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Abstract

Software development is more and more reliant on external code. This external code is developed, bun-
dled into packages and shared using package repositories like crates.io or npm. Reusing shared code bundles
greatly improves development speed but without proper care and knowledge of included external code it can
cause issues as well. Over-reliance on simple trivial packages that can be easily implemented locally can
cause severe consequences like not being able to build if the package is no longer available. Furthermore,
including large packages when only a small amount of it is being used can cause software projects become
bloated with unnecessary code. This thesis proposes several metrics: leanness index, software composition
index and utilization index that quantify how software projects reuse their dependencies or how much of the
dependencies are utilized by their dependents. All three of the metrics are based on full function callgraph
of the applications. Computation of these metrics was implemented for Rust and applied on every package
in Rust package repository crates.io. General findings showed that dependency leanness was rather low:
21.7% of all packages in crates.io used less than 5% of their included dependencies while 95% of all crates
used less than 62.4%. Another discovery revealed that packages in crates.io tend to consist mostly of code
from external dependencies as opposed to local code: on average 91% of lines of code come from external
dependencies. Lastly, using utilization index functions that were never used by any other crate in crates.io

were identified: in 95% of packages, 71% of their callgraphs are never used.
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Chapter 1

Introduction

These days nothing in software development is done from scratch. Developers constantly
use each others’ code to speed up work and make it better. This sharing is usually done
through packages that encapsulate libraries. They are collections of code that serve one
specific purpose and can be included in any project to add functionality. Doing so creates
a dependency in that project and makes the project a dependent of said package. When
running or compiling a project, these dependencies need to be resolved, which involves
figuring out the correct version of the dependency, then either downloading its source code
and compiling it or downloading the already compiled artefacts.

To speed up package development developers can include other packages into it as a
dependency. Those packages as a result can include others as well. Therefore, including
several dependencies in a project can create a large dependency tree that the project needs
to resolve before running or building. To easily manage these dependencies, most program-
ming languages nowadays, have package repositories like Maven [[17]] or crates.io [4]. They
contain a large number of user created libraries that can be easily added to any project.

Using these package managers and external libraries in general can be a great improve-
ment to the software development process. Firstly, it reduces time to minimal viable product
by not requiring every team develop redundant code that has already been implemented by
others. Security can also be greatly improved when using well supported external code.
Such libraries would get constant bug and vulnerability fixes that a small team might not
even know about. Furthermore, new developers using these libraries can learn a great deal
about good code design.

However, over-reliance of external code, bad practices of popular library developers or
vulnerabilities can cause many issues as well. There have been various incidents in the past
like the left-pad incident [8] where a developer has unpublished a popular package which
caused many other packages and even projects down the line, fail to run. Another example
was a malicious attack called the event-stream incident [24]. In this case, single point of
failure issue was apparent when an attacker took over a popular npm package called “event-
stream” and injected malicious code which quickly propagated through its dependents.

Besides famous incidents, like the ones mentioned, a general aspect of software devel-
opment is code bloat. Bloat can come in many forms, like dead, unused functions, large
amounts of duplicate code, inefficiently compiled code, and inclusion of many unused or
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1. INTRODUCTION

outdated dependencies. The last one is what this thesis will focus on. Having large amounts
of dependencies is not inherently bad, however there are generally good practices a devel-
oper can use to ensure it. Ensuring good dependency hygiene in a project requires adding
packages only if they are necessary, making sure the packages that are in use are not aban-
doned and understanding the entire dependency tree that results in adding one dependency.
With current tooling available in IDEs (Integrated Development Environments) these things
are not obvious or easily understood. In most cases developers need to explicitly investigate
all dependencies that are included to see if any of them have security issues, are out of date,
or are not necessary and could easily be re-implemented in the project itself.

There has been a lot of research in the field of dependency usage. Over 40% of included
dependencies and around 70% of public APIs [9] are never used. However, there seems to
be a lack of studies that try to investigate entire callgraphs of dependency trees, which could
provide valuable insight in how developers behave when it comes to dependency use and
how this behaviour is reflected in the obfuscated callgraph that results from it. For example,
a callgraph would reveal how including one package and calling one out of ten of its public
APIs utilizes the entire dependency tree and may encourage the developer to reconsider
such use.

In order to fill this gap and evoke more discussion on dependency research this the-
sis will focus on quantifying code reuse on a callgraph level. This quantification would
be evaluated by implementing it for Rust programming language [21] and running it on
Rust’s package manager crates.io [20] ecosystem. To quantify code reuse I will define 3
metrics: leanness index, which describes how much code is actually being used from the
included dependency tree, software composition index that defines a ratio of code com-
ing from dependencies compared to total code in the project, and lastly, utilization index
which provides insight into how much each dependency is being utilized by its dependents
in crates.io. Metrics were calculated by first downloading and compiling every crate from
crates.io, then the compilation artefacts analyzed and one callgraph generated, creating de-
scriptive json file for each crate. Afterwards, the callgraphs were traversed, their properties
measured and saved into a database for the empirical study.

General findings were that 21.7% of all crates used less than 5% of code from their
dependencies and 95% of all crates used less than 62.4% of dependency code. Another
interesting finding was that once a project starts using dependencies, its local code is over-
whelmed by the amount of code that gets included externally. On average, crates that in-
clude dependencies have 91% of their lines of code come externally. And lastly, it would
seem that many packages are not utilized much by its dependents: in over half (57%) of all
crates, only 10% of their callgraphs are in use.

In the following chapter I will provide background information on concepts and terms
used in the thesis. Afterwards I will define and justify the proposed metrics in detail in-
cluding several examples. Then the analysis pipeline will be discussed, explaining how the
metrics get generated from the source code of a crate. After this, the results are presented
and later discussed. Then a related works section provides an overview of research that was
done in the field. Lastly, the thesis will conclude, giving various suggestions for future work
and utilization of the metrics.



1.1. Problem Statement

1.1 Problem Statement

The following are the research questions that the thesis will try to answer.

1.1.1 RQ1: How much of the code, included by external dependencies, is
actually being used by a project?

Many current approaches that look into code reuse through dependencies end up analyzing
only the public APIs exposed by the top level direct dependency. This question is here to
probe the dependency tree of packages and all private functions within the direct and transi-
tive dependencies. Knowing this information a developer would have an understanding on
how bloated their code is.

1.1.2 RQ2: How much of the crate’s code comes from the crate itself and its
external dependencies respectively?

The first question needs to have context to have an impact, and the second on provides that
context. If it is known that a software project does not utilize its dependencies much, it is
important to also know how that compares to the codebase of the project itself. If it only
uses a small part of a small package, it might not be a severe issue. This question would
provide a ratio of code coming from dependencies and local code.

1.1.3 RQ3: How much is each package utilized by its dependents?

Last question, flips the focus around, looking at packages and not projects that include them.
It would be valuable and interesting to know how other projects that include the dependency
use it. With this information, package maintainer would have more to work with when
designing their packages and possibly splintering them into smaller ones to extract the most
used core functionality.






Chapter 2

Background

In this chapter I will try to go over the core concepts that need to be understood to read
the rest of the thesis. This includes how dependencies work generally and in Rust, the
functionality, purpose, and creation of package managers and explaining the concept of
callgraphs.

2.1 Dependencies

Project dependencies are described in metadata files. The metadata file is located in the root
of the project, which lists its every dependency and the version of that dependency which
follows the semver|[23]] range definition described below. In case of Rust, this data is stored
in Cargo.toml file in the root of the project. An example of this file can be seen in Figure
These semver range definitions of dependencies can potentially resolve to different
results depending on available releases in the package repository and the current timestamp
of the compilation. For example, if a version requirement is set to “1.0.2, when the project
is built it will retrieve the latest version of the package between 1.0.2 (inclusively) and
2.0.0 (exclusively). During the compilation of a Rust project, exact versions are resolved
and saved in Cargo.lock file. In any future compilations, Cargo.lock file is used to choose
a version of every dependency that was used before, but making sure that it still fits the
range definitions defined in Cargo.toml file. If it no longer fits, the dependency is updated.
Cargo.lock file can be considered as a definition of the entire dependency tree that starts at
the root application.

2.1.1 Semver

Semver (semantic version) defines a way to version software, so that every developer can
follow the same logic when releasing packages. The main component of semver are three
numbers divided by dots like so: 1.3.10. The first number in this string is called a major
version. It is incremented when a dependency introduces API changes that may be incom-
patible with previous releases. The second number is called minor. It is incremented when
the API is updated in a backwards compatible way. Last number is called a patch. It is
incremented when applying bug fixes in a way that does not change the API. A version is
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2. BACKGROUND

higher when the left most number that is not the equal is higher than another version. Be-
sides these three numbers, there can also be extensions specifying pre-release versions or
other metadata. Every release of a dependency to a public registry should get a new semver
that follows these definitions.

When including dependencies with a semver, a developer can ask for a specific version
that matches one specific release. However it is also possible to define a range. The follow
are several examples of range definitions:

1. >1.2.3 - The highest version that is higher than the one specified.

2. >1.2.3 <2.3.4 -The highest version that fits in between 1.2.3 and 2.3.4 not includ-
ing them in this case.

3. ~1.2.3 - The highest patch version up to, but not including the next minor. In this
example it would fit 1.2.10, but not 1.3.0.

4. "1.2.3 - The highest minor version up to, but not including the next major. In this
example it would fit 1.5.10, but not 2.0.0.

[dependencies]

Figure 2.1: Example of a dependencies section in Cargo.toml file from a Rust project

2.2 Package Registry

Most modern programming languages have one or more package repositories that are used
to freely publish, update and retrieve packages. Java has Maven and Groove, Nodels has
npm and Rust has crates.io. Any developer can create their own package and publish it to
these repositories, which can either require source code or only compiled artefacts. These
published packages can later be updated with new bugfixes and releases. Most repositories
also provide their own package managers that provide software tools which help in per-
forming these tasks. For Rust, developers can use Cargo. When using Cargo to build or run
an application, various actions are performed in the background. For example, after editing
the previously mentioned Cargo.toml file seen in Figure[2.1] and running the Cargo build
command, Cargo will download and install or update all required dependencies based on
the requirements in the file and the current state described in Cargo.lock file.
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2.3. Callgraph

2.3 Callgraph

A callgraph is a representation of all functions and function calls in a software project. In
this graph, every node represents a function. Each of the nodes may also contain metadata
information about the function, which can include its signature, the package and version
it belongs to and its accessibility. The edges in this graph represent function calls. They
are directional. Such a graph would in many cases be acyclic, unless the code contains any
direct or indirect recursive functions. This graph could only be generated by analysing the
entire codebase.

2.4 Code Analysis

There has been a lot of research in the field of code analysis and parsing. This sections de-
scribes the most common approaches and the one chosen for the project. A similar study on
Java packages is performed by Anand Ashok Sawant and Alberto Bacchelli [22]. Their goal
was to create a fine-grained approach to API usage analysis. The paper also has an overview
on most popular approaches to analyzing code usage of client libraries: text matching, ana-
lyzing compilation artefacts, partial program analysis, dynamic analysis and abstract syntax
tree.

2.4.1 Text matching

The first approach is matching text in the code like it has been used in [18] and [26]]. This
approach involves matching the imports of external libraries and looking for their invoca-
tions inside the text file itself. The main drawback of this approach is that import names
may have conflicts in cases where the same method name is used. Furthermore, when
analysing statically typed languages, this method loses the ability to use defined types to
gather information.

2.4.2 Analyzing compilation artefacts

Another approach is to compile the code and analyze compilation artifacts for precise
method usage. This approach is used by [[15] and Prizi [10]. Such an approach would
provide very precise type and invocation information in statically typed languages like Java
or Rust, but it also comes with its downsides. Analyzing an entire dependency network
requires access to source code of all dependencies which also need to be compilable. The
problem was also encountered by Hejderup et al [[10], where they could not compile 31%
of package releases in crates.io. Furthermore, analyzing such a network requires retrieving
and compiling code for every version of every package since several versions can be in-
cluded in each project. This requires a large amount of resources and error handling in case
of failures.
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2.4.3 Partial program analysis

API usage can also be analyzed by partial program analysis. This approach combines the
analysis of compiled artefacts and text matching to eliminate drawbacks of those two ap-
proaches. With partial program analysis, compiling every dependency is no longer needed
since the artefacts of downloaded public APIs are enough. It takes types gathered from
these artefacts and matches them to the uncompiled files calling them. Such an approach
was developed and analyzed by Dagenais et. al. [S]. They have created an Eclipse plugin
that parses partial files and matches those to compiled external API artifacts. The result
proved to be very accurate and did not require full compilation like in bytecode analysis.
However, it requires using the Eclipse environment and is very Java specific. The imple-
mentation used Eclipse’s context to gather information, thus analyzing an application would
require loading it into a running instance which hinders scalability.

2.4.4 Dynamic Analysis

Dynamic Analysis could also be used to generate a callgraph. It involves analyzing the
code as it is being executed. Such an approach is the most accurate one, since it also takes
code logic into account to determine whether an API is being called, not just referenced.
However, there are several problems with this approach. First of all, it is highly resource
intensive. It would be unfeasible to perform it on such a large scale as an entire dependency
network. Another problem is the requirement of external resources, like databases or spe-
cific hardware, in order to run it. Lastly, it is hard to have full coverage of all code since the
callpaths are so dependent on incoming data. It is likely that the resulting graph would be
incomplete.

2.4.5 Abstract Syntax Tree

Lastly, AST analysis involves transforming code files into an Abstract Syntax Tree (AST).
This tree is a representation of the code where each variable, statement and invocation is
a node. Parsing it can also provide accurate type information which helps when trying to
ensure accuracy in API calls. This was also the approach Sawant et. al. [22] used in their

paper.

2.4.6 Chosen callgraph method

This project started of by using the Prézi [10]] approach, since it was the only one available
for Rust. However, later on a better and more accurate approach was developed by Kon-
stantinos Triantafyllou, a master student at ETH Ziirich [[14] (currently under development
and private). His benchmark [13]] showed that the LLVM artefact approach used by Prizi,
misses all dynamic dispatches. These issues are alleviated when using the his callgraph
generator. It is currently the most sound callgraph generator for Rust.
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2.5 Commonly used terms in this thesis

This section contains an overview of domain-specific terms used in this thesis and their
definitions.

Table 2.1: Definitions

Term Definition

Dependency External package added to a software project required
to compile or run

Direct dependency A dependency added to a software project explicitly by
the developer

Transitive dependency A dependency that was added to a software project as
a result of adding a direct dependency

Dependent A software project (application or package) that de-
pends on some package

Dependency tree A tree graph of all dependencies needed to compile or
run a software project

Dependency Network A large graph that describes relations of all packages
in a package repository







Chapter 3

Proposed code reuse metrics

To answer the research questions, three metrics for measuring reuse in any project with
dependencies are proposed.

3.1 Leanness index

The name leanness for this index was chosen to reflect how much excess, unnecessary code
there is in an application. The term lean could also be used when describing a budget that
does not have wasted expenditures or a human body that has low amount of fat.

3.1.1 Goals of the Leanness Index

The index needs to reflect several aspects of dependency trees in software projects. First,
it needs to account for the amount of public API functions that are available versus those
that are in use. This would provide a simple surface level usage metric. However, it is not
enough, it also needs to account for all the used private functions inside the dependency.
In Figure [3.1] the box represents the entire code base of a package and calls into it from
its dependent. Green nodes are functions from the main package that make calls into the
dependency, blue nodes are public functions that can be called by dependent packages,
red nodes are private functions for internal use. In the example, we can see that a blue
public function number 1, called by the green dependent number 1 uses basically the entire
codebase of the package. Its call path contains 6 out of 7 internal functions. Blue node
number 2 calls only 1 internal function while 3, 4 and 5 are surface level functions that do
not call any internal functions.

Just looking at this example, we could state that any application or package that uses
this library as a dependency and only calls functions 3, 4 or 5, like the green node number
2, does not utilize it very much and adds a lot of bloat and excess weight. However, if it
calls only function 1, like green node 1, it will utilize the majority of code added, and thus,
be leaner.

Furthermore, this package may have its own dependencies. In this case the leanness
index needs to reflect how this package utilizes its dependencies and those dependencies’
dependencies. An example can be seen in Figure[3.2] The previous example was modified

11
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Package A

Figure 3.1: Example callgraph for package

to add an additional lower level dependency. Now function 5 uses 1 of the dependencies’
public functions, which uses all private functions of that dependency. The situation changes
for the leanness index too. Compared to the previous example, the index should no longer
be very high if an application uses only function one of a library because more than half of
the included functions are no longer in use. Using only function 5 on the other hand should
have increased the leanness index.

3.1.2 Definition

In this section two versions of the leanness index are defined. In the end both will be
compared and evaluated. One of them is based on lines of code per function, another is the
number of functions in a callgraph.

Number of functions

Amount of functions are being measured because they reflect the underlying topology of a
software system and each function can be strictly assigned to either a specific package or
local code. Every call to a function could be considered as a unit of reuse. This data is easily
extracted in a callgraph, by using nodes for functions and edges for function calls. This
approach has issues with accuracy since function count will depend on how the developer
decided to implement the package. Some developers or domains might have a large amount
of very simple small functions, while another (database controller for example) might have
very large ones. We calculate leanness the following way:

uy
Ly= E (3.1

12
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®

.i..

Package A

Package B

Figure 3.2: Example of an extended callgraph for package

where:

Ly = Leanness index based on number of functions

uy = total number of functions in all included packages in the dependency tree
originating from the root application

ny = number of function in statically analyzed dependency tree that are in the callpath

Lines of code

A possible way to resolve the issue of large and small function footprints being treated the
same is to use some sort of metrics for each of the nodes as a weight instead. Doing so,
should counteract excessive splintering of simple logic, and provide a better representation
of the "amount of code” in any sub-graph. The easiest way to get such a weight is to sum
the lines of code in each function. This approach is computationally simple and possible to

13



3. PROPOSED CODE REUSE METRICS

do at scale in callgraph generators. While still not perfect, it could improve on inaccuracies
from the previous method at a low computational cost.
u
== (3.2)
n

where:

L; = lines of code based Leanness index

u; = total number of lines of code in all included packages in the dependency tree
originating from the root application

n; = number of lines code in statically analyzed dependency tree that are in the callpath

3.1.3 Leanness Computation

This chapter describes how to calculate the index for any application. This is a language
and package manager agnostic method. Later sections will define the implementation for
Cargo package manager. Before analyzing an application, a callgraph of every package in
the ecosystem needs to be generated and number of lines of code per function saved. When
analyzing an application, the following steps are performed:

1. A callgraph is generated for the source code of any project. This callgraph has to con-
tain functions of every direct and transitive dependency. This step might be different
for every programming language, but the output json file should be the same.

2. Traverse the path of every highest-level external node (entry point of the application
which could either be a main function or a public API function) and label all nodes
touched as "used”.

3. Count every dependency node that is in the callgraph and sum all lines of code.

4. Count dependency nodes that have been labeled as used. Also sum lines of code for
these nodes

5. Calculate the ratio of the two previous sums to get two indices.

This is the leanness index of an application. It represents the amount of code included by
dependencies that is being used. This index would answer the first research question defined
previously. An example of this calculation can be done by using Figure Suppose that
this is the entire callgraph generated by step one of the computation process. Main project
has only 2 simple functions 1 and 2. It adds one dependency called Package A, and that
dependency has another transitive dependency called Package B which is not explicitly
stated by the developer of the main package (green). During step two of the computation,
we traverse the graph by starting at green node 1, then after that is done doing the same for
green node 2. This process will label nodes 1, 5, 6, 7, 8, 10, 11 and 12 from Package A.
It would also label nodes 3, 4, 5, 6, 7, 8, 9, 10, 11 from Package B. Step 3 would count
all nodes that come from dependencies which in this case is 23. Step 4 would count all

14
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nodes that have been labeled as used”, which is 17. Then a ratio between used and all
dependency nodes is calculated which ends up being 17/23/0.74. The index means that
74% of included dependency functions are being used by the application

This can be compared to analyzing only public APIs. Taking the example in Figure[3.2]
it could be easily said that the application uses 2 out of 5 of available APIs. That is 40%,
compared to 74% when considering the entire callgraph.

3.2 Software Composition index

3.2.1 Goals of the Software Composition Index

Software composition index is used to answer RQ2. While the main purpose of leanness
index is to show how much of included dependencies is actually being used disregarding the
code in the main project, software composition index’s main purpose is to reflect how much
of the program’s code comes from the developers themselves and how much comes from
external dependencies. Secondary purpose of this metric is to explain and ignore packages
with very low leanness index. After all, if there are two packages that have a 0.05 leanness
indices due to very low utilization of their dependencies, there is a big difference between
the two if one has only a small portion of its logic come from dependencies, while the other
is comprised mostly of dependency logic.

3.2.2 Definition

D= (3.3)

u
n
where:

D = lines of code based Software Composition index

u = total number of lines of code in the main package’s callgraph.

n = total number of lines of code in the project and its dependencies combined.

3.2.3 Composition Index Computation

Computing the Software Composition index uses the data that was generated for leanness
computation. Therefore, it involves following the first 2 steps of leanness computation
described in section Afterwards these steps are performed:

1. Count total nodes and lines of code for all nodes in the graph.
2. Count total nodes and lines of code for all nodes that come from dependencies.
3. Calculate the ratio of the two previous sums to get two indices.

This is the software composition index. Figure can be used as an example again.
Count the total number of nodes which is 25. Then count nodes that belong to the in-
cluded dependencies which would be 23. Lastly, divide the numbers and get the ratio -
23/25/0.92. This means that 92% of the functions in the codebase for this project come
from dependencies.
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3.3 Utilization index

3.3.1 Goals of the Utilization Index

If enough crates are analyzed, data about how other packages use each crate can be gener-
ated. Previous questions were concerned with a crate’s dependencies and analyzed how it
uses them. Utilization index will analyze dependents and how other crates use the crate in
question.

For example, let’s say we wanted to get a utilization index for warp [23]], a web server
crate. If we look for this crate on crates.io and go to its dependents, we can see that there
are 54 packages that depend on warp. If those 54 crates are analyzed and every function in
warp labeled as in use or not, functions that are never used would be identified.

3.3.2 Definition
U=" (3.4)
n
where:

U = lines of code based Utilization index

n = number of functions that belong to crate in question. This includes functions from
its dependencies

u = number of functions that are used by at least one dependent of the crate in question.

3.3.3 Utilization Computation

Utilization index calculation process is described in detail in this section. Unlike previous
metrics, this one involves several logical loops. First, data is gathered by looping over all
crates in crates.io. Afterwards, each crate can be calculated by aggregating collected data.
Data gathering process for each crates is as follows:

1. First step is to generate a callgraph with all dependency functions in it. This is the
same step as in leanness index computation

2. Find the direct dependencies of the crate that is being analyzed.
3. For each of the direct dependencies perform the following steps:

a) Create a unique copy of the graph for this dependency only.

b) Generate a list of transitive dependencies that originate for this direct depen-
dency.

c) Traverse the callgraph, starting from each public function of the dependency
that is being called by the main dependent and label the nodes as "used”.

d) Loop through all the nodes in the graph checking if they are part of the transitive
dependency list and if they have not been labeled yet, label them as “unused”.
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e) Store the results of the analysis in database, adding a row for each function and
assigning a use counter to it, then either increment it if it was previously there
or add a new one with use counter set to 1.

Once these steps are run through every package in crates.io, the actual index can be
calculated. Perform the following steps to get the index for a dependency.

1. Retrieve the data previously calculated for this crate. It consists of a row for every
function that results in being added to a dependent if this crate is included. This row
contains a function identifier and an integer which represents in how many dependents
the function is used.

2. Calculate the ratio of functions that have the use counter at more than 0 and all func-
tions. This is the utilization index for the crate.

Application 1 Application 2
1 % G{
Package A Package B Package A Package B

Package C Package C

Figure 3.3: Several callgraphs containing Package A and Package B as a dependency

As an example for this calculation take Figure [3.3] There are 2 completely separate
callgraphs. Each one originating from the analysis of the applications displayed at the

17
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top. For the ease of example both Application 1 and Application 2 have the same exact
dependencies, in most cases this would not be true. The first loop described in this section
would go over these 2 graphs one a time, starting with the one for Application 1.

First step is to retrieve all direct dependencies, in this case that would be Package A and
Package B. Then we start an inner loop for these direct dependencies, starting with Package
A. A copy of the entire graph is created for Package A. Then transitive dependencies that
originate from Package A are retrieved. In this case that would only be Package C. Then
we start traversing the graph. Traversal only starts from public nodes of Package A that
have an inward edge from Application 1. In this case it would be node 1 in Package A.
After traversal, nodes 1, 6 and 10 are marked as “used”. Then a loop is initiated for all the
nodes in the subgraph that originates from Package A, in this case it would be all Package
A nodes and nodes from its transitive dependency we retrieved earlier: Package C. In this
loop we label all nodes that have not been labeled already as “unused”. In this example,
nodes 2, 5, 9 in Package A and all nodes in Package C get labeled as "unused”.

Now this data is saved in the database. For every node a row is inserted since it is the
first time Package A is encountered. Those that were used get the use counter field set
to 1 and all those that were not used get the field set to 0. Afterwards, Application 2 is
analyzed. Similarly start with the first direct dependency Package A, traversing it, labeling,
and counting nodes. After all nodes are labelled the database entries that were previously
inserted are updated. Rows corresponding to used functions get their use counter field
incremented. Unused nodes do not affect the database.

The output data after these two runs can be seen in Table [3.1] The entire table is meant
for the analysis of Package A. Package C functions are also included in Package A’s
analysis due to the fact that it is a transitive dependency. Inspecting the data leads to 3
functions never being used. Since there are a total of 12 functions, the utilization index
ends up being 9/12=0.75. Similar procedure can be performed on Package B. The data
resulting from the analysis would point to functions 2 and 9, out of 4 in total, not being
used. Thus, the utilization index would be equal to 2/4=0.5.
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3.3. Utilization index

Table 3.1: Utilization analysis example table

Package Function UseCounter
Package A 1 2
Package A 2 0
Package A 5 1
Package A 6 2
Package A 9 0
Package A 10 2
Package C 1 0
Package C 2 0
Package C 3 1
Package C 5 1
Package C 6 1
Package C 7 1
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Chapter 4

Analysis Pipeline

In order to find the sought data about the Rust package repository most crates in the crates.io
registry need to be analyzed. Figure 4.1|represents the process involved from retrieving the
source code to saving the extracted data into the database. Part of this process is language
specific, meaning that if the same metrics were to be extracted for Java, this part would have
to be implemented for it. The general purpose of this is to extract and output generic call-
graph files. For Rust, the first step in this section is to retrieve the source code. Afterwards,
it is compiled and a callgraph is generated. These steps were done using the callgraph
generator developed by Konstantinos Triantafyllou [14]. Afterwards, callgraph files were
reformatted into Json files that the algorithm accepts.

Language agnostic section is language independent. It takes in a specific format de-
scribed below and outputs data into an SQL database. The algorithm can be split into two
sections: one that traverses the entire graph and one that traverses subgraphs for each direct
dependency. Lastly, data is saved in an SQL database.

Language specific Language agnostic
Source Code
Compilation LERE SE 3
Analysis
: 1
Lxlihepl - e Graph Traversal
Generator Preprocessor

Figure 4.1: Pipeline of the metrics analysis
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4.1 Retrieving the callgraph dataset

The entire crates.io registry was downloaded and a callgraph generated for every crate. For
each crate, if compiled successfully, a callgraph file was created in a Json format, which
defined every node and edge in the graph. Cargo.lock was also outputted which specified
what versions of dependencies did the callgraph analyzer resolve to during the compilation
process. The Cargo.lock and the callgraph Json files were used in the following steps.

4.2 Format Preprocessor

The purpose of this step is to bridge the gap between different file formats that come out
of callgraph generators and the format that is the most efficient for the metrics extraction
algorithm. During this step the graphs are turned into Json files that are later easily parsed
into Rust data structs which allow for a low complexity graph traversal. Due to simplicity
in handling mixed data types python was used to convert the callgraph generator’s output
into a format seen in Figure 2] The final Json file contains an array where each element
in it represents a node seen in the figure. It contains several descriptive fields, such as if
it’s public or which package/version it belongs to. This node object also has two arrays
that define edges: one for inward edges coming from its parents and one for outward edges
which point to its children. These are here to speed up graph processing during the analysis.
Target numbers are indices to other elements (nodes) in the array. This Json is later parsed
into a Rust struct.

::elem exp consttime[0]::e

3/ring-0.16. /arithmetic/bigint.rs:960:5: 962:6",

Figure 4.2: Callgraph data format

4.3 Graph Traversal

Next step is to investigate the graph itself and determine used and unused nodes. Starting at
every public function of a crate, traverse downwards through the graph labeling every node
along the way. A label is applied to every node that is visited denoting the fact that it is a
possible callpath from the root crate. If traversal finds a node that has already been labeled
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Algorithm 1 Graph Traversal
1: procedure TRAVERSEFROMNODE(graph,index)

2: level <0

3 current < index

4 next <— <&

5 while current.len() > level do

6: i < current|level]

7 node <— graphli]

8 if node.type = null then

9 node.type = ’used”

10: next <— next Unode.outward_edges
11: end if
12: if level + 1 = current.len() then
13: current <— next
14: level <0

15: next <— <&

16: else

17: level < level +1

18: end if

19: end while
20: end procedure

the algorithm ignores it and does not investigate its children. This step helps ignore recursive
callpaths and speeds up the process preventing investigation of the same tree branches.

In order to achieve a much higher efficiency, the algorithm does not scrape the graph
along the edges back and forth, instead it moves downwards one level of depth at a time. In
this context, level of depth is path length between the root node and the node in question.
The algorithm starts with the root node’s children as level 1, labels them and adds their
children to a hashset of the next level. Once these are analyzed, it moves on to the next level
and loop continues until the next level has no nodes in it. Since duplicate hashset insertions
are not allowed this method ensures an O(n) complexity of graph traversal.

Pseudo code for this procedure can be seen in Algorithm([I] This procedure is called for
every public function of the main crate. Graph argument is a reference to the entire graph
structure which is modified during the procedure. Index argument points to the root node in
the graph. That is where the traversal algorithm starts.

4.3.1 Graph Traversal Example

For example, see the callgraph in Figure In this example nodes 15, 16 and 14 end up
not getting labeled and are considered unused. The algorithm would start at Node 1 and
label it as used since it’s just a public function. It would then proceed as follows:

1. Add all children of node 1 to the pool of nodes to investigate once current pool is
done.
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10.
11.

4.4

Figure 4.3: Sample callgraph

Move to the next node pool since first is done (only contained node 1).

. Investigate node 2, add its children to the next node pool including 6 and 11.

Investigate node 6, no children to add.

. Investigate node 3, add its children to the next node pool except 11 since it has already

been added once.
Investigate node 4, add its children to the next node pool.

Current node pool investigated, moving to the next one, starting from 5. No children,
moving on.

. Investigate node 6, since it has already been labeled before, it is ignored.

Investigate node 11, add children to the next node pool.
Investigate the rest of the nodes in this pool - 12, 13, 8, 9, 10.

Move to the next pool, which only contains node 7 and investigate it.

Dependency Analysis

The steps above are enough to get data for RQ1 and RQ2. However, to answer RQ3 (Uti-
lization index), each direct dependency needs to be analyzed in more depth. To explain
the following algorithm several concepts need to be established. The dependencies are not
analyzed separately using their respective graphs. Instead they are analyzed as part of the
main graph that was used to answer RQ1 and RQ2. Dependency relations are determined by
analyzing the Cargo.lock file that was an artefact of the compiler/callgraph generator step.
This file contains all crates and their versions that were used in the compilation of the main
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package and their relations to one another. A graph could be constructed using it, where the
root node is the main package.

The algorithm, after performing the previous steps, generates a list of direct dependen-
cies from the Cargo.lock file. Then, for each of those dependencies, it finds other dependen-
cies that originate from them. Meaning that, by adding this direct dependency, they were
indirectly added to the dependency graph. These indirect dependencies might appear more
than once for each direct dependency and that is adequate for this purpose. For the pur-
pose of this explanation look at Figure 4] In this figure, green nodes are functions in the
original main package, red ones are public functions in the direct dependency that is being
analyzed in the current iteration, blue nodes are private functions of the direct dependency
that is being analyzed, yellow nodes are public functions of a transitive dependency, purple
nodes are private functions of the transitive dependency.

@
Main package
7
Direct Dependency

° 0 Transient Transient

Dependency A Dependency B

® 0 o

&
&

Figure 4.4: Sample callgraph of dependency analysis

After finding these transitive dependencies the algorithm performs a similar graph traver-
sal to the one described in section above. Starting from each public function of the depen-
dency, in the example these are red nodes. The algorithm determines if it is being used by
the main package or not, by checking its inward edges. In the example nodes 4 and 5 are
used. If it is being called from the main package, then a graph traversal algorithm is initiated
with that public function node as root. All nodes that are traversed, are labeled as "used”
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by the algorithm. Once all public functions of the dependency that are called from the main
package have been traversed, the algorithm performs the same traversal on public functions
that are not called by the main package. In the example it starts at node 6. This time assign-
ing a label “unused”. If traversal encounters a node that has already been labeled “used” (in
this example it would occur at node 11) it is ignored and its children are not traversed.

This method is guaranteed to find nodes that are used by the main package, but it still
does not cover unused nodes that are transitive dependencies. In the Figure 4.4]it would be
node 15 which is an available public API method that is not used by its dependent package.
To solve this, the algorithm loops through every node in the graph and if it belongs to any of
the transitive dependencies that were added by the direct dependency that is being analyzed,
it assigns an “unused” label to each of these, finalizing the graph.

4.5 Implementation

Majority of the code was implemented in Rust, this includes the algorithms and call graph
generation. Format preprocessor was the only thing that was implemented in python. Due
to varying datatypes in Json arrays it was much simpler and modular to use something like
python that can change the format into a strict data structure.

The entire application was packaged into a docker container and run on a server rack
at TU Delft. The container itself did not utilize all cores and memory available on such
a rack since it was not needed for this dataset. The algorithm itself has low complexity
and crates.io is not an extremely large registry. Total run took 2 days. It could easily be
parallelized if for example npm (with its over 1.4 million packages) was to be analyzed
with this method.

Final results were saved in an SQLite database file which was 49.5GB in size. 27295
packages were successfully analyzed, while 6320 could not be compiled for analysis.

The crate analysis implementation can be found open sourced on github [2]].
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Chapter 5

Results

In this chapter results of the thesis are presented and analyzed.

5.1 RQ1: Leanness index

Density

Percentage of crates in
each leanness index bracket

00 0.2 04 0.6 08 10 0.0 02 04 08 0.8 10
Node count Lines of code

Figure 5.1: Graph of leanness index distribution using two different methods

5.1.1 Lines of Code versus Node Count

The graphs in this section were generated the way it was described in leanness index formu-
las[3.2]and[3.1] Additional post processing was done. Crates with no dependencies included
at all, have been removed. Only crates with dependencies are relevant. Furthermore, crates
that use exactly zero lines of code from their dependencies have also been removed. It is
justified by the fact that the callgraph generator has faults recognizing certain aspects of
callgraphs and that this metric is mostly concerned with code reuse and not whether certain
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Figure 5.2: Box plots for leanness indices calculated using nodes and lines of code

dependencies are unused at all. Figure [5.1] shows the distribution of the leanness indices
that have been calculated using two different methods. Box plots of the same data is shown
in Figure[5.2]

Both methods result in a large amount of crates that end up in the bin close to zero.
When measured using node count, 28% of crates have used less than 5% of their included
dependencies’ functions. There is a slight difference when comparing against counting lines
of code (LOC): 21.7% of crates use less than 5% of LOC from dependencies. Similarly,
when counting nodes 79% of crates use less than 25% of functions while lines of code based
metric shows that 57.6% use the same share of lines of code. Furthermore, 95th percentile
for node count is a rather low 42.5%, while lines of code count reaches 62.4%. Lastly, mean
for node count is 0.16, with a median of 0.13, while LOC count mean is 0.24, with a median
of 0.21. Standard deviation 0.14 and 0.2 respectively.

From the numbers and as can be seen in the graphs, LOC method has a much more even
spread than just counting nodes. There are several reasons for this: having many simple
superficial functions that are not needed, having majority of the functionality in several
core functions and possibly other reasons. Looking at this comparison it could be stated
that using LOC method is more representative of what the leanness index is trying to show.
Using LOC as a weight for each function makes it so not all functions are treated equally
which is correct, since in reality all functions are not equally important. Therefore, any
further results will be presented using only LOC count.

One more thing to consider regarding using LOC count is that LOC is not available for
all nodes in the generated graphs. Functions that originate from C code appear in the graph
with their lines of code set to 0. Figure[5.3] shows how many functions from dependencies
contain LOC information. This graph shows the distribution of the ratio of each analyzed
package’s count of functions with LOC information that come from dependencies and all
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functions from the same package that come from dependencies. 95% of all crates have
at least 67.16% of dependency functions with LOC information. This lack of precision is
insignificant when analyzing the entire repository. However, for qualitative analysis of each
package this could prove useful in determining bloated dependencies.

Percentage of crates in each bracket

D.IO 02 0.4 0.6 08
Fraction of functions in a crate with LOC information

Figure 5.3: Share of functions from package dependencies that contain Lines of Code in-
formation

5.1.2 Count Public APIs vs Entire Callgraph

w IS wn @
L L L
w Iy n o

Percentage of crates in
~
a

each leanness index bracket

-
—
L

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

Public APIs Callgraph

Figure 5.4: Graphs comparing leanness index when calculating ratio of used versus unused
public functions of a dependency versus analyzing its entire callgraph
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Figure 5.5: Box plots leanness index when calculating ratio of used versus unused public
function LOC of a dependency versus analyzing its entire callgraph

This section presents and describes the difference between calculating code reuse with the
leanness index which uses the entire callgraph of a dependency and counting only its pub-
licly available APIs. Callgraph method follows the definition described in section [3.1.2]
under the leanness index. When using the public API method, all publicly available func-
tions that have been used at least once are considered as used. All other publicly available
functions are considered unused. The ratio of used ones and all publicly available functions
is what the leanness index was compared to. This comparison is drawn in a graph in Fig-
ure [5.4] and boxplot in Figure [5.5] The dataset and data trimming is the same as shown in
the leanness index graph previously. It is obvious that both graphs are very similar. How-
ever, this is most likely due to comparing distributions of the entire registry of crates.io and
not individual packages, since a callgraph based method can change the leanness index both
ways: making it more or less lean. Over a large enough dataset this simply evens out. Which
means that replacing the method does not make much of a difference when analyzing the
whole dependency network.

However, the data can still be very valuable when looking at individual packages in-
stead. Figure[5.6|was produced by calculating the difference in leanness index between the
two methods for each package and plotting its distribution. There is still a large amount of
crates with a difference close to O, but there is also a significant amount where this more
accurate information provides meaning. The mean value of absolute difference of all crates
in cargo is 0.08. Also in 30% of all packages the difference is more than 10%.
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Figure 5.6: Graph of leanness index distribution comparison to public API usage method

5.2 RQ2: Software Composition index

10! 4

100 4

0

—6.2 0.0 0:2 0:4 0:6 O.IB 1.0 1.2
Software Composition Index

Percentage of crates in each bracket (log scale)

Figure 5.7: Graph of software composition index in log scale.
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Figure 5.8: Box plot of software composition index.

Software composition index aims to show how much of the code in a software project comes
from external dependencies as opposed to local code. The distribution of this metric for the
entire crates.io repository is visible in Figure and [5.8] The y axis of the graph uses a
log scale. There is a significant amount of crates that have no dependency code - 14%.
This is not an error like it was when analyzing the leanness. Edges of a graph are not part
of the calculation for this plot. It only counts the existence of nodes in the final compiled
file. Thus, the amount of zeroes is accurate. This is due to the fact that there are quite
a few packages that just do not include any dependencies. However, once dependencies
are added to a crate they overwhelm the code of the project itself in most cases. The mean
value for non-zero dependency crates is 0.91, so on average crates that include dependencies
have 91% of their compiled lines of code come from dependencies. This was the reason to
represent the data using a log scale. Data is also visualized as a box plot in Figure[5.8] Data
used for the box plot does not include crates that have exactly zero dependency LOC. It is
not relevant when showing the distribution of dependency vs local LOC. The plot clearly
shows how almost the entire dataset has a very high software composition index, median
being 0.988%.

5.3 RQ3: Utilization index

Utilization index distribution can be seen in Figure [5.9] About half of the packages have
a very low utilization: 57% of all crates have only 10% of their callgraphs used by other
crates in crates.io. Furthermore in the case of 95% of crates, 71% of their callgraphs are
never used. The mean value for the utilization index is 0.12, while median is a much lower
0.055.
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Figure 5.9: Graph of utilization index distribution

Utilization Index

Figure 5.10: Box plot of utilization index distribution

However, this is only representative of the usage by other crates.io dependents. Some
of these crates are intended more for use in final applications or non library Rust projects.
For a better result, this metric could use a larger study of open source Rust applications.

5.4 Qualitative example of several packages

To highlight some features of these metrics that are not visible when analyzing large datasets,
several arbitrary crates were chosen to analyze in depth using the generated data. The cho-
sen packages are pathfinder and rodio.
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5.4.1 Pathfinder

Pathfinder is a crate that can be used to generate images with large amounts of objects or
nodes. The version analyzed here is the latest at the time - 0.6.5. This crate has 5 direct
dependencies included in its Cargo.toml file. First piece of data is the software composition
index. A pie chart was chosen to visualize the share of local code versus dependency code.
It can be seen in Figure [5.11] Pathfinder seems to consist primarily of dependency code,
since 98.1% of LOC comes from crates.io. This 98.1% can be further split into different
dependencies that are included. This visualization can be seen in Figure [5.12} Lastly, a
table of leanness indices per direct dependency is presented. This data comes as an artefact
of utilization index calculation and can be seen in table[5.1] Leanness indices range from
0.11 in case of image crate to 1.0 with pythagoras. Low leanness of an image crate is to
be expected since such a crate would contain a large amount of utility functions for image
manipulation which are not all needed for this dependent. However, it could indicate that
the image crate might benefit from being split into smaller subcrates instead. Pythagoras
on the other hand is a very minimal trivial crate that only implements functions for calcu-
lating pythagoras theorem. It could be argued that such crate is unnecessary and should
be reimplemented by the developer. If the developer chose to remove the image crate and
reimplement it themselves the leanness index of Pathfinder would increase from 0.15 to
0.59.

Local code

Crates

Figure 5.11: Dependency use in Pathfinder - 0.6.5
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image-0.21.3
rand-0.6.5
gif-0.10.3
log-0.4.8
pythagoras-0.1.1

Figure 5.12: Share of different dependencies in Pathfinder 0.6.5

Table 5.1: Leanness indices per dependency in Pathfinder 0.6.5

Direct Dependency Leanness Functions with LOC
gif 0.36 0.99

image 0.11 0.92

log 0.23 1.0

pythagoras 1.0 1.0

rand 0.48 0.62

5.4.2 Rodio

Rodio is an audio playback library with over 200,000 downloads. The version analyzed here
was 0.10.0. This crate has 6 direct dependencies in its Cargo.toml. Similarly to pathfinder,
software composition index can be seen in Figure [5.13] It is clear that a large majority of
code in Rodio, like in pathfinder, comes from external dependencies. That 96.4% can be
split further to find the distribution of origin for each of the direct crates. Keep in mind that
these are only direct dependencies and not transitive ones. Transitive ones that are added as
a result of direct dependencies are included in the calculation. The result is in Figure[5.14}
A table of leanness indices per dependency can be see in Figure[5.2] One interesting number
in this table is minimp3’s share of functions with LOC. It seems that less than half of all
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Local code

Crates

Figure 5.13: Dependency use in Rodio - 0.10.0

functions in this crate had LOC information due to the fact that it provides Rust bindings
to a C minimp3 library. Thus, it is hard to judge the provided leanness index. Another low
leanness index library is cpal. It provides low level functions for handling audio input and
output. It is a rather large library with over 32,000 lines of code with all of its dependencies,
since it allows playback on many different hosts and formats. Only 763 lines of code are in
the callpath originating from rodio. It is hard to judge its usefulness for rodio, but this could
point to a consideration for the developers to replace or reimplement required functions. If
the developer chose to remove the image crate and reimplement it themselves the leanness
index of Rodio would increase from 0.15 to 0.57.

Table 5.2: Leanness indices per dependency in Rodio 0.10.0

Direct Dependency Leanness Functions with LOC
claxon 0.68 0.99
cpal 0.02 0.77
hound 0.36 0.98
lazy static 0.5 0.85
newton 0.58 0.99
minimp3 0.09 0.47
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cpal-0.10.0
lewton-0.9.4
minimp3-0.3.3
claxon-0.4.2
hound-3.4.0
lazy_static-1.4.0

Figure 5.14: Share of different dependencies in Rodio 0.10.0
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Chapter 6

Discussion

This chapter discusses results and their implications for future researchers and practitioners
by revisiting research questions and threats to validity.

6.1 RQI1: Leanness Index

Calculating the leanness index using the entire callgraph of an application was supposed
to be an improvement over traditional methods of only looking at the publicly available
APIs in packages. Reviewing the results, it could be said that this approach proved to
be situationally better. Analyzing the index distribution over the entire package registry
showed no significant difference due to deviation in index appearing as both positive and
negative. However, it seems to have a clear difference in a significant amount of cases when
analyzing it per crate basis. The algorithm itself is not computationally expensive and as a
result it could be stated that analyzing the whole callgraph, if possible, should be the default
approach when trying to investigate how packages use their dependencies.

General conclusion of the leanness index analysis was that most developers do not uti-
lize majority of the code that they include. This does not necessarily mean that it is a bad
practice, it is always a case by case basis. Sometimes the amount of code that is used (even
though majority of included lines are not) is just not worth the effort. For example, if the
included package contains type definitions for some web API, like Amazon Web Service, a
developer will highly likely not use a very large chunk of the code that comes with such a
crate. However, re-implementing it is very tedious work and if in the future the developer
would like to start using additional API endpoints they would have to perform additional
work again, and keep it up to date in case things change. Including such a package and for-
getting it is the most maintainable approach. In other cases it is better to have highly peer
reviewed and secure functions instead of relying on local development team replicating
such process. But having reuse data more available and visible to developers could improve
dependency hygiene and maintainability. An example of a case where removal of a depen-
dency is the best course of action would be if several simple date parsing functions are used,
but the library itself has thousands of functions for different types of date manipulation. If
the developer knows that their project does not need extensive date parsing and only has a
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few use cases for it, re-implementation would have strong arguments for consideration.

Seeing such a large amount of crates with a very low leanness, could potentially point
to developers not considering or understanding what happens to their project landscape.
Currently most package managers, including cargo, obfuscate processes that are being per-
formed in the background. Adding a single line of code that defines a version range for
a dependency, ends in large amounts of code being downloaded, compiled and added to
a possible very small project. Some of this code comes from transitive dependencies and
are thus even more hidden. As a result it is highly probable that not all included code is
reviewed and verified. It could lead to potential security, performance or maintainability
issues.

Using callgraphs to analyze these issues for specific packages proved to be a more
accurate approach than looking at public API usage or simply investigating the inclusion in
the metadata files. With this approach concrete callpath vulnerabilities becomes identifiable
and having proper dependency hygiene easier to achieve. In this case, dependency hygiene
is understanding what code is included in a project, how well maintained it is, how much
of it is being used by the developer’s project, how hard it would be to re-implement it and
having a general understanding of the dependency landscape instead of blindly adding new
ones to the project every time a new function is needed.

6.2 RQ2: Software Composition Index

Software Composition Index was the simplest one to calculate but provided the most shock-
ing results. As can be seen in graph in almost every case, when a dependency is added
to a project, majority of the lines of code in that project come from external sources and
not the project itself. General trend towards this was expected, but the numbers are more
extreme that the hypotheses. The conclusion here is that programmed logic present in a
dependency network is highly splintered. Packages tend to include dependencies which
contain large amounts of code and development time, adding comparatively small amount
of logic on top. Such interconnectedness comes with both benefits and downsides. First of
all, due to ease of use and no requirement to implement most logic, developers’ ideas can
be implemented and iterated on, at a much faster pace than if majority of the code had to be
done from scratch.

However, it can also cause problems like single point of failure. When interconnect-
edness is high, events such as leftpad incident cause a lot of damage [8]]. Furthermore,
bad implementations of popular packages could spread performance issues across many
projects. However, this sort of issue can be alleviated by keeping the sources of available
packages open (which is the case in Rust). The community in most cases is very eager to
find and solve these problems, so any significantly popular package would end up under the
scrutiny of many developers.

The index by itself does not provide a lot of valuable information to the developer.
However, when used in conjunction with the leanness index could provide hints on when to
take action. For example if the leanness of a project is very low, it might pale in comparison
to how much dependency code there is to begin with. When the leanness index is 0.1% it
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would be much more concerning if a project has a software composition index of 90% as
opposed to 10%. The later would point to extreme bloat of unused code in a project which
might take up a lot of space when compiled into binaries or inside a container.

6.3 RQ3: Utilization Index

The goal of utilization index was to quantify how developers use each crate. The empirical
data showed that most of the packages are not utilized much, indicating that it might be a
good idea to splinter its functionality into more packages. Many of the most popular crates,
like rand, already do this. However, this index does not provide any good insight into how
this could be splintered. To do so, a deeper analysis and graph clustering could be employed.
When clustering a graph, utilization of different parts of code could be categorized by its
popularity. Splintering based on that result could highly reduce dependents’ compiled code
size and maintainability.

6.4 Threats to Validity

There are two main threats to the empirical data gathered and presented before. Firstly, the
callgraph generator is not perfect. There were packages with 0% of their code used. This
occurs when structs defined in a package gets initialized in the dependent. The callgraph
generator does not pick it up and it appears as unused in the graph. Improving on this would
provide more accurate results.

Furthermore, the dataset used in the thesis could be enhanced if non package projects
get included. Many of the dependencies like webservers, visual algorithms and others are
meant to be used in user facing applications which do not end up on crates.io. A great
approach would be to perform an analysis of the most popular Rust open source projects
on github and combining the data with crates.io output. Another approach would be to
categorize all the crates on crates.io based on their intended functionality. Data structure
packs, API bindings, threading, webservers and many other could be analyzed separately to
better reflect developer intentions.
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Chapter 7

Related Work

Dependency networks and APIs are well explored topics in computer science. This chapter
discusses latest research in software dependency networks. Afterwards, API usage will be
investigated, in particular finding out how much of the included code actually gets used by
dependents. And lastly, it will look into research covering proposed metrics in software
maintainability.

7.1 Dependency Networks

A. Decan et al. [6] performed a recent study on security vulnerabilities in the npm depen-
dency network. They have analyzed all known vulnerabilities in the history of npm using
snyk.io dataset and extracted several statistics. They found that the number of vulnerabili-
ties and corresponding distinct packages has been steadily increasing. In 2015 there were
around 100 known cases and in 2018, close to 400. They have also found that three out of
Sfour vulnerable packages have more than 90% of their releases affected by the vulnerabil-
ity at discovery time. Furthermore, it seems that it takes most vulnerabilities more than 28
months to discover them, On the other hand most of them are fixed soon after discovery.
The biggest issue seems to be that more than half of vulnerable package dependents take a
long time to apply the fixed version of the update even after it is fixed.

Another paper by A. Decan et al. [7] investigates evolution of various package man-
agers include crates.io. Various metrics are provided like, growth over time (Cargo had a
linear growth for both metrics: number of packages and number of dependencies) or pack-
age update frequency (45% of packages constitute to 80% of all updates). However the
other two research questions are more relevant to this thesis. The paper looked into which
extent do packages depend on other packages and how prevalent are transitive dependen-
cies. They find that regardless of ecosystem, large majority of packages are connected (have
a dependency or a dependent), this number varies between 60% and 80%. The transitive
dependency analysis showed that while most packages have few dependencies, they have a
much higher number of transitive dependencies. In Cargo for example, half of dependent
packages have at least 41 transitive dependencies while having a median of 2 direct depen-
dencies. This paper also proposes a similar metric to the one covered in this thesis. They
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try to evaluate a reusability index over the entire package repository over time. They define
the index at any point in time as the maximal value of n such that there exist n required
packages in the ecosystem, and at the same time, having at least n dependent packages.

Similar results were found by R. Kikas et al. [12]]. They have also looked into a num-
ber of dependencies over time and growth of the network itself in npm, RubyGems and
Crates.io ecosystems. However, they have additionally looked into a network’s vulnerabil-
ity to removal of a single project. They define it as number of nodes (packages) that are
affected by a removal of one packages. Each of their researched ecosystems have packages
which if removed would affect up to 30% of other packages and applications. This also
indicates the speed of bug spreads if they are introduced in these popular packages.

A paper by Rabe Abdalkareem et al. [[1] looks into why developers use trivial packages
in their projects. The paper notes that a serious discussion about the values of trivial pack-
ages has started since the occurrence of the left-pad incident [8]]. It then tries to investigate
the causes of such use. First of all they quantitatively define what is a trivial package, which
was done by a developer survey where they were asked what indicates if a package is trivial
and to rate a list of package examples. The survey only involved 22 developers of various
levels of experience which is rather concerning. Nevertheless, they concluded that packages
that are less than 35 lines of code and have a less than 10 McCabe’s complexity. The paper
provides various empirical metrics on npm dependency network’s trivial packages and ulti-
mately answers the main question. Two main reasons why developers use trivial packages
are that they improve productivity and that they provide well implemented and tested code.
However, further investigation by the researchers found that only 45.2% of trivial packages
have any tests at all.

7.2 API Research

Open source libraries and APIs have been researched extensively in many ways, their bene-
fits, their downsides, various empirical data and vulnerabilities. Here are a few of the more
interesting related works in the field.

General reasons for why people start using libraries instead of their own already existing
implementations and vice versa is researched in [27]]. It would seem that in majority of cases
where developers replace their own code with an existing library is because they were not
aware of the existence of such a library to begin with. Once they find out about it and if
it is a well tested and documented library, they start using it instead. On the other hand,
developers also re-implement some libraries with their own code. This part of the paper
is more interesting for this project because according to their research, one of the most
common answers was that the library was too heavy for the light functionality the developer
needed, or that the library was too hard to use.

API usage trends over time in Java project was analyzed by [[18]. They have created
a tool that mines a few hundred open source project repositories over time and provides
usage trend information on imports that they use. The tool can be used to see if the package a
developer wants to use has a decreasing usage trend, signaling that other projects are phasing
it out for some reason. The authors also suggest that it can be used by developers to improve

44



7.3. Unused API code analysis

their APIs. It is a somewhat similar research to this thesis, however they have performed the
analysis by only looking at import statements in 200 different projects. Such an approach
provides a rather superficial view of APIs usage and does not explain it. Furthermore, 200
projects is not a very representative dataset. This thesis will implement find trend data for
each public function of API, for each version of API and over the entire crates.io repository.

A more recent study on java APIs was performed by C. Lima and A. Hora [[16]]. This
paper investigates a large number of characteristics of API usage in the most popular java
open source projects on github.com. First set of characteristics was regarding code of the
chosen set of APIs. These include size, complexity, legibility, documentation and others.
Second set was about the evolutionary properties of APIs. These were changeability, con-
tribution and stability. Lastly they investigated client adoption of APIs. They have chosen
3 groups of APIs to investigate separately: top 10% of the most used ones, bottom 10%
and a randomly selected set from the remaining ones called ’ordinary’. The APIs were fur-
thermore grouped into java for those starting with ’java*’, android for those starting with
“android.*’and others. The findings generally point to a significant statistical difference
in most metrics between different both API categories (popular, ordinary) and ecosystems
(java, android, others). This is an important finding to consider for the results of this thesis.

7.3 Unused API code analysis

In this section I will look at at papers that have researched similar aspects of API usage,
which is - unused code. For each of them I will look into how they are different from the
work in this thesis.

Nicolas Harran et al.[9] have performed an analysis on 2.3 million Maven dependencies.
The analysis was performed by choosing 99 most popular libraries in the Maven ecosystem,
then picking 865,560 open source client programs that used these dependencies and looking
at how much of the included dependencies do these clients actually use. According to their
findings 43.5% of included dependencies are never used in bytecode. Furthermore they
have found that on average, most of the API interfaces are not used. Average amount of
unused interfaces from dependencies (ignoring the cases where they are not used at all) is
71.84%. In the end they provide a core index value for a median API. They propose that
on average 17% of used types are enough to serve 83% of clients. The key problem with
this paper is that it only considers top level API interfaces and their usages, ignoring the
entire callgraph underneath it and inclusion of other dependencies. This thesis will expand
on this greatly by quantifying reuse in a way that might help find out what amount of reuse
is healthy.

Dong Qiu et al. [19]] have done another large scale API usage analysis on the Maven
ecosystem. The paper has a vast amount of empirical data. Some of the more relevant
points to this thesis show similar results in terms unused packages: 15.3% of the classes,
41.2% of the methods and 41.6% of the fields are never used by any project in their dataset.
Furthermore, the paper analyzes API coverage (whether a public method or class has been
used at least once) for the core API (official java libraries). The results show that about 40%
of all core classes have not been sufficiently used.
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Anand Ashok Sawant et al. [22] have introduced a method for extracting fine grained
API usage information using their new tool called fine-GRAPE. The information that they
have extracted includes an analysis on how many API features have never been used by
any client which is about 20% on average. The perspective of this statistic is rather different
from what this thesis aims to investigate. The aim in the paper was looking for all clients that
use API and looking for features that have not been used, while this thesis is more focused
on analyzing the included dependencies of a project and see how many of the included
features are actually used and how much is dead code.

7.4 Software metrics

In this section several papers about software metrics will be reviewed.

One of the first papers in the field of software metrics was written by S. R. Chidamber
et al. [3] in 1994. They have set out to define, implement and collect a set of 6 metrics
for object oriented software design. While this thesis, is focused on more general software
metrics that is not pinned down by its design philosophy, it is good to review the groundwork
that was laid. First proposed metric called Weighted Methods per Class. It is defined as a
sum of complexities for every method in a class. Complexity itself is not defined. The
purpose is to predict how much time and effort is required to develop and maintain this
class. Another proposed metric is Depth of Inheritance Tree which is defined as the length
of a path from a class to the root of its inheritance tree. This metric would identify classes
that are deeply inherited and thus have too many methods. Such classes’ behaviour would
be too hard to predict. Third proposed metric was Number of Children, which simply counts
how many classes inherit a specific class. This would identify how reused a class is and in
case of high reuse it may need additional testing and thought put into it. One more metric
is called Coupling between Object Classes and is defined as a number of other classes the
class is coupled to. Coupling is defined as acting on methods or properties of another class.
In classes where this metric is high would not be very modular, harder to encapsulate and
also test. The fifth metric proposed by the paper is Response for a Class and it is defined
as a length of a set of methods that can potentially be executed in response to a message
received by an object of that class. Large number of such methods would make the class
much harder to test and also increase its complexity. Last metric proposed in the paper is
Lack of Cohesion in Methods. It is defined as a count of number of method pairs whose
similarity is zero minus the count of method pairs that are not zero. Large amount of similar
methods points to being able to have better encapsulation while lack of cohesion would
point to the class needing to be split into separate classes. The metrics were chosen and
designed to have a strong theoretical background explained in great depth in the paper and
also intuitive for developers to understand. With these available for every class in a software
project it could be used to pick areas to refactor in order to improve maintainability of the
entire project.

Danail Hristov et al. [[L1] proposes a reusability metric framework for component-based
software development. In this paper several reusability characteristics are distilled: avail-
ability, documentation, complexity, quality, maintainability, adaptability, reuse and price.

46



7.4. Software metrics

Each of these characteristics are defined in great detail, for example it is noted that reuse
can be measured by frequency and amount of reuse. One of the conclusions in the paper
was that software reuse is a context specific characteristic and that different methods need to
be applied in order to provide valuable information in different application context, which
is reflected well in this thesis as well. Computed metrics can point to varying consequences
depending on context.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In conclusion, this thesis introduced 3 metrics that quantify code reuse of dependencies in
crates.io, compared the results of these callgraph based metrics to the previous public API
analysis, and applied the metrics for the entire crates.io package repository of Rust.

Leanness index provided information on how dependencies are used. Based on previous
studies, the data gathered showed that usually only a small amount of code gets used from
the included dependencies. 57.6% of all crates use less than 25% of LOC they include
through dependencies. During the analysis of this data, lines of code versus node count
was examined. While they share similar trends, two versions of the metric proved different.
Lines of code based leanness metric had a more uniform spread of data over the entire
crates.io.

Software Composition index enriched the leanness metric by providing supplemental
information. It is a critical factor for developers when deciding if they need to reconsider
their dependency use in the project. Empirical analysis of this index showed a very big
share of crates that are overwhelmed by code from other dependencies. On average, if a
dependency is included in a crate, 91% of its code comes from the dependencies.

Lastly, the utilization index showed how much each package gets utilized by its depen-
dents. This metric could be used by crate developers to improve their APIs and possibly
split code into several different packages to improve their dependents leanness and com-
piled code size. The analysis of the entire crates.io showed that 57% of all packages get
utilized by only 10% of their code. These results could be skewed by the fact that only
libraries were analyzed. Including open source applications would most likely improve the
results.

8.2 Future work
Future work regarding these proposed metrics would include two aspects. First is getting
better data using the same concept. Primarily this would involve improving the callgraph

generator. Current shortcoming of no edges for struct initializations can skew the data quite
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drastically for certain packages that rely on large amount of different structs. Furthermore,
additional rules in metric calculations could be included. For example, many packages are
split into several sub packages that include each other. Such a package feature could be
detected and handled differently. Lastly, improving the dataset by including open source
applications would greatly help certain crates get a higher utilization index.

A different type of future work is to create tools and utilities that use these metrics in
helpful ways. One of them could be to develop an IDE plugin that would generate this
data on the fly. Providing a general software composition index and how each included
dependency contributes to such a number in Cargo.toml file could help developers decide
where to trim bloat. An example can be seen in Figure The figure shows a section of
Cargo.toml file in a Rust project. Included dependencies and their versions are defined here.
Plugin shows a simple informational text to the right of each dependency. This example only
has leanness information available, but it could also include others like total amount of code
added by each dependency. Similar approach could be used to create tools that help package
maintainers splinter their packages into smaller chunks, so that their users can include only
what they need. Once simple implementations are created, they need to be investigated for
their usability. A user study could be performed to see if developers find the metrics useful,
whether the tools themselves visualize them well and make it easy to understand and if not,
how it could be improved.

-tree"] }  Utilizing 1% of code

£51% of code o8
Utilizing 12% of code

Figure 8.1: IDE plugin example to visualize leanness index
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