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Abstract

Learning capabilities are a key requisite for an autonomous agent operating in dynamically
changing and complex environments, where pre-programming is not anymore possible. Fur-
thermore, it is essential to guarantee that the learning agent will act safely by considering
its stability properties. In this thesis, novel conditions are proposed, aiming to examine
stability of the learned dynamics for two important model classes; namely Rectified Linear
Unit (ReLU) Deep Neural Networks (DNNs) and Locally Weighted Learning (LWL). For the
former method, a theoretical and computational framework is developed by establishing an
equivalence between ReLU DNN models and Piecewise Affine (PWA) systems. This allows to
leverage well-known tools of PWA system analysis, and consequently compute, characterize
equilibria and determine their region of attraction for ReLU DNNs. Due to their increased
complexity, a structured search for appropriate stability conditions was performed for LWL
methods until the optimal trade-off between conservativeness and computational efficiency
was obtained. These stability conditions are given as Linear Matrix Inequality (LMI) prob-
lems and they consist the first stability results in literature for these two model classes. Their
efficacy is assessed in numerical and real-world dynamical systems and it is shown that the
proposed LMIs are not unreasonably conservative, as they can evaluate accurately the stabil-
ity properties of these two representations. Finally, this work demonstrates how to formulate
appropriate stability conditions for learning methods in a principled manner.
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Chapter 1

Introduction

The current chapter intends to provide a very broad overview of this work and to present
its importance for the field of learning control. Starting from a short description of this last
notion, the topic of stability guarantees for learning and its relevance for intelligent agents
is analyzed. In the next sections, the research problem is carefully identified and a roadmap
towards its solution is indicated. Finally, studies relevant to the research questions are assessed
and a brief outline of the rest of this Thesis is provided.

1-1 Motivation

1-1-1 Learning control

A large part of the current interest in control and robotics research has been directed to
the development of systems with increased autonomy and enhanced capabilities. Robots
and other intelligent agents of the future are expected to be largely self-sufficient and able
to plan and make decisions in order to achieve high-level goals. Nevertheless, still a big
portion of today’s robotic systems are operating under well-determined environments, doing
strictly-defined tasks with very little autonomy and robustness against uncertainty. Since
predicting and programming for all possible conditions and goals is thought to be non viable,
the reduction of the disparity between current state and future forecasts will rely heavily on
the ability of the intelligent systems to process past experiences and learn from them.

Learning (for) control comprises one important aspect of the broad field of machine learning,
which encompasses various skills such as learning for perception or learning to make deci-
sions [1]. Learning control, in turn, aims to derive optimal policies through several distinct
approaches like reinforcement learning [2], imitation learning [3] or supervised learning [4].
Due to lack of a clear definition and inaccurate interchangeability of this term with other
types of control like intelligent and adaptive control, it is very difficult to define a learning
control method precisely.

Master of Science Thesis Konstantinos Kokkalis



2 Introduction

Figure 1-1: Abstract configuration of an autonomous system with learning capabilities1.

One of the dominant definitions indicates that learning control aims to acquire a control
policy for a particular control problem through interaction with the system’s environment
and processing of past experiences [1]. Traditional control systems without any learning
capabilities, on the other hand, are usually restricted to policies that cannot react well in
unexpected changes of the environment and many times are based on previously identified
models. Frequently, this absence of learning control mechanisms significantly simplifies the
extraction of a satisfactory control strategy under known and slowly-changing conditions, but
cannot answer the need for more sophisticated policies necessary in complex and constantly
changing environments.

What makes learning control methods especially challenging is the aforementioned dynamic
relation between the learning process and the behavior of the system, compactly illustrated
in Figure 1-1. More precisely, autonomous agent and learning policy are involved in a closed
loop, where the performance of the former is processed in order to learn an optimal control
strategy and the action chosen by the latter affects the performance of the agent. This
dynamic behavior requires optimal learning approaches that decide what is necessary to learn
and significant computation power to process the data in an online fashion.

The above figure and the described closed loop relation strongly resembles the classical control
paradigm. This is not by mistake and brings to surface the second broad definition of learning
control given more than 3 decades ago [5], which identifies it as the field that solves control
theory problems with machine learning methods. While conventional control theory relies
heavily on descriptions and models based on differential and difference equations [6], the
introduction of machine learning promises to offer a far more general framework to identify
and adjust satisfactory control policies by leveraging data and past experiences of the system.
This second definition will mainly be adopted for the rest of this study.

1-1-2 Safety considerations

Machine learning methods, especially with the development of more efficient algorithms and
the increase of computational power, have rendered the close approximation of complex and

1Courtesy of Sebastian Trimpe and Stefan Schaal https://am.is.tuebingen.mpg.de/research_fields/
learning-control
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1-1 Motivation 3

high-dimensional functions realistic. These techniques can identify strongly nonlinear dynam-
ics as well as cost functions and controllers, broadening this way the region of operation of
modern control systems. Nonetheless, learning in real control systems faces an additional
challenge, usually not present in other learning paradigms: the interaction with the physi-
cal environment. As data is gathered and the accurate control policies or dynamics are still
unknown, the actions taken by the intelligent system may be highly unsafe, i.e. harming its
environment and itself, mainly due to uncertainty. Even if the actions until a point in time
have not led to any danger, the same cannot be said with certainty about the future, when
new data will be processed and the policy will change. In a relatively recent review of various
methods related to robot learning and learning control [1], guaranteeing safe operation has
been identified as an open problem with important consequences for the success of robot
learning. Thus, it is highly advisable to search for conditions that will ensure that the system
will respect some predefined safety requirements.

For conventional control theory, safety of the dynamical system is guaranteed by assessing
different stability properties. In most cases, a relatively simple model of the dynamics is
considered under a number of assumptions for its uncertainty. Based on this model stability
analysis is performed, i.e., conditions are determined such that the autonomous system is
stable under a specific definition of stability. Usually these conditions can be formulated in
a strict way such that a closed-form solution can be derived or an optimization problem can
be solved. However, applications of machine learning to control rarely provide such stability
guarantees for the controlled system, allowing it to continue its autonomous operation with
a minimum level of confidence.

1-1-3 Stability for learning-based dynamics

One of the most common ways in which control theory evaluates stability properties is through
a variety of broad and generic tools going under the name of Lyapunov stability theory. Intro-
duced in 1982 by the Russian mathematician and engineer Lyapunov, this theory can be in
principle applied to any linear and nonlinear representation, since it originates from a simple
high-level idea and a number of precise conditions for stability can be derived imposing grad-
ually a number of restricting assumptions. Lyapunov theory proposes constructive methods
to study stability, since a Lyapunov function needs to be determined for a specific dynamic
representation in order to assess its stability properties.

Learning very simple representations and more specifically linear models offers significant
advantages such as efficient learning algorithms, rich control literature available and derivation
of easily verifiable stability conditions through numerous well-established techniques such as
analysis of eigenvalues [7, 8]. However, this simplicity comes at a cost, since it is commonly
accepted that these representations are not rich enough to describe many commonly observed
nonlinearities [9]. A very interesting summary of different nonlinear models and phenomena
can be found in the first chapter of [10], where it is shown that even simple mechanical and
electrical systems are in principal nonlinear. Therefore, for modern autonomous agents and
robots, the linear models cannot be sufficiently accurate for larger operation regions.

Although Lyapunov theory is generally applicable for nonlinear dynamics such as learning-
based model representations, it has been criticized for its difficulty to be applied in systems

Master of Science Thesis Konstantinos Kokkalis



4 Introduction

even with mildly complicated dynamics and/or without physical insight due to its construc-
tive nature [11]. More precisely, if the nonlinear model comes from first principles with its
parameters computed through identification, then it may be possible only in a fraction of cases
to exploit the connection of notions in Lyapunov theory with physical properties of nonlinear
systems like energy and dissipation in order to assess stability. For these cases, the applica-
bility of Lyapunov theory for nonlinear systems relies more on sophisticated "guessing" based
on experience than on a principled way of deriving stability results. However, when learning
algorithms are implemented to approximate the dynamics, usually no prior knowledge and
equivalence to physical properties of the system are available.

One possibility to push back the drawbacks of these two cases i.e. linear and general nonlinear
representation is to synthesize a global nonlinear model by multiple local linear models, com-
pressing this way large amounts of data in a small number of parameters. It is obvious that in
this case the linear control theory cannot be directly applied. Nevertheless, the structure of
the dynamics did not become largely more complex compared to linear systems, but remained
relatively generic, hoping this way to maintain a good bias-variance tradeoff [12]. The last
property is rather significant for every supervised algorithm and in brevity expresses the con-
flict between overfitting to the training set and underfitting due to inappropriate assumptions
in the model. Furthermore, such systems relying in composition will allow to systematically
study stability properties instead of guessing, and thus make stability analysis an algorithm.

1-1-4 A motivating example: Deep Neural Networks

A learning architecture that has received a lot of attention in the field of machine learning
the recent years is: Deep Neural Networks (DNNs). An illustration of a general DNN approx-
imating a nonlinear function f : R2 → R is given in Figure 1-2. A Deep Neural Network can
be seen as the composition of several (hidden) layers, each one applying successively an affine
transformation and a point-wise nonlinear function to the inputs of the layer. The latter
essentially makes the approximation of nonlinear functions possible and adds the nonlinearity
in the representation. The deep characterization results from the inclusion of multiple such
layers, while Neural Networks with a single hidden layer are called shallow.

With these very simple components and newly developed training algorithms, DNNs have
managed to approximate very complex and high dimensional mappings between inputs and
outputs. Success of deep learning in applications such as natural language processing, image
and speech recognition has been unprecedented, while there is a strong belief that a lot
more progress is left to be made [13]. This shows the efficacy of the proposed linear model
composition as presented in the previous subsection.

Despite their rapid development and their good prediction performance, there is a lack of
understanding of what DNNs actually represent and numerous studies have been devoted the
recent years to explain the success of this particular learning architecture, e.g., [14–16]. For
example, if the dynamics of a system are approximated with DNNs, it is very difficult to gain
any insight into its dynamic behavior and properties, affecting also the ability to design and
evaluate successful control policies based on this very rich formulation.

Furthermore, it has been established that it is difficult to train these deep architectures for a
variety of reasons such as existence of multiple local minima in the optimization and saturating
nonlinearities [17]. This implies that the result of the non-convex optimization, i.e., training

Konstantinos Kokkalis Master of Science Thesis



1-2 Problem statement 5

Figure 1-2: Deep Neural Network with multiple hidden layers approximating a mapping with 2
inputs and 1 output.

will be probably not close to optimal and an interpretation of the network properties based
on well-known theory of dynamics could help the selection of a better set of network weights
for an examined application or even possibly the development of more efficient optimization
algorithms to learn dynamics.

1-2 Problem statement

The need to ensure stability for learning control methods provides the general motiva-
tion for this study and Lyapunov theory can propose general results to accomplish so. Since
no previous knowledge and insight into the dynamics are assumed, a systematic methodology
should be developed in order to perform stability analysis. To keep this analysis tractable,
while being able to approximate generic and complex mappings, the representations of dy-
namics under examination should include a significant number of simpler models that com-
bined create the necessary variety of nonlinearities. A similar decomposition should also be
performed for the general stability conditions, where one or more simple conditions will cor-
respond to a single linear model. Then, if all the individual stability conditions are fulfilled,
a stability property of the overall system will be deduced.
Depending on the learning method, both local and overall dynamics representations change
largely, rendering the derivation of a common set of conditions for all learning methods
improbable. It is, thus, rather important to determine the methods that would be good
candidates and provide the criteria for their selection. The two candidates that were chosen
for this work are:

1. Deep Neural Networks (DNNs) with Rectified Linear Units;

2. Locally Weighted Learning (LWL) models.

DNNs were partly examined as a motivational example (see Section 1-1-4) and are is well-
known for their ability to approximate high-dimensional mappings with good prediction accu-
racy, as well as to learn hierarchical representations with different levels of abstraction. This

Master of Science Thesis Konstantinos Kokkalis



6 Introduction

implies that DNNs are a very generic tool, able to approximate a wide variety of different
dynamics, usually not achievable with other learning methods. Furthermore, they can be
perceived as the synthesis of smaller components usually going under the name of neurons
and layers and their models can very concisely be described by a set of relations. The choice
of activation function affects largely the mappings that can be approximated and since most
recent DNNs use Rectified Linear Units (ReLUs) in their hidden layers, the stability analysis
for DNNs will focus on this particular class of activation functions.

Another motivating factor for developing such a theory for DNNs is the high impact that
could have on understanding and gaining insight into this learning method, which has received
unprecedented attention in many applications during the recent years. Finally, due to this
popularity, there is already a variety of training algorithms efficient enough to process the
very large training data sets, usually present in control applications.

On the other hand, DNNs are not an optimal choice for online learning. For many appli-
cations like speech and image recognition, there is no need to adjust the mapping based on
new knowledge, but for control applications it is not uncommon that new experiences are
constantly arriving from a possibly non-stationary environment and the system is expected
to adjust itself in relatively short amount of time. For DNNs, learning from the beginning
will become quickly infeasible and important knowledge may have to be discarded together
with the corresponding training samples in order to maintain a reasonably sized training data
set. A learning paradigm that handles these important considerations is incremental learn-
ing, which relies on a compact representation of obtained knowledge, while adjusting what
has already been learned based on new training data, instead of storing indiscriminately all
the previous training samples. Furthermore, DNNs require prior knowledge on the number
of parameters to be learned and the size of the representation in general, a fact that may
decelerate learning.

These concerns for online learning will be addressed with the second candidate to be examined;
LWL. The methods that comprise this class are usually incremental and they also have a
compact and easy way to describe dynamics. Furthermore, no assumptions on the number
of local models and by implication on the number of parameters are required. Nevertheless,
many of these methods do not achieve prediction performance as good as DNNs, especially
in higher dimensional cases, where they suffer from the curse of dimensionality. Finally, they
have not been so thoroughly studied in literature as the later and they include a large number
of hyperparameters required to be tuned before training.

With the choice of these two learning methods it is hoped that an overall approach to the
problem of stability guarantees for learning control methods can be proposed. Though other
learning methods could be selected, these two candidates appear to be complementary to
each other and manage to fulfill all the requirements for nonlinear representation composed
of simpler linear models. Further, it is expected that the analysis tools and results introduced
in the rest of this study will be generalizable to other popular learning methods with similar
dynamics descriptions.

In conclusion, the core research problem, around which this study will be centered, can be
formalized as follows:

Konstantinos Kokkalis Master of Science Thesis



1-3 Approach 7

Development of mathematically solid methodologies to evaluate stability prop-
erties of dynamics given in the form of ReLU Deep Neural Networks and
Locally Weighted Learning models.

1-3 Approach

After having broadly described the goal of this thesis in the precious section, it will now
be outlined how to approach this research question. As claimed a couple of times already,
Lyapunov theory plays a key role in stability analysis for nonlinear systems, but constitutes a
constructive method that requires a number of assumptions before one obtains results of some
use. In this section, it is further explained how these results will be derived from Lyapunov
theory in a principled way for the aforementioned two representations.

The large number of local models poses a significant numerical challenge, since the number
of stability conditions will increase accordingly. In order to keep the computational cost
tractable and be able to deduce stability properties in a reliable manner, it is essential to
transform the stability conditions in an optimization problem that can be solved efficiently.
One of the most popular choices for optimization problems in control theory are Linear Matrix
Inequality (LMI) problems, which belong to the general class of Convex Programming (CP).
Due to the convexity of the problem and the increase of available computation power, a
relatively large number of these conditions can be included in the optimization problem and
it will still remain tractable.

This general framework of stability analysis is certainly not a new idea and has been used in
many different control settings and model representations, in particular for Piecewise Affine
(PWA) and Takagi-Sugeno (T-S) fuzzy systems. For both of these classes of systems, the
overall model is usually a combination of locally activated, linear (in the state vector) models.
Their difference can be noted in the fact that local models in the case of T-S fuzzy models
may overlap, while for PWA they do not. The focus of this study will be to leverage ideas
from these two powerful frameworks to propose new conditions that examine the stability
properties of DNNs and LWL methods. Although the stability theory developed for PWA
and T-S fuzzy systems provide a stepping stone, further adjustments of the theory will be
needed.

For DNNs, their close representational similarity with PWA systems will be exploited in
order to obtain novel stability results for DNNs. The large number of local models present
for DNNs compared to PWA systems has a number of consequences, especially with respect
to computation cost, which will be taken into consideration in this study. On the other
hand, LWL comprises several methods, one of which, Receptive Field Weighted Regression
(RFWR), shares some common features with T-S fuzzy systems. After elaborating on the
choice of this particular method, several assumptions required for Lyapunov stability analysis
are sequentially assessed with respect to their conservativeness. While relevant theory of T-S
fuzzy systems will be examined and evaluated in order to gain some insight, novel results will
be additionally proposed in order to face the challenges posed by LWL methods.

It is worth mentioning that in this work only the learned representations will be analyzed
with respect to stability and their relation with the real dynamics will not be assessed. Al-
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8 Introduction

though in the end someone is interested in the real properties, it has been remarked that the
stability conditions for a specific model representation can usually be extended to deduce the
corresponding properties for the true dynamics via robust stability. This extension could be
accomplished using some measure of the error between the real and the model dynamics, or
assumptions on the uncertainty and its source. Therefore, the analysis of the nominal case
i.e. learned dynamics can be seen as the important and general first step before evaluating
the true dynamics.

1-4 Related work

In this section, studies relevant to the aforementioned research problem will be stated. Start-
ing from an overview of learning control with guarantees, the application of DNNs and LWL
methods for learning control will be examined.

1-4-1 Learning control with guarantees

Despite being described as open in the previous sections, the problem of learning control
with guarantees is not new and there have been some studies trying to address it. Most of
them have been released in the previous couple of decades and examine stability of dynamics
representations relying on recurrent and shallow feedforward Neural Networks. However, a
few recent studies focused on Gaussian Processes are presented at end of this subsection.

If the NN includes one or more feedback loops between inputs and outputs and/or hidden
layers, then it is referred to as a recurrent network [18]. The apparent connection with
nonlinear dynamic systems has rendered the stability analysis for recurrent NNs an important
consideration and the literature on this topic has been focused on different structures like
cellular NNs [19, 20], delayed cellular NNs [21, 22], and Hopfield NNs [23–25]. Despite the
success of these types of recurrent neural networks in some applications relative to pattern
recognition, image processing and associate memory, they have not yet managed to achieve
the wide acceptance of DNNs. The computational tools applied for stability analysis in these
cases are quite different from the ones proposed in this study.

Due to the piecewise linear nature of the ReLU activation function, literature on stability of
feedforward NNs with piecewise linear activation functions is especially interesting for this
study. Nonetheless, to the best of the author’s knowledge, only a couple of studies have
been concerned with this issue. In [26, 27], stability conditions based on a piecewise affine
activation function, called in the context of these studies Piecewise Affine Perceptron (PAP),
were proposed relying on a piecewise quadratic Lyapunov function. Although the activation
function mentioned is piecewise linear (as the ReLU), more linear regimes are considered for
PAP and its response tries to resemble the one of sigmoid activation functions, and thus
also suffers from a vanishing gradient as the latter (in the case of multiple layers). Finally,
an important remark applicable not only for PAP, but for every activation function is the
non-existence of any stability result and framework for DNNs, which is one goal of this study.

A more recent approach to the topic of stability guarantees for learning control, explored
especially the last years, has been centered around Gaussian Processes (GPs) as the main
method to learn and represent dynamics. An extensive study on stability guarantees of
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1-4 Related work 9

dynamics learned with GPs can be found in [28]. One of the characteristics of GPs that
distinguishes them from other learning methods is the availability of uncertainty information,
which can be used to derive more robust control policies. In [29], a linearized model and
its uncertainty estimates around an operating point were computed from the GP dynamics
and based on them a linear controller was derived solving a LMI problem. Finally, regions
of attraction around equilibria of the nonlinear dynamics (expressed as GPs) are computed
in [30] taking also into consideration uncertainty relying mainly on Lyapunov theory and
Bayesian optimization.

1-4-2 Learning control for DNNs and LWL methods

For supervised learning, Neural Networks with one hidden layer and logistic or sigmoid ac-
tivation functions have been studied extensively for modeling and control of dynamical sys-
tems [31,32], but, unexpectedly, the use of DNNs in this area has been very limited. In [33],
deep neural networks with ReLUs were trained to approximate the solution to the Hamilton-
Jacobi-Bellman equations, while in [34] DNN provided policies equivalent to PID controllers.
In [35], a DNN was trained to provide both state and control input for a whole trajectory.
In the two last studies sigmoid activation functions were considered without providing any
intuition why this choice would give better results than ReLUs. It should be noted that
DNNs have found many applications in reinforcement learning [36], where their main use is
the approximation of different value functions.

Despite being firstly examined in fields like statistics and regression of nonlinear relations,
LWL methods have become very popular in a number of learning control applications, where
they were used to approximate all kinds of mappings necessary for robotics and control.
Locally Weighted Regression (LWR) was the first method of the class introduced for control
and has been applied in a wide variety of tasks, learning inverse and forward models, as well
as variations of linear quadratic controllers [37]. Besides its computational advantages, this
method experienced a number of constraints, caused mainly by the fact that every sample
had to be kept in memory, while it was required to do a variation of least squares in every
iteration (lazy learning).

LWL algorithms that were more appropriate for online learning have been developed and
tested in a few applications since then. In [38], such a method, Locally Weighted Projec-
tion Regression (LWPR) was chosen to approximate challenging nonlinear forward dynamics
in high-dimensions and applied in conjunction with the iterative Linear Quadratic Gaussian
(iLQG) algorithm [39] to control a complex manipulator with many degrees of freedom. An
interesting result with some stability implications was proposed in [40], where a Single Input
Single Output (SISO) continuous function was approximated with a LWL method, while a
corresponding adaptive law was attempting to ensure successful reference tracking. Unfor-
tunately, the extension to Multiple Input Multiple Output (MIMO) cases is straightforward
only under specific relatively strict conditions. In [41], a short review of most studies that
have addressed learning control problems with LWL methods can be found.

In conclusion, for both of these learning methods there are currently no (up to the author’s
knowledge) any previous studies related to safety guarantees or stability conditions of the
representing dynamics in any form.
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10 Introduction

1-5 Outline of the Thesis

The remainder of this thesis is organized as follows.

In Chapter 2, some general theoretical results and tools needed for the rest of the study are
introduced. Firstly, well-established stability properties as well as theorems to examine their
validity for general dynamic models are revisited relying on Lyapunov stability theory. Then,
the concept of conservativeness and its importance for assessing a stability analysis result is
explained. Finally, mathematical insight into Linear Matrix Inequalities and the reasons for
their popularity are provided in the last section of the chapter.

Chapter 3, entitled Deep Neural Networks provides the first specific stability results for ReLU
DNNs, the most common type of DNNs. After showing the connection of this architecture to
PWA systems, stability conditions and a general framework are developed in order to study its
most important stability properties. This framework is later evaluated in multiple examples,
where the efficiency and the significance of this stability analysis is shown.

Locally Weighted Learning is studied with respect to stability in Chapter 4, as a more appro-
priate method than DNNs for online learning. Since there are multiple candidate methods
to select from in this class, the most suitable one is selected and will be the basis for the
stability analysis. Starting gradually from simpler results, a number of stability theorems are
proposed and evaluated with respect to their conservativeness, both in theory and practical
examples.

Several contributions and concluding remarks of this study along with directions for future
research are presented in Chapter 5.
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Chapter 2

Background

In this chapter, important theory around basic notions mentioned in the Introduction such
as stability and Linear Matrix Inequalities (LMIs) will be briefly presented. The intention
of this chapter is not to present a thorough and extensive analysis on these complex top-
ics, which usually require some effort to get a solid grasp on, but rather provide crucial and
compact definitions that will facilitate comprehension of the rest of this study. Nevertheless,
appropriate references to studies that can provide further insight will be given in every stage
of this chapter. Starting from a very general description of dynamics, the intuition behind
Lyapunov stability theory will be shortly described as several important definitions and the-
orems around different notions of stability will be recalled. In the second section, the general
formulation of LMIs, their connection with control theory and the reasons of their popularity
in these applications will be given.

2-1 Mathematical notation

Before proceeding with the introduction of more complex mathematical notions and defini-
tions, some short important notation rules aiming to facilitate comprehension of the math-
ematical analysis needs to be given. Most of them have been adapted from the Matrix
Cookbook [42] and the interested reader can find in the last pages an additional list with
symbols or abbreviations used throughout this study. Unless noted otherwise for a specific
case:

• If A and x are a matrix and a vector respectively, then Ai, Aj , Aji and xi, xj , x
j
i are their

indexed versions for some purpose.
• if x is the state or a closely related vector, then x(k) is its value at time step k.
• If x is a vector, then (x)i is its ith element.
• If A is a matrix, then (A)ij is its (i, j)th entry.
• If x is a vector, ||x|| is its Euclidean norm.
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• 1n is a vector with n entries equal to 1.
• 0n is a vector with n entries equal to 0.
• 0n×m is a matrix with n rows and m columns whose entries are all equal to 0.

2-2 Lyapunov stability theory

2-2-1 Dynamics representation

Consider the dynamics of a nonlinear system, whose properties should be studied in order to
control it. These dynamics can either be described by a continuous-time or a discrete-time
relation. The emergence of digital computers in control applications, as well as the interest to
derive models from real data makes the discrete-time formulation more appropriate for this
study and from now on only discrete-time dynamics will be considered. Therefore, assume
that the state progression of the system can be fully described by the following very general
relation:

x(k + 1) = f(x(k)), x(0) = xinit (2-1)
where x(k) ∈ Rn is the state vector of the system in time step k, f is a nonlinear function, xinit
is the initial condition and n is the state dimensionality. Furthermore, the above dynamics
are assumed to be time-invariant i.e. the f function does not depend (explicitly) on time
step k.
When the stability of the above system is studied, it is usually attempted to assess how the
system will behave after long periods of time, possibly after some perturbation in the initial
conditions. It is possible that the system will remain in a state relatively close to xinit or it
will diverge from it as time tends to infinity. The first condition is usually characteristic of a
stable system and the second of an unstable.
These very broad definitions, although useful to understand, are made more precise by Lya-
punov stability theory, which aims to assess stability with respect to specific points in the
state space commonly called equilibria or fixed points xe. Except for Lyapunov theory, other
ways to assess stability of a system such as Input-output stability have also been proposed but
will not be considered in this study.

2-2-2 Definitions of stability

Assume that (2-1) has an equilibrium, xe (not necessarily unique), whose stability properties
should be analyzed. Firstly, an equilibrium of (2-1) is strictly determined by the following
relation:

xe = f(xe)
There are, however, numerous notions of stability of xe according to Lyapunov, with the most
general being the notion of stability in the sense of Lyapunov.
Definition 2.1 (Stability in the sense of Lyapunov, [9, Def. 5.4]). Consider the autonomous
nonlinear dynamics (2-1). If for each ε ∈R>0, there is δ = δ(ε) > 0 such that:

||xinit − xe|| ≤ δ =⇒ ||x(k)− xe|| ≤ ε ∀k ∈ N1,

1N is the set of natural numbers
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then equilibrium xe is stable in the sense of Lyapunov (i.s.L).

The above definition implies for a stable equilibrium xe that if the trajectory starts in a ball
with radius δ around xe, then it will necessarily remain in a ball around xe with radius ε.
Therefore, by starting sufficiently close to the equilibrium, it is guaranteed that the trajectory
will main sufficiently close in the long run. Another very popular notion of stability is the
asymptotic stability, formally defined as:

Definition 2.2 (Asymptotic stability, [9, Def. 5.4]). Consider the autonomous nonlinear
dynamics (2-1). If xe is stable in the sense of Lyapunov and there exists a δ ∈ R>0 such that:

||xinit − xe|| ≤ δ =⇒ lim
k→∞

||x(k)− xe|| = 0

then equilibrium xe is asymptotically stable.

In this case, except for being stable i.s.L, equilibrium xe is also attractive, which means that
if the state starts relatively close to the equilibrium, it tends to converge to it as time tends
to infinity. Asymptotic stability is obviously is a stronger notion of stability than stability
i.s.L, since the former implies the latter, but the opposite is not generally true.

Although asymptotic stability guarantees that the state will converge in the end to the equi-
librium it does not provide any information about how quickly this will be achieved. For this
reason, exponential stability is defined:

Definition 2.3 (Exponential stability, [43, Def. 2.2.1]). Consider the autonomous nonlinear
dynamics (2-1). If there exists some δ, θ ∈ R>0, and ρ ∈ [0, 1) such that:

||xinit − xe|| ≤ δ =⇒ ||x(k)− xe|| ≤ θρk||xinit − xe||, ∀k ∈ N,

then equilibrium xe is exponentially stable.

Exponential stability ensures that trajectories starting from an initial condition will con-
verge exponentially quickly to the corresponding equilibrium, which is a stronger notion than
asymptotic stability.

All three of these definitions do not necessarily include the whole state space, but neigh-
borhoods around the equilibrium, something that makes them local definitions. The global
notions can be deduced by adding the requirement that the same conditions apply for every
xinit ∈ Rn.

2-2-3 Lyapunov functions

Although different definitions of stability have been described, it is still not clear how this
stability will be determined, given dynamics (2-1). Lyapunov theory tries to answer this
problem by finding functions of the state that express some measure of energy dissipation
and based on them assess how the energy of the system fluctuates through time. This way it
is not necessary to find all the solutions of the finite differences equation (2-1), but a more
structured and principled approach can be followed.
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Searching for this kind of functions that will help deduce on stability is not easy and there is
no standard way to do it without making some assumptions on the dynamics of the system
and the nature of the function itself. Usually, as the assumptions get stronger, the easier it is
to search for Lyapunov functions i.e. scalar functions whose existence guarantee stability for
this particular system. Generally speaking, in order for a candidate function V (x) to qualify
as a Lyapunov function for the system, it should be positive definite and should be decreasing
along every system trajectory. Thus, it is obvious that the latter property can be evaluated
by computing the difference of the function in between two consecutive time steps.

There are multiple results and variations in literature (for just some of them see [9,10,43,44])
aiming to translate these very broad requirements to more compact mathematical conditions,
but usually different assumptions are made, changing slightly the final preposition. In this
section, to avoid confusion, while providing all the necessary tools for later analysis only a
couple of them concerning global stability will be given without proof. In the next subsection,
the case of local stability will also be examined in more detail.

For continuous Lyapunov function and continuous dynamics the following theorem concerning
global asymptotic stability can be proposed:

Theorem 2.1 (Global asymptotic stability [10]). Let xe be an equilibrium of (2-1) and f
be continuous in x. If there exists a continuous function V : Rn → R such that the following
conditions are satisfied:

• V (xe) = 0 (2-2a)
• V (x) > 0, ∀x ∈ Rn \ {xe} (2-2b)
• ||x|| → ∞ =⇒ V (x)→∞ (2-2c)
• ∆V (x) = V (f(x))− V (x) < 0, ∀x ∈ Rn \ {xe} (2-2d)

then equilibrium xe is globally asymptotically stable.

To summarize, if all four of these conditions are fulfilled for a known candidate function
V , then the system is guaranteed to be asymptotically stable for every initial condition.
Equivalently, a theorem proposing similar conditions for global exponential stability can be
phrased as follows:

Theorem 2.2 (Global exponential stability [43, Th. 2.2.4]). Let xe be an equilibrium of
(2-1) and f be possibly discontinuous in x. If there exist a possibly discontinuous function
V : Rn → R and α1, α2, α3, η ∈ R>0 such that the following conditions are satisfied:

• V (xe) = 0 (2-3a)
• α1||x||η ≤ V (x) ≤ α2||x||η, ∀x ∈ Rn (2-3b)
• ∆V (x) = V (f(x))− V (x) ≤ −α3||x||η, ∀x ∈ Rn (2-3c)

then equilibrium xe is globally exponentially stable.

It is worth noting that this theorem includes an additional relaxation compared to Theorem
2.1, which required that the Lyapunov function should be continuous. Now the Lyapunov
function can also be discontinuous in order to assess exponential stability and this relaxation
will be proven important in later chapters.
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2-2-4 Local stability

Although global stability, when possible to be proven, provides very strong information about
the system, it requires a unique equilibrium, which is not always the case especially for more
complex dynamical systems. Moreover, ensuring that the controlled dynamics will converge
for any arbitrary initial condition to the equilibrium is too restrictive and sometimes even
unnecessary. Therefore, it is necessary to provide additional conditions of a Lyapunov function
for more "local" results.

To characterize and describe local stability in this study another important notion will be
introduced: Positively Invariant (PI) set. Formally, a set B ⊆ Rn is called PI under dynamics
(2-1) if for every x ∈ B, f(x) ∈ B. Intuitively, this implies that if the trajectory enters set B,
then it is certain that it will remain in B for all future time steps.

Consider now the following definition of (local) stability in set B.

Theorem 2.3 (Exponential stability in B [43, Th. 2.2.4]). Let xe be an equilibrium of (2-1),
f be continuous in x, and B ⊆ Rn be a PI set. If there exist a possibly discontinuous function
V : B → R and α1, α2, α3, η ∈ R>0 such that the following conditions are satisfied:

• V (xe) = 0 (2-4a)
• α1||x||η ≤ V (x) ≤ α2||x||η, ∀x ∈ B (2-4b)
• ∆V (x) = V (f(x))− V (x) ≤ −α3||x||η, ∀x ∈ B (2-4c)

then equilibrium xe is exponentially stable in B.

If the right part of inequality (2-4b) is true only in a subset of B (that contains xe), then xe
is said to be locally exponentially stable. Although this definition seems very similar to the
notion of stability in set B, it does not provide any precise information about how far the
trajectory can be from the equilibrium and still converge to it, since the subset of B can be
arbitrarily small.

This interest to compute more concretely these special regions leads to the notion of Region
of Attraction (RoA) (or Domain of Attraction) of an equilibrium. Formally, if φ(k,xinit) is
the solution of the first-order difference Equation (2-1) with xinit being the initial condition,
then the RoA of xe R can be defined as the following set:

R = {x ∈ Rn | lim
k→∞

|φ(k, x)| = 0}

Essentially, if the trajectory starts from a point inside this set, it is guaranteed that it will be
attracted to the corresponding equilibrium. Computing the exact RoA of a particular equi-
librium is usually a very difficult task, if not impossible and in most cases a close approximate
of R is sufficient. For the case of Theorem 2.3, if conditions (2-4) are fulfilled, then B is a
Region of Attraction of equilibrium xe.

2-2-5 Conservativeness consideration

Lyapunov theory is generally not able to provide necessary and sufficient conditions for sta-
bility and the existence of a Lyapunov function in the three aforementioned theorems is a
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sufficient stability condition. This implies that if it is possible to find a function that has
the properties predicted by the theorem, then it is proved that the corresponding equilibrium
is indeed stable. On the other hand, if it is not possible to compute such a function, no
conclusion can be drawn, while the equilibrium could be stable in reality.
It is, nevertheless, crucial to evaluate how the proposed conditions in each theorem can
help to deduce stability properties with a level of confidence. To better explain this notion
of conservativeness, consider the following simple, theoretic case study. Assume that one
is given a set of precise (different) dynamical models, which are all known to be globally
asymptotically stable. Then, two different stability results like the previous theorems are
developed to assess whether the equilibria are globally asymptotically stable. The stability
theorem that is able to find more stable models in the previous set can be thought as the
less conservative, and thus, the more "useful". This, obviously, is not an absolute notion and
depends on the dynamical models, composing the data set, but provides strong insight into
the level of trust that should be put in a certain set of conditions.
It can be argued then that from a variety of stability results given in literature (for the same
dynamics formulation), someone should always choose the one that is less conservative in the
long run. Unfortunately, an important trade-off between conservativeness and computational
cost usually exists, which will be examined in detail in this study. Moreover, as it will be
shown in a number of cases, the assumptions on the candidate Lyapunov functions affect
largely the quality of the result and a number of factors should be taken into account, while
deciding on these assumptions. Therefore, one of the contributions of this study will be the
"uncovering" of these factors for a number of useful dynamics representations.

2-3 Linear Matrix Inequalities (LMIs)

2-3-1 Preliminaries

According to [45], a Linear Matrix Inequality (LMI) has the following general form:

F (x) = F0 +
p∑
i=1

xiFi > 0, (2-5)

where x ∈ Rp is a vector full of variables and Fi ∈ Rm×m, i = 0, . . . , p are symmetric matrices.
For the LMI to be true, it is required for F (x) to be a positive-definite matrix in the sense
that zTF (x)z > 0 for every z 6= 0n

F (x) is positive-definite if and only if all the principal minors of F (x) are positive, and thus
LMI (2-5) can be always transformed in a number of polynomial inequalities on vector x
(see [46]).
More than one such LMIs F 1(x) > 0, F 2(x) > 0, . . . , FM (x) > 0 can be transformed to a
single one the following way:

diag (F 1(x), F 2(x), . . . , FM (x)) > 0

where diag is an operator that creates a square diagonal matrix from the elements given as
inputs. Given an LMI F (x) > 0, the solution of the corresponding LMI problem is an x0
such that F (x0) > 0 (or determine that the problem is infeasible) and can be derived using
well-known Convex Programming algorithms like interior-point methods [47].
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2-3-2 Simple example for LTI systems

To illustrate how LMI problems are related with stability and more specifically with Lyapunov
stability Theory, one very simple case related to a discrete-time Linear Time Invariant model
is examined2. As known the dynamics of an autonomous LTI system are fully described as:

x(k + 1) = Ax(k)

where A ∈ Rn×n is a known matrix. If the Lyapunov function is parametrized as a quadratic
function with respect to the state vector i.e. V (x(k)) = x(k)TPx(k), where P is an unknown
matrix, then Theorem 2.1 indicates that the linear system is global asymptotically stable
if conditions (2-2) are guaranteed.
To ensure condition (2-2b) it is required that P > 0 i.e. P is positive-definite and then
conditions (2-2a), (2-2c) are true. Finally, condition (2-2d) can be transformed as:

ATPA− P < 0

In order to see how these two conditions are LMIs in P i.e. P is the variable, then assume a
basis B11, B21, . . . , Bij , . . . , Bnn for symmetric matrix P such that Bij ∈ Rn×n with i ≥ j has
its (i, j)th and (j, i)th entries equal to 1 and all its other elements equal to 0. Then, matrix
P can be written as:

P =
n∑
j=1

n∑
i≥j

(P )ijBij

Now, it is obvious how condition P > 0 can be reformulated as in (2-5) using this basis. For
condition ATPA− P < 0 (sometimes called discrete Lyapunov inequality), it is noted that:

ATPA− P = AT
( n∑
j=1

n∑
i≥j

(P )ijBij
)
A−

n∑
j=1

n∑
i≥j

(P )ijBij

=
n∑
j=1

n∑
i≥j

(P )ij
(
ATBijA−Bij

)

Therefore, it can be seen that the second LMI can be brought into the standard form by
replacing xi with (P )ij and Fi with −ATBijA+Bij . Finally, these two LMIs can be expressed
as one the following way:

diag (P,−ATPA+ P ) > 0.

2-3-3 S-procedure

The S-procedure is a relaxation technique that allows to replace a specific inequality by a
stronger one, imposing on the meanwhile an additional number of conditions. For this study,
the version of lossy S-procedure with strict inequalities presented below will be mainly used,
but the interested reader can find more on S-procedure on a number of sources (see e.g.
[45, 48]).
Let F 0(x), F 1(x), . . . , FL(x) be some real-valued functions of x and τ1, . . . , τL some real num-
bers. Assume the following two conditions:

2Similar examples have been proposed in other fundamental studies on LMIs [45,46], and thus most of the
details will be left out to keep the analysis as short as possible, while providing important insight into LMIs.
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(a) F 0(x) > 0 for all x such that F 1(x) ≥ 0, . . . , FL(x) ≥ 0

(b) There exist τ1 ≥ 0, . . . , τL ≥ 0 such that F 0(x)−
∑L
l=1 τlF

l(x) > 0

It can be proven that condition (b) implies condition (a) and the S-procedure refers to this
attempt to prove the first condition through the second one. The free variables τl are called
multipliers and the condition can be also easily transformed to check when F 0(x) is negative
instead of positive.

In the context of this study the S-procedure will be used to reduce conservativeness of a
quadratic function being positive (or negative) by restricting the region of interest in a specific
subspace of the state space. Therefore, from now, F 0(x), F 1(x), . . . , FL(x) are quadratic
functions of vector x.

To illustrate how S-procedure will be used in the following chapter, consider the following
simple LMI problem. Assume that it is desired to prove that F 0(x) = xTPx > 0 for every
x ∈ D ⊂ Rn. If it is possible to prove that P is positive definite, then obviously the previous
condition is necessarily fulfilled. However, this requirement is more conservative and can be
relaxed by considering only the necessary subspace D.

To achieve that assume that it is known that F 1(x) = xTSx ≥ 0 for every x ∈ D. Then, if
there exists τ ≥ 0 such that:

P − τS > 0,

then:
xTPx− xT τSx > 0

and condition (b) from above is fulfilled. By implication then F 0(x) = xTPx > 0 for all
x ∈ D. In conclusion, the condition P − τS > 0 is more easier to be fulfilled that P > 0
and with the cost of some additional computations (since we need to compute an appropriate
value for the multiplier τ) less conservative conditions can be derived, rendering stability
analysis more informative as will be seen in next chapters.
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Chapter 3

Stability analysis of Deep Neural
Networks

In this chapter, a class of representations used commonly to learn nonlinear dynamics will be
examined with respect to stability: ReLU Neural Networks. In the first section, a different
way to describe state dynamics represented with DNNs will be introduced in order to setup
the stage for later stability analysis. The equivalence of DNNs with an other popular class of
dynamical models, namely Piecewise Affine (PWA), will be formally proved in Section 3-2,
a result that constitutes an important contribution of this chapter. Relying on the powerful
theory of PWA systems, a complete framework for stability analysis of the learned dynamics
is fully developed in Section 3-3, providing conditions for global exponential stability and
a precise algorithm to compute estimates of Regions of Attraction (RoAs) for the case of
multiple equilibria. In the latter sections of this chapter, the proposed stability analysis is
thoroughly evaluated in numerical examples and real case studies.

3-1 Description of dynamics with Deep ReLU Neural Networks

It would not be an exaggeration to say that the general theory of NNs has been well-established
and examined in numerous sources (see e.g. [49,50]), to which the interested reader is referred
for an extensive insight on their basic characteristics. Due to this availability of material only
the necessary aspects required for later analysis will be mentioned in this section, starting
from short description of function approximation with Deep Neural Networks (DNNs) and
continuing to ReLU NNs, which is by far the most commonly used class of DNNs. Neverthe-
less, some notation and tools introduced in parts of this section are novel and necessary due
to the lack of similar, previous results for this class of dynamics representations.

3-1-1 Modeling dynamics with Deep Neural Networks

The general aim of Artificial Neural Networks is the derivation of an optimal mapping between
inputs with dimensionality p i.e. x ∈ Rp and outputs with dimensionality q i.e. y ∈ Rq with
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20 Stability analysis of Deep Neural Networks

respect to some measure of the function approximation error. Assume that a dataset of
N observations i.e. {xj , yj}Nj=1 is given to learn this mapping. NNs belong to the class
of parametric learning techniques, where the existence of a fixed number of parameters is
assumed before learning [51]. The number of parameters for NNs is explicitly dependent on
the number of neurons of the network, which are essentially their building block.

Although some of the remarks for DNNs that will follow were made briefly back in Chapter
1 (see Subsection 1-1-4), a full mathematical description will be now provided such that an
overall analysis is available. Consider that a number of n1 separate affine transformations are
applied to the input vector x ∈ Rp, followed by a nonlinear vector-valued function σ : Rn1 →
Rn1 . This operation can be better formulated as:

yneu = σ(W1x+B1)

where matrix W1 ∈ Rn1×p is usually referred to as the weight matrix and B1 ∈ Rn1 as the
bias vector. The above relation explains the operations described by a single hidden layer of
n1 neurons and together with a commonly-used affine transformation on the outputs of this
layer the shallow neural network is created:

y = W2σ(W1x+B1) +B2 (3-1)

where W2 ∈ Rq×n1 and B2 ∈ Rq. The sizes of weight matrices W1,W2 and bias vectors
B1, B2 are partly determined by the input and output dimensionalities and partly by the
number of neurons, The training process attempts to compute values for them such that the
error measure is minimized. The nonlinear function σ is also determined before the training
and a number of different choices has been proposed in literature such as the logistic and
the hyperbolic tangent function. This study will focus on an other activation function: the
Rectified Linear Unit (ReLU), but more details on that will be given in the next section.

Equation (3-1) describes a mapping with one hidden layer and one output layer, a very
common and useful structure in learning applications, which, however, does not manage
to integrate hierarchical and structural features of the desired mapping. The insertion of
additional hidden layers that process the output of previous layers intends to do so and a
more general description of these deep networks needs to be provided, generalizing previous
notation of shallow networks.

Consider the number of hidden layers known and equal to L and the additional affine layer
denoted indexed as L+ 1, where nj (j = 1, 2, ..., L) denotes the number of neurons in the jth
layer. With a slight abuse of notation, let aj−1 ∈ Rnj−1 be the input-vector for the jth layer,
and Wj ∈ Rnj×nj−1 and Bj ∈ Rnj the corresponding weighting matrix and bias. The output
of the jth ReLU layer aj is then given by:

aj = σ(Wjaj−1 +Bj)

For the first hidden layer and its output, it is assumed that:

a1 = σ(W1a0 +B1) = σ(W1x+B1)

Let `j(aj−1) = Wjaj−1 + Bj denote the affine transformation of aj−1. Therefore, the input-
output mapping expressed as a deep neural network with L hidden layers can be given as:

y = fNN(x) = `L+1 ◦ σ ◦ . . . σ ◦ `1(x)
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3-1 Description of dynamics with Deep ReLU Neural Networks 21

Since the mapping to be approximated by the DNN is the discrete-time state-space dynamics,
the following assumptions (similarly to Chapter 3) are required:

• The input vector is replaced by x(k) i.e. the state vector at time k.

• The output vector is replaced by x(k + 1) i.e. the state vector at the next time step.

• Input and output dimensionality are equal to state dimensionality n.

• If function composition is denoted with ◦, then the dynamics of the learned system can
be expressed as follows:

x(k + 1) = fNN(x(k)) = `L+1 ◦ σ ◦ . . . σ ◦ `1(x(k)) (3-2)

where n1 = nL+1 = n.

3-1-2 ReLU Neural Networks

Equation (3-2) suffices to express state-space dynamics with a deep neural network for any
selected activation function σ. However, a special activation function has been adopted by the
deep learning community; namely Rectified Linear Unit [52]. The reason for this popularity
lies in the fact that this activation function suffers less from the vanishing gradient problem
and will be the only one examined in this study. A very simple shallow ReLU neural network
with n1 = 3 neurons is presented in Figure 3-1a and will be used throughout this section as
an example.

Formally, the ReLU activation function is introduced as the following vector-valued function:

σ(u) = [max(0, (u)1),max(0, (u)2), . . . ,max(0, (u)n)]T

which is evaluated element-wise. The composition of the ReLU with an affine transformation
`j will constitute the corresponding hidden layer, while the number of elements of vector u is
equal to the number of neurons in it.

To better explain how the aforementioned activation function affects the dynamics, the well-
established connection of a ReLU hidden layer with a hyperplane arrangement will be shortly
described [54–56]. Each neuron in the jth hidden layer corresponds to a hyperplane in Rnj−1 ,
fully described by a row of matrix Wj∈ Rnj×nj−1 and the corresponding entry in the vector
Bj∈ Rnj . For neural network in Figure 3-1a, given that the state-space is two dimensional,
three lines in R2 can be defined for the three ReLU neurons as shown in Figure 3-1b.

Depending on the input aj−1, different activation patterns will occur in layer j; that is, some
neurons will be activated (input to neuron greater than zero), while others will not (less than
zero). The hyperplane corresponding to a neuron is the boundary between the the half-space
in which this particular neuron is activated and the half-space that it is not. A vector of
markings is then introduced for each hidden layer, whose entries are +1 when the neurons
on layer j are activated and −1 otherwise. In Figure 3-1b the 7 different activation patterns
occurring for all the possible state combinations in R2 are defined and the corresponding
vector markings are shown for each linear region.
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Input layer Hidden layer Output layer

x(t) x(t+1)

(a) ReLU NN with one hidden layer.

(b) Hyperplane arrangement in R2 and corre-
sponding marking vectors (each arrow shows the
half-space in which the corresponding neuron is
activated)a.

aInspired from [53]

Figure 3-1: Example of Neural Network Dynamics with 1 hidden layer and 3 Rectified Linear
Units.

In order to keep up with all possible activation patterns in layer j, index ij ∈ {1, . . . , Nj}
with Nj≤ 2nj is introduced. Therefore, for a given input x(k) to the network (3-2), there is
a specific combination of neurons activated in each layer, which is specified by (i1, i2, . . . , iL).
If the activation pattern ij is observed in the jth layer, then the corresponding vector of
markings is denoted as zj ij ∈ {1,−1}nj . For the simple example of Figure 3-1 only one index
i1 is required, since there is only one hidden layer and its value will variate from 1 till 7. If
i1 = 1 denotes the linear region where all the neurons are activated, then z1

1 =
[
1 1 1

]T
.

Obviously the vector of markings is implicitly depended on x(k) and responsible for the
desired nonlinear behavior of the network. Finally, the output of the jth ReLU layer for the
ij activation pattern will be given by:

aj = W
ij
j aj−1 +B

ij
j (3-3)

where W ij
j and Bij

j have rows of 0s when the corresponding neurons that are not activated
(for the ij activation pattern) and the rest of the rows are equal to the rows of Wj and Bj .
By simple manipulations it can be seen that:

W
ij
j =

[1
2 diag(1nj + z

ij
j )Wj

]
B
ij
j =

[1
2 diag(1nj + z

ij
j )Bj

]
. (3-4)

For a shallow (L= 1) ReLU NN, (3-2) can be simplified as follows:

x(k + 1) = W2σ(W1x(k) +B1) +B2 = W2(W i1
1 x(k) +Bi1

1 ) +B2 (3-5)

The partition of the state space by hyperplanes corresponding to the neurons of Deep Neural
Network has been thoroughly studied in a recent popular work [55]. These polyhedra were
named linear regions and several important results on their maximum number, and thus
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3-2 Neural Networks with ReLUs are Piecewise Affine systems 23

their expressibility with respect to piecewise linear mappings, have been given in [54,55]. For
shallow ReLU NNs, their exact number is even fixed. If they are in general position e.g. none
of the corresponding hyperplanes are parallel to another, then the number of linear regions
is [54]:

N1 =
n∑
i=0

(
n1
i

)
= 1 + n1 + · · ·+

(
n1
n

)

The resulting number of linear regions certainly gives an idea about the dynamics represented
by the DNN, but the exact derivation of all activation patterns in terms of the markings
vectors zijj is more crucial for this study, since they describe how the state progression will
proceed throughout the whole state space. This cell enumeration is not computationally
trivial and two general approaches can be proposed for DNN.

The first approach has been reported on recent work and aim to reformulate the ReLU Deep
Neural Network as a 0-1 Mixed-Integer Linear Program (MILP) [57, 58]. Using state-of-the-
art MILP solvers, the linear region enumeration can be done very quickly, but selecting some
constants before the optimization is also necessary. These constants are depended on the
considered range of the input space, require some prior knowledge and affect how quickly the
optimization problem will be solved. In this study, the second approach will be mainly used.

The second approach for linear region enumeration is essentially a structured approach relying
mainly on brute computational force, and thus probably less fast than the previous one for
large problems. It resembles a tree search algorithm, where the nodes are visited in a level-
order fashion. This search is usually called Breadth-first and starting from a node of the tree
(called sometimes tree root) the neighboring nodes are visited before start searching on the
next level. For the problem of DNN cell enumeration, the levels are the different hidden layers
and the nodes in each level are all the possible combinations of neurons in that layer. This
method does not require any "hyperparameter" tuning and knowledge around the range of
the input space, while it is kept tractable for DNNs with relatively small number of neurons
and layers.

3-2 Neural Networks with ReLUs are Piecewise Affine systems

The previous theory provide new aspects in the description of any deep (or shallow) NN, but
does not bring a general stability result any closer. To that end, it is shown in this section that
dynamical systems described by NNs with ReLUs are equivalent to Piecewise Affine (PWA)
systems. For this, the Piecewise Affine (PWA) dynamical system representations are formally
introduced at first and then their equivalence with ReLU NNs is proved.

3-2-1 Piecewise Affine systems

Firstly defined in [59], PWA systems are determined by a finite number of affine state update
equations, where each one is associated with an activation region (typically a polyhedron) in
the state space. More precisely, a discrete-time PWA system defined over a domain D ⊆ Rn,
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Figure 3-2: Example of a Piecewise Affine (PWA) system in R with 4 activation regions.

is given by one of the following two equivalent forms:

x(k + 1) = Aix(k) + bi, x(k) ∈ Xi ⊂ D (3-6)

x̃(t+ 1) =
[
Ai bi
0 1

]
x̃(k) = Ãix̃(k), x(k) ∈ Xi ⊂ D (3-7)

where x̃(k) :=
[
x(k) 1

]T
, Ai ∈ Rn×n, bi ∈ Rn, and i ∈ {1, 2, . . . ,N} indexes the activation

region Xi.

While each individual system (Ai, bi) is essentially linear, the overall PWA system (3-7) rep-
resents a switching between these subsystems, which essentially introduces the nonlinearity.
PWA systems can represent complex nonlinear systems and have been subject of many stud-
ies in control by different authors [59–63]. A primary concern in design and analysis of PWA
systems is stability. It should be emphasized that stability does not follow from stability of
an individual system Ai, but the overall PWA dynamics and switching nature have to be
considered in general [64].

In the vast majority of studies, the PWA systems are continuous across the whole domain
D, while the individual activation regions Xi are convex polyhedra. The latter property
implies that each polyhedron can be described by a number of closed half-spaces in Rn (H-
representation); that is, they can be given in the form of linear inequalities:

Xi = {x ∈ Rn|Eix+ εi ≥ 0} = {x ∈ Rn|Ẽix̃ ≥ 0} (3-8)

with Ẽi :=
[
Ei εi

]
∈ Rri×(n+1). It is also common in PWA models to assume that the

intersection of the interiors of two polyhedra is the empty set, i.e., int(Xi)∩int(Xj) =
∅ for all i, j ∈ {1, . . . ,N}. A simple PWA system with 1-dimensional state space with separate
local models is given in Figure 3-2.

Similarly to hybrid systems, the analysis of the possible transitions between regions Xi of a
PWA system is necessary to fully characterize its dynamic behavior. The set Ω of all possible
transitions between regions Xi and the corresponding transition matrix T are defined as:

Ω := {(i, j) |x(k) ∈ Xi, x(k + 1) ∈ Xj}. (3-9)
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(T )ij =

1 if ∃x(k) ∈ Xi : x(k + 1) ∈ Xj
0 otherwise.

The (one-step ahead) reachability analysis for PWA systems is relatively simple and it can be
performed accurately by solving consecutive Linear Programs (LPs). Each Linear Program
(LP) studies whether it is possible for the state to transit from one region Xi to an other
region Xj . Therefore, N 2 LPs have to be solved in total for complete reachability analysis.
These LPs may become more computationally intensive depending on the number of facets
of the corresponding regions ri, rj . If there exist a solution to the following LP, derived using
polyhedral description (3-8), then transition (i, j) belongs to Ω, while if not, the transition
(i, j) is considered infeasible.

min
x

0 · x

s.t. Eix+ εi ≥ 0
Ej(Aix+ bi) + εj ≥ 0

In order to increase computational efficiency, the previous LP is usually simplified and reduced
in size using the bounding box outer approximation of region Xi [65]. Furthermore, several
heuristic algorithms have been proposed in order to discard quickly impossible transitions.
For more details, the interested reader can check the relative code, provided with Multi-
Parametric Toolbox (MPT) [66] for MATLAB.

Now that the essential characteristics of PWA systems are presented, their connection and
representational similarities with ReLU NNs can be more thoroughly studied.

3-2-2 Equivalence theorem

Although there have been previous studies showing the representational similarity of ReLU
NNs with general piecewise linear functions, no connection with PWA systems has been made
before and no compact equations to represent the polyhedra and input-output relations have
been provided. In [67] it is argued that the input-output mapping represented by a ReLU
DNN is a continuous piecewise linear function through the whole state-space and in [55] it is
stated that each region composing the input space is an intersection of half-spaces, and thus a
convex polyhedron. The following theorem, on the other hand, claims that the NN dynamics
(3-2) can equivalently be represented as the PWA system (3-7), and presents exact relations
to compute the polyhedral description of region Xi and the double (Ai, bi). The theorem is
a main insight of this thesis and will enable the stability analysis of the NN dynamics in the
following sections.

Theorem 3.1. Any dynamical system (3-2) represented by a NN with ReLU activations is
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equivalent to the discrete-time PWA system (3-7) with

Ai = WL+1

( L−1∏
j=0

W
iL−j

L−j

)
, bi = WL+1

[ L∑
j=1

( L−j−1∏
l=0

W
iL−l

L−l

)
B
ij
j

]
+BL+1,

Ẽi =



diag(zi11 )W1 diag(zi11 )B1
diag(zi22 )W2W

i1
1 diag(zi22 )(W2B

i1
1 +B2)

...
...

diag(ziLL )WL

(
L−1∏
j=1

W
iL−j

L−j

)
diag(ziLL )

(
WL

[
L−1∑
j=1

( L−j−1∏
l=1

W
iL−l

L−l

)
B
ij
j

]
+BL

)


and W ij

j = [1
2 diag(1nj + z

ij
j )Wj ], B

ij
j = [1

2 diag(1nj + z
ij
j )Bj ], where i ∈ {1, . . . ,N} indexes

the affine models.

Proof. The above result will be proved by induction. Firstly, equivalence of PWA systems
and ReLU NN will be shown for the base case i.e. for a shallow NN (L = 1) and then the
corresponding inductive step for a Deep Neural Network with m > 1 hidden layers will be
presented.

For a shallow ReLU NN, only a single index i1 is sufficient to characterize all the regions,
while each region is defined by a unique vector of markings zi11 ∈ {−1, 1}n1 , showing which
neurons in that region are activated. Therefore, this linear region can be (non-uniquely1)
described by the following matrix inequality:

Xi := {x ∈ Rn|diag(zi11 )(W1x+B1) ≥ 0}. (3-10)

Thus, matrix Ẽi will be:
Ẽi =

[
diag(zi11 )W1 diag(zi11 )B1

]
Using an equivalent expression for the σ vector-valued function based on the marking vector
zi11 , the state progression can now be given in the form:

x(k + 1) =W2[12 diag(1n1 + zi11 )(W1x(k) +B1)] +B2,

=1
2W2 diag(1n1 + zi11 )W1x(k) + 1

2W2 diag(1n1 + zi11 )B1 +B2, x(k) ∈ Xi
(3-11)

Therefore, the state dynamics for shallow ReLU NNs can be expressed in the same form as
(3-7) with:

Ai = 1
2W2 diag(1n1 + zi11 )W1, bi = 1

2W2 diag(1n1 + zi11 )B1 +B2.

It is proven that shallow ReLU NNs representing dynamics (3-2) are equivalent in every way
to PWA systems.

1Non-uniquely in the sense that some linear inequalities of the following polyhedral description could be
redundant.
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For the inductive step, a DNN with m hidden layers will be considered. Assume a point
in the state space and a combination of activation patterns for each layer denoted with the
combination of indices (i1, . . . , im). It is implied from (3-10) that this point should satisfy the
following inequalities corresponding the first hidden layer:

diag(zi11 )(W1x(k) +B1) ≥ 0 (3-12)

The output of the first hidden layer will then be according to (3-3):

a1 = W i1
1 x(k) +Bi1

1 (3-13)

Accordingly, for the same point in the state space, a pattern of neurons indexed as i2 will
be activated in the second layer and a new vector zi22 ∈ {1,−1}n2 will be assigned, For this
point, except for the matrix inequality (3-12), another matrix inequality will be satisfied:

diag(zi22 )(W2a1 +B2) ≥ 0

Replacing a1 from (3-13), it follows that:

diag(zi22 )[W2(W i1
1 x(k) +Bi1

1 ) +B2] ≥ 0

The output of the second hidden layer is given as:

a2 = W i2
2 a1 +Bi2

2 = W i2
2 W

i1
1 x(k) +W i2

2 B
i1
1 +Bi2

2 .

Repeating the previous procedure till the mth layer (m < L) and defining the corresponding
vector zimm for the im activation pattern, the following inequalities are true:

diag(zimm )(Wmam−1 +Bm) ≥ 0

Or equivalently:

diag(zimm ){Wm[. . . (W i1
1 x(k) +Bi1

1 ) + . . . ] +Bm} ≥ 0 (3-14)

After simple manipulations, inequality (3-14) can be expressed with respect to the state vector
x(k) the following way:

diag(zimm )
{
Wm

(m−1∏
j=1

W
im−j

m−j

)
x(k) +Wm

[m−1∑
j=1

(m−j−1∏
l=1

W
im−l

m−l

)
B
ij
j

]
+Bm

}
≥ 0 (3-15)

Furthermore, the output of the mth hidden layer with respect to x(k) can be computed by
repeating the previous procedure:

x(k + 1) = am =
( m∏
j=0

W
im−j

m−j

)
x(k) +

[ m∑
j=1

(m−j−1∏
l=0

W
im−l

m−l

)
B
ij
j

]

Therefore, for a general DNN with L hidden layers, it is proven by induction that a point
x(k) in Rn will fulfill a set of L matrix inequalities (given that the combination (i1, i2, . . . , iL)

Master of Science Thesis Konstantinos Kokkalis



28 Stability analysis of Deep Neural Networks

of neurons is activated):

diag(zi11 )(W1x(k) +B1) ≥ 0
diag(zi22 )[W2(W i1

1 x(k) +Bi1
1 ) +B2] ≥ 0

...

diag(ziLL )
{
WL

( L−1∏
j=1

W
iL−j

L−j

)
x(k) +WL

[ L−1∑
j=1

( L−j−1∏
l=1

W
iL−l

L−l

)
B
ij
j

]
+BL

}
≥ 0.

(3-16)

From (3-16), it can be noted that each linear region Xi, can be (non-uniquely) defined by the
previous M =

∑L
j=1nj linear inequalities and it is a convex polyhedron. Furthermore, matrix

Ẽi describing the polyhedron can be determined from simple manipulations of (3-16).

For the (i1, i2, . . . , iL) combination, corresponding to the current state vector x(k), the state
vector at the next time step can be computed also by induction with the following relation:

x(k + 1) = WL+1

( L−1∏
j=0

W
iL−j

L−j

)
x(k) +WL+1

[ L∑
j=1

( L−j−1∏
l=0

W
iL−l

L−l

)
B
ij
j

]
+BL+1, x ∈ Xi.

(3-17)

Besides its complexity this is an affine mapping with respect to the current state value for a
fixed combination of indices (i1, i2, . . . , iL) i.e. for a given region Xi. The above state update
matrices and vectors linked to a specific region Xi are equivalent to the double (Ai, bi) of
PWA systems and this concludes the proof.

3-3 Stability Analysis for ReLU NN dynamics

The equivalence between ReLU DNNs and PWA systems, which was established in the pre-
vious section under mild assumptions, allows to leverage powerful analysis tools that have
been developed for PWA systems and adjust them to perform stability analysis for the NN
dynamics (3-2). These tools are typically based on Linear Matrix Inequality (LMI) formula-
tions, which lead to convex optimization problems [45] with some readily available solvers. In
this section, exponential stability is examined and a complete computational framework to
analyze stability properties of the NN dynamics (3-2) is established.

3-3-1 Stability theorem

As described in Chapter 2, a common way to assess stability for nonlinear models is the
pursuit of a Lyapunov function V that will fulfill a number of conditions. For a general
model like (2-1), this is hard and no general method to systematically construct such a
Lyapunov function for PWA systems exists. To that end, it is necessary to impose a specific
parametrization on V , such that an optimal tradeoff between complexity and expressibility
is achieved.

Following [65], where a number of such different parametrizations are compared, the Piecewise
Quadratic Lyapunov Function (PQLF) was proven a good choice for PWA systems with
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respect to these two criteria. A PQLF postulates a quadratic function Vi(x) = x̃TP̃ix̃ with
P̃i a symmetric matrix corresponding to a single region Xi. Combined with the PWA system
dynamics (3-6), LMI conditions in the free variables P̃i can then be derived. If feasible P̃i that
satisfy the LMI conditions are found, this proves exponential stability of the PWA system.
Searching for feasible P̃i typically is a convex optimization problem, for which computational
tools are available [68, 69]. Now these tools are proposed for stability analysis of the ReLU
NN dynamics (3-2).

Assume that the ReLU NN (3-2) has a single known equilibrium xe, which without loss of
generality coincides with the origin, since an appropriate coordinate change x−xe can always
be imposed. By Theorem 3.1 the equivalent representation of (3-2) as PWA system given
by the dynamics (3-6), (3-7) is assured and N polyhedral regions (3-8) are considered. It is
further assumed xe ∈ X1

2. The set of all possible transitions is Ω as in (3-9), which can be
computed using reachability analysis as described in Section 3-2-1. With this, the following
theorem can be stated:

Theorem 3.2. If there exist symmetric matrices P1 ∈ Rn×n, Y1 ∈ Rr1×r1 ; P̃i ∈ R(n+1)×(n+1), Yi ∈
Rri×ri for all i ∈ {2, . . . ,N}; and Uij ∈ Rri×ri for all (i, j) ∈ Ω such that Yi, Uij have non-
negative entries and the following LMIs are fulfilled:P1 − ET1 Y1E1 > 0,

P̃i − ẼTi YiẼi > 0, i ∈ {2, . . . ,N},
(3-18)

AT1 P1A1 − P1 + ET1 U11E1 < 0,
ÃTi P̃jÃi − P̃i + ẼTi UijẼi < 0, (i, j) ∈ Ω \ {(1, 1)},

(3-19)

then the equilibrium xe of (3-2) is globally exponentially stable.

Proof. In this proof it will be shown that if LMIs (3-18) and (3-19) are true, matrices
P1, P̃i, Y1, Yi, U11, Uij are symmetric and matrices Y1, Yi, U11, Uij have positive entries, then
all the conditions of Theorem (2.2) are necessarily fulfilled for system (3-7).

The Lyapunov function is parametrized as a Piecewise Quadratic function with the origin
being included in the X1 region and thus given by the following relation

V (x) =


xTP1x, x ∈ X1,x

1

T P̃i
x

1

 = x̃T P̃ix̃, x ∈ Xi, i 6= 1

Two well-known Lemmas of linear algebra will be used to show condition (2-3b):

• λmin(M)||x||22 ≤ xTMx ≤ λmax(M)||x||22 (3-20a)
• M > 0 ⇐⇒ λi(M) > 0, ∀i (3-20b)

2This is without loss of generality as long as the origin is not on the boundary of more than one region,
which is a singular case that almost never occurs in practice.
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Furthermore, the following proposition resulting from properties of norms will be useful:

||x̃||22 = ||x||22 + 1 (3-21)

To ease analysis, the following simple manipulation is made:

M1 = P1 − ET1 Y1E1 > 0, M̃l = P̃l − ẼTl YlẼl > 0, ∀l 6= 1

Then, from (3-20a) and (3-21):xTP1x ≥ xTM1x ≥ λmin(M1)||x||22, ∀x ∈ X1

x̃T P̃lx̃ ≥ x̃T M̃lx̃ ≥ λmin(M̃l)||x̃||22 ≥ λmin(M̃l)||x||22, ∀x ∈ Xl, l 6= 1

Since every eigenvalue of matrices M1, M̃l is positive, there exists a constant
α1 = minl(λmin(M1), λmin(M̃l)) such that:

V (x) =


xTP1x ≥ α1||x||22, x ∈ X1x

1

T P̃i
x

1

 ≥ α1||x||22, x ∈ Xl, l 6= 1
(3-22)

For l 6= 1:
V (x) ≤ λmax(P̃l)||x̃||22, ∀x ∈ Xl. (3-23)

while:
V (x) ≤ λmax(P1)||x||22, ∀x ∈ X1. (3-24)

From (3-21), (3-23) becomes:

V (x) ≤ λmax(P̃l)(||x||22 + 1).

Therefore,

V (x) ≤ λmax(P̃l)

||x||22 + ||x||
2
2

cl


where cl = minx∈Xl

||x||22.

V (x) ≤ λmax(P̃l)

cl + 1
cl

||x||22. (3-25)

From inequalities (3-24) and (3-25), it is then evident that there exists α2 such that:

V (x) ≤ α2||x||22, α2 > 0.

Therefore, property (2-3c) is fulfilled for η = 2.

The difference of the candidate Lyapunov function between two time steps is now considered.
If the state at time step k is x(k) ∈ Xl and at time step k + 1 is x(k + 1) ∈ Xj , two possible
cases need to be examined:
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1. (l, j) ∈ Ω\(1, 1)

2. (l, j) = (1, 1)

Since every entry of Ẽi · x̃, E1 · x, Uij and U11 is non-negative, then it is obvious that:

(Ẽix̃)TUij(Ẽix̃) ≥ 0, (E1x)TU11(E1x) ≥ 0

This proposition will be useful as the above two cases are examined.

For the first case, it follows that if ÃTi P̃jÃi− P̃i+ ẼTi UijẼi < 0 (from (3-18)), then there exist
ρ > 0 such that:

∆V = V (x(k + 1))− V (x(k)) = x̃T (k)ÃTi P̃jÃix̃(k)− x̃T (k)P̃ix̃(k)
= x̃T (k)[ÃTi P̃jÃi − P̃i]x̃(k)
≤ x̃T (k)(−ρI − ẼTi UijẼi)x̃(t)
≤ x̃T (k)(−ρI)x̃(k)
≤ −ρ||x(k)||22

where P̃1 =
[
P1 0n

0n
T 0

]
.

For the second case, it follows that if AT1 P1A1 −P1 +ET1 U11E1 < 0 (from (3-18)), then there
exist ρ > 0 such that:

∆V = V (x(k + 1))− V (x(k)) = xT (k)AT1 PjA1x(k)− xT (k)P̃i]x(k)
= xT (k)[AT1 PjA1 − P̃i]x(k)
≤ xT (k)(−ρI − ET1 U11E1)x(k)
≤ xT (k)(−ρI)x(k)
≤ −ρ||x(k)||22

The above proves that there exists α3 > 0 such that:

∆V (x) ≤ α3||x||22

Therefore, property (2-3c) is fulfilled for η = 2.

Remarks on Theorem 3.2

Theorem 3.2 provides LMI conditions given in terms of the NN parameters (cf. Theorem 2.2),
which can be checked with computational tools. The problem of searching for feasible solution
(i.e., Pi, P̃i, Yi, Uij) is convex and if a solution is found, stability for the NN dynamics (3-2)
is guaranteed.

The terms ET1 Y1E1, ẼTi YiẼi, ET1 U11E1, and ẼTi UijẼi appearing in LMIs (3-18) and (3-19)
follow from the implementation of the S-procedure (see Chapter 2) for the corresponding
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polyhedra Xi given by (3-10) and aim to relax the stability conditions. The use of similar
terms as a result of the S-procedure is something well-known in literature of PWA systems
(see e.g. [62, 63,70]).

Nevertheless, the conditions can be conservative in some cases; that is, the criterion may fail
to determine stability despite the actual dynamics being stable. This is a typical characteris-
tic of these stability tools and, in a sense, the price one has to pay to obtain tractable stability
conditions. However, there are ways to reduce conservativeness at the expense of more in-
volved formulations. One simple example for this model representations is to consider only
the subset of region Xi from which the transition to region Xj is possible instead of the whole
Xi and consequently replace matrix Ẽi with matrix Ẽij ∈ R(rij)×(n+1) with ri ≤ rij ≤ ri + rj
defined such that:

Xij := {x(k)|x(k) ∈ Xi, x(k + 1) ∈ Xj} = {x(k)|Ẽij x̃(k) ≥ 0}.

This change will make the solution of the LMIs (3-18) and (3-19) more likely, but increase the
size of optimization matrices Uij and thus the computational cost. For complex partitions and
high dimensional state-spaces, where due to the curse of dimensionality the polyhedra need
exponentially more hyperplanes to be fully described, this technique may render the above
optimization problem intractable. In later sections, this technique to reduce conservativeness
is evaluated for both low-dimensional and higher-dimensional examples.

3-3-2 Complete framework for stability analysis

Theorem 3.2 is a global stability result; that is, it states conditions for a single equilibrium
being globally attractive (cf. Definition 2.3). Most complex nonlinear systems (2-1) (and
thus also their approximation as NN (3-2)) will not have this property. Furthermore, it was
often noted during this study that when the real dynamics included a single equilibrium, even
very accurate NN approximations had multiple of them throughout the state space, usually
in regions that were not sampled at all. This last phenomenon should be expected, since
there is no incentive during training to approximate well "unexplored" regions or this kind of
dynamic features. Consequently, the existence of multiple equilibria is the common case, and
there is an extreme need to resort to a local stability notion similar to Definition 2.3.

In this section, we leverage the result of Theorem 3.2 to propose a complete framework for
analyzing stability properties of (3-2). This will include the computation of all equilibria,
determination of their local stability properties, and computation of the region of attraction.

Computation of equilibria First, the exact coordinates of all equilibria of the ReLU NN
dynamics (3-2) represented by (3-6), (3-7), and (3-8) should be computed. The mathematical
description of the equilibrium of dynamics (3-2) will be xe = fNN(xe). Since the state update
equation is piecewise affine, all candidate equilibrium points are obtained by solving (3-6)
with x(k) = x(k + 1) = xe for every local model i, which yields xie = (I − Ai)−1bi (assuming
the inverse exists). For the case of linear local model (i.e. bi = 0), it is obvious that the origin
is its corresponding candidate equilibrium. Then, by examining whether xie ∈ Xi for each one
of them, all equilibria of (3-2) can be identified.
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Local stability Furthermore, each local update equation can be seen as an affine linearization
of the dynamics and thus, use well-known theory for linearized dynamics (see eg. [71, Cha. 2]).
In particular, stability for each equilibrium3 xie ∈int(Xi) is characterized by the eigenvalues
λj , j = 1, . . . , n, of Ai:

(i) If |λj | < 1 for all j ∈ {1, 2, . . . , n}, then xie is an (exponentially) stable equilibrium.

(ii) If there exists j ∈ {1, 2, . . . , n} such that |λj | > 1, then xie is an unstable equilibrium.

It is very common in literature to make the distinction between unstable and saddle equilibria.
In the former case, all the eigenvalues of the corresponding matrix Ai have absolute value
greater than 1, while in the latter there is at least one such eigenvalue, but not all of them.
For this study, the distinction of these two cases does not affect at all the stability analysis
and the corresponding framework, and consequently it is preferable to avoid getting in such
details.

Region of Attraction (RoA) While the above tests (i) and (ii) characterize local stability
of an equilibrium xie ∈ int(Xi), they do not make any statement about the RoA Ri of that
equilibrium. In fact, this RoA can be arbitrarily small (for small Xi), or large and comprise
several regions (the typical case). Therefore, it is of key interest to determine the RoA. The
exact computation of the true RoA Ri is generally a very difficult task and for most cases
computing a sufficiently large estimate Di satisfactory. To ease the presentation, a single
(locally) stable equilibrium xe is considered in the following and its approximate RoA D is
computed (the i index is dropped). The process can be repeated for all stable equilibria.
In the case of PWA systems, simply adjusting Theorem 3.2 by examining only a smaller
number of regions around the equilibrium instead of the whole state space will not be sufficient
to deduce the set D. In addition to the LMIs (3-18) and (3-19), D also has to be a Positively
Invariant (PI) set under dynamics (3-7) (see Chapter 2). By applying a coordinate change
such that xe = 0 is the new equilibrium, the following corollary then follows from Theorem
3.2. Again without loss of generality, xe ∈ X1 and the number of regions that compose D is
denoted N ′ ≤N .
Corollary 3.1. Let D ⊂ Rn be a PI under dynamics (3-7), Xi with i ∈ {1, 2, . . . ,N ′} be the
polyhedral regions that compose D, and Ω′ denote the corresponding transitions. If there exist
symmetric matrices P1 ∈ Rn×n, Y1 ∈ Rr1×r1 , P̃i ∈ R(n+1)×(n+1), Yi ∈ Rri×ri, i = 2, . . . ,N ′,
and Uij ∈ Rri×ri ,∀(i, j) ∈ Ω′ such that Yi, Uij have nonnegative entries and the following
LMIs are fulfilled: P1 − ET1 Y1E1 > 0,

P̃i − ẼTi YiẼi > 0, i ∈ {2, . . . ,N ′}
(3-26)

AT1 P1A1 − P1 + ET1 U11E1 < 0,
ÃTi P̃jÃi − P̃i + ẼTi UijẼi < 0, (i, j) ∈ Ω′ \ {(1, 1)},

(3-27)

then xe is (locally) exponentially stable and D an estimate of its RoA.

The corollary can be proved the same way as Theorem 3.2, except that now only the polyhedral
partitions inside D must be examined instead of the whole state space Rn.

3The equilibrium xe on the boundary is again a singular case, typically not relevant in practice.
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Computation of a PI set Corollary 3.1 can now be exploited to compute a RoA around
each stable equilibrium. Obviously applying this Corollary to unstable equilibria its futile,
since its already known that the conditions will never be fulfilled. However, the Corollary
considers the PI set D already known and therefore, a procedure to compute it is necessary.
For PWA and by implication ReLU NNs, the derivation of a PI can be achieved by Algorithm
4.1 in [72], where starting from an initial set Q0, composed of possibly non-convex polyhedra,
its Maximal Positively Invariant (MPI) subset Q∞ is derived. The choice of the initial set Q0
affects whether it will be possible to find an approximate RoA for the equilibrium, if selected
small and the computational cost, if selected large. A good choice would be a hyperrectangle
located around the examined equilibrium, such that includes most of the samples used for
training of the network.

Although the algorithm is straightforward to implement, it may become intractable as the
state dimensionality increases and deriving PI sets for larger state-spaces efficiently is an open
question. Nevertheless, in [73] two sufficient conditions for the finite determination of a PI
set included in the initial set are proposed:

• I −Ai invertible, ∀i ∈ {1, 2, . . .N ′} (3-28a)
• xie /∈ Xi, ∀i ∈ {1, 2, . . .N ′} (3-28b)

In order to ensure that the second condition is fulfilled, no unstable equilibria should be
included in the final set Q∞.

If the computation of the MPI becomes intractable, while the above two conditions for finite
determination are guaranteed, the PI set required for Corollary 3.1 will not be derived in the
end. Instead, if the algorithm is stopped after r steps, a sufficiently close overapproximation
Qr will be computed, due to the nature of the algorithm for the computation of MPI. However,
the set Ω′, computed by the reachability analysis that will follow, should only include the
transitions to the regions comprising the overapproximation. Then, if LMIs (3-26), (3-27) are
solved for the corresponding transitions of set Ω′, it is guaranteed that a subset of Qr will be
exponentially stable, even though computing the subset exactly is not be possible.

Complete algorithm All steps of the proposed stability analysis are summarized in Algo-
rithm 1. First, it is necessary to identify all the linear regions in Rn (or a region of interest)
and two different approaches have been proposed back in Subsection 3-1-2 along with few
advantages and disadvantages to be considered. Given the markings of the feasible combi-
nations of neurons, the corresponding polyhedral descriptions and update equations can be
derived with Theorem 3.1.

The second step would be to locate all equilibria of the NN and characterize them as stable
or unstable. For the stable ones, PI subsets are searched. If the computation of such a PI
subset is tractable and gives a solution, LMIs (3-26), (3-27) are solved e.g., using the YALMIP
toolbox of MATLAB [69] and the SeDuMi Solver [68]. For more information on these two
toolboxes, see Appendix B. If the optimization problem is solved, then the PI subset is an
estimate of the RoA. If the computations are intractable, an overapproximation can be derived
and the LMIs are solved for this set. To assess whether the computations become intractable,
it should be noted that as the number of steps of the algorithm increases, the time between
consecutive steps also increases exponentially.
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Data: ReLU Neural Network
Result: All equilibria, regional stability, estimates of RoA
Find all the linear regions, their Ẽi and Ãi matrices;
Compute all local equilibria and their characterization;
for stable equilibria do

Define initial subset Q0 around equilibrium;
if MPI computation finishes quickly then

Compute transition matrix T ;
Solve LMIs (3-26), (3-27) for Q∞;
Result: estimate of the RoA

else
Derive MPI overapproximation Qr;
Compute transtion matrix T ;
Solve LMIs (3-26), (3-27) for Qr;
Result: overapproximation of the RoA

end
end
Algorithm 1: Summary of the proposed stability analysis for ReLU NN dynamics.

3-4 Illustrative numerical example

In order to illustrate the proposed framework for stability analysis of NN dynamics, a simple
yet illustrative example will be studied in this section. Consider the dynamics of roll motion of
ships in rough seas as studied in [74] and described by the second-order differential equation:

θ̈ + (2µ1θ̇ + µ2θ̇
3) + (ω2

0θ + a1θ̇
3 + a2θ̇

5) = 0,

where ω0, ai, µi, i = 1, 2 are known coefficients. A discrete-time model (2-1) with state dimen-
sionality n = 2 can be derived using standard discretization techniques [8]. The choice of these
dynamics as an illustrative example was made due to the existence of multiple equilibria in the
state space and the ease to compare visually the regions of attraction for both the real dynam-
ics and their neural network approximation, derived by the proposed framework. More specif-
ically, the dynamics above have three stable equilibria (θ, θ̇) = {(0, 0), (0, 2.078), (0,−2.078)}
and two unstable ones (θ, θ̇) = {(0, 0.924), (0,−0.924)}. The equilibria and the true RoA
(computed via numerical simulation) are shown in Figure 3-3a.

For this synthetic example, a NN was trained from data randomly sampled from a rectangle in
the two-dimensional state space. These obviously are the ideal sampling conditions, which are
not realistic for actual dynamical systems, but feasible in simulation. Because of the relatively
simple dynamics, a shallow NN with 8 ReLUs in the single hidden layer was sufficient. A ReLU
NN (3-2) approximating the real dynamics sufficiently well (the Mean Squared Error (MSE)
was approximately 3 · 10−4) was relatively easily derived using MATLAB Neural Network
toolbox with random initialization of the network weights.

The number of linear regions N in the whole state space R2 was found to be 37 as predicted
by the corresponding relation in Subsection 3-1-2 and the markings necessary to derive (Ai, bi)
doubles of (3-7) and the polyhedral description (3-8) were computed with brute computa-
tional force i.e. consecutive solution of LPs for different combination of activated neurons.
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Table 3-1: Stability results computed for ReLU NN dynamics of the ship roll example using the
proposed framework.

Neural network Equilibrium Local stability Volume of RoA
Ship-NN 1: (0, 0) stable 13.888

2: (0, 2.091) stable 13.525
3: (0, 0.866) unstable 0
4: (0,−2.061) stable 13.6848
5: (0,−0.88) unstable 0

(a) True dynamics. (b) ReLU NN dynamics.

Figure 3-3: Equilibria and regions of attraction (RoA) for the numerical ship roll example.

This computation obviously remains computationally tractable for NNs with small number of
neurons and do not suffer from the problems of the Mixed-Integer Programming formulation
as presented in Subsection 3-1-2.

The framework from Sec. 3-3-2 was applied to compute equilibria, their stability characteriza-
tion and their RoA. The results are presented in Table 3-1 (including the volume of the RoA)
and Figure 3-3b. For this example, matrices Ẽi of (3-27) were replaced with matrices Ẽij as
instructed by the technique described at the end of Subsection 3-3-1 in order to account for
smaller polyhedral regions. This choice has reduced conservativeness with a small computa-
tional cost due to the simplicity of the regions. As can be seen in Table 3-1, all five equilibria
are identified and correctly characterized as stable/unstable. Moreover, the computed RoA
are reasonable approximations of the true ones (cf. Figure 3-3a and 3-3b). For the unstable
ones, the volume of RoA was assumed to be 0.

While there is a good match of the stability properties of the true dynamics and the NN
approximation in this example, this obviously depends on how well one succeeds in training
the NN. It should be emphasized that the contribution of this work is not in how to learn
good NN dynamics models, but rather in analyzing a given or trained NN. In fact, the results
of the stability analysis can help to evaluate different NN models, for example, when some
stability properties are known.

3-5 Case Study of a cart-pole experiment

After demonstrating the efficacy of the proposed framework on a 2-dimensional synthetic
example in the previous section, the framework was extended to higher-dimensional dynamics,
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Figure 3-4: Cart-pole testbed used in experiments.

where the NNs were trained on real-world data from a hardware experiment. The standard
cart-pole experiment was chosen [75] and the experimental setup is presented in Figure 3-4.
The cart is able to travel along a line via a rack and pinion and has four states: position of
the cart p, angle of the pole θ and the corresponding linear ṗ and angular θ̇ velocities. It
is controlled only by the current applied to the motor, attached to the cart. For the rest of
this case study, the dynamics of the cart-pole stabilized about its upright equilibrium with a
standard Linear Quadratic Regulator (LQR) [76] will be considered.

A data set was obtained by exciting the system with a suitable chirp signal (sinusoid with
increasing frequency), in superposition to the control input of the LQR, in order to keep the
angle of the pendulum close to the one in the upright position. Angle and position of the cart
are measured with the available encoders, from which the velocities are computed through
finite differences. Although the setup is able to provide a large sampling frequency up to
1000Hz, the trajectories comprising the data set were downsampled to 100Hz. All signals
were low-pass filtered and additionally a (non-causal) zero-phase digital filter was applied
after sampling the trajectories.

With this data, multiple ReLU NNs (3-2) (with L = 2 hidden layers, and n1 = 8, n2 = 6
neurons) were trained. The number of neurons was set after consecutive trials and after
noticing that additional neurons will not improve the performance with respect to the per-
formance criterion i.e. Mean Squared Error. For each configuration, more than one training
trials were performed to assure that the optimization will not be stuck in a suboptimal local
equilibrium far away from the global one. For training the NNs, a dynamics model in the
form of x(k + 1) = x(k) + f(x(k)) was assumed instead of (2-1); that is, the NN represents
incremental, rather than absolute dynamics. This is beneficial especially for small sample
times (and thus small increments), and common practice when training NNs to approximate
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Table 3-2: Stability results for the five top scoring NNs.

Neural network Score Equilibrium (p, θ, ṗ, θ̇) Local stability Volume of RoA
NN1 0.0223 (0.13, 0.01,−8 · 10−3, 0.08) stable 0.032
NN2 0.0229 (−0.55, 0.13, 0.98,−0.29) unstable 0
NN3 0.0232 (−1.11,−0.02, 0.04,−0.29) stable –
NN4 0.0265 (−0.68,−0.09, 0.35, 0.14) stable –
NN5 0.0279 (1.37, 0.09,−0.21, 0.69) stable 0.021

state dynamics. The stability analysis directly extends to this case, simply by adding the
identity matrix to the Ai matrices computed by the cell enumeration algorithm.

A big challenge observed in these experiments was how to rank the different NNs that were
obtained from different random initialization and training runs. In particular, the MSE on a
validation set, which is usually the criterion used to evaluate NNs, was not a good indication of
the performance of a NN in approximating well the true dynamics. For example, it was rather
common that trained networks achieving a good MSE on the validation set were unstable for
the same initial conditions that belonged in the RoA of the real dynamics. In order to capture
long-term predictions well, the MSE after unrolling the dynamics for 500 steps was considered
as a better criterion to rank the NNs (“Score”). For the top five NNs (with respect to the
latter criterion), the stability analysis was performed as per Sec. 3-3-2 and its results are given
in Table 3-2.

As expected, in each case one equilibrium was found. While most NNs have (locally) stable
equilibria, in case of NN2, the NN dynamics were found to be unstable. As remarked in Sec. 3-
4, a useful application of the proposed stability analysis is to select suitable NN models. In
this case, where from physical considerations it is already known that there is one stable
equilibrium, one can discard NN2.

Although the number of linear regions Xi varies significantly from training trial to training
trial, it was not uncommon to get more than 1000 regions through the whole state-space.
For NN3 and NN4, no volume of the RoA is computed, since the computations required to
determine the Maximal Positively Invariant became intractable. Thus, an overapproximation
was derived by stopping the MPI algorithm when the number of regions grew too large as
explained in Subsection 3-3-2. The resulting polyhedra were composed of many inequalities
due partly to the high state dimensionality, which made the solution of the LMI costly. Again
an overapproximation of the complex polyhedra with bounding boxes solved the problem and
stability could be determined. For NN1 and NN5, the computations could be performed
without problem. For NN1, the computed RoA is illustrated in Figure 3-5.

Unfortunately, it is difficult to compute the volume of RoA for the 4-dimensional learned
dynamics as it was done in Section 3-4 (through multiple tests with random initial conditions).
However, an alternative way to assess the validity of the computed RoA could be to sample
the initial conditions inside this complex polytope. More precisely, multiple rollouts were
performed for the learned dynamics, where the initial conditions for the state were randomly
sampled inside this closed-set. In every case, the state converged to the computed equilibrium.
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(a) Projection to position/angle plane. (b) Projection to linear/angular velocity plane.

Figure 3-5: Illustration of the computed estimate of RoA for NN1.

3-6 Discussion

The framework proposed in this chapter successfully determined a set of conditions able to
deduce a number of important stability properties for the DNN dynamics. After proving that
the later are fully equivalent to PWA systems, an algorithm with several steps was formulated
and implemented for two different examples. As a result, it was possible to compute equilibria,
Positively Invariant subsets and Regions of Attraction for the learned dynamics and gain a
fundamental understanding on this complicated formulation. Nevertheless, it is essential to
make some remarks on the efficiency of the framework and assess its conservativeness in order
to give the full picture.

A big concern of the proposed method of analysis should be its scalability with the respect to
the number of neurons. Although it is not clear from previous literature on DNN dynamics
how many neurons and layers are enough for an accurate approximation, it is expected that a
larger number will be required for more complex systems, which in turn will result in greater
numerical complexity. Assessing the computational cost in the previous examples for "larger"
DNNs, it was noted that the algorithm was tractable under some adjustments. The most
important of them was the over-approximation of the linear regions in order to reduce their
complexity i.e. their number of linear inequalities (see (3-8)). Given a PI set, the partitions
had firstly every redundant inequality removed and then were replaced by a corresponding
bounding box. This over-approximation was done mainly in the context of LMI problem of
Corollary 3.1 and provided a significant help with a small cost in terms of conservativeness.
For the reachability analysis, the corresponding algorithm of Multi-Parametric Toolbox (see
Appendix B) has been optimized to be very time efficient. Therefore, it can be argued that
the framework is numerically affordable and scalable even for far larger DNNs than the ones
given in this study.

In contrast, scalability with respect to state dimensionality poses a greater challenge mainly
due to the requirement to compute positively invariant sets and regions of attractions. For the
cart-pole system, most of the time required for the framework was devoted to the computation
of a Maximal Positively Invariant subset and proved that the corresponding algorithm can
become difficult to solve or even intractable. Although higher state dimensionality naturally
implies that more linear inequalities will be used to describe the partitions, the bounding
box over-approximations can help significantly. More precisely, only 2 more inequalities are
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added in the H-representation as the state space is extended by 1 dimension. These over-
approximations may be in cases far larger that the exact partitions as dimensionality grows,
but it was noted in experiments and trials that it did not induce large conservativeness.

Despite the success in deducing important properties for most cases, it was noted, especially
for the cart-pole system, that there were NNs that did not manage to approximate really well
the underlying stable dynamics, probably because the training optimization was stuck in a
local optimum of the weight space. Although this is not a concern of the framework, but
rather of the learning process, this divergence between real and learned dynamics complicates
the analysis and prevents an accurate evaluation of the conservativeness for high dimensional
systems. For example, the learned dynamics of the cart-pole system were unstable for many
trained DNNs and this led to select a different measure in order to assess their validity. But
even amongst DNNs that performed better with respect to the new criterion, it was common
for the learned dynamics to be unstable (see NN2 in the previous section). Since it was well-
known that the closed-loop dynamics were stable, these DNNs could be discarded as very
inaccurate. Consequently, if there is some very rough knowledge about some properties of
the real dynamics, the framework can aid with model selection and model validation.

In conclusion, the framework for stability analysis is not significantly conservative, but there
exist certain improvements that need to be made in order to extend it to more complex sys-
tems. It manages to give fundamental insight into the dynamics of the learned representations
and could help evaluate whether a trained DNN is accurate enough. Finally, while scalability
with respect to state dimensionality is an issue, it is worth mentioning that, before this work,
there was no method for stability analysis even for low-dimensional ReLU NNs.
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Chapter 4

Stability analysis for Locally Weighted
Learning

Although the previous chapter, described a stability analysis method for a very popular
non-incremental method, its applicability in real control settings remains difficult, as also
indicated in the Introduction. In this part, the stability analysis for the class of Locally
Weighted Learning (LWL) methods will be presented, aiming to close that gap. The first sec-
tion provides the formulation of state-space dynamics with an appropriate Locally Weighted
Learning model as well as the motivation for the selection of this particular representational
structure. In Sections 4-2 and 4-3, the general conditions of Lyapunov Stability Theory for
asymptotic stability will be translated into sets of Linear Matrix Inequalities (LMIs) under
the assumption of two different Lyapunov function parameterizations. A major contribution
of this chapter will be the thorough examination of the resulting LMI conditions with respect
to conservativeness and applicability in common LWL settings. Finally, their performance
will be tested in a number of numerical examples in Section 4-4.

4-1 Description of dynamics with LWL methods

4-1-1 Local learning

As for every supervised learning task, a mapping between inputs x ∈ Rp and outputs y ∈ Rq
is searched, given a training dataset D = {xj ,yj}Nj=1, such that a measure of performance
is minimized. Locally Weighted Learning presented in this chapter is a class of supervised
learning methods, relying on the idea of local learning, where a number of models are fitted
independently from one another, instead of updating a single global model. Furthermore,
they approximate functions without assuming a limited number of parameters, which was the
case for the Deep Neural Network presented in the previous chapter, and thus belong to the
class of nonparametric learning methods [51]. Although in literature the class of methods that
are based on this approach is regularly called Locally Weighted Regression (LWR), it should
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(b) Mahalanobis distance.

Figure 4-1: Distance for a query point x = (0, 0) for two dimensional input space (x1, x2).

be mentioned that LWR is a specific variant that was developed first few decades ago giving
the class its name.

An important premise of LWL is that data points xi closer to the query c will be considered
more important for the prediction than points with a greater distance d, contrary for example
to least-squares regression that assigns equal important to all data points. This importance is
mainly adjusted by selecting two critical factors, existing in every LWR method, the distance
function d(c, xj) and the kernel w(d) i.e. the weighting function.

Starting from the distance function, its structure and domain can vary between tasks. It is
usually given in the form of weighted Euclidean distance:

d(c, xj) =
√

(xj − c)TD(xj − c), (4-1)

where D is referred as the distance metric or distance matrix. This positive-definite matrix is
one of the parameters optimized with respect to the cost function during LWR algorithms and
may be the identity matrix (unweighted Euclidean distance), a diagonal matrix (diagonally
weighted Euclidean distance) or an arbitrary symmetric matrix (Fully weighted Euclidean or
Mahalanobis distance). A diagonal distance matrix is considered to result in an optimal
trade-off between expressibility and computational cost. In Figure 4-1, the distance functions
for diagonal and symmetric distance metrics are shown for a query coinciding with the origin.
The input is considered to be two-dimensional. Although a global distance function is by far
the most common choice, there have been cases where query-based local or point-based local
distance functions have been used [77]. The choice of a global distance function implies that
for a given kernel the distance will not be depended on the query or the training point under
consideration.

On the other hand, the kernel w intends to normalize the distance so that the maximum
"importance" is assigned when the distance is 0, while is reduced as distance increases. Its
value usually lies in [0, 1], but its support may be finite or infinite. A common example of
kernels with infinite support is the Gaussian [78]:

w(x) = e−
1
2d

2
,
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4-1 Description of dynamics with LWL methods 43

while Bisquare kernels [79] have a finite support and are described by the following relation:

w(x) =

(1− 1
2d

2)2 if |d| <
√

2
0 if |d| >

√
2

These above weighting functions along with another popular kernel with finite support are
given in Figure 4-2. Although kernels with infinite support have nonzero value for every point
in the input space, in practice (especially during training) an activation threshold is defined
to reduce the computational cost with very little effect on the prediction performance.
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(a) Gaussian kernel.
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(b) Tricube kernel [80].
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(c) Bisquare kernel.

Figure 4-2: Kernel functions used regularly for LWR.

LWL methods can now combine these distance and weighting functions with a linear in the
parameters model computed by a weighted version of linear regression and provide a localized
prediction for every query. Thus, every LWR algorithm aims to compute both the distance
metric and the parameters of local linear models, always independently for different kernels.

4-1-2 Choice of LWL method

The local nature of learning renders LWL very computationally efficient, whereas they are
also known for being robust against negative interference and handling non-stationary input
distributions. Nevertheless, LWR algorithms differ significantly in representation and numer-
ical efficiency from one another, and deriving an overall stability result for every one of them
is very difficult, if not impossible. Thus, an algorithm that manages to be computationally
efficient, while keeping its model relatively simple will be sought after.

Starting from the LWL variant that was proposed first chronologically, Locally Weighted
Regression, it can be noted that it belongs to the class of lazy-learning or memory-based
learning, for which all the training points should be kept in memory. Given an initial guess for
the distance metric, this method computes a unique local model for every query by repeatedly
performing a weighted version of least squares regression. This results in an increase in
memory and computation cost as the number of training points rises. Except the previous
limitations, it is not clear how stability analysis for LWR could be accomplished, given that
no explicit dynamics model exists, but the later depends on every considered query.

In contrast, a variant of LWR that does not require storing all the training points, while
preserves a model from learning iteration to learning iteration is Receptive Field Weighted
Regression (RFWR) [81, 82] and could be a valid candidate for stability analysis. Just like
LWR, Receptive Field Weighted Regression updates its parameters, when a new training point
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44 Stability analysis for Locally Weighted Learning

is examined (incremental method), but does not discard the whole input/output mapping as
the former. Being a non-parametric method, RFWR does not require fixing the number of
parameters and allows addition and pruning of local models (also called Receptive Fields
(RFs)) on an as-needed basis. This results in an optimal trade-off between flexibility and
computational efficacy, while deriving a fixed representation at the end of training. The later
is an important aid for the stability analysis.

In Figure 4-3 a nonlinear function commonly used as an example in LWR studies is approx-
imated by RFWR and a training set of 1700 data points randomly spread (without noise in
the measurements) through the input space.
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(c) Local models of RFWR approximation in input
space. The red points denote the centers of the RFs.

Figure 4-3: Approximation of a complex nonlinear function R2 → R with 43 Bisquare kernels.

Probably the most important downside of RFWR is its susceptibility in the so called curse
of dimensionality. As the number of input dimensions increases, exponentially more train-
ing points and local models are required to learn a sufficiently good approximation. Thus,
an extension of RFWR able to handle high-dimensional inputs was proposed in [83]. This
algorithm was named Locally Weighted Projection Regression (LWPR) and it is relied on an
incremental locally weighted implementation of a well-known projection regression algorithm,
Partial Least Squares (PLS) [84,85]. For every Receptive Field, a number of directions in the
input space is incrementally updated for every training point, while univariate regression is
performed along them. The update of the distance metric as well as the addition and pruning
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4-1 Description of dynamics with LWL methods 45

of kernels is done the same way as for RFWR. Thus, it is possible to identify redundant
dimensions and project locally the input space in a reduced space.

LWPR improves significantly both training and prediction performance only when redun-
dant and irrelevant input dimensions exist, but when these conditions do not apply, the
gains are not significant compared to RFWR. On the other hand, the locality of projections
performed individually for every kernel renders the description of dynamics more compli-
cated than RFWR, which naturally will affect the ability to carry out the stability analysis.
Therefore, dynamics representation corresponding to a RFWR model is considered a good
compromise between complexity and numerical efficiency, especially under the assumption
that dimensionality reduction is already performed and no redundancy is induced when the
states are measured. The description of the state-space dynamics required for RFWR will be
provided in the next subsection.

4-1-3 Description of dynamics with RFWR

After training is finished for the RFWR algorithm, a number of kernels are scattered through-
out the input space as shown in Figure 4-3c. The prediction denoted as ŷ ∈ Rq for a given
input x is computed as weighted sum of the individual predictions ŷi ∈ Rq of all local models:

ŷ =
∑M
i=1wiŷi∑M
i=1wi

(4-2)

where M is the total number of RFs and wi ∈ R is the weight corresponding to each RF,
which depends on the selected kernel (see Subsection 4-1-1) and the distance of the input
x from the center ci of the receptive field. The total prediction should rely more on the
prediction of the ith RF as the distance from its center tends to 0, and thus the query c as it
was defined in (4-1) should be replaced by the center of the RF ci:

di(x) =
√

(x− ci)TDi(x− ci)

The local prediction ŷi is always given by a linear in the parameters model, which can be
composed of any nonlinear terms with respect to the input vector. However, it has been
noted [81] that linear terms are able to represent adequately well any nonlinearities without
increasing the complexity. The local prediction for a given input is then computed in most
cases as:

ŷi = βTi x+ β0
i = β̃ix̃

where x̃ = [xT , 1]T ∈ Rp+1 and β̃i = [βTi , β0
i ] ∈ Rq×(p+1) is the parameter matrix computed

from regression corresponding to ith local model. Thus, (4-2) can be better expressed as:

ŷ =
∑M
i=1wi(x)(βTi x+ β0

i )∑M
i=1wi(x)

=
M∑
i=1

hi(x)β̃ix̃ (4-3)

where hi(x) = wi(x)∑M

l=1 wl(x)
is the normalized weight, for which it obvious that:

M∑
i=1

hi(x) = 1, 0 ≤ hi(x) ≤ 1 ∀i
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46 Stability analysis for Locally Weighted Learning

Since it is desired for the RFWR to learn the (discrete-time) state-space model as this was
broadly described by nonlinear relation (4-3), the following assumptions are implicit:

• The input vector is replaced by x(k) i.e. the state vector at time k.

• The output vector is replaced by x(k + 1) i.e. the state vector at the next time step.

• Input and output dimensionality are equal to state dimensionality n.

• The dynamics of the learned system can be expressed as follows:

x(k + 1) = flwl(x(k)) =
M∑
i=1

hi(x(k))[βTi x(k) + β0
i ]

where βi ∈ Rn×n and β0
i ∈ Rn.

In order to keep up with notation frequently in similar control studies, Ai will denote the
square parameter matrix βi and bi will denote the constant bias vector β0

i . There are, then,
two equivalent state-space representations for the RFWR model, which will be mainly used
for the rest of this chapter.

x(k + 1) =
M∑
i=1

hi(x(k))[Aix(k) + bi] (4-4a)

x̃(k + 1) =
M∑
i=1

hi(x(k))
[
Ai bi
0 1

]
x̃(k) =

M∑
i=1

hi(x(k))Ãix̃(k) (4-4b)

If a local model i contributes to the state progression in time k, x(k) is included in its
activation region Xi, with the latter defined strictly as:

Xi := {x ∈ Rn : hi(x) > 0}

In the case of Gaussian kernels or other kernels with infinite support, a boundary will always
be set, such that Xi is finite. Because the parameters of the local models Ai and bi are
computed through regression, it is rather uncommon to be equal to 0, unless they are biased
before initiating the learning algorithm. However, in the exceptional case where bi = 0, the
ith local model becomes linear instead of affine and its index is included in the set I0, while
for the cases that bi 6= 0 the corresponding index is included in the set I1.

• I0 := {i ∈ I : bi = 0}

• I1 := {i ∈ I : bi 6= 0}

4-1-4 Equilibrium and state transformation

Lyapunov stability theory as it was briefly introduced in Chapter 2 always examines the
stability of a particular equilibrium in the state space. If a single equilibrium xe is assumed
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4-1 Description of dynamics with LWL methods 47

for the learned system (4-4), it is necessary then to locate its coordinates. Although computing
the equilibrium xie of an individual local affine model is usually trivial:

xie = (I −Ai)−1bi (4-5)

the same does not apply for the "global" model, for which the equation defining the equilibrium
xe = flwl(xe) should be transformed in a system of n nonlinear equations:

M∑
i=1

wi(xe)[(I −Ai)xe − bi] = 0

Given some prior knowledge on the position of the equilibrium of the true dynamics, a non-
linear iterative algorithm can compute very quickly in most cases the solution of the above
system of equations starting from an approximate initial condition and then locate the equi-
librium with arbitrary accuracy.

In order to facilitate analysis, the nonlinear system is usually transformed such that the
equilibrium under examination coincides with the origin i.e. xe = 0. A simple change of
coordinates z(k) = x(k)−xe can impose the above requirement and the state equation (4-4a)
will become:

z(k + 1) =
M∑
i=1

hi(z(k))[Aiz(k) + bi +Aixe − xe] =
M∑
i=1

hi(z(k))[Aiz(k) + b′i]

where the distance affecting the normalized weight hi(z(k)) now becomes:

di(z) =
√

[z − (ci − xe)]TDi[z − (ci − xe)]

For the rest of the analysis, the learned dynamics (4-4) will be assumed to be already trans-
formed such that the equilibrium coincides with the origin.

4-1-5 Similarities with Takagi-Sugeno (T-S) fuzzy models

Describing nonlinear dynamics through convex combination of simpler local models has been
the basis for different classes of nonlinear models and a large part of control research has
focused on studying different notions of stability for them. One of them, Takagi-Sugeno (T-S)
fuzzy models, shares a lot of representational similarities with LWR models and the large
existing literature could help accelerate the stability analysis for the latter. Therefore, the
T-S fuzzy model of discrete-time autonomous dynamics will be briefly described in this section,
but the interested reader could check for example [86–88] for more comprehensive analysis of
T-S fuzzy modeling in control.

The progression of the state in time using T-S fuzzy models could be given by a set of fuzzy
rules {Ri}Mi=1 in the following form:

Ri : IF (ξ)1 is Fi1 and (ξ)2 is Fi2 and . . . and (ξ)v is Fiv
THEN x(k + 1) = Aix(k)
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48 Stability analysis for Locally Weighted Learning

where ξ(k) = [(ξ)1, (ξ)2, ..., (ξ)v] ∈ Rv are the premise variables, v is their dimensionality (in
general different than the state dimensionality) and Fij are the fuzzy variables. The premise
variables could be any measurable quantity e.g. output variables or states of the system,
whose change could suggest a variation in dynamics. The consequent part in these rules is
a linear state update equation and it is common to write the fuzzy model in the following
Input-output form:

x(k + 1) =
∑M
i=1wiAix(k)∑M

i=1wi
(4-6)

with the "activation" or weight given by:

wi =
p∏
j=1

Fij

(
(ξ)j

)

It can be noted that state progression (4-6) is based on a set of smoothly overlapping local
models, like the RFWR model describ ed in the previous sections. While both representations
include a weighting function, the weight wi on T-S fuzzy models is a nonlinear function of
the premise variables ξ and the weight in RFWR is a nonlinear function of the state vector x.
In general, the space along which the premise variables are spanned and the state space are
different and only under appropriate assumptions, the weights can be equal. Furthermore,
most research on stability of T-S systems has focused on linear (in the state) local models,
while RFWR is mainly using affine ones. However, there have been few studies on affine T-S
systems, which may seem a straightforward extension of linear ones, but it has been proven
that the constant bias term actually complicates analysis. These studies [88–90] will be an
important aid for the rest of the analysis for LWL methods.

4-2 Stability analysis with Common Quadratic Lyapunov Function

Now that the dynamics and the equilibrium are well established, the stability analysis can
proceed. Starting from the most common and simple parametrization of Lyapunov functions
for T-S fuzzy models, a number of conditions equivalent to exponential stability will be
derived similarly to [89, 90]. These conditions will be then assessed with respect to their
conservativeness for the LWL dynamics formulation using simple synthetic examples and
then novel strict mathematical proofs will explain and justify the conclusion.

4-2-1 Conservative quadratic stability

Assume the nonlinear dynamics (4-4a) are fully known i.e. update matrices Ai, bias vectors bi,
distance metrics Di and centers ci have been computed by the learning algorithm with one of
the standard kernels mentioned in the previous sections. The following simple parametrization
of the candidate Lyapunov function is proposed:

V (x(k)) = xT (k)Px(k) (4-7)

In literature, this is referred to as Common Quadratic Lyapunov Function (CQLF) and the
goal now is to find a matrix P ∈ Rn×n such that the conditions for a notion of stability
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4-2 Stability analysis with Common Quadratic Lyapunov Function 49

(see Chapter 2) is fulfilled. The transformation of the conditions in Theorem 2.1 into a
convex optimization problem under the Common Lyapunov function parametrization can be
summarized in Theorem 4.1 and its proof adapted from similar work on T-S fuzzy systems
[89,90] will be presented shortly below.

Theorem 4.1. Let xe = 0 be an equilibrium of (4-4). If there exists a positive definite matrix
P ∈ Rn×n such that the following LMIs are fulfilled:

ATi PAi − P < 0, i ∈ I0 (4-8a)[
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
< 0, i ∈ I1 (4-8b)

then xe is (globally) asymptotically stable

The proof of this Theorem is adapted to representation (4-4) from similar works present in
literature [89, 90], and in order to keep this work as compact as possible it is given in detail
in Appendix A. Although the above result provides a first set of conditions to be examined
for asymptotic stability, as soon as it is further explored it is noticed that these conditions
can never be fulfilled for any RFWR model as long as at least one of the local models is
affine i.e. I1 6= ∅ and the following corollary is proposed with its proof being also included in
Appendix A.

Corollary 4.1. If there exists at least one local affine model, then the conditions of Theorem
4.1 can never be fulfilled.

To provide some insight into the previous corollary, the requirement for constantly decreas-
ing Lyapunov function results in a number of single terms, each one independent from
the others and corresponding to a single local model and is independent. Each such term
(Aix+ bi)TP (Aix+ bi)−xTPx has to be negative for the same matrix P as the state tends to
the global equilibrium xe. However, it can be seen that for affine models the global equilib-
rium does not coincide with the equilibrium of the local model xie given in (4-5) and the above
term will be negative only as the state converges to that point. This large conservativeness
will be partly handled in the next subsection by reducing the region of applicability of the
conditions.

4-2-2 Reducing conservativeness with S-procedure

In the previous subsection, the proposed LMI conditions provided a very conservative result
that requires for all the local models to be linear. Although the learning algorithm can
certainly be adjusted, several tests have shown that the prediction performance deteriorates
significantly when the bias terms were set to 0. There is, nevertheless, an alternative to reduce
the conservativeness of Theorem 4.1 by considering only the activation region of each local
model instead of the whole state space Rn with a relaxation process presented in Chapter 2;
the S-procedure.

To reduce conservativeness with the S-procedure it is necessary to derive a matrix Si for every
affine model such that:

x̃TSix̃ ≥ 0 ∀x ∈ Xi, i ∈ I1 (4-9)
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This Si matrix will depend on the mathematical description of the activation regions Xi,
but to keep the analysis as general as possible it will not be further constrained. Thus, the
following less conservative version of Theorem 4.1 is proposed:

Theorem 4.2. Let xe = 0 be an equilibrium of (4-4) and Si ∈ R(n+1)×(n+1) such that (4-9) is
satisfied for every i ∈ I1. If there exists a positive definite matrix P ∈ Rn×n and multipliers
τi ∈ R≥0 such that the following LMIs are fulfilled:

ATi PAi − P < 0, i ∈ I0 (4-10a)[
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
+ τiSi < 0, i ∈ I1 (4-10b)

then xe is (globally) asymptotically stable

Proof. Assuming that the conditions of this theorem are true, it needs to be proven that all
conditions (2-2) of Theorem 2.1 are necessarily fulfilled. The proof of this theorem lies heavily
on the proof of Theorem 4.1 and the S-procedure as described above.

The first three conditions can be shown to be fulfilled the exact same way as for Theorem
4.1, and thus their proof is omitted.

Applying the S-procedure it is known that if there exists τi ≥ 0 such that:[
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
+ τiSi < 0

[
x
1

]T − [ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
− τiSi

[x
1

]
> 0

then x̃TSix̃ ≥ 0, ∀x ∈ Xi implies:

−
[
x
1

]T [
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

] [
x
1

]
> 0, ∀x ∈ Xi

Therefore, it is proven that (Aix+bi)TP (Aix+bi)−xTPx < 0 for every x in the ith activation
region (where hi(x) 6= 0). For the fourth condition, ∆V meets the following condition:

∆V (x) ≤
M∑
i

h2
i (x)

[
(Aix+ bi)TP (Aix+ bi)− xTPx

]
+

M∑
i<j

hi(x)hj(x)·

·
[
(Aix+ bi)TP (Aix+ bi)− xTPx+ (Ajx+ bj)TP (Ajx+ bj)− xTPx

]
Thus, ∆V will be negative for every x different than 0 and asymptotic stability is proven.

In order to provide some extra insight into matrices Si, different descriptions of the activation
regions will be considered. It is worth noting that (4-9) has to be fulfilled in a superset of the
activation region, and not necessarily on its equal set. In Table 4-1, the description and the
corresponding Si matrix are given for every type of activation region. Although the bounding
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box activation region is not selected as kernel, it may be used as an overapproximation of
a more complex region. Finally, since the Gaussian kernel has infinite support, a boundary
should be set arbitrarily by setting the α variable (a number from 0 to 1) [91]. For a specific
value of α, there is 1− α probability that the x vector lies in the ellipsoid E defined as:

E =
{
x ∈ Rn | (x− ci)TDi(x− ci) ≤ χ2

n(α)
}

where χ2
n is the chi-squared distribution with n degrees of freedom.

Xi Mathematical description Si

Bisquare
{
x ∈ Rn | (x− ci)TDi(x− ci) ≤ 2

}
−
[

Di −Dici
−cTi Di cTi Dici − 2

]
Bounding box

{
x ∈ Rn | umin ≤ x ≤ umax

}
[89]

Gaussian
{
x ∈ Rn | (x− ci)TDi(x− ci) ≤ χ2

n(α)
}
−
[

Di −Dici
−cTi Di cTi Dici − χ2

n(α)

]

Table 4-1: Computation of Si for different kernels.

4-2-3 Evaluation with respect to conservativeness

In order to assess how conservative is Theorem 4.2, a synthetic example was created in 1-
dimensional state-space by approximating a simple nonlinear function in (−π/2, π/2):

x(k + 1) = sin
(
x(k)

)
The parameters of local models and their kernels, usually given by the learning procedure, in
this case were designed through iterations such that the function looks relatively close to the
real one. The approximated dynamics were tested for random initial conditions inside the
interval (−π/2, π/2) and it was found that the state converges to 0 for all of them. The local
affine models ŷi = Aix(k) + bi for this case are given in Figure 4-4a, while the corresponding
kernels distributed along the state space are shown in Figure 4-4b.

Since only one local model is covering the origin, then it was set arbitrarily that this local
model will be linear instead of affine in order to ensure that the origin will be the equilibrium.
The conditions mentioned in Theorem 4.2 were checked for the 8 affine models and the single
linear model and indeed a solution was found through Semidefinite Programming (SDP) i.e.
P > 0 matrix and τi ≥ 0 such that conditions (4-10) are fulfilled.

For the same dynamics, the local models and kernels were computed with Receptive Field
Weighted Regression and the 13 kernels are shown in Figure 4-5. The stability of this approx-
imation was evaluated initially by sampling random initial conditions in (−π/2, π/2) and in
every case the state converged to 0. Then, when a solution that would satisfy the LMIs of
Theorem 4.2 was searched, it was impossible to find one. In conclusion, it was impossible to
prove stability for a globally stable system.
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(a) Prediction with affine local models ŷi.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(b) Bisquare kernels.

Figure 4-4: Approximation of sin(x) function with a synthetic RFWR model.

Searching for the reason of this conservativeness, it was noted that the local models covering
the origin are affine instead of linear, an assumption that was made for the single kernel
activated on the origin in Figure 4-4b. In studies where T-S affine models are considered, the
later assumption is made by definition [89,92], but usually in these cases local models do not
overlap around the origin and therefore, it does not impose any issues on the LMI conditions
proposed.

In control theory, it is commonly accepted that the dynamics around the equilibrium are
"close" to linear and no large nonlinearities exist. Furthermore, in Figure 4-6 only the kernels
near the origin are plotted along with their corresponding local equilibria xie. The three
kernels activated on the origin are very close to linear (their equilibria are near the origin)
and this assumption seems valid in this example. Imposing local linear models around the
origin before or after learning came with a small prediction cost in this case and the bias term
β0 was set to 0 for the 3 local models in the middle of Figure 4-6.

For this formulation, the LMIs (4-10) were posed again for an increased number of linear
models, but nevertheless a solution was not found. The LMIs that were impossible to be
satisfied in this case were the ones that corresponded to local (affine) models that had in
their activation region Xi their own local equilibrium xie. Except for the three models that
are activated in the origin, four more have their local equilibrium in their activation region for
the simple example of learning the sin dynamics as can be seen in Figure 4-6. The following
corollary better describes this important observation and its proof can be found in Appendix
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Figure 4-5: Kernels computed with RFWR for the sin function in the (−π/2, π/2) interval.

A.
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Figure 4-6: Kernels near the origin and their corresponding local equilibria shown with a cross
(the y coordinate for the equilibria is irrelevant).

Corollary 4.2. If there exists a local model, for which:

xie ∈ Xi, i ∈ I1

then the conditions of Theorem 4.2 can never be fulfilled.

Proof. Consider a local model for which xie ∈ Xi, i ∈ I1 and the corresponding LMI of
Theorem 4.2:

[
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
+ τiSi < 0

In this proof, a Bisquare kernel will be considered, but the same arguments can be adjusted
also for any kernel and function Si that represents exactly or outer-approximates the activation
region. Therefore, from Table 4-1 the description of the activation region of the Bisquare
kernel and the corresponding Si matrix are:

E =
{
x ∈ Rn | (x− ci)TDi(x− ci) ≤ 1

}
Si = −

[
Di −Dici
−cTi Di cTi Dici − 1

]
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Thus, the previous LMI becomes:[
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
− τi

[
Di −Dici
−cTi Di cTi Dici − 1

]
< 0

If multiplied on both sides with vector x̃ then:[
x
1

]T [ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
− τi

[
Di −Dici
−cTi Di cTi Dici − 1

][x
1

]
< 0

If a change of coordinates is performed such that the local equilibrium xie coincides with the
origin i.e. w = x− xie, it follows that:[

w + xie
1

]T [ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
− τi

[
Di −Dici
−cTi Di cTi Dici − 1

][w + xie
1

]
< 0

After simple manipulations of the above relation and replacing bi according to (4-5), the
following inequality is derived:[

w
1

]T [ ATi PAi − P −Pxie +ATi Px
i
e

−(xie)TP + (xie)TPAi 0

]

− τi

[
Di −Dici
−cTi Di (xie − ci)TDi(xie − ci)− 1

][w
1

]
< 0

Finally, we get that:[
ATi PAi − P − τiDi −Pxie +ATi Px

i
e + τiDici

−(xie)TP + (xie)TPAi + τic
T
i Di −τi[(xie − ci)TDi(xie − ci)− 1]

]
< 0

Since xie ∈ Xi, then by definition of hyperellipsoid:

(xie − ci)TDi(xie − ci) ≤ 1

Thus, the lower right entry of the above matrix is non-negative (τi always non-negative) and
using Schur Complement, it can be proven that it can never be negative definite.

The intuition behind this claim lies in the process of transforming the requirement for con-
stantly decreasing CQLF into LMIs as it presented in the proof of Theorem 4.1. To be more
specific, ∆V was shown to be explicitly dependent on the normalized weights for each model
hi(x) as well as on multiple overlapping local models for the same state x. However, each
single LMI examined in Theorems 4.1 and 4.2 does not include in any way the normalized
weight. All the LMIs refers to independent models, without considering the interactions be-
tween them. If for each local model a single Lyapunov function Vi(x) is considered, then Vi(x)
will only be decreasing as the state approaches the local equilibrium xie. On the other hand,
LMIs like (4-10b) can only be fulfilled, if Vi(x) is always decreasing as the state converges
to 0. Thus, if xie is included in Xi, these two conditions are in conflict and they cannot be
satisfied on the same time.
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The case where local equilibria are included in the corresponding activation region may seem
rather specific, and thus of little interest, but it has been observed during this work that it
occurs for many local affine models around the equilibrium and for most nonlinear dynamics.
"Linearizing" all these models will have a large cost in prediction and computation, since affine
local models have been noted in practice to be a far better parametrization for LWL models
than linear ones. The above remarks ascertain the fact that the Common Quadratic Lyapunov
Function is indeed a very conservative parametrization that does not allow to consider any
interactions between the local models. LWL models, however, rely more on these interactions
and overlaps between local models to approximate complex and nonlinear dynamics than T-S
fuzzy systems and a less conservative parametrization should be considered.

4-3 Stability analysis with Piecewise Quadratic Lyapunov Function

The analysis for the Common Quadratic Lyapunov Function showed the significant limitations
imposed by the nature of this parametrization with respect to Locally Weighted Learning
models. The simplicity of the resulting LMI conditions presented in Theorem 4.2 for a CQLF
comes at a cost of neglecting important characteristics of the dynamics such as the interactions
between local models, and thus generates large conservativeness. In this section, another
popular parametrization, Piecewise Quadratic Lyapunov Function (PQLF), will be proposed
as a less conservative, yet tractable solution. This parametrization was also proposed in
Section 3-3-1 for Deep Neural Networks, but in that case the partition in non-overlapping
regions was naturally available.

4-3-1 Partition of the state space

Since local models in LWL are activated only in bounded, restricted regions of the state-space,
a Lyapunov function that changes its relation depending the region would be more suitable
and in general a less conservative choice. Such an example is PQLF, which is determined
by a number of non-overlapping quadratic relations with respect to x(k) (or x̃(k)), each one
corresponding to a single subregion Xl ⊂ Rn:

V (x(k)) =
[
x
1

]T
P̃l

[
x
1

]
= x̃T (k)P̃lx̃(k), x ∈ Xl (4-11)

where P̃l ∈ R(n+1)×(n+1) and the index l implies that the regions Xl are in general different
than the activation regions of the local models Xi.

PQLFs have been found to be largely successful for hybrid systems i.e. systems that com-
bine continuous dynamics and discrete events [62, 63, 93]. For these systems, the changes
of dynamics are caused by discrete-time events, which are well defined and can provide an
easy way to partition the state-space. For LWL models, as they were described in previous
sections, this partition is not so trivial, due to overlapping local dynamics. Taking advantage
previous studies on T-S fuzzy models two different approaches on space-space partition can
be proposed:
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Figure 4-7: Partition of 1-dimensional state-space in operating regions (X1, X3) and interpolation
regions (X2) for simple example of two overlapping kernels.

1. The state-space is divided in operating regimes. where only one local model is activated
and interpolation regimes, where a unique combination of local models is considered
[88,94].

2. The state-space is divided in M regions, each one defined by the following relation
[95–97]:

Xl =
{
x ∈ Rn | hl(x) > hj(x), j ∈ I0 ∪ I1 \ {l}

}
In [88] these two partition approaches and the CQLF were compared (for T-S fuzzy systems)
with respect to conservativeness in numerical examples and it was concluded that the first
approach i.e. the division of state-space in interpolation and operating regimes is less conser-
vative, since the second one requires the introduction of uncertainty. Thus, from the rest of
this section only partition 1. will be analyzed, but its increased computational cost should
always be kept in mind.

In order to proceed with the analysis, one important new feature is required for the full
dynamics description. For each region {Xl}Nl=1, a set J (l) with all the indices of the local
models activated within its boundaries should be computed. For the operating regimes, J (l)
should contain one element, while for the interpolation regimes at least two elements. To
explain better how the division in interpolation and operating regimes happens, in Figure 4-7
a simple example of two overlapping kernels in one dimension is presented, along with their
partition in three separate subregions {Xl}3l=1. In this simple case (where local model 1 is in
blue color and model 2 in black), it is easy to see that J (1) = {1}, J (2) = {1, 2}, J (3) = {2}.
The state-dynamics are formulated for this partition the following way:

x(k + 1) =
∑
j∈J (l) hj(x(k))[Ajx(k) + bj ], x(k) ∈ Xl (4-12a)

x̃(k + 1) =
∑
j∈J (l) hj(x(k))Ãj x̃(k), x(k) ∈ Xl (4-12b)

Contrary to the CQLF approach implemented in the previous section, where the state-space
was analyzed as a whole, its partition for PQLF renders the study of transitions between
regions Xl necessary. In discrete-time dynamics, these transitions do not occur necessarily
between adjacent regions as it is for continuous-time dynamics, but the examination of all
possible transitions between defined regions is required in a process usually called for hybrid
systems (one step) reachability analysis [65]. Since the local dynamics are time-invariant
(Ai, bi are constant in time), it suffices to consider the transition for one time step for each
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region in order to characterize all possible transitions. The set of all possible transitions and
the corresponding transition matrix are defined the same way as for Chapter 3:

Ω := {(l, j) |x(k) ∈ Xl, x(k + 1) ∈ Xj}, (4-13)

(T )lj =

1 if ∃x(k) ∈ Xl : x(k + 1) ∈ Xj
0 otherwise

.

To perform the reachability analysis for this case, the reachable set Ul = {x(k+1) | x(k) ∈ Xl}
will be outer approximated computing the maximum reachable set as it was done in [98] and
then consecutive Linear Programs (LPs) will be solved to find which regions Xl intersect with
the resulting polyhedron.

4-3-2 Description of regimes

For LWL, the boundaries and the activation regions of the local models are usually described
by quadratic forms with respect to the state vector x(k). More specifically, both Gaussian
and Bisquare kernels as described in Table 4-1 are equivalent to hyperellipsoids in Rn. A
general hyperellipsoid in state space centered at c is given by

E := {x ∈ Rn | (x− c)TA(x− c) ≤ 1}, (4-14)

where A is a (symmetric) positive definite matrix. Let a region Xl be an interpolation regime,
where at least two kernels intersect. It is difficult (in general) to describe Xl precisely with
a compact relation as it was done for the original kernels. For example, in Figure 4-8a
two ellipses representing two overlapping kernels in R2 are presented and their intersection
has not a geometric shape easy to describe with a standard relation. On the other hand, a
description of Xl is required to study the transitions from and to that region, as well as reduce
conservativeness by applying the stability conditions only in the region of interest and not
the whole state space.

To progress with analysis, overapproximations of the hyperellipsoids with polytopes and hy-
perellipsoids will be briefly proposed. However, these outer approximations will obviously
increase the conservativeness of the stability analysis, since more transitions than the ones
actually taking place will be considered and the stability conditions have to be fulfilled in
larger regions than necessary. The outer approximation of region Xl will be denoted as X̄l
and the set of possible transitions for X̄l as Ω̄ ⊇ Ω.

Overapproximation with polytopes Given that a specific number of hyperellipsoids are
intersecting in Xl, then each one of them can be outer approximated by a rotated Bounding
Box (BB) (or sometimes called Object Oriented Bounding Box). These Bounding Boxes, used
commonly in Multi-Parametric Programming [99], are the hyperrectangles with the minimum
volume containing all the points of the hyperellipsoid, while their hyperplanes are aligned with
the semi-axes of the later. To compute one for an ellipsoid (4-14), it is necessary to apply a
Singular Value Decomposition (SVD) for A. Since A is a positive definite matrix:

A = UΣUT ,
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(a) Intersection of two ellipsoids
(gray area).

(b) Lines in R2 constructing a
bounding box around an ellipsis.

(c) Intersection of two bounding
boxes (gray area).

Figure 4-8: Approximation of intersection of two ellipsoids using bounding boxes.

where the columns of U are the unit vectors directing towards the principal exes of the ellipsoid
and the entries of diagonal matrix Σ are equal to the inverse of the length of the corresponding
principal semi-axis [100]. The bounding box will have the same center as the ellipsoid and
matrices U and Σ are necessary to compute the hyperplanes enclosing the ellipsoid as shown
Figure 4-8b and then derive the H-representation of the polytope:

Gl := {x | Ẽix̃ ≥ 0},

where Ẽi ∈ R2n×(n+1), since each bounding box has 2n facets.

This process is repeated for all the ellipsoids activated in the interpolation regime and all
the Gl descriptions are derived. As shown in Figure 4-8c for the simple two dimensional
state-space, the intersection of the bounding boxes will be an outer approximation of the
intersection of the ellipses:

X̄l = {x ∈ Rn | Ẽix̃ ≥ 0, ∀i ∈ J (l)}. (4-15)

It is shown that X̄l is a convex polyhedron of |J (l)| · 2n hyperplanes1, which should be
reduced in case of redundant constraints. The above is a very simple and fast method to
outer approximate regions Xj , but the volume of the outer approximation can be significantly
larger. However, for reasons that will be further explained in the next two sections the
polytopic/polyhedral approximation facilitates reachability analysis and could under some
circumstances be proven less conservative than the corresponding approximation with ellipses.
Furthermore, variations that approximate the hyperellipsoid with more complex polytopes
could be proposed and depending on the number of hyperplanes of the approximation the
computation cost may be increased significantly.

Overapproximation with hyperellipsoids The problem of approximating the intersection
of hyperellipsoids with a minimum volume hyperellipsoid can only be solved suboptimally
with Convex Programming and such approaches can be found in [45] and references therein.
One popular method for outer approximation uses the S-procedure to ascertain that only
the intersection of the hyperellipsoids will be considered and minimizes the volume of the

1If A is a finite set, then |A| is its cardinality.
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ellipsoids that can fulfill the above sufficient condition. Although this method may give
a more accurate approximation of the intersection than the corresponding methods with
polytopes, it may still be required to derive a polytopic approximation of this ellipsoid in
order to reduce conservativeness in later analysis.

4-3-3 Piecewise Quadratic stability theorem

Once the transition matrix Ω̄ and outer approximations of all the regions comprising the
state space are derived, the translation of the general stability conditions given in Chap-
ter 2 into Semidefinite Programs (SDPs) under the Piecewise Quadratic Lyapunov Function
parametrization can be performed.

To facilitate analysis, the assumption of linear local models for the region that includes the
origin/equilibrium will be imposed with low prediction cost, while for the rest of the regions
all the models will be affine, a valid hypothesis in probably all of the cases, since the local
models are computed by a learning procedure. The index of the region including the origin
will be set to 1 i.e. 0 ∈ X1. The Piecewise Quadratic Lyapunov Function (4-11) can then be
simplified as:

V (x) =


xTP1x, x ∈ X1,x

1

T P̃l
x

1

 = x̃T P̃lx̃, x ∈ Xl, l 6= 1

where P̃l ∈ R(n+1)×(n+1) and P1 ∈ Rn×n. Furthermore, define P̃1 as: P̃1 :=
[
P1 0n
0T

n 0

]
.

For the next theorem, which proposes a set of LMIs as stability conditions, the polyhedral
overapproximations of regions Xl are used to study the stability analysis. Furthermore, each
such overapproximation after removing redundant constraints from description (4-15) is given
as:

X̄l = {x ∈ Rn | Ẽlx̃ ≥ 0}.

For the region including the origin, ε1 = 0 and

X̄1 = {x ∈ Rn | E1x ≥ 0}.

Furthermore, the next Lemma, whose Proof can be found in Appendix A, will be useful for
the Piecewise Quadratic stability theorem:

Lemma 1. Let every x in a region D satisfying:

xTP1x > 0,
xTQx > 0,

xT (ATP1A− P2 +Q)x < 0,
xT (BTP1B − P2 +Q)x < 0

where A, B are matrices with appropriate dimensions, then:

xT (ATP1B +BTP1A− 2P2 +Q)x < 0, ∀x ∈ D
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Note in the previous lemma that it is not required for the matrices in the premise to be
positive-definite and negative definite, but the positiveness is necessary only for x ∈ D. Now
everything is set up for the theorem of Piecewise Quadratic Stability.

Theorem 4.3. Let xe = 0 be an equilibrium of (4-4), regions Xl, their outer approximations
X̄l and Ω̄ the set of possible transitions between the later. If there exist symmetric matrices
P1, P̃l, Y1, Yl,W11,Wlj , U11i, Ujli and possibly full matrices Q11, Qlj of appropriate dimensions
such that matrices Y1, Yl,W11,Wlj , U11i, Ulji have non-negative entries and the following LMIs
are fulfilled:

P1 − ET1 Y1E1 > 0, (4-16a)
P̃l − ẼTl YlẼl > 0, l 6= 1 (4-16b)

Q11 − ET1 W11E1 > 0, (4-16c)
Qlj − ẼTl WljẼl > 0, (l, j) ∈ Ω̄ \ {(1, 1)} (4-16d)

ATi P1Ai − P1 +Q11 + ET1 U11iE1 < 0, i ∈ J (1) (4-16e)
ÃTi P̃jÃi − P̃l +Qlj + ẼTl UljiẼl < 0, (l, j) ∈ Ω̄ \ {(1, 1)}, i ∈ J (l) (4-16f)

then xe is (globally) exponentially stable

Proof. It will be proved that if LMIs (4-16) are true and matrices Y1, Yl,W11,Wlj , U11i, Ujli
have only non-negative entries, then conditions (2-3) of Theorem 2.2 are true. It is obvious
from the parametrization of PQLF that V (xe) = 0 and the first condition is fulfilled. Proof
of condition (2-3b) is quite easy, but rather long and less important compared to the rest of
the proof. Thus, this part is moved to Appendix A.
For condition (2-3c), ∆V will be evaluated for all x using (4-12a). If a transition from
region Xl to Xj with (l, j) ∈ Ω̄ is examined at time step k, then two distinct cases should be
considered:

1. l 6= 1 or j 6= 1

2. l = 1 and j = 1

For the first case: (x implies x(k))

∆V (x) = fTlwl(x)flwl(x)− xTPx

=
( N∑
i∈J (l)

hi(x)Ãix̃
)T
P̃j

( N∑
i∈J (l)

hi(x)Ãix̃
)
− x̃T P̃lx̃

= x̃T

 ∑
i∈J (l)

h2
i (x)

[
Ãi

T
P̃jÃi − P̃l

]x̃
+ x̃T

 ∑
i<m,i,m∈J (l)

2hi(x)hm(x)
[
ÃTi P̃jÃm + ÃTmP̃jÃi − 2P̃l

]x̃
From properties of normalized weighting function the following identity is true:∑

i

h2
i (x) +

∑
i<m

2hi(x)hm(x) = 1 ∀x ∈ Xl, i,m ∈ J (l)
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If Qlj is a matrix corresponding to the (l, j) transition:

∆V (x) = x̃T

 ∑
i∈J (l)

h2
i (x)

[
Ãi

T
P̃jÃi − P̃l +Qlj

]x̃− x̃TQlj x̃
+ x̃T

 ∑
i<m,i,m∈J (l)

2hi(x)hm(x)
[
ÃTi P̃jÃm + ÃTmP̃jÃi − 2P̃l +Qlj

]x̃
(4-17)

Since LMIs (4-16b), (4-16d) and (4-16f) are fulfilled, then:

x̃T P̃lx̃ > 0, ∀x ∈ X̄l, x̃T (ÃTi P̃jÃi − P̃l +Qlj)x̃T , ∀x ∈ X̄l, i ∈ Ω̄,
x̃TQlj x̃ > 0, ∀x ∈ X̄l, x̃T (ÃTmP̃jÃm − P̃l +Qlj)x̃T , ∀x ∈ X̄l,m ∈ Ω̄.

and from Lemma 1 for D = X̄l it follows that:

x̃T
[
ÃTi P̃jÃm + ÃTmP̃jÃi − 2P̃l +Qlj

]
x̃ < 0 i,m ∈ J (l)

From (4-17) we get then that:

∆V (x) ≤ x̃T
 ∑
i∈J (l)

h2
i (x)

[
Ãi

T
P̃jÃi − P̃l +Qlj

]x̃
Moreover, from (4-16f) it is obvious that there exists a constant clji > 0 such that:

ÃTi P̃jÃi − P̃l + ẼTl UljiẼl + cljiI < 0

and thus there exists a a constant α3 such that:

∆V (x) ≤ −α3||x||22

If we follow the exact same procedure now for the transition (1, 1) ∈ Ω̄ and use LMIs (4-16a),
(4-16c) and (4-16e), the same result for ∆V (x) will be reached and therefore condition (2-3c)
is fulfilled and the equilibrium is (globally) exponentially stable

Remarks on Theorem 4.3

Theorem 4.3 provides a set of LMI conditions in terms of the parameters of the LWL model,
which can be checked efficiently using computational tools of Semidefinite Programming. If
a feasible solution can be computed, then stability is guaranteed, but due to the nature of
Lyapunov stability theory these conditions are only sufficient and nothing can be said if no
solution can be found.

To derive the same stability conditions only using this time ellipsoidal outer approximations
of the regions Xl instead of polytopic, it is enough to replace the last parts of each LMI with
the product of a non-negative variable and a matrix S defining the hyperellipsoid as:

E = {x ∈ Rn | x̃TSx̃ ≥ 0}
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For example, the terms −ẼTl YlẼl in 4-16b should be replaced by −τlSl, where τl ∈ R≥0 is an
optimization variable and Sl can be computed using Table 4-1.

Although the ellipsoidal outer approximation of the regions may be naturally available or
far tighter than the polytopic for the studied LWL models as discussed in Subsection 4-3-2,
the latter is considered a better solution in this case, due to the freedom offered by the large
number of search variables [70]. If the matrix Ẽl has r rows, then the corresponding polyhedral
relaxation has (r − 1)(r − 2)/2 free parameters, while for the polytopic ones only one free
parameter is imposed. This flexibility, however, comes at a computational cost and will make
the optimization problem more laborious for a larger state dimensionality and number of local
models.

Different approaches and results with the above partition have been proposed also for different
classes of models such as Piecewise Affine (PWA) systems [62, 65, 93] and T-S fuzzy systems
[88, 94, 101]. In the later studies for T-S fuzzy systems, some similarities can be noted with
the above LMIs, with some very crucial differences: LMIs (4-16c), (4-16d) are missing along
with the inclusion of Qlj .

In the previous section, it was shown that the main obstacle to prove stability with CQLF
was the existence of local models with their local equilibrium in their activation region. It
can be proven in a similar manner as in Corollary 4.2 that LMIs based on PQLF like the
ones proposed in [88, 94, 101] will face the same problem in these cases and although the
parametrization of the Lyapunov function became more complex, no significant gain was
noted with respect to that issue.

Nevertheless, in Theorem 4.3 the additional LMIs are attempting to counteract this problem
by increasing the flexibility. Assume that the ith local model is activated in region Xl and
its equilibrium xie is included in this region. If Qlj is removed from LMIs (4-16f) along with
the whole (4-16c), then it will be noted that the former LMI cannot be fulfilled for any P̃l
satisfying (4-16b). Insertion of Qlj intends to "alter" Ãi in these LMIs such that its equilibrium
is moved away from region Xl.

However, many local models may have already their equilibrium outside their region, and
addition of Qlj terms and LMIs (4-16d) will be redundant. Since Qlj matrices are composed
of (n+ 1)n/2 free parameters and refer each to a single transition, their removal could have
significant computational gains in case of many models and larger state dimensionality. It is
suggested, then, that if there does not exist i ∈ J (l) such xie ∈ Xi, one should consider for
that region Xl the following LMIs instead of (4-16f):

ÃTi P̃jÃi − P̃l + ẼTl UljiẼl < 0, (l, j) ∈ Ω̄ \ {(1, 1)}, i ∈ J (l) (4-18)

while removing entirely LMIs (4-16d) from the optimization problem.

4-4 Experimental evaluation

To evaluate the performance of Theorem 4.3, especially with respect to conservativeness and
computational cost, two simple examples will be evaluated in simulation in the next couple
of subsections. The first example is the 1-dimensional sinusoid function, which has been
used already throughout this chapter as an illustration tool for multiple concepts relative to
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conservativeness. The second example, usually going under the name of inverted pendulum,
operates in a 2-dimensional state space and will pose a greater challenge for the approach.
The final optimization problems that resulted from the application of the previous theory
were solved using YALMIP toolbox, SeDuMi and MOSEK solvers. For more information, the
reader is referred to Appendix B.

4-4-1 Sinusoid

As shown in Subsection 4-2-3, the very simple example of a sinusoid function posed a great
challenge for the stability analysis of RFWR representations due to the continuous overlaps of
their local models. The same example is now assessed with the new set of conditions proposed
above, by training once with random initial conditions in the interval (−π/2, π/2). Although
the number of local models isM = 13, the number of separate regions was N = 25. Therefore,
there are 25 unique combinations of local models covering the 1-dimensional state-space.

After the reachability analysis, 39 possible transitions between the regions were found using
the algorithm proposed in [98]. When the state-space was sampled randomly thousands of
times for the same interval, the same 38 transitions were identified (out of the 39) and only
one was not possible to be computed. Obviously in this case where 1-dimensional state-space
is considered, brute force is numerically a good alternative, but this does not apply for systems
with larger dimensionality. Nevertheless, no significant conservativeness was induced by the
reachability analysis algorithm.

Firstly, the LMI problem as described in Theorem 4.3 was posed for the 25 regions by con-
sidering for every possible transition (l, j) ∈ Ω, a corresponding matrix Qlj . As a result, 285
LMIs were formed and the optimization was solved relatively fast2. It was proved (for the
first time) that the learned dynamics are globally exponentially stable.

Then, some of the LMIs (4-16c), (4-16d) were removed and LMIs (4-16f) were replaced ac-
cordingly by LMIs (4-18) as described in the previous section. Consequently, the "reduced"
optimization problem was formed with 218 constraints and the same stability result was
derived, proving the exponential stability of the sinusoid dynamics.

4-4-2 Inverted pendulum

Theorem 4.3 already proved for the previous example that it can provide a less conservative
result, which takes into consideration the high degree of overlapping local models present
in the dynamical representations of LWL methods. However, it is essential to evaluate the
performance of the approach in more examples. Such an example is the inverted pendulum
[102], whose state-space is 2-dimensional and can be seen as a simplified case of the cart-pole
system studied back in Section 3-5. Instead of stabilizing the mass at the end of the link
through actuation of the cart, the pendulum is controlled by a torque directly applied at the
fixed end of the link.

Since the upright equilibrium is by definition unstable, a Linear Quadratic Regulator was
designed for the linearized dynamics around this point. Now it is possible to study the closed-
loop dynamics using the proposed stability conditions. Inspired by relevant applications of

2The optimization problem required less than 0.1 seconds to be solved.
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Figure 4-9: Kernels for the approximation of the inverted pendulum dynamics.

reinforcement learning for this numerical example, two simple scenarios were devised to assess
the conservativeness:

1. Control with unlimited torque,

2. Control with limited torque.

For the first scenario, there are no input control restrictions and the closed-loop dynamics are
approximated in a relatively small subset of the state-space. This subset is selected such that
it is contained in the Region of Attraction of the LQR for the learned dynamics. Thus, it
is expected that the stability analysis based on Theorem 4.3 should be able to prove that the
system is globally stable. In Figure 4-9, the 17 Bisquare kernels derived from the learning
procedure are shown. The number of regions rises significantly from the previous example
i.e. N = 160 and the number of LMIs composing this optimization problem was variating
around 5000 (for the less conservative, but more computationally demanding case). Finally,
it was possible to find a solution that was guaranteeing that all LMIs in (4-16) are fulfilled.

To demonstrate that the given conditions are not always proving stability by definition, the
second scenario forces the learning method to approximate some globally unstable dynamics
in the sense that there exist points that do not converge to the upward equilibrium, but nev-
ertheless activate some kernels. To accomplish that, a limit on the applied torque is imposed
and the subset, in which the dynamics are randomly sampled, is significantly enlarged. For
this scenario, approximately 60 kernels and 750 regions were assigned (depending the trial),
but it was impossible to compute a solution to the corresponding optimization problem. Nev-
ertheless, this result agrees with the expectations for the limited torque scenario, for which
the RoA is a relatively small subset of the considered state-space.
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4-5 Discussion

The analysis performed in this chapter intended to determine a less conservative set of condi-
tions in the form of LMIs that can decide reliably whether the learned dynamics are globally
stable. Starting from the most common Lyapunov function parametrization i.e. Common
Quadratic Lyapunov Function, it was firstly noted that the affine nature of local models
requires special treatment and the S-procedure needs always to be employed, even for a sin-
gle affine local model. The S-procedure managed to reduce conservativeness, but the new
conditions proved to be very conservative in the case of local equilibria located inside the
corresponding activation regions, a case very commonly encountered in practice.
To the best of the author’s knowledge, this is the first time that such a thorough identification
of factors affecting the conservativeness has been attempted for LMIs and no similar remarks
exist in literature. Although the CQLF proved to be a poor choice for LWL, it has been by
far the most popular choice for similar nonlinear representations, where overlap between local
models occurs like T-S fuzzy systems. It can be easily deduced that the same conclusions for
this parametrization apply also for these systems.
The high degree of overlapping local models has led to consider more complex Lyapunov
functions. The PQLF, also studied in other works, was then selected and a novel set of
LMI conditions was determined in a principled manner based on this parametrization. These
conditions impose greater computational cost for the corresponding optimization problem,
since many more regions need to be accounted along with all the transitions in between
them. In the numerical examples, this significant increase was noted, but the optimization
was solved, nevertheless, relatively fast.
The proposed approach based on PQLF required over-approximations of the exact regions,
inducing this way conservativeness in both the reachability analysis and the convex program
(4-16). The degree of added conservativeness depends of course on the roughness of the
approximation. However, it did not played a noticeable role for the numerical examples and
it was still possible to derive a reliable result.
The stability conditions proposed in Theorem 4.3 performed well for the low-dimensional
numerical examples examined in this work, but it is certain that they will suffer from the
curse of dimensionality, as many other similar approaches. As mentioned also in Subsection
4-1-2, the chosen underlying learning algorithm i.e. Receptive Field Weighted Regression is
already known to be susceptible on these kind of problems and the number of local models
will increase exponentially as the dimension of the state-space increases. This will lead to
more regions, more LMIs and larger computational cost and perhaps intractability for very
high-dimensional systems. The number of LMIs will grow exponentially, but the numerical
complexity will not increase accordingly due to the bounding box over-approximations. More
precisely, for every dimension added to the state-space, only two linear inequalities are added
to the corresponding H-representation of the bounding-box. This cost seems to be affordable
taking into account the numerical efficiency of state-of-the-art solvers. However, the difference
of the real partitions and their bounding boxes will increase significantly as dimensionality
grows. Consequently, far more conservative optimization problems will have to be solved.
Finally, it should be remarked that the stability conditions proposed were always global in the
sense that global properties were examined. The RFWR is composed of a finite number of
kernels, which always have finite support (remember that for Gaussian kernels parts far away
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from the center are cut off in training and prediction). Consequently, there is an open subset
of the state-space that is not covered by a kernel (see Figure 4-9), in contrast with DNNs
of the previous chapter, where dynamical models were assigned for the entire state-space.
Therefore, the global conditions are in a sense local, since the representation does not spread
to Rn.
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Chapter 5

Conclusion

The main contribution of this study was the establishment of novel frameworks to perform
stability analysis for two challenging learning control methods. In the following, the outcome
of this work is summarized and a wide outlook for further research directions is presented.

5-1 Contributions

In Chapter 3, a complete framework for stability analysis of the most common class of Deep
Neural Networks (DNNs) was developed. Due to their ability to approximate a very large
variety of complex and high-dimensional mappings, ReLU DNNs can be of great use for
many control applications. This is the first result in literature for stability of these dynamical
models and offers a principled numerical approach to determine many of their important
properties. Therefore, fundamental insight into the approximated dynamics can be gained
for this complicated class of learning representations.

The proposed framework for stability analysis relies on a fundamental hypothesis; DNN dy-
namic models are fully equivalent to Piecewise Affine (PWA) systems. This connection was
proven for the first time and allowed to adjust results from the powerful theory of PWA
systems and determine stability characteristics such as global and local stability, equilibria ,
regions of attraction for DNNs of arbitrary size. It was further shown that given a relatively
accurate approximation, the dynamical properties of ReLU DNNs were deduced reliably with-
out conservativeness. Furthermore, this approach could be employed to assess the accuracy
of the learning representations, if some rough knowledge of the corresponding real properties
already exists.

Stability analysis for Locally Weighted Learning (LWL) methods was examined closely in
Chapter 4, where a set of stability conditions was pursued to ensure a satisfactory trade-
off between reduced conservativeness and reasonable computational cost. Because of their
incremental nature and low computation cost, LWL methods enable online learning, which
is an important quality for learning control. Despite their important advantages, there have
been no other studies on stability analysis for any method of this class or even for methods that
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are fully equivalent. Therefore, careful analysis tailored to these dynamical representations
was required in order to derive a set of non-conservative conditions.

Starting from the most common parametrizations of Lyapunov functions and increasing grad-
ually the complexity, an investigation with respect to the conservativeness was performed. In
every state of this analysis, it is thoroughly explained why the corresponding conditions are
insufficient for a successful stability analysis, providing novel theorems on the nature of LMI
conditions. These results could be used for a variety of LMI-based methods such as T-S fuzzy
models in order to find the set of conditions with the optimal trade-off between conserva-
tiveness and computation cost. Despite the increased complexity of the representation of the
LWL method, it was possible to derive such a set of LMIs that guarantees to reliably deduce
stability, taking into consideration the interaction between overlapping local models, while
remaining numerically tractable.

5-2 Future work

The frameworks for stability analysis of DNNs and LWL methods presented in the previous
chapters provided fundamental results, upon which several future works can be built. For
example, due to the connection between PWA systems and ReLU DNN dynamics proved
in Chapter 3, several results of the PWA theory could be leveraged to study controllability
or observability for ReLU DNNs. In what follows, the confidence that this study could
potentially be the starting point for many interesting directions is justified by both high-level
and precise recommendations for future research.

Extension to higher dimensions As remarked for both learning methods, the curse of di-
mensionality poses several challenges for the corresponding frameworks. Computing positively
invariant subsets and regions of attraction for high dimensional state-spaces is an open prob-
lem for many known control representations, as well as PWA systems. Since stability analysis
of ReLU DNNs relies on the theory of the latter, it was expected they will suffer from the
same issues. Indeed, it was shown that when systems with higher dimensions were exam-
ined, the main computational burden was devoted to the derivation of a maximal positively
invariant subset. Nevertheless, there are relevant studies trying to address this topic for high
dimensional controlled positively invariant sets of linear dynamics with constraints on the
input and the states [103].

The stability conditions proposed for the LWL representation under investigation, on the
other hand, are heavily affected by the number of local models, since RFWR is suffering from
the curse of dimensionality. Therefore, the number of kernels increases exponentially as the
dimensionality grows and as a result the computation cost to solve the semidefinite program
may become very large. A possible answer could be the adjustment of the LMIs proposed to
the need of the Locally Weighted Projection Regression method. The latter is popular for its
dimensionality reduction properties and performs better especially when redundant or irrel-
evant dimensions exist. Nevertheless, addressing scalability to higher-dimensional problems
should be the main future research direction for both of these learning control methods in
order to find more practical applications for challenging and high-dimensional systems like
humainoid robots.
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Robust stability analysis Since the proposed frameworks were focused on the stability anal-
ysis of the learned representations, questions about the implications on the real dynamics
naturally arise. The exact conditions of this study can be directly applied for the real dynam-
ics only under the assumption that they are exactly approximated, which typically is not the
case. Unfortunately, for real applications uncertainty or a small prediction error are always
present during learning. Stability analysis of the learned models is the important first step,
but the error margins naturally available from training could be used via robust analysis to
study the same stability properties for the real dynamics.

For many representations similar to the ones studied in this work like PWA and T-S fuzzy
systems, it is very common to simply extend the conditions for nominal stability to robust
stability (see e.g. [88, 104]). Furthermore, in most cases these conditions for robust stability
are given in the form of LMIs, keeping the corresponding optimization problem tractable
with slightly increased computational cost. Consequently, it seems feasible to expand the two
proposed frameworks in order to consider stability of real dynamics. These expansions could
rely to a large extend on the results presented in this study.

Controller synthesis Although knowing the exact dynamic properties of the underlying
representations could be beneficial for many control problems, design of appropriate control
policies to ensure stability, and thus the safety of the system, remains a very important goal
for learning control methods. In this study, the dynamics that were investigated were always
autonomous in the sense that no control input was considered.

Nevertheless, there are numerous studies in literature for PWA systems and T-S fuzzy systems
that could be provide insight into controller synthesis for ReLU DNNs and LWL methods
respectively (see e.g. [88,90,105]). In some of them, controller synthesis is performed through
LMI problems, but the case of non-convex Bilinear Matrix Inequality problems is also very
common, especially for affine local models. Future research on controller design with stability
guarantees for these two learning methods should provide structured methods in the form of
optimization problems, while maintaining the favorable attributes of convex programming.

Computational efficiency It was remarked in several points of this work that there is a strong
correlation between the number of local models and the number of LMIs, which obviously
affects the numerical efficiency of the approaches. Although the convex programs remained
still easy to solve for the examples presented (even with a relatively old solver), it is expected
that more complex dynamics will require more time for analysis, especially if it is desired to
study stability in an online fashion with LWL. Many recommendations on how to improve
computational efficiency through adjustment of the LMIs have been already made in the last
sections of the corresponding chapters, but more high-level ideas should be explored.

Except for an algorithm for faster computation of PI sets, the over-approximations applied
in several stages of the frameworks affect largely the computational cost for systems with
low and high dimensionality. It is always possible to determine a bounding box as an over-
approximation, but this will certainly have a negative effect in conservativeness. In order
to reduce complexity of the polyhedra i.e. their number of linear inequalities, an algorithm
should be developed such that polytopes with minimum difference from the exact partition
are computed, while maintaining a maximum complexity limit as indicated in [106]. Finally,
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additional insights on the LMIs and what they represent as done in Chapter 4 can facilitate
the construction of an appropriate convex program with minimum numerical cost.
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Appendix A

Proofs

In an attempt to keep the Thesis as compact as possible all the proofs or parts of the proofs
that were omitted in the main part are included in this Appendix.

Theorem 4.1

Proof. Assuming that the requirements of the Theorem are true, it will be proven that Lya-
punov function (4-7) fulfills all four conditions (2-2) of Theorem 2.1.

Starting from the first condition, the value of Lyapunov function (4-7) should be equal to 0
in the equilibrium. Obviously, this is true since xe = 0:

V (xe) = xTe Pxe = 0

If matrix P is positive definite, then:

P > 0 ⇐⇒ xT (k)Px(k) > 0, ∀x 6= 0

and the condition V (x(k)) > 0, ∀x ∈ Rn \ xe is fulfilled. Furthermore, it is obvious due
to the parametrization as a CQLF and (2-2b) that V (x(k)) is also radially unbounded i.e.
V (x)→∞ as ||x|| → ∞ and condition (2-2c) is guaranteed.

To check whether the condition (2-2d) is true some manipulation on ∆V (x(k)) is required:
(to ease up notation the time index k will be dropped)

∆V (x) = fTlwl(x)Pflwl(x)− xTPx =

=


M∑
i=1

hi(x(k))
[
Aix(k) + bi

]
T

P


M∑
i=1

hi(x(k))
[
Aix(k) + bi

]− xTPx
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From well-known relation
∑M
i=1 h

2
i (x) +

∑M
i<j 2hi(x)hj(x) = 1, ∆V (x) becomes:

∆V (x) =
M∑
i

h2
i (x)

[
(Aix+ bi)TP (Aix+ bi)− xTPx

]
+

+
M∑
i<j

hi(x)hj(x)
[
(Aix+ bi)TP (Ajx+ bj)− xTPx+

+ (Ajx+ bj)TP (Aix+ bi)− xTPx
]

The large term in the bracket of the second sum can be further analyzed as follows:

(Aix+ bi)TP (Ajx+ bj)− xTPx+ (Ajx+ bj)TP (Aix+ bi)− xTPx =

= −
[
(Aix+ bi)− (Ajx+ bj)

]T
P

[
(Aix+ bi)− (Ajx+ bj)

]
+

+ (Aix+ bi)TP (Aix+ bi)− xTPx+ (Ajx+ bj)TP (Ajx+ bj)− xTPx

Since (Aix+ bi)TP (Ajx+ bj)−xTPx+ (Ajx+ bj)TP (Aix+ bi)−xTPx ≥ 0 for every x, then:

∆V (x) ≤
M∑
i

h2
i (x)

[
(Aix+ bi)TP (Aix+ bi)− xTPx

]
+

M∑
i<j

hi(x)hj(x)·

·
[
(Aix+ bi)TP (Aix+ bi)− xTPx+ (Ajx+ bj)TP (Ajx+ bj)− xTPx

]
If bi = 0 for some local models, then some terms in the sums simplify. Finally, if the LMIs
(4-8) are fulfilled then:

• ATi PAi − P < 0 ⇐⇒ xTATi PAix− xTPx < 0 i ∈ I0

•
[
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
< 0 ⇐⇒

[
x
1

]T [
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

] [
x
1

]
< 0 ⇐⇒

(Aix+ bi)TP (Aix+ bi)− xTPx < 0 i ∈ I1

Thus, it is proven that ∆V (x) < 0 for every x different than 0 and this concludes the proof.

Corollary 4.1

Proof. It will be shown that LMI (4-8b) can never be fulfilled for any Ai and bi. It can be
noted that if the Schur Complement is applied on a matrix M :

M =
[
A B
BT C

]

M is negative definite if and only if C < 0 and A−BC−1BT < 0. Accordingly, for (4-8b)[
ATi PAi − P ATi Pbi
bTi PAi bTi Pbi

]
< 0
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if and only if

bTi Pbi < 0 and ATi PAi − P −ATi Pbi(bTi Pbi)−1bTi PAi < 0

But since P is positive definite, the first part can never true and there is a conflict between
the conditions of the Theorem

Lemma 1

Proof. Starting from the expression to prove, it is shown that for every x ∈ D

xT (ATP1B +BTP1A− 2P2 +Q)x =xT [−(A−B)TP1(A−B)]x+
xT (ATP1A+BTP1B − 2P2 +Q)x

Since xTP1x > 0, it follows:

xT (ATP1B +BTP1A− 2P2 +Q)x ≤ xT (ATP1A+BTP1B − 2P2 +Q)x

After simple manipulations:

xT (ATP1B+BTP1A− 2P2 +Q)x ≤ xT (ATP1A−P2 +Q)x+xT (BTP1B−P2 +Q)x−xTQx

Therefore, every term on the right part of the inequality is negative for x ∈ D and the proof
is concluded.

Theorem 4.3 for Piecewise Quadratic Stability

Proof. To show condition (2-3b) two well-known Lemmas of linear algebra will be used:

• λmin(M)||x||22 ≤ xTMx ≤ λmax(M)||x||22 (A-1a)
• M > 0 ⇐⇒ λi(M) > 0, ∀i (A-1b)

Furthermore, the following proposition resulting from properties of norms will be useful:

||x̃||22 = ||x||22 + 1 (A-2)

Firstly, to ease analysis we set:

M1 = P1 − ET1 Y1E1 > 0, M̃l = P̃l − ẼTl YlẼl > 0, l 6= 1

Then, from (A-1a) and (A-2):xTP1x ≥ xTM1x ≥ λmin(M1)||x||22,
x̃T P̃lx̃ ≥ x̃T M̃lx̃ ≥ λmin(M̃l)||x̃||22 ≥ λmin(M̃l)||x||22, ∀l 6= 1, ∀x ∈ Xl
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Since every eigenvalue of matrices Ml, M̃l is positive, there exists a constant
α1 = minl(λmin(Ml), λmin(M̃l)) such that:

V (x) =


xTP1x ≥ α1||x||22, x ∈ X1x

1

T P̃i
x

1

 ≥ α1||x||22, x ∈ Xl, l 6= 1
(A-3)

For l 6= 1:
V (x) ≤ λmax(P̃l)||x̃||22, ∀x ∈ Xl. (A-4)

while:
V (x) ≤ λmax(P1)||x||22, ∀x ∈ X1. (A-5)

From (A-2), (A-4) becomes:

V (x) ≤ λmax(P̃l)(||x||22 + 1).

Therefore,

V (x) ≤ λmax(P̃l)

||x||22 + ||x||
2
2

cl


where cl = minx∈Xl

||x||22.

V (x) ≤ λmax(P̃l)

cl + 1
cl

||x||22. (A-6)

From inequalities (A-5) and (A-6), it is then evident that there exists α2 such that:

V (x) ≤ α2||x||22, α2 > 0.

Therefore, condition (2-3b) is fulfilled for η = 2.

The rest of the proof can be found in the main part.
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Appendix B

Software and toolboxes

Although sort mentions were made throughout the main text, the software used for experi-
ments will be presented more thoroughly in this Appendix. Besides referring to tutorials and
studies (no web-page links are provided), the precise function of all these toolboxes in the
context of this work will be also stated.

YALMIP YALMIP (Yet Another LMI Parser) [69] is a free toolbox developed for MATLAB
that essentially creates an interface between the user and the corresponding solver in order
for the latter to solve an optimization problem. The user is able to write a number of
commands in a form very familiar and compact to him (see for example the LMIs in the
previous chapters) and the toolbox will rapidly identify the kind of optimization problem and
select the appropriate solver.

It was by far the most used toolbox and allowed to perform rapid prototyping for most
algorithms and ideas presented in this work. Due to this simplicity, it was not used only
for Semidefinite Programming (SDP), which was its initial goal, but also for Linear Program
and Quadratic Programming instead of searching for dedicated solutions. The Github page
currently available includes a number of tutorials on how to install and familiarize with the
toolbox.

Commands to check: sdpvar, sdpsettings, optimizer

SeDuMi solver The standard solver for SDP, coming together with the latest versions of
YALMIP, is SeDuMi (Self-Dual-Minimization) [68]. It can be used only in MATLAB and Oc-
tave for a large variety of optimization problems, it is free and during this work YALMIP was
always the intermediator between the user and this solver. For medium-sized LMI problems
(a couple of thousands of conditions), SeDuMi performed well. However, it is not supported as
closely as other solvers and for large-sized problems there are other alternatives that can solve
the program faster. For information on how to install it and use in parallel with YALMIP,
see the previous Github page of YALMIP and for more information about distributions and
stand-alone use, there is a dedicated page.
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MOSEK The next solver that was used especially for larger and more computationally
intensive problems is MOSEK. In contrast with SeDuMi, it is not freely available and a full
trial version for academic reasons was mainly used in this study. Nevertheless, a significant
difference in optimization time was noted and it was preferred from SeDuMi as the number of
LMIs and their complexity grew. This solver provides interface to a number of programming
languages such as C, Java, Python and R and for MATLAB and YALMIP, a small change in
the optimizer command was sufficient. Finally, the help of MOSEK toolbox in this work is
gratefully recognized.

MPT The Multi-Parametric Toolbox (MPT) [66] is an open source, MATLAB-based toolbox
that was used in multiple occasions for both Deep Neural Networks and Locally Weighted
Learning. Although it has also other uses, in this study it was mainly used for computational
geometry and perform numerous operations between convex polyhedra. While the MPT has
been updated to a 3.0 version, only the 2.0 one have been used, since it contained some
functions that could not be found in the latest version. The latest version comes together
with YALMIP and there is a software dependency in between these two toolboxes. Version
2.0 has significant differences and need special procedure to be installed.

Operations between convex, closed or open polyhedra like intersections, unions, projections
and Minkowski additions were easily computed numerically with the help of this toolbox.
Finally, very important was the contribution of two other functions; mpt_infsetPWA, which
performed the computation of Maximal Positively Invariant subset and mpt_reachSets, which
performed the reachability analysis.

Commands to check: polyhedron, polytope, mldivide, plus, union

MATLAB Neural Network Toolbox The training of ReLU Neural Networks was accom-
plished in nearly all of the cases using the corresponding toolbox of MATLAB. Although the
level of customization for the training procedure is far lower compared to other NN software
packages, the requirements for function approximation in this study were not very demanding
and it was considered more time efficient to stay with one software tool. However, for future
work, where more complex ideas will be explored, several Python packages will be proven a
better choice.

Commands to check: fitnet, patternnet, poslin

Locally Weighted Statistical Learning Software Although this piece of software does not
come in a toolbox, it has also been a great aid for this work. It includes a number of
functions and numerical examples for MATLAB that allow to derive LWL representations.
This software is freely available in the page of Computational Learning and Motor Control
(CLMC) lab of University of South California (USC) and refers to multiple LWL methods
such as LWR, RFWR and LWPR. Although some parts of the code for the RFWR were
taken directly, a very large part was adjusted to the needs of this study, since obviously no
great customization can be offered.
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Appendix C

Submitted conference paper

Parts of the work presented in the previous chapters have been submitted to Conference on
Robot Learning (CoRL) 2018 in close cooperation with Dr. Sebastian Trimpe of Max-Planck
Institute for Intelligent Systems in Stuttgart, Germany. More precisely, most of the results
and analysis performed in Chapter 3 have been included in this submission, but numerous
parts and details given in Chapter 3 had to be left out due to space limitations. There is
also a Supplementary material section added to the end, where some important proofs of the
main text were added, as well as the usual Reference section1. Since the submission of this
paper to the conference, additional work on the topic has been done and Chapter 3 should be
considered more thorough. No results from other chapters of the thesis are included to the
paper.

1The page number given at the bottom of each page is referring to the submitted paper and not the thesis
itself, whose page number is always written at the right or left upper corner.
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Abstract: Neural networks (NNs) are a popular tool for learning dynamic system
models from data. While such models have been shown to yield good predic-
tion performance, one typically has no insight into the dynamic system properties
that they represent, for example, stability. For an important class of NNs (those
with ReLU activations), we develop a theoretical and computational framework
to analyze stability properties of a given NN dynamics model. First, we estab-
lish equivalence between ReLU NN models and piecewise affine (PWA) systems.
This allows us to leverage well-known tools for PWA system analysis for develop-
ing a framework to compute all equilibria of a ReLU NN model and characterize
their stability property. Synthetic and real-world examples show the efficacy of
the framework.

1 Introduction

Learning dynamic system representations from data is a key task in robot learning, [1, 2]. In this
work, we study nonlinear dynamics models represented by (deep) neural networks (NNs). Specifi-
cally, we consider nonlinear discrete-time dynamics models

x(t+ 1) = fNN(x(t)) (1)

where t is the time index, x(t) ∈ Rn the state, and fNN a NN representing the state transition
dynamics. The objective of this work is to develop a theoretical and computational framework for
analyzing the stability properties of (1).

We consider NNs with rectified linear units (ReLUs) as activations and an arbitrary number of
layers. This class of NNs has become very popular, mainly due to their use for deep learning [3]. In
robotics, NN dynamics (1) with ReLU activation have been used, for example, in [4]. Despite their
popularity, there is a lack of understanding of what they actually represent and a number studies have
been devoted the recent years to explain the success of this particular learning architecture [5, 6].

Probably the most important property for understanding and characterizing dynamic systems is
stability. Loosely speaking, stability determines whether a dynamic system “blows up” as time
progresses, or remains within some bounds. Thus, stability is critical for performance and safety.
However, proving stability for general nonlinear dynamics is a difficult task. The key idea of this
work is to take advantage the structure of NNs with ReLU activation. In particular, we will estab-
lish their equivalence to piecewise affine (PWA) systems, which is a well-known class of dynamics
models and has been studied extensively in control literature [7, 8]. By leveraging powerful analysis
tools for PWA systems, we develop a framework that will allow us to compute all equilibria of (1),
characterize their stability, and compute approximate regions of attraction.

Contributions In detail, this paper makes the following main contributions: (i) establishing the
equivalence between ReLU NN and PWA dynamics models; (ii) presenting a stability proof for
ReLU NN dynamics models; (iii) developing a framework to compute equilibria, their characteriza-
tion, and region of attraction; and (iv) illustration in numerical and real-world dynamic system.

Submitted to 2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland (under review).
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Related Work Although NNs with one hidden layer and logistic or sigmoid activation functions
have been studied extensively for modeling and control of dynamics [9, 10], the use of deep neural
networks in this area has been very limited. In [11], deep neural networks with ReLUs were trained
to approximate the solution to the Hamilton-Jacobi-Bellman equations, while in [12] a deep NN
provided policies equivalent to PID controllers. In [13], a deep NN was trained to provide both state
and control input for a whole trajectory.

Stability is an extensively studied property for recurrent NNs, which typically involve an internal
state. Literature on this topic has been focused on different structures like cellular NNs [14], delayed
cellular NNs [15, 16], and Hopfield NNs [17, 18]. On the other hand, literature on stability of
feedforward NNs with piecewise linear activation functions has been narrow and, to the best of
the authors’ knowledge, only a couple of studies have been concerned with this issue. In [19,
20], stability conditions based on a piecewise affine activation function (piecewise affine perceptron
(PAP)), were proposed using a piecewise quadratic Lyapunov function. Although the activation
function mentioned is similar to the ReLU, more linear regimes are considered for PAP and its
response tries to resemble the one of sigmoid activation functions, and thus also has a vanishing
gradient as the latter.

For Gaussian processes (GPs), a different and similarly popular method for model learning, stability
analysis tools have recently been published in [21, 22]. While ultimately stability analysis for non-
linear systems resorts to some Lyapunov-type argument, the concrete problem and tools are different
from the ones herein.

Notation Given two vectors u, vi ∈ Rn, their jth entries (j ≤ n) are denoted by uj and vij .
Given two matrices U, Vi ∈ Rn×m, their jth rows (j ≤ n) are denoted by Uj and Vij , while their
j × k entries by Uj,k and Vij,k. diag(z) is an operator that creates a square diagonal matrix with
the elements of vector z on the main diagonal. The sets of strictly positive and non-negative real
numbers are denoted by R>0, R≥0 respectively.

2 Neural Networks with ReLUs are Piecewise Affine Systems

In this section, we show that dynamical systems described by NNs with ReLUs are piecewise affine
(PWA) systems. For this, we first formally introduce both NN and PWA dynamical system repre-
sentations, and then prove their equivalence.

2.1 ReLU Neural Networks

We consider nonlinear dynamics (1), where the dynamics function fNN is represented by an NN
with L hidden layers and ReLU activation functions max(0, ·). We assume an n-dimensional state
x(t) ∈ Rn defined on a domain D ⊆ Rn.

Formally, we introduce σ(y) = [max(0, y1),max(0, y2), . . . ,max(0, yn)]T as the vector-valued
ReLU function, which is evaluated for each element yi of the vector y. Furthermore, let nj (j =
1, 2, ..., L) denote the number of neurons in the jth layer, xj−1 ∈ Rnj the input-vector, and Wj ∈
Rnj×nj−1 and Bj ∈ Rnj the corresponding weighting matrix and bias. The output of the jth ReLU
layer is then given by xj = σ(Wjxj−1+Bj). In addition toL hidden layers, an affine transformation
is commonly used as the output layer (indexed by L+ 1). Let `j(xj−1) = Wjxj−1 +Bj denote the
affine transformation of xj−1. We can then formally state the considered NN as fNN = `L+1 ◦ σ ◦
. . . σ ◦ `1; that is, for (1),

x(t+ 1) = (`L+1 ◦ σ ◦ . . . σ ◦ `1)(x(t)) (2)
where ◦ denotes function composition, and n1 = nL+1 = n.

Depending on the input xj−1, different activation patterns will occur in layer j; that is, some neurons
will be activated (input to neuron greater than zero), others will not (less than zero). In order to index
all possible activation patterns in layer j, we use ij ∈ {1, . . . , Nj} with Nj ≤ 2nj . Therefore, for
a given input x(t) to the network (2), there is a specific combination of neurons activated in each
layer, which is specified by (i1, i2, . . . , iL).

For a shallow (L = 1) ReLU NN, (2) can be simplified as follows:
x(t+ 1) = W2σ(W1x(t) +B1) +B2. (3)

2
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2.2 Piecewise Affine Systems

Firstly defined in [7], PWA systems are determined by a finite number of affine state update equa-
tions, where each one is associated with an activation region (typically a polyhedron) in the state
space. More precisely, a discrete-time PWA system is given by one of the following two equivalent
forms:

x(t+ 1) = Aix(t) + bi ∀x(t) ∈ Xi ⊂ D (4)

x̃(t+ 1) =

[
Ai bi
0 1

]
x̃(t) = Ãix̃(t) ∀x(t) ∈ Xi ⊂ D (5)

where x̃(t) :=
[
x(t) 1

]T
, Ai ∈ Rn×n, bi ∈ Rn, and i ∈ {1, 2, . . . ,N} indexes the polyhedron

Xi ⊂ D. While each individual system (Ai, bi) is essentially linear, the overall PWA system (5)
represents a switching and thus nonlinear dynamical system. PWA can thus represent complex
nonlinear systems and have been subject of many studies in control by different authors [7, 23, 24,
25, 26]. A primary concern in design and analysis of PWA systems is on stability. We emphasize that
stability does not follow from stability of an individual system Ai, but the overall PWA dynamics
and switching nature have to be considered in general [27].

In the vast majority of studies, the PWA systems are continuous across the whole domain D, while
the individual polyhedra Xi are convex. The latter property implies that each polyhedron can be
described by a number of closed half-spaces in Rn (H-representation); that is, they can be given in
the form of linear inequalities

Xi = {x ∈ Rn|Eix+ εi ≥ 0} = {x ∈ Rn|Ẽix̃ ≥ 0} (6)

with Ẽi :=
[
Ei εi

]
. It is also common in PWA models to assume that the intersection of the

interiors of two polyhedra is the empty set, i.e., int(Xi) ∩ int(Xj) = ∅ for all i, j ∈ {1, . . . ,N}.
To characterize the dynamic behavior of the PWA system, the analysis of the possible transitions
between their local regions is often useful. Since the local dynamics are time-invariant (Ai, bi
are constant), it suffices to consider the transition for one time step for each region in order to
characterize all the possible transitions. This is called (one-step ahead) reachability analysis [8].
The set that represents all the possible transitions between regions Xi is given by

Ω := {(i, j) |x(t) ∈ Xi, x(t+ 1) ∈ Xj}. (7)

The reachability analysis (i.e., computing the set (7)) can be accomplished by solving a number of
linear programs (LPs) [8]. The result of this analysis is usually represented by a square matrix T ∈
{0, 1}N×N (sometimes called transtition matrix), whose entries are defined as follows: Ti,j = 1 if
∃x(t) ∈ Xi, x(t+ 1) ∈ Xj , and Ti,j = 0 otherwise.

2.3 Equivalence Theorem

The following theorem states that the NN dynamics (2) can equivalently be represented as the PWA
system (5). The theorem is a main insight of this paper and will enable the stability analysis of the
NN dynamics in the following section.
Theorem 2.1. Any dynamical system (2) represented by an NN with ReLU activations is equivalent
to the discrete-time PWA system (5) with

Ai = WL+1

( L−1∏

j=0

W
iL−j

L−j

)
, bi = WL+1

[ L∑

j=1

( L−j−1∏

k=0

W
iL−k

L−k

)
B
ij
j

]
+BL+1,

Ẽi =




diag(z1,i1)W1 diag(z1,i1)B1

diag(z2,i2)W2W
i1
1 diag(z2,i2)(W2B

i1
1 +B2)

...
...

diag(zL,iL)WL

( L−1∏
j=1

W
iL−j

L−j

)
diag(zL,iL)

(
WL

[ L−1∑
j=1

( L−j−1∏
k=1

W
iL−k

L−k

)
B
ij
j

]
+BL

)




and W ij
j = [ 12 diag(1nj

+ zj,ij )Wj ], B
ij
j = [ 12 diag(1nj

+ zj,ij )Bj , where i ∈ {1, . . . ,N} indexes

the affine models, whose number N is upper bounded by
∏L
j=1Nj , while its domain and image are

continuous in the whole state space.

3
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Proof. To focus on the main ideas, we present the proof for L = 1 here, i.e., system (3). The general
case is given in the supplementary material. For ease of notation, we replace i1 with i.

Firstly, we show that the input space is decomposed into a finite number of convex polyhedra Xi.
It is well known from recent literature [28] that the use of piecewise affine σ activation functions
in neural networks divides the original input space Rn in a number of linear regions, separated
by hyperplanes. For the NN (3), this hyperplane arrangement is determined by the hyperplanes
Hj = {x : W1jx+B1j = 0}, where W1j and B1j are the jth rows of W1 and B1 respectively, with
j ∈ {1, 2, . . . , n1}. According to [29], the maximum number of regions created by an arrangement
is finite.

Each linear region in the input/state space, denoted as Xi, can be described by a unique vector of
markings zi ∈ {−1, 1}n1 , whose entries are 1 when the corresponding neurons in that region are
activated and −1 when they are not. Therefore, this linear region can be non-uniquely described
by the following matrix inequality: Xi := {x ∈ Rn|diag(zi)(W1x + B1) ≥ 0}. This description
effectively proves that each linear region is an intersection of a finite number of closed half-spaces
and thus, by definition a convex polyhedron.

The next properties that needs to be proved is the existence of a unique affine update equation for
each region as well as the continuity of its image, an assumption usually made for PWA systems. It
can be noted that when the jth neuron is not activated in a region, then the following prepositions are
true: W1jx + B1j ≤ 0, σ(W1jx + B1j) = 0, zij = −1. Using an alternative expression for the σ
vector-valued function based on the marking vector zi the state progression can now be given in the
form: x(t+ 1) = W2[ 12 diag(1n1 + zi)(W1x(t) +B1)] +B2, where 1n1 is a vector with n1 ones.
Therefore, the state dynamics using shallow ReLU NNs can be expressed in the same form as (5)
with: Ai = 1

2W2 diag(1n1 + zi)W1 and bi = 1
2W2 diag(1n1 + zi)B1 +B2.

3 Stability Analysis for ReLU NN Dynamics

The equivalence between ReLU NNs and PWA systems, which has been established in the previous
section under mild assumptions, allows for leveraging powerful analysis tools that have been devel-
oped for PWA systems and bringing them to bear for the analysis of the NN dynamics (1). These
tools are typically based on linear matrix inequality (LMI) formulations, which lead to convex opti-
mization problems [30] with some readily available solvers. In this work, we focus on stability, and
establish a computational framework to analyze stability properties of the NN dynamics (1).

3.1 Notions of Stability

We start by introducing standard stability concepts for discrete-time dynamic systems
x(t+ 1) = f(x(t)), x(0) = xinit (8)

where xinit is the initial condition. We assume that (8) has an equilibrium, or fixed point, xe (not
necessarily unique), i.e., xe = f(xe), whose stability properties we seek to analyze. A common
notion of stability is that of exponential stability:
Definition 3.1 (Global exponential stability, [31]). Consider the autonomous nonlinear dynamics
(8). If for all x(0) ∈ Rn there exists some θ ∈ R≥0, and ρ ∈ [0, 1) such that: ||x(k) − xe|| ≤
θρk||x(0)− xe||,∀k ∈ N, then equilibrium xe is globally exponentially stable.

Exponential stability ensures that trajectories starting from an initial condition will converge expo-
nentially quickly to an equilibrium. In Definition 3.1, stability is defined globally; that is, conver-
gence must hold for every initial condition in the state space. Since global stability to a unique
equilibrium is typically not present for complex nonlinear systems, we also consider the notion of
local stability:
Definition 3.2 (Local Exponential stability, [31]). Consider the autonomous nonlinear dynamics
(8). If for all x(0) ∈ R ⊂ Rn there exists some θ ∈ R≥0, and ρ ∈ [0, 1) such that: ||x(k)− xe|| ≤
θρk||x(0)− xe||,∀k ∈ N, then equilibrium xe is exponentially stable inR.

The set R is called the region of attraction (RoA). Obviously, the larger the RoA, the “stronger”
the stability property in the sense that more initial conditions will converge to the equilibrium at
hand. In the following, we shall be concerned with analyzing and computing global stability, local
stability, and the region of attraction for the NN dynamics (1).

4
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3.2 Stability Theorem

One of the most common ways to examine the stability of a nonlinear system (8) is the direct
method of Lyapunov (see e.g., [32, 33]). It is based on finding a positive value function V constantly
decreasing across all the possible trajectories x(t) of the system.

Theorem 3.1 ([34]). Let xe be an equilibrium of (8), f be continuous in x, and denote by V :
Rn → R a (possibly discontinuous) function of the state x. If there exists such a function V and
α1, α2, α3, η ∈ R>0 such that the following conditions are satisfied: (i) V (xe) = 0; (ii) α1||x||η ≤
V (x) ≤ α2||x||η,∀x ∈ Rn {xe}; (iii) ∆V (x) = V (f(x)) − V (x) ≤ α3||x||η , ∀x ∈ Rn \ {xe},
then the equilibrium xe is globally exponentially stable.

Finding a Lyapunov function V for a general system (8) is hard and no general method to compute
it exists. However, for certain classes of dynamic systems and, in particular, for PWA systems, such
methods do exist (e.g., [26, 8]). We briefly sketch the approach here and refer the interested reader
to the mentioned references.

To systematically construct a Lyapunov function for PWA systems, it is necessary to impose a cer-
tain parametrization on V , such that an optimal tradeoff between complexity and expressibility is
achieved. Following [8], the parametrization as piecewise quadratic Lyapunov function (PQLF) is a
good choice for a number of PWA systems. A PQLF postulates a quadratic function Vi(x) = xTP̃ix

with P̃i a symmetric matrix corresponding to a single region Xi. Combined with the PWA system
dynamics (4), LMI conditions in the free variables Pi can then be derived. If feasible Pi are found
that satisfy the LMI conditions, this proves exponential stability of the PWA system. Searching for
feasible P̃i typically is a convex optimization problem, for which computational tools are available
[35, 36]. We propose to use these tools for stability analysis of the ReLU NN dynamics (2).

Assume that the ReLU NN (2) has a single equilibrium xe. We can assume xe = 0 without loss
of generality, because an appropriate coordinate change x− xe can always be imposed to move the
equilibrium to the origin. We consider the equivalent representation of (2) as PWA system given by
the dynamics (4), (5), and N polyhedral regions (6), which is assured by Theorem 2.1. We further
assume 0 ∈ X1.1 The set of all possible transitions is Ω as in (7), which can be computed using
reachability analysis as details in Sec. 2.2. With this, we can state the following theorem:

Theorem 3.2. If there exist symmetric matrices P1 ∈ Rn×n, Y1 ∈ Rr1×r1 ; P̃i ∈
R(n+1)×(n+1), Yi ∈ Rri×ri for all i ∈ {2, . . . ,N}; and Uij ∈ Rri×ri for all (i, j) ∈ Ω such
that Yi, Uij have nonnegative entries and the following LMIs are fulfilled:

P1 − ET1 Y1E1 > 0, P̃i − ẼTi YiẼi > 0 ∀i ∈ {2, . . . ,N} (9)

AT1 P1A1 − P1 + ET1 U11E1 < 0, ÃTi P̃jÃi − P̃i + ẼTi UijẼi < 0 ∀(i, j) ∈ Ω \ {(1, 1)} (10)

then the equilibrium xe of (2) is globally exponentially stable.

Proof. The proof follows along the same lines as other stability proofs for PWA system with PQLFs
(e.g., [37, 25]). It is based on showing that the conditions of this theorem imply the conditions of
Theorem 3.1; in particular, (9) and (10) ensure the second and third conditions in Theorem 3.1, while
the first condition is satisfied by construction V (xe = 0) = xT

eP1xe. A detailed proof is included in
the supplementary material.

Theorem (3.2) provides LMI conditions given in terms of the NN parameters (cf. Theorem 2.1),
which can be checked with computational tools. The problem of searching for feasible solution
(i.e., Pi, P̃i, Yi, Uij) is convex. If a solution is found, stability for the NN dynamics (2) is guaranteed.

We remark that Theorem 3.2 provides a sufficient conditions for stability. Hence, the conditions
can be conservative in some cases; that is, the criterion may fail to determine stability despite the
actual dynamics being stable. This is a typical characteristic of these stability tools and, in a sense,
the price one has to pay to obtain tractable stability conditions. Nonetheless, there are ways to
reduce conservativeness at the expense of more involved formulations. One simple example is to
consider only the subset of region Xi from which the transition to region Xj is possible instead of

1This is without loss of generality as long as the origin is not on the boundary of more than one region,
which is a singular case that almost never occurs in practice.

5
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the whole Xi and consequently replace matrix Ẽi with matrix Ẽij ∈ R(rij)×(n+1) with ri ≤ rij ≤
ri + rj defined such that: Xij := {x(t)|x(t) ∈ Xi, x(t + 1) ∈ Xj} = {x(t)|Ẽij x̃(t) ≥ 0}. This
change will make the solution of the LMIs (9) and (10) more likely, but increase drastically the
size of optimization matrices Uij and thus the computational cost. For complex partitions and high
dimensional state-spaces, where the polyhedra need exponentially more hyperplanes to be fully
described, this technique may render the above optimization problem intractable. In Section 4,
where the partition is simple, this procedure is preferred than the alternative, while in Section 5 the
NN dynamics are far more complex it should be avoided.

3.3 Complete Framework for Stability Analysis

Theorem 3.2 is a global stability result; that is, it states conditions for a single equilibrium being
globally attractive (cf. Definition 3.1). Most complex nonlinear systems (8) (and thus also their
approximation as NN (1)) will not have this property. In general, there will be multiple equilibria,
and we need to resort to local stability according to Definition 3.2. In this section, we leverage the
result of Theorem 3.2 to propose a complete framework for analyzing stability properties of (1).
This will include the computation of all equilibria, determination of their local stability properties,
and computation of the region of attraction.

Computation of equilibria First, we compute all equilibria of the ReLU NN dynamics (2) rep-
resented by (4), (5), and (6). Since for xe being an equilibrium of (1), we have xe = fNN(xe), all
candidate equilibrium points are obtained by solving (4) with x(t) = x(t + 1) = xe, which yields
xie = (I − Ai)−1bi (assuming the inverse exists). Then, by examining whether xie ∈ Xi for each
one of them, we can identify all equilibria of (2).

Local stability Furthermore, each local update equation can be seen as an affine linearization
of the dynamics and thus, use well-known theory for linearized dynamics (see e.g., [38, Cha. 2]).
In particular, stability for each equilibrium2 xie ∈ int(Xi) is characterized by the eigenvalues λj ,
j = 1, . . . , n, of Ai:

(i) If |λj | < 1 for all j ∈ {1, 2, . . . , n}, then xie is a (locally) exponentially stable equilibrium.

(ii) If there exists j ∈ {1, 2, . . . , n} such that |λj | > 1, then xie is an unstable equilibrium.

Region of attraction While the above tests (i) and (ii) characterize local stability of an equilibrium
xie ∈ int(Xi), they do not make any statement about the RoA Ri of that equilibrium. In fact,
this RoA can be arbitrarily small (for small Xi), or large and comprise several regions (the typical
case). Therefore, it is of key interest to determined the RoA. The exact computation of the true
RoA Ri is generally a very difficult task and for most cases computing a sufficiently large estimate
Di satisfactory. To ease the presentation, we consider a single (locally) stable equilibrium xe in the
following and compute its approximate RoAD. The process can be repeated for all stable equilibria.

In the case of PWA systems, simply adjusting Theorem 3.2 by examining only a smaller number of
regions around the equilibrium instead of the whole state space will not be sufficient to deduce the
set D. In addition to the LMIs (9) and (10), D also has to be a Positively Invariant (PI) set under the
dynamics (5). Formally, for D being PI this implies that if x(k) ∈ D, then f(x(k)) ∈ D, and this
condition ensures that the state will never leave the boundaries of the set. By applying a coordinate
change such that xe = 0 is the new equilibrium, the following Corollary then follows from Theorem
3.2. Again without loss of generality, xe ∈ X1, and the number of regions that composeD is denoted
N ′ ≤ N .
Corollary 3.1. Let D ⊂ Rn be PI, Xi with i ∈ {1, 2, . . . ,N ′} be the polyhedral regions that
compose D, and Ω′ denote the corresponding transitions. If there exist symmetric matrices P1 ∈
Rn×n, Y1 ∈ Rr1×r1 , P̃i ∈ R(n+1)×(n+1), Yi ∈ Rri×ri , i = 2, . . . ,N ′, and Uij ∈ Rri×ri ,∀(i, j) ∈
Ω′ such that Yi, Uij have nonnegative entries and the following LMIs are fulfilled:

P1 − ET1 Y1E1 > 0, P̃i − ẼTi YiẼi > 0 ∀i ∈ {2, . . . ,N ′} (11)

AT1 P1A1 − P1 + ET1 U11E1 < 0, ÃTi P̃jÃi − P̃i + ẼTi UijẼi < 0 ∀(i, j) ∈ Ω′ \ {(1, 1)} (12)
then xe is (locally) exponentially stable, and D an estimate of its RoA.

2The equilibrium xe on the boundary is again a singular case, typically not relevant in practice.
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Table 1: Stability results computed for ReLU NN dynamics of the ship roll example.
Neural network Equilibrium Local stability Volume of RoA

Ship-NN 1: (0, 0) stable 13.888
2: (0, 2.091) stable 13.525
3: (0, 0.866) unstable 0

4: (0,−2.061) stable 13.6848
5: (0,−0.88) unstable 0

(a) True dynamics (b) ReLU NN dynamics

Figure 1: Equilibria and regions of attraction (RoA) for the numerical ship roll example.

The corollary can be proved the same way as Theorem 3.2, except that now only the polyhedral
partitions inside D must be examined. Applying the corollary requires knowledge of the PI set D,
which can be computed using existing algorithms. See supplementary material for details.

4 Illustrative Numerical Example

In order to illustrate the proposed framework for stability analysis of NN dynamics, we consider the
dynamics of roll motion of ships in rough seas as studied in [39]. The dynamics are described by
the second-order differential equation, [39], θ̈+ (2µ1θ̇+ µ2θ̇

3) + (ω2
0θ+ a1θ̇

3 + a2θ̇
5) = 0, where

ω0, ai, µi, i = 1, 2 are known coefficients. A discrete-time model (8) with n = 2 states can be
derived using standard discretization techniques [33]. This example is illustrative as it involves five
equilibria; three stable ones (θ, θ̇) = (0, 0), (0, 2.078), (0,−2.078) and two unstable ones (θ, θ̇) =
(0, 0.924), (0,−0.924) . The equilibria and the true RoA (computed via numerical simulation) are
shown in Fig. 1a. Matlab code for this example is available in the supplementary material.

For this synthetic example, we trained a NN from data randomly sampled from a rectangle in the
two-dimensional state space. Because of the relatively simple dynamics, a shallow NN with 8 Re-
LUs in the single hidden layer was sufficient. A ReLU NN (2) approximating the real dynamics
sufficiently well (by RMS test error 3 · 10−4) was trained using MATLAB Neural Network toolbox
with random initialization of the network weights.

We applied the framework from Sec. 3.3 to compute equilibria, their local stability property, and
their RoA. The results are presented in Table 1 (including the volume of the RoA) and Fig. 1b. As
can be seen, all five equilibria are identified and correctly characterized as stable/unstable. Moreover,
the computed RoA are reasonable approximations of the true ones (cf. Fig. 1a and 1b).

While there is a good match of the stability properties of the true dynamics and the NN approxi-
mation in this example, this obviously depends on how well one succeeds in training the NN. We
emphasize that the contribution of this work is not in how to learn good NN dynamics models, but
rather in analyzing a given or trained NN. In fact, the results of the stability analysis can help to
evaluate different NN models, for example, when some stability properties are known.

5 Case Study of a Cart-pole Experiment

After demonstrating the efficacy of the proposed framework on a 2D synthetic example in the pre-
vious section, we now present results for NN dynamics trained on real-world data from a hardware
experiment. We use a standard cart-pole experiment for this study. The cart-pole system has four

7
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Table 2: Stability results for the five top scoring NNs.
Neural network Score Equilibrium (p, θ, ṗ, θ̇) Local stability Volume of RoA

NN1 0.0223 (0.13, 0.01,−8 · 10−3, 0.08) stable 0.032
NN2 0.0229 (−0.55, 0.13, 0.98,−0.29) unstable 0
NN3 0.0232 (−1.11,−0.02, 0.04,−0.29) stable –
NN4 0.0265 (−0.68,−0.09, 0.35, 0.14) stable –
NN5 0.0279 (1.37, 0.09,−0.21, 0.69) stable 0.021

states: position of the cart p, angle of the pole θ, and the corresponding linear and angular velocities.
We consider the dynamics of the cart-pole stabilized around its upright equilibrium with a standard
linear quadratic regulator (LQR) [40].

A data set was obtained on the cart-pole experiment by exciting the system with a suitable chirp
signal (sinusoid with increasing frequency), which was applied in superposition to the control input
of the LQR. Angle and position of the cart are measured with encoders, from which the veloc-
ities are computed through finite differences. All signals were low-pass filtered (noncausal) and
downsampled to 100 Hz. With this data, multiple ReLU NNs (2) (with L = 2 hidden layers, and
n1 = 8, n2 = 6 neurons) were trained. For training the NNs, a dynamics model in the form of
x(t+ 1) = x(t) +f(x(t)) was assumed instead of (8); that is, the NN represents incremental, rather
than absolute dynamics. This is beneficial especially for small sample times (and thus small incre-
ments), and common practice when training NN dynamics. The stability analysis directly extends
to this case, which is a simple transformation.

A big challenge observed in these experiments was how to rank the different NNs that were obtained
from different random initialization and training runs. In particular, the mean squared error (MSE)
on a validation set, which is usually the criterion used to evaluate NNs, was not a good indication
of the performance of a NN in approximating well the true dynamics. In order to capture long-term
predictions well, we instead took the MSE after unrolling the NN dynamics for 500 steps as the
criterion to rank the NNs (“Score”). For the top five NNs, we performed the stability analysis as per
Sec. 3.3, whose results are given in Table 2.

As expected, in each case one equilibrium was found. While most NNs have (locally) stable equi-
libria, in case of NN2, the NN dynamics were found to be unstable. As remarked in Sec. 4, a useful
application of the proposed stability analysis is to select suitable NN models. In this case, where
from physical considerations we know that there is one stable equilibrium, one can discard NN2.

Although the number of regions Xi varies significantly from training trial to training trial, it was
not uncommon to get more than 1000 regions through the whole state-space. For NN3 and NN4,
no volume of the RoA is computed, since the computation required by the MPI algorithm became
intractable. Thus, an overapproximation was derived by stopping the MPI algorithm when the num-
ber of regions grew too large as explained in Section 3. The resulting polyhedra were composed of
many inequalities due partly to the high state dimensionality, which made the solution of the LMIs
very costly. Again an overapproximation of the complex polyhedra with bounding boxes solved the
problem and stability could be determined. For NN1 and NN5, the computations could be performed
without problem. For NN1, the computed RoA is illustrated in Fig. 1 of the Supplementary material.

6 Conclusions

We presented a computation framework to analyze stability properties of (deep) neural network rep-
resenting dynamic systems (1). By establishing the equivalence between ReLU NN and piecewise
affine (PWA) dynamics models, we could leverage existing tools for PWA stability analysis. The
resulting framework allows one to compute all equilibria, their local stability (stable/unstable), and
approximate regions of attraction for a ReLU NN dynamics model. While the focus of this work is
not on how to best train NN dynamics models, but rather on providing an analysis tool for a given
NN, the proposed framework can be beneficial for model selection, as discussed for the cart-pole
example. The presented synthetic and real-world examples demonstrate the efficacy in characteriz-
ing stability properties of NN dynamics, and thus interpreting learning results in terms of important
system-theoretic properties. Addressing computational and scalability issues as partially observed
in the real-world example is an important topic for future work.
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[33] K. J. Åström and B. Wittenmark. Computer-controlled systems: theory and design. Prentice-
Hall, 1990.

[34] S. Sastry. Nonlinear systems: analysis, stability, and control, volume 10. Springer Science &
Business Media, 2013.

[35] J. F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.
Optimization methods and software, 11(1-4):625–653, 1999.

[36] J. Lofberg. Yalmip : a toolbox for modeling and optimization in matlab. In 2004 IEEE Interna-
tional Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pages 284–289,
Sept 2004.

[37] G. Feng. Stability analysis of piecewise discrete-time linear systems. IEEE Transactions on
Automatic Control, 47(7):1108–1112, 2002.

[38] A. C. Luo. Regularity and complexity in dynamical systems. Springer, 2012.

[39] A. A. Zaher. Nonlinear control of systems with multiple equilibria and unknown sinusoidal
disturbance. Communications in Nonlinear Science and Numerical Simulation, 12(8):1518 –
1533, 2007. ISSN 1007-5704.

[40] B. D. O. Anderson and J. B. Moore. Optimal Control: Linear Quadratic Methods. Dover
Publications, Mineola, New York, 2007.

10

87

Master of Science Thesis Konstantinos Kokkalis



Supplementary material

6.1 Full Proof for Theorem 2.1

Proof. The proof for the deep case (L > 1) will proceed the same way as for the shallow case by
showing the partition of the input/state space in a finite number of convex polyhedra as well as the
correspondence of each such polyhedron with an affine state update equation.

Given a point in the state space, only a numberm1 ≤ n1 of neurons in the first layer will be activated.
As for the shallow neural network, a vector z1,i1 ∈ {1,−1}n1 can describe which neurons in the
first hidden layer are activated, where the index i1 denotes one of the possible combinations of 1s
and 1s for the first hidden layer. All the points in Rn that activate the same neurons constitute a
region non-uniquely defined by either of the following inequalities:

diag(z1,i1)(W1x0 +B1) ≥ 0

diag(z1,i1)(W1x(t) +B1) ≥ 0.
(13)

Accordingly, for the same point in the state space, only a number m2 ≤ n2 of neurons in the second
layer will be activated and a new vector z2,i2 ∈ {1,−1}n2 can be assigned, denoting the activated
neurons in the second hidden layer. For this case, except for the matrix inequality (13), another
matrix inequality is true for the points that activate the same neurons in layers 1 and 2:

diag(z2,i2)(W2x1 +B2) ≥ 0

diag(z2,i2)[W2(W i1
1 x(t) +Bi11 ) +B2] ≥ 0

(14)

where
W i1

1 = [
1

2
diag(1n1 + z1,i1)W1] Bi11 = [

1

2
diag(1n1 + z1,i1)B1].

Generalizing the previous procedure for the mth layer and defining the corresponding and vector
zm,im the following inequalities are true for that layer:

diag(zm,im)(Wmxm−1 +Bm) ≥ 0

diag(zm,im){Wm[. . . (W i1
1 x(t) +Bi11 ) + . . . ] +Bm} ≥ 0

(15)

The last inequality can be written with respect to the state vector x(t) the following way:

diag(zm,im)

{
Wm

(m−1∏

j=1

W
im−j

m−j

)
x(t) +Wm

[m−1∑

j=1

(m−j−1∏

k=1

W
im−k

m−k

)
B
ij
j

]
+Bm

}
≥ 0 (16)

In conclusion, a point in the state-space will always fulfill a set of L matrix inequalities:

diag(z1,i1)(W1x(t) +B1) ≥ 0

diag(z2,i2)[W2(W i1
1 x(t) +Bi11 ) +B2] ≥ 0

...

diag(zL,iL)

{
WL

( L−1∏

j=1

W
iL−j

L−j

)
x(t) +WL

[ L−1∑

j=1

( L−j−1∏

k=1

W
iL−k

L−k

)
B
ij
j

]
+BL

}
≥ 0.

(17)

Matrices W ij
j and vectors Bijj are given by the following relations:

W
ij
j = [

1

2
diag(1nj

+ zj,ij )Wj ] B
ij
j = [

1

2
diag(1nj

+ zj,ij )Bj ]. (18)

Therefore, it can be seen that each linear region Xi, can be non-uniquely defined by a num-
ber of M =

∑L
j=1 nj linear (affine) inequalities and uniquely by the combination of indices

(i1, i2, . . . , iL) (or a large marking vector Z ∈ {1,−1}M ). Consequently, each region is an in-
tersection of M closed half-spaces and a convex polyhedron.
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If the (i1, i2, . . . , iL) combination correspond to the current state vector x(t), the state vector at the
next time step can be formulated using relations (18) as:

x(t+ 1) = WL+1

( L−1∏

j=0

W
iL−j

L−j

)
x(t) +WL+1

[ L∑

j=1

( L−j−1∏

k=0

W
iL−k

L−k

)
B
ij
j

]
+BL+1 ∀x ∈ Xi.

(19)

Besides its complexity this is an affine mapping with respect to the current state value for a given
set of indices (i1, i2, . . . , iL) i.e. for a given region Xi. The above state update matrices and vectors
linked to a specific region Xi will be denoted with Ai and bi respectively as it was done for PWA
systems and shallow NNs.

The continuity proof as well as the proof that the intersection of the interior of two linear regions is
the empty set can be done the exact same way as it was done for the shallow case and thus can be
omitted.

6.2 Proof for Theorem 3.2

Proof. Given that LMIs (9) and (10) are true, matrices P1, Pi, Y1, Yi, U11, Uij are symmetric and
matrices Y1, Yi, U11, Uij have positive entries, prove that all the conditions of Theorem (3.1) are
fulfilled.

The Lyapunov function is parametrized as a Piecewise Quadratic function with the origin being
included in the X1 region and thus given by the following relation

V (x) =





xTP1x, x ∈ X1,[
x

1

]T
P̃i

[
x

1

]
= x̃T P̃ix̃, x ∈ Xi, i 6= 1

Two well-known Lemmas of linear algebra will be used in the following proof:

1.
λmin(M)||x||22 ≤ xTMx ≤ λmax(M)||x||22 (20)

2.
M > 0 ⇐⇒ λi(M) > 0,∀i (21)

Furthermore, the following proposition resulting from properties of norms will be useful:

||x̃||22 = ||x||22 + 1 (22)

Firstly, LMIs (9) yield:

{
M1 = P1 − ET1 Y1E1 > 0

M̃l = P̃l − ẼTl YlẼl > 0, ∀l 6= 1

From (20) and (22):
{
xTP1x ≥ xTM1x ≥ λmin(M1)||x||22, ∀x ∈ X1

x̃T P̃lx̃ ≥ x̃T M̃lx̃ ≥ λmin(M̃l)||x̃||22 ≥ λmin(M̃l)||x||22, ∀l 6= 1,∀x ∈ Xl

Since every eigenvalue of matrices M1, M̃l is positive, there exists a constant α1 =
minl(λmin(M1), λmin(M̃l)) such that:

V (x) =





xTP1x ≥ α1||x||22[
x

1

]T
P̃i

[
x

1

]
≥ α1||x||22

(23)

Consequently, V (x) ≥ α1||x||22 with α1 > 0. If V (x) = xTP1x, x ∈ X1:
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V (x) ≤ λmax(P1)||x||22, ∀x ∈ X1. (24)

If V (x) = x̃T P̃1x̃, x ∈ Xl:
V (x) ≤ λmax(P̃l)||x̃||22, ∀x ∈ Xl. (25)

From (22), (26) becomes:

V (x) ≤ λmax(P̃l)(||x||22 + 1).

Therefore,

V (x) ≤ λmax(P̃l)
(
||x||22 +

||x||22
cl

)

where cl = minx∈Xl
||x||22.

V (x) ≤ λmax(P̃l)
(cl + 1

cl

)
||x||22. (26)

From inequalities (24) and (26), it is then evident that there exists α2 such that:

V (x) ≤ α2||x||22, α2 > 0.

Therefore, property 2) is fulfilled for η = 2.

The difference of the candidate Lyapunov function between two time steps is now considered. If the
state at time step t is x(t) ∈ Xl and at time step t + 1 is x(t + 1) ∈ Xj , two possible cases need to
be examined:

1. (l, j) ∈ Ω\(1, 1)

2. (l, j) = (1, 1)

For case 1):

It follows that if ÃTi P̃jÃi − P̃i + ẼTi UijẼi < 0, then there exist ρ > 0 such that:

∆V = V (x(t+ 1))− V (x(t)) = x̃T (t)[ÃTi P̃jÃi − P̃i]x̃(t)

≤ x̃T (t)(−ρI − ẼTi UijẼi)x̃(t)

≤ x̃T (t)(−ρI)x̃(t)

≤ −ρ||x(t)||2

For case 2):

It follows that if AT1 P1A1 − P1 + ET1 U11E1 < 0, then there exist ρ > 0 such that:

∆V = V (x(t+ 1))− V (x(t)) = xT (t)[AT1 PjA1 − P̃i]x(t)

≤ xT (t)(−ρI − ET1 U11E1)x(t)

≤ xT (t)(−ρI)x(t)

≤ −ρ||x(t)||2

The above proves that there exists α3 > 0 such that:

∆V (x) ≤ α3||x||η

Therefore, property 3) is fulfilled for η = 2.
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List of Acronyms

BB Bounding Box

BMI Bilinear Matrix Inequality

CP Convex Programming

CQLF Common Quadratic Lyapunov Function

DNN Deep Neural Network

GP Gaussian Process

LMI Linear Matrix Inequality

LMIs Linear Matrix Inequalities

LP Linear Program

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

LWL Locally Weighted Learning

LWPR Locally Weighted Projection Regression

LWR Locally Weighted Regression

MILP Mixed-Integer Linear Program

MPI Maximal Positively Invariant

MPT Multi-Parametric Toolbox

MSE Mean Squared Error

NN Neural Network
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PI Positively Invariant

PLS Partial Least Squares

PQLF Piecewise Quadratic Lyapunov Function

PWA Piecewise Affine

ReLU Rectified Linear Unit

RF Receptive Field

RFWR Receptive Field Weighted Regression

RoA Region of Attraction

SDP Semidefinite Programming

SVD Singular Value Decomposition

T-S Takagi-Sugeno

List of Symbols

λ Eigenvalue
Ω Set of possible transitions between activation regions
σ Nonlinear vector-valued function
β̃ Parameter vector
ξ Premise variable

X̄l Outer-approximation of the lth activation region
diag Operator that creates a square diagonal matrix with the elements of a vector
ŷ Prediction for a query point
ŷi Local prediction of the ith receptive field
int Interior of a set
D Training dataset
N Set of natural numbers
R Set of real numbers
R>0 Set of positive real numbers
R≥0 Set of non-negative real numbers
E Hyperellipsoid
I0 Set of indices of linear local models
I1 Set of indices of affine local models
J Set of indices of local models activated in a region
N Number of activation regions
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R Region of Attraction
Xi Activation region of the ith local model
x̃ Augmented state vector
xinit Initial condition
Ai State update matrix of the ith local model
aj Input-vector for the jth layer
bi State update bias vector of the ith local model
Bj Bias vector jth hidden layer
c Query point
ci Center of the ith receptive field
D Distance metric
d Distance function
Fij Fuzzy variable corresponding to the ith rule and the jth input
Gl Bounding box corresponding to the lth activation region
h Normalized weight
ij Index of the activation pattern for the jth hidden layer
L Number of hidden layers
M Number of local models
N Number of training points
n State dimensionality
Nj Number of activation patterns for the jth hidden layer
nj Number of neurons in the jth hidden layer
p Input dimensionality
q Output dimensionality
Ri Fuzzy rule i
T Transition matrix
V Lyapunov function
v Dimensionality of premise variables
w Weighting function
Wj Weight matrix of the jth hidden layer
x Input or state vector
xe Equilibrium of the state-space model
xie Equilibrium of the ith local model
xj Input vector for the jth training point
y Output vector
yj Output vector for the jth training point
zj Vector marking for the jth hidden layer
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