoichiometry of metabolism is probably the best studied cellular level, the 

dynamics in metabolism can still not be well described, predicted and, thus, engineered. 

Unknowns in the metabolic flux behaviour arise from kinetic interactions, especially allosteric 

control mechanisms. While the stoichiometry of enzymes is preserved in vitro, their activity 

and kinetic behaviour differs from the in vivo situation. Next to this challenge, it is infeasible 

to test the interaction of each enzyme with each intracellular metabolite in vitro exhaustively. 

As a consequence, the whole interacting metabolome has to be studied in vivo to identify the 

relevant enzymes properties. In this review we discuss current approaches for in vivo 

perturbation experiments, that is, stimulus response experiments using different setups and 

quantitative analytical approaches, including dynamic carbon tracing. Next to reliable and 

informative data, advanced modeling approaches and computational tools are required to 

identify kinetic mechanisms and their parameters.
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2.1 Introduction 

Modeling of microbial systems has two major aims: (1) to provide a systemic understanding 

of cellular behaviour and (2) to guide the design of microbial host, to optimize, for example, 

the production of chemicals. Metabolic network analysis has guided the genetic engineering 

of cells, leading to significantly improved production hosts [1, 2]. Especially, steady-state 

analysis has delivered insights to metabolic fluxes in many different microorganisms [3]. This 

includes the discovery of unknown pathways and activities including unusual routes in 

carbohydrate metabolism in pathogenic hosts [4], amino acid degradation pathways [5] or 

uncommon shunts in cyanobacteria [6].  

However, most current models fail to predict cellular operation [7]. The metabolic flux not 

only depends on the enzyme concentration, but a variety of cellular functions and 

mechanisms, like transcription, translation, post-translational modifications and allosteric 

control. For each level, techniques have been developed to monitor changes in vivo, but the 

integration of data and its interpretation remain highly challenging. Experimental data sets 

for modeling are often derived from well-defined and controlled environmental conditions, 

whereas cells in production processes are faced with sub-optimal conditions, for example, 

limited oxygen, switching substrate availability or product inhibition. Such environmental 

factors are one source leading to a limited accuracy of model predictions for dynamic process 

conditions.  

Without doubt, metabolism is the best studied cellular level. For most common hosts like 

Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis, Corynebacterium glutamicum and 

many more, the metabolic network stoichiometry is arguably completely described [8, 9]. 

Unknowns in metabolic activity arise from kinetic interactions, especially allosteric control 

mechanisms. While the stoichiometry of enzymes is preserved in vitro, its activity and 

behaviour differs from the in vivo situation [10]. As a consequence, the whole interacting 

metabolome has to be studied to identify the enzymatic properties in vivo [11]. Experiments 

and modeling of enzyme kinetic networks have been pioneered by Theobald U, et al. [12],[13] 

using stimulus-response experiments (SRE). While crucial new insights have been generated, 

these approaches only partly succeeded to identify enzyme mechanisms (structural) or kinetic 

(quantitative) parameters [7]. 

There are different aspects that lead to non-identifiability (i.e., the inability of the data to 

sufficiently determine the model’s structure and its quantitative parameters): (1) Carbon 

effluxes from central carbon metabolism cannot be quantified with sufficient accuracy during 

the short term of the experiment. (2) Parallel reaction rates and reaction cycles cannot be 

distinguished. (3) Parameter estimation quality remains low because of high correlations of 
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the model parameter and limited regulatory information content of intracellular 

concentration measurements [14].  

The review focuses on approaches to overcome named challenges, especially approaches that 

(1) increase the information content by addition of isotopic tracers, like 13C, (2) combinatorial 

approaches that allow for inference of different enzyme kinetic mechanisms, (3) novel 

developments in parameter estimation. 

2.2 Coupling experimental observations with modeling approaches 

Identification of in vivo kinetic mechanisms is challenging as the system can only be perturbed 

by extracellular stimuli and/or genetic modifications (Figure 2.1). The experiments have 

therefore to be designed with the modeling and the required model resolution and accuracy 

in mind. In particular, the experimental data must show precise quantitative properties to 

distinguish between the different hypotheses and deliver sufficient accuracy and coverage for 

the parameter identification. These criteria, coming from the study aim and the modeling 

approach, define the measurements and approaches needed, that is, to decide whether 

additional, quantitative metabolite measurements need to be developed or complementary 

observables, like carbon labelling [15], are required.  
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Figure 2.1 Modeling and the experimental approach are determined by the biological question, that is, the 

approaches need to be fine-tuned to identify the relevant parameters. The biological system needs to be 

perturbed by modification of the metabolic network (using genetic modifications) and/or the extracellular 

conditions (substrate pulse, temperature, among others). The response of the system is monitored using 

(advanced) analytical methods including 13C tracing, to provide the researcher with quantitative in vivo data. The 

data is then used to calibrate metabolic models, which need to be chosen based on the biological question and 

available data. Modeling and parameter estimation deliver information on the intracellular kinetics, including 

kinetic features of the reaction steps and allow for new biological insights. 

2.3 Experimental approaches 

The aim to reach predictive kinetic models requires sufficient informative experimental data 

for parameter identification. In this context, the term ‘informative’ means accurate, robust 

and quantitative data gathered for relevant conditions. Commonly, metabolic flux is observed 

under steady-state conditions, while dynamic flux estimation is more challenging in several 

experimental and computational aspects. The aim of this review article is not a complete 

description of all variants of experimental approaches, but to emphasize how they contribute 

to the construction of kinetic metabolic models. All these experimental approaches have in 

common that they must be conducted under well-controlled, reproducible conditions. 

To identify kinetic parameters from steady-state experiments, the analysis of a series of 

different steady-states is required [16-18]. An obvious challenge in such a series of 

experiments is to keep the cellular properties comparable. To this end, continuous cultivation 

in chemostat with different dilution rates has been employed.  
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To keep the enzymatic properties constant while gathering sufficient information on the 

kinetic mechanisms, the so called stimulus–response experiment was proposed by Theobald 

U, et al. [12] and became a widely-used, yet very challenging approach. More specifically, the 

cells are exposed to strong and abrupt perturbations in substrate supply in a short timeframe, 

that is, much shorter than protein turnover times. Pioneering work has been performed in 

yeast and bacteria by substrate pulses [12, 18-23]. An experimental challenge in SREs is the 

rapid monitoring of intracellular metabolites, that is, rapid sampling, quenching and analysis 

of the low concentrated intracellular metabolites by quantitative analytical techniques. The 

available setups range from fast manual sampling [13] to automated sampling devices 

coupled to conventional bioreactors [24, 25] or plug-flow bioreactor units like the BioScope 

[26, 27]. 

Besides precise analytical determination of metabolite concentrations, the quantification at 

intracellular levels is influenced by imperfect quenching procedures that have to be 

considered [28, 29], that is, aspects of metabolite leakage or significant presence of 

metabolites already in culture supernatant. However, procedures like the differential method 

with total broth extraction [30] or metabolite balancing including error propagation with all 

three types of samples (i.e. cell extract, quenching and culture supernatant) [31] have been 

developed to overcome this. Nevertheless, such methods need to be validated for each novel 

microbial species.  

SREs generate a comprehensive time course of intracellular metabolite concentrations in 

time, that can be used to identify reaction kinetic parameters [32] and putative regulatory 

mechanisms [33]. For example, Chassagnole C, et al. [19] designed a dynamic model 

accounting for the phosphotransferase system (PTS), glycolysis and the pentose-phosphate 

pathway in E.coli. Using the data of intracellular metabolite concentrations after the 

disturbance of steady-state with a glucose pulse, it was shown that the PTS adjusts in 

sub-seconds to the new condition and exhibits a major flux control in E.coli metabolism.  

The SRE approach has also been applied to other microorganisms with the aim to highlight 

the importance of compartmentation for the regulation of glycolysis in yeast [12], to shed 

light on the valine/leucine pathway kinetics in C. glutamicum [20], or to study the dependency 

of penicillin-G production on the mechanisms of transport of phenylacetic acid and the 

product over the cell membrane in Penicillium chrysogenum [18, 23].  

While SREs with single pulse are highly informative to obtain insights into microbial kinetics 

and metabolic responses, it is not yet clear if this type of perturbation mimics well the 

‘non-laboratory’ biotechnological conditions experienced by cells in large-scale bioreactors, 

especially when the network has been conditioned to the substrate limited steady-state 
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before the perturbation. There is evidence from literature that the metabolic response of the 

first substrate pulse differs from a series of perturbations in E.coli [34].  

To study such ‘training’ phenomena, where metabolic networks are ‘trained’ under 

periodically changing conditions, a series of scale-down approaches have been applied. 

Block-wise feeding regimes have been used in scale-down experiments, generating a 

repetitive dynamic environment. One of the first studies applying block-wise feeding 

investigated the impact of dynamics on the energy metabolism in yeast strains [35], especially 

evaluating the yield of biomass and products in comparison to steady-state conditions. Later, 

this type of feast/famine experiments was used to study metabolism in vivo, with focus on 

storage metabolism in P. chrysogenum [36] and S. cerevisiae [33].  

Suarez-Mendez CA, et al. [33], also, showed that this kind of experimental regime not only 

simulates the cell transition from substrate excess to starvation conditions, but also facilitates 

the reproducibility of metabolic response measurements. Especially, several (identical) cycles 

can be sampled allowing for higher time-resolution and replicate measurements compared 

to the single-pulse experiment.  

Continuous dynamic perturbations can also be generated in two-compartment bioreactors 

that mimic large-scale conditions. This efficient scale-down approach can simulate 

inhomogeneity inside large-scale bioreactors, by circulating cells between either two 

stirred-tank reactors (STR-STR) or from one STR to a plug flow reactor (PFR) [37, 38].  

While all these experimental setups can generate frequent observations and high coverage 

of metabolic concentration profiles, the relevant information for the identification of kinetic 

parameters might still be limited, especially for branch-point metabolic nodes [39]. In recent 

years, these limitations have been overcome with the use of 13C tracer experiments, a 

powerful method that enables the quantification of intracellular fluxes and provides reliable 

information on parallel or bidirectional reactions [40, 41]. In 13C based metabolic flux analysis 

(MFA), 13C-labeled substrates are fed and the labeling enrichment is traced through the 

metabolic network by either mass spectrometry-based techniques or nuclear magnetic 

resonance spectroscopy (NMR) [42]. In the traditional isotopic steady-state method only the 

labeling data of the metabolites is required to inform about the particular flux distribution, 

whereas under isotopic dynamic conditions, both the labeling and concentrations of 

metabolites need to be measured [14]. Link H, et al. [43] used 13C isotopic labeling to identify 

allosteric metabolite-protein interactions (allosteric mechanisms) that have an impact on the 

switch between gluconeogenesis to glycolysis in E.coli. The cells were cultured on filter 

material allowing for a very fast exchange of the cultivation medium, for example switching 

from glucose to pyruvate. The authors measured the metabolic response to such shifts and 
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applied a modeling approach, using a large set of different kinetic hypothesis to identify the 

most relevant allosteric mechanisms. 

2.4 High-throughput opportunities and developments 

The experimental approaches discussed can only generate results for one strain under one 

perturbation condition. In recent years, high-throughput experimental approaches have been 

developed to miniaturize the experiments and study more strains and conditions in parallel. 

A first characterization of metabolic phenotypes can be obtained from the analysis of the 

extracellular space (metabolic footprinting) [44].  

Fuhrer T, et al. [45] screened the intracellular metabolome of several E.coli mutants, using a 

microtiter cultivation system coupled to flow-injection mass-spectrometry. This system 

allows for up to 1400 sample measurements per day. Hollinshead WD, et al. [46] have applied 

metabolic fingerprinting together with 13C tracing using a series of different tracer substrates, 

allowing to identify key metabolic flux phenotypes of less common microorganisms.  

While the classical millilitre scale cultivation can only be performed in batch mode, novel 

systems combine automated liquid-handling and optical sensors to control small scale 

cultivation [47]. For example, the Biolector system can handle 48 parallel cultivation wells 

[48]. Heux S, et al. [49] developed a robotic flux profiling system from isotopic fingerprints 

that enables the generation of 20 flux profiles per day though. 

2.5 Analytical techniques 

To obtain as much information as possible about the 13C patterns of metabolites, advanced 

analytical techniques are of major importance. Mass spectrometry and tandem mass 

spectrometry are the most common devices. With the ambition of kinetic modeling in mind, 

the focus in this review is on quantitative approaches, while untargeted approaches are only 

briefly touched.  

The ambition of quantitative intracellular measurements not only requires highly sensitive 

instruments to detect the low concentrated metabolites, but also a careful sample 

preparation. Continuous improvements and validation of protocols for new organisms are 

crucial to ensure good data quality. Especially, the cellular matrix is challenging, as ionization 

is sensitive to varying backgrounds. Standard addition or introduction of internal standards is 

required to correct for matrix effects. In 2005, Mashego MR, et al. [50], [51] introduced an 

internal standard for each metabolite, by the addition of U-13C labelled cell extract, which is, 

since then, frequently applied in current quantitative metabolomics. This internal standard 
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can be added at an early stage of the sample processing and enables to correct for losses 

during the processing [31, 52]. 

For measuring isotopic labeling, precisely the mass isotopomer distribution of intracellular 

metabolites, mass spectrometry, coupled to gas-chromatography or liquid chromatography, 

has shown significant advances in recent years. Tandem mass spectrometry has proven to 

enhance the sensitivity and additionally increase the resolution, with respect to the labeling 

composition by MS/MS [53]. Therefore, the metabolic flux estimation can be improved, 

compared to single MS or NMR based techniques [14, 54, 55].  

Next to these targeted, quantitative approaches, untargeted approaches are necessary for 

the determination of novel metabolites and pathways. Since they provide broader coverage, 

untargeted metabolomics data is extremely complex and software tools are indispensable. 

Examples are the XCMS platform [56] for traditional metabolomics and X13CMS [57], and 

DynaMet [58], MathDAMP [59], or MID Max [60] for identification of isotopic labeling 

enrichments in detected metabolites. 

2.6 Modeling approaches 

The parameterized kinetic model should be able to (1) reproduce the experimental 

observations, (2) allow for the prediction of genetic or environmental perturbation. With 

predictive models at hand, optimization of the host and the process conditions will deliver 

more efficient bioprocesses. The advances in technology have enabled the construction of 

detailed mechanistic models that link metabolite concentrations with enzyme activities. 

Major limitations of practical applicability are the sheer amount of model parameters lacking 

identifiability, the size of the network or the accuracy of the kinetic expressions [61]. Here it 

is important to recognize that for predictive models not necessarily all parameters are 

required to be well determined [62]. This perception unlocks the use of sampling approaches, 

where average model pre-dictions over a range of parameters are investigated. 

Approximative kinetic formats are a suitable alternative, as they are represented by canonical 

equations and usually contain fewer parameters. Some of the earliest approaches include 

power-law formats (GMA, S-Systems) and linearized formats (log-lin, lin-log). However, these 

formats can lead to inconsistent thermodynamic states, a problem that is addressed by recent 

formats such as modular rate laws and convenience kinetics [61, 63].  

Although kinetic parameters can often be found in the literature, they are determined using 

in vitro experiments that can differ significantly from in vivo conditions. Hence, the final step 

to obtain a working model is to calibrate its parameters using in vivo data. The quality of 

calibration will depend on the model complexity and amount of available data. True estimates 
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of some parameters may not be possible due to structural or practical identifiability problems 

[64]. 

Ensemble modeling approach is a powerful approach to tackle these problems [65-69]. It 

consists on building an ensemble of alternative models that complies with experimental 

observations. In especial, models with different complexity are generated and compared with 

respect to their ability to reproduce key features of the data. To overcome data scarcity and 

inaccuracies (noise), sampling based approaches have become popular to yield surrogates for 

missing knowledge in parameter values. Sampling of metabolite concentrations, kinetic 

parameters, enzyme levels and fluxes have been used to identify average properties on a 

system level, even when the available data is insufficient for actual parameter inference [70-

73]. Having fast simulators and smart stochastic sampling schemes at hand, Bayesian 

approaches could emerge as the ‘Swiss army knife’ that unlocks the consistent incorporation 

of all prior knowledge. 

Irrespective of the biological question, modeling includes several common elements. In 

particular, fast and accurate numerical integrators, robust parameter fitting and advanced 

statistical tools are required, capable to deal with the non-linear and often ill-posed dynamic 

problems. Particularly, badly determined or non-identifiable parameters, often 

non-intuitively correlated pose distinct numerical challenges to model calibration. Parameter 

uncertainty is addressed by the calculation of confidence intervals, often using the Fisher 

information matrix, bootstrapping or profile likelihoods. For addressing uncertainty in 

potentially non-identifiable parameters, profile likelihoods have proven the most reliable 

[74]. With a dynamic model at hand, analysis for the rate limiting and controlling steps can be 

performed. One frequently used approach is Metabolic Control Analysis, a sensitivity analysis 

framework [75-77]. MCA computes the effects of small parameter perturbations resulting in 

flux control coefficients which describe the effect of a change in the activity of an enzyme on 

all network fluxes. 

2.7 Conclusions and Outlook 

With predictive kinetic models at hand, the design and understanding of microbial cell 

factories could receive a boost in development. The construction of valid metabolic models is 

highly challenging and requires further developments, in both experimental and 

computational approaches: 

 Design experimental systems that generate sufficient perturbations, while still being 

representative for natural and industrial environments and allow for accurate 

monitoring of the cellular dynamics.  
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 Develop these platforms for high-throughput analysis, to study a series of external and 

internal conditions.  

 Rigorous dynamical systems theory and systems analysis to elucidate mathematical 

structures that can be beneficially exploited [78]. 

 New computational tools for parameter exploration and identification in 

high-dimensional (>100) spaces.  

 Enhancement of model building frameworks (like KiMoSys [79] for kinetic modeling) 

by various features to assist modellers with the complex tasks of gathering and 

integrating the available information.  

 Establish comprehensive model databases (like Bio- Models [80] for kinetic modeling). 

To this end, standards, structured repositories for the experimental omics data and 

associated protocols (meta-data) are needed [81].  

 

Ultimately, predictive metabolic models could then integrate into whole-cell models, which 

also include transcription, translation and post-translational mechanisms [82]. Next to 

cell-focused models, the integration of the extracellular environment with spatial 

inhomogeneity due to transport limitation (mixing) are relevant for the development of 

industrial bioprocesses [83, 84].  
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Abstract 

Background: Microbial metabolism is highly dependent on the environmental conditions. 

Especially, the substrate concentration, as well as oxygen availability, determine the 

metabolic rates. In large-scale bioreactors, microorganisms encounter dynamic conditions in 

substrate and oxygen availability (mixing limitations), which influence their metabolism and 

subsequently their physiology. Earlier, single substrate pulse experiments were not able to 

explain the observed physiological changes generated under large-scale industrial 

fermentation conditions.  

Results: In this study we applied a repetitive feast-famine regime in an aerobic Escherichia 

coli culture in a time-scale of seconds. The regime was applied for several generations, 

allowing cells to adapt to the (repetitive) dynamic environment. The observed response was 

highly reproducible over the cycles, indicating that cells were indeed fully adapted to the 

regime. We observed an increase of the specific substrate and oxygen consumption (average) 

rates during the feast-famine regime, compared to a steady-state (chemostat) reference 

environment. The increased rates at same (average) growth rate led to a reduced biomass 

yield (30% lower). Interestingly, this drop was not followed by increased by-product 

formation, pointing to the existence of energy-spilling reactions. During the feast-famine 

cycle, the cells rapidly increased their uptake rate. Within 10 seconds after the beginning of 

the feeding, the substrate uptake rate was higher (4.68 μmol/gCDW/s) than reported during 

batch growth (3.3 μmol/gCDW/s). The high uptake led to an accumulation of several 

intracellular metabolites, during the feast phase, accounting for up to 34% of the carbon 

supplied. Although the metabolite concentrations changed rapidly, the cellular energy charge 

remained unaffected, suggesting well-controlled balance between ATP producing and ATP 

consuming reactions. The role of inorganic polyphosphate as an energy buffer is discussed. 

Conclusions: The adaptation of the physiology and metabolism of Escherichia coli under 

substrate dynamics, representative for large-scale fermenters, revealed the existence of 

several cellular mechanisms coping with stress. Changes in the substrate uptake system, 

storage potential and energy-spilling processes resulted to be of great importance. These 

metabolic strategies consist a meaningful step to further tackle reduced microbial 

performance, observed under large-scale cultivations.  
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3.1 Introduction 

Microorganisms are widely used for the production of chemicals, ranging from small organic 

acids to large proteins, including biopharmaceuticals, biochemicals and bulk biofuels [1-3]. In 

order to meet the cost targets and demands, large-scale production cultivations are and will 

be required [4]. However, scale-up of microbial processes is not a trivial process, as strain 

performance usually declines from lab to industrial-scale bioreactors [5-7]. One root of this 

problem is the mixing limitations, which characterize large-scale bioreactors, and lead to 

several heterogeneities in the cultivation environment. Important parameters, affected by 

the constraints in mass and heat transfer, are nutrient concentrations, pH, dissolved gases, 

temperature and other parameters, which have been extensively reported in many studies 

and reviews [8-13].  

Substrate gradients are frequently considered as a main reason for performance reduction. 

Commonly, the substrate concentration should be kept at low levels to avoid overflow 

metabolism [14-17]. To achieve such conditions, fed-batch or chemostat regimes are applied. 

At large scale with mixing limitations, this leads to varying concentration of the substrate in 

different areas of the reactor [8, 18-20]. Especially, for most large-scale bioreactors, there is 

one feeding inlet; close to that point the substrate concentration is (very) high, while it 

becomes lower in the other parts of the reactor. Thus, cells inside the reactor circulate 

between zones of substrate excess and zones of substrate limitation. Depending on the scale 

and the type of the reactor, the timeframes are in order of seconds to minutes [11, 12, 18]. 

The presence and origin of these gradients has also been demonstrated by computational 

fluid dynamic simulations [18, 21-23].  

It is known that such heterogeneities have a big impact on the cellular metabolism, from 

physiology to metabolic fluxes and gene expression, and subsequently on product formation. 

Cells traveling close to the feeding zone will increase their substrate uptake rates, which may 

lead to increased overflow metabolism leading to unwanted products and energy spilling. 

Additionally, the high uptake rate leads to high oxygen demands, potentially inducing oxygen 

depletion in this zone [24-26]. On the other hand, cells passing through areas with low 

substrate concentration may re-consume overflow metabolites and/or activate stress 

response pathways, due to substrate limitations [12]. For example, Escherichia coli cultures, 

cyclically circulating from high to low glucose levels, have shown decreased biomass yields 

and by-product formation [8, 19].  

Two approaches to improve the cell performance in large-scale bioprocesses are: 1) 

Optimization of bioreactor design and operating conditions preventing gradients, and/or 2) 

Development of more robust strains which can cope with these conditions.  
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Especially, for designing more robust strains a mechanistic understanding of the (metabolic) 

responses to the environment dynamics is required. The cellular regulation mechanisms to 

cope with frequently changing environments have been, and still are, key questions in 

microbiology, not only for industrial applications, but also for understanding microbial 

ecosystems such as the natural habitat of E.coli, involving the lower intestine of humans and 

animals, water, sediment and soil [27].  

The cellular behaviour, under substrate dynamic conditions, has been studied using 

numerous scale-down experiments, for many types of microorganisms (for reviews check [28, 

29]). Commonly these studies derived observations on the physiology, such as average rates 

of growth, substrate uptake, product formation and respiration, but focused less on the 

metabolic network and the underlying mechanisms of the cellular responses. For example, 

the energetic state of the cell, storage accumulation, futile cycles and more phenomena, 

occurring under dynamic conditions, need further investigation. In addition, the fact that 

microorganisms, cultivated in large-scale bioreactors, face substrate gradients in a cyclic 

mode (alternating from substrate excess to limitation), has been highly neglected. Most of 

the scale-down experiments assessed the behaviour of the culture shortly after applying a 

single perturbation event. However, we strongly consider that cells develop different 

adaptation strategies, when facing variations in environmental conditions, over long time 

periods (not long enough for genetic evolution). Several researchers studied such conditions 

[30-34] and suggested significant changes in physiology, metabolic fluxes, as well as 

transcription and translation, when the cells moved between different stress zones 

repeatedly, eventually leading to reduced growth and productivity [6]. Therefore, the 

long-term responses to successive substrate gradients will be different than those which 

would occur in short-term (<5 generations) or after a sudden perturbation. Suarez-Mendez 

CA, et al. [35] applied repetitive glucose perturbations to Saccharomyces cerevisiae culture, 

using a feast-famine regime, proving that the dynamic responses of the adapted culture 

showed many differences compared to stimulus-response experiments, such as the absence 

of the ATP paradox [36]. A similar study has been performed for Penicillium chrysogenum [37]. 

However, only a few studies have been previously performed with E.coli, assessing the effects 

of substrate gradients in long-term. Pickett AM, et al. [38] were the first ones to apply 

repeating square-wave glucose perturbations, studying the effects on growth and 

composition of E.coli ML30. However, they applied cycles of 2 hours duration, which are not 

able to capture the metabolic responses occurring in timescales of seconds in large-scale 

bioreactors. Sunya S, et al. [39] characterized the dynamic behaviour of E.coli DPD2085 

imposed in 4 successive cycles, of 7 min duration each, of glucose pulses in different 

intensities. All cycles were compared to each other, in terms of specific formation and 

consumption rates. Nonetheless, the profiles of O2 and CO2 concentration were still changing 
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after 4 cycles of successive perturbations, indicating that the microorganism did not yet reach 

a metabolic steady response. In addition, the intracellular metabolic activity was not 

monitored. 

The main goal of this study was to investigate the cellular responses of bacteria under changes 

in substrate availability, separated from other gradients. For this reason, a feast-famine 

regime was applied, for the first time, in a physiologically adapted E.coli K12 aerobic culture, 

with successive glucose perturbations and both intracellular and extracellular metabolic 

responses, occurring in short-time scale (seconds), were quantitatively described.  

3.2 Materials and Methods 

3.2.1 Strain and cultivation medium 

Escherichia coli wild-type strain K12 MG1655, obtained from The Netherlands Culture 

Collection of Bacteria (NCCB, 3508 AD, Utrecht, The Netherlands), was used in all the 

experimental work of this study. The cultivation (and preculture) medium consisted of (per 

litre): 0.151 mol glucose (C6H12O6·1H2O), 0.5 g MgSO4·7H2O, 0.5 g NaCl (Avantor J.T.Baker, 

Gliwice, Poland), 1.25 g (NH4)2SO4, 1.15 g KH2PO4, 6.75 g NH4Cl (Merck KGaA, Darmstadt, 

Germany), 0.001 g thiamine-HCl (Sigma-Aldrich, St. Louis, Missouri, USA) and 2 mL of trace 

elements solution [40]. The pH of the medium was adjusted to 7.0 by the addition of 1 M 

K2HPO4, before filter sterilization (pore size 0.2 μm, cellulose acetate, FP 30/0.2, Whatman 

GmbH, Dassel, Germany). 

3.2.2 Preculture 

Culture aliquots, previously stored in 80% v/v glycerol at -80C, were used for the preculture. 

Cells were grown in shake-flasks filled with 100 mL of the above-mentioned mineral medium, 

in an incubator (37C, 220 rpm) and were used as inoculum for the bioreactor cultivation.  

3.2.3 Cultivation conditions 

The cultivation was performed in a 1.2 L stirred tank bioreactor (Applikon Biotechnology B.V., 

Delft, The Netherlands), with 0.95 L working volume, controlled by weight. The bioreactor 

was aerated with pressurized air at 0.44 L min-1 (0.5 vvm), using a Smart series mass flow 

controller 5850S (Brooks Instrument, PA, USA). The bioreactor was operated at 0.3 bar 

overpressure, at 37C and a stirrer speed of 700 rpm. pH was controlled at 7.0 by automatic 

addition of either 4 M KOH or 2 M H2SO4. Antifoam (Basildon Chemicals Ltd, UK) was added 

manually, when necessary, during the batch phase. During the whole experiment, pH, 

temperature, medium and effluent vessel weight, base and acid addition were monitored 

online. In addition, the dissolved oxygen in the broth was measured by a polarographic ADI 
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sensor (Applisens, Applikon, Delft, The Netherlands). A gas analyser (NGA 2000, Rosemount, 

Emerson, USA) was used to measure on-line the oxygen (O2) and carbon dioxide (CO2) 

concentrations in the offgas. After the batch phase was completed (indicated by the decrease 

of carbon dioxide and the increase of dissolved oxygen), the medium feeding was switched 

on and a chemostat phase began at a dilution rate of 0.044 h-1. After 114 hours (5 residence 

times), samples for metabolite and biomass quantification were withdrawn. 

3.2.4 Dynamic feast-famine regime 

After sampling of the reference chemostat, the regime was changed to an intermittent 

feeding. The feast-famine setup is shown in Figure 3.1. Successive cycles of 400 s were applied 

by a continuous medium feeding for 20 s, followed by a period of 380 s of no feeding. The 

feeding pump was controlled automatically by a timer (Omega, CT, USA). The waste outflow 

was controlled by a scale, on top of which the reactor operated, maintaining the broth volume 

at 0.95 L. The regime was designed to feed the same amount of medium over time, as in the 

chemostat culture, leading to an average dilution rate of 0.047 h-1. Aeration rate was 

increased to 0.7 L min-1 (0.8 vvm), to avoid oxygen limitation. The rest of the cultivation 

conditions remained the same as the reference chemostat. After 180 hours (8 residence 

times) of the intermittent feeding, samples for biomass and metabolite quantification were 

withdrawn. 

 

Figure 3.1 Schematic representation of the feast-famine setup used in this work. The medium, containing 

glucose as a substrate, was fed block-wise (20 s on, 380 s off) through a head-plate port. A constant volume was 

maintained by weight control. Successive cycles run for about 200 h in total. 
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3.2.5 Sample analysis 

Cell dry weight measurements 

For the determination of the biomass concentration (dry weight), 2 mL of broth were 

collected and centrifuged (Heraeus Biofuge Stratos centrifuge) at 4C for 5 min at 13800 g. 

The supernatant was then discarded and the pellet was resuspended in 1 mL Milli-Q water. 

Centrifugation and resuspension were repeated, the sample was then transferred to a 

previously dried (for 48 h at 70C) and weighted glass vial and dried at 70C for at least 48 h. 

The vials were then weighted again (after cooling down to room temperature inside a 

desiccator) and the cell dry weight was calculated as the difference between the final weight 

and the empty vial weight. The average of four replicate samples was used for the 

steady-state culture, six replica were used for the feast-famine regime. 

Total organic carbon 

Total broth samples (2 mL each) were withdrawn from the reactor and immediately stored at 

-80C. Supernatant samples were acquired by centrifuging total broth samples (Heraeus 

Biofuge Pico microcentrifuge) at room temperature for 1 min at 10400 g.  The supernatant 

was then filtrated (pore size 0.2 μm filter, cellulose acetate, FP 30/0.2, Whatman GmbH, 

Dassel, Germany) and stored at -80C. The total amount of organic carbon (TOC) was 

quantified with a TOC Analyzer (TOC-L CSH, Shimadzu), using the “difference method”: TOC 

was calculated from the difference between total carbon and inorganic carbon. Calibration 

standards were obtained from LPS b.v. (Oss, The Netherlands). 

Extracellular metabolite sampling 

For the determination of extracellular metabolite concentrations, 2 mL of broth were 

withdrawn into a tube (Eppendorf) and immediately centrifuged (Heraeus Biofuge Pico 

microcentrifuge) at room temperature for 1 min at 10400 g. The supernatant was then 

filtrated (pore size 0.2 μm filter, cellulose acetate, FP 30/0.2, Whatman GmbH, Dassel, 

Germany) into an empty tube, submerged into liquid nitrogen and stored at -80C until 

analysis. Centrifugation was used before filtration to prevent blocking of the filter, due to the 

high biomass concentration of the samples. For GC-MS and LC-MS analysis, 60 μL of 13C cell 

extract were added to 300 μL of sample, as internal standard mix, before freezing with liquid 

nitrogen and storage at -80C until further analysis.  

Intracellular metabolite sampling 

For the determination of intracellular metabolite concentrations, the differential method was 

applied with some modifications [41]. For the total broth measurement, 1 mL of broth was 

withdrawn from the reactor into a tube filled with 5 mL aqueous methanol quenching solution 
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(60% v/v) at -40C, to rapidly stop metabolic activity. The sample was immediately vortexed 

to ensure homogeneity and then weighted. 120 μL of 13C cell extract (production method 

described in [42]) were added to the sample, as internal standard mix. For the extraction of 

metabolites, 5 mL of aqueous ethanol solution (75% v/v), preheated at 70C, were added to 

the sample and the tube was then placed into a water bath at 95C for 4 minutes. After the 

boiling extraction, the sample was immediately cooled down to -40C in a cryostat. 

The ethanol-water mixture in all samples was then evaporated in a Rapid-Vap (Labconco, MO, 

USA) at 30C, under vacuum. The dried sediment was resuspended in 600 μL Milli-Q water, 

vortexed and transferred to eppendorf tubes. The samples were centrifuged at 15000 g for 5 

minutes at 1C (Heraeus Biofuge Stratos centrifuge). The supernatants were transferred to 

new empty tubes and centrifuged again under the same conditions. The filtrate was stored in 

screw-cap vials, at -80C, until further analysis. The intracellular concentrations were 

obtained from the difference between total broth and extracellular measurements. 

Analytical methods 

Extracellular concentrations of organic acids (acetate, lactate, formate) and ethanol were 

determined by HPLC (BioRad HPX-87H 300*7.8 mm column, at 59C, 0.6 mL∙min-1, 1.5 mM 

phosphoric acid in Milli-Q water as eluent, coupled to a Waters 2414 RI detector and a Waters 

2489 UV detector at 210 nm).  

Processed extracellular and total broth samples were analysed by GC-MS/MS, GC-MS and 

LC-MS/MS. Metabolites of the central carbon pathways (glycolysis, pentose phosphate 

pathway (PPP), tricarboxylic cycle (TCA)) were quantified with GC-MS/MS (7890A GC coupled 

to a 7000 Quadrupole MS/MS, both from Agilent, Santa Clara, CA, equipped with a CTC Combi 

PAL autosampler, CTC Analytics AG, Zwingen, Switzerland), as described in [43] and/or 

anion-exchange LC-MS/MS [44]. GC-MS was used for the quantification of amino acids, as 

described in [45]. Ion-pair reversed phase LC-MS/MS was used for the quantification of 

nucleotides, as described in [46]. The isotope dilution mass spectrometry (IDMS) method, 

described in [42, 47], was used for the metabolite quantification. 

3.3 Results 

The adaptation of Escherichia coli to repetitive, dynamic perturbations was evaluated with 

respect to short and long-term physiological and metabolic characteristics: 

1) Comparison between average metabolic rates and yields under repetitive dynamic 

conditions and steady-state (reference) conditions, at the same dilution rate. 
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2) Comparison of the metabolic response between repetitive dynamics, single 

perturbations (pulse experiments) and steady-state levels. 

It was assumed that cells were adapted after five residence times under the feast-famine 

regime, and a repetitive metabolic response was obtained. This assumption was supported 

by the observation that the online measurements of dissolved oxygen (DO) and offgas (O2 and 

CO2) concentrations (Figure 3.2) and the RCO2 production rate (Appendix A.1), showed a highly 

reproducible pattern over the cycle. 

3.3.1 Escherichia coli physiological behaviour under substrate dynamics 

Extracellular environment  

During the first 100 seconds of the cycle the residual glucose concentration (Figure 3.2A) was 

higher than the reported glucose affinity constant (KM = 10 μM) of the microorganism [48]. 

This time period will be referred to as (substrate) feast phase. The concentration increased 

from 0.01 to 0.32 mM, which was the maximum value, during the first 20 s of the cycle. Then, 

glucose depleted after 100 s (< 10 μM), leading to a (substrate) famine phase.   
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Figure 3.2 Measured concentrations and calculated rates during the feast-famine cycle (s), approximately 8 

generations after the beginning of the regime. A) Residual glucose concentration (mM), quantified by 

GC-MS/MS. B) Dissolved oxygen concentration (%) in the broth, raw data (black) and calculated, eliminating 

delays of the used Clark probe, (blue). C) Measurements of oxygen content in offgas (%). D) Measurements of 

carbon dioxide content in offgas (%). E) Calculated oxygen uptake rate (mmolO2/gCDW/h) based on the headspace 

and tubing offgas delays. F) Calculated carbon dioxide production rate (mmolCO2/gCDW/h) based on the 

headspace, tubing offgas delays and bicarbonate in the broth. G) Respiratory quotient (RQ) over time derived 

from the calculated qO2 and qCO2. Data of 16 successive cycles are overlapped for DO, O2 and CO2 (B, C, D). The 

pink area in the plots represents the substrate feast phase. Green vertical dashed lines show the end of the 

feeding (20 s).  

The broth dissolved oxygen profile was estimated by deconvolution (Figure 3.2(B) blue line), 

i.e. accounting for the dynamics of the Clark electrode (see Appendix A.2 for details).  

With the supply of substrate, a decreased dissolved oxygen concentration was observed, 

suggesting a (high) oxygen consumption during the substrate feast period. The same 

behaviour was expected for the offgas measurements. The minimum O2 concentration (and 

maximum CO2) was observed only after the end of the feast phase. This delay can be 

explained by the headspace and tubing gas hold-up [49]. The O2 uptake rate and CO2 

production rate over time (Figure 3.2 (E-F)) were therefore calculated, taking into account 

these delays (Appendix A.3). For the CO2 production, the interconversion of dissolved carbon 

dioxide to bicarbonate in the broth, due to the neutral pH 7 was, also, taken into account. The 

respiratory quotient (RQ) was then derived from these rates over time (Figure 3.2G). We 

observed that the RQ decreased from 1.5 to 0.7 during the first 50 s of the feast phase, and 
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increased back to the initial value after approximately 200 s, indicating that the electrons, 

from 20 to 120 s of the regime (RQ < 1), are transferred to oxygen, while the respective carbon 

is not found in the form of CO2. Therefore, we expect a form of intracellular storage 

compound (with electron to carbon ratio e-/C < 3), synthesized in the feast phase and 

degraded in the famine phase. Further discussion on this follows after the metabolome 

section. 

Average biomass specific rates and yields 

In order to compare the physiology of the cells between steady-state and feast-famine 

conditions, the respective biomass specific conversion rates were calculated (Table 3.1). For 

the steady-state culture, rates were derived from the respective mass balances. During the 

intermittent feeding regime, all of the glucose supplied over one cycle was consumed, 

according to the GC-MS/MS measurements. Therefore the average glucose uptake rate (qglc) 

was calculated as the amount of substrate fed over the total cycle time. Taking into 

consideration the 20 h average doubling time of Escherichia coli at a dilution rate of 0.05 h-1, 

we expected the biomass concentration to vary by 0.5% during one cycle. This small change 

could not be determined experimentally, therefore a constant specific growth rate (μ) was 

considered within a cycle and calculated using the average of six cell dry weight 

measurements. To calculate the average O2 uptake and CO2 production rates, the respective 

online measurements were first integrated (trapezoidal method) over time, and then 

averaged for 16 successive cycles. 

The extracellular by-product (acetate, lactate, formate and ethanol) concentrations 

(Appendix A.4), obtained from HPLC measurements, were also integrated over the cycle and 

their average formation rates were then calculated from their mass balances (raw data can 

be found in Appendix A.5). The average acetate production did not exceed 0.02 mmol/gCDW/h, 

both during steady-state and feast-famine conditions. The absence of high amounts of 

by-products in E.coli cultivations has been observed in previous studies, both during 

chemostat (usually at lower dilution rates (up to 0.3 h-1)) and after glucose or oxygen 

perturbations [50-54]. The by-product formation is related to overflow metabolism, a 

common phenomenon in E.coli cultivations in glucose-containing medium, where acetate is 

produced even when the culture is fully aerated [55-57]. Here, overflow metabolism was not 

significantly affected by the transition of the cells from steady-state to long-term dynamics.  

The biomass specific rates were reconciled using the approach described in [58], using 

element conservations as constraints and the total organic carbon (TOC) measurements of 

the broth and the filtrate. A constant biomass composition of CH1.73N0.24O0.35S0.006P0.005 

(γΧ=4.38, MW=23.2 g/Cmol) [59] was used for all calculations. The phenomenon of cell lysis 
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was also introduced in the reconciliation to account for carbon and electrons of non-viable 

biomass. 

Table 3.1 Steady-state and average feast-famine biomass specific rates with their associated standard 

deviations. All the results presented in the table were calculated using data reconciliation. Raw data can be 

found in Appendix A.5. 

 
Steady-state Feast-famine 

(cycle average) 
log2-fold changes 

between the two regimes 

Biomass Concentration (g L-1) 9.33 ± 0.01 6.28 ± 0.03 - 0.6 

Biomass Growth μ (g gCDW
-1 h-1) 0.044 ± 0.002 0.048 ± 0.003 + 0.1 

Lysis rate (g gCDW
-1 h-1) - 0.008 ± 0.006 - 

qGlucose (mmolglc gCDW
-1 h-1) -0.73 ± 0.01 -1.12 ± 0.02 + 0.6 

qO2 (mmolO2 gCDW
-1 h-1) -2.08 ± 0.02 -4.42 ± 0.06 + 1.1 

qCO2 (mmolCO2 gCDW
-1 h-1) 2.30 ± 0.02 4.53 ± 0.06 + 1.0 

Respiratory Quotient 1.11 ± 0.01 1.03 ± 0.02 - 0.1 

Total Biomass Yield (gCDW gglc
-1) 0.31 ± 0.01 0.21 ± 0.01 - 0.5 

Oxygen to Substrate ratio 
(mmolO2 mmolglc

-1) 
2.85 ± 0.05 3.94 ± 0.08 + 0.5 

 

The most evident observation is that the calculated rates for glucose and oxygen uptake and 

CO2 production were higher (+0.6, +1.1, +1.0 log2-fold times respectively) for the intermittent 

feeding, compared to the reference continuous regime. More specifically, during the 

reference chemostat operation, the oxygen to substrate consumption ratio was 2.85 ± 0.05 

molO2/molglc, which is comparable to the values reported in literature for similar cultivation 

conditions, ranging from 2.74 – 3.62 molO2/molglc [50, 51, 59-61]. When the cells were 

subjected to feast-famine cycles, the average oxygen to substrate ratio increased, reaching 

3.94 ± 0.08 molO2/molglc.  

Introducing potential cell lysis in the reconciliation, we observed that the lysis rate during the 

steady-state was calculated as negative (while positive by definition), with a high standard 

deviation and therefore the steady-state lysis was assumed zero.  

The intermittent feeding, resulted in decreased average cell dry weight concentration and 

subsequent 0.5 log2-fold decrease (-30.3%) of the total biomass yield. The biomass yield was 

calculated as the ratio of the total biomass growth rate (including lysed biomass) over the 

glucose uptake rate. A decrease in biomass yield has also been reported in previous studies 

for E.coli, when varying the substrate availability. Many studies attributed this phenomenon 

either to overflow metabolism, due to high growth rates (>0.15 h-1) [25, 39], or to oxygen 

limitation. For example, Neubauer P, et al. [62] observed a 10% decrease in yield for cells 

circulating from zones of glucose excess to glucose starvation in a scale-down 



Escherichia coli metabolism under short-term repetitive substrate dynamics: 
Adaptation and trade-offs 

 

53 
 

two-compartment reactor (continuous stirred and plug flow), compared to reference 

conditions. This was explained by the oxygen limitation occurring in high-concentrated 

regions of glucose. However, this was not the case in our experimental setup. Only minor 

amounts of acetate were produced as a by-product and did not increase under the dynamic 

conditions. In addition, we did not observe any changes (elemental analysis) in the biomass 

composition or morphology, during the reference conditions compared to the one during the 

feast-famine regime (Appendix A.6) Lower biomass yields were also reported for other 

microorganisms, such as Saccharomyces cerevisiae (almost 25% decrease), subjected to an 

intermittent feeding (similar to the regime used here)  [63].  

The ratio of CO2 produced per glucose consumed, during the steady-state regime, was 3.16 ± 

0.05 molCO2/molglc, while for the feast-famine a value of 4.05 ± 0.08 molCO2/molglc (+ 28.1%) 

was observed. Together with the increase in O2 consumption, it indicates that more glucose 

was used for respiration, rather than biomass production, during the feast-famine cycles [8].  

3.3.2 Glucose uptake dynamics: a matter of seconds 

The feast-famine setup allows to measure the short-term responses of E.coli cells with high 

time resolution and repeated measurements. Especially, samples can be obtained from 

repetitive cycles (Figure 3.2B, C, D), which allowed for distributing sampling over several 

cycles.  

Special focus was to obtain a high-resolution uptake profile as substrate uptake has a major 

impact on the intracellular metabolic behaviour of the microorganism. To calculate the 

short-term glucose uptake profile, a piecewise affine (PWA) rate approximation [64] was 

calculated. The breakpoints used were timepoints of 0, 2, 15, 18, 110 and 400 s. These 

breakpoints were chosen based on the highest goodness of fit (R2 was used), among various 

combinations [65]. The flux between the breakpoints followed a first order linear function 

(Figure 3.3). Note that the first and last breakpoint were coupled (cyclic regime). The rate was 

normalized using the reconciled biomass concentration of 6.28 g L-1.  
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Figure 3.3 A) Residual glucose concentration in mM (black dots) and the PWA fitted profile (blue line) over one 

cycle time (s). B) Glucose uptake rate (-qglc) in μmolesglc/gCDW/s over one cycle time (s). The red dots represent 

the breakpoints. Note that for the rate only the first 110 s are shown. For t > 110s, the flux was zero until the 

end of the cycle. Green vertical dashed lines show the end of the feeding (20 s) and the horizontal dotted lines 

represent the average steady-state levels.  

There was no obvious correlation between the glucose uptake rate and the extracellular 

glucose concentration. The rate reached its highest value (4.68 μmol/gCDW/s) immediately 

after the beginning of the feeding and then decreased slightly until the end of the feeding, 

followed by significant decrease between 15 s and 18 s, i.e. from 4.40 to 1.04 μmol/gCDW/s. 

This contradiction is explained by the activity of the phosphotransferase system (PTS) [66], 

which is the main substrate uptake system in E.coli under glucose excess (Km is in the range 

of 3-10 μΜ [48, 67]). Therefore, the glucose transport did not depend only on the extracellular 

concentration, but also on the intracellular concentrations of other metabolites like 

glucose-6-phosphate (G6P), phosphoenolpyruvate (PEP) and pyruvate, which are key 

components of the PTS. 

The overshoot in the glucose uptake rate has been previously observed in cells exposed to 

excess of substrate after a starvation period, in different experimental setups [52, 60, 62]. 

However, the main difference of our work is that we described an adapted microorganism, 

which has sustained substrate perturbations for more than 8 generations, while the 

above-mentioned studies reported the behaviour of the cells right after applying a 

perturbation for the first time. 
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The highest estimated uptake rate in our work was significantly higher than the maximum 

observed during batch cultivations for the same strain (3.06 [68] and 3.30 [52] μmol/gCDW/s), 

proving that the microorganism has a higher uptake capacity than the one observed under 

maximum growth. It is, however, puzzling that the glucose uptake rate was decreasing already 

(mainly after 18 s), while glucose was still in excess (above the glucose affinity constant). An 

additional test experiment was performed under the same cultivation conditions, with a 

shorter feeding phase (13 s) but the same cycle length (400 s) and the same total amount of 

glucose fed over the cycle. The glucose uptake rate calculated (data not shown) exhibited the 

same decreasing pattern 2 seconds before the end of the feeding phase (at 11 s), while 

glucose was still in excess. Raw observations of this test experiment are included in Table A-2 

(Appendix A.5). Therefore, it is concluded that the specific feeding time, chosen for the 

experimental setup of this study, was not an influencing factor of this behaviour. This 

decrease suggests that there was another limitation in further metabolizing glucose, which 

arose early in the feast phase. Another critical observation is that the uptake of glucose was 

decoupled from the oxygen uptake. While there was no glucose uptake after 100 s (Figure 

3.3B), oxygen was still consumed (Figure 3.2Ε), suggesting that an intracellular compound was 

oxidised during the substrate famine phase. Different hypotheses for both observations will 

be derived (see Discussion) based on the analysis of the intracellular metabolite 

measurements (section 3.3.3). 

3.3.3 Metabolite dynamics in the intracellular space  

The highly dynamic glucose uptake rate, discussed in the previous section, was expected to 

result in significant fluctuations in the intracellular metabolite levels. Therefore, it is 

important to observe how E.coli is regulating its metabolic network to handle the increased 

fluxes under these rapidly changing conditions, without detrimental effects on its survival. For 

this aim, a broad range of intracellular metabolites were quantified during the reference 

chemostat regime and the feast-famine cycle regime, including glycolysis, tricarboxylic acid 

(TCA) cycle, pentose phosphate pathway (PPP) intermediates and amino acids. These 

measurements originated from one experiment, but metabolites were sampled densely in 

time, over several cycles. The clear trends of the measurements showed high technical 

reproducibility (i.e. sampling and analysis). 

Glycolysis and Pentose Phosphate Pathway 

The intracellular flux profiles over time were estimated by (dynamic) Flux Balance Analysis 

(FBA) for the glycolytic and pentose phosphate reaction steps. The stoichiometric network 

included reactions of central carbon metabolism, where the intermediates could be measured 

(otherwise lumped, see Appendix A.7 for details). The glucose uptake rate, derived previously, 

was used as input for the PTS flux. For the steady-state flux determination it was assumed 
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that 70% of the PTS flux was directed towards glycolysis, while the rest was directed towards 

the pentose phosphate pathway; this ratio is a recurring value reported in literature [59, 69-

71]. For the dynamic flux determination during the feast-famine cycles, instead of setting the 

PTS flux split ratio, we used the minimization of the squared difference between the dynamic 

and the steady-state phosphoglucoisomerase (PGI) and PPP fluxes as the optimization target 

(i.e. minimization of metabolic adjustment – MOMA) [72]. It has been suggested that mutant 

E.coli strains redistribute their metabolic fluxes in such way to minimally divert from the 

wild-type metabolic network [72-74]. Our work is a comparable case, where the perturbation 

of the cells was not genetic, but kinetic, as a result of an intermittent substrate feeding. It 

was, therefore, assumed for our analysis that the optimal flux distribution after the 

perturbation required the smallest change from the steady-state metabolism, the same way 

the genetic engineered strains adapt with respect to the wild-type.  

The simple network used in FBA is shown in Figure 3.4, along with the measured metabolite 

concentrations and the estimated fluxes over time. MOMA was performed in Matlab R2018a, 

The MathWorks, Inc., using quadratic programming. The derived fluxes in the chosen 

breakpoints can be found in Appendix A.8. 
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Figure 3.4 Network model used for the flux balance analysis. Metabolite names are shown in yellow text boxes. 

Under each metabolite, its intracellular concentration (μmol/gCDW) (extracellular only for glucose) over time (s) 

is shown. Black dots represent the measurements, the red line is the PWA fitted line and black dashed lines 

represent the average steady-state levels. Green vertical dashed lines show the end of the feeding (20 s). The 

pink area represents the substrate feast phase. The blue line plots show the FBA estimated flux profiles in 

μmolreaction_substrate/gCDW/s, where the blue dots are the values at the breakpoints. Fluxes are shown up to 110 

seconds and they were all zero afterwards until the end of the cycle. 

Looking at the dynamics in terms of concentration profiles, we observed that the 

microorganism transported the glucose from the extracellular to the intracellular space, 

causing all the upper glycolytic metabolites to increase during the first 20 s, in agreement with 

the extracellular glucose decrease. After fast filling of the pools, depletion also followed the 

extracellular concentration profile, i.e. very low concentration levels were observed during 

the famine phase (>100 s). The measured concentrations were significantly higher than the 

steady-state levels (e.g. up to 20 fold change for FBP), due to the short-term overshoot of 
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carbon flux. The opposite trend was observed for the lower glycolytic metabolites (3PG, 2PG, 

PEP), whose concentration immediately decreased in the first seconds of the feast phase (3-6 

fold change from steady-state).  The reason behind this drop is based on the PTS system. In 

order to import and phosphorylate glucose to G6P, PEP needs to be produced and then 

converted to pyruvate. Unfortunately, pyruvate could not be quantified in this experiment. 

PEP concentration showed negative correlation with G6P, as it reached its lower 

concentration after 12.5 s, the same time the maximum concentration of G6P was reached. 

This behaviour has been observed before in E.coli responses to glucose pulses [50, 75-77]. 

Even in lower concentrations PEP was always available, during the whole cycle, for the import 

of glucose, therefore no limitation in the glucose transport system of E.coli was observed. 

The metabolites of pentose phosphate pathway related well to the dynamics observed in 

glycolysis, as they exhibited the same behaviour of rapid accumulation in the beginning of the 

feast phase and later decrease to the initial levels. The pool of 6PG responded directly to the 

changes occurring in its precursor, G6P, reaching its maximum concentration at 20 s (7.5 s 

delay compared to G6P). This peak was observed slightly later in the rest of the metabolites, 

with the exception of Xyl5P, which responded equally fast. 

Looking at the flux profiles, we observed that the glucose uptake rate dynamics propagated 

through glycolysis. The peak observed in the PTS flux right at the beginning of the feeding, 

also occurred in the succeeding reactions towards the formation of PEP and they all decreased 

significantly after 15 s. After 110 s all metabolite pools remained constant, while there was 

no more flux running in glycolysis. The same trend was also observed in all the reaction steps 

of the pentose phosphate pathway. 

Compared to the steady-state levels, the immediate increase of the PTS flux (16 fold) led to a 

higher change in all the glycolytic fluxes (18-19 fold) and an even higher increase in the flux 

towards PPP (30 fold). This observation, together with the fact that 62.4% of the PTS flux was 

directed into glycolysis (less than the 70% assumed in steady-state), gives an indication that 

the cells may increase the flux to pentose phosphate pathway, under these dynamic 

conditions, therefore enhancing the production of NADPH, assumingly for redox balance 

purposes. Similar increase was observed after a single-pulse of glucose in an aerobic E.coli 

culture, which was used to further support the calculated increase in growth rate during the 

feast phase [52]. NADPH was, therefore, needed to support the increased growth. This 

behaviour has, also, been observed as a response to oxidative stress for E.coli [78, 79] and 

other organisms [80, 81].   
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TCA Cycle 

In the case of the TCA cycle, only a few metabolites could be precisely quantified, which are 

shown in Figure 3.5.  

 

Figure 3.5 Intracellular concentrations (μmol/gCDW) of TCA metabolites (a-ketoglutarate, malate and fumarate), 

over a feast-famine cycle (s). Black horizontal dashed lines represent the average steady-state levels. Green 

vertical dashed lines show the end of the feeding (20 s).The pink area represents the substrate feast phase.  

Following glycolysis, also the TCA metabolites showed a dynamic profile over time. We 

observed that aKG and malate reached their highest concentration 30 s after the beginning 

of the feast-famine cycle (Figure 3.5), displaying a delay of 10 s compared to the glucose 

profile (Figure 3.3). This delay was also evident during the famine phase, as the metabolite 

levels reached low levels much later than the glycolytic ones (>100 s). Fumarate showed a 

more oscillating profile over time, but a general increase of the pool during the feast phase 

and a following decrease, to the initial levels at the end of the cycle, was detected. The highest 

concentration change during the cycle was observed for malate (6.1 fold), which was still 

lower than the dynamics of the upper glycolytic metabolites, such as G6P (31.7 fold) and F6P 

(18.8 fold). 

Amino acids 

Amino acids are relevant precursors for protein synthesis. At the same time, several amino 

acids are closely connected with their respective central carbon metabolism precursor. For 

example alanine is only one (equilibrium) reaction step from pyruvate. Thus, on the one hand 

one could expect homeostasis to ensure balanced growth, on the other hand a high 

dependency on central carbon metabolism (Appendix A.9). Amino acids derived from E4P 

(Figure A-3, Appendix A.9) displayed a similar dynamic profile with their precursor, with delays 

in reaching their highest values. The same trend was observed for the amino acids derived 
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from aKG (Figure A-7, Appendix A.9) and the ones from pyruvate (Figure A-6, Appendix A.9). 

They all increased and decreased over time related to the concentration of their precursors, 

with some exhibiting more pronounced and faster dynamics (e.g. glutamine, alanine, leucine) 

than others (e.g. lysine, proline). On the other hand, serine, tryptophan and glycine were not 

significantly affected by the profile of their precursor, 3PG, as they displayed small changes 

over time, remaining close to their steady-state values (Figure A-4, Appendix A.9). The amino 

acids, derived from oxaloacetate, also, displayed various trends, either rapidly increasing (e.g. 

threonine) or decreasing (e.g. aspartate, cysteine) during the feast phase (Figure A-5, 

Appendix A.9).  

The largest deviation of concentrations from the steady-state ranged from 1 to 3 fold times 

for most of the amino acids, more modest than the changes in their precursors. Cysteine was 

the only exception, as its concentration was measured to be 200 fold higher than the 

steady-state, in the beginning of the feast-famine regime (Figure A-5, Appendix A.9). 

Interestingly, while all amino acid concentrations decreased at the end of the cycle towards 

biomass synthesis, some even reaching their low steady-state levels, the opposite trend was 

observed for aspartate. Aspartate decreased rapidly during the feast phase and then 

increased during the famine phase, reaching a concentration of around 6 μmol/gCDW, while its 

steady-state concentration was 2.6 μmol/gCDW (Figure A-5, Appendix A.9). 

Nucleotides and Energy Homeostasis  

 

Figure 3.6 Intracellular concentrations (μmol/gCDW) of nucleotides, as well as the adenylate energy charge (AEC), 

over a feast-famine cycle (s). Black horizontal dashed lines represent the average steady-state levels. Green 

vertical dashed lines show the end of the feeding (20 s). The pink area represents the substrate feast phase.  
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Nucleotide responses to the feast-famine regime are of high interest and especially the 

ATP/ADP levels, which reflect the adenylate energy state (𝐴𝐸𝐶 =  
ATP+

1

2
ADP

ATP+ADP+AMP
  [82]) of a 

cell and can provide insights on how the cells encounter the dynamic perturbations 

energetically. As expected, but still surprising, the AEC of the cell showed stability throughout 

the cycle (average value of 0.79), indicating that the total rate of ATP production is equal to 

the one of ATP consumption. The average AxP (sum of ATP and ADP) concentration was in 

the range of 6.99 μmol/gCDW, while the energy turnover is expected in the range of 0.4 to 1 

second, using a normal P/O ratio (2.98) for E.coli [59]. Therefore, such balancing occurred in 

sub-seconds. Under glucose-limited and batch growth conditions the AEC, in most 

microorganisms, ranges between 0.7-0.95 [83-86]. AMP concentration was at noise level and 

therefore not quantified. Its contribution on the AEC calculations was neglected. 

Our findings are in agreement with results from single pulse experiments [50, 52, 87], as well 

as two-compartment scale-down cultivations [34], in E.coli K12, where the energy 

homeostasis was also reported during glucose excess (AEC ranging from 0.8 to 0.85 in the 

different studies). However, in these studies, the AEC was decreasing during the famine 

phase, sometimes reaching values even lower than 0.7 [34], which was not the case in our 

experiment. Link H, et al. [88] also observed that the AEC remained unaffected, ranging 

between 0.7-0.8, after transferring fed-batch grown cells to batch reactors. 

In contrast to AxP’s, UDP and UTP were not homeostatic. They decreased over the feast phase 

and increased during the famine phase. Also, GDP and GTP were dynamic with a trend 

opposite to UxP’s (Figure 3.6). 

Total Metabolome 

From the extracellular observations, it was observed that the carbon uptake and excretion 

were significantly shifted. While the substrate carbon was consumed only during the first 100 

s, excretion in the form of CO2 was observed over the whole cycle (400 s). The specific glucose 

uptake rate was higher than at the reference steady-state and there was no significant 

accumulation of by-products. This suggests high intracellular accumulation of carbon during 

the feast phase and degradation during the (extracellular) famine phase. 

The total amount of intracellular carbon during steady-state and feast-famine was calculated 

from the measured metabolites at every timepoint and is shown in Figure 3.7. 
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Figure 3.7 Top: Total amount of intracellular metabolites measured (in μCmol/gCDW) over a feast-famine cycle 

(s). The black horizontal dashed line represents the average steady-state levels. Bottom: The carbon distribution 

(% of the total intracellular metabolome measured) in metabolites of different categories/pathways, over a 

feast-famine cycle (s). Green vertical dashed lines show the end of the feeding (20 s). The pink area represents 

the substrate feast phase. The detailed list of metabolites for each category can be found in Appendix A.10. 

The total amount of metabolites was changing over time, during the feast-famine regime. We 

observed a small decrease in the total metabolome during the first 10 seconds of the cycle, 

followed by an increase until the highest point (1661 μCmol/gCDW), at 30 s (Figure 3.7-top). 

After this point, the concentrations remained constant (around 1420 μCmol/gCDW) until 

approximately 120 s. Then a constant decrease, until reaching the initial level, was observed. 

Significantly, the total amount of carbon in the measured metabolome was, at all timepoints, 

higher than the steady-state levels, resulting from the overshoot in the glucose uptake.  

But which metabolites accounted for the highest changes? In Figure 3.7 (bottom) metabolites 

have been divided in different categories, based on their pathways, and the carbon 

percentage of the total metabolome that they represented was plotted over time. Amino 

acids were found to contain most of the total carbon during the whole cycle, ranging from 39 

to 49%, with glutamate contributing the most to this observation, being the most abundant 

pool measured. Trehalose was also a significant pool, accounting for approximately 34% of 

the total carbon, remaining however, constant over time. In the first 20 s of the feast-famine 

regime, the carbon percentage of central carbon intermediates (glycolysis, PPP and TCA) was 

increasing, in addition to the metabolites M6P, T6P, UDP-glucose, M1P and G1P (representing 

the rest in Figure 3.7-bottom). Besides increasing metabolites in central carbon metabolism, 

there were also several metabolites with the contrary response (see metabolites of lower 

glycolysis – Figure 3.4). Because of this, the change in the central carbon metabolites (Figure 

3.7-bottom) seems less dynamic than the concentration profiles shown in Figure 3.4. The 
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highest change was attributed to citrate (2-6% of the total carbon measured) (Figure 

3.7-bottom). After 20 s, while glucose uptake rate was already lower, the filling of the amino 

acid pools was evident, as their carbon percentage increased during the feast, as well as the 

first 100 s of the famine phase. Nucleotides remained constant over time, as discussed earlier 

in this section. 

From the oxygen uptake profile (Figure 3.2E), we derived that 41.5% of the total oxygen 

consumption occurred during the first 110 s of the cycle (feast). However, oxygen was still 

consumed in the famine phase, with a lower rate, until approximately 250 s when it reached 

the initial uptake level and remained constant until the end of the cycle. Since glucose was 

depleted during that phase and by-product concentrations were not changing over time, the 

electrons consumed must have been supplied either by an intracellular storage compound or 

other accumulated intermediates, as is also shown from the RQ calculation (Figure 3.2G).  

The most common storage polysaccharides in E.coli are trehalose [89] and glycogen [90]. As 

discussed above, trehalose was a big intracellular pool, but did not change over time and was 

therefore ruled out as a buffer compound. Glycogen is the most well-known storage 

polysaccharide in E.coli. When the substrate is in excess, some of the glycolytic flux is diverted 

in the production of glycogen by G1P. The cells can then use this storage to grow under 

substrate limitation [91]. An attempt to quantify intracellular glycogen was performed, 

leading only to the conclusion that glycogen levels were increased during feast-famine, 

compared to steady-state. However, the measurements were not accurate enough to 

conclude if there was production and consumption during the dynamic cycle and therefore 

data are not shown. 

Looking at the rest of the intracellular intermediates, the total accumulation, in terms of 

carbon, during the feast phase was calculated to be 256 μCmol/gCDW, which is 1.6 mCmol/LEC 

(Figure 3.7-top). This amount represented 34% of the total glucose (4.7 mCmol/LEC) consumed 

by the cells in the first 100 s of the feast-famine cycle. In terms of electrons, this accumulation 

in the feast phase was 6.4 mEmol/LEC. If all the electrons were used during the famine phase, 

the maximum oxygen consumption observed would be 1.6 mmolO2/LEC. In fact, we estimated, 

from the calculated qO2, that indeed around 1.6 mmolO2/LEC were consumed during the famine 

phase. Therefore, all of the accumulated intracellular metabolites could have been used as 

electron donors and could explain the O2 uptake, while the substrate was depleted. Taymaz-

Nikerel H, et al. [52] reached to similar conclusions. In their case, 50% of the intracellular 

metabolites were catabolised in the famine phase, after a single glucose pulse, with glutamate 

being the most abundant pool.  



 
Chapter 3 

 

64 
 

3.4 Discussion 

E.coli cultured under dynamic substrate conditions exhibited a different physiology compared 

to conditions supplying the same amount of substrate steadily. Namely, the average biomass 

specific consumption (glucose, O2) and production rates (CO2) increased under the 

feast-famine regime, compared to the steady-state, while by-product synthesis remained 

unaffected. Consequently, biomass formation was adversely disturbed with 30% decrease in 

yield.  

These observations suggest that during the intermittent feeding, more glucose was used for 

respiration than biomass production. This would mean that either the excess of ATP produced 

was used in other cellular processes or the activity of the proton translocating ATPase showed 

a reduced efficiency, leading to a decrease of ATP synthesis. If the energy-spilling scenario is 

correct, it would imply an increase in maintenance or the presence of futile cycles.  

Alternatively, this change in physiology could be attributed to an increase in competitiveness. 

Fast consumption of the substrate generates an advantage compared to slow competitors, as 

an increasing share of the substrate will go to the faster consuming cells [92]. 

Maintenance 

Maintenance is defined as the energy-consuming processes “for functions other than 

production of new cell material” [93]. In E.coli, the most important maintenance processes 

described in literature, are protein turnover (synthesis and degradation), switches in 

metabolic pathways, proteome and RNA repair and cell motility [92, 94-96]. Any of these 

parameters can, therefore, provide an explanation of the decrease in biomass yield. Protein 

turnover rate is an important characteristic of the cell. Energetically, a majority of ATP is used 

for protein synthesis and degradation. It is well-known that the cell uses its proteasome to 

degrade misfolded proteins or proteins with other abnormalities. Therefore, the change from 

a steady-state to a dynamic environment may have resulted in accumulation of proteins 

which have to be rapidly eliminated by the cell [97]. The ATP demands for protein turnover 

could have thus increased, causing the loss in biomass yield. The cost of protein degradation 

by the proteasome has been estimated to be minimum two ATP molecules per peptide bond 

[98, 99]. Protein turnover rates can be quantified with dynamic 13C labelling of the amino 

acids pools and proteasome activity essays [100, 101], which were not performed in this 

study.  

Futile cycles 

Futile cycles may also explain the ATP-spilling during the feast-famine regime. Some potential 

futile cycles, already described in literature, are: 
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1) The reconversion of oxaloacetate to phosphoenolpyruvate by the gluconeogenic PEP 

carboxykinase [102]. This ATP-dissipating futile cycle has been identified for low 

dilution rates in glucose-limited chemostats of a pyruvate kinase deficient E.coli strain 

[103], as well as, for the wild-type under very low glucose availability [104]. The 

induction of this futile cycle showed stimulation of glucose and oxygen uptake rates, 

decrease of growth yield on glucose and increase of fermentation products [105]. Yang 

C, et al. [106] demonstrated that ATP dissipation, by the PEP carboxykinase futile cycle, 

increased with the decrease of the growth rate, reaching 8.2% of the total ATP 

produced, at a dilution rate of 0.01 h-1. 

2) The reconversion of fructose-1,6-biphosphate to fructose-6-phosphate by fructose 

1,6-bisphosphatase. Usually this futile cycle is tightly regulated by the cells and is 

therefore minimal under both glycolytic and gluconeogenic conditions [107, 108].  

3) The reconversion of pyruvate to phosphoenolpyruvate by phosphoenolpyruvate 

synthase, with the involvement of Enzyme I of the PTS [109, 110]. 10% of PEP was 

found to be produced by pyruvate during growth of E.coli wild-type on glucose [109]. 

4) The reconversion of acetate to acetyl-coA by acetyl-coA synthetase [111]. Valgepea K, 

et al. [112] claimed that bacteria may use this futile cycle under low nutrient 

availability, for chemotaxis, fighting other organisms, biofilm formation and other 

functions. 

5) Glycogen formation and re-consumption. The formation of glycogen, by glycogen 

synthetase, requires one ATP per glucose, while its consumption does not form any 

ATP [92, 113]. 

All of the above-mentioned futile cycles could be active in E.coli during the feast-famine 

conditions. It is well possible that the cells up-regulate the enzymes of these futile cycles, in 

order to rapidly switch the direction of the fluxes, when shifting from feast to famine 

conditions. The reasons behind this metabolic strategy can be the rapid re-initiation of growth 

and the tight regulation of the ATP levels in the cell. We indeed observed a constant energy 

cellular status over the intermittent regime, which enhances the hypothesis of this role of 

futile cycles. However, the identification and interpretation of these energy-spilling reactions, 

under alternating feast-famine conditions, has not been studied in literature. Measurements 

of the enzyme expression and 13C flux determination will be needed to confirm our 

hypotheses. In addition, knocking out some of the enzymes causing these futile cycles and 

growing the engineered strains under the same conditions would be a strategy to verify if 

they are key elements of the ATP homeostasis.  
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Proton translocation 

If the less effective proton-translocation ATP synthase scenario is correct (reduced P/O ratio), 

that would mean that the cells would need to compensate for more ATP by (1) substrate-level 

phosphorylation and/or (2) increased respiration. Since the glucose uptake was higher under 

the feast-famine conditions, compared to the reference steady-state, more redox equivalents 

were produced over time, developing the need for higher respiration rates, which was also 

verified by our experimental data. In this case respiration is not totally coupled to ATP 

synthesis, as has been observed before [114]. Noda S, et al. [115] and Jensen PR, et al. [116] 

observed significantly decreased growth yield and increased specific rates of both glucose and 

oxygen consumption in different mutant E.coli strains, lacking F1-ATPase, under steady-state 

and batch growth, which shows how the microorganism behaves when oxidative 

phosphorylation is impaired. Koebmann BJ, et al. [117] also demonstrated similar results by 

manipulating the expression of the F1 subunits from the H+-ATP synthase, enhancing 

uncoupled ATP hydrolysis in E.coli. 

However, it is still surprising that, in our experimental work, the rise in substrate-level 

phosphorylation did not lead to an increase in acetate formation, contrary to all the above 

mentioned studies. Yet, the reason behind the potential less efficient function of ATP 

synthase is, however, unknown. A hypothesis could be the need of the cells to translocate 

more protons outside of the cytosol, compared to the amount imported, in order to maintain 

the intracellular pH homeostasis. Due to the high metabolic rates, many acidic compounds 

were produced, acidifying the cytoplasmic space. Therefore, decreasing the expression of ATP 

synthase that brings protons into the cell, can be an advantageous strategy for the 

intracellular pH to remain constant and close to neutral values. This strategy has been 

observed for growth under highly acidic environments [118, 119]. However, the decrease in 

ATP synthase efficiency has not been studied for feast-famine conditions in literature, 

therefore a proteome study on this complex would be necessary to support this hypothesis. 

Another approach would be to identify the P/O ratio during steady-state and feast-famine by 

cultivating the cells under different substrates and growth rates as in [120-122]. More 

methods have also been used in literature, such as ADP pulses combined with oxygen 

electrode measurements (for review see [123]). 

Short-term uptake dynamics 

Based on high time resolution, extracellular glucose concentration measurements and PWA 

rate approximations, the glucose uptake rate was calculated over cycle time and showed an 

immediate increase after the feeding was switched on. This rate reached a maximum value, 

higher than batch maximum rates, and decreased before the concentration decreased. The 

fact that glucose was still in excess, but the uptake rate could not follow up, indicates the 
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existence of an intracellular metabolic limitation. From our intracellular metabolic analysis, 

we showed that there was enough PEP during the whole cycle to drive glucose transport in 

the cell through the PTS, therefore, the import of substrate was not the limiting step. One 

hypothesis which could explain the switch in the uptake rate is the phenomenon of 

macromolecular crowding. Macromolecular crowding is occurring in all living organisms, as a 

large part of the volume of the cell is occupied by high concentrations of macromolecules, 

such as proteins. Thus, there is limited intracellular volume available for other molecules. This 

volume exclusion affects various enzymatic reactions, either by increasing or decreasing their 

rates, depending on the change in size of the reactants [124-127]. While it has been shown 

that macromolecular crowding demonstrates mostly advantageous effects on cell 

metabolism [124, 127-129], it can also function as a constraint for cells which exhibit high 

metabolic rates [130]. Beg QK, et al. [131] developed a flux balance model of E.coli (FBAwMC), 

including a constraint for the enzyme concentrations, considering the macromolecular 

crowding. With this model they predicted the maximum growth both in single-substrate, but 

also in mixed substrate media, accurately representing experimental observations, showing 

that the growth rate was influenced by the solvent availability in the cytoplasm. In a following 

study, Vazquez A, et al. [132] applied the same modelling framework to changes from low to 

high growth rates. Their results demonstrated, among others, that under high metabolic rates 

the limitation in substrate uptake and growth rate is highly related to the crowding of the 

intracellular space. Therefore, the high metabolic rates observed in our study, during the 

feast-famine regime, may have caused the limitation observed in the glucose uptake rate 

after 18 s, as the cytosol space may have been unable to handle further increase of 

macromolecules produced. It was, however, challenging to identify if this source of regulation 

is indeed the cause for the change in the uptake rate, with the current dataset. More reasons 

could involve membrane integrity, as there is a minimal lipid to transporter proteins ratio 

[133] or enzyme kinetic constraints [130].  

Furthermore, we observed the high capacity of intracellular metabolism facing the substrate 

gradients applied. There was a rapid response in intracellular metabolite concentrations and 

fluxes, which generally deviated significantly from the steady-state. The dynamics observed 

were less pronounced moving downstream, from glycolysis to TCA and then to amino acid 

synthesis, with more modest changes over time. One of our most interesting observations, 

was the impressive capability of the cells to maintain the adenylate energy charge 

homeostasis, over the whole time of the substrate perturbations. One potential mechanism, 

which could explain this balance between ATP production and consumption, is the production 

of inorganic polyphosphate, a long-chain polymer, as an energy buffer [134]. The enzyme 

polyphosphate kinase (Ppk) has been identified and characterized in E.coli [135-137]. This 

enzyme is responsible for the polymerization of the terminal phosphate of ATP towards 
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polyphosphate (nATP ↔ nADP + polyPn). It also catalyses the reversible reaction of ADP 

phosphorylation [138]. Many functions of polyphosphate have been described in literature, 

including ATP substitute, energy recycling, and environmental stress regulation [139-142]. It 

is therefore highly possible that the cells can balance the ATP production and consumption 

during the feast-famine regime, by synthesizing inorganic polyphosphate when ATP is 

produced in excess and consume it when the demand for ATP is increasing. Proteomics or 

enzymatic assays are necessary steps to prove the existence of polyphosphate kinase and the 

potential polyphosphate accumulation under these dynamic conditions. 

In addition, during the highly dynamic conditions, applied in this study, we demonstrated the 

ability of the cells to store an amount of carbon and electrons intracellularly during the feast 

phase, which were then used when substrate was depleted, therefore, explaining oxygen 

consumption during the famine phase. This strategy proves to be important for the survival 

and robustness of E.coli under nutrient-limited conditions. 

Industrial relevance 

These observations are highly relevant in an industrial context, where E.coli is aerobically 

cultivated in large-scale bioreactors, facing long-term substrate gradients. Fed-batch regimes 

are often preferred, since the substrate concentration or the specific growth rate can be 

controlled in such a way to avoid overflow metabolism [143, 144]. Therefore fed-batch 

cultivations facilitate higher biomass and product yields than batch or chemostat cultivations 

[145]. However, with the present study, we have shown that the circulation of cells around 

zones of substrate excess and limitation can lead to significant biomass yield losses, 

decreasing the profitability of the process. In addition, the immediate response of the 

microorganism to the excess of substrate, observed by the increased capacity of uptake rate, 

also leads to higher oxygen consumption. Therefore, oxygen limitation will be observed in 

these zones, or more oxygen should be supplemented in the process, which is not 

economically favourable. Moreover, several modelling approaches, which have been used to 

predict the behaviour of the cells in the scale-up, assume biomass yield as the optimization 

target. However, yields from steady-state cannot be transferred to dynamic conditions. 

Additional energy is required for processes like maintaining the energy charge homeostasis. 

Also, if these dynamic conditions affect severely the endogenous pathways of a wild-type 

strain, we would expect that artificial metabolic pathways would be even more sensitive, as 

their regulation in an engineered strain has not evolved over various environmental 

conditions [146]. 



Escherichia coli metabolism under short-term repetitive substrate dynamics: 
Adaptation and trade-offs 

 

69 
 

3.5 Conclusions 

Studying the physiological and metabolic responses of an adapted Escherichia coli culture to 

substrate perturbations, highlights parameters to take into account for metabolic engineering 

and process design in relation to large-scale reactor operation.  

(1) Cells responded immediately to an excess of substrate, by increasing their uptake rate and 

consequently the intracellular fluxes in tens of seconds. Carbon was stored in intracellular 

intermediates, during substrate feast and was consumed during a famine phase.  

(2) Despite, the highly changing dynamics, energy charge homeostasis was observed, as a 

remarkable fitness characteristic of the response to perturbations, indicating rapid metabolic 

regulation.  

(3) More important and highly relevant to industrial fermentations, was the 30% decrease of 

the biomass yield, occurring during the intermittent feeding, compared to a reference 

steady-state. Energy-spilling, was therefore, a trade-off for the adaptation of the 

microorganism in the dynamic environment, seeking for robust growth. 

The obtained results revealed some reasons for the reduced performance of cell factories 

during scale-up. E.coli responds to stress, induced by substrate gradients, by launching a 

specific metabolic strategy. In order to improve productivity cost-effectively in large-scale 

bioprocesses, we need to further identify the mechanisms behind stress adaptation, 

limitations in substrate uptake and respiration, potential energy-spilling pathways and 

optimal growth targets of the cells, combining multi-omics approaches.   
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A.1 Repetitiveness of block-wise feeding cycles 

 

Figure A-1 In black: Calculated CO2 production rate (mmolCO2∙L-1∙h-1) based on the raw offgas CO2 data, over the 

feast-famine cycle time (s). Data of 30 successive cycles, after at least 8 residence times, are overlapped. These 

rates are not corrected for delays expected due to headspace, tubing and bicarbonate in the broth. In red: CO2 

production rate (non-reconciled) during the reference steady-state. 

A.2 Dissolved oxygen  

The dissolved oxygen sensor used in this work was a polarographic ADI probe (Applisens, 

Applikon, Delft, The Netherlands) submerged into the broth. At a polarographic electrode, 

oxygen is reduced to water (cathode) and the electrons produced generate current, which 

transmits the signal. These types of probes are known to show some response delays, as a 

result of many factors, such as the membrane thickness etc. [1]. Because of the short-term 

behaviour of our experiment (seconds), the time delay of the probe should be taken into 

account, in order to estimate the real respiration rates. We will describe the oxygen probe 

dynamics with the following first order model [2]:   

 
dCO2,L
dt

=  
(CO2,L̂ − CO2,L)

τprobe
 (1) 

   

where 𝐶𝑂2,𝐿 is the dissolved oxygen measured by the sensor (%), 𝐶𝑂2,�̂� is the estimated real 

dissolved oxygen in the broth (%), t is the cycle time (s) and τprobe is the time (s) needed for 

the sensor to reach 63.7 % of the ultimate response in a step exchange experiment [3]. The 

τprobe of our sensor was measured to be 16.65 s. Therefore, the estimated dissolved oxygen in 

the broth during the feast-famine regime was calculated as follows: 
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 CO2,L̂ = CO2,L + τprobe
dCO2,L

dt
 (2) 

A.3 Calculation of O2 uptake and CO2 production rates 

In order to calculate the O2 uptake and CO2 production rates over one cycle time, the rates 

were first estimated by applying the respective mass balances over time.  

The offgas in our system consisted of oxygen, carbon dioxide and nitrogen. Nitrogen gas was 

not produced or consumed during the cultivation. Therefore the sum of fractions of gases 

entering and exiting the reactor was 1: 

 yN2,G,in + yO2,G,in + yCO2,G,in = 1 (3) 

  
 yN2,G,out + yO2,G,out + yCO2,G,out = 1 (4) 

   
where 𝑦𝑥,𝐺,𝑖𝑛 and 𝑦𝑥,𝐺,𝑜𝑢𝑡 are the fractions of the respective x gases (N2, O2 and CO2) entering 

and exiting the reactor, respectively. The fractions of O2 and CO2 were measured by the offgas 

analyzer every minute and values for every second were obtained with interpolation. 

Applying the nitrogen gas balance: 

 FG,in ∙ yN2,G,in = FG,out ∙ yN2,G,out (5) 

   
where 𝐹𝐺,𝑜𝑢𝑡 and 𝐹𝐺,𝑖𝑛 are the flow rates (mmolair h-1) of air exiting and entering the reactor, 

respectively. In our experimental setup air was provided with a flow rate of 1.875 mmolairh-1. 

From (3), (4) and (5), the gas outflow leaving the reactor was calculated, every second of the 

cycle: 

 FG,out =
FG,in ∙ (1 − yO2,G,in − yCO2,G,in)

1 − yO2,G,out − yCO2,G,out
 (6) 

   
From the mass balances of O2 and CO2, the rates of consumption and production were then 

estimated respectively: 

 RO2 = FG,out ∙ yO2,G,out − FG,in ∙ yO2,G,in (7) 

   

 RCO2 = FG,out ∙ yCO2,G,out − FG,in ∙ yCO2,G,in (8) 

   
where 𝑅𝑂2 (mmolO2 h-1) and 𝑅𝐶𝑂2 (mmolCO2 h-1) are the O2 consumption and CO2 production 

rates, respectively, for every timepoint in the feast-famine cycle.  
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The biomass specific rates were then calculated: 

 qO2 =
RO2

CBM∙V
 , qCO2 =

RCO2

CBM∙V
 (9) 

   
where CBM is the biomass concentration in the broth (gCDW L-1) and V is the broth volume (L). 

We performed the above calculations for 16 successive feast-famine cycles and then used the 

average of all cycles for every second of the cycle. 

We then added a pure time delay in both rates, which was assumed to be 46 seconds for O2 

and 72 seconds for CO2, based on the time it took for the offgas O2 concentration to decrease 

and CO2 concentration to increase (offgas analyzer) after the beginning of the feeding.  

For both rates, a piecewise affine (PWA) rate approximation [4] was calculated. The 

breakpoints used were timepoints of 0, 20, 50, 80, 135, 262 and 400 s. These breakpoints 

were chosen, as they exhibited the highest goodness of fit (R2 was used), among various 

combinations [5]. The rates between the breakpoints followed a first order linear function. 

Using the measured 𝑦𝑂2,𝐺,𝑜𝑢𝑡 and 𝑦𝐶𝑂2,𝐺,𝑜𝑢𝑡 ratios and the calculated 𝑞𝑂2 and 𝑞𝐶𝑂2 rates, an 

optimization was performed (Matlab R2018a, The MathWorks, Inc.) by minimizing the sum of 

squares between the initial measurements and the predicted. 

The following differential equations were used for the optimization: 

For oxygen: 

 
d[O2]out
dt

= FG,in ∙ [O2]in − FG,out ∙ [O2]out − RO2  (10) 

   
where [O2] is the concentration of oxygen in the gas phase. 

For carbon dioxide: 

At pH 7.0 there is significant interconversion of dissolved CO2 and bicarbonate in the broth 

[6], which was taken into account in our model. Using the system described in [7], the 

following differential equations for CO2 and HCO3
- were derived: 

 

d[CO2]out
dt

= FG,in ∙ [CO2]in − FG,out ∙ [CO2]out + RCO2 − (k1 + k2 ∙ 10
pH−14)

∙ [CO2]out + (k−2 + k−1 ∙ 10
−pH) ∙ [HCO3

−] 
(11) 
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d[HCO3

−]

dt
= (k1 + k2 ∙ 10

pH−14) ∙ [CO2]out − (k−2 + k−1 ∙ 10
−pH) ∙ [HCO3

−] (12) 

where [CO2] is the concentration of CO2 in the gas phase and [HCO3
-] is the concentration of 

bicarbonate in the broth. k1, k-1, k2 and k-2 are the reaction constants, as described in [7]. For 

our calculations we used values from the literature for 37C, as follows: 

k−1 = 60 in s-1 [6] 

k1 = e
−11.582−

918.9

T ∙ k−1 in M-1s-1  [8], where T = 310.15 K  

k−2 = 107 ∙ 10
−5 in s-1 [6] 

k2 =
e
−11.582−

918.9
T

kwf
∙ k−2 in M-1s-1  , where kwf = e

148.9802−
13847.26

T
−23.6521∙lnT

  is the water 

dissociation equilibrium constant [9].  
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A.4 Extracellular by-products 

Table A-1 Extracellular by-product concentration measurements in mM for steady-state (3 replicates) and 

feast-famine (over time). 

 Lactate Formate Acetate Ethanol 

Steady-state 

Sample 1 4.42 0.33 1.11 9.27 

Sample 2 4.53 0.33 1.12 8.62 

Sample 3 4.97 0.37 1.17 7.90 

     

Feast-famine 

Timepoints (s)     

0 1.52 1.66 2.13 - 

2.5 1.56 1.61 1.99 0.59 

5 1.54 1.62 2.01 2.15 

7.5 1.56 1.64 2.00 1.38 

10 1.57 1.52 2.21 1.13 

12.5 1.60 1.76 2.47 1.85 

15 1.54 1.75 2.39 6.58 

17.5 1.75 1.89 2.45 3.82 

20 1.80 1.94 2.44 4.21 

25 1.93 2.07 2.40 3.27 

30 1.50 1.74 2.11 4.99 

40 1.51 1.74 2.45 3.34 

50 1.67 1.77 2.33 4.74 

60 1.66 1.89 2.46 2.64 

70 1.64 1.87 2.55 2.60 

80 1.81 1.95 2.37 2.98 

90 1.56 1.63 2.07 2.52 

95 1.64 1.88 2.40 4.89 

100 1.54 1.63 2.06 - 

110 1.50 1.74 1.93 3.91 

120 1.96 2.14 2.46 3.73 

135 1.56 1.66 2.13 - 

150 1.58 1.67 2.04 5.03 

185 1.58 1.79 2.30 5.88 

220 1.55 1.64 2.07 2.68 

260 1.56 1.63 2.06 - 

330 1.54 1.63 2.08 - 

360 1.61 1.71 2.06 4.69 

400 1.52 1.66 2.13 - 
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A.5 Biomass specific rates (raw data) 

Table A-2 Raw data of steady-state and average feast-famine biomass specific rates with their associated 

standard deviations. The third column shows data from the test experiments with the 13 s feeding. 

 
Steady-state 

Feast-famine 
(cycle average) 

 
 20 s feeding 13 s feeding 

Working volume (L) 0.947 ± 0.001 0.947 ± 0.001 0.883 ± 0.001 

Biomass 
concentration 
(g L-1) 

9.71 ± 0.63 6.57 ± 0.15 6.57 ± 0.23 

Biomass growth μ 
(g gCDW

-1 h-1) 
0.044 ± 0.004 0.048 ± 0.009 0.05 ± 0.003 

qGlucose 

(mmolglc gCDW
-1 h-1) 

-0.70 ± 0.05 -1.07 ± 0.03 -1.16 ± 0.05 

qO2  

(mmolO2 gCDW
-1 h-1) 

-2.16 ± 0.16 -4.22 ± 0.19 -4.17 ± 0.08 

qCO2  

(mmolCO2 gCDW
-1 h-1) 

2.21 ± 0.15 4.35 ± 0.12 4.50 ± 0.08 

Respiratory 
Quotient 

1.02 ± 0.10 1.03 ± 0.04 1.08 ± 0.01 

 Raw Reconciled Raw Reconciled  

qacetate  

(mmolace gCDW
-1 h-1) 

0.005 ± 0.0004 0.005 ± 0.0002 0.016 ± 0.003 0.016 ± 0.003 N.A.1 

qethanol  

(mmoleth gCDW
-1 h-1) 

0.039 ± 0.004 0.041 ± 0.003 0.028 ± 0.012 0.029 ± 0.012 N.A. 

qformate  

(mmolform gCDW
-1 h-1) 

0.002 ± 0.0001 0.002 ± 0.0001 0.012 ± 0.003 0.013 ± 0.003 N.A. 

qlactate  

(mmollac gCDW
-1 h-1) 

0.021 ± 0.002 0.022 ± 0.001 0.011 ± 0.002 0.013 ± 0.002 N.A. 

Biomass Yield  
(gCDW gglc

-1) 
0.32 ± 0.04 0.22 ± 0.04 0.22 ± 0.01 

Oxygen Yield 
(mmolO2 mmolglc

-1) 
3.09 ± 0.31 3.94 ± 0.15 3.59 ± 0.16 

Carbon recovery 
(%) 

101.8 101.6 N.A. 

Electron recovery 
(%) 

112.3 108.7 N.A. 

  

                                                      
1 N.A.: Not available 
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A.6 Elemental analysis and microscopy 

For the elemental analysis performed, carbon (C), hydrogen (H) and nitrogen (N) were 

quantified with a CHN-Analyzer, phosphorus (P) was quantified with UV/VIS and sulphur (S) 

with ion chromatography. The measurements were performed by Mikroanalytisches 

Laboratorium Kolbe, Oberhausen, Germany. The oxygen content was calculated, assuming 

that biomass was composed only by C, H, N, P, S, O and 3% metals. 

Table A.1 Elemental composition of dried biomass in steady-state and feast-famine regime. The values represent 

grams of elements per 100 grams of dried biomass. Standard errors were derived by duplicate samples of each 

regime. 

Composition 
Carbon 

C (%) 
Hydrogen 

H (%) 
Nitrogen 

N (%) 
Phosphorus 

P (%) 
Sulphur 

S (%) 
Oxygen 

O (%) 

Steady-state 48.88 ± 0.01 7.56 ± 0.01 15.23 ± 0.01 5.03 ± 0.02 1.33 ± 0.01 18.99 ± 0.03 

Feast-famine 48.69 ± 0.01 7.48 ± 0.01 15.53 ± 0.01 5.17 ± 0.02 1.25 ± 0.01 18.89 ± 0.03 

Change (%) -0.39 ± 0.03 -1.06 ± 0.19 +1.97 ± 0.09 +2.78 ± 0.56 -6.02 ± 1.07 -0.53 ± 0.22 

 

 

Figure A-2 Optical microscope (Zeiss Axiostar Plus) images from E.coli cells during (A) reference steady-state 

growth and (B) feast-famine growth. 1000x zoom was used and the dilution of the samples was not the same.  
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A.7 Reaction list used in FBA 

Flux Abbreviations Enzymes Reactions 

1. PTS Phosphotransferase system enzymes Glucose + PEP  G6P + PEPout 

2. G6PDH Glucose-6-phosphate dehydrogenase G6P  6PG 

3. PGI Glucose-6-phosphate isomerase G6P ↔ F6P 

4. PFK Phosphofructokinase F6P ↔ FBP 

5. FBA Fructose-biphosphate aldolase FBP ↔ DHAP + GAP 

6. TPI Triose-phosphate isomerase DHAP ↔ GAP 

7. GAPD/PGK Glyceraldehyde-3-phosphate/ 
Phosphoglycerate kinase 

GAP ↔ 3PG 

8. PGM Phosphoglycerate mutase 3PG ↔ 2PG 

9. ENO Enolase 2PG ↔ PEP 

10. PYK Pyruvate kinase PEP  PEPout 

11. GND/RPE 6-phosphogluconate dehydrogenase/ 
Ribulose-phosphate 3-epimerase 

6PG ↔ Xyl5P 

12. GND/RPI 6-phosphogluconate dehydrogenase/ 
Ribose-5-phosphate isomerase 

6PG ↔ Rib5P 

13. TKT1 Transketolase 1 Xyl5P + Rib5P ↔ GAP + S7P 

14. TKT2 Transketolase 2 Xyl5P + E4P ↔ F6P + GAP 

15. TALA Transaldolase A GAP + S7P ↔ F6P + E4P 

 

Metabolites with the subscript “out” are products outside of the balancing space. We assume 

that pyruvate is the product of the PYK reaction. 

A.8 Flux balance analysis – Derived fluxes 

Table A.2 FBA estimated fluxes in μmolsubstrate/gCDW/s. 

Fluxes (Glycolysis) 

Time (s) PTS G6PDH PGI PFK FBA TPI GAPD/PGK PGM ENO PYK 

0 0.005 0.000 0.017 0.022 0.034 0.042 0.076 0.069 0.067 0.050 

2 4.676 2.681 2.920 4.905 4.932 4.990 10.810 10.243 10.192 5.149 

15 4.404 1.885 2.123 3.448 4.019 4.211 8.908 8.975 8.981 4.676 

18 1.042 0.382 0.620 0.854 0.800 0.784 1.706 1.742 1.745 0.717 

110 0.022 0.000 0.018 0.021 0.008 0.000 0.000 0.003 0.005 0.000 

400 0.005 0.000 0.017 0.022 0.034 0.042 0.076 0.069 0.067 0.050 

Fluxes (Pentose phosphate pathway) 

 GND/RPE GND/RPI TKT1 TKT2 TALA      

0 0.001 0.0002 0.0002 0.001 0.001      

2 1.823 0.874 0.890 0.924 0.924      

15 1.302 0.658 0.671 0.674 0.673      

18 0.248 0.122 0.123 0.121 0.121      

110 0.006 0.000 0.000 0.010 0.000      

400 0.014 0.0002 0.0002 0.001 0.001      
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A.9 Amino acids 

 

Figure A-3 Intracellular concentrations (μmol/gCDW) of amino acids (histidine, tyrosine and phenylalanine) with 

E4P as a precursor, over a feast-famine cycle (s). Black horizontal dashed lines represent the average steady-state 

levels. Green vertical dashed lines show the end of the feeding (20 s). The pink area represents the substrate 

feast phase.  

 

Figure A-4 Intracellular concentrations (μmol/gCDW) of amino acids (serine, tryptophan and glycine) with 3PG as 

a precursor, over a feast-famine cycle (s). Black horizontal dashed lines represent the average steady-state levels. 

Green vertical dashed lines show the end of the feeding (20 s). The pink area represents the substrate feast 

phase. 
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Figure A-5 Intracellular concentrations (μmol/gCDW) of amino acids (threonine, isoleucine, cysteine, aspartate 

and asparagine) with oxaloacetate as a precursor, over a feast-famine cycle (s). Black horizontal dashed lines 

represent the average steady-state levels. Green vertical dashed lines show the end of the feeding (20 s). The 

pink area represents the substrate feast phase. 

 

Figure A-6 Intracellular concentrations (μmol/gCDW) of amino acids (valine, leucine and alanine) with pyruvate as 

a precursor, over a feast-famine cycle (s). Black horizontal dashed lines represent the average steady-state levels. 

Green vertical dashed lines show the end of the feeding (20 s). The pink area represents the substrate feast 

phase. 
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Figure A-7 Intracellular concentrations (μmol/gCDW) of amino acids (glutamate, glutamine, proline and lysine) 

with aKG as a precursor, over a feast-famine cycle (s). Black horizontal dashed lines represent the average 

steady-state levels. Green vertical dashed lines show the end of the feeding (20 s). The pink area represents the 

substrate feast phase.  
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A.10  Total metabolome 

Table A-3 List of metabolites quantified in this chapter. 

Central Carbon Amino acids Nucleotides Rest 

Fumarate (Fum) Alanine (Ala) Adenosine diphosphate 
(ADP) 

Trehalose (Tre) 

Malate (Mal) Glycine (Gly) Adenosine triphosphate 
(ATP) 

Trehalose-6-phosphate (T6P) 

alpha-ketoglutarate (aKG) Valine (Val) Uridine triphosphate 
(UTP) 

Mannose-6-phosphate (M6P) 

Glyceraldehydephosphate 
(GAP) 

Leucine (Leu) Uridine diphosphate 
(UDP) 

Uridine diphosphate glucose 
(UDP-glucose) 

Citrate (Cit) Isoleucine (Ile) Guanosine diphosphate 
(GDP) 

Mannitol-1-phosphate (M1P) 

Isocitrate (iCit) Proline (Pro) Guanosine triphosphate 
(GTP) 

Glucose-1-phosphate (G1P) 

2-phosphoglycerate (2PG) Serine (Ser)   
3-phosphoglycerate (3PG) Threonine (Thr)   
Dihydroacetonephosphate 
(DHAP) 

Methionine 
(Meth) 

  

Erythrose-4-phosphate 
(E4P) 

Aspartate (Asp)   

Ribose-5-phosphate (Rib5P) Phenylalanine 
(Phe) 

  

Xylose-5-phosphate (Xyl5P) Glutamate (Glu)   

Fructose-6-phosphate (F6P) Lysine (Lys)   

Glucose-6-phosphate (G6P) Asparagine 
(Asn) 

  

Sedoheptulose-7-phosphate 
(S7P) 

Glutamine (Gln)   

Fructobiphosphate (FBP) Tyrosine (Tyr)   
Phosphoenolpyruvate (PEP) Histidine (His)   

Succinate (Suc) Cysteine (Cys)   
6-phosphogluconate (6PG) Tryptophan 

(Trp) 
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Abstract 

Background: The microbial cell adaptation to dynamic environmental conditions is regulated 

by complex mechanisms, which determine the physiological and metabolic adjustments for 

survival and optimal growth. The combination of experimental perturbation studies and 

kinetic modelling is crucial for revealing these mechanisms and predicting the behaviour of 

microorganisms transitioning through various growth conditions. However, most of the 

developed kinetic models have been validated under steady-state growth, resulting in 

inconsistencies simulating dynamic conditions.   

Results: In this work, we studied potential cellular strategies of Escherichia coli cells, occurring 

during the transition from steady-state conditions to repetitive substrate gradients. The 

published kinetic model for central carbon metabolism by Peskov K, et al. [1] was used to 

investigate our experimental observations. Kinetic parameter optimization of the original 

model, highlighted the significant alterations in the enzymatic kinetics of glycolysis during 

feast-famine, compared to steady-state growth. Post-transcriptional modifications were 

assumed to explain the limitation in the substrate uptake rate, observed while glucose was in 

excess. However, separating the feast-famine cycle into two phases and using the 

experimental uptake rate as fixed input appeared not to be enough for the model to simulate 

the experimental observations. Accurate predictions in the glycolytic intermediates were 

acquired only when glycogen synthesis and assimilation was implemented in the model. 

Glycogen acted as a storage pool, providing carbon and energy to reinitiate growth during 

famine conditions. However, only the inclusion of ATP-spilling reaction, initially hypothesised 

for inorganic polyphosphate production, led to accurate predictions of the experimentally 

observed adenylate energy homeostasis. The continuous draining of ATP supported the 

hypothesis of increased maintenance during the feast-famine regime. 

Conclusions: Alterations in enzyme kinetics, storage metabolism and maintenance compose 

some of the important features of E.coli cellular responses to growth under substrate 

gradients. The implementation of these strategies in the construction of dynamic kinetic 

models, generates higher accuracy in the predictability of the model and highlights the 

potential of using similar approaches to study and predict microbial growth in industrial 

large-scale bioprocesses.  
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4.1 Introduction 

Microbial cells have been long studied for their noteworthy ability to adapt to environmental 

changes, by modifying their intracellular network in such way to grow optimally under the 

new conditions [2-6]. Adaptation, which is coordinated by various regulatory mechanisms, 

can occur on different time scales, depending on the type of microorganism and the nature 

of the environmental perturbation [7, 8]. These may range from seconds (e.g. flux 

adjustments), hours (e.g. cell growth) to hundreds of generations (e.g. genetic evolution) [3].  

Nutrient availability is one of the most commonly fluctuating environmental variables, in the 

natural habitat of microbes, as well as, in large-scale industrial bioprocesses [9-14]. 

Microorganisms respond to short-term substrate gradients by adjusting their metabolism, 

either by gene expression control or by regulating metabolite-enzyme interactions [15]. As a 

consequence, enzyme kinetic parameters (e.g. capacity and/or activity) are rapidly changing 

during environmental perturbations, affecting the rates of metabolic fluxes and resulting in 

altered phenotypes. Some examples derived from experimental observations for Escherichia 

coli, involve overflow metabolism [13], enhanced uptake rates [16] and energy spilling [10, 

17]. 

The combination of experiments and mathematical modelling is a very powerful approach in 

order to enhance the understanding of microbial metabolism [18]. Especially, due to the 

dynamic environments of microbial cultures in industrial biotechnological processes, 

predicting cell growth under non-stationary conditions using models, is a necessity towards 

identifying targets for metabolic engineering and optimizing process parameters [19-21]. 

Kinetic models are particularly appropriate for this goal, as they can better represent the 

cellular responses to environmental perturbations [19, 22]. These models are mainly based 

on reaction kinetics and the system behaviour over time is described by mass balance 

equations. For more extended knowledge on kinetic metabolic modelling the following 

reviews are recommended: [19, 23-27]. 

Even though numerous kinetic models have been designed with the aim to capture metabolic 

responses under dynamic conditions, they have been calibrated and evaluated under 

stationary growth (steady-state fluxes), which leads to limitations predicting metabolism 

under different circumstances. Recent studies have evaluated and compared the quality and 

predictive power of published models, using experimental datasets under various genetic and 

environmental perturbations for Escherichia coli [28-30]. Many inconsistencies were 

observed between model predictions and experimental observations, especially for 

simulating dynamic conditions (e.g. batch growth), as well as, discrepancies between the 

performance of each model. Due to the complexity of cellular networks, the lack of knowledge 

on biochemical mechanisms and reaction kinetics for many phenotypes is the main cause of 
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the limited prediction capacity of biological models [31-34]. The increased multi-omics data 

generation and their integration into kinetic models is one of the current approaches, which 

paves the way towards better understanding of the complex regulation under dynamic 

conditions and the construction of more accurate models.  

Chassagnole C, et al. [35] were the first to construct and validate a dynamic model of E.coli 

central carbon metabolism with kinetic information. Afterwards, many attempts have been 

made to increase the accuracy in the models of E.coli metabolism, by adding more pathways 

[36], using combination of in vitro and in vivo data for model evaluation [1], introducing new 

methods for better kinetic parameter identification [37], integrating gene regulation [38] and 

adding complexity with more detailed kinetic properties [15]. Lima AP, et al. [30] have 

published a detailed comparison between the main kinetic models for E.coli central carbon 

metabolism, based on their stoichiometric and kinetic differences  

In our previous work (Chapter 3 of this thesis), a repetitive feast-famine regime was applied 

to an aerobic E.coli culture and the physiological and metabolic responses of the cells were 

reported, in time scale of seconds. From the collected experimental data, different 

hypotheses were derived on the mechanisms of cellular adaptation during the transition of a 

steady-state to substrate gradients. The potential metabolic strategies were mainly related 

to changes in the substrate uptake rate, increased capacities of enzymatic reactions, the 

effect of storage metabolism, energy spilling processes and adenylate energy charge 

homeostasis. The aim of the current chapter is to unravel significant cellular functions and 

regulatory mechanisms occurring under substrate dynamic conditions, using kinetic 

modelling, as a tool to evaluate the hypotheses derived from the experimental observations. 

The E.coli kinetic model, published by Peskov K, et al. [1], was chosen for this purpose, for two 

main reasons: 

1. Adenosine nucleotides ATP, ADP and AMP were included in the model as balanced 

metabolites (involved in metabolic reactions), rather than fixed parameters. This is an 

important trait for the goal of this chapter, as the mechanisms behind the adenylate 

energy charge homeostasis, observed in Chapter 3, can be further studied. In addition, 

the constant energy charge can be used as a factor evaluating the predictability of the 

model. 

2. Comparing the published models [30] which agree with the first requirement, the 

Peskov model was the least complex (with 48 metabolites and 75 fluxes) and therefore 

easier to analyse in depth. 
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4.2 Methods 

4.2.1 Kinetic Model 

The kinetic model used for the simulations in this study was published by Peskov K, et al. [1], 

describing the E.coli central carbon metabolism. The model was developed for aerobic growth 

under steady-state conditions, with glucose as the limiting carbon source. The model was 

retrieved from JWS Online [39] in SBML format (not available online anymore) and was 

converted to MATLAB (The MathWorks Inc., USA) code, by the Systems Biology Format 

Converter (SBFC) (http://sbfc.sourceforge.net).  

Extracellular glucose was implemented as a balanced metabolite, instead of a fixed 

parameter. Intracellular glucose was eliminated from the model, as extracellular glucose is 

converted directly to G6P, when entering the intracellular space, by the phosphotransferase 

system. In addition, there was no intracellular glucose identified experimentally during the 

feast-famine regime (Chapter 3). This term was included in the model by Peskov and 

co-workers, in order to describe growth conditions in case a non-PTS system was active; the 

mglBAC transport system. 

Simulations were performed for one dynamic cycle (0-400 s) with a time interval of 1 s. 

MATLAB was used for all the simulations in this study and MATLAB solver ode15s was used 

for the ordinary differential equation (ODE) system.  

4.2.2 Parameter optimization  

Parameter optimization was performed in the kinetic model, for several different sets of 

parameters. The MATLAB function fminsearch was used in order to minimize the sum of 

squares of the differences between the experimental and the simulated observations. The 

objective function was described as: 

popt =  𝑎𝑟𝑔min
p
∑(yi − ŷi(p))

2
n

i=1

 

where 𝑝 is the parameter vector for optimization, 𝑦𝑖 are the experimental observations for 

every timepoint i, �̂�𝑖  are the model simulated results and 𝑛 is the amount of observations. 

4.2.3 Model evaluation criteria 

Two different metrics were used to evaluate the performance of each simulation. With these 

metrics, it was feasible to compare the simulation results with the observed experimental 

data, as well as, to compare the different simulations with each other.  
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The first estimation error was given for every metabolite (𝑖) by the normalized Euclidean 

distance, as given in [40]: 

𝑒𝑖 = 
‖y − ŷ‖

‖y‖
 

where ||…|| is an L2 norm, 𝑦 is the vector of experimental observations and �̂� is the vector 

of the model simulated results for all timepoints. The smaller the normalized error is, the 

closer to experimental observations the simulated results are. 

The second metric, which was used to compare different parameter optimizing strategies, is 

the Akaike information criterion [41]:  

AIC =  ln (
s2

N
) +

2k

N
 

s2 = ∑(
ŷ − y

y
)
2n

i=1

 

where 𝑁 denotes the amount of observations and 𝑘 is the amount of model parameters used 

for optimization. The AIC is dependent on the residual sum of squares, as well as, the amount 

of parameters used for optimization. Therefore, strategies with different number of 

optimized parameters can be compared. A lower AIC score suggests better goodness-of-fit of 

the model, avoiding over-fitting [42]. 

4.2.4 Experimental data 

The experimental data from the E.coli feast-famine cultivation, described in Chapter 3, were 

used in this study, to validate the model predictions. 

4.3 Results  

During the transition of the cells from steady-state conditions to growth under substrate 

gradients (feast-famine regime in Chapter 3), we observed major changes, as a result of cell 

adaptation. Several regulation mechanisms could be responsible for these changes. Different 

hypotheses (Figure 4.1) were tested, applying different modifications to a published kinetic 

model [1].  
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Figure 4.1 Scheme summarizing potential changes in the cell metabolism, during the transition from steady-state 

to feast-famine conditions, and the approaches used for their assessment. 

4.3.1 Application of the kinetic model for feast-famine conditions 

The kinetic model was used to study the cellular activity under feast-famine conditions. 

Therefore, a glucose feeding phase of 20 s, followed by a non-feeding phase of 380 s was 

implemented. In addition, Table 4.1 shows the experimental culture parameters (from the 

work in Chapter 3) used as input in the model. 

Table 4.1 Culture parameters (experimental measurements of Chapter 3). 

Parameter Value Units 

pH 7.0 - 

Biomass concentration (reconciled) 6.28 gCDW∙LEC
-1 

Medium feeding rate 0.88 Lmedium∙h-1 

Broth volume 0.95 L 

Glucose concentration in feed 0.151 molglucose∙Lmedium
-1 

 

The metabolite concentrations and fluxes were defined in units of mM and mM∙min-1, 

respectively, where mM referred to the intracellular volume. In order to ease the comparison 

between the simulation results and the experimental observations, the experimental 

measurements (µmol∙gCDW
-1) were converted assuming a cytosolic volume of 1.77∙10-3 

LIC∙gCDW
-1 [35].  
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The intracellular metabolite concentrations, quantified in Chapter 3, were used as initial 

conditions for the simulations. The list of these metabolites, along with their values, can be 

found in Appendix B.1. For metabolites that were not measured, the initial conditions 

reported in the article (simulation for 0.1 h-1 dilution rate) were used [1]. 

The enzymatic kinetic parameters used in the Peskov model were primarily obtained by in 

vitro literature data, while then in vivo experimental metabolite concentrations and fluxes 

were employed for verification of the complete model. However, in all cases the data used 

were derived from steady-state glucose-limited cultivations. 

E.coli exhibited significant physiological and metabolic changes when cultivated under a 

feast-famine regime, compared to steady-state growth. The glucose uptake rate and 

subsequently all central carbon metabolic rates increased, in tens of seconds, following the 

excess of substrate, leading to considerable dynamic changes in most of the metabolite pools. 

Homeostasis was, however, observed in the concentration of ATP and the adenylate energy 

charge, indicating tight regulation. In addition, significant biomass yield losses were detected 

during the feast-famine regime, compared to steady-state (see details in Chapter 3). Due to 

these enzymatic alterations, the Peskov model was not expected to reproduce metabolism 

under dynamics, using the published steady-state derived parameters. 

This was indeed confirmed by the simulation results (OP1 – ‘Original parameters’), where 

there was accumulation of glycolytic intermediates (G6P, F6P, FBP and GAP) over time, which 

led to lower flux towards PEP (Figure 4.2). Therefore, PEP was not produced fast enough in 

order to support the glucose transport by the PTS system [43], as it depleted immediately 

after the beginning of the feeding. As a consequence, the simulated substrate uptake was 

slower than the experimental piecewise affine (PWA) rate approximation (section 3.3.2, 

Chapter 3). This inconsistency in the glucose consumption prediction resulted in discrepancies 

in all metabolites (Appendix B.2), compared to the experiments. 
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Figure 4.2 Glycolytic metabolite concentrations over a feast-famine cycle. Orange dots: experimental 

intracellular measurements. Blue lines: OP1 - Simulations with the kinetic model using the steady-state-derived 

parameters. All concentrations are given in mmol per units of intracellular volume (L), while glucose is given per 

units of extracellular volume. The normalized error 𝑒 is given for every metabolite. 

4.3.2 Enzyme kinetic adaptation in glycolysis 

From the initial simulations (OP1), it was observed that the model should predict higher 

glycolytic fluxes, in order to reproduce the experimental results. In fact, central carbon 

metabolism was expected to become faster under feast-famine conditions, compared to the 

steady-state cultivation, as shown by the flux balance analysis performed in Chapter 3 (section 

3.3.3). The environmental conditions influence enzyme expression and therefore may lead to 

changes in the enzymatic kinetic parameters (Vmax), during the feast-famine regime. 

Post-transcriptional modifications may also affect KM values. In order to verify this hypothesis 

of enzymatic adjustments and study the influence on glycolysis, various attempts to optimize 

the main glycolytic parameters of the kinetic model were made. In addition, in order to tackle 

the inconsistency of the model to reproduce the glucose uptake rate, the PWA rate 

approximation was used as input in some of the optimization strategies. 

Different sets of parameters (Appendix B.3) were used for every optimization (MP1-9 

‘Modified Parameters’), as well as, various optimization targets (summarized in Table 4.2) and 

the results can be found in Appendix B.4. The AIC was calculated for the glycolytic metabolites 

in every simulation and was used for comparing the different strategies. In addition, the e 

values were plotted in order to visually compare the accuracy of the predictions for every 

metabolite (Figure B-9, Appendix B.4). However, none of the chosen strategies could 

sufficiently reproduce all the glycolytic metabolite observations, showing a clear limitation of 
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the model to predict glycolysis under the studied conditions, even with the adapted kinetic 

parameters. This limitation was mainly derived by the failure of the model to predict the 

glucose uptake rate, resulting in discrepancies in the glucose concentration over time and 

affecting all metabolites in the cascade of glycolysis. Even when the PWA uptake rate was 

fixed, the performance of the model was still not acceptable. 

Table 4.2 Glycolytic parameter optimization strategies, for the complete feast-famine cycle. 

Strategy Optimization 
Target 

Metabolites 

Fixed PWA 
glucose 

uptake rate 

Optimization 
Parameter 

List* 

AIC** Comments 

MP1 Glucose No A 3.90 
High simulated glucose uptake in 
famine phase, G6P and FBP 
accumulation 

MP2 Glucose No B 9.57 Unable to predict glucose uptake flux 

MP3 ATP, ADP No A 1.48 
Unable to predict glucose uptake 
flux, PEP depletion 

MP4 PEP Yes C 4.48 
Lower concentrations of upper 
glycolysis than experimental 

MP5 Glycolytic*** No A 9.75 
Glucose uptake hindered by PEP 
depletion after 20 s 

MP6 Glycolytic*** No B 10.69 Same as in MP5 

MP7, MP8 Glycolytic*** Yes A, Β - Optimization failed**** 

MP9 Glycolytic*** Yes C 4.47 
Not able to reproduce most glycolytic 
metabolites 

* All the optimization parameter lists of can be found in Appendix B.3. 

** AIC was calculated for the glycolytic metabolite concentrations of G6P, F6P, FBP, DHAP, GAP, 3PG, 2PG and 
PEP.  

***Glycolytic metabolites are G6P, F6P, FBP, GAP, DHAP, 3PG, 2PG and PEP. Glucose was not included in this 
list. 

**** Optimization failure occurred when no parameters could be found so that PEP concentration was enough 
to run the import of glucose and therefore the ODE system could not be solved.  

Simulation of the non-feeding phase (20-400 s) 

One of the main observations, which the model was unable to predict, was the decrease in 

the glucose uptake rate, occurring experimentally, while the substrate was still in excess. In 

the beginning of the cycle, the uptake rate increased immediately and reached a value higher 

than reported batch maximum rates. However, it significantly decreased (at least 4-fold) after 

15 s of feeding (section 3.3.2, Chapter 3). With this observed abrupt change in glucose uptake, 

the presence of non-kinetic mechanisms, like post-transcriptional modifications could be 

hypothesized. Therefore, the feast-famine cycle was split in two phases. Phase A (from 0-20 

s, during which the uptake rate was the highest) and Phase B (from 20-400 s, where the 

uptake rate decreased significantly and the glucose feeding was stopped). Due to the 

weakness of the kinetic model to predict Phase A, Phase B was simulated separately, as an 

attempt to reproduce this part of the feast-famine cycle and gain more information on the 
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cellular mechanisms. For these simulations, the measured metabolite concentrations at 20 s 

(Chapter 3) were used as initial conditions. For the rest of the metabolites, the initial 

steady-state conditions (D=0.1 h-1), of the model publication, were used. Optimization of the 

glycolytic parameters was again performed, for Phase B. The different strategies 

(MP10-MP18) are presented in Table 4.3 and the detailed results are given in Appendix B.5. 

Table 4.3 Glycolytic parameter optimization strategies, for Phase B. 

Strategy Optimization 
Target 

Metabolites 

Fixed PWA 
glucose 

uptake rate 

Optimization 
Parameter 

List* 

AIC** Comments 

MP10 Glucose No A 5.89 PEP depletion, G6P accumulation 

MP11 Glycolytic*** No A 5.74 
Glucose uptake hindered by PEP 
depletion 

MP12 Glycolytic*** No B 10.84 Same as MP11 

MP13 Glucose No B 5.95 G6P accumulation 

MP14 ATP, ADP No A 6.38 
PEP depletion, accumulation of upper 
glycolytic intermediates 

MP15 G6P, F6P,FBP No A 12.46 Same as MP11 

MP16 G6P, F6P,FBP Yes Β - Optimization failed**** 

MP17 Glycolytic*** Yes B 1.92 F6P, GAP, 2PG not well reproduced 

MP18 Glycolytic*** Yes A - Optimization failed**** 

* All the optimization parameter lists of can be found in Appendix B.3. 

** AIC was calculated for the glycolytic metabolite concentrations of G6P, F6P, FBP, DHAP, GAP, 3PG, 2PG and 
PEP. 

***Glycolytic metabolites are G6P, F6P, FBP, GAP, DHAP, 3PG, 2PG and PEP. Glucose was not included in this 
list. 

**** Optimization failure occurred when no parameters could be found so that PEP concentration was enough 
to run the import of glucose and therefore the ODE system could not be solved.  

Despite the adapted kinetic parameters, the separation of the two phases and the input of 

the PWA substrate uptake rate, the prediction of glycolytic metabolite concentrations was 

still not possible during Phase B, with the optimization strategies chosen. The best strategy, 

according to the AIC and the simulated vs. experimental data plot (Figure B-16, Appendix B.5), 

was MP17, where the Vmax values of the glycolytic reactions were estimated, using the PWA 

uptake rate as input. Even though it was the only strategy where PEP was simulated close to 

the experimental values, the predictions of main metabolites, such as F6P, GAP and 2PG, 

displayed high discrepancies. This behaviour leads to the assumption that there may be other 

metabolic features during a feast-famine regime, which were not incorporated in the original 

kinetic model and could justify its inconsistency with the experimental observations. In the 

following sections, some potential missing metabolic aspects were studied. 
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4.3.3 Storage Metabolism - Glycogen 

The hypothesis of an intracellular storage compound, glycogen, was discussed in Chapter 3, 

to explain oxygen consumption during the famine phase, as well as, the ATP losses observed 

during the feast-famine regime. In addition, the proteome analysis performed for the same 

experiment, revealed the concentration increase of enzymes, participating in the production 

and the consumption of glycogen (detailed results in Chapter 5). Glycogen formation and 

re-assimilation can be considered as a potential storage pathway in E.coli during substrate 

dynamic conditions. However, this pathway is usually neglected in most dynamic kinetic 

models, like the Peskov model, as has been previously reviewed by [30]. Glycogen production 

and subsequent consumption could play a role in the accumulation of G6P observed in all the 

previous simulations. Therefore, this pathway was incorporated and further evaluated in the 

kinetic model.  

Glycogen was set to be produced by G6P and during its formation and assimilation, one net 

ATP is consumed (Figure 4.3) [44, 45]. As this pathway is also regulated by the enzymes of the 

PTS system [46-48], the extracellular glucose concentration had an influence on the fluxes, 

i.e. production of glycogen was set to occur while glucose was available and glycogen 

consumption when glucose was absent.  

 

Figure 4.3 Schematic representation of the glycogen pathway added in the kinetic model. 

The reactions between G6P and glycogen, involving metabolites such as G1P and 

ADP-glucose, were lumped for simplicity. The rate of glycogen consumption was set in such 

way to ensure that all glycogen produced in the feast phase was then consumed in the famine 

phase, as the feast-famine cycles were repetitive and there was no indication of glycogen 

accumulation, according to all the experimental observations (discussed in Chapter 3). The 

residual glucose threshold, defining the feast and the famine phase, was set to 10 μmol∙LEC
-1 

(equals to 0.9 μmol∙LIC
-1), as the reported glucose affinity constant (KM) [49]. One new 
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balanced metabolite (glycogen) and two new reactions (glycogen production and 

consumption) were implemented in the model, as follows: 

Vglyc,prod = {
kglyc ∙ CG6P , Cglucose ≥ 0.9 

0 ,                           Cglucose < 0.9 
 

 

Vglyc,cons = {

0 ,                            Cglucose ≥ 0.9

Cglyc

tcycle − t(Cglucose=0)
,  Cglucose =< 0.9 

 

 

dCglyc

dt
= Vglyc,prod − Vglyc,cons  

where kglyc is a kinetic parameter of glycogen formation in min-1, tcycle is the total cycle time in 

min, t(Cglucose=0) is the timepoint when glucose gets depleted and CG6P, Cglyc are the 

concentrations of G6P and glycogen, respectively, in mmol∙LIC
-1.  

In the implemented pathway, there was one new parameter, kglyc, which affected the 

glycogen production rate and which was estimated using different optimization strategies. 

Using the model with the implemented glycogen pathway, optimizations (MPG – ‘Modified 

parameters with glycogen’) were performed in order to define the glycolytic and/or glycogen 

parameters, which would enable predictions close to the experimental observations for Phase 

B (Table 4.4). 

For this phase, since no experimental data were available, the initial concentration of 

glycogen (i.e. glycogen produced during the first 20 s of the regime) was hypothesised to be 

20% of the total glucose consumed during that period, which was translated in 14.3 

μmolglc∙gCDW
-1. Because of the uncertainty of this assumption, different glycogen initial values 

(10 – 50 μmolglc∙gCDW
-1) were also tested (data not shown), but all resulted in the same 

conclusion; the inclusion of glycogen recycling improves the reproduction of the experimental 

data. More detailed results of the optimizations can be found in Appendix B.6. 

Evaluating the simulations with glycogen, it was observed that the concentration of GAP and 

the concentration of 2PG (during the famine phase) were always overestimated in glycolysis. 

The deviation of GAP was also observed in the previous simulations and was probably due to 

the equilibrium constant used for the triose-phosphate isomerase. Usually, the ratio of DHAP 

over GAP is 20:1 [50]. However, the Keq,tpi in the original kinetic model was 1.6. By modifying 
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this parameter to 1/20, GAP and 2PG were reproduced much better in all the simulations with 

glycogen. The modified parameter was used for all the subsequent simulations performed in 

the rest of the study. 

Table 4.4 Glycolytic and glycogen parameter optimization strategies performed using the extended kinetic 

model, for Phase B. 

Strategy Optimization 
Target 

Metabolites 

Fixed PWA 
glucose 

uptake rate 

Optimization 
Parameter 

List* 

AIC** Comments 

MPG1 Glycolytic*** No A, kglyc 2.67 
Glucose uptake underestimated due to 
PEP depletion 

MPG2 Glycolytic*** Yes A, kglyc 1.59 
Good prediction of most glycolytic 
metabolites 

MPG3 Glycolytic*** No B, kglyc 6.23 
PEP depletion, inconsistencies in lower 
glycolysis, glycogen accumulation 

MPG4 Glycolytic*** Yes B, kglyc 4.15 
Underestimation of G6P and F6P, 
overestimation of DHAP, GAP, 2PG 

* All the optimization parameter lists of can be found in Appendix B.3. 

** AIC was calculated for the glycolytic metabolite concentrations of G6P, F6P, FBP, DHAP, GAP, 3PG, 2PG and 
PEP. 

***Glycolytic metabolites are G6P, F6P, FBP, GAP, DHAP, 3PG, 2PG and PEP. Glucose was not included in this 
list. 

We observed that MPG1 and MPG2 simulated the metabolite concentrations closer to the 

experimental ones, indicating that changes occurred both in Vmax and KM values, during 

dynamic conditions. The best reproduction of glycolysis was derived by the MPG2 strategy 

(Table 4.4), optimizing the glycolytic and glycogen parameters for Phase B, using the PWA 

glucose uptake rate as input in the model (AIC = 1.59). The optimized parameters were 

significantly different than the initial ones (up to 14 fold times change), for all the reactions 

of glycolysis, emphasizing on the enzymatic adjustments during the feast-famine regime.  

The resulting optimized parameters can be found in Table B-5, Appendix B.6 and the glycolytic 

metabolite concentrations (MPG2 strategy) are shown in Figure 4.4. 
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Figure 4.4 Glycolytic metabolite concentrations over a feast-famine cycle. Orange dots: experimental 

intracellular measurements. Blue lines: MPG2 - Simulations with the extended kinetic model for the time interval 

of 20-400 s, using the optimized glycolytic and glycogen parameters. All concentrations are given in mmol per 

units of intracellular volume (L), while glucose is given per units of extracellular volume. The normalized error 

𝒆 is given for every metabolite. 

The ability of the model to predict glycolysis, when the glycogen pathway was implemented, 

directly shows the importance of storage for cell growth under substrate dynamic conditions. 

Glycogen was predicted to reach a concentration of 37.2 μmolglucose_equivalents∙gCDW
-1, which was 

less than 1% of the biomass dry weight (0.007 gglc∙gCDW
-1) and thus biologically feasible [51].  

Glycolysis is the pathway functioning as the entrance to central carbon metabolism. Although 

the simulations were favourable for glycolytic fluxes, this was not the case for the rest of the 

simulated pathways (TCA cycle, pentose-phosphate pathway and adenine nucleotides). Most 

of the metabolite concentrations were overestimated (Figure B-19, Appendix B.6), including 

ATP, specifically during the famine phase. During the feast-famine regime, alterations in the 

enzymatic activity of these pathways were also expected. Indeed, the concentrations of 

several enzymes, catalysing reactions of these pathways, were found to alternate during the 

switch from steady-state to feast-famine (detailed results in Chapter 5). Further optimizations 

for the rest of the kinetic parameters were not made, as more computational power would 

be needed and complexity would be added to the interpretation of the results. However, it is 

undeniable that all kinetic parameters should be estimated for the dynamic conditions, in 

order to unravel the metabolic response of the whole central carbon metabolism. 
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4.3.4 Unravelling the energy homeostasis  

Despite the variations observed in the concentrations of the adenosine nucleotides during 

the feast-famine regime, the energy charge, as well as the ATP/ADP ratio, showed a 

homeostatic behaviour (Chapter 3). However, in all previous sections, we observed that this 

homeostasis could not be predicted by the kinetic model, even when the glycolytic 

parameters were optimized and the glycogen storage pathway was implemented. 

One of the hypotheses for the ATP balance in the cells, already mentioned in Chapter 3, was 

the formation and consumption of inorganic polyphosphate (PolyP). Indeed, the levels of the 

polyphosphate kinase (PPK) increased during the transition from steady-state to feast-famine 

(detailed results in Chapter 5), suggesting that there could be ATP/PolyP cycling. It is known 

that polyphosphate synthesis is a reversible reaction [52] and it seems that ATP levels are 

maintained by the shift between the forward and the reverse rate.  Adenylate kinase 

(catalysing the interconversion of adenosine nucleotides) and PPK have been proposed to 

catalyse these reactions [53]. However, the molecular mechanisms that control this function 

are not yet studied in detail.  

Polyphosphate synthesis and degradation are not included in current E. coli kinetic models of 

central carbon metabolism. There is one exception, where Van Dien SJ, et al. [54] improved a 

previously developed dynamic model, by including the kinetics of polyphosphate metabolism, 

in order to study the effects of phosphate-starvation response in E.coli. Even though the 

authors included simplified differential equations for ATP and polyphosphate, with a constant 

sum of ATP and ADP, the improved simulation results showed a better agreement with the 

experimental observations.  

In order to test the hypothesis of polyphosphate pool functioning as an energy regulator, we 

implemented the synthesis and degradation of polyphosphate in the kinetic model and 

studied the effects of this addition to the performance of the simulations under feast-famine 

conditions. Polyphosphate is synthesised (and degraded) via the following reversible reaction: 

ATP + polyPn
𝑃𝑃𝐾
⇔  ADP + polyPn+1 

The net rate was simulated with the following kinetic expression, based on reversible 

Michaelis-Menten kinetics, as formed in [54] and considering the enzymatic measurements 

from [55, 56]: 

VPolyP = vmax,f
[ATP]

KM1 + [ATP]
− vmax,r

[ADP]

KM2 + [ADP]
 

where VPolyP is the rate of formation (or degradation if negative) of polyphosphate, vmax,f 

and vmax,r are the forward and reverse maximum rates, respectively, [𝐴𝑇𝑃] and [𝐴𝐷𝑃] are 
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the intracellular concentrations of ATP and ADP and KM1 and KM2 are the Michaelis-Menten 

constants for ATP and ADP, respectively. 

It is assumed that the ATP and ADP concentrations are the main drivers of the reaction and 

that the change of polyphosphate in chain length does not contribute significantly to the 

thermodynamic driving force and is therefore neglected in the kinetic expression. 

The balance for polyphosphate was also added in the model: 

dPolyP

dt
= VPolyP 

With the two pathways of glycogen and polyphosphate added to the model, optimization of 

the glycolytic, glycogen and polyphosphate kinetic parameters was performed (MPGP – 

‘Modified parameters with glycogen and polyphosphate’) for Phase B of the feast-famine 

regime. A polyphosphate concentration of 0.03 mmol∙gCDW
-1 was assumed as initial value, as 

no experimental data were available for the intracellular polyphosphate content. It should be 

noted that the initial concentration has no impact on the flux estimation (PolyP has no 

influence on the rate). With the aim to reproduce the energy homeostasis, minimizing the 

difference between experimental and simulated observations for ATP and ADP was used as 

optimization target (Table 4.5). Detailed results can be found in Appendix B.7. 

Table 4.5 Glycolytic, glycogen and polyphosphate parameter optimization strategy using the extended kinetic 

model, for Phase B. 

Strategy Optimization 
Target 

Metabolites 

Fixed PWA 
glucose 

uptake rate 

Optimization 
Parameter 

List* 

AIC** Comments 

MPGP1 
Glycolytic***, 

ATP, ADP 
Yes 

A, kglyc, Vmax,f, 
Vmax,r, KM1, KM2 

4.93 
Glycolytic metabolites and ATP 
are well reproduced 

* All the optimization parameter lists of can be found in Appendix B.3. 

** AIC was calculated for the glycolytic metabolite concentrations of G6P, F6P, FBP, DHAP, GAP, 3PG, 2PG and 
PEP. 

***Glycolytic metabolites are G6P, F6P, FBP, GAP, DHAP, 3PG, 2PG and PEP. Glucose was not included in this 
list. 

The implementation of the polyphosphate pathway resulted in an improved reproduction of 

all glycolytic metabolites, as well as the concentration of ATP (Figure 4.5). In comparison with 

the glycogen simulation (MPG2), the predicted ATP/ADP ratio was much closer to the 

experimental observations. Additionally, the concentrations of GAP and DHAP matched the 

measured values. 
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Figure 4.5 Glycolytic metabolite concentrations over a feast-famine cycle. Orange dots: experimental 

intracellular measurements. Blue lines: MPGP1 - Simulations with the extended kinetic model for the time 

interval of 20-400 s, using the optimized glycolytic, glycogen and polyphosphate parameters. All concentrations 

are given in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. 

The normalized error 𝒆 is given for every metabolite. 

The average polyphosphate production rate over the cycle was simulated to be 0.14 

mmolP∙LIC
-1∙s-1. Due to the definition of the applied feast-famine cycles, the concentration of 

polyphosphate must be the same at the beginning and at the end of the cycle. Thus, the 

accumulation of intracellular polyphosphate can be explained by either a consuming reaction, 

during the feast phase, or wash-out as part of the biomass. In case of growth-related washout, 

the intracellular concentration would increase to 10.3 molP∙LIC
-1 (derived by the 

polyphosphate mass balance over a cycle using the average growth rate of 0.048 h-1 for 

washout), which is a huge and not realistic amount.  

Such high phosphorus content should be detectable by biomass elemental analysis. However, 

the content of phosphorus was elevated by only 2.8 ± 0.6% (Appendix A.6, Chapter 3), 

compared to the steady-state composition. Hence, the PolyP synthesis, predicted by the 

model, should be interpreted more as generic ATP sink than ‘real’ PolyP accumulation.  

Maintenance is an example of such energy-consuming processes. Increased maintenance 

during feast-famine conditions was, also, suggested in order to explain the significant 

decrease in the biomass yield, compared to steady-state growth (Chapter 3). Thus, the 

extension of the Peskov kinetic model further supports this proposition of ATP losses through 

maintenance, preserving the cellular energy homeostasis. 
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In addition, numerous dynamic kinetic parameters estimated in the MPGP1 optimization 

strategy were significantly different than the ones from the MPG2 strategy (Table B-6 and 

Table B-5 respectively, Appendix B), showing that the ATP homeostasis affected the rest of 

the glycolytic metabolites, which was expected due to the various ATP-dependent reactions 

occurring in glycolysis. In general, we observed that almost all (except for the fba reaction) 

the Vmax values were estimated to be higher than the steady-state, as hypothesised earlier 

from the rapid increase in the substrate uptake rate. The highest changes were spotted for 

the maximum velocities of the GAP dehydrogenase (23 fold times increase) (GAP + NAD+  

BPG + NADH) and the enolase (15 fold times increase) (2PG  PEP) enzymes, again revealing 

the remarkable ability of enzymatic adaptation to the changing environments. 

4.4 Discussion and Future Directions 

Metabolic kinetic models are beneficial for industrial biotechnology, because they can be 

used for: 

i. understanding cellular mechanisms and regulation 

ii. predicting microbial growth under various conditions 

iii. optimizing the use of cell factories 

In this study a published kinetic model of E.coli (steady-state) metabolism [1] was extended 

and modified to identify the cellular mechanisms, which enable the survival and growth of 

the microorganism under dynamic conditions, more precisely when a feast-famine regime 

was applied in repetitive cycles of 400 s each.  

Enzymatic alterations under feast-famine conditions 

The original model was formulated, using steady-state derived enzymatic kinetic parameters, 

which proved to be inadequate for simulating growth under a repetitive dynamic 

environment. The repetitive transition of the cells from substrate excess to substrate 

limitation was expected to lead to considerable changes in protein expression. The increased 

rates of central carbon metabolic fluxes and the extensive proteome changes (Chapters 3 and 

5 of this thesis), compared to steady-state growth, suggested modifications in the enzyme 

functions, which were confirmed by our efforts on optimizing various kinetic parameters of 

glycolysis, in order to better predict the experimental observations. In all the different 

scenarios tested, these parameters exhibited a variety of changes up to thousands fold times 

compared to the steady-state values. These alterations referred to maximum enzyme 

capacities (Vmax) and Michaelis-Menten constants (KM). Therefore, metabolic fluxes were 

regulated by enzymatic changes occurred through alterations in gene expression. The type 
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and extent of these modifications should be taken into consideration when using metabolic 

modelling, in order to ensure correct representation of the metabolic network under dynamic 

environments. There are several ways to determine kinetic parameters, such as the use of 

existing enzymatic databases, in vivo measurements, model fitting with experimental data 

etc. [19, 57].  In addition, the switch observed experimentally in the glucose uptake rate, 

during the feast phase, could not be predicted by the kinetic model, implying the presence of 

post-transcriptional modifications, which were not implemented in the model. The details for 

this mechanism have still not been identified. 

Nevertheless, the consideration of this so-called ‘hierarchical’ regulation mechanism was not 

sufficient for the model to predict the experimentally observed metabolic behaviour, under 

feast-famine conditions. Indeed, several studies have shown that this type of regulation is not 

always the main controller of flux adjustments, in Escherichia coli [15, 58], as well as, 

Saccharomyces cerevisiae [59, 60] and Bacillus subtilis [61]. In addition, enzyme-metabolite 

interactions play a critical role in flux regulation. 

Glycogen metabolism as a carbon storage mechanism 

The production and re-consumption of glycogen during feast-famine growth, as a storage 

polysaccharide, was assumed based on experimental evidence. The combination of 

estimating the dynamic kinetic parameters and implementing the glycogen pathway in the 

kinetic model resulted in sufficient model predictions for all glycolytic metabolites. Glycogen 

functioned as a carbon buffer and controlled the glycolytic fluxes in such way that no 

metabolite accumulation was observed. Even assuming simplistic kinetics, glycogen storage 

appeared to be an indispensable mechanism for the cell to handle the sudden variations in 

glycolytic fluxes, occurring under substrate dynamics. The essence of glycogen for 

environmental survival and energy supply under nutrient limitation, has been proved using 

metabolomics approaches [51] and has been linked to CsrA-mediated post-transcriptional 

control [62]. Recently, Sekar K, et al. [63] experimentally demonstrated the crucial role of 

glycogen under various short-term (time-scale of minutes) nutrient fluctuations, by 

comparing wild-type with glycogen-deficient cells of E.coli. Their results indicated enhanced 

growth and higher uptake rates for the cells with an active glycogen pathway in all transitions 

from substrate excess to starvation. It is, therefore, surprising that no significant effort has 

been done to include this pathway in kinetic models, except, for example from Morin M, et 

al. [51], who demonstrated the glycogen function, using a genome-scale model, during the 

transition from glycolysis to gluconeogenesis. Thus, our current results highlighted: 

i. The importance of glycogen pathway for metabolic adaptation of E.coli under 

short-term feast-famine conditions. 
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ii. The need for accurate intracellular glycogen measurements during growth under 

dynamic conditions. 

iii. The need for better characterization of the glycogen synthesis and degradation 

kinetics and their inclusion in kinetic metabolic modelling approaches. 

Adenosine nucleotide homeostasis affected by increased maintenance 

One of the most interesting observations of metabolic behaviour under the feast-famine 

regime (Chapter 3), was the energy homeostasis achieved (i.e. constant ATP/ADP ratio). Due 

to this, a hypothesis of inorganic polyphosphate production and degradation was introduced 

as a potential energy buffer, supported by the measured increased levels of PPK enzyme 

under these conditions (Chapter 5). The implementation of polyphosphate pathway led to a 

satisfying reproduction of the ATP and the energy charge homeostasis and improved the 

prediction of all glycolytic intermediates. However, the forward reaction was simulated to be 

more active than the reverse, leading to a high unrealistic intracellular polyphosphate 

concentration during the feast-famine cycles. Due to the unfeasibility of this observation, 

maintenance (e.g. protein synthesis and degradation) was considered to be a more probable 

mechanism representing this ATP spilling.  

Furthermore, the adenosine nucleotides are produced and consumed in various reactions and 

therefore the use of incorrect (or simplified) kinetics in the model, or the absence of unknown 

regulatory mechanisms can be a bottleneck for the prediction of the constant ATP/ADP ratio. 

Especially, for the Peskov model, used in this study, we express our scepticism on the way 

oxidative phosphorylation was modelled. In aerobic respiration, a membrane potential is 

formed across the cytoplasmic membrane when electrons are transferred from the substrate 

(i.e. glucose) to oxygen and NADH is converted to NAD+ (electron transport chain). This 

potential drives the ATP synthesis, catalysed by the ATP synthase. Therefore, these two 

reactions involving NADH and ADP as substrates, are biologically coupled. However, in the 

original Peskov model, the following separate reactions (oxygen was not included as 

metabolite in the model and phosphate Pi was included as a fixed parameter) were used: 

NADH  NAD+  V51 = krec_NADH
+ ∙ (NADH −

NAD+

Keq_NADH
) 

ADP + Pi  ATP  V56 = krec_ATPsynth
+ ∙ (ADP ∙ Pi −

ATP

Keq_ATPsynth
) 

Thus, the absence of coupling of the two reactions may result to considerable deviations of 

the model predictions from reality.  
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Taking all of the above-mentioned points into consideration, there is evidence that 

maintenance is one of the main controllers of cellular energy homeostasis and decrease of 

biomass yield, under feast-famine conditions. The existence of inorganic polyphosphate, as 

an energy buffer, cannot be completely excluded, taking into consideration the experimental 

proteomic evidence. Thus, measurements of the intracellular polyphosphate content would 

be required.  In addition, maintenance should not be ignored in dynamic kinetic models and 

further knowledge on its individual processes, active under these conditions, would 

undoubtedly improve the modeling performance. 

Improvement of kinetic modelling and industrial bioprocesses 

With the increased generation of experimental data, under various dynamic environmental 

conditions, researchers are more extensively using kinetic models to reproduce these 

observations.  While, most of the models can provide accurate predictions of steady-state 

growth, they regularly fail in dynamic simulations, such as pulse perturbations, shifts in 

dilution rates or different phases of batch cultivations [29, 30]. A step towards their 

improvement would, thus, be the identification and implementation of cellular mechanisms, 

which prove to be vital for stress-induced metabolic behaviour. For example, Kurata H, et al. 

[64] constructed a kinetic model, which was able to predict the dynamic behaviour of 

wild-type E.coli and several mutants, under not only steady-state, but also batch growth. They 

achieved this by improving an older model [38], adding missing regulatory mechanisms.  

The ultimate ambition of kinetic modelling is to be of beneficial use to industrial 

biotechnology. As industrial large-scale bioprocesses are characterized by microbial growth 

under dynamic environmental conditions, such as substrate gradients, it is crucial to develop 

dynamic tools. These tools can be used for maximizing productivity and support the economic 

viability of bioprocesses. This study demonstrated that mechanisms, such as modified enzyme 

expression, storage metabolism and energy homeostasis are significant parts of the dynamic 

microbial responses and should always be taken into consideration when modelling and 

studying large-scale cultivations.    
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B.1 Initial metabolite concentrations 

Table B-1 Intracellular metabolite concentrations, quantified in Chapter 3, used as initial conditions in the model 

for the beginning of the feast-famine cycle (t=0 s). 

Metabolites 
Initial conditions 

(μmol gCDW
-1) 

Metabolites 
Initial conditions 

(μmol gCDW
-1) 

Glucose 1.84 6PG 0.40 

G6P 0.18 Xyl5P 0.01 

F6P 0.06 Rib5P 0.01 

FBP 0.01 E4P 0.01 

DHAP 0.15 S7P 0.17 

GAP 0.03 Malate 0.28 

3PG 5.18 aKG 0.43 

2PG 0.44 Fumarate 0.26 

PEP 3.38   

ATP 4.06   

ADP 2.44   

B.2 Model simulation with steady-state derived kinetic parameters (0-400 s) 

Figure B-1 Intracellular metabolite concentrations over a feast-famine cycle. Orange dots: experimental 

measurements. Blue lines: OP1 - Simulations with the Peskov model using the steady-state derived parameters. 

All concentrations are given in mmol per units of intracellular volume (L), while glucose is given per units of 

extracellular volume. The normalized error e is given for every metabolite. 
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B.3 Sets of glycolytic kinetic parameters 

Different kinetic parameters, involved in the glycolytic reactions, were chosen for 

optimization. List A includes Vmax and KM parameters of the glycolytic enzymes, List B includes 

only Vmax values and List C includes only one parameter with which all the glycolytic fluxes are 

multiplied. 

List of reactions from the Peskov model, optimized in this work: 

V1 – pts:   Glucose + PEP  G6P + Pyruvate 

V5 – pgi:   G6P ↔ F6P 

V6, V7 – pfkA, pfkB:  F6P + ATP  FBP + ADP 

V8 – fba:   FBP ↔ GAP + DHAP 

V9 – tpi:   DHAP ↔ GAP 

V10 – gap:   GAP + NAD+ ↔ BPG + NADH 

V11 – pgk:   BPG + ADP ↔ 3PG + ATP 

V12 – pgm:   3PG ↔ 2PG 

V13 – eno:   2PG ↔ PEP 

V15 – pykF:   PEP + ADP  Pyruvate + ATP 
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Table B-2 List of kinetic parameters from glycolytic reactions used for model optimizations performed in this 

work. 

List A Reactions List A Reactions List B Reactions List C Reactions 

Vpts* V1 Vf,pgk V11 Vf,pgi V5 Fixed parameter V5 

Km,PEP,pts* V1 Km,ADP,Mg,pgk  V11 Vmr,pfk1 V6 -//- V6 

Km,Glc,pts* V1 Km,BPG,pgk V11 Vmr,pfk2 V7 -//- V8 

Vf,pgi V5 Km,ATP,Mg,pgk V11 Vf,fba V8 -//- V9 

Km,G6P,pgi V5 Km,PGA3,pgk V11 Vf,tpi V9 -//- V10 

Km,F6P,pgi V5 Vf,pgm V12 Vf,gap V10 -//- V11 

Vmr,pfk1 V6 Km,PGA3,pgm V12 Vf,pgk V11 -//- V12 

Kmr,ATP,Mg,pfk1 V6 Km,PGA2,pgm V12 Vf,pgm V12 -//- V13 

Kmr,ADP,pfk1  V6 Vf,eno V13 Vf,eno V13 -//- V15 

Kmr,FbP,pfk1 V6 Km,PGA2,eno V13 Vmr,pyk1 V15   

Vf,fba V8 Km,PEP,eno V13     

Km,FbP,fba V8 Vmr,pyk1 V15     

Km,GAP,fba V8 Kmr,ADP,Mg,pyk1 V15     

Km,DAP,fba V8 Kmr,PEP,pyk1 V15     

Vf,tpi V9       

Km,DAP,tpi V9       

Km,GAP,tpi V9       

Vf,gap  V10       

Km,GAP,gap V10       

Km,NAD,gap V10       

Km,BPG,gap V10       

Km,NADH,gap V10       

* When the PWA uptake rate was used as input in the model, it replaced V1 and therefore these parameters 

were not part of the simulations.  
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B.4 Optimization strategies MP1 – MP9 

Table B-3 Initial (steady-state derived) and optimized glycolytic kinetic parameters. All rates V are given in 

mmol∙LIC
-1∙min-1 and K values are given in mmol∙LIC

-1. Values shown in blue are higher than their steady-state 

value, while the ones in red are lower. 

Parameters Initial MP1 MP2 MP3 MP4 MP5 MP6 MP9 

Vpts 22.0 10.9  10.4  14.1   

Km,PEP,pts 10-5 1.6∙10-6  3.2∙10-6  1.5∙10-5   

Km,Glc,pts 0.18 2.8∙10-5  0.58  0.14   

Vf,pgi 57.0 93.9 501 62.4  93.8 43.1  

Km,G6P,pgi 1.0 0.42  0.94  0.33   

Km,F6P,pgi 0.15 0.16  0.04  0.22   

Vmr,pfk1 2.6 30.7 27.5 3.4  0.70 0.37  

Kmr,ATP,Mg,pfk1 8∙10-5 6.6∙10-8  8.2∙10-5  1.2∙10-4   

Kmr,ADP,pfk1  0.69 2.1  0.75  0.71   

Kmr,FbP,pfk1 10.0 1.4  8.8  9.4   

Vf,fba 437 76.6 18.1 454  235 542  

Km,FbP,fba 0.06 0.02  0.07  0.06   

Km,GAP,fba 0.13 0.05  0.01  0.15   

Km,DAP,fba 0.13 0.02  0.06  0.13   

Vf,tpi 510 1486 248 454  562 1288  

Km,DAP,tpi 0.01 0.02  0.01  0.01   

Km,GAP,tpi 0.01 8.2∙10-4  0.01  0.01   

Vf,gap  50.0 557 825 101  9.1 0.02  

Km,GAP,gap 0.89 0.17  0.27  1.3   

Km,NAD,gap 0.05 0.02  0.05  0.03   

Km,BPG,gap 0.20 0.32  0.18  0.24   

Km,NADH,gap 0.01 5.4∙10-4  0.01  0.01   

Vf,pgk 111 74.3 478 70.3  111 208  

Km,ADP,Mg,pgk  0.20 5.6∙10-4  0.27  0.21   

Km,BPG,pgk 0.02 2.5∙10-3  0.02  0.02   

Km,ATP,Mg,pgk 0.48 0.38  0.60  0.44   

Km,PGA3,pgk 1.3 2.2  0.47  1.4   

Vf,pgm 309 236 7013 401  555 621  

Km,PGA3,pgm 0.19 0.37  0.25  0.27   

Km,PGA2,pgm 0.20 0.09  5.3∙10-6  0.11   

Vf,eno 23.0 109 99.0 8.3  2.8∙10-7 4.3  

Km,PGA2,eno 0.10 2.7∙10-4  0.13  0.10   

Km,PEP,eno 0.10 0.01  0.11  0.13   

Vmr,pyk1 563 534 6314 859  535 1434  

Kmr,ADP,Mg,pyk1 2.8 0.14  3.4  2.7   

Kmr,PEP,pyk1 10-6 1.6∙10-6  1.4∙10-5  1.3∙10-5   

Vmr,pfk2 500  808    971  

Parameter (List C) 1    3530   3945 
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Figure B-2 Optimization strategy MP1: Intracellular metabolite concentrations over a feast-famine cycle. Orange 

dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are given 

in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 

 

Figure B-3 Optimization strategy MP2: Intracellular metabolite concentrations over a feast-famine cycle. Orange 

dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are given 

in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 
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Figure B-4 Optimization strategy MP3: Intracellular metabolite concentrations over a feast-famine cycle. Orange 

dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are given 

in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 

 

Figure B-5 Optimization strategy MP4: Intracellular metabolite concentrations over a feast-famine cycle. Orange 

dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are given 

in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 
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Figure B-6 Optimization strategy MP5: Intracellular metabolite concentrations over a feast-famine cycle. Orange 

dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are given 

in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 

 

Figure B-7 Optimization strategy MP6: Intracellular metabolite concentrations over a feast-famine cycle. Orange 

dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are given 

in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 
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Figure B-8 Optimization strategy MP9: Intracellular metabolite concentrations over a feast-famine cycle. Orange 

dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are given 

in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 

 

Figure B-9 Normalized error (e) values plotted for every glycolytic metabolite, as calculated in the optimization 

strategies MP1 – MP9. The green bars represent the lower values for the respective metabolite (i.e. the best 

reproduction of experimental observations), while the red bars represent the maximum values (i.e. least 

accurate reproduction). For glucose the PWA uptake rate was used as input for the strategies MP4 and MP9, so 

the respective e values are not included in the comparison. 
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B.5 Optimization strategies MP10-MP18 

Table B-4 Initial (steady-state derived) and optimized glycolytic kinetic parameters. All rates V are given in 

mmol∙LIC
-1∙min-1 and K values are given in mmol∙LIC

-1. Values shown in blue are higher than their steady-state 

value, while the ones in red are lower. 

Parameters Initial MP10 MP11 MP12 MP13 MP14 MP15 MP17 

Vpts 22.0 1.8 11.2   58.4 23.0  

Km,PEP,pts 10-5 2.3∙10-5 1.2∙10-5   2.7∙10-5 9.8∙10-6  

Km,Glc,pts 0.18 1.03 0.23   0.53 0.18  

Vf,pgi 57.0 3.4 70.8 331 2.4 528 77.9 68.9 

Km,G6P,pgi 1.0 0.41 0.15   1.6 1.4  

Km,F6P,pgi 0.15 0.36 0.13   0.09 0.22  

Vmr,pfk1 2.6 1.7 1.9 0.30 1.7 2.6∙10-4 8.7∙10-7 36.3 

Kmr,ATP,Mg,pfk1 8∙10-5 2.6∙10-4 1.1∙10-4   9.9∙10-5 8.0∙10-5  

Kmr,ADP,pfk1 0.69 0.53 1.5   1.1 0.78  

Kmr,FbP,pfk1 10.0 12.5 13.5   26.9 9.6  

Vf,fba 437 147 552 1340 115 219 379 2206 

Km,FbP,fba 0.06 2.4∙10-6 0.12   0.13 0.06  

Km,GAP,fba 0.13 0.09 0.12   0.12 0.14  

Km,DAP,fba 0.13 2.6∙10-3 0.28   0.02 0.16  

Vf,tpi 510 3569 547 1876 228 530 536 58.1 

Km,DAP,tpi 0.01 0.01 1.5∙10-4   0.05 0.01  

Km,GAP,tpi 0.01 5.4∙10-4 5.3∙10-4   0.02 0.01  

Vf,gap 50.0 402 152 11.5 664 39.2 4.7∙10-6 3731 

Km,GAP,gap 0.89 0.01 1.3   0.32 1.3  

Km,NAD,gap 0.05 9.9∙10-4 0.04   0.03 0.05  

Km,BPG,gap 0.20 6.6∙10-4 0.12   0.03 0.22  

Km,NADH,gap 0.01 5.2∙10-3 0.01   3.9∙10-4 0.01  

Vf,pgk 111 24.2 73.3 208 110 108 114 29.8 

Km,ADP,Mg,pgk 0.20 0.07 0.20   0.10 0.23  

Km,BPG,pgk 0.02 2.7∙10-3 0.02   2.0∙10-3 0.02  

Km,ATP,Mg,pgk 0.48 0.36 0.40   0.21 0.48  

Km,PGA3,pgk 1.3 0.87 6.1∙10-5   1.3 1.2  

Vf,pgm 309 197 221 673 40.9 8.2 289 32.2 

Km,PGA3,pgm 0.19 0.01 0.24   0.08 0.17  

Km,PGA2,pgm 0.20 0.02 0.12   0.13 0.21  

Vf,eno 23.0 25.9 3.6∙10-6 1.8∙10-7 52.1 5.0 16.6 72.1 

Km,PGA2,eno 0.10 2.2∙10-3 0.04   1.7∙10-7 0.09  

Km,PEP,eno 0.10 4.5∙10-3 0.15   0.21 0.11  

Vmr,pyk1 563 147 416 132 3910 350 578 4200 

Kmr,ADP,Mg,pyk1 2.8 15.1 1.8   0.13 2.9  

Kmr,PEP,pyk1 10-6 1.1∙10-5 1.3∙10-5   5.4∙10-6 1.1∙10-5  

Vmr,pfk2 500   455 1609   1375 
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Figure B-10 Optimization strategy MP10: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are 

given in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 

 

Figure B-11 Optimization strategy MP11: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are 

given in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 
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Figure B-12 Optimization strategy MP12: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are 

given in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 

 

Figure B-13 Optimization strategy MP13: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are 

given in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 
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Figure B-14 Optimization strategy MP14: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are 

given in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 

 

Figure B-15 Optimization strategy MP15: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are 

given in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 
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Figure B-16 Optimization strategy MP17: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the Peskov model. All concentrations are 

given in mmol per units of intracellular volume (L), while glucose is given per units of extracellular volume. The 

normalized error e is given for every metabolite. 

 

Figure B-17 Normalized error (e) values plotted for every glycolytic metabolite, as calculated in the optimization 

strategies MP10 – MP17. The green bars represent the lower values for the respective metabolite (i.e. the best 

reproduction of experimental observations), while the red bars represent the maximum values (i.e. least 

accurate reproduction). For glucose the PWA uptake rate was used as input for the MP17 strategy, so the 

respective e value is not included in the comparison. 
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B.6 Optimization strategies MPG1-MPG4 

Table B-5 Initial (steady-state derived) and optimized glycolytic and glycogen kinetic parameters. All rates V are 

given in mmol∙LIC
-1∙min-1, K values are given in mmol∙LIC

-1 and kglyc in min-1. Values shown in blue are higher than 

their steady-state value, while the ones in red are lower. 

Parameters Initial MPG1 MPG2 MPG3 MPG4 

Vpts 22.0 0.50    

Km,PEP,pts 10-5 1.8∙10-7    

Km,Glc,pts 0.18 2.0    

Vf,pgi 57.0 2.0 178 122 1.8∙104 

Km,G6P,pgi 1.0 0.13 1.2   

Km,F6P,pgi 0.15 0.11 0.07   

Vmr,pfk1 2.6 0.42 7.6 1.3 217 

Kmr,ATP,Mg,pfk1 8∙10-5 1.4∙10-6 1.5∙10-5   

Kmr,ADP,pfk1  0.69 0.08 0.17   

Kmr,FbP,pfk1 10.0 2.1 4.8   

Vf,fba 437 4.4 8333 571 1.3∙105 

Km,FbP,fba 0.06 9.9∙10-7 0.04   

Km,GAP,fba 0.13 1.1∙10-3 0.14   

Km,DAP,fba 0.13 1.9∙10-5 0.35   

Vf,tpi 510 14097 162 83.2 1.1∙105 

Km,DAP,tpi 0.01 2.7∙10-3 0.06   

Km,GAP,tpi 0.01 1.8∙10-8 0.02   

Vf,gap  50.0 583 510 380 909 

Km,GAP,gap 0.89 0.01 0.07   

Km,NAD,gap 0.05 5.8∙10-4 0.05   

Km,BPG,gap 0.20 4.0∙10-5 0.05   

Km,NADH,gap 0.01 1.6∙10-3 1.8∙10-3   

Vf,pgk 111 4.4 87 10.1 2.4∙104 

Km,ADP,Mg,pgk  0.20 0.11 0.17   

Km,BPG,pgk 0.02 3.8∙10-3 0.01   

Km,ATP,Mg,pgk 0.48 1.1∙10-3 0.04   

Km,PGA3,pgk 1.3 1.8 0.39   

Vf,pgm 309 418 234 223 9.9∙104 

Km,PGA3,pgm 0.19 4.4∙10-3 0.22   

Km,PGA2,pgm 0.20 1.6∙10-6 3.2∙10-3   

Vf,eno 23.0 1.3 1460 13.2 1613 

Km,PGA2,eno 0.10 1.3∙10-4 5.2∙10-6   

Km,PEP,eno 0.10 0.02 3.7∙10-3   

Vmr,pyk1 563 1615 3450 769 3533 

Kmr,ADP,Mg,pyk1 2.8 3.7∙10-4 2.5   

Kmr,PEP,pyk1 10-6 1.5∙10-4 5.6∙10-6   

Vmr,pfk2 500   131 2.4∙105 

kglyc - 1.7 6.3 5.3 44 
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Figure B-18 Optimization strategy MPG1: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the extended Peskov model. All 

concentrations are given in mmol per units of intracellular volume (L), while glucose is given per units of 

extracellular volume. The normalized error e is given for every metabolite. 

 

Figure B-19 Optimization strategy MPG2: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the extended Peskov model. All 

concentrations are given in mmol per units of intracellular volume (L), while glucose is given per units of 

extracellular volume. The normalized error e is given for every metabolite. 
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Figure B-20 Optimization strategy MPG3: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the extended Peskov model. All 

concentrations are given in mmol per units of intracellular volume (L), while glucose is given per units of 

extracellular volume. The normalized error e is given for every metabolite. 

 

Figure B-21 Optimization strategy MPG4: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the extended Peskov model. All 

concentrations are given in mmol per units of intracellular volume (L), while glucose is given per units of 

extracellular volume. The normalized error e is given for every metabolite. 
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Figure B-22 Normalized error (e) values plotted for every glycolytic metabolite, as calculated in the optimization 

strategies MPG1 – MPG4. The green bars represent the lower values for the respective metabolite (i.e. the best 

reproduction of experimental observations), while the red bars represent the maximum values (i.e. least 

accurate reproduction). For glucose the PWA uptake rate was used as input for the strategies MPG2 and MPG4, 

so the respective e values are not included in the comparison.  
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B.7 Optimization strategy MPGP1 

Table B-6 Initial (steady-state derived) and optimized glycolytic, glycogen and polyphosphate kinetic parameters. 

All rates V are given in mmol∙LIC
-1∙min-1, K values are given in mmol∙LIC

-1 and kglyc in min-1. Values shown in blue 

are higher than their steady-state value, while the ones in red are lower. 

Parameters Initial MPGP1 

Vf,pgi 57.0 362 

Km,G6P,pgi 1.0 2.4 

Km,F6P,pgi 0.15 0.08 

Vmr,pfk1 2.6 10.9 

Kmr,ATP,Mg,pfk1 8∙10-5 1.1∙10-5 

Kmr,ADP,pfk1  0.69 0.02 

Kmr,FbP,pfk1 10.0 23.2 

Vf,fba 437 26.7 

Km,FbP,fba 0.06 0.11 

Km,GAP,fba 0.13 0.02 

Km,DAP,fba 0.13 0.24 

Vf,tpi 510 630 

Km,DAP,tpi 0.01 0.03 

Km,GAP,tpi 0.01 6.8∙10-4 

Vf,gap  50.0 1151 

Km,GAP,gap 0.89 0.05 

Km,NAD,gap 0.05 0.02 

Km,BPG,gap 0.20 0.01 

Km,NADH,gap 0.01 2.5∙10-4 

Vf,pgk 111 198 

Km,ADP,Mg,pgk  0.20 0.05 

Km,BPG,pgk 0.02 0.01 

Km,ATP,Mg,pgk 0.48 0.08 

Km,PGA3,pgk 1.3 0.35 

Vf,pgm 309 377 

Km,PGA3,pgm 0.19 0.20 

Km,PGA2,pgm 0.20 2.0∙10-3 

Vf,eno 23.0 355 

Km,PGA2,eno 0.10 2.9∙10-6 

Km,PEP,eno 0.10 2.1∙10-3 

Vmr,pyk1 563 2569 

Kmr,ADP,Mg,pyk1 2.8 2.6 

Kmr,PEP,pyk1 10-6 5.0∙10-6 

kglyc - 5.8 

Vmax,f,PolyP - 8.3 

Vmax,r,PolyP - 0.03 

KM1,PolyP - 2.0∙10-4 

KM2,PolyP - 0.02 
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Figure B-23 Optimization strategy MPGP1: Intracellular metabolite concentrations over a feast-famine cycle. 

Orange dots: experimental measurements. Blue lines: Simulations with the extended Peskov model. All 

concentrations are given in mmol per units of intracellular volume (L), while glucose is given per units of 

extracellular volume. The normalized error e is given for every metabolite. 
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Abstract 

Background: Microbes use intricate cellular mechanisms in order to adapt to changing 

extracellular environments. Physiological and metabolic analysis of the transition of 

Escherichia coli cells from reference constant feeding to block-wise feeding, combined with 

kinetic modelling, unveiled several potential traits of cellular adaptation (this work). Increased 

uptake rates, biomass yield losses, storage cycling and adenylate energy homeostasis were 

observed responses during the repetitive substrate gradients. To identify the origin of the 

cellular adaptations, a multi-omics analysis is crucial. 

Results: In this work, shotgun cellular proteomics and 13C-labelled metabolomics were 

performed, generating new insights on cellular regulatory mechanisms when cells are 

subjected to fluctuations in substrate availability. The extracellular dynamics were expected 

to trigger global stress responses, in line with the observed reduced biomass yield. 

Surprisingly, a lack of significant response in stress-related proteins was observed, while the 

proteome adjusted for specific functional categories, including biosynthesis and translation 

processes (ribosomes). This can be due to either increased protein production to support the 

rapid growth changes, during the short time of substrate availability, or ribosome stalling due 

to amino acid limitation during the famine phase. During substrate-limited growth (constant 

feeding) cells have an overcapacity of metabolic enzymes (involved in central carbon 

pathways), which is used under nutrient up-shift to handle rapid increase in metabolic fluxes. 

The down-regulation of several enzymes in glycolysis, TCA cycle and pentose phosphate 

pathway, as well as, transporter proteins, revealed that cells respond more to the substrate 

excess period than the starvation period, during the block-wise feeding regime. This is also in 

accordance with the observed down-regulation of the glyoxylate-shunt enzymes. Moreover, 

the increased levels of polyphosphate kinase indicated the use of a polyphosphate pool as a 

putative buffer for energy homeostasis. Glycogen production and degradation was verified 

by the proteomic and 13C tracing analysis and is suggested to contribute to the ATP spilling 

(biomass yield losses), along with the increased protein turnover, which was identified by an 

increased section of the cellular proteasome.  

Conclusions: Dynamic conditions caused several adjustments of cellular physiology, including 

increased storage and protein turnover, leading to robustness, but also reduced biomass 

yield. For a comprehensive description of metabolism and engineering of cells for large-scale 

conditions, metabolic pathways, outside the classical central carbon metabolism, have to be 

taken into account.   
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5.1 Introduction 

Microbial adaptation to environmental changes constitutes an extensively studied topic of 

microbiology (for reviews see [1, 2]). The cellular responses require the coordination of 

various regulatory mechanisms, which control different layers of metabolism; from gene and 

protein expression to fluxes and cell morphology [3-9]. When an environmental perturbation 

is applied, the cells sense the extracellular and intracellular environment, process the signals 

and initiate the suitable mechanisms, which will allow them to efficiently adapt to the specific 

stimuli [10, 11]. Depending on the environmental change, cells have certain flux distribution 

requirements to ensure survival and growth. We can therefore consider that the goal of their 

adaptation strategies is based on providing the necessary proteins to meet these 

requirements [12].  

In case of nutrient perturbations, occurring in bacterial natural habitats or in large-scale 

cultivations, cells have to regulate gene expression to achieve maximum specific growth rates, 

by inducing either specific catabolic operons, or global adaptation regulons [13-15]. For 

example, under nutrient excess the cells need to allocate their proteome in a way that high 

uptake and protein synthesis rates can be achieved. On the contrary, under carbon and 

energy limitation, the cell priority is to scavenge nutrients from alternative sources without a 

detrimental delay in the biomass synthesis. The increase in protein abundance comes with 

the cost of higher resource consumption, ribosome occupation, misfolding etc. [16, 17]. 

Hence, a critical challenge for the cells is the regulation of protein distribution between 

metabolic enzymes, ribosomes and other proteins, while maintaining proteome homeostasis 

[18]. 

The regulatory network that controls adaptation, is based on complex interactions between 

molecular components, such as proteins and metabolites [19]. Metabolic fluxes are the end 

result of the integrated multi-level (transcriptional, post-transcriptional, translational and 

post-translational) cellular response [20, 21]. The faster response systems consist of allosteric 

regulations and post-translational modifications [22], enabling short-term adaptations, while 

transcriptional regulation responds slower and is used for longer-term adaptation to 

environmental perturbations [23]. Schweder T, et al. [24] experimentally showed that stress 

gene expression in E.coli was induced (elevated mRNA levels) within seconds of substrate 

perturbations (<54 s) in a scaled-down (STR-PFR) cultivation, proving the rapid cellular 

capacity of gradient sensing. They also showed that mRNA levels were changing when 

sampling at different zones of a large-scale (30 m3) fed-batch industrial bioreactor, with 

mixing time estimated in timescale of seconds, while no changes were observed in the 

corresponding proteome, as protein translation and folding, following the gene expression 
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alterations, requires longer time. Thus, the time of the applied dynamics plays a major role in 

the adaptation strategy and responses of the cells [25]. 

To identify metabolic adjustments when bacteria are shifted from growth under constant 

substrate limitation to fluctuating substrate availability, E.coli cells were cultivated first under 

a reference constant feeding (RCF), followed by a block-wise feeding (BWF) (Chapter 3). The 

duration of each BWF cycle was 400 s (100 s of feast and 300 s of famine) and successive 

cycles were applied for at least 8 generation times. The average growth rate was 0.048 h-1 

(same as during the RCF), and in combination with the 20 h of average doubling time in E.coli, 

shows that the perturbations were in a much shorter time scale than the generation time. 

The change in the feeding regime led to significant alterations in cell metabolism. More 

specifically we observed:  

i. Increased biomass specific substrate and oxygen consumption rates and subsequent 

reduced biomass yield (30%), pointing to energy spilling processes, such as 

intracellular recycling and/or increased maintenance (inorganic polyphosphate and 

glycogen as carbon storage pool / protein production and degradation).  (Chapter 3 

and 4) 

ii. ATP homeostasis during the BWF, potentially derived by inorganic polyphosphate 

synthesis and assimilation (Chapters 3 and 4) 

The drastic changes observed in the cell metabolism could not be explained by enzyme kinetic 

mechanisms only and thus are expected to at least partially originate from proteome 

adjustments (Chapter 4). Two alternative scenarios may characterize the proteomic 

adaptation after the switch from constant to fluctuating substrate availability:  

i. No change in ribosome usage (same growth rate): Cells grow much slower than the 

applied perturbations (doubling time is 20 h, while the cycle length is 400 s), no large 

changes are expected in the average protein synthesis (ribosomes). ATP, an important 

substrate for protein synthesis, was constant over the whole cycle. 

ii. Peaks in growth during a cycle: The rapid changes in the metabolite pools (including 

amino acids), observed during every BWF cycle, influence the protein synthesis rate, 

i.e. protein synthesis is dynamic during the cycle and higher maximal capacities are 

needed (higher ribosome content). 

The goal of this chapter is to identify the origins of the BWF metabolic adaptation, using 

cellular proteomics analysis. The putative mechanisms and the expected proteome 

alterations, studied in this work, are schematically presented in Figure 5.1. 
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Figure 5.1 Overview of hypotheses for cell adaptation mechanisms, during the transition from RCF to BWF and 

the expected responsible proteome alterations. 

5.2 Materials and Methods 

5.2.1 Strain and growth conditions 

Samples from the experiment described in Chapter 3 were subjected to shotgun cellular 

proteomic analysis. The strain and all used cultivation conditions are described in sections 

3.2.1-3.2.4 of Chapter 3. 

Due to technical reasons, the cultivation was re-started with exactly the same conditions. 

Figure 5.2 shows an overlap (of several successive BWF cycles) of the CO2 production rate 

over time, indicating the reproducibility of the cultivations. The Pearson correlation 

coefficient of these rates, between the two cultivations, was calculated to be 0.99 with 

p-value of 6.1∙10-7. Note that the exact value can be an overestimation due to data 

dependencies within the time-series [26, 27]. 
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Figure 5.2 CO2 production rate (mmolCO2∙L-1∙h-1) calculated from the offgas CO2 data, over the BWF cycle time (s) 

for the 12C (red) and the 13C cultivations (black). Data of 10 successive cycles, after around 180 hours of the BWF, 

are overlapped. These rates are not corrected for delays expected due to headspace, tubing and bicarbonate in 

the broth.  

After more than 8 generations of the BWF, the feed was switched to a medium containing 

U-13C-labelled glucose with the same concentration. The labelled medium was supplied for 

two consecutive BWF cycles and then switched back to the unlabelled glucose. 

5.2.2 Proteomic analysis 

Sampling 

For each sample, 2 mL of broth were withdrawn into a tube (eppendorf) and immediately 

centrifuged (Heraeus Biofuge Stratos centrifuge) at 15000 g for 5 min at 4C. The supernatant 

was discarded and the pellet was resuspended in 1 mL of phosphate buffer (solution 

previously stored at 4C) and centrifuged again under the same conditions. The supernatant 

was discarded using a pipette and the pellet was stored at -80C until further analysis. 

Duplicate samples were withdrawn for every cultivation sampling time. 

Protein extraction and digestion 

The following solutions (A-D) were used: 

A. 100 mM TEAB (triethylammonium bicarbonate buffer) (Sigma-Aldrich, St. Louis, 

Missouri, USA) diluted in water  

B. 50 mM TEAB (diluted in water) 



Proteomic and metabolomic analysis of Escherichia coli  
adaptation strategies to substrate fluctuations 

145 
 

C. Lysis buffer: 200 μL of 10% SDS denaturing agent (Sigma-Aldrich) were mixed with 1.8 

mL of 100 mM TEAB. A protease inhibitor cocktail (DMSO solution, Sigma-Aldrich) was 

also added to the mixture (10 μL for every 1 mL of lysis buffer). 

D. 600 mM DTT: Dithiothreitol DTT (99.5% BioUltra, Sigma-Aldrich) diluted in the 100 mM 

TEAB dissolution buffer. 

E. 375 mM iodoacetamide: 9 mg of iodoacetamide (Sigma-Aldrich) were dissolved in 132 

μL of 100 mM TEAB, protected from light (solution made just before use). 

Lysis buffer (solution C) was added to the pellet samples (1:5 pellet to buffer volume ratio) to 

lyse the cells. 0.2 g of glass beads (100 μm diameter, Sigma-Aldrich) were added, samples 

were vortexed and put into ice for 2 seconds. Vortexing and ice was repeated 2 more times 

and samples were then stored at -80C for 30 minutes. After freezing, samples were 

incubated at 40C for 20 min to thaw and centrifuged at 14000 g for 10 min at 4C (Heraeus 

Biofuge Stratos centrifuge). 100 μL of each sample were transferred to new tubes, 5 μL of 

solution D were added and samples were incubated at 55C for 1 hour at 300 rpm. 5 μL of 

solution E were added to each tube and incubated for 30 min at room temperature (protected 

from light). The samples were mixed with acetone (Sigma-Aldrich) (-20C) (1:6 sample to 

acetone volume ratio) and stored at -20C for at least half hour (for the precipitation to 

proceed), followed by centrifugation at 8000 g for 10 min at 4C. The supernatant was 

carefully discarded without disturbing the pellet. Samples were resuspended in 600 μL 

acetone, thoroughly vortexed, centrifuged again and the supernatant was discarded. The 

pellets were stored at -20C until further analysis. 

400 μL of solution B were added to the precipitated protein pellets. Samples were incubated 

at 55C (low shaking) and vortexed until the pellet was completely dissolved. 100 μL of sample 

were transferred in a new eppendorf tube. Trypsin (Promega) was added (5 μL per 100 μg 

protein) and the samples were incubated overnight at 37C and 300 rpm for digestion. 

Label-free quantification (LFQ) by shotgun proteomics 

Solvents: 

A. H2O containing 0.1% formic acid (Thermo Scientific/Fisher Chemical, Optima LC-MS 

grade, A117-60) 

B. 80% acetonitrile (Thermo Scientific/Fisher Chemical, Optima LC-MS grade, A955-1) in 

H2O and 0.1% formic acid 

An aliquot corresponding to approx. 250 ng protein digest was analysed in duplicates using 

an one dimensional shotgun proteomics approach [28]. The samples were analysed using a 
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nano-liquid-chromatography system consisting of an ESAY nano LC 1200, equipped with an 

Acclaim PepMap RSLC RP C18 separation column (50 µm x 150 mm, 2µm), and an QE plus 

Orbitrap mass spectrometer (ThermoFischer Scientific). The flow rate was maintained at 350 

nL/min. Following sample loading and a wash step at 5% solvent B, a linear gradient was 

performed, first to 25% over 50 minutes, and further to 60% solvent B over additional 20 

minutes. Finally, the separation column was equilibrated back to starting conditions. The 

Orbitrap acquired data from 1 to 90, using a data depended acquisition mode, thereby 

acquiring peptide signals form 385-1250 m/z at 70K resolution, 3e6 AGC target and 100 ms 

max IT. The top 10 signals were isolated at a window of 2.0 m/z and fragmented using a NCE 

of 28. Fragments were acquired at 17K resolution, at an AGC target of 2e5 and 75 ms max IT.  

Database search, label-free quantification and visualisation 

Data were mapped using the proteome database from Escherichia coli (downloaded from 

Uniprot, E.coli K12, July 2018) using PEAKS Studio 8.5 (Bioinformatics Solutions Inc.) [29], 

allowing for 20 ppm parent ion and 0.02 m/z fragment ion mass error, 2 missed cleavages, 

carbamidomethylation as fixed and methionine oxidation and N/Q deamidation as variable 

modifications. Peptide spectrum matches were filtered against 1% false discovery rate (FDR) 

and protein identifications with ≥ 2 unique peptides were accepted. Changes in protein 

abundances between conditions were further evaluated using the label free quantification 

(LFQ) option provided by the PEAKS Q software tool (Bioinformatics Solutions Inc.). A pairwise 

comparison of the above mentioned conditions was performed on identified peptide spectra 

filtered against 1% FDR, a mass error equal or less 12.5 ppm and a maximum RT shift between 

runs of 2.5 minutes. Peptides with variable modifications were excluded. The significance 

method was set to ANOVA with a significance level threshold of ≥15 (significance level 

= -10log(p)), 1.5 fold change and 2 unique peptides per protein. 

5.2.3 Metabolomic isotopologue analysis 

Sampling 

For intracellular mass isotopomer enrichment quantification, rapid sampling over three 

consecutive feast-famine cycles was performed. 1.5 mL of broth was withdrawn from the 

reactor into a tube filled with 7.5 mL aqueous methanol quenching solution (60% v/v) at -

40C, to rapidly stop metabolic activity. The sample was immediately vortexed to ensure 

homogeneity, centrifuged for 5 min, at 1500 g, at -19C (Heraeus Biofuge Stratos centrifuge) 

and the supernatant was discarded. For the extraction of metabolites from the pellet, 7.5 mL 

of aqueous ethanol solution (75% v/v), preheated at 70C, were added to the sample and the 

tube was then placed into a water bath at 95C for 4 minutes. After the boiling extraction, the 

sample was immediately cooled down to -40C in a cryostat. 
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The ethanol-water mixture in all samples was then evaporated in a Rapid-Vap (Labconco, MO, 

USA) at 30C, under vacuum. The dried sediment was resuspended in 600 μL Milli-Q water, 

vortexed and transferred to eppendorf tubes. The samples were centrifuged at 15000 g for 5 

minutes at 1C (Heraeus Biofuge Stratos centrifuge). The supernatants were transferred to 

new empty tubes and centrifuged again under the same conditions. The supernatant was 

stored in screw-cap vials, at -80C, until further analysis.  

Analytical methods 

The metabolite mass isotopomer samples were then analysed by GC-MS/MS, GC-MS and LC-

MS/MS. The techniques are described in section 3.2.5 (Chapter 3), for metabolites of central 

carbon pathways and amino acids. The data were corrected for the natural stable mass 

isotopes, using the MS correction tool, as established by Wahl SA, et al. [30]. 

5.3 Results  

The physiological changes of Escherichia coli cells switched from a RCF to a BWF regime were 

characterized by an increase in the biomass specific uptake rates and a lower biomass yield 

(Table 5.1). 

Table 5.1 Steady-state and average feast-famine biomass specific rates and substrate yields with their associated 

standard deviations (data from Chapter 3). All the results were calculated using data reconciliation. The total 

biomass yield also includes the lysed biomass. 

 RCF BWF 
(cycle average) 

Fold 
change 

Biomass Growth μ (g gCDW
-1 h-1) 0.044 ± 0.002 0.048 ± 0.003 + 1.09 

Lysis rate (g gCDW
-1 h-1) - 0.008 ± 0.006 - 

qGlucose (mmolglc gCDW
-1 h-1) -0.73 ± 0.01 -1.12 ± 0.02 + 1.53 

O2 to Substrate ratio (mmolO2 mmolglc
-1) 2.85 ± 0.05 3.94 ± 0.08 + 1.38 

CO2 to Substrate ratio (mmolCO2 mmolglc
-1) 3.16 ± 0.05 4.05 ± 0.08 + 1.28 

Total Biomass Yield (gCDW gglc
-1) 0.31 ± 0.01 0.21 ± 0.01 - 1.48 

 

Protein abundances of Escherichia coli under RCF and BWF were measured using untargeted 

shotgun proteomics. For this, samples were withdrawn in duplicates from the reactor at the 

switch from the continuous to the block-wise feeding regime (t=0) and 172 h later (Figure 

5.3), where cycles showed identical on-line measured CO2 offgas patterns (Appendix A.1, 

Chapter 3). In addition, samples were also withdrawn 24 hours before the switch, in order to 

confirm that proteome was constant during the RCF. For every sample, double injections were 
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performed in the chromatographic system. The results discussed in this work are the average 

of biological and analytical replicates for every timepoint. 

 

Figure 5.3 Sampling timepoints before and after the switch of cultivation conditions from RCF to BWF. Duplicate 

samples were collected for every timepoint.  

In the following sections: 

1) Proteomic results will be compared between the RCF (t=0) and the BWF (t=172 h after 

the switch of regimes).  

2) A functional analysis of metabolism, based on isotope tracing from fully 13C-labeled 

glucose BWF cultivation, will be discussed. 

5.3.1 Global proteome response to feast-famine conditions 

A total of 1711 proteins were detected, out of which 1232 could be quantitatively accessed 

(significance score >15). The number of proteins with a significant abundance change (> 1.5 

fold), between the RCF and the BWF, were 402, the majority of which exhibited changes up 

to 2 fold. 285 proteins significantly increased after 8 generation times of the BWF, while 117 

decreased. The altered proteins belong to various categories with numerous biological 

functions (Figure 5.4). KEGG pathway maps were used to assign proteins to their functions 

[31]. 
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Figure 5.4 Fractions of quantitatively assessed proteins in the block-wise feeding regime, which are constant, 

up-regulated (>1.5 fold) or down-regulated (<1.5 fold), as compared to the constant feeding regime. Proteins 

are grouped into functional (KEGG) categories. The total number of proteins for every category is given above 

each bar. Detailed data can be found in Appendix C.1. 

The largest functional category, with regards to the identified proteins, was related to 

biosynthesis, followed by membrane transport and central carbon metabolism. In all 

categories, the number of up-regulated proteins was higher than the down-regulated ones, 

with the exception of signal transduction and cell structure, where however only a few 

proteins were identified. The highest fraction of up-regulated proteins was found for 

translation (33%), which includes ribosome structure and biogenesis, tRNA biogenesis and 

loading, translation elongation and translation factors. Nevertheless, there was no category 

with more than 37.5% changed proteins, showing some degree of homeostasis, even though 

the extracellular conditions changed. The most significant changes were observed for 

proteins linked to cell structure, translation, energy metabolism, biosynthesis and central 

carbon metabolism, while signal transduction proteins exhibited the smallest changes. In the 

following sections the main categories and observed changes are discussed in detail. 

5.3.2 Proteome reflecting the genetic and environmental information processing 

Transcription and signal transduction 

Receptors in the cells sense environmental conditions and thereby give signals that influence 

the transcription by various mechanisms. Two-component signal transduction systems, 

consisting of a sensor protein (histidine kinase) and a response regulator [32, 33], are 

commonly found. Some of the main global regulatory proteins and sigma factors in E.coli are 
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Cra (catabolite repression), CsrA (carbon storage regulator), Crp (cyclic AMP receptor), RpoS 

(sigma factor σ38) and RpoD (sigma factor σ70), which induce changes in a transcriptional level 

[34, 35]. In addition, universal stress proteins (Usp) have been found to also control gene 

expression following an external stimulus [36, 37]. Table 5.2 shows a summary of the proteins, 

related to signal-transduction and transcriptional regulation, which were significantly up- and 

down-regulated during the BWF. 

Table 5.2 Significant changes of protein abundances related to signal-transduction and transcriptional regulation 

during the BWF, compared to the RCF. 

Protein Accession 
Number 

Fold 
change 

Function Reference 

Up-regulated 

Phage shock protein C (PspC) P0AFN2 5.0 The pspABCDE operon may play a 
significant role in the competition for 
survival under nutrient- or energy-
limited conditions.  

[38, 39] 

Periplasmic protein CpxP P0AE85 2.5 Involved in resistance to 
extracytoplasmic stresses and may also 
act as a chaperone. It is a negative 
regulator of the Cpx pathway; an 
envelope stress response system.  

[40, 41] 

Universal stress protein G 
(UspG) 

P39177 2.4 Increases in response to stresses 
including heat, stationary phase, carbon 
or phosphate starvation. 

[37, 42] 

Phosphate signalling protein 
PhoU 

P0A9K7 2.2 It is a negative regulator of 
the phosphate regulon PhoU and 
modulates the activity of the PstSCAB 
transporter. 

[43-45] 

NrdR transcriptional 
repressor 

P0A8D0 1.9 Regulates the expression of several 
operons that encode ribonucleotide 
reductases (RNRs), according to the 
abundance of deoxyribonucleoside 
triphosphates (dNTPs) generated from 
ribonucleotides. 

[46, 47] 

RNA polymerase-binding 
ATPase and RNAP recycling 
factor (RapA) 

P60240 1.9 Activates transcription by stimulating 
RNA polymerase (RNAP) recycling in 
case of stress conditions such as 
supercoiled DNA or high salt 
concentrations. 

[48] 

Stringent starvation protein 
A (SspA) 

P0ACA3 1.8 Induced under glucose, nitrogen, 
phosphate or amino acid starvation and 
it increases with decreasing growth 
rate. 

[49] 

DNA-binding transcriptional 
dual regulator ArgR 

P0A6D0 1.8 Represses the transcription of several 
genes involved in arginine biosynthesis 
and transport, histidine transport and 
activates genes for arginine catabolism. 

[50-53] 

DNA-binding transcriptional 
activator BaeR 

P69228 1.8 Activated in response to exogenous or 
endogenous stimulation. 

[54] 

DUF179 domain-containing 
protein YqgE 

P0A8W5 1.7 It belongs to a network of genes which 
facilitate stress-induced mutagenesis. 

[55] 
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Protein Accession 
Number 

Fold 
change 

Function Reference 

Transcription 
antitermination protein 
NusB 

P0A780 1.7 Involved in transcription 
antitermination and required for 
transcription of rRNA genes.  

[56, 57] 

Sensor lipoprotein NlpE P40710 1.6 Activates the Cpx signalling pathway to 
provide a protective response when 
lipoprotein transport to the outer 
membrane is disturbed or when 
oxidative folding is impaired. 

[58] 

RNA polymerase sigma 24 
factor (RpoE) 

P0AGB6 1.6 A minor sigma factor, specializing in 
response to the effects of heat shock 
and other stresses on membrane and 
periplasmic proteins. 

[59-61] 

Integration host factor 
subunit α (IhfA) 

P0A6X7 1.6 Functions in genetic recombination as 
well as in transcriptional and 
translational control. 

[62] 

Sensor lipoprotein RscF P69411 1.6 A surface exposed outer membrane 
lipoprotein which detects perturbations 
or defects in the cell envelope and 
activates the Rcs signal transduction 
system.  This system functions as a 
global regulator controlling cell surface 
composition.  

[63, 64] 

Dps stationary phase 
nucleoid component 

P0ABT2 1.5 Highly abundant in stationary-phase 
and is required for the normal 
starvation response. 

[65, 66] 

Universal stress protein D 
(UspD) 

P0AAB8 1.5 Expressed during starvation and certain 
other stresses, requiring ppGpp. 

[67] 

DNA-binding transcriptional 
dual regulator Lrp 

P0ACJ0 1.5 Regulator for genes involved in amino 
acid biosynthesis and catabolism, 
nutrient transport and other cellular 
functions 

[68-71] 

Down-regulated 

Cold shock protein CspA P0A9X9 4.5 A major cold shock protein detected 
only during early-log-phase growth at 

37C. 

[72, 73] 

DNA-binding transcriptional 
activator MhpR 

P77569 2.0 Activator of the mhpABCDFE operon 
involved in the 3-
hydroxyphenylpropionate degradation 
pathway. 

[74] 

DNA-binding transcriptional 
regulator RstA 

P52108 1.6 Member of the two-component 
regulatory system RstB/RstA, related to 
acid tolerance, among others. 

[75, 76] 

DNA-binding transcriptional 
repressor NikR 

P0A6Z6 1.6 Active in the presence of excessive 
concentrations of intracellular nickel. 

[77] 

Carbon starvation protein A 
(CstA) 

P15078 1.5 Induced during carbon starvation or 
upon entry into stationary phase; 
expression is dependent on σ70 and 
positively regulated by cAMP-CRP. 

[78, 79] 
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Only one sigma-factor (RpoE σ24), increased in abundance under the BWF conditions, 

compared to the RCF, which is an envelope-stress protein. However, RpoS (σ38) which is 

considered to act as a master regulator of the general stress response in E.coli, regulating 

sugar and nucleotide metabolism, remained constant under both conditions. The same was 

observed for RpoD (σ70), the primary sigma factor during exponential growth. Two universal 

proteins (UspG and UspD) also increased and are known to be induced during carbon 

starvation [37]. CpxP protein, which is part of the two-component system increased 2.5 fold 

and functions as a negative regulator of the stress response Cpx pathway [80]. This was also 

consistent with the increase in the sensor lipoprotein NlpE, which is an activator of the same 

signalling pathway. However, CpxP may also act as a chaperone, which could be another 

explanation for its up-regulation [41]. 

Interestingly, no significant change was observed in the Cra and Crp proteins, which play a 

major role in carbon catabolite repression [81-83]. No change was also observed for the CsrA 

protein, which is mainly induced under carbon starvation and is known to control a variety of 

cell physiological processes, including glycolysis, but also negative regulation of glycogen 

synthesis [84, 85].  

A usual bacterial response to nutrient starvation is the stringent response, characterized by 

the accumulation of (p)ppGpp, which aims at the repression of rRNA and tRNA and the 

overexpression of genes involved in amino acid biosynthesis [86-88]. Two main enzymes play 

an important role in this response; the ribosome-bound ppGpp synthetase (RelA) and the 

bifunctional (p)ppGpp synthase/hydrolase (SpoT), which regulate the intracellular levels of 

(p)ppGpp [89, 90]. Both enzymes were identified under both conditions, but no changes were 

observed, indicating that this cellular response was not differentially regulated during the 

fluctuating substrate availability. Also, ribosomal protein L11 (RplK), which regulates the RelA 

activity [91], and DksA transcription factor, which aids ppGpp binding in RNA polymerase [92], 

were constant under both conditions.  

Translation 

Protein synthesis, occurring in ribosomes, is directly related to cell growth [93, 94]. 

Biosynthetic proteins are located further away from the primary perturbation source, the 

glucose availability. Especially, the important energy source for polymerization, ATP, was 

quasi homeostatic (Chapter 3). Thus, ribosomal proteins could be much less affected by the 

environmental conditions, as metabolism buffers the short-term perturbation. On the 

contrary, if the biosynthetic proteins could sense the environment, the biomass synthesis rate 

would vary during the cycle, and a higher ribosomal capacity, compared to the RCF, would be 

needed. The following data are used to evaluate these hypotheses.  
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Table 5.3 Significant changes of translation (ribosome structure, function and biogenesis) protein abundances 

during the BWF, compared to the RCF. 

Protein Accession 
Number 

Fold 
change 

Reference 

Up-regulated 

16S rRNA m7G527 methyltransferase (RsmG) P0A6U5 6.5 [95] 

16S rRNA m4C1402 methyltransferase (RsmH) P60390 2.5 [96] 

Peptide chain release factor RF1 (PrfA) P0A7I0 2.4 [97-100] 

16S rRNA pseudouridine516 synthase (RsuA) P0AA43 2.2 [101] 

Methyltransferase for 50S ribosomal  
subunit protein L11 (PrmA) 

P0A8T1 2.2 [102] 

30S ribosomal subunit protein S3 (RpsC) P0A7V3 2.0 [103] 

Stationary phase translation inhibitor and ribosome 
stability factor (RaiA) 

P0AD49 2.0 [104] 

30S ribosomal subunit protein S6 (RpsF) P02358 1.9 [105, 106] 

30S ribosomal subunit protein S21 (RpsU) P68679 1.9 [107] 

50S ribosomal subunit protein L10 (RplJ) P0A7J3 1.8 [108] 

50S ribosomal subunit protein L7 (RplL) P0A7K2 1.8 [108] 

50S ribosomal subunit protein L32 (RpmF) P0A7N4 1.7 [109] 

23S rRNA 2'-O-ribose U2552 methyltransferase (RlmE) P0C0R7 1.7 [110] 

30S ribosomal subunit protein S13 (RpsM) P0A7S9 1.7 [111] 

30S ribosomal subunit protein S20 (RpsT) P0A7U7 1.7 [112] 

50S ribosomal subunit protein L31 (RpmE) P0A7M9 1.7 [113] 

Peptide chain release factor RF3 (PrfC) P0A7I4 1.7 [114, 115] 

50S ribosomal subunit protein L33 (RpmG) P0A7N9 1.7 [116] 

16S rRNA m3U1498 methyltransferase (RsmE) P0AGL7 1.6 [117] 

50S ribosomal subunit protein L17 (RplQ) P0AG44 1.6 [118] 

23S rRNA m5C1962 methyltransferase (RlmI) P75864 1.5 [119] 

50S ribosomal subunit protein L5 (RplE) P62399 1.5 [120] 

Down-regulated 

Peptide chain release factor RF2 (PrfB) P07012 2.4 [97, 98] 

50S ribosomal subunit protein L13 (RplM) P0AA10 2.0 [121] 

 

Bacterial ribosomes consist of two components; a small (30S) subunit, which decodes mRNA, 

and a large (50S) subunit, which forms a polypeptide chain, linking amino acids together. Each 

subunit consists of both rRNA and proteins [122]. The levels of 8 50S ribosomal proteins were 

altered up to 1.8 fold times during the BWF (7 up-regulated and 1 down-regulated, Table 5.3). 

Regarding the 30S ribosomal subunit, the abundance of 5 proteins was significantly increased 

(Table 5.3). In E.coli ribosomes, the small subunit consists of 21 proteins, while 31 proteins 

form the large one [120]. Hence, this change observed represents 25% of the total ribosomal 

proteome, with the majority of it being up-regulated.  
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In addition to the ribosomal components, increase (up to 6.5 fold) in the abundance of several 

proteins involved in ribosome biogenesis, such as methyltransferases, responsible for the 

modification of rRNA [123], was also observed. Finally, two peptide chain release factors (PrfA 

and PrfC) increased, while the third (PrfB) decreased. PrfA and PrfB facilitate the release of 

the polypeptide chain synthesized in ribosomes at stop codons and PrfC stimulates the 

release of the former two factors from the ribosome after synthesis termination [97, 98]. PrfA 

also contributes to the rescue of stalled ribosomes [99, 100]. 

Different hypotheses to explain the high abundance of ribosomes will follow in the Discussion 

section. 

Protein folding and degradation 

The higher ribosomal capacity during the substrate fluctuations, compared to the RCF 

conditions, indicates increase in the protein turnover (simultaneous protein synthesis and 

degradation). Various conditions, such as intracellular pH variations, molecular crowding or 

incomplete protein synthesis in ribosomes, can induce protein misfolding in the cells [124, 

125]. In case of growth under the BWF, the increased production of charged metabolites can 

lead to acidification of the cytosol. Lower intracellular pH usually results in aggregated 

proteins, which have to be rapidly degraded [124, 126]. Furthermore, it is highly possible that 

amino acid depletion or energy limitation lead to pauses in the function of ribosomes and 

thus abortion of useless proteins [127]. We experimentally observed depletion of two amino 

acids, tyrosine and leucine, at the end of the famine phase (300-400 s), while the other amino 

acids were always available in the cell (Appendix A.9, Chapter 3). Previous studies have shown 

that ribosome pausing can indeed occur in E.coli under single amino acid (serine or leucine) 

depletion [128, 129]. Therefore, chaperones and proteases are expected to be more 

abundant under the BWF, as they play a significant role in restoring the cellular proteome 

homeostasis. Chaperones contribute to protein folding, while proteases degrade the 

misfolded proteins [130, 131].  
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Table 5.4 Significant changes of protein abundances related to protein folding and degradation during the BWF, 

compared to the RCF. 

Protein Accession 
Number 

Fold 
change 

Function Reference 

Up-regulated 

[Fe-S] cluster biosynthesis 
co-chaperone HscB 

P0A6L9 2.6 HscA together with HscB comprises a 
chaperone/cochaperone. 

[132, 133] 

Metalloprotease LoiP P25894 2.5 Induced in response to stress (e.g. 
heat shock, UV irradiation, low 
osmolarity). 

[134, 135] 

Aminopeptidase B (PepB) P37095 2.3 Belongs to the M17 family of 
metallopeptidases. 

[136] 

[Fe-S] cluster biosynthesis 
chaperone HscA 

P0A6Z1 2.2 HscA together with HscB comprises a 
chaperone/cochaperone. 

[132, 133] 

SecB chaperone P0AG86 2.0 Assists the folding of cytosolic 
proteins and its synthesis may be 
related to the cAMP-cAMP receptor 
protein complex-mediated activation. 

[137, 138] 

Protein disulphide 
isomerase DsbC 

P0AEG6 2.0 DsbC has chaperone activity 
independent from its isomerase 
activity. 

[139, 140] 

Redox enzyme maturation 
protein DmsD 

P69853 2.0 DmsD interacts with the molecular 
chaperones DnaK, DnaJ, GrpE, GroEL, 
TF and Ef-Tu. 

[141] 

RNase R (Rnr) P21499 1.9 Ribonuclease involved in the 
maturation of tmRNA, a small RNA 
involved in rescue of stalled 
ribosomes, and in the tmRNA-
mediated degradation of non-stop 
mRNAs. 

[142-144] 

Protein/nucleic acid 
deglycase 3 (YajL) 

Q46948 1.9 Functions as a chaperone in response 
to oxidative stress. 

[145] 

Peptidase T (PepT) P29745 1.8 Its expression is up-regulated during 
biofilm development and anaerobic 
growth. 

[146, 147] 

Peptidyl-prolyl cis-
trans isomerase A (PpiA) 

P0AFL3 1.7 Facilitates proper protein folding and 
is regulated by cAMP-CRP, CytR, and 
the Cpx two-component system. 

[148-150] 

Aminopeptidase 
A/I (PepA) 

P68767 1.7 Peptidase [151] 

D-alanyl-D-alanine 
carboxypeptidase DacA 

P0AEB2 1.7 Contributes to normal cell 
morphology and is implicated in the 
stationary phase stress response. 

[152] 

Periplasmic serine 
endoprotease DegP 

P0C0V0 1.7 Functions as a protease degrading 
unfolded outer membrane proteins 
under stress conditions and also has 
an independent chaperone activity. 

[153-156] 

HslV hexamer P0A7B8 1.7 Component of the ATP-stimulated 
HslVU protease 

[157, 158] 

Nucleotide exchange 
factor GrpE 

P09372 1.5 Part of the DnaK-DnaJ-GrpE 
chaperone system. Regulates the 
release of ADP from DnaK, providing 
further stimulation for the ATP 
turnover. 

[159, 160] 
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Protein Accession 
Number 

Fold 
change 

Function Reference 

Down-regulated 

Periplasmic chaperone 
OsmY 

P0AFH8 5.4 Induced by stresses known to cause 
protein misfolding such as 
hyperosmotic stress and upon entry 
into stationary phase. 

[161, 162] 

Periplasmic acid stress 
chaperone HdeB 

P0AET2 3.3 Both HdeB and HdeA are required for 
optimal protection against acid stress. 

[163] 

Putative zinc peptidase 
(PqqL) 

P31828 2.6 Peptidase [164] 

Protease 7 (OmpT) P09169 2.5 Outer membrane protease [165] 
Peptidase E (PepE) P0A7C6 1.6 Peptidase [166] 

 

In total 16 proteins, related to protein folding and degradation, were up-regulated, while 5 

exhibited decreased abundance compared to the RCF (Table 5.4). Many of those are 

connected to stress response, such as the entry of the cells in the stationary phase (e.g. DacA). 

No change was observed for major E.coli chaperones such as DnaK, DnaJ, ClpAX and GroEL. It 

is important to note that these were present in both conditions, but not significantly changed. 

The highest up-regulation for chaperones was found for the HscA/HscB system. The specific 

function of this system has not yet been clarified, but it was suggested to respond to 

mechanical stress [167]. Nevertheless, knock-out studies have shown that it is not an essential 

system for cell viability [168, 169]. 

Regarding proteolysis, the main energy-dependent proteases known for E.coli, belonging in 

the AAA+ family, are Lon, ClpXP, ClpAP, HflB, HslV and HslU [170], out of which HslV was the 

only one changed (1.65 fold increase).  

5.3.3 Proteome reflecting metabolism 

Nutrient Transport 

Nutrient availability was the main difference between the two feeding regimes. Especially, 

instead of constant limiting substrate concentration, the microorganism experienced rapid, 

repetitive gradients in glucose during the BWF.  

In E.coli cells, glucose is first transported in the periplasm via the outer membrane porins 

OmpC, OmpF, and LamB (protein facilitated diffusion) [171] and is then transported into the 

cytosol by the glucose-specific phosphotransferase system (PTS with Km in the range of 3-10 

μΜ) [172-174]. Since a 50% increase in the (average) glucose uptake rate (Table 5.1) was 

observed during the BWF, compared to the RCF, changes in the related transport proteins 

were expected.  
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Figure 5.5 Glucose transport in the cell, involving the outer membrane proteins and two alternative glucose 

transport systems: (a) Glucose-specific PTS and (b) Mannose-specific PTS. Proteins are shown in oval shapes, 

coloured based on the fold change observed in their abundance during the BWF, compared to the RCF. 

The two main outer membrane proteins OmpC and OmpF were considerably down-regulated 

(Figure 5.5). This suggests that the temporary excess of glucose during the feast phase of the 

BWF, dominated the expression regulation, while the constantly low concentration, during 

the RCF, triggered increased porin production [175, 176]. On the other hand, LamB, a porin 

that is reported to contribute to glucose transport under low concentrations (sub-

micromolar) [177, 178], did not show any significant changes in its abundance (Figure 5.5), 

indicating a different regulation signal. 

During the BWF, the extracellular concentration of glucose ranged from 12 to 320 μM (time 

integrated average of 49 ± 0.31 μM). The concentration measured during the RCF was 15 ± 

0.31 μM (Chapter 3). 

Regarding the transport of glucose into the cytosol by the PTS, none of the related protein 

components was found to change between the two conditions. However, E.coli is known to 

have various transporters with low and high affinity for the same sugar, in order to cope with 

both feast and famine conditions. For example, similar to the glucose PTS, the mannose PTS 

can also contribute to glucose import with lower affinity (affinity constant of 1.3 mΜ) [179]. 

In addition, the galactose and the maltose ABC transporters can also translocate glucose in 

the cytosol, during glucose-limitation conditions [176, 178, 180-183].  

The proteins EIIABMan and EIIDMan of the mannose PTS were down-regulated (Figure 5.5). The 

maltose (MalEFG) and galactose (MglABC) ABC transporters showed no changes. Hence, there 

was no overexpression of any of the potential glucose uptake systems under the BWF, 
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indicating that the glucose-specific PTS had the capacity to accommodate higher fluxes, 

without adjusting these proteins. 

Central carbon metabolism 

The higher metabolic rates compared to the RCF, observed during the BWF (Chapter 3), are 

expected to have been induced by significant changes in the central carbon metabolic 

pathways, such as glycolysis, TCA cycle and pentose-phosphate pathway (Chapter 4).  

Table 5.5 Significant changes in enzyme abundances of the central carbon metabolic pathways during the BWF, 

compared to the RCF. 

Protein Accession 
Number 

Fold 
change 

Function Reference 

Up-regulated 

GLYCOLYSIS 

2,3-bisphosphoglycerate-
independent 
phosphoglycerate mutase 
(GpmM) 

P37689 2.4 Catalyses the interconversion: 
2PG ↔ 3PG 

[184, 185] 

6-phosphofructokinase I 
(PfkA) 

P0A796 1.8 Catalyses the reaction:  
F6P + ATP  FBP + ADP + H+ 

[186] 

PENTOSE PHOSPHATE PATHWAY 

Ribulose-phosphate 
3-epimerase (Rpe) 

P0AG07 1.7 Catalyses the reaction: 
Ribulose 5-phosphate ↔ Xylulose 
5-phosphate 

[187] 

NADP+-dependent 
glucose-6-phosphate 
dehydrogenase (Zwf) 

P0AC53 1.7 Catalyses the first reaction of the 
PPP: 
G6P + NADP+  6PG + NADPH + H+ 

[188] 

Down-regulated 

GLUCONEOGENESIS 

Phosphoenolpyruvate 
synthetase (PpsA) 

P23538 1.6 Catalyses the gluconeogenic 
reaction:  
Pyruvate + ATP + H2O  PEP + 
AMP + Pi + 2H+ 

[189] 

 

1) Glycolysis and gluconeogenesis 

Looking at the glycolytic and gluconeogenic enzymes, hardly any changes were observed 

(Table 5.5). Even though all the known enzymes were identified, only two glycolytic ones, 

phosphofructokinase I (PfkA) and phosphoglycerate mutase (GpmM) were up-regulated. PfkA 

catalyses the phosphorylation F6P to FBP by ATP and is a key enzyme regulating the glycolytic 

pathway [190-192]. GpmM is one of the two phosphoglycerate mutases (GpmA is the other 

one), which catalyse the interconversion of 2PG and 3PG in lower glycolysis. The difference 

between the two enzymes is that the cofactor 2,3-biphosphoglycerate (2,3-BPGA) is required 

for the activity of GpmA, while GpmM is independent of it.  
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The observation of small changes, contradicts our kinetic modelling approaches (Chapter 4), 

which required an increased amount of all glycolytic enzymes (except fructose-bisphosphate 

aldolase), compared to the RCF, to reproduce the metabolome measurements. More 

specifically, the vmax of PfkA was increased 4 fold in the model, but only 1.8 fold experimentally 

and the vmax of Gpm was increased 1.2 fold times, in contrast to its 2.4 fold experimental 

increase. However, changes such as the 6.4 fold increase in the vmax of glucose-6-phosphate 

isomerase (Pgi) or the 23 fold in glyceraldehyde-3-phosphate dehydrogenase (GapA), were 

not evident in the proteome measurements, raising doubts about the accuracy of the kinetic 

model. 

The levels of PpsA enzyme, which generates PEP from pyruvate during gluconeogenesis, 

decreased (1.6 fold) after the switch to the BWF. Hence, glycolysis and gluconeogenesis seem 

to be robust against changes in the nutrient availability and higher fluxes can be achieved 

without overexpression of the enzymes catalysing the reactions of these pathways.  

2) Pentose phosphate pathway 

Minor abundance changes were observed for the pentose phosphate pathway proteins. Two 

enzymes were up-regulated (approx. 1.7 fold) (Table 5.5); a) the G6P dehydrogenase which 

catalyses the first reaction of the pentose phosphate pathway, providing a large fraction of 

NADPH needed for anabolism and b) the ribulose-phosphate epimerase (Rpe), enzyme of the 

non-oxidative branch of the pathway.  

Upon perturbations, the expression of the genes encoding for these two enzymes (zwf and 

rpe respectively) is correlated with the metabolic flux alterations, as has been shown for shifts 

in the dilution rate of chemostat cultivations [193]. Our metabolic flux analysis (performed in 

Chapter 3) indicated an increase of 1.4 and 1.5 fold times in the fluxes of Zwf and Gnd/Rpe 

reactions, respectively, comparing the RCF with the BWF, which was indeed reflected in their 

proteomic changes. However, this was not the case for the rest of the pentose phosphate 

fluxes. 

3) TCA cycle, glyoxylate bypass and acetate formation 

The enzymes of the TCA cycle, the glyoxylate shunt and the acetate synthesis and assimilation, 

which changed after the switch to the BWF are shown in Figure 5.6. Only two enzymes of the 

TCA cycle showed differences in their abundance. The SdhD subunit of the succinate 

dehydrogenase enzyme complex, catalysing the reduction of succinate to fumarate, which 

connects the TCA cycle with the respiratory electron transport chain, was up-regulated. One 

(AcnB) of the two enzymes, catalysing the reversible isomerization of iso-citrate from citrate, 

was down-regulated. AcnB is the major enzyme of this reaction, whereas AcnA is specifically 

induced by iron and redox-stress [194]. In addition, the levels of the NAD+-dependent malate 
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dehydrogenase enzyme (MaeA), which catalyses the decarboxylation of malate to form 

pyruvate (also part of gluconeogenesis), decreased. 

 

Figure 5.6 TCA cycle, the glyoxylate bypass. Proteins are shown in oval shapes, coloured based on the fold change 

observed in their abundance during the BWF, compared to the RCF. 

Regarding the glyoxylate shunt, 2 out of the 3 enzymes of this pathway were down-regulated, 

indicating that this pathway might be less utilized during substrate fluctuations.  

Moreover, the levels of phosphate acetyltransferase (Pta) and acetyl-coA synthetase (Acs) 

decreased. These enzymes catalyse acetate synthesis from acetyl-coA and assimilation, 

respectively. Acs is known to be repressed by the presence of glucose [195, 196], therefore 

its down-regulation could be expected due to the glucose excess conditions applied during 

the feast phase of the BWF cycles. The fact that increase in overflow metabolism was not 

observed during the BWF, based on the acetate measurements (Chapter 3) was indeed 

verified by the proteomic results. 

5.3.4 Storage metabolism 

Glycogen 

Glycogen synthesis and re-consumption was discussed in the previous chapters, as an 

intracellular carbon and energy storage pool, used by the cells to balance the substrate uptake 

flux and the anabolic processes during the BWF. The proteomic analysis verified the 

expression of this pathway, as not only all the related enzymes were present in the cell, but 

the main ones were also up-regulated (Figure 5.7). 
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Figure 5.7 Glycogen synthesis and degradation pathway. Proteins are shown in oval shapes, coloured based on 

the fold change observed in their abundance during the BWF, compared to the RCF. 

Inorganic Polyphosphate 

Moreover, the hypothesis of the formation and re-assimilation of inorganic polyphosphate, 

which could partly explain the ATP homeostasis observed during the BWF (Chapter 3), was 

verified by the 1.8 fold increase in the levels of polyphosphate kinase (Ppk), the enzyme 

catalysing the reversible reaction of polyphosphate synthesis and degradation. 

5.3.5 Functional analysis of metabolism using 13C tracing 

The metabolome was tested by adding fully 13C-labelled glucose for two consecutive cycles 

during the BWF, followed by a cycle where the feed was switched back to 12C glucose and the 

isotope enrichment in the metabolites was measured. For glycolysis, accurate data could be 

derived only for three metabolites; FBP, 3PG and 2PG (all 13C enrichment data can be found 

in Appendix C.2). From these data, we observed an immediate increase of the 13C enrichment 

of FBP during the first cycle, which decreased after the end of the feeding, reaching low values 

(around 10%) during the famine phase (Figure 5.8). The same behaviour was observed during 

the second cycle where the total enrichment reached, however, slightly higher values. 

Furthermore, in the last cycle, where 12C glucose was fed, the enrichment initially decreased 

as expected but then increased during the famine phase. This increase was, also, observed in 

the lower glycolytic metabolites 3PG and 2PG. These data indicate the presence of a storage 

pool upstream of FBP (like glycogen), which assimilated labelled carbon during the two 

labelling cycles and then acted as a source of 13C enrichment (while being degraded) in the 

upper glycolytic metabolites, during the famine phase of the second and the third cycle.  
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Higher enrichment (80-90%) than observed would be expected for the upper glycolytic 

metabolites, which may be explained by cell lysis, which was predicted during the BWF 

(Chapter 3). In case inactive cells (not yet lysed) were present in the broth as a subpopulation, 

then the presence of unlabelled metabolites contributes to the lower enrichment. In addition, 
13C enrichment of glucose and G6P, which could unfortunately not be detected, would 

enforce the hypotheses of glycogen storage. The inconsistency of the 3PG and 2PG labelling 

patterns with the FBP profile cannot be currently explained. The lower glycolytic metabolites 

were expected to follow the pattern of FBP and thus immediately increase their enrichment 

when 13C glucose is fed, also based on their pool concentration measurements (Chapter 3). 

 

Figure 5.8 Total 13C enrichment (%) over time for glycolytic intermediates during the BWF. The plots show results 

from three successive cycles. In the two first cycles 13C labelled glucose was fed in the culture, while in the third 

cycle the medium was switched to 12C glucose. The pink area represents the substrate feast phase. 

5.4 Discussion 

In the present study, the behaviour of Escherichia coli growing under BWF, compared to RCF, 

was investigated as a way to decipher growth under the highly dynamic environment of large-

scale cultivations. The study focused on the proteome-level adjustments following the switch 

of feeding conditions, investigated by label-free cellular shotgun proteomics. The analysis 

resulted in the identification of 1711 proteins, of which 23.5% showed significant changes 

between the RCF and the BWF. However, the ability of screening such a wide range of proteins 

comes at the expense of accuracy and sensibility. Hence, we separated the identified proteins 

in functional groups and analysed their behaviour in categories, in order to link the 
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physiological and metabolic responses of the cells to substrate gradients with their proteome 

rearrangements.  

Global regulation mechanisms as response to substrate perturbations 

When bacteria face drastic changes in the nutrient availability, they may activate global 

regulatory proteins, which control gene expression in response to the environmental stimuli. 

During the transition from the RCF to the BWF, we observed several changes in the abundance 

of global response proteins and transcriptional regulators, specifically related to nutrient 

stress. It has been known that seven proteins (ArcA, Crp, Fis, Fnr, Ihf, Lrp, and NarL) can 

directly control the expression of 50% of the E.coli genes [34]. Only IhfA (1.6 fold decrease) 

and Lrp (1.5 fold increase) were found to significantly change under the tested substrate 

perturbations. Fnr was not detected and Fis could not be quantitatively accessed. The rest 

remained unchanged. Sigma factors and universal stress proteins displayed no major changes. 

The carbon catabolite repression (CCR) mechanism was expected to be activated under 

substrate excess, as has been previously reported to be the case after glucose pulses [197]; 

the concentration of cAMP receptor protein (Crp) is known to decrease at high glucose 

conditions [198]. However, no changes were observed in the Cra and Crp proteins, involved 

in catabolite repression, between the two feeding conditions. In addition, no proof of the 

stringent response was found in the related proteins, even though its activation was expected 

as response to nutrient starvation during the famine phase. These results may lead to the 

conclusion that under these conditions E.coli triggers specific cellular responses, rather than 

global. However, currently, we cannot exclude lower fold changes which were not considered 

under chosen statistical thresholds. 

Ribosomes and Protein turnover 

The maximum growth rate is dependent on the proteome investment on catabolism and 

polymerization. The optimal scenario for the cell is to maintain a balance between metabolic 

reactions, which produce precursors and energy, and biosynthetic reactions, which utilize 

these products for growth. However, this balance is less obvious for non-constant substrate 

feeding. In these cases, ribosomes are some of the most important cellular components 

controlling protein synthesis. During the BWF, approximately 20-25% of the total ribosomal 

proteins present in E.coli, were observed being up-regulated in comparison to the RCF (at the 

chosen statistical thresholds). Several studies have shown that cells of various bacteria 

(Wautersia eutropha, Escherichia coli ML30 and heterotrophic bacterial strain HIS 53) 

accumulated more rRNA during  block-wise substrate perturbations (cycles of at least 1 hour), 

than when cultivated in chemostats [199-201]. Several hypotheses could explain the 

ribosomal increase observed: 
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1) Increased ribosomal capacity to accommodate a high growth rate during the feast 

phase: Assuming that the growth rate is not constant during the BWF, i.e. higher 

values are reached during high substrate conditions, compared to the reference (RCF) 

growth rate. Such change in the growth rate cannot be measured (very small change 

in the biomass concentration), nevertheless, the majority of amino acids reached 

higher intracellular concentrations during the BWF (Chapter 3). Therefore, high 

abundance of ribosomes is expected for higher protein synthesis during rapid growth, 

requiring higher capacity.  

2) Increased ribosomal proteins to compensate for higher protein turnover: Although the 

average growth rate during the BWF remained the same as under the RCF, the overall 

protein synthesis rate was increased due to increased turnover. If this hypothesis 

holds true, then the 30% biomass yield loss (Chapter 3) can be partially explained by 

ATP spilling on protein synthesis. Several chaperones and proteases were up-

regulated, showing potential increase in folding activity and proteolysis. In these 

conditions misfolded and aggregated proteins could be formed by acidification of the 

cytoplasm due to the accumulation of acidic metabolites. However, no protein related 

to pH homeostasis was found to change and the same was observed for the ATPase, 

which transports protons through the membrane. A more feasible explanation could 

then be ribosome stalling. Due to the rapid nutrient dynamics, ribosomes may suffer 

loss of energy or depletion of amino acids, during proteins synthesis. This translational 

pausing or arrest is thus the source of incomplete, misfolded and toxic proteins, which 

the cell needs to fold properly or destroy [127]. Specific quality control systems, such 

as the SsrA or tmRNA system, tackle ribosome stalling by adding a degradation tag on 

the polypeptide chain [202]. The levels of SmpB binding protein, which is required by 

the SsrA RNA, were not altered after the switch of regimes. In addition, no changes 

were observed for the ClpP, Tsp and HflB proteases, which are known to be involved 

in the degradation of the SsrA-tagged chains [202-204]. However, increase of two out 

of the three peptide chain release factors may indicate that ribosome stalling was 

indeed occurring during the BWF. 

3) Ribosomal overcapacity as an adaptation strategy: Koch AL [205], [206] were the first 

to demonstrate that cells accumulate extra inactive ribosomes, especially under 

substrate-limited conditions, which can be immediately used for rapid growth 

acceleration during a potential nutrient upshift. More studies, suggesting the same 

adaptation strategy, followed [207, 208]. If that holds true then we would expect that 

during the RCF, the cells would have an overcapacity of ribosomes and would be ready 

to face the switch to the BWF. Increase of this established overcapacity would indicate 
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potential incorrect deciphering of the environmental signals, leading to the 

production of more proteins than needed for the actual growth under the BWF. 

Nutrient transport and central carbon metabolism 

The first step in substrate uptake is characterized by the mechanisms of importing nutrients 

inside the cytosol. Cells make choices on the expression of transport systems based on 

extracellular and intracellular signals, in such way to efficiently regulate occupation of 

membrane space and energy consumption [2]. During the BWF, the cells decreased the 

abundance of two main outer membrane porins (OmpC and OmpF), used for glucose import 

into the periplasm. Regarding the subsequent transport into the cytosol, the main system 

(glucose-PTS) remained unaffected by the changing conditions and only a decrease in the 

EIIBD components of the low affinity mannose-specific PTS was observed, compared to the 

RCF conditions. No increase occurred in the expression of higher affinity transport systems, 

such as ABC transporters, which are known to increase with the decrease in growth rates 

[209]. The minimum extracellular glucose concentration during the BWF was comparable to 

the RCF levels, while the average was measured to be higher (Chapter 3). Thus, the cells likely 

decreased the porin abundance, as a proteome allocation strategy; increased membrane 

permeability was not necessary for high glucose availability and decrease of these proteins 

saves resources and serves for keeping the cellular protein concentration homeostasis. 

More transport proteins were up-regulated but their specific functions could not be 

identified. In addition, no changes were observed for proteins related to transport of 

alternative sugars, such as fructose, lactose, arabinose etc., indicating that the cellular 

capacity for their consumption, if needed, remained the same as during the RCF. 

During the BWF, significantly higher than the RCF macroscopic and metabolic rates were 

observed (Chapter 3). In addition, using modelling approaches we demonstrated that 

alterations in maximum enzyme capacities (Vmax) must have occurred during the BWF 

(Chapter 4).  

Only slight changes occurred in glycolysis, gluconeogenesis, pentose phosphate pathway and 

TCA cycle, which were not sufficient to explain the increased flux variations between the two 

regimes. In glycolysis, only the PfkA and the GpmM enzymes were found to increase, which 

catalyse the reactions from F6P to FBP and from 2PG to 3PG, respectively. Koebmann BJ, et 

al. [210] showed that the ATP demand controls the flux through glycolysis to a greater extent 

than the levels of the glycolytic enzymes. With their study they demonstrated why previous 

attempts to increase the glycolytic flux, by overexpressing the levels of these enzymes or the 

PTS-related proteins, did not succeed [211]. However, ATP levels remained constant during 

the BWF in our experimental setup. Another hypothesis for the robustness of the main central 
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carbon metabolic enzymes is that the enzyme levels were already increased during the RCF, 

but not used in full capacity, as a mechanism to rapidly accommodate higher fluxes after 

nutritional shifts  [212]. The same mechanism was already described before for the 

ribosomes. Proteomic studies have shown that glycolytic enzymes are some of the higher 

abundant proteins, accounting for 3.5-7 % of total E.coli proteome [213]. Valgepea K, et al. 

[214] integrated multi-omics data, for E.coli cultivated under different growth rates, and 

showed that cells achieved higher metabolic fluxes (for faster growth) by mainly increasing 

the enzyme catalytic rates, while the enzyme abundances (mainly for glycolysis, TCA cycle and 

PPP) were already overexpressed under nutrient limitation. The same adaptation strategy 

was supported by the extremely rapid (40 s) increase in growth rate observed after glucose-

pulses [215].  

Moreover, the glyoxylate bypass enzymes were down-regulated during the BWF. The 

importance of the glyoxylate shunt in growth efficiency has been shown for glucose-limited 

conditions [25, 216, 217] and could also be the case for the RCF conditions. With the transition 

to the BWF it seems that it was no longer an essential part in central carbon metabolism. Two 

enzymes, involved in acetate formation and re-assimilation, were down-regulated, indicating 

decrease of the overflow metabolism, despite the glucose excess phases during the BWF. 

Therefore, we argue that, during substrate limitation, cells have an enzymatic reserve for 

pathways carrying high fluxes, such as glycolysis and TCA cycle, while the catalytic rates do 

not function under saturation. With this strategy, they can then rapidly respond to the 

nutrient availability perturbations, by mainly modifying the catalytic rates and not the enzyme 

levels. Post-transcriptional regulation, thus, plays a significant role in these pathways. 

Our results are in accordance with the work of Borirak O, et al. [218], who performed 

transcriptomic and proteomic analysis after a glucose pulse addition to a steady-state culture. 

Their main observations indicated increase in ribosomal and biosynthetic proteins, while 

enzymes involved in glycolysis, pentose phosphate pathway, glyoxylate shunt and TCA cycle 

were down-regulated after the switch to substrate excess. 

Storage pathways  

The role of storage polymers is very important for the survival of bacteria during growth with 

changing substrate availability. One of these polymers is glycogen and the importance of its 

synthesis and degradation was verified by the overexpression of several enzymes catalysing 

these reactions during the BWF, as well as, 13C labelling patterns. In addition to our kinetic 

modelling work (Chapter 4) we assume that glycogen was used to store the extra carbon flux 

that could not be immediately processed in the anabolic pathways and as a potential 

mechanism to ensure high substrate uptake rates. The glycogen was subsequently used in the 
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famine phase for growth and maintenance purposes. Glycogen synthesis and assimilation 

consumes 1 net ATP, highlighting its role in ATP spilling.  

Furthermore, we proved the up-regulation of the inorganic polyphosphate storage pathway, 

by showing that polyphosphate kinase (Ppk) levels increased 1.8 fold times compared to the 

RCF. This pathway is thus most likely to be used as a control of the ATP homeostasis, which 

we observed experimentally (Chapter 3).  

Industrial relevance 

The proteome adjustment observed proves that cells circulating in different zones of 

substrate availability will undergo changes and an altered performance in large-scale 

bioprocesses has to be expected. We observed that E.coli wild-type cells were robust in the 

face of environmental perturbations regarding central carbon metabolism, as higher fluxes 

were achieved without overexpression of catalytic enzymes. Energy metabolism seem to play 

the major role under these conditions, by the induction of inorganic polyphosphate kinase 

pathway, glycogen storage and increased protein synthesis and proteolysis and is probably 

the limited factor for biomass yield. Despite the active response of the wild-type towards the 

substrate gradients, problems could arise with the use of high-producing strains in industry. 

These strains are usually forced to perform at their metabolic limits and their growth could 

thus become severely ATP limited under dynamic conditions in the bioreactor. 

5.5 Conclusions 

The proteome rearrangement in E.coli cells, after the switch from constant to block-wise 

glucose feeding, was extensively studied in this work. The adaptation was characterized by 

lack of significant changes in global stress regulators, the absence of carbon catabolite 

repression, stringent response and overflow metabolism, in addition to increased ribosomal 

activity and hardly changed central carbon metabolic enzymes. The identified cellular 

response strategies can serve as guidelines for the metabolic engineering of E.coli strains, 

with less losses under large-scale cultivations. In addition, our study enhances the view that 

E.coli metabolism under dynamic conditions is still not well explored and goes beyond our 

expectations, reshaping the definitions of robustness and metabolic stress.  
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C.1 Protein functional classification 

Table C-1 Functional classification of statistically significant (significance level threshold of ≥15) proteome 

changes between the RCF and the BWF.  

 
Number of significantly 

changed proteins 
Number of 
unchanged 

proteins 

Percentage of changed proteins 
over total measured proteome (%) 

CATEGORIES Up-
regulated 

Down-
regulated 

Up-
regulated 

Down-
regulated 

Total 

Energy Metabolism 5 1 11 29.4 5.9 35.3 

Membrane Transport 25 20 92 18.2 14.6 32.8 

Biosynthesis 73 14 164 29.1 5.6 34.7 

Central Carbon 
Metabolism 

25 17 81 20.3 13.8 34.1 

Other Metabolic 
Enzymes 

7 7 62 9.2 9.2 18.4 

Translation  33 3 64 33.0 3.0 36.0 

Protein Folding and 
Degradation 

18 8 61 20.7 9.2 29.9 

Transcription 9 2 39 18.0 4.0 22.0 

Signal Transduction 2 3 32 5.4 8.1 13.5 

DNA Maintenance 5 1 27 15.2 3.0 18.2 

Cell Structure and 
Motility 

1 2 5 12.5 25.0 37.5 

Unclassified proteins 82 39 280 20.4 9.7 30.1 
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C.2 13C isotope tracing 

The following tables consist of the mass isotopomer measurements of the 13C tracing 

experiment for metabolites of glycolysis, TCA cycle, pentose phosphate pathway and amino 

acids. The analytical methods are described in section 3.2.5 (Chapter 3). The data were 

corrected for the natural stable mass isotopes, using the MS correction tool, as established 

by Wahl SA, et al. [1]. 13C-labelled glucose was fed during the first two cycles and the feed was 

changed to 12C-labelled glucose at the 3rd cycle. N.Q. is used for non-quantified enrichments. 

Table C-2 Percentages of isotope and total 13C enrichment of metabolites over time. 

FBP 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 m+6 
 

1
st

 c
yc

le
 

0 92.2 6.0 0.9 0.2 0.2 0.4 0.2 2.1 

10 78.5 3.8 0.5 1.8 0.8 1.1 13.6 16.6 

20 55.1 2.9 0.9 3.2 1.1 3.1 33.8 39.4 

30 48.2 2.7 0.6 3.5 0.9 3.3 40.9 46.6 

40 25.9 1.9 N.Q. 4.9 1.8 5.5 60.0 68.6 

60 46.4 2.9 0.8 2.4 1.1 3.9 42.5 48.4 

80 49.9 3.0 1.0 1.9 0.6 2.8 40.6 45.2 

100 54.1 3.4 1.1 2.2 0.9 3.1 35.1 40.4 

120 85.2 6.3 1.9 0.8 0.5 1.1 4.3 7.6 

150 81.0 7.7 1.6 N.Q. 3.1 0.7 6.0 10.4 

185 86.2 6.2 2.3 0.8 0.7 2.0 1.7 6.1 

220 79.0 7.2 3.3 1.6 2.9 3.1 3.0 10.6 

260 82.8 7.1 3.1 1.2 2.4 1.8 1.5 7.5 

300 75.8 9.1 5.4 1.6 2.9 2.7 2.3 10.7 

360 76.1 8.6 3.7 2.8 3.1 3.2 2.5 11.3 

2
n

d
 c

yc
le

 

0 77.0 9.5 3.8 2.2 3.6 2.4 1.6 9.9 

10 68.9 7.2 2.8 2.6 3.4 2.6 12.5 20.3 

20 34.7 3.3 2.1 3.3 2.9 5.5 48.2 57.6 

40 33.2 3.6 1.1 1.9 2.2 5.9 52.0 60.3 

60 47.4 5.7 2.4 2.5 3.2 4.2 34.5 43.2 

80 22.9 3.0 1.7 3.1 2.5 6.8 60.0 70.0 

100 38.0 3.2 2.1 2.8 3.3 5.1 45.4 54.5 

120 44.4 4.7 2.4 3.4 3.4 4.1 37.6 46.6 

150 70.9 7.7 4.5 2.9 5.1 5.0 4.0 15.7 

185 70.7 8.1 3.6 3.1 5.1 5.7 3.8 15.9 

220 72.5 8.2 3.9 1.6 4.9 5.7 3.2 14.7 

260 61.6 8.8 5.4 3.6 7.2 8.3 5.1 21.9 

300 53.9 11.0 4.9 5.0 6.7 12.1 6.4 26.9 

360 66.6 8.5 4.7 3.2 6.9 7.1 3.0 18.1 
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3
rd

 c
yc

le
 

0 65.7 8.2 4.8 3.6 7.0 7.1 3.6 18.9 

10 70.0 8.5 4.8 4.1 5.2 4.6 2.8 15.1 

20 74.2 7.4 4.2 3.4 4.4 4.1 2.2 12.9 

30 77.1 8.9 4.0 3.5 2.2 2.6 1.7 9.9 

40 79.1 7.4 4.6 2.8 2.3 2.3 1.5 9.1 

60 78.2 7.3 3.8 2.7 3.4 2.8 1.8 10.2 

80 79.6 9.2 3.7 2.6 1.1 2.1 1.8 8.3 

100 79.4 8.2 3.5 2.5 2.5 2.6 1.3 8.9 

120 72.8 8.1 3.9 3.7 5.3 4.3 1.9 13.5 

150 63.7 5.9 3.6 6.2 9.0 7.6 4.0 21.6 

185 58.9 7.3 6.7 6.5 8.9 7.2 4.5 23.2 

220 59.1 7.2 4.3 6.3 9.0 7.2 6.8 24.6 

260 51.5 9.8 6.4 8.5 9.9 8.5 5.4 27.1 

300 58.0 8.3 5.3 6.9 10.3 6.7 4.6 23.6 

360 62.8 7.7 4.8 6.3 9.5 5.6 3.4 20.4 

  

2,3-BPG 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 
 

1
st

 c
yc

le
 

0 84.1 3.9 2.5 9.5 12.5 

10 82.3 3.6 2.6 11.5 14.5 

20 80.4 3.8 3.9 11.9 15.8 

30 81.1 3.3 1.5 14.1 16.2 

40 79.8 3.3 2.7 14.2 17.1 

60 78.7 3.3 2.6 15.4 18.2 

80 78.0 3.1 2.8 16.1 19.0 

100 72.2 3.0 2.8 22.1 24.9 

120 52.8 3.5 5.9 37.8 42.9 

150 59.0 5.0 4.9 31.2 36.1 

185 63.5 5.8 6.6 24.0 30.4 

220 66.1 6.3 7.6 20.0 27.2 

260 69.6 5.8 5.6 19.0 24.7 

300 70.0 6.4 5.9 17.6 23.7 

360 69.0 7.1 6.8 17.1 24.0 

2
n

d
 c

yc
le

 0 70.0 7.1 7.7 15.3 22.8 

10 82.1 3.8 2.2 11.9 14.6 

20 82.6 0.3 3.5 13.6 16.0 

40 75.6 3.4 2.6 18.5 21.3 

 

FBP 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 m+6 
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2,3-BPG 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 
 

2
n

d
 c

yc
le

 

60 76.8 3.2 2.6 17.4 20.2 

80 76.6 4.2 2.7 16.6 19.7 

100 76.8 4.0 N.Q. 19.2 20.5 

120 64.4 3.4 3.4 28.8 32.3 

150 53.3 3.9 7.0 35.8 41.7 

185 57.4 5.3 7.0 30.4 36.8 

220 58.6 6.1 8.1 27.3 34.7 

260 57.6 7.0 10.2 25.3 34.4 

300 61.4 7.1 9.3 22.1 30.7 

360 62.5 6.7 8.6 22.2 30.2 

3
rd

 c
yc

le
 

0 60.3 8.1 9.2 22.4 31.2 

10 86.1 4.3 4.2 5.3 9.6 

20 90.4 4.1 1.6 4.0 6.4 

30 88.7 5.1 2.8 3.4 6.9 

40 89.0 4.1 3.4 3.4 7.1 

60 89.3 4.0 3.8 2.9 6.7 

80 91.6 3.5 2.9 2.0 5.1 

100 91.6 3.3 2.3 2.7 5.4 

120 90.7 4.0 2.8 2.6 5.7 

150 86.3 6.5 3.6 3.6 8.2 

185 81.2 7.1 5.9 5.8 12.1 

220 80.8 7.7 4.9 6.7 12.5 

260 76.3 9.2 7.0 7.5 15.2 

300 76.1 9.2 6.5 8.2 15.6 

360 77.8 8.0 6.0 8.3 14.9 

 

Citrate 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 m+6 
 

1
st

 c
yc

le
 

0 90.2 6.3 1.5 0.1 1.9 N.Q. N.Q. 2.9 

10 90.0 6.1 2.8 0.3 0.6 0.3 N.Q. 2.7 

20 89.6 6.0 3.0 0.5 N.Q. 0.9 N.Q. 3.0 

30 88.7 6.1 2.5 0.7 0.4 1.5 N.Q. 3.8 

40 86.9 6.2 2.7 0.6 N.Q. 2.2 1.3 5.5 

60 88.3 6.1 2.3 0.7 0.1 2.1 0.5 4.4 

80 83.2 5.4 2.7 0.6 1.8 2.2 4.0 9.2 

100 86.8 6.0 2.6 0.6 N.Q. 2.3 1.6 5.7 

120 89.5 6.7 2.5 0.5 N.Q. 0.8 N.Q. 2.9 
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Citrate 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 m+6 
 

1
st

 c
yc

le
 

150 90.5 6.3 1.9 0.4 N.Q. 0.9 N.Q. 2.6 

185 90.8 6.0 2.3 0.4 N.Q. 0.6 N.Q. 2.4 

220 90.8 6.2 2.3 0.3 N.Q. 0.5 N.Q. 2.3 

260 89.6 6.1 1.9 0.3 1.8 0.3 N.Q. 3.3 

300 89.8 6.4 2.1 0.3 1.0 0.3 N.Q. 2.9 

360 90.5 5.9 1.6 0.4 0.9 0.7 N.Q. 2.9 

2
n

d
 c

yc
le

 

0 91.6 6.1 1.7 0.3 N.Q. 0.2 N.Q. 2.0 

10 89.8 5.5 2.5 0.6 N.Q. 0.7 0.9 3.6 

20 87.5 6.1 2.8 0.7 0.4 1.5 1.1 4.8 

40 86.8 6.2 2.2 0.7 0.5 2.0 1.6 5.7 

60 87.1 5.7 2.1 0.6 N.Q. 2.1 2.3 6.0 

80 84.1 6.1 2.1 0.5 0.4 2.2 4.6 8.7 

100 86.5 6.0 2.2 0.6 N.Q. 2.3 2.4 6.4 

120 85.2 5.6 2.5 0.6 0.4 2.2 3.5 7.7 

150 90.0 5.9 2.1 0.5 N.Q. 0.9 0.5 3.3 

185 88.8 6.2 2.3 0.5 N.Q. 1.0 1.2 4.1 

220 90.3 6.0 1.7 0.4 0.1 0.8 0.5 3.1 

260 90.8 6.3 1.7 0.5 N.Q. 0.8 N.Q. 2.5 

300 89.8 6.0 1.8 0.4 0.2 0.9 0.8 3.5 

360 90.3 6.0 1.9 0.4 0.3 0.7 0.4 3.0 

3
rd

 c
yc

le
 

0 89.8 5.7 2.3 0.3 N.Q. 0.8 1.1 3.6 

10 88.1 6.6 2.9 0.8 0.4 0.8 0.4 3.8 

20 88.1 6.8 2.7 0.8 0.8 0.8 N.Q. 3.6 

30 87.5 7.6 3.1 0.7 0.3 0.8 N.Q. 3.5 

40 87.9 7.5 3.1 0.7 N.Q. 0.8 N.Q. 3.3 

60 88.1 7.5 3.1 0.6 N.Q. 0.7 N.Q. 3.2 

80 87.9 7.8 2.6 0.7 0.3 0.8 N.Q. 3.3 

100 87.7 7.3 2.8 0.6 N.Q. 0.7 0.8 3.8 

120 88.6 7.2 2.6 0.6 0.3 0.7 N.Q. 3.1 

150 89.5 6.5 2.6 0.5 0.2 0.7 N.Q. 2.9 

185 88.6 6.7 2.4 0.5 1.1 0.7 N.Q. 3.5 

220 88.7 6.7 2.3 0.6 N.Q. 0.7 1.0 3.8 

260 89.5 6.7 2.6 0.5 N.Q. 0.6 N.Q. 2.8 

300 89.4 6.9 2.3 0.6 N.Q. 0.8 N.Q. 2.9 

360 89.8 6.4 2.2 0.5 N.Q. 0.8 0.4 3.1 
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184 
 

Succinate 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 
 

1
st

 c
yc

le
 

0 93.5 5.5 1.0 N.Q. N.Q. 1.9 

10 94.7 4.3 1.0 N.Q. N.Q. 1.6 

20 92.6 4.9 1.7 0.3 0.5 2.8 

30 91.3 5.1 1.9 0.7 1.0 3.8 

40 92.3 4.3 2.0 0.5 0.8 3.3 

60 90.5 5.3 2.0 0.8 1.4 4.3 

80 91.0 4.9 1.9 0.7 1.5 4.2 

100 90.3 4.9 1.8 0.9 2.0 4.9 

120 93.5 5.2 1.0 0.2 0.2 2.1 

150 93.4 4.9 1.0 0.3 0.5 2.4 

185 92.9 5.0 1.4 0.2 0.4 2.6 

220 92.9 5.1 1.4 0.3 0.3 2.5 

260 92.9 5.2 1.2 0.4 0.4 2.6 

300 92.9 4.9 1.2 0.4 0.5 2.7 

360 92.7 5.2 1.3 0.3 0.5 2.7 

2
n

d
 c

yc
le

 

0 92.9 4.9 1.3 0.3 0.5 2.6 

10 91.3 5.4 1.9 0.6 0.8 3.6 

20 89.1 5.0 2.6 1.1 2.1 5.5 

40 88.4 5.1 2.5 1.4 2.7 6.3 

60 88.2 5.2 2.3 1.4 3.0 6.4 

80 88.4 4.9 2.3 1.3 3.1 6.4 

100 87.9 5.2 2.2 1.4 3.3 6.7 

120 88.0 4.6 2.7 1.4 3.3 6.9 

150 91.0 5.1 1.7 0.7 1.5 4.2 

185 92.0 4.3 1.9 0.6 1.2 3.7 

220 90.8 5.0 1.9 0.8 1.4 4.2 

260 91.5 5.1 1.4 0.6 1.4 3.9 

300 91.2 4.6 2.0 0.7 1.4 4.1 

360 90.9 5.1 1.7 0.8 1.5 4.3 

3
rd

 c
yc

le
 

0 90.9 4.7 2.1 0.8 1.6 4.4 

10 91.1 4.5 2.1 0.7 1.5 4.2 

20 88.6 5.4 2.8 1.2 2.0 5.7 

30 88.2 5.5 2.8 1.3 2.3 6.0 

40 89.5 5.4 2.4 0.9 1.8 5.0 

60 88.9 5.9 2.3 1.1 1.7 5.2 

80 89.7 5.0 2.4 1.1 1.7 5.0 

100 88.9 5.7 2.5 1.0 1.9 5.3 

120 88.9 5.5 2.9 1.0 1.8 5.3 

150 90.5 5.3 2.0 0.8 1.4 4.3 

185 90.8 5.3 2.0 0.8 1.1 4.0 
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185 
 

Succinate 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 
 

3
rd

 c
yc

le
 220 90.4 5.5 2.0 0.8 1.4 4.3 

260 91.1 5.3 1.5 0.8 1.3 4.0 

300 90.7 5.3 2.0 0.8 1.3 4.2 

360 90.4 5.2 2.3 0.8 1.3 4.3 

 

M6P 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 m+6 
 

1
st

 c
yc

le
 

0 N.Q. 7.3 39.0 7.0 12.0 25.9 8.7 56.0 

10 10.6 0.7 0.8 1.5 2.1 N.Q. 84.3 86.8 

20 13.7 1.3 N.Q. N.Q. 1.2 4.8 78.9 84.0 

30 1.4 1.1 0.5 1.0 2.6 7.8 85.6 94.7 

40 N.Q. N.Q. N.Q. 1.3 2.1 N.Q. 96.6 98.7 

60 10.6 1.5 N.Q. N.Q. 1.2 N.Q. 86.7 87.7 

80 7.3 1.7 2.4 3.2 N.Q. 0.8 84.6 88.0 

100 3.8 2.3 1.4 0.9 1.1 0.8 89.8 92.5 

120 33.8 N.Q. 7.7 1.6 N.Q. 5.5 51.5 59.4 

150 N.Q. 11.3 44.8 N.Q. 30.0 13.9 N.Q. 48.4 

185 N.Q. 11.8 N.Q. 6.9 5.0 3.1 73.2 84.6 

220 28.2 N.Q. 40.2 9.4 13.7 8.5 N.Q. 34.3 

260 24.1 7.1 10.2 10.7 7.1 7.3 33.6 54.3 

300 N.Q. 49.9 N.Q. N.Q. 25.8 24.3 N.Q. 45.8 

360 18.5 14.4 13.6 11.2 18.3 3.4 20.6 48.2 

2
n

d
 c

yc
le

 

0 39.6 21.5 14.7 16.3 N.Q. 7.9 N.Q. 23.2 

10 1.4 1.1 3.1 N.Q. N.Q. 1.9 92.5 95.3 

20 1.1 2.5 1.9 N.Q. 1.0 5.7 87.7 94.2 

40 N.Q. N.Q. 3.8 1.7 2.6 5.4 86.6 94.9 

60 2.9 1.0 N.Q. 0.8 1.2 1.3 92.8 95.3 

80 3.2 N.Q. 5.8 1.8 1.5 2.6 85.1 91.1 

100 10.7 3.0 1.1 1.0 N.Q. 5.1 79.1 84.7 

120 N.Q. 1.8 6.3 N.Q. 2.1 2.2 87.6 93.2 

150 N.Q. 9.4 5.6 10.9 N.Q. 2.3 71.8 82.6 

185 15.1 N.Q. 1.4 10.9 4.4 4.3 63.8 76.3 

220 2.4 8.6 5.6 15.2 10.7 3.8 53.8 74.9 

260 6.0 22.1 9.4 12.3 4.0 N.Q. 46.2 61.9 

300 N.Q. 5.0 N.Q. 7.7 6.4 N.Q. 81.0 89.9 

360 17.3 N.Q. 10.5 N.Q. 2.7 17.2 52.4 72.0 
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3
rd

 c
yc

le
 

0 36.1 11.0 14.2 N.Q. 14.7 24.0 N.Q. 36.4 

10 92.6 2.1 1.4 N.Q. 1.5 0.4 2.1 4.2 

20 87.3 5.5 2.2 1.8 1.5 1.7 N.Q. 4.9 

30 96.6 N.Q. 0.6 1.8 0.5 0.5 N.Q. 1.8 

40 87.8 N.Q. 0.5 2.7 1.0 0.3 7.7 10.1 

60 85.6 4.8 4.6 2.5 1.8 0.7 N.Q. 5.4 

80 94.0 N.Q. 3.2 0.9 N.Q. N.Q. 1.9 3.4 

100 94.2 N.Q. 1.6 0.8 N.Q. 0.8 2.6 4.2 

120 94.7 N.Q. 1.9 1.4 1.2 0.3 0.5 2.8 

150 N.Q. 38.3 21.8 16.0 6.6 2.7 14.5 42.9 

185 42.1 11.2 25.8 8.0 4.9 4.6 3.4 25.0 

220 N.Q. N.Q. 34.7 14.3 51.0 N.Q. N.Q. 52.7 

260 N.Q. N.Q. 68.9 N.Q. 22.4 8.7 N.Q. 45.2 

300 N.Q. 30.9 41.3 6.3 15.3 N.Q. 6.2 38.5 

360 N.Q. N.Q. 15.9 20.7 12.4 2.7 48.3 74.5 

  

M6P 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 m+6 
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187 
 

2PG 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 
 

1
st

 c
yc

le
 

0 89.3 4.3 N.Q. 8.3 8.5 

20 85.5 4.9 N.Q. 11.3 11.8 

30 85.3 2.1 N.Q. 12.8 13.4 

40 81.1 3.3 N.Q. 15.6 16.7 

150 62.3 5.0 1.9 30.9 33.8 

185 69.4 4.8 4.9 20.8 25.7 

220 70.5 2.5 2.0 25.1 27.2 

260 70.1 6.3 4.5 19.1 24.2 

300 63.8 10.2 3.5 22.5 28.3 

360 70.2 6.9 4.1 18.8 23.8 

2
n

d
 c

yc
le

 

0 68.5 7.8 5.4 18.4 24.5 

10 84.4 6.6 N.Q. 11.5 12.1 

20 81.9 2.4 N.Q. 15.9 16.5 

60 78.6 3.6 N.Q. 17.8 19.0 

80 77.2 4.6 0.8 17.4 19.5 

100 77.1 N.Q. N.Q. 25.9 24.5 

120 64.7 2.0 1.0 32.2 33.6 

150 56.0 2.9 4.0 37.1 40.7 

185 55.9 5.5 6.9 31.6 38.1 

300 64.7 6.2 7.1 22.0 28.8 

360 63.3 6.5 7.9 22.3 29.7 

3
rd

 c
yc

le
 

0 70.3 4.0 5.8 19.9 25.1 

10 85.3 5.7 2.9 6.1 9.9 

20 86.8 1.2 2.1 9.9 11.7 

30 90.7 4.6 2.0 2.6 5.5 

60 90.3 4.9 N.Q. 5.1 6.6 

80 88.3 7.1 0.8 3.7 6.6 

100 92.3 N.Q. N.Q. 8.2 7.9 

120 91.5 4.8 0.7 2.9 5.0 

185 79.4 9.9 3.6 7.1 12.8 

220 81.1 8.0 4.3 6.6 12.1 

300 78.5 11.0 3.7 6.8 12.9 

360 72.4 8.8 5.0 13.7 20.0 
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3PG 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 
 

1
st

 c
yc

le
 

0 87.4 3.7 0.8 8.1 9.9 

20 84.6 4.4 0.7 10.3 12.2 

30 80.5 4.5 1.3 13.7 16.1 

40 82.9 3.2 0.9 13.1 14.7 

150 63.8 3.7 4.5 28.1 32.3 

185 67.1 4.7 5.3 23.0 28.1 

220 66.9 7.3 6.0 19.7 26.2 

260 70.0 6.2 6.1 17.8 23.9 

300 74.6 5.2 4.2 16.1 20.6 

360 71.5 6.8 5.3 16.4 22.2 

2
n

d
 c

yc
le

 

0 74.9 5.5 5.0 14.5 19.8 

10 83.3 3.4 0.9 12.3 14.1 

20 83.2 2.5 0.4 13.9 15.0 

60 79.3 3.7 1.0 16.0 17.9 

80 79.0 4.4 0.4 16.2 17.9 

100 78.0 4.9 1.4 15.7 18.3 

120 67.3 2.4 2.0 28.3 30.4 

150 56.7 4.3 4.4 34.6 39.0 

185 61.0 5.1 5.1 28.8 33.9 

300 64.9 6.2 6.8 22.1 28.7 

360 66.7 7.1 5.9 20.2 26.5 

3
rd

 c
yc

le
 

0 64.6 8.7 6.1 20.7 27.6 

10 89.3 3.9 1.1 5.8 7.8 

20 90.3 2.6 1.2 5.9 7.6 

30 92.0 3.0 1.0 4.0 5.7 

60 92.7 2.7 0.6 4.1 5.3 

80 91.2 4.0 0.3 4.5 6.0 

100 89.9 5.2 N.Q. 5.2 6.7 

120 91.7 4.3 0.7 3.3 5.2 

185 83.5 7.2 3.0 6.4 10.7 

220 80.9 7.7 3.5 7.9 12.8 

300 80.8 7.3 3.7 8.1 13.0 

360 77.1 8.4 3.0 11.5 16.3 
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aKG 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 
 

1
st

 c
yc

le
 

0 89.8 4.9 N.Q. 0.5 2.3 2.8 5.8 

20 87.4 4.6 4.1 1.3 2.1 0.7 5.6 

30 78.9 6.3 5.5 2.4 4.5 2.5 11.0 

40 78.6 4.1 5.9 2.9 5.0 3.4 12.4 

150 57.7 5.4 7.0 5.0 9.8 15.0 29.8 

185 57.0 4.7 8.2 4.9 11.9 13.3 30.0 

220 61.8 9.0 4.7 5.3 5.7 13.5 24.9 

260 59.4 3.2 10.1 6.2 10.0 11.0 27.4 

300 57.9 5.4 11.6 3.7 10.6 10.7 27.2 

360 56.2 5.2 12.0 7.9 9.3 9.4 27.4 

2
n

d
 c

yc
le

 

0 58.0 12.0 8.0 7.0 6.8 8.3 23.5 

10 57.7 4.8 14.2 6.7 6.3 10.4 26.1 

20 45.4 6.7 12.2 9.6 13.1 12.9 35.4 

60 39.2 6.3 14.0 11.6 12.6 16.4 40.3 

80 38.1 4.9 9.5 9.9 16.3 21.3 45.1 

100 44.4 3.6 9.0 7.6 14.2 21.2 41.4 

120 33.7 4.5 9.1 9.2 16.7 26.8 50.3 

150 35.5 4.0 12.0 6.5 18.8 23.3 47.8 

185 46.7 3.5 6.6 6.7 13.9 22.6 41.1 

300 34.6 3.6 12.6 12.9 14.8 21.5 46.8 

360 46.2 7.5 11.9 6.9 9.1 18.4 36.1 

3
rd

 c
yc

le
 

0 46.7 5.6 9.5 6.7 14.1 17.5 37.7 

10 34.9 5.0 12.0 14.1 16.3 17.7 45.0 

20 35.9 3.8 14.1 14.3 12.9 19.1 44.3 

30 33.2 6.9 14.1 12.7 13.5 19.7 45.1 

60 40.3 11.0 10.6 10.8 11.5 15.8 37.9 

80 37.2 12.0 11.3 12.9 12.0 14.5 38.8 

100 40.6 15.8 10.6 10.3 10.3 12.4 34.2 

120 42.3 14.2 10.1 10.7 11.0 11.7 33.8 

185 50.7 12.0 11.4 7.9 6.2 11.6 28.4 

220 50.1 12.1 13.0 6.8 9.2 9.0 28.0 

300 55.8 7.4 8.1 10.5 6.7 11.4 27.8 

360 59.3 10.5 10.3 7.0 6.7 6.2 22.0 
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Fumarate 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 
 

1
st

 c
yc

le
 

0 90.6 3.6 0.9 4.9 N.Q. 5.0 

20 66.0 4.5 10.4 14.2 4.8 21.8 

30 58.0 2.5 9.7 20.0 9.8 30.2 

40 52.8 3.7 10.3 19.3 13.9 34.4 

150 78.4 3.7 2.0 15.9 N.Q. 13.8 

185 70.2 7.6 8.8 4.7 8.7 18.5 

220 78.3 5.3 4.6 9.0 2.7 13.1 

260 71.5 8.8 4.0 8.0 7.6 17.8 

300 69.9 7.5 2.9 15.6 4.1 19.2 

360 67.7 7.5 4.6 16.3 4.0 20.3 

2
n

d
 c

yc
le

 

0 64.4 11.2 5.1 15.9 3.5 20.7 

10 57.7 3.6 6.9 24.6 7.3 30.1 

20 57.5 4.6 10.4 10.1 17.3 31.3 

60 53.2 5.4 6.3 19.6 15.6 34.8 

80 58.3 4.8 4.9 9.2 22.8 33.4 

100 58.6 4.5 2.9 27.1 6.9 29.8 

120 44.5 5.0 5.8 21.2 23.5 43.5 

150 54.4 5.5 6.1 17.2 16.7 34.1 

185 63.5 3.7 2.7 20.9 9.2 27.2 

300 60.4 4.9 6.7 14.7 13.3 28.9 

360 61.2 4.1 5.5 24.0 5.1 26.9 

3
rd

 c
yc

le
 

0 60.1 6.2 3.8 23.6 6.2 27.4 

10 57.9 8.0 8.9 17.0 8.2 27.4 

20 64.4 9.4 4.6 17.3 4.3 21.9 

30 63.6 15.4 6.7 9.2 5.1 19.2 

60 68.4 9.0 3.8 15.2 3.7 19.2 

80 68.9 12.7 4.4 9.4 4.6 17.0 

100 72.2 13.5 4.8 7.3 2.2 13.4 

120 70.7 14.1 5.2 5.9 4.2 14.7 

185 79.1 9.7 5.1 0.6 5.4 10.8 

220 77.9 5.7 4.9 9.2 2.3 13.0 

300 71.3 10.4 4.4 8.9 5.0 16.5 

360 75.1 9.3 3.2 8.3 4.1 14.2 
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Malate 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 
 

1
st

 c
yc

le
 

0 89.6 7.0 0.5 1.0 1.9 4.6 

20 46.1 3.5 17.4 23.4 9.6 36.7 

30 43.1 7.0 13.6 21.7 14.6 39.4 

40 32.4 7.8 15.6 28.6 15.5 46.8 

150 62.7 3.5 7.3 13.2 13.3 27.7 

185 52.0 7.6 16.6 12.1 11.7 31.0 

220 64.2 3.6 9.3 13.1 9.8 25.2 

260 59.4 10.1 9.4 11.1 10.0 25.5 

300 57.3 14.0 8.0 10.9 9.8 25.5 

360 63.7 9.3 11.0 6.4 9.5 22.1 

2
n

d
 c

yc
le

 

0 56.3 14.1 11.3 8.9 9.4 25.3 

10 47.2 13.1 15.6 8.5 15.6 33.0 

20 31.6 8.2 13.7 24.7 21.8 49.2 

60 28.9 8.2 10.9 20.8 31.3 54.3 

80 33.8 3.1 9.0 25.2 28.9 53.1 

100 41.6 1.1 5.0 21.3 31.0 49.8 

120 28.6 4.4 8.0 26.7 32.3 57.4 

150 38.2 3.5 13.4 16.2 28.6 48.4 

185 40.8 7.3 15.9 12.3 23.7 42.7 

300 40.4 8.4 16.0 15.7 19.6 41.4 

360 46.7 6.1 12.5 13.3 21.4 39.1 

3
rd

 c
yc

le
 

0 47.2 9.8 7.2 15.5 20.4 38.1 

10 48.9 10.5 14.8 10.8 15.0 33.1 

20 50.0 21.6 11.7 6.2 10.4 26.4 

30 57.7 17.9 10.8 7.8 5.9 21.6 

60 65.4 19.0 8.6 4.3 2.7 15.0 

80 64.3 16.3 8.9 4.2 6.3 18.0 

100 60.4 19.6 12.6 4.1 3.2 17.5 

120 63.2 20.4 7.3 4.8 4.4 16.7 

185 63.1 13.0 12.4 3.2 8.2 20.1 

220 61.0 17.3 14.5 2.5 4.7 18.1 

300 57.6 13.8 14.9 5.6 8.0 23.1 

360 68.4 2.2 9.9 9.8 9.7 22.5 
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Rib5P 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 
 

1
st

 c
yc

le
 

0 97.5 2.7 N.Q. 0.7 1.0 

20 87.6 3.4 0.7 8.4 10.0 

30 86.4 4.7 0.5 8.4 10.3 

40 83.8 3.7 0.3 12.2 13.6 

150 89.1 2.4 0.6 7.9 9.1 

185 83.5 4.5 0.5 11.6 13.4 

220 91.6 2.3 0.6 5.5 6.7 

260 91.1 4.7 N.Q. 4.1 5.7 

300 95.4 2.8 0.3 1.6 2.7 

360 92.6 4.7 0.8 2.0 4.0 

2
n

d
 c

yc
le

 

0 95.6 3.0 N.Q. 1.4 2.4 

10 91.5 3.1 0.2 5.2 6.4 

20 79.8 4.5 0.3 15.5 17.2 

60 85.3 2.1 1.1 11.5 13.0 

80 82.5 2.0 0.8 14.7 15.9 

100 86.3 3.0 0.3 10.4 11.6 

120 75.6 2.8 0.4 21.2 22.4 

150 75.9 2.5 1.3 20.4 22.1 

185 88.9 2.9 0.8 7.4 8.9 

300 92.7 3.4 0.5 3.5 4.9 

360 94.0 4.5 N.Q. 1.7 3.1 

3
rd

 c
yc

le
 

0 95.5 2.4 0.5 1.6 2.7 

10 94.1 3.3 N.Q. 2.8 3.8 

20 93.3 4.7 0.5 1.5 3.4 

30 94.5 3.3 0.1 2.1 3.2 

60 95.3 3.7 N.Q. 1.3 2.3 

80 94.4 3.7 0.5 1.4 3.0 

100 94.6 3.9 N.Q. 1.6 2.8 

120 94.0 4.3 0.2 1.6 3.1 

185 94.2 4.3 N.Q. 1.8 3.0 

220 94.7 2.9 0.5 1.9 3.2 

300 95.1 3.1 0.3 1.4 2.7 

360 95.6 2.5 0.2 1.7 2.6 
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Trehalose 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 m+6 
 

1
st

 c
yc

le
 

0 79.5 4.8 1.6 0.4 N.Q. 0.4 13.5 15.3 

20 85.0 5.6 N.Q. 0.3 0.2 0.7 8.3 10.1 

30 84.9 4.4 1.0 0.3 0.1 0.4 8.9 10.5 

40 87.5 6.4 0.2 0.3 0.1 0.3 5.2 6.8 

150 71.0 4.1 1.2 0.1 N.Q. 1.9 21.8 24.5 

185 85.3 5.5 0.8 0.2 0.1 0.6 7.6 9.4 

220 75.7 4.3 0.3 0.3 0.2 1.2 18.0 20.1 

260 84.3 5.1 1.0 0.3 0.1 0.8 8.4 10.5 

300 78.7 5.6 0.6 0.7 0.3 0.9 13.1 15.6 

360 69.7 4.4 0.2 0.7 0.4 1.5 23.2 25.8 

2
n

d
 c

yc
le

 

0 83.5 5.2 N.Q. 0.9 0.2 0.8 9.4 11.5 

10 78.8 5.7 0.7 0.8 0.2 1.4 12.3 15.3 

20 82.5 5.9 0.7 0.6 0.3 0.8 9.1 11.6 

60 62.7 4.0 0.3 0.7 0.5 2.5 29.4 32.9 

80 76.9 4.7 0.9 0.7 0.3 1.1 15.4 17.9 

100 64.1 4.3 1.4 1.0 0.1 2.0 27.1 30.5 

120 74.9 5.9 1.2 0.7 0.4 1.4 15.5 18.6 

150 79.5 5.9 0.6 0.9 0.4 1.1 11.5 14.4 

185 75.5 4.9 0.3 1.2 0.3 2.0 15.8 19.2 

300 80.8 5.6 0.6 1.0 0.3 0.9 10.8 13.4 

360 70.5 5.6 0.6 0.4 0.4 2.1 20.3 23.7 

3
rd

 c
yc

le
 

0 74.9 3.9 0.4 1.3 0.3 1.8 17.3 20.4 

10 78.0 5.2 0.8 1.2 0.5 1.2 13.1 16.1 

20 74.2 4.4 0.8 0.9 0.5 1.6 17.6 20.7 

30 76.9 5.1 0.7 1.2 0.5 1.2 14.3 17.3 

60 65.2 3.2 0.5 1.3 0.4 1.7 27.7 30.7 

80 78.8 5.3 0.1 1.3 0.7 1.3 12.4 15.6 

100 77.9 4.1 N.Q. 1.3 0.7 1.4 14.6 17.5 

120 78.2 5.2 0.4 1.2 0.6 1.2 13.3 16.3 

185 76.6 6.2 0.5 1.3 0.6 1.3 13.4 16.8 

220 74.0 3.3 0.7 1.3 0.7 1.2 18.8 21.7 

300 77.5 6.4 1.3 1.1 0.7 1.2 11.8 15.3 

360 63.6 5.1 0.3 0.9 0.6 2.1 27.4 31.0 
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Glycine 

 
 Isotope enrichment (%) 

Total 
enrichment (%) 

 

Cycle 
time (s) 

m+0 m+1 m+2 
 

1
st

 c
yc

le
 

0 98.8 1.5 N.Q. 0.4 

30 96.8 4.2 N.Q. 1.1 

150 97.1 3.6 N.Q. 1.1 

220 99.4 1.0 N.Q. 0.1 

300 96.7 3.8 N.Q. 1.4 

2
n

d
 c

yc
le

 

10 98.6 1.6 N.Q. 0.6 

60 99.1 1.3 N.Q. 0.2 

100 96.6 4.2 N.Q. 1.3 

185 99.4 1.1 N.Q. 0.1 

360 98.5 1.9 N.Q. 0.5 

3
rd

 c
yc

le
 

0 98.5 1.6 N.Q. 0.7 

20 98.4 1.7 N.Q. 0.7 

60 98.2 2.1 N.Q. 0.7 

100 98.5 1.8 N.Q. 0.6 

150 98.3 2.0 N.Q. 0.7 

220 98.9 1.4 N.Q. 0.4 

360 98.5 1.9 N.Q. 0.5 

 

Cysteine 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 

Cycle 
time (s) 

m+0 m+1 m+2 m+3 
 

1
st

 c
yc

le
 

0 97.0 11.6 N.Q. N.Q. N.Q. 

30 94.7 12.4 N.Q. N.Q. N.Q. 

150 87.6 13.2 N.Q. 3.4 5.0 

220 89.8 13.2 N.Q. 3.5 3.6 

300 89.7 12.6 N.Q. 2.8 3.6 

2
n

d
 c

yc
le

 

10 91.2 13.0 N.Q. 3.1 2.5 

60 85.0 13.1 N.Q. 5.5 7.4 

100 80.0 13.8 N.Q. 7.2 11.2 

185 79.9 14.5 N.Q. 9.1 11.6 

360 81.2 14.2 N.Q. 8.0 10.4 

3
rd

 c
yc

le
 

0 80.7 15.1 N.Q. 8.0 10.5 

20 80.2 13.8 N.Q. 8.3 11.4 

60 79.4 14.0 N.Q. 8.2 11.8 

100 77.3 15.4 N.Q. 9.9 13.2 

150 76.8 15.8 N.Q. 9.9 13.6 

220 76.2 16.0 N.Q. 9.4 13.7 

360 77.1 15.8 N.Q. 8.5 12.8 
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Threonine 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 

Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 
 

1
st

 c
yc

le
 

0 96.2 6.6 N.Q. N.Q. N.Q. 0.1 

30 96.7 4.8 N.Q. N.Q. 0.4 0.6 

150 95.1 5.3 N.Q. N.Q. 2.2 2.1 

220 95.3 5.3 N.Q. 0.7 1.0 1.7 

300 92.3 7.8 N.Q. 0.6 1.9 3.0 

2
n

d
 c

yc
le

 

10 93.5 6.2 N.Q. 0.3 1.4 2.5 

60 93.2 5.9 N.Q. 1.5 1.0 2.8 

100 92.8 4.1 N.Q. 1.7 2.9 4.5 

185 92.9 4.5 N.Q. 0.6 2.1 3.6 

360 90.4 6.5 0.5 0.6 2.0 4.3 

3
rd

 c
yc

le
 

0 90.4 5.9 N.Q. 1.0 2.8 4.9 

20 90.8 6.3 N.Q. 1.3 2.0 4.4 

60 90.8 6.9 N.Q. 2.0 2.3 4.6 

100 92.0 4.2 0.1 1.4 2.3 4.4 

150 92.1 4.5 N.Q. 1.9 2.4 4.5 

220 91.1 5.2 N.Q. 2.3 1.8 4.6 

360 91.2 3.1 0.7 1.8 3.2 5.6 

 

Glutamate 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 

Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 
 

1
st

 c
yc

le
 

0 95.3 1.3 2.2 0.8 N.Q. 0.4 2.1 

30 82.8 5.2 5.1 2.0 3.3 1.6 8.5 

150 53.5 3.7 11.2 6.2 11.7 13.6 31.9 

220 51.6 4.7 11.6 8.8 11.6 11.8 31.9 

300 50.6 4.7 16.1 1.8 17.1 9.5 31.7 

2
n

d
 c

yc
le

 

10 48.0 7.5 13.7 8.8 12.4 9.5 31.7 

60 34.8 8.2 12.1 12.1 13.9 18.9 43.8 

100 27.9 6.6 13.7 13.0 18.9 20.0 49.7 

185 26.9 4.8 13.4 11.9 17.5 25.5 52.9 

360 24.6 4.7 12.6 15.8 19.0 23.3 54.0 

3
rd

 c
yc

le
 

0 25.7 4.3 14.9 14.7 18.1 22.2 52.4 

20 25.2 6.1 14.5 14.2 16.5 23.6 52.3 

60 29.7 9.0 13.7 17.4 12.0 18.1 45.4 

100 36.4 12.7 11.9 13.4 11.9 13.6 38.6 

150 40.4 13.0 13.1 11.4 9.8 12.2 34.8 

220 39.6 14.0 13.5 12.3 8.5 11.9 34.4 

360 39.9 15.3 15.5 12.1 8.3 9.0 32.1 
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Aspartate 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 

Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 
 

1
st

 c
yc

le
 

0 90.5 6.3 N.Q. 3.4 0.6 4.3 

30 53.0 4.8 10.9 21.7 9.5 32.5 

150 46.3 9.8 9.5 16.6 17.7 37.4 

220 47.5 8.1 16.2 14.4 13.8 34.7 

300 49.6 11.2 14.4 12.8 12.0 31.6 

2
n

d
 c

yc
le

 

10 50.2 11.7 12.6 11.6 14.0 31.9 

60 47.5 1.7 6.9 21.7 22.2 42.3 

100 42.7 5.2 8.4 17.6 26.1 44.8 

185 29.1 7.3 14.8 18.9 29.8 53.2 

360 29.8 10.7 17.2 16.4 25.9 49.5 

3
rd

 c
yc

le
 

0 29.2 10.0 18.6 18.3 23.9 49.5 

20 52.3 14.8 13.8 7.6 11.5 27.8 

60 66.1 15.1 9.7 3.0 6.1 16.9 

100 64.1 19.0 5.7 5.2 5.9 17.5 

150 56.2 16.6 11.7 6.7 8.8 23.8 

220 52.0 14.5 15.5 7.3 10.7 27.6 

360 50.3 17.1 14.1 9.3 9.2 27.5 

 

Valine 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 

Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 
 

1
st

 c
yc

le
 

0 86.5 12.3 N.Q. 1.4 0.1 0.7 3.7 

30 73.1 10.6 0.7 3.5 1.8 10.3 16.2 

150 27.3 11.7 2.8 5.7 6.8 45.8 58.0 

220 40.1 7.1 3.4 5.9 5.4 38.1 48.7 

300 48.2 7.8 3.4 5.6 4.4 30.5 40.4 

2
n

d
 c

yc
le

 

10 60.5 12.5 1.6 5.0 3.0 17.4 26.0 

60 44.5 7.7 2.5 4.3 5.5 35.6 45.1 

100 37.9 17.6 N.Q. 3.5 5.5 37.6 46.8 

185 28.6 6.2 2.3 5.5 7.0 50.5 61.5 

360 55.8 11.2 0.8 4.4 4.5 23.2 32.0 

3
rd

 c
yc

le
 

0 54.4 14.3 1.1 5.0 4.6 20.7 30.7 

20 64.0 16.5 N.Q. 4.5 2.9 13.1 21.0 

60 74.8 14.7 3.1 3.8 0.9 2.7 9.9 

100 79.9 11.2 3.0 3.0 0.8 2.2 8.0 

150 79.5 11.8 3.4 2.7 0.5 2.0 7.8 

220 76.6 13.7 2.7 3.1 0.7 3.2 9.5 

360 76.2 11.8 3.5 3.4 1.3 3.7 10.6 
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Proline 

  Isotope enrichment (%) 
Total 

enrichment (%) 

 
Cycle 
time (s) 

m+0 m+1 m+2 m+3 m+4 m+5 
 

1
st

 c
yc

le
 

0 93.9 2.1 N.Q. 3.6 2.8 0.9 4.4 

30 95.6 1.9 N.Q. 2.7 1.0 0.5 2.6 

150 76.9 1.1 0.8 10.9 4.6 5.8 16.5 

220 76.8 0.9 2.8 6.8 6.4 6.4 16.8 

300 73.7 1.1 2.6 11.7 3.4 7.4 18.5 

2
n

d
 c

yc
le

 

10 73.7 3.0 3.1 9.5 4.3 6.5 17.4 

60 35.2 1.2 2.6 68.3 N.Q. 1.6 36.7 

100 54.6 2.2 7.3 16.2 8.8 10.9 31.0 

185 47.8 5.0 7.0 7.8 13.5 18.9 38.2 

360 55.5 3.7 6.2 7.8 11.1 15.8 32.5 

3
rd

 c
yc

le
 

0 50.6 2.8 6.9 14.6 9.9 15.2 35.2 

20 30.2 2.6 4.4 56.9 N.Q. 8.2 42.8 

60 44.7 20.7 1.9 12.2 7.5 13.0 31.2 

100 41.8 18.5 2.9 12.5 10.4 13.9 34.6 

150 44.6 4.9 10.0 15.5 11.1 14.1 37.2 

220 43.6 17.1 7.5 11.5 8.8 11.5 31.8 

360 50.1 17.9 6.4 8.1 8.0 9.4 26.8 
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6.1 Unique contributions and key learnings of this research 

Industrial biotechnology applications require cultivating microorganisms in large-scale 

bioreactors, to enable sufficient production capacity and competitive production costs. Such 

large-scale environments are commonly characterized by physicochemical gradients, due to 

mass transfer limitations (mixing), leading to reduced performance (product formation and 

biomass synthesis), compared to lab-scale cultivation conditions. Following the need to 

unravel and understand the cellular behavior of microorganisms under changing (dynamic) 

environments, the effects of dynamic repetitive changes in extracellular substrate 

concentrations on metabolism of Escherichia coli K12 MG1655, were studied. This work 

enabled to distinguish key cellular functions controlling the cellular long-term (up to 8 

generations) adaptation to such dynamics.  

In contrast to previous scale-down studies, the quantitative observation and mechanistic 

description of intracellular metabolism was the main focus of this thesis. Therefore, an 

experimental platform, generating repetitive dynamic substrate gradients, was chosen. Such 

defined environment enabled a detailed study of the metabolic network, generating a solid 

basis of experimental data for kinetic modeling. The quantitative data, together with kinetic 

modeling, were used to identify key metabolic adjustments during the repetitive cycles.  

Repetitive substrate gradients were achieved by block-wise glucose feeding in an aerobic 

E.coli culture. The dynamic cycles, with a duration of 400 s (20 s feeding and 380 s non-

feeding) each, allowed for the quantitative monitoring of the physiological responses of the 

cells, as well as, high frequency metabolome and proteome sampling. A repetitive response 

was obtained, after 5 residence times of the applied dynamic regime. 

Comparing dynamic conditions (feast-famine) to a reference chemostat cultivation (steady-

state), highlighted that the biomass specific rates of glucose and oxygen uptake increased, as 

well as the carbon dioxide production rate. The (average) biomass yield was found to decrease 

by 30%, which constitutes one of our most significant observations. This observation 

indicated the increase of ATP-spilling mechanisms. The commonly observed overflow 

metabolism resulting in production of e.g. acetate was not found (no increase in the 

concentration of acetate). Interestingly, the cellular ATP concentration was basically 

homeostatic. According to the measured metabolome and proteome changes, the potential 

adaptation mechanisms are: 

i. Glycogen and inorganic polyphosphate synthesis and degradation, as revealed by the 

increase in the abundance of the respective enzymes and the 13C isotope tracing.  

ii. Increased protein turnover, as indicated by the higher abundance of proteins 

participating in protein folding (chaperones) and degradation (proteases).  
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The cellular behavior under dynamic conditions was analyzed using a model-based approach. 

Using a published E.coli kinetic model (calibrated with steady-state data) and the obtained 

experimental measurements, we could show that significant adjustments are needed to 

correctly reproduce growth and metabolism under the applied dynamic conditions. The 

following aspects should be considered: 

i. Significant alterations in the enzymatic kinetics of central carbon pathways when cells 

are adapted to dynamic conditions. 

ii. The key role of carbon storage metabolism (glycogen production and re-

consumption), which allows the cells to handle abrupt changes in the uptake rates, 

without the detrimental accumulation of glycolytic intermediates. Intracellular 

glycogen measurements are a necessity, as well as a better description of the kinetics 

of this mechanism. 

iii. Implementation of ATP-spilling mechanisms in the models to allow for better 

predictions of energy metabolism. 

The first hypothesis (i) was experimentally evaluated using shotgun proteomic analysis on 

biomass grown under the reference constant feeding and the block-wise feeding conditions. 

Changes were observed for 23.5% of the total proteome identified. Nevertheless, the 

magnitude of change was lower than expected, extrapolating from the observed physiological 

differences. Additionally, main global regulatory proteins did not respond to the switch of 

conditions and there were no indications of the activation of nutrient stress mechanisms, such 

as catabolite repression or the stringent response system. Rather than global (stress) 

responses, E.coli cells tuned protein levels related to specific cellular functions. These include 

biosynthetic pathways and translation processes. Increased levels of ribosomal proteins were 

assumed to either accommodate higher protein synthesis during phases of rapid growth or 

compensate for higher protein turnover.  

Proteins associated with nutrient transport and catabolism, were down-regulated or 

remained unchanged during the block-wise feeding. Nevertheless, uptake and catabolic rates 

were temporarily much higher compared to steady-state conditions, suggesting that there 

was an enzymatic reserve, for the main fluxes in glycolysis, TCA cycle and pentose phosphate 

pathway. Such reserve could be beneficial to rapidly enable high fluxes after a switch of 

nutritional availability (bet-hedging strategies [1]). 
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6.2 Open challenges and recommendations 

Research, in all scientific fields, provides answers, but commonly, at the same time generates 

new ones, with new challenges to solve. The most relevant remaining challenges and the 

steps which should be taken to obtain a mechanistic understanding of microbial metabolism 

under dynamic conditions to use this knowledge on optimizing industrial bioprocesses, are 

summarized below:  

1) Trade-off between representative scale-down set-ups and data complexity 

(heterogeneity) 

Scale-down experiments are currently best practice to mimic the conditions of bacteria 

cultivation in large-scale fermenters [2-4]. For a better representation during the scale-down, 

a quantitative description of the industrial-scale cultivation parameters is necessary. In this 

work, we showed that the sequence (repetition) of the applied perturbations significantly 

affects the cellular behavior and suggested that repetitive perturbations are more 

representative for large-scale conditions, compared to single-pulses. Hence, the relevant 

industrial mixing and circulation times should be calculated, as accurately as possible, either 

with online measurements inside the large-scale bioreactors or by using computational fluid 

dynamic (CFD) models.  

At the same time, there is a trade-off between mimicking the large-scale conditions and the 

“simplicity” of data generation and interpretation. A block-wise feeding regime, generates 

repetitive cycles, that can be easily sampled and homogeneous conditions can be assumed, 

meaning that the whole E.coli population simultaneously face the same perturbations 

(substrate excess, limitation or depletion). Nevertheless, the conditions differ in the large-

scale cultivations, where individual cells are exposed to different fluctuations, depending on 

their specific trajectory, i.e. the zones of the reactor they are in time.  

This consideration has led to the use of two-compartment systems for scale-down studies. In 

a recent study, Wang G, et al. [5] compared an intermittent feeding regime in one reactor 

with substrate perturbations in a two-compartment system, as a scale-down for penicillin 

production. They showed different observations between the two systems, mainly regarding 

the expression of sugar transporters and carbon storage strategies in Penicillium 

chrysogenum. Subsequently, profound consideration of the experimental setup should be 

given to interpret results from scale-down experiments and judge how representative they 

are to real industrial conditions. Several methods have been developed to track 

subpopulations and define heterogeneity in large-scale cultivations [6-14]. The current 

challenge is to integrate heterogeneity predictive models with single-cell studies, in order to 
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answer the following question: Is reduced microbial performance a result of badly performing 

subpopulations? 

In addition, while commonly various gradients are present simultaneously in a large-scale 

cultivation, their effects on cellular metabolism should be assessed first separately to 

decipher complexity. When enough understanding on regulation under each condition is 

acquired, their combination can be further studied experimentally, investigating which 

gradients provoke more rapid or more drastic responses on the system, by comparing all 

available observations. Do all gradients affect productivity or growth? Are the effects of 

different gradients observed in different time intervals and how relevant are they for the 

industrial process under investigation? 

2) Application to engineered production strains 

In this work, only the E.coli wild-type laboratory strain (K12 MG1655) was studied. Studying 

engineered production strains will give further insights to the impact of dynamics on 

production performance of microbes in large-scale applications. Combined with predictive, 

kinetic modelling, novel strategies for robust strain design and engineering can be developed. 

3) Validation of hypotheses using mutant strains 

According to our observations, energy metabolism seemed to play a key role on how cells 

face substrate perturbations. For E.coli, we propose to improve intracellular glycogen and 

polyphosphate measurements to explore these potential mechanisms of energy homeostasis. 

In addition, perturbation studies with respective knock-out strains will validate or reject the 

derived hypotheses.  

4) Data integration and multi-scale modeling 

Multi-omics approaches play a significant role in the quantitative description of cellular 

behaviour under dynamic conditions but result in large datasets and wide range of 

information. Not only high quality data are needed in terms of genome, transcriptome, 

proteome, metabolome and fluxome, but the main challenge lies on the integration of these 

data to make them useful for answering the scientific questions posed. 

The need for predictive dynamic kinetic models and the experimental and computational 

challenges have been widely discussed in literature, as well as in this work (Chapters 2 and 4). 

However, small steps shall be taken towards improving the cellular characterization by kinetic 

models, under dynamic conditions. Here we showed how carbon storage metabolism and 

energy-spilling reactions undoubtedly affected model predictions. Implementation of these 

kinetics are indispensable for optimizing dynamic models and should be taken into 

consideration when constructing new ones. Future studies should also focus on metabolic 
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pathways beyond central carbon metabolism, using for example untargeted metabolomic 

techniques with isotope tracing [15, 16]. The choice of these regions, also, depends on the 

desired product and efforts for a better characterization of them should be made in genetic 

and regulation level. 

Heterogeneity, in other words studying the response of individual cells rather than population 

averages, has shown that there are broad differences from cell to cell [17]. The effects of 

cellular heterogeneity on the population response are not well-characterized and represent 

a challenge for the construction of dynamic models, as current models describe an “average 

cell”, rather than single cells with different properties. 

Additionally, already for the “average cell” kinetic models, the identification of kinetic 

parameters is challenging (Chapter 4). 13C tracer experiments can be used to obtain more 

information, allowing to first quantify intracellular fluxes, including parallel and bidirectional 

reactions and then kinetic parameters (Chapter 2).  

Next to mechanistic modelling, big data analysis and machine learning could offer (non-

mechanistic) approaches to improve bioreactor operation and strain design. Several attempts 

have already been made on the analysis of cultivation data for process optimization [18, 19] 

and machine learning approaches are also under development [20-23]. 

The integration of experimental observations and kinetic modelling continues to optimize 

solutions for microbial performance limitations, during large-scale cultivations, but also 

providing new insights on cell biology and redefining current knowledge. 

And more importantly, close collaboration between academia and industry will shape the 

future of biotechnology and exploit its benefits on humans and the environment. 
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