<]
TUDelft

Delft University of Technology

APmap
An Open-Source Compiler for Automata Processors

Yu, Jintao; Lebdeh, Muath Abu; Du Nguyen, Hoang Anh; Taouil, Mottaqgiallah; Hamdioui, Said

DOI
10.1109/TCAD.2021.3062328

Publication date
2021

Document Version
Final published version

Published in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Citation (APA)

Yu, J., Lebdeh, M. A., Du Nguyen, H. A_, Taouil, M., & Hamdioui, S. (2021). APmap: An Open-Source
Compiler for Automata Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 41(1), 196-200. https://doi.org/10.1109/TCAD.2021.3062328

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TCAD.2021.3062328
https://doi.org/10.1109/TCAD.2021.3062328

196 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022

APmap: An Open-Source Compiler for Automata Processors
Jintao Yu™, Student Member, IEEE, Muath Abu Lebdeh, Student Member, IEEE, Hoang Anh Du Nguyen,

Mottaqiallah Taouil™, Member, IEEE, and Said Hamdioui

Abstract—A novel type of hardware accelerators called automata pro-
cessors (APs) have been proposed to accelerate finite-state automata. The
bone structure of an AP is a hierarchical routing matrix that connects
many memory arrays. With this structure, an AP can process an input
symbol every clock cycle, and hence achieve much higher performance
compared to conventional architectures. However, the design automation
for the APs is not well researched. This article proposes a fully auto-
mated tool named APmap for mapping the automata to APs that use a
two-level routing matrix. APmap first partitions a large automaton into
small graphs and then maps them. Multiple transformations are applied
to the automaton by APmap to meet hardware constraints. The experi-
ments on a standard benchmark suite show that our approach leads to
around 19% less storage utilization compared to state-of-the-art.

Index Terms—Automata processor (AP), design automation,
graph partitioning, mapping.

I. INTRODUCTION

Finite-state automata (FSA) are widely used in domains such as
network security [1], bioinformatics [2], and artificial intelligence [3].
Some innovative hardware designs repurpose memory array for accel-
erating FSA execution, e.g., micron automata processor (MAP) [4],
Cache Automaton [5], and RRAM-AP [6]. These accelerators store
many states in memory arrays and distribute each input symbol to
all the states simultaneously. Based on the input symbol, a state acti-
vates other states via a hierarchical routing matrix. These actions
are repeated every clock cycle, and hence these accelerators achieve
much high throughput [4], [5], [7]. We refer to these accelerators as
automata processors (APs). The routing matrix mimics the transition
function of FSA. It is implemented with memory arrays that are con-
nected with rich wiring. The routing matrix is configured for specific
FSA by writing configurable bits to the memory array. For exam-
ple, the routing matrix of Cache Automaton connects 32 k states and
contains 10 M configurable bits [5]. Therefore, design automation is
required for mapping FSA to the APs.

Currently, there are no open-source design tools available for the
APs. The authors of Cache Automaton described their methodology
of mapping FSA to the hardware. However, not all the details are
explained, and their tool is not publicly available. Following their
methodology, some FSA cannot be mapped directly due to the con-
straints on the routing matrix. As a result, these FSA have to be
transformed into other equivalent forms [5]. This step is iterative and
requires experience. As for other related works, Micron provides a
commercial software development kit (SDK) for MAP. Since this
SDK is closed-source, it cannot be adapted for other architectures
such as Cache Automaton. The compiler of RAPID can generate map-
ping by duplicating an initial result, e.g., produced by MAP SDK [8].

Manuscript received August 27, 2020; revised November 20, 2020 and
February 10, 2021; accepted February 13, 2021. Date of publication
February 26, 2021; date of current version December 23, 2021. This article
was recommended by Associate Editor A. Gamatie. (Corresponding author:
Jintao Yu.)

The authors are with the Laboratory of Computer Engineering, Delft
University of Technology, 2628 CD Delft, The Netherlands (e-mail:
j.yu-1@tudelft.nl; m.f.m.abulebdeh@tudelft.nl; h.a.dunguyen@tudelft.nl;
m.taouil @tudelft.nl; s.hamdioui @tudelft.nl).

Digital Object Identifier 10.1109/TCAD.2021.3062328

, Senior Member, IEEE

i L [s o
—| 8 outing >
Input I 2l é” Matrix o
al: 31 S
: < <
Symbol Vec s Follow Vec f [Acceptance

Fig. 1. General architecture of APs [6].

Therefore, it cannot be used alone. Wadden et al. [9] have developed
an open-source tool named ATR to estimate the resource needed for
mapping an application to MAP. This tool is based on VPR, a routing
tool that targets a 2-D-mesh structure such as FPGAs. This structure
is different from the hierarchical routing matrix of APs, and hence
ATR cannot produce accurate results. While open-source tools, such
as REAPR [10] and Grapefruit [11], have been proposed to map
applications to FPGAs, a similar one that targets APs is still needed.

This article addresses the above issues and presents APmap!

(automata processor mapping tool), an open-source compiler for
APs that are based on a two-level routing matrix, such as Cache
Automaton and RRAM-AP. Note that APmap cannot be applied to
MAP due to its algorithm limitation. APmap uses multiple strategies
to change given FSA to equivalent forms so that they can meet the
constraints of the routing matrix. Therefore, the compilation process
does not require any user involvement. The main contributions of this
article are as follows.

1) A methodology to automatically map automata to APs that
are based on a two-level routing matrix. The methodology
optimizes the storage utilization.

2) An open-source tool APmap based on the proposed methodol-
ogy. This tool can be adapted to various designs by altering its
parameters.

3) An evaluation of APmap and comparison with state-of-the-art.

The remainder of this article is organized as follows. In Section II,

we explain the working principle and the routing matrix of APs.
Section III presents the methodologies of APmap. Next, Section IV
evaluates APmap’s performance using ANMLzoo. After a brief
discussion in Section V, Section VI concludes this article.

II. BACKGROUND
A. Automata Processors

The APs share a generalized architecture as shown in Fig. 1 [6]. In
every clock cycle, an input symbol / is processed using three major
steps.

1) Input Symbol Matching: All the states that have incom-
ing transitions occurring on [are identified in this
step. Each state is presented by column vectors called
state transition element (STE) that are preconfigured based on
the targeted automaton. The decoder activates one of the word

1APmap can be downloaded at https://github.com/yjt98765/apmap.

1937-4151 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2022 at 08:43:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8764-7779
https://orcid.org/0000-0002-9911-4846
https://orcid.org/0000-0002-8961-0387

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022 197

Global coe Global
switch 0 switch 8
N s/ /\
SN
Tile | Tile [eee| Tile Tile O [| Tile1 | *** |Tile 127
(a) (b)
Fig. 2. Detailed structure of cache automaton and RRAM-AP. (a) AP chip

structure. (b) Routing matrix.

lines according to the input symbol /. If an STE has an
incoming transition occurring on /, its output is logic 1; other-
wise, the output is logic 0. The outputs of all STEs are mapped
to a vector called Symbol Vector s.

2) Active State Processing: It generates all the possible states that
can be reached from the currently active states (stored in Active
Vector a) based on the transition function (stored in the routing
matrix), and stores the result in the Follow Vector f. This step
also generates the next active states by bit-wise ANDing s and f.

3) Output Identification: Accept Vector ¢ is preconfigured based
on the automaton’s accepting states C. This step checks the
intersection of a and ¢ to decide whether the input sequence is
accepted.

Multiple components, including STEs, the routing matrix, and

Accept Vector ¢, need to be configured based on the targeted FSA.
The configuration will be generated by APmap.

B. Routing Matrix

The routing matrix implements the transition function of an
automaton. Its input and output are Active Vector a and Follow Vector
f, respectively. The lengths of these two vectors are both N, i.e.,
the state number of the automaton. Each member in the vectors is
a Boolean value, corresponding to an automaton state. The routing
matrix of the existing APs all consist of multiple components that
are linked in a hierarchical style. The routing matrix of MAP con-
tains four levels; Cache Automaton and RRAM-AP contain two, i.e.,
global and local switches. In Cache Automaton and RRAM-AP, the
global switches are located at the center of the chip while the local
switches are distributed. 256 STEs, a local switch, 256 AND gates,
and a decoder are grouped as a ftile, as shown in Fig. 2(a). The input
symbol [is sent to all the tiles in parallel.

APmap targets the routing matrix of the space-optimized design
of Cache Automaton, which consists of 128 tiles, eight 1-way global
switches (G1), and a 4-way global switch (G4). The connection
between the tiles and global switches is shown in Fig. 2(b). Each
tile has two input wires from and two output wires to every Gl.
Each tile also has eight input wires from and eight output wires to
the G4. In total, a tile has 24 input and 24 output wires.

III. APMAP METHODOLOGIES

We suggest several other tools to be used together with APmap
to develop applications targeting APs. The application can be coded
in RAPID, a high-level programming language designed for pattern-
recognition processors such as APs [8]. RAPID’s compiler generates
automata network markup language (ANML), an XML-based for-
mat for describing automata [12], files as output. The ANML
can be parsed by VASim [13], a tool that simulates the execu-
tion of a homogeneous automaton. It also supports some important
automata transformations, such as prefix merging. We modified
VASim to preprocess the automata and generate the file formats
used by APmap. These files describe the automata as a collection

I H H I: I: —PZ'
T T2 T3 T T2 T4

Fig. 3. Different styles of partitioning a graph. (a) Balanced partitioning.
(b) Unbalanced partitioning.

T3

Local switch 1 Global

> - Local switch 3
> ” "|switch 1.5, >
S1 > >
YV =
2> .
> = 4
>
YVVY = vV YV
= S3

S2

A

A

Local switch2| v v v

Fig. 4. Mapping an example automaton to AP. The automaton is partitioned
into three parts, which are mapped to Tiles 1 to 3, respectively. The input
signal of the global switches origin from the blue region of the local switches
while the output signals enter the yellow region of the local switches. The
black dots indicated that the row can activate the corresponding column.

of connected components (CCs), i.e., nonoverlapping subsets of the
original automata. Finally, APmap produces the configuration files
for APs.

APmap first sorts the CCs by their state numbers and then
maps them one by one. In each iteration, APmap picks the largest
unmapped CC and maps it to one or multiple tiles. In some cases,
not all the space of these tiles are occupied by this CC. Therefore,
APmap tries to find some small CCs to fill in the remaining space.
This process repeats until all the CCs are mapped.

When a CC contains more than 256 states, it has to be mapped
to multiple tiles. First, this CC is partitioned into several parts,
which will be presented in detail in Section III-A. To increase
the chance of mapping success, the partitioning process produces
multiple solutions. Then, APmap examines the partitioning results
with the hardware constraints on a tile. If there are conflicts, an extra
process is applied to resolve the conflicts, which will be presented
in Section III-C. Next, APmap tries to generate the configuration
for the global switches and the tiles, which will be presented in
Section III-B. If the configuration of global switches cannot be gen-
erated, APmap selects the next partitioning solution and repeats the
previous processes. If none of these partitioning solutions leads to a
valid configuration, the mapping flow fails.

A. CC Fartitioning

APmap partitions a CC with the help of METIS [14], a widely used
graph partitioning tool. METIS divides an undirected graph into k
nonoverlapping parts while trying to cut the least number of edges.
An edge is cut in a division means that the two nodes linked by the
edge are assigned to different parts. First, we transform the CC to
an undirected graph to make it acceptable for METIS. Self-loops are
removed in this transformation. Then, we invoke METIS with two
types of input parameters: 1) the number of parts and 2) the size con-
straints on those parts. The size of a part means the number of nodes
contained in that part, and a size constraint is the desired size of a
part. METIS produces the same number of parts as required; how-
ever, the size constraints are not guaranteed to be satisfied. Therefore,
we need to check the size of each part after the partitioning. If any
part contains more than 256 nodes, we need to modify parameters
and invoke METIS again.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2022 at 08:43:55 UTC from IEEE Xplore. Restrictions apply.

198 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022

Local switch 1 N | Global

> > > switch 1 \Local switch 3
~ Ll Ll
= vy S3 L
S2 >
4 R i
YyVYVY = vV YV
S2 >l "53 %2
S3 3
Local switch2| v ¥ ¥
S2 S3

Fig. 5. Example of resolving an output constraint conflict. Assume a part
contains more outgoing states than the constraint. To resolve this conflict,
Local switch 2, including input signals (e.g., coming from S1), is duplicated
as Local switch 2°. The outgoing states (e.g., S2 and S3) are split between
these two tiles.

This partitioning process is iterated with different parameters to
lower the storage utilization, or utilization for short, which is referred
to as the number of tiles that the automaton is mapped to. It is
influenced by the partitioning result from three aspects. First, each
partitioned part will be mapped to different tiles; therefore, the num-
ber of parts is the most important factor for the final utilization.
Second, the cutting edges will be mapped to global wires, i.e., the
wires connecting tiles and global switches. The wire resource is lim-
ited. Therefore, a partitioning result that contains many cutting edges
may lead to overhead for resolving the constraint conflict. Third, the
balancing of partitioned parts may also affect utilization. Fig. 3 shows
two possible partitioning styles of a CC. It is partitioned into three
parts, i.e., P1, P2, and P3, represented by gray rectangles. The size
of the rectangle indicates the size of the part, and the total size of the
three parts are equal in the two partitioning styles. These parts are
mapped to three tiles, i.e., T1, T2, and T3, represented by transpar-
ent rectangles. In the balanced partitioning, as shown in Fig. 3(a), all
the parts have similar sizes. In the unbalanced partitioning, as shown
in Fig. 3(b), the sizes of the first two parts are close to the size of
a tile, while the third part is relatively small. This is an important
feature as the whitespace in 73 can be used for mapping a small
CC. Alternatively, it can also be used to map a part of another large
CC [indicated by P1’ and P2’ in Fig. 3(b)]. On the contrary, the
whitespace in Fig. 3(a) is only enough for fitting tiny CCs, which
are rare in automata benchmarks. We prefer the unbalanced style
during partitioning since it provides more optimizing opportunities.

B. Mapping Method

This section focuses on the configuration of the routing matrix,
i.e., the global and local switches. The configuration of STEs, i.e.,
their associated input symbols and whether they are the start or final
states, is generated by VAsim. APmap simply copies this information
to the final configuration file.

The transitions among the states in different tiles are mapped to
multiple global and local switches in two steps: first to configure
global switches and then the local switch part. Fig. 4 uses an example
to illustrate these steps. Assume the four states in the automaton are
partitioned into three parts, i.e., {S2}, {S2 and $4}, and {S3}, and
these parts will be mapped to Tiles 1, 2, and 3, respectively. For
both global and local switches, the input signals connect to the rows,
and the columns generate the output signal. Dots indicate that the
column is connected to the row, i.e., when the row is activated, the
column also activates. First, APmap selects a global switch, e.g.,
Global switch 1, that has at least one free wire with Tile 1. Here,
free means that it has not been assigned for mapping other transitions.
Next, APmap checks the connections between Global switch 1 and
Local switch 2 and 3. Similarly, it requires at least one free wire. If
the above requirements are all satisfied, then the global switch part

M-15{ >
S SR | Global
N Local 15 3| switch 2
: ! oca > 3
I2§D'-9 switch1|_V¥ VvV V¥ v
tise ; 16-130q > o S
* s s > >
130—2>" §
e Local Local >
switch1'|_V VvV V¥ switch2l v v v
Fig. 6. Example of resolving an input constraint conflict. Assume a part

requires 30 incoming signals (i.e., /1 to I30), which exceeds the constraint.
To solve this conflict, Local switch 1 is duplicated as Local switch 1. The
incoming signals are split between these two switches. The outgoing states
(e.g., S1) in these two switches activate other states together.

is successfully mapped. S1 will be placed at the slot that connects
Global switch 1. Note that only 24 slots can output its signal to global
switches, and these slots are illustrated by the blue region. Similarly,
only 24 slots receive signals from the global switches, and they are
colored yellow. All the wires assigned in this step are colored red in
Fig. 4. If any condition is not satisfied, then APmap selects the next
global switch and checks again. If none of the global switches meet
the requirement, the mapping process fails.

After all the transitions being mapped to global switches, detailed
mapping to local switches consists of two parts. The first part is to
map the transitions within a tile, e.g., two dots are placed in the row
of S2 in Fig. 4, implementing the transitions from S2 to S2 and S4.
The second part is to map the signals that come from global switches,
i.e., configuring the dots on the red region in Local switch 2 and 3
in Fig. 4. They can be conducted similarly.

C. Meeting Constraints

Constraint violation is a result of hardware resource limits and
unsatisfactory partitioning. When a large CC is partitioned into
several parts, the number of transitions among these parts is uncon-
strained. Although METIS tries to minimize the total transition
numbers, it is possible that the transition number exceeds the num-
ber of wires that connect a tile with global switches. In this case, we
need to resolve this conflict before mapping it to the tile.

In this section, we first present the methods for resolving output
constraint conflicts and then the input. As introduced in Section II-B,
a tile has only 24 output wires that connect to global switches. Any
state that transits to states in other tiles, referred to as an outgoing
state, has to be mapped in those 24 slots. Assume that a partitioned
part contains more outgoing states than the constraint, including two
states, S2 and S3. We duplicate this part and keep only half of them as
outgoing states in each copy. Fig. 5 shows a possible mapping result
where these two parts are mapped to Tile 2 and 2’, respectively. S2
is regarded as an outgoing state in Local switch 2 but not in Local
switch 2°. §3 is the opposite. In this way, they can both activate other
states. Note that all the input signals are also duplicated. Assume that
S1, which is mapped to Tile 1, activates S2 and S3. After the dupli-
cation, the global switch maps the output of S1 to both Local switch
2 and 2’. Therefore, the execution process of the CC is unchanged.

APmap resolves input constraint conflicts by duplicating as well.
However, comparing with output constraint resolving, one additional
configuration is required. Assume a part contains 30 input signals
named from /1 to /30, which exceeds the 24-input constraint. It is
duplicated and assigned to Tile 1 and 1, respectively. The 30 inputs
are also divided into two groups and assigned to those tiles. For
the outgoing states in this part (e.g., S1), the duplicates activate the
states in other parts together as shown in Fig. 6. This configuration
guarantees the correctness of automata execution. Assume S1 can be

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2022 at 08:43:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022 199
16.31 ”‘/ ‘ ‘ ‘ ‘
- -0 170 21.98% 2 -11.5
R 200 69.04% > 30% o B B Cache Automaton \ose 14.82% _
z 14.04% 2.27% [l D1deal Cache Automaton - ”3.15%7 529 0.99% ®
= 2%
g 150 1.91% [0 APmap (This work) 2.94% 2083 |1 =
8 2.54% [01deal APmap 241% £
N 0.5 N
= 3% 5 =
= 50 55.98% 7.739%3.50% =
I 3.43%5.939%1.05% IHHH
0 ‘ ‘ H"_‘m -W‘V_Hj ‘ ‘ ‘ 0
Snort Brill ClamAV Dotstar Entity Levenshtein Hamming Fermi Random Protomata Average
Fig. 7. Utilization comparison between APmap and Cache Automaton. The numbers above the bars illustrate the percentages that the actual utilization

exceeds the ideal one.

TABLE I
REQUIRED TILE NUMBERS WHEN MAPPING THE APPLICATIONS UNDER THREE DIFFERENT CONFIGURATIONS

Benchmark Snort Brill | ClamAV | Dotstar | Entity | Levenshtein | Hamming | Fermi | Random | Protomata | Average

8 Gl + G4 136.8 | 105.6 170.0 155.6 19.6 10.5 455 157.3 126.9 150.9 107.87
4 G1 w/ OPT 137.6 | 107.8 170.0 156.6 22.6 11.8 46.5 157.3 126.9 151.2 108.83
4 GI w/o OPT NA NA 170.0 156.6 NA 11.8 46.5 157.3 126.9 151.2 NA

activated by (one of) the input signals /1 to /30. After the duplication,
the S1 in either Local switch 2 or 3 is (or both of them are) activated,
and it (or they) will further activate other states through the red or
the green paths in the figure.

In general, if a part contains N outgoing states or incoming signals,
it will be duplicated [(N/24)] — 1 times, and these states or signals
are distributed equally in these duplicates. If a part has both output
and input constraint conflicts, it is duplicated for resolving the output
constraint conflict first, and then the input constraint conflict in each
duplicate is resolved individually.

IV. EVALUATION
A. Evaluation Methodology

We adopt ANMLzoo as the benchmark suite in the evaluation since
it is widely used for evaluating APs, especially Cache Automaton [5].
Two benchmarks in this suite, i.e., BlockRings and CoreRings, con-
tain large CCs that exceed the capacity of an RRAM-AP or Cache
Automaton chip. Therefore, they are excluded from this evaluation.

We use the latest commit of VASim to parse and optimize
ANMLzoo benchmarks. Only the optimized automata will be used in
the evaluation because their CC sizes are larger and hence more chal-
lenging for mapping tools. The state numbers after optimization are
slightly different from that in Cache Automaton’s paper [5], probably
because of the usage of different VASim versions. The two notable
exceptions are PowerEN and SPM. The state numbers are so different
in the two works that they are not representing the same benchmark.
Therefore, we will exclude them from the evaluation.

In the first experiment, we evaluate the performance of APmap.
The hardware target for the mapping is two AP chips with a full
routing matrix. No wires are connecting these chips. In the second
experiment, we demonstrate the effect of constraint conflict resolving
optimizations by mapping the applications to a routing matrix with
only four GI.

B. Experimental Results

When mapping the benchmarks to the full routing matrix, the uti-
lization of the results is shown in Fig. 7. The utilization of Cache
Automaton’s mapping tool [5] and the ideal utilization for these two
cases are also shown as a comparison. The results in [5] are reported
using MBs (see the right y-axis) and it is interchangeable with the
number of tiles. A tile contains 256 STEs whose size is 32 bytes

each, and hence a tile occupies 8 kB. Ideal utilization is referred to
the minimum amount of memory required for mapping an automaton
in theory, i.e., the product of the state number and the STE size. The
ideal utilization may never be achieved due to the input and output
constraints and the imperfect partitioning. However, it can be used to
measure the ability of the mapping tools. The overhead, the percent-
age by which the actual utilization exceeds the ideal, of both tools is
illustrated above the bars. As the overhead is calculated using separate
bases, it is a fair comparison for these two tools. For all the bench-
marks, APmap achieves a lower overhead than Cache Automaton. In
addition, APmap’s overhead is always below 4%, with an average of
2.41%. On the Cache Automaton side, however, the average overhead
is 21.83%, and the highest is more than 50% (Brill and Entity). No
tiles are duplicated in this evaluation as all the input/output constraints
are satisfied.

We map the applications to a routing matrix consisting of only
four G1, with and without constraint conflict resolving optimizations.
The results are listed in Table I with a comparison to the previous
one. With fewer global switches, more tiles are needed due to con-
straint conflict resolution and less compact partitioning. When the
optimizations are disabled, Snort, Brill, and Entity cannot be mapped.
It suggests that these optimizations are essential for some complex
applications. Note the partitioning a graph to more parts does not nec-
essarily decrease the number of cutting edges in a part. Therefore,
without these optimizations, some automata cannot be mapped.

V. DISCUSSION

This section highlights two main advantages brought with APmap:
1) allowing more applications deployed in a chip and 2) assisting
hardware design space exploration.

Deploy More Applications: When two applications share a sub-
set of an automaton, they can be merged and optimized as a single
application. In Section IV, we have shown APmap’s benefit in map-
ping a complex application. When two applications share no common
states, they can be mapped to the same chip without conflicts in global
switches. Assume application A is mapped to Tiles 1 and 2, which are
connected by Global switch 1. Now, we map application B to Tiles
3 and 4, which are connected by Global switch 1 as well. As indi-
cated by different colors in Fig. 8, the transitions in an application do
not affect the other. For example, APmap successfully mapped Snort
and Brill together to two AP chips (without co-optimization),with

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2022 at 08:43:55 UTC from IEEE Xplore. Restrictions apply.

200

» Global switch 1 >
S1 > > > >
] » A d
Local > TVYv 7 »| Local
switch1[v v v Y V Vv |switch2
S2
> »
S3 > >
] Ll
Local 7] »|Local
switch3[v v v Y V V_|switch4
S4

Fig. 8. Example of two applications sharing a global switch. There is no
interference between the two groups of paths as indicated by the red and
green colors.

the utilization of 242.4 tiles (94.7% of all the tiles in two chips).
As the sum of Cache Automaton’s reported utilization of Snort and
Brill exceeds the capacity of two chips, APmap will most likely offer
capacity benefits versus Cache Automaton.

Assist Hardware Design: APmap provides methodologies to solve
hardware constraints on the number of input and output signals. As
shown in Section IV, APmap can map all the benchmarks to a rout-
ing matrix with only four G1 and no G4. It allows the hardware to be
more compact, and hence achieving better performance. Especially,
G4 is much slower than G1 and STEs [5], which affects the through-
put of the whole chip [7]. Therefore, APmap can become a crucial
member of a hardware/software co-design toolchain.

VI. CONCLUSION

In this article, we proposed an open-source tool named APmap for
mapping automata to AP chips. It employs multiple optimizations
to automate the mapping process and decrease storage utilization.
An evaluation with ANMLzoo benchmark suite shows that APmap
achieves low overhead and significantly outperforms state-of-the-art.

REFERENCES

[1] M. Roesch, “Snort—Lightweight intrusion detection for networks,” in
Proc. 13th USENIX Conf. Syst. Admin., 1999, pp. 229-238.

[2]

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 1, JANUARY 2022

I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru, “High
performance pattern matching using the automata processor,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), Chicago, IL, USA,
May 2016, pp. 1123-1132.

K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron, “Brill tagging
on the micron automata processor,” in Proc. 9th Int. Conf. Semantic
Comput., Anaheim, CA, USA, 2015, pp. 236-239.

P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel
automata processing,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12,
pp- 3088-3098, Dec. 2014.

A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. T. Blaauw,
D. Sylvester, and R. Das, “Cache automaton,” in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchit., Boston, MA, USA, Oct. 2017,
pp. 259-272.

J. Yu, H. A. D. Nguyen, L. Xie, M. Taouil, and S. Hamdioui,
“Memristive devices for computation-in-memory,” in Proc. Design
Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2018, pp. 1646-1651.

J. Yu, H. A. D. Nguyen, M. A. Lebdeh, M. Taouil, and S. Hamdioui,
“Time-division multiplexing automata processor,” in Proc. Design
Autom. Test Eur. Conf. Exhibit. (DATE), 2019, pp. 794-799.

K. Angstadt, W. Weimer, and K. Skadron, “RAPID programming of
pattern-recognition processors,” in Proc. 21st Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS), 2016, pp. 593-605.

J. Wadden, S. M. Khan, and K. Skadron, “Automata-to-routing: An
open-source toolchain for design-space exploration of spatial automata
processing architectures,” in Proc. 25th IEEE Annu. Int. Symp. Field
Program. Custom Comput. Mach. (FCCM), Apr. 2017, pp. 180-187.
T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan, “REAPR:
Reconfigurable engine for automata processing,” in Proc. 27th Int. Conf.
Field Program. Logic Appl. (FPL), Sep. 2017, pp. 1-8.

R. Rahimi, E. Sadredini, M. Stan, and K. Skadron, “Grapefruit: An open-
source, full-stack, and customizable automata processing on FPGAS,”
in Proc. IEEE 28th Annu. Int. Symp. Field Program. Custom Comput.
Mach., 2020, pp. 138-147.

K. Wang et al., “An Overview of MicronSs Automata Processor,” in
Proc. 11th IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign
and Syst. Synthesis, Pittsburgh, Pennsylvania, 2016, pp. 14:1-14:3, doi:
10.1145/2968456.2976763.

J. Wadden et al., “VASim: An open virtual automata simulator
for automata processing application and architecture research,” Dept.
Comput. Sci., Univ. Virginia, Charlottesville, VA, USA, Rep. CS2016-
03, 2016.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20,
pp- 359-392, Dec. 1998.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2022 at 08:43:55 UTC from IEEE Xplore. Restrictions apply.

10.1145/2968456.2976763

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

