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SUMMARY 

This report summarizes the results of a literature search 

for adaptive numerical methods of solving partial differen­

t ialequat ions; the methods discussed involve the adapt ive 

movement of nodes. so as to obtain a low level of solution 

truncation error while minimizing the number of nodes used 

in the calculation. Such methods are applicable to the 

solution of blast-wave or other nonstationary flow problems 

that contain moving regions of rapid change in the flow 

variables. surrounded by regions of relatively smooth 

variation. Shock waves. contact surfaces. phase-change 

interfaces. boundary layers. and other structures. can be 

modelled in detail by these methods. It will be shown that 

significant economies of execution can be attained if nodes 

are moved so that they remain concentrated in regions of 

rapid variation of the flow variables. 
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1.0 INTRODUCTION 

Numerical methods for solving partial differential equations (PDE's) which are 
based on finite-difference or finite-element formulations achieve significant 
economies of execution if nodes can be moved so that they remain concentrated 
in regions of rapid variation of the solution. This report focuses on such 
methods. A contrasting group of methods, which adapt to the solution by adding 
new fixed nodes in regions of rapid change in the solution, will not be dis­
cussed since such methods are of little utility in solving problems where the 
locations of the regions of rapid variation move with time; discussions of such 
methods, along with overviews of the entire field of grid generation, can be 
found in Thompson, Warsi, and Mastin [1], Thompson [2], and Turkel [3]. Body­
fitted coordinate systems are also discussed by these authors and are not 
covered in this report since emphasis will be placed on methods that move the 
nodes so as to adapt to solution characteristics rather than boundary 
characterist ics. 

Most of the methods discussed in this report require that the PDE's 
have continuous solutions. If, as is usually the case, the PDE's are non­
linear, they will tend to develop discontinuous solutions unless they contain 
viscosity or analogous terms. Hence, most of the methods discussed will run 
into numerical problems unless viscous terms are included. 

As pointed out by Thompson [2] an adaptive node method must have 
several ingredients: 

an orderly method of numbering (or mapping) nodes distributed 
over the physical region of interest, 

a means of 'communicating' between nodes so that their 
distribution remains fairly regular as the nodes are shifted, 

a means of representing the continuous solutions discretely 
and a means of evaluating the discrete values with sufficient 
accuracy, 

a measure of the error in the discrete values that bears some 
relation to the truncation error, 

a means of redistributing the nodes as indicated by the 
measure, so as to reduce solution error. 

Each of these ingredients is discussed in more detail in the following sections. 

2.0 OVERVIEW OF ADAPTlVE METHODS 

The numerical solution of a simpie, nonlinear, ordinary differential equation 
[ODE] will be discussed in order to illustrate some of the concepts involved in 
the literature. Consider the differential equation 

+ P [dP _ 1] 
dX 

= o (1) 

on the domain 0 ~X ~ 1 where 8 is a small positive number and P(O) = A and 
P(l) = Bare the boundary condit ions. It is eas Hy seen that if dP/dX = 1, then 

1 



the slope will tend to remain constant at unity. since the second derivative is 
then zero. However. except for very special values of A and B. the slope must 
eventually depart from unity. For arbitrary valuesof A and B the solution 
will consist of one or two regions with dP/dX = 1. bordered by region(s) of 
rapid solution variation so as to match the boundary conditions. The region(s) 
of rapid variation will take the form of one or two boundary layers or a more 
centrally located stationary shock layer. Tbe locations of these regions can 
be predicted only by the use of extensive analysis. 

Figure 1 illustrates the results of an unsuccessful attempt to solve 
equation (1) with A = 4 and B = 2. using a nonadaptive finite-element method 
with N. fixed. equally spaced nodes. P was approximated using piecewise. linear 
basis functions. and the method of Galerkin was applied to equation (1). Tbe 
value of e was initially set to 0.1. and the solution approximated by a linear 
ramp with pI = A and pN = B. The nodal values pn were adjusted using a Newton's 
method iteration so as to minimize the Galerkin residual. Tbe value of & was 
reduced whenever the residua! feIl below a preset threshold. The region of 
rapid variation of the solution is of the order of &. Hence. as the value of B 

was reduced. there were eventually not enough nodes in this region to properly 
represent the solution. and a large truncation error was obtained. Thus. even 
though 171 nodes were used. the solution with e = 0.0015 shown in figure 1 
exhibits Gibb's oscillations • 

One may apply Taylor's theorem to the discrete representation of an ODE 
in order to recover the original ODE. Tbe higher-order terms in the Taylor 
series. which were not in the original ODE. represent the truncation error in 
the numerical solution. Tbe nodes should be spaced close enough that these 
extra terms are negligible. otherwise one will obtain the numerical solution of 
an ODE with extra terms in it. If odd-order .derivatives predominate in the 
truncation error (known as numerical dispersion). the extra terms cause the new 
ODE to have an oscillatory behaviour (Gibb's oscillations) that the proper ODE 
did not possess. If even-order derivatives predominate in the truncation error 
(known as numerical viscosity or numerical diffusion). excessively thick wave 
fronts will result. Many nonadaptive methods add an even-order artificial- · 
viscosity term in regions of rapid solution variation. so as to dominate odd­
order truncation-error terms. and hence avoid Gibb's oscillations. but this also 
results in a physically invalid broadening of wave thicknesses. 

If an adaptive method is used. then nodes can be moved into regions of 
rapid solution variation so as to minimize the truncation error. Using an 
adaptive finite-element technique. equation (1) was solved with the same 
boundary conditions as above. but employing only 41 nodes. Figures 2. 3. and 4 
illustrate solutions for & = 0.0015. & = 0.001. and e = 0.00001. respectively. 
Only the region of the boundary layer is plotted in the last two figures. in 
order to adequately resolve the behaviour of the solution. Note the complete 
absence of Gibb's oscillations for values of e more than 100 times smaller than 
the value that caused prob!ems in the nonadaptive solution. Analysis of the 
Newton's method matrix used in the nonadaptive solution indicated that the 
matrix was always diagonally dominant in regions where the slope was approxi­
mately one but less and less diagonally dominant as the slope varied from one. 
unless node separation was decreased in the regions of rapid solution variation. 
Nonsingularity of the matrices employed in a method is required to obtain a 
unique solution. Reducing the node separation in regions of large solution 
variation also minimizes the the truncation error. An adaptive algorithm was 
devised in which the node separation was gradually increased in regions of 
near-unit slope. with the excess nodes being equidistributed in the other 
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regions. The methods described in the following text all try to obtain this 
redistribution of nodes, with a minimal computational cost, so as to maximize 
solution accuracy. 

Most adaptive methods transform the PDE's for the physical variables 
(denoted by vector ~) from physical coordinates (herein written (Xi,t» for an 
i th dimensional physical space to i th dimensional computational coordinates 
(herein written (Çi,t» in which the nodes are equally spaeed. An excellent 
account of such transformations can be found in Thompson [4]. Integral values 
of the computational coordinates of ten correspond to the grid numbering. in 
such a case these coordinates are denoted by the phrase 'numerical coordinates'. 
In some one-dimensional methods there is an auxiliary trans format ion to slope 
coordinates defined by dS = [1 + [dfjdX]2] 1/2dX. 

~(Çi,t) and Xj(Çi,t) are the unknowns in the computational coordinate 
system. The transformed PDE's contain additional terms in aXi/at at fixed 
computational coordinate. Each PDE for ~ is reduced to a set of ordinary 
differential equations in time (one ODE for each node n) by application of a 
discretization method such as the finite-element or finite-difference formula­
tions. The ODE's can be written in the form 

= (2) 

~n is the value of the solution at node n, and the details of the computation 
of En are determined by the particular discretizing method used to reduce the 
PDE's to ODE's. Particular attention must be paid to the initial placement of 
the nodes, so that spacial truncation error will not cause inaccurate initial 
estimates of d~n/dt. 

The ODE's can be solved employing a time-stepping finite-difference 
methode The method may be time explicit, in which case En(t) is evaluated at 
the current time level, or time implicit, in which case the value of En(t) at 
an advanced time level is predicted as part of the solution algorithm. In 
general, implicit methods permit much larger time steps than explicit methods 
without causing instabilities, but require the time-consuming solution of 
matrix equations. As nodes are allowed to approach one another more closely an 
implicit method eventually becomes essential. 

Given the time derivative of ~n at each node, one can compute the value 
of ~n at the next time step . Since d~n/dt can vary markedly from node to node 
(consider shock propagation through a system of nodes) the system of ODE's is 
of ten 'stiff' [S]. A stiff system is characterized by the fact that most 
explicit methods of numerical solution must use very small values of time step 
in order to maintain solution stability, even though accuracy limits may allow 
much larger time steps. The drastic difference in ODE-solution time constant 
from node to node causes some of the numerical difficulty. Another cause for 
the stiffness is the fact that nodes approach one another very closely in 
regions of large solution variation, thus causing Courant limitation of time 
step if an explicit method is used. In order to obtain reasonably large time 
steps, the system of ODE's must usually be solved by implicit methods such as 
the backward-differentiation algorithm of Gear [6]. A version of the Gear 
method has been implemented by Hindmarsh and Gelinas [7], and this in modified 
form is availab Ie as an H!SL subrout ine. Enright, Bull, and Lindberg [8] 
discuss and compare a number of stiff-ODE solution methods. 
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A measure of the spacial truncation error is computed at intervals in 
the time-stepping solution of the POE's. The measure is usually some grid­
derivative function of Xi and/or f in the computational coordinate system. The 
derivatives are usually approximated by finite differences. and hence higher­
order derivative estimates are highly susceptible to grid irregularities. Of ten 
some measure smoothing is attempted to reduce the effect of grid irregularities. 
Types of smoothing range from simple node-to-node derivative averaging to the 
creation of long-range internodal pseudoforces. In addition to taking error 
measures. some workers use measures of transformation smoothness. orthogonality. 
or other trans format ion property to control the quality of the node distribu­
tion. 

A bewildering variety of error measures is used in the literature. 
including those of change in the solution or its derivatives of various orders 
from node to node. circular curvatures or torsions along lines of constant 
curvilinear coordinate; solution slope lengths; and complex combinations of all 
the above. In some cases the ~rror measure is related to truncation-error 
expressions. however. in many cases the authors have chosen their error measures 
heuristically and provide little or no justification for them. The fact that 
so many different measures are used successfully means that the problem of 
adaptation is not critical. In one dimension a finite-difference method can be 
successful if itmerely places many equally spaeed and equidistributed nodes in 
regions of large error measure and smoothly increases the node spacina in 
regions of smaller error measure. A finite-element method does not require as 
smooth a change of node spacing and hence may require feyer nodes than finite­
difference methods. which require continuity of all orders of derivative of the 
transformation ax/a~ at each node. Similarly. in two- or three-dimensional 
problems a finite-difference method requires a higher degree of grid smoothness 
and orthoaonality than a finite-element methode An analysis of truncation 
error induced by grid de format ion in finite-difference formulations may be 
found in Mastin [9]. Kalnay de Rivas (10). and Hindman (11). Dupont (12) has 
performed a partial error analysis of adaptive finite-element techniques. 

Most methods move the nodes to equidistribute a function of the measure 
at each node. Three styles of node movement have been used. 

In periodic node movement the nodes are held stationary in physical 
space for several time steps. af ter which the measure is computed. the nodes 
are then shifted abruptly to their new positions. Data on fn is usually moved 
from the old grid to the new arid by a method such as interpolation so as to 
prevent solution distortion or inst~bility. 

In altemating node movement the measure is computed af ter every time 
step. and the nodes are shifted in response to the measure. New ODE's are 
obtained. and the values of fn computed for the next time step. Interpolation 
is of ten used to transfer data from the old to the new aride 

In simultaneous node movement the measures are taken and used to 
compute an ODE in time for X~ at each node. The nodes are not shifted between 
time steps; rather. a set of 10DE's for Xî is solved alona with the ODE's for 
the physical solution on each time step. in order to simultaneously compute the 
new values of fn and X~ in the next time step. Interpolation of f data from 
the old arid to the ne~ arid is not necessary in this case. 

In the periodic and alternatina methods. terms in aXi/at contained in 
the PDE's for f in computational coordinates are usually set to zero when the 
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PDE's are solved on each time step. However, it is better to obtain some 
nonzero value for aXi/at, as done by Klopfer and McRae [16] and Anyiwo [29], so 
as to allow node movement to effect the solution at each node. 

Dwyer, Smooke, and Kee [22] have pointed out that simultaneous computa­
tion of node position and solution value converts a linear problem into a non­
linear one and usually makes a nonlinear problem harder. Thus, simultaneous 
node movement might appear to be less appropriate than the other two methods. 
In the solution of stiff problems, however, alternating or periodic node move­
ment may result in instabilities due to mismatching of node distribution and 
solution, unless time steps are kept very smalle 

Adaptive methods can be conveniently grouped in terms of the manner of 
redistribution of the nodes: redistribution to minimize or equidistribute the 
integral of the error measure. or redistribution by use of pseudoforces derived 
from the error measure. Specific details can be found in the summary which 
follows. 

3.0 SUMMARY OF VARIOUS ADAPTIVE METHODS 

Since variants .of these adaptive methods have been used in time-independent 
problems, such as two-point boundary-value problems, some relevant adaptive ODE 
solution methods are included in the discussion below. 

3.1 Methods Based on Integral Minimization or Eguidistribution of Error Measure 

Gough, Spiegel, and Toomre [13] used an adaptive algorithm to solve two-point 
boundary-value problems. The one-dimensional ODE for a K-component dependent 
variabie was transformed from the physical frame X to a frame ç with uniform 
node separation and was written in central-difference form at each node. The 
system of equations obtained was solved using a Newton-Raphson iteration. An 
error measure based on the mth derivative of Pt and X with respect to ç was 
computed using 

K 

= 2 + 

k 1 

where Pk is the kth component of the solution, and 
lations in the ç domain of Pk and X, respectively. 
usually set to K. In practice only El and E2 have 
transformation from X to ç was computed by solving 
minimizing the integral of Em over the ç domain. 

(3 ) 

Rk and Xf - Xo àre the oscil­
The weighting constant À was 

been used as measures. The 
an ODE that was obtained by 

Node movement was alternated with the solution of the ODE for Pk so as 
to obtain convergence to a final, highly adaptive, and accurate solution. This 
alternating-node-movement procedure was claimed to be faster and more stable 
than solving ODE's for Pk and X simultaneously. The ODE based on E2 yielded a 
better truncation-error reduction than the ODE based on El' but the first ODE 
required a better initial physical node distribution for its solution to 
converge. 
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Pierson and Kutler [14] solved a one-dimensional problem in which a PDE 
was transformed from physical coordinates (X,t) to computational coordinates 
(ç,t) with equidistributed nodes. The error measure was the square of the third 
derivative of the solution with respect to~. The PDE was reduced to an ODE at 
each node by use of central differences. The ODE's were solved time step by 
time step using an implicit finite-difference methode 

The nodes were moved every few time steps so as to m1n1m1ze the integral 
of the error measure. as approximated by the trapezoidal rule. The transforma­
tion between X and ç was obtained by writing X as a finite series of Chebyshev 
polynomials in~. Equations for the coefficients of the Chebyshev polynomials 
were obtained by requiring the above minimization, subject to constraints on 
maximum and minimum node separations. and solved by utilizing a simplex methode 
Truncation-error reductions achieved were equivalent to those obtainable using 
twice the number of fixed equidistributed nodes. 

Denny and Landis [15] adaptively solved a two-point boundary-value 
problem using, as an error measure. the leading truncation-error terms in a 
three-point finite-difference approximation to the ODE. The truncation-error 
terms were differentiated with respect to the nodal coordinate in order to 
obtain a finite-difference formuia for the nodal position, which minimized the 
truncation error. The systems of equations for node-position and node-solution 
value were solved alternately in a manner similar to that of Gough et al. [13]. 

Klopfer and McRae [16] adaptively solved a one-dimensional shock-tube 
problem using finite differences. The error measure was the leading term of 
the truncation error of the PDE transformed to computational coordinates (ç,t). 
The node spacing ax/ae was a linear function of the smoothed error measure E 
such that 

ax E 
ex: 1- (4) 

Emu 
The node-spacing distribution was integrated to obtain an 'optimal' node distri­
bution. The node-movement process was repeated af ter each time step. The time 
derivatives of the nodal coordinates Xn were computed from the changes in nodal 
position and included in the PDE's for the solution~. Artificial viscosity was 
used in the solution algorithm to stabilize the calculation. Since the explicit 
predictor-corrector scheme of MacCormack [17] was used, the minimum node spacing 
was limited to more than one-tenth of the maximum to avoid the development of 
excessive stiffness. Despite this limitation, Klopfer and McRae were able to 
use one-fifth of the nodes necessary for a nonadaptive calculation. 

White [18] solved a two-point, vector-valued boundary-value problem. 
The ODE for ~ was transformed from physical coordinate X to a computational 
frame ç where the integral of an error measure E was equidistributed. The 
transformation can be written in the form 

X 

ç(X) = J E(x!dx 

10 

(5) 
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where 

e (6) 

Thus, the nodes were equidistributed in the ç domain. The integral was manipu­
lated to obtain ODE's for X and e in the ç frame. The ODE's for ~, X, and e in 
the ç frame were expressed in central-difference form and solved simultaneously, 
using a Newton-Raphson iteration. 

Various versions of the measure were used by White; these included 
solution arc length dS = [1 + (d~/dX)2]dX, local truncation error of the ODE, 
and weighted node-to-node change in the solution. 

White [19] extended the method for use in solving time-dependent 
problems. The ODE's for X and 9 in the (ç,t) frame were written as 

and 

ae 
aÇ 

o 

o 

(7) 

( 8) 

and then solved along with transformed PDE's for ~ time step by time step. 
Variables ~. X. and 9 were written as an average of their values at the present 
and next time steps. and the derivatives with respect to ç were approximated by 
central differences. A Newton-Raphson iteration was used to solve the resultant 
system of equations. 

An approach that is very similar to that of White [18] was taken by 
Ablowand Shechter [20], who used the error measure 

E = 1 + lolnl (9) 

where À. is a weighting constant and 0 is the circular curvature of the solution 
given by 

n = (10) 

The authors poin,t out that. as a general rule. Pand X should be normalized so 
as to be of approximately the same magnitude. The ODE for a fixed-point 
boundary-value problem was transformed to computational coordinates ç having 
equidistributed error measure and nodes. A second ODE was obtained by 
differentiation of the equidistribution formula 

(11) 
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with respect to~. The two ODE's were solved simultaneously in a manner similar 
to that of White [18]. 

In order to solve a time-dependent PDE. Dwyer. Kee. and Sanders [21]. 
Dwyer. Smooke. and Kee [22]. Dwyer. Kee. Barr. and Sanders [23]. Dwyer. Sanders. 
and Raiszadek [24]. and Dwyer [25.26] used a transformation from the spacial 
coordinate system (Xl.X2.t) to a coordinate system (Çl.Ç2.t) having an equidis­
tributed integral of an error measure. Much of their work was based on the 
literature of adaptive solution of two-point boundary-value problems. An error 
measure E(S) is used involving derivatives with respect to arc length S along 
curves of constant Çl or Ç2 in physical space (dS2 = [dXl]2 + [dX2]2): 

E(S) = (12) 

Weighting factors Äl or Ä2 can be made large in order to equidistribute nodal 
differences in P or nodal differences in ap/as. respectively. 

The PDE was transformed fr om the physical coordinates (Xl.X2.t) to com­
putational coordinates (Çl.Ç2.t) and solved for P using an alternating-direct­
implicit finite-difference method (an implicit Newton method is used in one­
dimensional problems). The error measure was taken and used in a coordinate 
transformation to move the nodes adaptively. The coordinate transformation 
along each curve of constant Ç2 in physical space was 

= 
Smax 

f E(s)ds 
o 

(13) 

Because movement af ter each time step led to oscillations. the nodes were held 
stationary for several time steps before an error measure was taken. Equation 
(13) was then solved for equally spaeed values of Çl by means of numerical quad­
rature so as to reposition the nodes. A bound on the ratio of node separation 
fr om element to element was used tomaintain transformation smoothness. The 
solution was transferred from the old grid to the new grid by means of inter­
polation. A similar transformation could be used along a curve of constant Ç2 
but Dwyer et al. [21-26] have adapted the node positions along only one set of 
numerical coordinates. 

One-dimensional versions of the method worked very weIl. g1v1ng trunca­
tion errors which were only obtainable by use of ten times the number of nodes 
in a nonadaptive calculation: However. in one two-dimensional problem solved 
by Dwyer et al. [21]. solution oscillations occurred as portions of the grid 
developed increased skewness in physical space. The authors [21] have suggested 
that the procedure of Potter and Tuttie [27] might be utilized to reduce the 
computed grid skewness. Potter and Tuttie move nodes along lines of constant 
~1 in order to define lines of constant Ç2 on which the solution of Laplace's 
equation is constant. The curvilinear coordinate system produced is orthogonal. 
Dwyer et al. [21] also . encountered problems when adaptation was permitted along 
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boundaries. Coordinate-system collapse occurred in a heat-transfer problem when 
Neumann boundary conditions were used. 

Kansa. Morgan. and Morris [281 developed a method in which the nodes are 
moved so that the PDE's. when transformed to a numerical frame. have a minimal 
dependenee on spacial gradients. The transformed K-component system of POE's 
was written in the form 

+ (14) 

where Pk is one of the components of the solution. Gt is a function of the 
solution components and the spacial coordinate Xi and Fk is a function of X. 
the solution components. and gradients of the solution components. The last 
term in equation (14) results from the transformation from spacial coordinates 
to numerical coordinates where the nodes are stationary and equidistributed. 
One can define a characteristic velocity Vk for each component. which is given 
below: 

If the nodes are moved so that ax/at = Vk. then the POE for component k is 
reduced to an ODE in time of the form 

(1S) 

(16) 

At a shock wave. equation (1S) is a restatement of the Rankine-Hugoniot jump 
conditions. with Vk being the shock velocity. In a rarefaction fan. Vk is the 
velocity of the characteristics. In a multicomponent problem. Vk will not, in 
general. be the same for all components. Kansa et al. [281 chose the node 
veloeities ax/at to minimize 

K 

E = l (17) 

k = 1 

approximated by using a three-point-collocation polynomial to compute gradients. 
The result was a tridiagonal-matrix equation for the node velocities. An im­
plicit finite-difference method that incorporated artificial viscosity terms was 
used time step by time step. alternately with the computation of node speeds. 
The nodes were remapped by means of interpolation af ter each time step, 50 as 
to enforce a minimum node separation and prevent node crossing. Interpolation 
was also used to prevent excessive clustering of nodes about shocks: the nodes 
were moved in order to equidistribute the magnitude of the third derivative of 
the solution times the cube of node separation. Use was made of the ideas of 
Dwyer and coworkers and also of those of Davis and Flaherty [611. Kansa et al. 
[281 used their method. with 21 nodes. to solve a gas diffusion problem. It 
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was claimed that. if a nonadaptive method had been used to solve the same 
problem with equivalent accuracy. 670 nodes would have been required. Extension 
of the method to higher dimensions is also discussed. 

Anyiwo [29] has used an adaptive method with a two-stage coordinate 
transformation. The PDE is transformed from physical coordinates (Xi.t) to 
orthogonal. curvilinear coordinates (Si.t) and thence to a computational space 
(~i.t) having equidistributed nodes. Anyiwo used an error measure E defined by 

E = exp(y) = (18) 

or 

(19) 

Yi' which is a measure of grid deformation in each coordinate direction. with 
weighted contributions from each coordinate system, is given by 

+ p~IO. + 
1 1 

(20) 

À1. À2. and À3 are weighting constants. a~ = l/Ni and 0i = 1/logn(Ni-1). where 
Ni is the number of nodes in direction i i~ (~i.t) coordinates. a~ and P~ 
are the circular curvature and tors ion of curves of constant Si in1physical 
coordinates and 

= (21) 

6~, a~. and p~ are the slope. circular curvature. and torsion of the physical 
v~riatle P in1(Si.t) coordinates. a3 is replaced by a weighted sum of terms if 
P is a multicomponent physical variabie. 

The transformation between the (Si.t) coordinates and the (~i.t) 
coordinates is obtained by requiring that along each Si direct ion 

= 
SCEi(Si)dSi 

Ni Ei(Si) 
(22) 

which in essence equidistributes E over the nodes. aSi/a~i is proportional to 
the separation between curves of constant Si in physical space. 

The transformation between the (Xi,t) coordinates and the (Si,t) 
coordinates is given by 

= (23) 

where 0ij' the angle between coordinate direction Si and coordinate direction 
Xj' is constrained - COS(Ojk)'COS(Oik) = 0 if i F j - such that the (Si,t) 
coordinates are orthogonale The variation of 0ij is chosen so that the boundar­
ies of the physical domain correspond to curves of constant curvilinear 
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coordinate. A solution-weighted interpolation formula is used to compute aij 
in the interior of the physical domain. aiJ is computed in response to the 
variation of aSi/aÇi at each interior node 1n such a way as to blend in smooth­
ly with the angular behaviour of the boundaries of the physical domain. Anyiwo 
described a simple interpolation procedure for use on two-dimensional grids. 

A typical time-step solution proceeds as follows. The error measure E 
is used to compute the metric transformation derivatives aSi/aÇi at each node 
and hence the (Si,t) to (Çi,t) coordinate transformation. The values of dSi/aÇi 
are in turn used to determine the new values of ai· and hence of the (Xi,t) to 
(Si,t) coordinate transformation. The PDE's for tte physical solution are 
transformed to the (Çi,t) frame and solved for the next time-step values by use 
of a finite-difference scheme. The new solution and transformations are used 
to compute a new error measure. The cycle continues time step by time step. 

The time stepping is omitted for several cycles at the start of a compu­
tation in order to obtain a grid adapted to the initial conditions. Anyiwo gave 
no description of the method used to transfer solution information from an old 
grid to a new grid. 

An additional means of control of adaptation was obtained by inserting 
a nonzero value for aXi/at in the the transformed PDE's for the physical 
variabIe. This value was obtained by requiring that the spacial coordinates 
satisfied a conservation equation 

= + (24) 

in the (~i,t) frame, where c is a positive constant less than or equal to one. 
~ is the viscosity coefficient, and U the advective velocity for the physical 
solution PDE's. It is claimed that equation (24) adds a constraint on node 
movement that maintains transformation smoothness. 

Brackbill and Saltzman [30,31], Brackbill [32], and Saltzman and 
Brackbill [33], extending a boundary-adaptive automatic-grid generation method 
used by Winslow [34], transformed a two-dimensional PDE for P from physical 
coordinates (X1,X2,t) to numerical coordinates (Ç1,Ç2,t). A weighted sum of 
three error measures was used to determine the coordinate transformation. That 
is, 

E (25) 

where 

= (26) 

is a measure of transformation smoothness, 

(27) 

is a measure of grid orthogonality in physical space, or 

(28) 

is an altemate measure of grid orthogonality with increased weighting in 
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regions of large Iacobian of the transformation 

I = (29) 

Regions of large Iacobian correspond to regions of large node separation in 
physical coordinates. Tbe third measure. Ev. is defined by 

Ev = W I (30) 

where W is a measure of the truncation error in the solution and has been given 
as 

W = I~pr (31) 

with Q being two or four in practice. W was averaged over several nodes and 
scaled between maximum and minimum values. so as to decrease the effect of grid 
irregularities on finite-difference approximations of \7P. The Jacobian of the 
transformation. I. wiU tend to be smaIl in regions of large W if Ev is equidis­
tributed. and hence the grid will be refined in regions of large error measure. 
In th is method the weighting constants Às. Ào. and Àv were generally of the 
order of unity. 

The authors obtained an Euler equation for the spacial coordinates by 
minimizing the spacial integral of E transformed to numericalcoordinates. 
Brackbill [32] also used a weighted-measure procedure to move nodes adaptively 
along boundary lines. One-dimensional analogues of Es and Ev were minimized 
over a boundary curve. in order to obtain an Euler equation for the positions 
of the nodes along the boundary. 

The nodes are held stationary for several time-step solutions of the 
transformed PDE's for P. An explicit finite-difference method was used with 
stability maintained by specifying a Courant limitation on time step. Tbe 
Euler equations for the spacial coordinates are then solved using a Iacobi 
iteration. Only a few iterations are needed for convergence. Information on 
the solution is transferred from the old grid to the new one either by means of 
an interpolation function or by solution of transport equations in conservative 
form. 

Excellent control of grid characteristics so as to reduce solution error 
was obtained by the authors. In one case a nonadaptive. uniformly spaeed grid 
solution required nine times the number of nodes used in an adaptive solution 
to obtain comparable accuracy. 

Yanenko. Kovenya. Lisejkin. Fomin. and Vorozhtsov [3S]. Yanenko. 
Kroshko. Liseikin. Fomin. Shápeev. and Shitov [36]. and Yanenko. Lisseikin. and 
Kovenia [37] also used a transformation from physical coordinates (Xl.X2.t) to 
computational coordinates (el.~2.t). The error measure used was a weighted sum 
of error measures. That is. 

E (32) 
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where 

;<1 + 
ad (33) 

is a measure of the transformation's departure from conformality - with R as a 
small positive integral power and where 

(34) 

is a measure of the degree to which tbe nodes move with the medium, in other 
words the 'Lagrangianness' of the transformation. (U1,U2) is the medium 
velocity, and (aX1/at,aX2Iat) is the grid velocity in physical space. Ev is a 
measure of the solution variation: 

= (35) 

Here, W is a weighted function of gradients of solution components and Q is a 
small positive integral power. The Jacobian of the transformation, J, will 
tend to be small in regions of large W if Ev is equidistributed, and hence the 
grid will be refined in regions of large error measure. 

A time- and space-dependent Euler equation for the transformation was 
obtained by minimizing the integral of E over Xl' X2' and t. Alternately [37], 
a space-dependent Euler equation was obtained by minimizing the solution of E 
over Xl and X2 only. The Euler equation was solved simultaneously with the PDE 
for f using a time-stepping finite-difference method. Yanenko et al. [35,36] 
a1so discussed adaptation along a single coordinate direct ion. 

Milier and Milier [38] and Milier [39] devised a finite-element-based 
PDE solution technique which they call the Moving Finite Element (MFE) method. 
The metbod has been further developed in Djomehri and Milier [40], Gelinas, 
Doss, and Milier [41], Gelinas, Doss, Vajk, Djomehri, and Milier [42,43], 
Gelinas and Doss [44,45], Gelinas, Doss, and Carlson [46], Djomehri [47], and 
Milier [48,49]. In this method the error measure may be interpreted as being 
the square of the residualof the PDE written in finite-element form. ODE's for 
the nodal value of the physical variabie and the nodal coordinate are obtained 
by minimizing the integral of error measure over spacial coordinates. Only the 
simplest one-dimensional version will be described here in, but the method has 
been applied very successfully in two dimensions. 

The method is most simply described in numerical coordinates where the 
transformed one-dime~sional PDE for a single component physical variabie P can 
be written as follows: 

dP 

dt 

ap 

at 

ap ax 

ax at 
= f t, X(ç,t), p(e,t), -, -, -, - • (36) 

[ 
ap a2p ax a2x 1 
ae ae2 ae ae2 

The continuous solution Pand physical variabie X are approximated by piecewise 
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continuous functions ph and Xh. 

N 

ph = 2 an(~) pn(t) (37) 

n = 1 

N 

Xh = 2 an(~) Xn(t) (3S) 

n = 1 

The coefficients pn and xn are# respectively# the values of the solution and 
the spacial coordinate at each node n. an is the basis function at node n. In 
this simplest formulation of the MFE method# an is a linear 'hat' basis 
function defined by 

1 
0 if ~ < ~n-1 

en = ~ - ~n-1 if ~n-1 i ~ < ~n 
~n+1 - e if en ie < en+1 

0 if en+1 ie 

Since the nodes are allowed to move# it can be shown that 

N 

= 2 an pn + pn in 

n = 1 

# 

where pn is a second basis function defined by 

pn 

with 

= aph = 
ax 

pn _ pn-1 
= xn - xn-I 

an 

en 

0 e 
)fll if en- 1 ie 
)fll+1 en ie 

0 en+1 ie 

< en- 1 

< en 

< en+1 

(39) 

(40) 

(41) 

(42) 

pn and in are the time derivatives of pn and Xn# respectively. A set of ODE'. 
for Xn and pn at each node wás obtained by minimizing the integral of the 
square of the residual of the PDE# with X and P replaced by their discrete 
representations# Xh and ph. The minimization was obtained by requiring that 

al 
apn 

= = 0 (43) 
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for all nodes n where 

I = J [
dPh [h h aph aXh]]2 axh d 
at - F t. X (~.t). P (~.t). a~ • a~ a~ ~ (44) 

over the numerical domain. It should be noted that PDE terms containing the 
second derivative with respect to ~ can be reduced to integral terms containing 
the first derivative with respect to ~ by suitable manipulation and by 
integration by parts. The resultant integral equations are 

and 

The basis functions an and ~n act as test functions over the domain of 
integra t ion. 

(45) 

(46) 

The integrals can be manipulated to yield a system of ODE's. The ODE's 
can be written in the matrix form 

[A] ~ = ! (47) 

[A] is a block diagonal matrix and ~ a column vector of the time derivatives of 
Pand X at each node. !. also. is a column vector. Additional terms are added 
to [A] and ! to prevent excessive node speed or the crossing of nodes and to 
prevent singularities in [A] in regions of constant slope where the ~n are 
linearly dependent. Milier [39.48] discusses the many different forms that have 
been used for these additional terms and also discusses other strategies for 
node-movement regularization. The numerical values of [A] and ! are obtained 
on each time step by evaluating the integrals of equations (45) and (46) either 
analytically or numerically. A Newtons method iteration was used as part of 
the solution of equation (47). Since the matrices involved can be very large. 
the computer time taken to solve the system of equations can constitute a large 
portion of the total solution time. 

The implicit multistep backward-difference method of Gear [6]. with 
many modifications. has been used to solve equation (47) for Pand X at each 
node. Alternately. an implicit Runge-Kutta method devised by one of the 
authors (K. Milier) has been used. Adaptive-node computations typically 
required one-tenth the number of nodes used bynonadaptive computations with 
results of comparable accuracy. 

In problems with multicomponent solutions f. the authors defined multi­
component functions ·~n and obtained weighted ODE's for Xn. The use of higher­
order basis functions (quadratic or cubic) is also discussed. Dupont [12] has 
completed a partial analysis of the MFE methode 

Gelinas. Doss. and Milier [41] have implemented the method in a commer­
cial package for the solution of PDE's. The package allows the user to describe 
simple PDE's by executing a series of subroutine calls which automatically 
assembie therequired finite-element terms into equation (47). 
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Herbst. Schoombie. and Mitchell [50.511 extended the work of Miller and 
Miller [38.39] by using piecewise Hermite cubic polynomials. in place of the 
test functions an and ~n used in equations (45) and (46). while retaining an 
and pn in equations (37). (38). and (40). Herbst. Schoombie. Griffiths. and 
Mitchell [52] have analyzed their method and that of Milier and Killer and 
conclude that both methods tend to equidistribute the spacial second derivative 
of the solution over the grid. The error resulting from use of piecewise cubic 
test functions was significantly reduced in comparison to that resulting from 
use of piecewise linear test functions. 

Lee and Ramos [53] solved a flame-propagation problem using an adaptive 
finite-element technique. The PDE's were transformed from physical coordinates 
(X.t) to a normalized Langrangian coordinate system (~.t) where ~ varied from 0 
to 1. The continuous solution f at time ti was approximated by 

N 

fh( ti) = 2 an(~) fn( t i) (48) 

n = 1 

where fn is the value of the solution at node n for the current node distribu­
tion. and the an are linear basis 'hat' functions defined by 

0 if ~ < çn-1 

" _ "n-1 if çn-1 i ~ < Çn 

n 
~n _ çn-1 

(49) a 
"n+1 _ 

" if ~n i ~ < çn+1 
çn+1 - Çn 

0 if çn+1 i ç 

The method of Galerkin was employed to obtain ODE's for the solution at each 
node. and the ODE's were solved using finite differences in time. The values 
of Çn were changed every 10 time steps. so as to concentrate the nodes in 
regions of steepest solution gradient. The exact method of repositioning the 
the nodes was not specified. but reference was made to the work of Dwyer and 
Sanders. The new basis functions thus obtained were used to define a new 
discretized solution approximation 

N 

~(ti) = 2 a:(ç) ~(ti) 
n = 1 

where the new nodal ~ values were computed by requiring that 

1 

J [ 
o 

! ph ph 
2 =-41 ~ 

(50) 

(51) 

be minimized. An adaptive computation with 171 nodes gave results comparable 
to nonadaptive finite-element and finite-element solutions using 901 nodes. 
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3.2 Methods Based on Attraction and Repulsion Pseudoforces Between Nodes 

In a number of methods a node attracts others when a measure of the truncation 
error at the node is larger than average. If the measure is smaller than 
average. the other nodes are repelled. 

Rai and Anderson [54.55] and Anderson and Rai [56] have developed one 
sueh method for one-dimensional and two-dimensional problems. They used an 
error measure Ei in numerical eoordinates (~i.t). Various forms of Ei were 
used. ineluding lap/aÇi l • l(ap/aÇi)/(axi/aÇi)l. la2P/a~i21. and laxi/~il + 
Àlap/~il. The inelusion of funetions ofaxi/aÇi in the measures enhanced the 
smoothness of the transformation. Measure-averaging was used in the case of 
higher-order derivatives to avoid instabilities. 

The time dependenee of Çi was computed at each node using a sum of 
pseudoforces between nodes as follows. Consider a two-dimensional problem 
solved on a rectangular grid. Given a numerical space of N by M nodes. the 

. time dependenee of Ç1 at a fixed point in physieal spaee was defined for each 
node k.q at its eurrent loeation in physieal space. by using the following 
formulation: 

kq 
aÇ1 

at 
= 

M N nm avm , 

1 [ 1 [ El - El ] 

m = 1 n = k+1 

nm avm 

k - 1 

1 (52) 

n = 1 

El is error measure El at node n.m. El is an average of error measure El 
along a line of constant Ç1 in physieal space. r is the distanee in the 
numerical frame between nodes k.q and n.m. Q is a positive power whieh. if it 
is small. will allow distant nodes to affect one another's mot ion. resulting in 
a form of measure smoothing. An equivalent sum was used to eompute aç~q/at: 

kq 
aÇ2 

at 
= 

N }I 

1 [ 1 
n = 1 m = q+1 

q - 1 

1 (53) 

m = 1 

The eurrent transfQrmation between f~ame (Xi.t) and frame (~i.t) was 
used to eompute the eorresponding node veloeities (axîq/at. ax~q/at) from the 
t1 and Ç2 time derivatives. Constants À1 and À2 were adjusted. on eaeh time 
step. so that no node velocity eould exeeed a prespeeified value. 

The veloeities eonstitute ODE's for (X1.X2) at eaeh node. whieh 
were solved. time step by time step. along with the ODE's for P at eaeh node. 
using the explicit finite-differenee method of MaeCormaek [17]. 

À1 and À2 were held below a prespeeified value so that grid speeds 
were damped as the error measures beeame equidistributed. All grid speeds were 
exponentially damped if the Jaeobian of the trans format ion at any node ehanged 
from theJaeobian at the start of the ealeulation by more than a prespeeified 
ratio. Unfortunately. limitation of Jaeobian ratio tends to reduee the 
adaptability of the method. 
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Grid distortion occurred when boundary nodes were forced to move tangen­
tially to the domain boundaries while the forces on internal nodes were left 
unmodified, so that the internal-node velocities had significant nontangential 
components. 'Reflection' of nodes at boundaries improved results. Given a 
real node, its image (with identical value of error measure) was placed at an 
opposite and equal distance from the boundary. The image nodes were included in 
the force sums (52) and (53) so that the boundary nodes experienced tangential 
forces only, and near-boundary nodes experienced reduced nontangential forces. 

A one-dimensional version of this method worked weIl; however, in some 
two-dimensional problems failure to reduce truncation error occurred because 
large cross derivatives of the solution were present in sparsely noded portions 
of the grid. None of the measures used by the authors estimated these cross 
derivatives, resulting in an inappropriate node distribution. The authors 
suggested the use of such measures as la3P/aXlaXlaX21 or la3P/aXlaX2aX21 to 
improve performance but have not published any results to date. 

The truncation-error reduction achieved was equivalent to the reduction 
obtainable by a nonadaptive method that uses four times the number of nodes. 
The authors state that the computer time required to solve a simple problem 
using an adaptive grid was usually higher than that required to solve it using 
a fbed grid. The allowable time-step sizes were reduced ·where fine mesh 
clustering occurred; moreover, adaptive mesh movement added significant 
computational overhead. In more complex problems, execution times for adaptive 
solutions have been smaller than those for nonadaptive solutions. 

In a later paper Anderson [57] has indicated that this adaptive method 
is best suited for computation of time-asymptotic solutions and was originally 
developed for that purpose. As Anderson points out, a steady-state solver would 
take less computational effort to obtain the same results. In the same paper 
Anderson has reviewed a number of alternate methods for computing node speeds 
and introduces some new ideas, as yet untested. 

J. B. Greenberg [58] has solved a one-component PDE transformed to 
computational coordinates (ç,t) in which the nodes are equidistributed. The 
transformed PDE was solved time step by time step using an explicit central 
finite-difference method. Af ter each time step, central differences were used 
to compute the local gradient of the solution as an error measure, En. The 
error measure was employed to compute spring constants Knm, which were used to 
define an ODE for 

AX
n = Xn n-l - X (54) 

The ODE 

N N 
d(AXn ) = 1 rnn Ax»" 1 Knm AXn 

dt 
m = 1 m = 1 

(SS) 

inspired by chemical-rate-constant equations, automatically ensures that the sum 

(56) 
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remains constant. The form of the Knm was chosen to ensure that node separa­
tion would decrease in areas of large error measure at the expense of increase 
in node separation in areas of smaller error measure. subject to preset limits 
on the maximum and minimum allowed node separation. The Knm reduce in magnitude 
as the error measure is equidistributed. Equation (SS) was linearized and 
solved analytically to determine the node distribution at each time step. 
Preliminary results have been obtained on some simple problems. Unfortunately. 
these problems did not test the method very thoroughly since they required only 
modest adaptation. Extension of the method to general-shaped multidimensional 
domains is under development. 

Gnoffo [59.601. making use of the work of Dwyer et al. [211 and that of 
Rai and Anderson. used an error measure to define spring forces between nodes on 
a two-dimensional grid. The nodes are moved so as to equidistribute the spring 
force along lines of constant computational coordinate. 

The force between adjacent nodes along a line of constant computational 
coordinate was defined as 

F = K AS 

where AS is the arc length between the two nodes and K is the local spring 
constant. Typically. K was of the form 

K = 1 + E 

(57) 

(58) 

where E is an error measure. E was usually a weighted sum of the magnitudes of 
derivatives of each component of the solution~. The adaptive procedure was 
applied along one set of computational coordinate lines only. The nodes were 
moved periodically every few time steps using the following iterative procedure. 

One curve of constant computational coordinate at a time was selected. 
and the nodes were moved along this curve using the formula 

(59) 

so as to equidistribute the spring forces Km ASm. The nodes on a curve have 
been numbered consecutively for explanatory convenience. ASn is the arc length 
between nodes n and n - 1; Kn is the spring constant between the two nodes; Stot 
is the total arc length. Information on the solution was transferred from the 
old grid to the new grid using an interpolation function. and new values of Kn 
were computed. Use of equation (59) and the interpolation process was repeated 
until the node locations converged. An averaging formula was applied to the 
spring constants to smooth out their node-to-node variation. and node movement 
was damped by taking a weighted average of the old and new node locations from 
iteration step to iteration step. The iterative procedure was repeated for each 
curve of constant computational coordinate. 

The solution PDE's were solved using a finite-volume method. A finite4 
volume method is a geometrically conservative finite-difference approximation to 
the integral form of the PDE's. The domain is broken up into control volumes 
and finite-difference equations obtained from the conservation of intervolume 
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fluxes. Tbe system of equations maintains conservation of mass, energy, and 
momentum from element to element. In Cartesian coordinates the finite-volume 
equations reduce to those of the method of MacCormack [17]. Hindman [11] dis­
cusses the advantages of and the pitfalls involved in various conservative and 
nonconservative methods of expressing differential equations. 

The procedure has been applied to solve the Navier-Stokes equations for 
complete (forebody and afterbody) flowfields around blunt bodies. Excellent 
results were obtained for moderate values of the weighting constants in the 
expression for K, but solution oscillations were encountered if the weighting 
constants used to compute E were too large or if flows with large Reynold's 
number were simulated. 

The one-dimensional method of Davis and Flaherty [61] may be interpreted 
as using pseudoforces to move nodes. The PDE's were solved with fixed time step 
using a finite-element formulation in computational coordinates (ç,t). Rectan­
gular elements transformed from trapezoidal space-time elements in physical 
coordinates (X,t) were. used. As a truncation-error measure, thc authors used 
the product of grid-spacing raised to the power 'm' times the magnitude of the 
mth derivative of the solution with respect to ç. This expression is related 
to the truncat ion error expected for the order of bas is funct ion used. Both 
piecewise linear (m = 2) and piecewise cubic Hermite (m = 4) finito-element 
basis functions were used. 

The nodes were moved af ter overy time step so as to equidistribute the 
error measure by requiring that the node coordinates satisfied 

= 
l a~nll/m axm 

l
a~n+lI1/m 
axm 

(60) 

The mth derivatives, approximated by finite differences, were given lower bounds 
to ensure stability of node movement. An under-relaxation iteration was used to 
solve equation (60), subject to constraints on first and last node coordinates 
and deformation of the trapezoidal space-time elements. Tbe resultant and pre­
vious node positions were then used to extrapolate 'optimal' node positions for 
the next time step, thus determining the shape of the space-time elements to be 
used for computing pn at the next time step. 

Only preliminary results have been published but thoy seem prom1s1ng. 
Davis and Flaherty expect to introduce the use of variabie time steps and will 
attempt the solution o~ problems with freo boundaries or with more than one 
spacial dimension. 

4.0 DISCUSSION OF PDE SOLVERS 

The methods vary considerably from author to author in the ways of solving the 
ODE's obtained from the discretization of continuous PDE problems. Some authors 
were able to use explicit time-stepping formulae because the particular problems 
solved did not exhibit stiffness. In nonstationary gasdynamics applications 
the methods can be adapted easily to use stiff ODE solvers. As a penalty for 
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obtaining larger time steps. however. one generally must solve large matrix 
equations. 

For gas flows with moving regions of rapidly changing solution. it is 
probably most desirabie to move the nodes and compute the physical solution 
simultaneously in order to keep node distribution suited to solution variation. 
Fortunately. methods that move the nodes periodically or alternately with a 
time-step solution of the ODE's for the physical variables pn can be altered so 
that 'optimal' node speeds can be derived from the difference between old and 
'optimal' node positions. Tbe node speeds constitute a set of ODE's for node 
position. which can be solved simultaneously with the ODE's for the pn. Even 
though a larger set of ODE's must be solved simultaneously. the increase in 
computational cost is compensated in part because interpolation is not needed 
to transfer information from an old to a new grid. 

Tbe most promising two-dimensional methods are those of Yanenko et al. 
[35-37] or Brackbill and Saltzman [30-33]. which control grid orthogonality and 
smoothness. and that of Milier and Milier [38.39]. which is not as sensitive to 
lack of smoothness or orthogonality. The PDE used by Yanenko et al. for comput­
ing node movement derives its time dependence from the use of the Lagrangian 
measure Ea. In many problems. this might not be an appropriate measure. An 
alternate measure that wil 1 result in a time-dependent PDE for node movement is 
not immediately apparent. Brackbill and Saltzman's method is easily converted 
to allow simultaneous computation of node position and the solution at each 
node. when adapted for use with a stiff-ODE solution algorithm. their method 
should work very weIl with stiff problems. One technique of conversion. which 
White [19] has used. involves expressing Pand X as averages of their values in 
the current and next time steps and solving the resulting equations using a 
Newton-Raphson iteration. Alternatively. as discussed by Anderson [57]. the 
time-independent Euler equation for node coordinates developed by Brackbill and 
Saltzman can be converted into a PDE for node speeds by use of differentiation 
with respect to time. Tbe method of Milier and Milier uses a very natura 1 and 
elegant formulation to control node movement. Tbe node position and node 
solution are both obtained by the equidistribution of one error measure: the 
residual of the PDE written in finite-element form. Unfortunately. the solution 
of the matrix equation [A] ~ = R can consume a very large proportion of total 
computational time. Tbe method of Herbst et al. [50-52] results in a smaller 
truncation error than that of Milier and Milier but suffers from the same prob­
lems of large computational overhead. It should be possible to obtain a much 
simpier set of equations in a finite-element formulation by using a separate 
error measure to control node movement in a manner similar to that used in 
finite-difference methods. Davis and Flaherty [61] have begun work on such a 
method but much must yet be done before their method can be used on stiff 
problems. Tbe work of Lee and Ramos [53] provides a natura 1 alternative to 
interpolation when the solution is being transferred from the old grid to the 
new grid in finite-element methods. 

The methods of both Dwyer et al. [21-26] and Rai and Anderson [54-57] 
probably consume less computer time than those above. Their behaviour for 
two-dimensional problems might be improved significantly by application of a 
measure of grid orthogonality. The coordinate orthogonalization techniques of 
Potter and Tuttie [27] or of Anyiwo [29] might also be of value. Tbe method of 
Gnoffo [59.60] also fails to control grid orthogonality in two-dimensional prob­
lems and has run into difficulties similar to those experienced by Dwyer et al. 
and Rai and Anderson. 
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Anyiwo [29] describes his adaptive method sketchily, but his paper 
contains some useful ideas applicable to the methods of other authors. These 
include the use of nonzero aXi/at in an altemating node movement method and of 
an explicitly orthogonal transformation between physical and computational 
coordinates. 

Causing the nodes to follow the solution characteristics. as done by 
Kansa et al. [28]. may create problems when the characteristics intersect. such 
as during the formation of a shock wave. Auxiliary node-redistribution schemes 
must be employed to correct the tendency of the nodes to cross. 

The one-dimensional method of Pierson and Kutier [14] is rather expen­
sive since it uses Chebyshev polynomials in the computation of optimal node 
positions. This method has not been extended to multidimensional problems and 
exhibits a negligible truncation-error reduction as compared to other methods. 

Methods. such as that of Klopfer and McRae [16], that depend on explicit 
calculation of PDE truncation error are probably awkward to apply for general 
PDE solvers. 

All the methods require the specification of weighting consiants. 
Hence. the solution of a problem of ten involves a cycle of choosing weighting 
constants, submitting the problem. and observing the behaviour of the solution 
to determine if the weighting constants should be changed and the problem 
resubmitted. The reduction of the num~er of weighting constants or their 
automatic select ion is an area that in future ought to receive more attent ion 
in adaptive techniques. 

Much wort has yet to be done on developing improved adaptive methods. 
but the field certainly holds great promise in the reduction of computational 
costs in many areas of numerical PDE solution. 
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Fig. 1. Nonadaptive solution with 171 nodes and E: = 0.0015; showing Gibb's oscillations. 
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