
Challenge the future

Department of Precision and Microsystems Engineering

Finite Element Modelling of Flexible non-Euclidean Origami

Max Benninga

Report no : 2025.024
Coach : Ph. D. candidate Mingkai Zhang
Professor : Asst. Prof. Davood Farhadi Machekposhti
Specialisation : MSD
Type of report : Research paper
Date : 20-06-2025

Preface

This thesis report signifies the end of my time as a student at the TU Delft. For the last one and a
half years, I have been working on this project about flexible origami mechanisms. I faced some tough
challenges along the way that heavily shaped the final result, but in the end I can truly say that I am
proud of what I have achieved.

I could never have achieved what I did without the people around me. In that regard, I would first
like to thank Davood Farhadi Machekposhti and Mingkai Zhang for their supervision and guidance
throughout this project. You both repeatedly nudged me in the right direction, helping me reach my
goal. I would also like to thank Gideon Emmaneel and Patrick van Holst from the technical support staff
of the PME department. You helped me to fabricate and test my physical prototypes, which was an
amazing learning opportunity for me. In a similar fashion, I want to express my gratitude to the Faculty
Workshop of Mechanical Engineering for laser cutting hundreds of components for my prototypes.

From a more personal perspective, I also want to thank my girlfriend Sophie and my amazing family.
You have all supported me in my toughest moments and I feel very lucky to have you. Finally, a special
thanks to my fellow student and friend, Daan Roebroek. Sharing this journey with you, side by side for
a year and a half, helped transform a potentially lonely individual project into a collaborative and joyful
experience.

Max Benninga
Delft, June 2025

i

Contents

Preface i

Research Paper 1

A Detailed explanation of numerical procedure 1 12

B Detailed explanation of numerical procedure 2 26

C Additional information case study 47

D Literature review 52

ii

1

Finite Element Modelling of Flexible non-Euclidean
Origami
Max Benninga

Abstract—Flexible origami is suitable for designing deploy-
able mechanisms due to its ability to transform from a flat
or compactly folded geometry to a more extended geometry.
Non-Euclidean origami can help by splitting folding branches
of origami vertices, leading to kinematically determinate be-
haviour. This paper presents two novel finite element mod-
elling procedures for analysing flexible non-Euclidean origami,
fabricated using 2D manufacturing techniques. The finite ele-
ment modelling procedures presented in this work are a step
towards the implementation of flexible non-Euclidean origami
in functional applications, such as deployable mechanisms.

Index Terms—flexible origami, non-Euclidean origami, as-
sembly, finite element modelling

I. Introduction

Deployable mechanisms play a crucial role in various
industries, including aerospace [1]–[7], and medical indus-
tries [8]–[12]. Their ability to be compactly stored and
transported, then expanded into a larger functional form,
makes them highly valuable for applications where space
efficiency and adaptability are essential [13].

Origami offers a way to go from a flat or compactly
folded geometry to a more extended geometry in its
deployed state. Origami is capable of doing this transfor-
mation by coupling the movements of the facets adjacent
to a shared vertex. The result of these coupled movements
is the three-dimensional motion of the origami model.
Another advantage of origami is its manufacturability
using only 2D fabrication techniques. These qualities are
the main reason why origami is applied in real-world
applications [14]–[19].

In this research, the focus is on the modelling of flexible
origami; a class of origami that relies on the flexibility of
its parts for movement, rather than using traditional rigid
body joints [20]–[23]. In many of the sectors where deploy-
ability is needed, there are other special needs: vacuum
compatibility in the aerospace industry and cleanliness
in the medical sector. In the context of origami, flexible
creases provide an effective solution to these specialised
demands, which rigid body joints are typically unable to
meet. Moreover, numerous studies have already explored
the topic of origami with rigid body joints [24]–[29].
Flexible origami can be categorised based on how the
facets are modelled: as rigid panels or as flexible members
with specified thickness. This paper discusses both, with
each having their own advantages. Rigid facet origami
is more predictable and less computationally expensive
to model, while flexible facet origami is better able to

distribute stress and strain over its entire volume, leading
to lower stress concentrations.

It is difficult to access the potential of flexible origami,
as its origami vertices often have multiple folding branches.
The concept of having multiple folding branches refers to
the fact that a single set of input rotations can lead to
multiple different output geometries. Due to the flexible
creases, these folding branches will correspond to different
energy levels. The higher-energy folding branch will be
difficult to reach and maintain, as the mechanism naturally
tends to return to its lower-energy state. This tendency is
further supported by the flexibility of the creases, which
enables the mechanism to deform more freely and return
more readily to its lower-energy state.

As opposed to regular, Euclidean, origami, a more
complex form of origami is non-Euclidean origami. Non-
Euclidean origami can help by disconnecting the folding
branches, making it possible to select folding branches
that would otherwise not be employed [30], [31]. The
difference between Euclidean and non-Euclidean origami
lies in the sum of the sector angles, which are the angles
between the creases of a vertex. In the case where this
sum is exactly 360 degrees for all vertices, the origami is
called Euclidean. Practically, this means that every vertex
becomes flat when all the angles between the facets are
zero. From now on, these angles will be called dihedral
angles. In contrast to Euclidean origami, an origami
tessellation that contains one or more vertices with a
sector angle sum that equals more or less than 360 degrees
is called non-Euclidean origami. Unlike their Euclidean
counterparts, non-Euclidean vertices are inherently unable
to reach a configuration in which all dihedral angles are
simultaneously zero [30]. Figure 1 shows the differences
between Euclidean and non-Euclidean origami in terms
of appearance, elastic energy, and angular relations. The
ability to disconnect folding branches using non-Euclidean
origami is most evident in the angular relation plots in this
figure. In addition to being used to split folding branches,
non-Euclidean origami is also used in mechanisms that
make use of multistabilities [32]–[34]. This potential is not
explored in this paper, but it does make non-Euclidean
origami even more versatile.

To yield the potential of flexible non-Euclidean origami,
this paper presents two novel finite element modelling
procedures to model this type of origami. The novelty
of these procedures is the ability to use initially flat
and unassembled non-Euclidean vertices, and model the
process towards assembled non-Euclidean vertices. Due

2

ρ1

α1

α4

α2

α3

e2

e3

e4

e1

(iii)

BA
(i) (ii)

Mode 1

Mode 2
(iv)

 Σαi < 360°

C
 Σαi = 360°

ρ1

 Σαi > 360°

Fig. 1. Introduction of non-Euclidean vertices to split folding branches. A (i) Flexible Euclidean vertex. (ii) The two possible folding modes
of the vertex, displayed with an equal ρ1. (iii) Elastic energy of the vertex for both folding modes. (iv) Dihedral angular relations of the
vertex for both folding modes. ρn correspond with the rotations around the axes en indicated in (i). B & C Images of the same vertex,
with a sector angular deficit (B) and surplus (C), making it non-Euclidean vertices. Next to it, the energy and dihedral angular relation
plots corresponding to the non-Euclidean vertices are shown.

to this approach, it is possible to evaluate mechanical
responses as a result of assembly, while still being able
to use 2D fabrication methods for manufacturing the
flexible origami. Measurable mechanical responses consist
of kinematics, elastic energy, internal stresses, and force-
deflection behaviour during operation. The two modelling
procedures differ in how they treat facets: the first assumes
that the facets are infinitely rigid, while the second
considers their flexibility.

In summary, this paper presents two novel finite el-
ement modelling procedures for analysing flexible non-
Euclidean origami, fabricated using 2D manufacturing
techniques. Non-Euclidean origami can be used either to
split folding branches of vertices, resulting in kinematically
determinate behaviour, or to exploit the multistability of
non-Euclidean origami. The procedures introduced in this
paper can be used in the process of developing better
deployable mechanisms, making use of the advantages of
flexible non-Euclidean origami.

In the next section, the two modelling procedures are
introduced and explained in detail, and a fabrication
method is presented. Afterwards, the Results section
presents how both are applied to a single vertex and
how the first procedure is applied to a more complex
case study. After applying the modelling procedures,
their possibilities and limitations are also reviewed. The

subsequent Discussion section consists of two parts: a
discussion of the discrepancies between the experimental
and numerical data of the case study mechanism and
suggestions for future research.

II. Methods
The numerical procedures for modelling flexible non-

Euclidean are set up in ANSYS Mechanical APDL [35],
but could be applied to other finite element analysis
packages if these have the same capabilities. The two pro-
cedures correspond to two different levels of simplification
of non-Euclidean origami. Both are novel because of their
ability to capture the influence of non-Euclidean vertex
assembly starting from a flat unassembled state. Figure
2 shows how both modelling methods relate to state-
of-the-art methods for modelling non-Euclidean origami.
This figure also lists the capturable mechanical responses
for each simplification level of non-Euclidean origami. In
the following two sections, the two previously mentioned
numerical modelling procedures are explained in detail. At
the end of the Methods section, a fabrication method is
introduced that will be used for experimental validation
of the first modelling procedure.

A. Procedure 1: rigid facet assembly
For this procedure, origami mechanisms are modelled as

shell elements connected by rigid beams. The rigid beams

3

 Kinematic equations
 - Ideal hinge creases
 - Rigid facets

 FEM analysis
 - Flexible creases
 - Rigid facets

 FEM analysis
 - Flexible creases
 - Flexible facets

 FEM analysis
 - Flexible creases
 - Rigid facets

 FEM analysis
 - Flexible creases
 - Flexible facets

Method 1 Method 2
DB C EA

Mechanical response
crease deformations

Mechanical response
non-Eucl. assembly

Mechanical response
facet deformations

State-of-the-art modelling methods Novel numerical modelling methods

Fig. 2. Origami simplification levels along with their capturable mechanical responses. A Rigid facets combined with ideal hinge creases.
B Rigid facets combined with flexible creases, not starting from a flat state. C Flexible facets combined with flexible creases, not starting
from a flat state. D Rigid facets combined with flexible creases, starting from a flat state, so including non-Euclidean assembly. E Flexible
facets combined with flexible creases, starting from a flat state, so including non-Euclidean assembly.

correspond to the rigid facets of the origami mechanism,
while the shell elements correspond to the creases in
between the facets.

In terms of element types and key options, this numer-
ical framework uses the following:

• The SHELL281 element with its default element key
options.

• The MPC184 element with KEYOPT(1) = 1 and
KEYOPT(2) = 1.

SHELL281 was chosen for its suitability in large-strain
nonlinear applications.

MPC184-Link/Beam element is chosen to construct
rigid facets. Both of the chosen key options are essential for
applying this procedure. The first key option defines the
elements as rigid beams instead of links. The second key
option selects the Lagrange multiplier method, instead of
the direct elimination method. This is necessary for later
use of the CP command, which is not compatible with the
direction elimination method.

In preparation of modelling non-Euclidean origami, the
geometry is built up with flat, unassembled non-Euclidean
vertices. Therefore, one of the vertices’ facets is split,
creating two parts of a facet that need to be carefully
aligned and coupled. The flat starting geometry is built
up by creating areas for all creases and rigid facets. These
areas are then meshed using the appropriate element
types, creating a flat origami design. For creating the non-
split facets, rigid beams should span from all the nodes of
its adjacent lines to one central node. The position of this
central node can be arbitrarily chosen, even outside of the
facet area. However, for clarity, it is advised to choose a
central position in the facet area.

For constructing the split facet, both parts should have
their own central node, which lies on the facets’ shared
seam. For both sides of the split facet, two more nodes are

created and rigidly connected to the central node. These
nodes, adding to a total of three per side of the split, are
used to align the parts of the facet. From now on, the to
be coupled parts of the split facet are called panel A and
panel B. Their respective central nodes are called A1 and
B1, and the additional alignment nodes are called A2, A3,
B2, and B3. To align the panels, the alignment nodes need
to be in the same relative position, which means that if all
three nodes coincide with their corresponding counterpart
(A1 with B1, and so on), the facet will be whole.

Starting from the initially flat origami design, the model
is loaded in steps to eventually form an assembled model.
This procedure spans multiple load steps, which are as
follows:

1) Fix the central node of one of the non-split facets
in all 6 DOFs. This will be the connection of the
mechanism to the ground. Rotate the central nodes
A1 and B1 out of their original plane and toward
each other. The closer they are, the easier the next
steps will be.

2) Replace the rotations applied to A1 and B1 with
their corresponding reaction moments. Simultane-
ously fix all three translational DOFs of A1 and B1.

3) Stepwise reduce the applied reaction moments to
zero, while displacing B1 in all three translational
DOFs to the location of A1, which is still fixed in
space.

4) Couple all three translational DOFs of A1 to B1,
while deleting the displacements applied to both.
Replace the displacements applied to A1 with their
corresponding reaction forces. Simultaneously fix
two translational DOFs of A2 and B2.

5) Displace B2 in the same two translational DOFs to
the location of A2, of which these two translational
DOFs are still fixed in space.

4

B2

A2

Text

3

B3

A3

4

1

A1B1

5
A1B1

A2B2

A3B3

2

B1
A1

A1B1

A1B1

A2B2

Fig. 3. Global overview of the assembly steps of procedure 1: assembling a rigid facet non-Euclidean vertex. 1 Starting from a flat
unassembled vertex, fix the central node of the red facet. Rotate the central nodes A1 and B1 out of their original plane and toward each
other. 2 Displace B1 in all translational DOFs to the location of A1, which is fixed in space. 3 Couple all three translational DOFs of A1
to B1. Displace B2 in two translational DOFs to the location of A2, which is fixed in space. 4 Couple the two aligned translational DOFs
of A2 to B2. Displace B3 in one translational DOF to the location of A3, which is fixed in space. 5 Couple the aligned translational DOF
of A3 to B3.

6) Couple the two aligned translational DOFs of A2
to B2, while deleting the displacements applied to
both. Replace the displacements applied to A2 with
their corresponding reaction forces. Simultaneously
fix one translational DOF of A3 and B3.

7) Displace B3 in the same translational DOF to the
location of A3, of which this translational DOF is
still fixed in space. There is a possibility that B3
moves to another location than A3. If this is the case,
go back to the last step and fix another translational
DOF of A3 and B3.

8) Couple the aligned translational DOF of A3 to B3,
while deleting the displacements applied to both.
Replace the displacements applied to A3 with their
corresponding reaction forces.

9) Stepwise reduce all remaining forces to zero. If
needed, the connection to the ground could also be
removed or changed.

After this procedure, panels A and B are coupled and can
move freely together, forming an assembled rigid facet. A
global overview of the assembly steps is shown in Figure
3. A more detailed explanation of the first procedure,
including exemplary ANSYS APDL code, can be found
in Appendix A.

B. Procedure 2: flexible facet assembly
This procedure uses the same element types as the

first. However, the preparation of building the geometry is
not the same. To understand the necessary preparation,
the general goal should first be introduced. In the first
procedure, it was sufficient to align and couple the split

facet at one single location. This was the case because
of the rigidity of the facets. Now that the facets will be
modelled as flexible panels, it is necessary to couple the
entire seam line of both sides of the facet to each other.
To do so, a number of hard points need to be defined on
the seam of either side of the split facet. These points
will become the first alignment nodes (like A1 and B1 in
procedure 1), and therefore need to be in the same relative
position. The amount of hard points needed depends on
the details of the simulation. Preferably, one would want
to have as many as possible. However, the number of
hard points is limited by the mesh size of the facets, as
the areas cannot be meshed if there are too many hard
points. A convergence study of the results can be done to
determine the minimal amount of hard points required.
Alternatively, a visual inspection can also be performed by
checking the deformations of the facet between its coupled
locations, and deciding whether or not they are acceptable.
However, this second assessment method is subjective.

For the next step, for every hard point two additional
nodes are created to serve as the two other alignment
nodes (just like A2, A3, B2, and B3 in procedure 1).
These alignment nodes are rigidly connected to their cor-
responding hard point. After this is done, the areas of the
flat starting geometry are all meshed using shell elements.
Generally, the facets are meshed using a different section,
which is thicker than the creases’ section. This completes
the preparation for procedure 2.

To explain the load-step procedure, it helps to label
the entities created in the preparation. Panels A and B
each have a number of hard points along their seam line,

5

...

2 - 41 5

AB3_5

*
AB1_5

AB2_5

B1_1

B1_5 A1_5

A1_1

Fig. 4. First and last steps of the assembly of procedure 2: constructing a flexible facet non-Euclidean vertex. 1 Starting from a flat
unassembled vertex, fix the bounding crease nodes of one of the other facets. Rotate the A1n and B1n alignment nodes out of their original
plane and toward each other. 5 After aligning the B3n nodes with their corresponding A3n nodes in one translational direction, they are
coupled in that direction. The intermediate steps for aligning and coupling the nodes are very similar to the steps in Figure 3.

labelled A1n and B1n. Rigidly connected to these points
are nodes called A2n, A3n, B2n, and B3n. After aligning
all nodes of panel A with the corresponding counterpart
of panel B (A11 with B11, and so on), the facet will be
whole. The load steps needed for assembly are as follows:

1) Fix all 6 DOFs of one of the non-split facets, this will
be the connection of the mechanism to the ground.
It is sufficient to fix the facets’ nodes that border the
adjacent creases. Rotate the A1n and B1n alignment
nodes out of their original plane and toward each
other. The closer they are, the easier the next steps
will be.

2) Replace the rotations applied to the A1n and B1n
nodes with their corresponding reaction moments.
Simultaneously fix all three translational DOFs of
the A1n and B1n nodes.

3) Stepwise reduce the applied reaction moments to
zero, while displacing the B1n nodes in all three
translational DOFs to the locations of their corre-
sponding A1n nodes, which are still fixed in space.

4) Couple all three translational DOFs of the A1n nodes
to their corresponding B1n nodes, while deleting
the displacements applied to both. Replace the
displacements applied to the A1n nodes with their
corresponding reaction forces. Simultaneously fix
two translational DOFs of the A2n and B2n nodes.

5) Displace the B2n nodes in the same two translational
DOFs to the locations of the A2n nodes, of which
these two translational DOFs are still fixed in space.

6) Couple the two aligned translational DOFs of the
A2n nodes to their corresponding B2n nodes, while
deleting the displacements applied to both. Replace
the displacements applied to the A2n nodes with
their corresponding reaction forces. Simultaneously
fix one translational DOF of the A3n and B3n nodes.

7) Displace the B3n nodes in the same translational
DOF to the location of the A3n nodes, of which this
translational DOF is still fixed in space. There is a
possibility that the B3n nodes move to another loca-
tion than the A3n nodes. If this is the case, go back
to the previous step and fix another translational

DOF of the A3n and B3n nodes.
8) Couple the aligned translational DOF of the A3n

nodes to their corresponding B3n nodes, while delet-
ing the displacements applied to both. Replace the
displacements applied to the A3n nodes with their
corresponding reaction forces.

9) Stepwise reduce all remaining forces to zero. If
needed, the connection to the ground could also be
removed or changed.

After this procedure, panels A and B are coupled and
can move freely together, forming an assembled flexible
facet. A global overview of this procedure is shown in
Figure 4. Intermediate steps are omitted as they are very
similar to the steps shown in Figure 3. A more detailed
explanation of the first procedure, including exemplary
ANSYS APDL code, can be found in Appendix B.

C. Fabrication method

To be able to experimentally validate numerical models,
a sandwich technique is used to fabricate prototypes. This
means that a thin flexible sheet is locally reinforced by
sandwiching it between two significantly thicker plates.
The clamping forces are exerted by bolts that extend
through all three layers, fastening them securely. The
reinforced regions represent rigid panels, while the creases
are represented by the flexible areas. The flexible sheets are
made from stainless steel 1.4310, while the thicker plates
are also made from a stainless steel alloy. Both the flexible
sheets and the reinforcement plates are manufactured by
laser cutting. Due to the thickness of the flexible sheets,
they are cut using a high-precision Lasea laser cutting
machine. The reinforcements are cut using the Lion Alpha
Metal XL laser cutting machine. Non-Euclidean surplus
vertices cannot be made using a single flexible sheet.
The flexible sheets and reinforcement plates are therefore
assembled so that the reinforcement plates overlap the
internal boundaries between the flexible sheets.

6

III. Results

A. Application of the procedures to a single origami vertex

Having established two procedures for modelling non-
Euclidean origami, they are applied to the non-Euclidean
vertices introduced in Figure 1. By doing so, it is possible
to make comparisons between the presented modelling
methods and state-of-the-art methods, as well as between
both novel methods. These comparisons serve as a valida-
tion of the methods, but also show their potential.

The procedures are applied to an origami vertex with
sector angles of 60◦, 90◦, 135◦, and 75◦ for α1, α2, α3, and
α4, respectively. To obtain the non-Euclidean vertices, a
value of 0.05/2π rad (or ≈ 0.46◦) is added or subtracted
from each sector angle to obtain the non-Euclidean surplus
and deficit vertices. The numerical values mentioned above
are chosen to be consistent with previous research on non-
Euclidean origami [30], [31].

First, a comparison is made between rigid-facet non-
Euclidean origami; comparing flexible crease vertices with
ideal crease vertices. The dihedral angular relations of
the flexible crease vertices are obtained by applying
procedure 1 of this paper. The following dimensions for
crease width, crease thickness, inner diameter, and outer
diameter are used in the FEM analysis: wcrease = 3mm,
tcrease = 0.02mm, Din = 8mm, and Dout = 50mm.
The angular relations of the rigid-body origami vertex
are obtained from explicit kinematic equations published
in the paper of Foschi et al. [31]. The results of this
comparison are shown in Figure 5. The general trends in
the dihedral angles from both simulations are consistent
with each other. Small differences were found between the
results due to unintended crease bending modes. These
differences could be magnified by increasing the ratio
between the width of the creases and the outer diameter of
the vertex. It should also be noted that the absolute values
of the dihedral angles were measured. Due to unintended
bending modes, the angles never reach a value of zero
in reality, leading to some inconsistent behaviour around
zero.

A second comparison is made between the two pro-
cedures presented in this paper. For this comparison,
the same dimensions are used as in the previous FEM
analyses. However, one parameter is added for the flexible
facet FEM analyses; the facet thickness. A value of
tfacet = 3tcrease = 0.06mm is chosen. The results of
the comparison between procedures 1 and 2 are shown
in Figure 6. In this instance, it is possible to show not
only the differences in dihedral angular relations, but also
the difference in elastic energy stored in the vertices.

The elastic energy plots of Figure 6 show that the
flexibility of the facets decrease the elastic energy in the
system. Adding flexible members enables a more efficient
redistribution of strain, reducing internal stress, and thus
total elastic energy. Similarly to the results in Figure 5,
the discrepancies between the two modelling methods can
be increased by changing the key dimensions. In this case,

the differences could be magnified by increasing the ratio
between the crease thickness and the facet thickness.

B. Case study
After applying the introduced procedures to one origami

vertex at a time, a case study is executed showing how
procedure 1 could be applied to a more complex non-
Euclidean origami mechanism. The simulation of the case
study was also experimentally validated.

The case study mechanism is based on the Sarrus
mechanism, to which origami pitch hinges, found in the
study by Nelson et al. [36], are applied. The resulting
mechanism is a linear guide, and thus has one translational
degree of freedom. Figure 7 globally shows the assembly
steps of the mechanism, starting from a flat state. Note
that the mechanism is displayed as a CAD model of
a rigid body mechanism here, instead of a compliant
mechanism. In the bottom right segment of Figure 7, the
FEM simulation is shown in its fully assembled state. The
actual assembly procedure of the FEM model is shown in
Appendix C.

In order to validate the numerical model, the mechanism
is loaded in two ways. First, the mechanism is loaded in its
translational degree of freedom to obtain force-deflection
data. Secondly, the mechanism is loaded in torsion around
the axis of translational freedom. The results of these
two load cases are compared to the results obtained from
experimental tests, which will be discussed next.

The physical prototypes of the case study mechanism
are fabricated as described in the Methods section. The
steps for assembling the prototypes can be found in
Appendix C.

The experimental validation of the finite-element model
is carried out on a combined tension-compression and
torsion test bench. The test bench consists of a motorised
linear stage and a motorised rotary stage. The stages are
equipped with a force load cell sensor and a torque load
cell sensor, respectively. To ensure consistent testing, a
test plan is set up. The tests are executed with three
goals in mind:

1) Validating the force-deflection behaviour of the
finite-element model along its translational degree
of freedom (tension-compression).

2) Validating the torque-rotation behaviour of the
finite-element model along the constraint rotation
around its central axis (torsion).

3) Investigating the influence of prolonged pretension
on the force-deflection behaviour along its transla-
tional degree of freedom. This is done by pretension-
ing the model by assembling it and testing the model
before and after a period of 16 days of pretension.

The test plan includes two test moments. At the first
test moment, the prototypes are only loaded in tension-
compression. During the second test moment, this loading
is repeated, and additionally the prototypes are loaded in
torsion.

7

Non-Euclidean deficit Non-Euclidean surplusEuclidean

Fig. 5. Angular relations plots of Euclidean and non-Euclidean vertices, comparing rigid facet FEM analyses with rigid kinematic analyses.

-90 -45 0 45 90
Rho1 (deg)

0

0.005

0.01

0.015

El
as

tic
 e

ne
rg

y
(J

)

-90 -45 0 45 90
Rho1 (deg)

0

0.005

0.01

0.015

-90 -45 0 45 90
Rho1 (deg)

0

0.005

0.01

0.015

 Mode 1 Mode 2 Flexible facet FEM Rigid facet FEMA

Non-Eucl. surplusNon-Eucl. deficitEuclidean

B

Non-Eucl. surplusNon-Eucl. deficitEuclidean

Fig. 6. Energy and angular relations plots of Euclidean and non-Euclidean vertices, comparing flexible facet FEM analyses with rigid facet
FEM analyses. A Elastic energy. B Angular relations.

8

1.3

1 2

1.1
3 4

1.2

(i) (ii)

Fig. 7. Simplified assembly procedure of the case study mechanism, displayed with perfect hinge creases instead of flexible creases, concluding
with an image of the fully assembled ANSYS APDL model. 1 Origami mechanism in its flat, unassembled state. 1.1 - 1.3 Intermediate steps
for assembling the non-Euclidean vertices, by aligning the yellow panels. 2 Origami mechanism with assembled non-Euclidean vertices. 3
Intermediate step in process of connecting the ends of the mechanism, with the goal of aligning the cyan panels. 4 Fully assembled case
study mechanism. (i) Case study mechanism with perfect hinge creases. (ii) ANSYS APDL model with flexible creases.

In total, three prototypes have been manufactured
and tested. Multiple prototypes are tested to identify
the influence of fabrication and assembly inconsistencies
on the results. Each prototype is clamped into position
three times. This is done to observe whether clamping
inconsistencies influence the results. During each clamping
set-up, the model is loaded six times. The results of
the first run are discarded to allow the prototype to
settle. Figure 8 offers an overview of the fabricated model,
the experimental setups, and the graphs showing the
experimental and numerical results of the case study
mechanism. Discrepancies between the data from the
numerical model and the experimental test data will be
evaluated in the Discussion section, along with the reason
why multiple material models were used in the FEM
analyses. The test results showed that the pretensioning
of the prototypes did not influence the force-deflection
behaviour along its translational degree of freedom. The
test data per prototype per test moment can be found in
Appendix C.

C. Evaluation of introduced procedures

The main contribution of this work is the introduction of
two finite element modelling procedures to model flexible
non-Euclidean origami. These procedures are discussed

in this section, touching upon their possibilities and
limitations.

Starting with the most important potential of the mod-
elling methods; the effects resulting from non-Euclidean
assembly can be analysed. These effects include internal
stresses, influenced force/deflection behaviour, and altered
kinematics due to unintended bending modes. All of the
effects mentioned above can be monitored during opera-
tion, after being affected by the non-Euclidean assembly.

Moving on to limitations of the introduced modelling
methods, it has been found that the obtained simulations
can suffer from convergence issues due to multistabilities.
This proved to be mostly the case when loading mecha-
nisms in constraint directions. A useful tool for solving this
problem is the STABILIZE command. However, results
obtained while using this command should be carefully
checked, as the applied stabiliser can influence them.
The STABILIZE command can also be used during the
assembly procedure but should be removed after the
assembly is complete. Another limitation of the proposed
methods is their inability to be used for modal analyses.
The couplings applied with the CP command are ignored
during modal analyses, leading to meaningless results.

9

Linear stage Rotation stage

Torque load cellForce load cell

Origami
model

Origami
model

Experiment 1: Experiment 2:
B

A C

(ii)

(i)

-20 -15 -10 -5 0 5
Displacement (mm)

-0.2

-0.1

0

0.1

0.2

Fo
rc

e
(N

)

Test average and standard deviation
Fully elastic model
Plastic model [30]
Plastic model Granta Edupack (1/2 hardness)

Fig. 8. Overview of fabricated model, experimental setups and result plots of case study mechanism. A Fabricated model including clamping
parts. B Experimental setups. Tension-compression on the left, clamped-in model in the middle, and torsion on the right. C Plots displaying
numerical and test data. Numerical data consists of three different material models. Test data average is shown in combination with its
standard deviation. (i) Tension-compression. (ii) Torsion.

IV. Discussion
A. Discrepancies case study results

Significant discrepancies between the numerical and
experimental data are identified in the result plots in
Figure 8. These discrepancies are expected to be caused by
plastic deformations as a result of assembly. Initially, the
mechanism was not meant to deform plastically, but when
the physical models were disassembled, it was observed
that some plastic deformation occurred. In an attempt to
reduce the discrepancy between the test results and the
results of the elastic material model, two plastic material
models were also evaluated. As the exact stress/strain
behaviour of the material is unknown, two bilinear plastic
material models were used, using Young’s modulus, yield
stress, and plastic tangent modulus as parameters. The
first plastic model for this steel alloy was found in a work
by Pavliuchenko et al. [37], while the other was found
using Granta Edupack [38]. The stress/strain plot and
parameter values of the three applied material models can
be found in Appendix C. Both plastic material models
did not produce results that were within the standard

deviation of the test results. A third plastic material model
could be implemented, with an even lower yield stress.
However, this model could not be implemented due to time
constraints. A more positive takeaway from these results
is that the general trend of the test data was consistent
with the trend found using numerical analyses.

In addition to plastic deformations, the test models
appeared to be prone to unintended multistabilities. It
proved to be difficult to force all prototypes to be in
the same state during testing, leading to inconsistencies.
Removing these inconsistencies could reduce the standard
deviation in the test data.

B. Future work
As a result of this work, several new research challenges

have emerged, which are listed below.
1) The second procedure introduced in this paper could

be further improved. The coupling of the flexible
facets is done by coupling multiple nodes along the
seam. Due to this, the panels are perfectly coupled
locally, but between the coupled locations the facet

10

does not behave as one. It should be investigated if
it is possible to couple the seam in a more consistent
matter. If this is not possible, it should be researched
how many local couplings are needed to obtain
sufficiently accurate results.

2) As mentioned in the Results section, the introduced
modelling methods cannot be used for modal analy-
ses, as the applied couplings are ignored. It might be
possible to resolve this limitation by replacing the
CP commands with the more general CE commands.
As modal analyses were not the focus of this work, it
was not attempted to implement this solution. The
use of the CE command could also come at the cost
of more computationally expensive simulations.

3) Both modelling methods introduced in this work
have not yet been sufficiently validated by experi-
ments. Experimental validation should be performed
using simple models whose stresses remain well
below the plastic deformation limit during assembly
and loading. This is important to ensure that plastic
deformations do not influence the results.

4) During this research, flexible origami creases were
often found to deform in other ways than intended.
The intended deformation of a crease is bending
around its centreline, while some examples of un-
intended deformations are torsion or shearing of
creases. These unintended deformations can result in
unwanted stress concentrations and should therefore
be avoided. Alternate creases could be implemented
to reduce undesired crease deformations. This can
be achieved by reducing the stiffness of the joint
in bending and increasing the stiffness in other
deformation modes, effectively forcing a certain de-
formation mode. In the case study mechanism, this
was done by changing the 2D shape of its creases.
Another way to avoid unintended crease bending
modes is to implement more complex creases. Some
options for this are lamina emergent joints [39], [40]
or 3D compliant joints, such as circular groove joints
[41]. The implementation of 3D compliant joints
would negate the 2D manufacturability of flexible
origami.

5) As a final recommendation for future work, the
procedures presented in this paper should be applied
to functional origami. Whether it is to approach
previous research [32], [42]–[44] in a new way or to
analyse new mechanisms, the application of these
procedures is the best way to build on the foundation
laid in this research.

V. Conclusion
The procedures introduced in this paper can be used to

numerically analyse the mechanical responses of flexible
non-Euclidean origami, after constructing it in 2D and
virtually assembling it. This opens the door for using
2D fabrication techniques to make flexible non-Euclidean
origami, which is simpler and cheaper than using 3D
fabrication techniques.

The numerical modelling methods were validated by
applying them to a flexible non-Euclidean vertex and
comparing its dihedral angular relations with those of
a vertex with ideal hinges. An attempt was also made
to experimentally validate the first modelling method
by applying it to a case study mechanism. The general
trend of the force/deflection data was consistent for the
experiment and the numerical model, but a discrepancy
was found. This discrepancy is expected to be caused by
plastic deformation, but should be further investigated.
During analyses of flexible non-Euclidean origami, it was
found that creases often deform differently than intended.
These unintended bending modes can be detrimental to
the operation of flexible origami and should be avoided
by smart crease design.

The finite element modelling procedures presented in
this paper are a step towards the implementation of
flexible non-Euclidean origami in functional applications.
The deployability of origami is highly valuable for applica-
tions where space efficiency and adaptability are essential.
Non-Euclidean origami enables the splitting of folding
branches, leading to mechanisms with kinematically deter-
minate behaviour. Research into multistable mechanisms
can also benefit from the procedures presented in this
paper, as non-Euclidean origami contains implicit multi-
stabilities that could be employed.

References
[1] T. Ye, Z. Chen, S. Huang, and F. Hu, “Review of Deployable

Mechanism Test Technologies Oriented towards Deep Space
Exploration,” in IOP Conference Series: Materials Science and
Engineering, vol. 1043, no. 5. IOP Publishing Ltd, 2 2021.

[2] B. Wang, J. Zhu, S. Zhong, W. Liang, and C. Guan, “Space de-
ployable mechanics: A review of structures and smart driving,”
1 2024.

[3] Z. Q. Liu, H. Qiu, X. Li, and S. L. Yang, “Review of Large
Spacecraft Deployable Membrane Antenna Structures,” pp.
1447–1459, 11 2017.

[4] X. Ma, T. Li, J. Ma, Z. Wang, C. Shi, S. Zheng, Q. Cui, X. Li,
F. Liu, H. Guo, L. Liu, Z. Wang, and Y. Li, “Recent Advances in
Space-Deployable Structures in China,” pp. 207–219, 10 2022.

[5] L. Santo, F. Quadrini, A. Accettura, and W. Villadei, “Shape
memory composites for self-deployable structures in aerospace
applications,” in Procedia Engineering, vol. 88. Elsevier Ltd,
2014, pp. 42–47.

[6] W. K. Belvin, M. Straubel, W. Keats Wilkie, M. E. Zander,
J. M. Fernandez, and M. F. Hillebrandt, “Advanced Deployable
Structural Systems for Small Satellites,” Tech. Rep., 2016.

[7] S. Yue, “A Review of Origami-Based Deployable Structures
in Aerospace Engineering,” in Journal of Physics: Conference
Series, vol. 2459, no. 1. Institute of Physics, 2023.

[8] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto,
T. Ito, and M. Sasaki, “Self-deployable origami stent grafts as
a biomedical application of Ni-rich TiNi shape memory alloy
foil,” Materials Science and Engineering: A, vol. 419, no. 1-2,
pp. 131–137, 3 2006.

[9] M. H. Akhtar and J. Ramkumar, “Origami inspired deployable
structures: Future mobile healthcare for low resource settings.”
Alanya Hamdullah Emin Pasa Universitesi, 6 2023, pp. 209–219.

[10] Jahanshah Fathi, Timo J. C. Oude Vrielink, Mark S. Runciman,
and George P. Mylonas, “A Deployable Soft Robotic Arm with
Stiffness Modulation for Assistive Living Applications,” 2019.

[11] W. He, D. Zhou, H. Gu, R. Qu, C. Cui, Y. Zhou, Y. Wang,
X. Zhang, Q. Wang, T. Wang, and Y. Zhang, “A Biocompatible
4D Printing Shape Memory Polymer as Emerging Strategy for
Fabrication of Deployable Medical Devices,” Macromolecular
Rapid Communications, vol. 44, no. 2, 1 2023.

11

[12] J. Gafford, Y. Ding, A. Harris, T. McKenna, P. Polygerinos,
D. Holland, A. Moser, and C. Walsh, “Shape deposition man-
ufacturing of a soft, atraumatic, deployable surgical grasper,”
Journal of Medical Devices, Transactions of the ASME, vol. 8,
no. 3, 2014.

[13] G. E. Fenci and N. G. Currie, “Deployable structures classifi-
cation: A review,” pp. 112–130, 6 2017.

[14] C. Ynchausti, C. Roubicek, J. Erickson, B. Sargent, S. P. Ma-
gleby, and L. L. Howell, “Hexagonal Twist Origami Pattern for
Deployable Space Arrays,” ASME Open Journal of Engineering,
vol. 1, 1 2022.

[15] K. Seymour, D. Burrow, A. Avila, T. Bateman, D. C.
Morgan, S. P. Magleby, and L. L. Howell, “Origami-Based
Deployable Ballistic Barrier,” Tech. Rep., 2018. [Online].
Available: https://scholarsarchive.byu.edu/facpub

[16] Y. Zhu and E. T. Filipov, “Large-scale modular and uniformly
thick origami-inspired adaptable and load-carrying structures,”
Nature Communications, vol. 15, no. 1, 12 2024.

[17] B. Sargent, J. Butler, K. Seymour, D. Bailey, B. Jensen,
S. Magleby, and L. Howell, “An Origami-Based Medical Sup-
port System to Mitigate Flexible Shaft Buckling,” Journal of
Mechanisms and Robotics, vol. 12, no. 4, 8 2020.

[18] A. J. Taylor, Y. Chen, M. Fok, A. Berman, K. Nilsson, and
Z. T. H. Tse, “Cardiovascular catheter with an expandable
origami structure,” Journal of Medical Devices, Transactions
of the ASME, vol. 11, no. 3, 9 2017.

[19] S. J. Wu, H. Yuk, J. Wu, C. S. Nabzdyk, and X. Zhao, “A
Multifunctional Origami Patch for Minimally Invasive Tissue
Sealing,” Advanced Materials, vol. 33, no. 11, 3 2021.

[20] H. C. Greenberg, M. L. Gong, S. P. Magleby, and L. L. Howell,
“Identifying links between origami and compliant mechanisms,”
Mechanical Sciences, vol. 2, no. 2, pp. 217–225, 2011.

[21] Y. Feng, M. Wang, and X. Qiu, “A simplified mechanical model
of the crease in the flexible origami structures,” International
Journal of Solids and Structures, vol. 241, 4 2022.

[22] J. Liu, Z. Chen, G. Wen, J. He, H. Wang, L. Xue, K. Long,
and Y. M. Xie, “Origami Chomper-Based Flexible Gripper
with Superior Gripping Performances,” Advanced Intelligent
Systems, vol. 5, no. 10, 10 2023.

[23] C. M. Wheeler and M. L. Culpepper, “Soft origami: Classifi-
cation, constraint, and actuation of highly compliant origami
structures,” Journal of Mechanisms and Robotics, vol. 8, no. 5,
10 2016.

[24] L. Zimmermann, K. Shea, and T. Stanković, “Conditions for
Rigid and Flat Foldability of Degree-n Vertices in Origami,”
Journal of Mechanisms and Robotics, vol. 12, no. 1, 2 2020.

[25] L. Zimmermann and T. Stanković, “Rigid and Flat Foldability
of a Degree-Four Vertex in Origami,” Journal of Mechanisms
and Robotics, vol. 12, no. 1, 2 2020.

[26] E. T. Filipov, T. Tachi, G. H. Paulino, and D. A. Weitz,
“Origami tubes assembled into stiff, yet reconfigurable struc-
tures and metamaterials,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 112, no. 40,
pp. 12 321–12 326, 10 2015.

[27] L. . Zimmermann, K. . Shea, and T. Stankovic, “A
Computational Design Synthesis Method for the Generation
of Rigid Origami Crease Patterns,” Journal of Mechanisms
and Robotics, vol. 14, no. 3, 2021. [Online]. Available:
https://doi.org/10.3929/ethz-b-000512541

[28] Y. Zhu, M. Schenk, and E. T. Filipov, “A Review on Origami
Simulations: From Kinematics, to Mechanics, Toward Multi-
physics,” Applied Mechanics Reviews, vol. 74, no. 3, 5 2022.

[29] T. Tachi and T. C. Hull, “Self-foldability of rigid origami,”
Journal of Mechanisms and Robotics, vol. 9, no. 2, 4 2017.

[30] S. Waitukaitis, P. Dieleman, and M. Van Hecke, “Non-Euclidean
Origami,” Tech. Rep., 2020.

[31] R. Foschi, T. C. Hull, and J. S. Ku, “Explicit kinematic
equations for degree-4 rigid origami vertices, Euclidean and non-
Euclidean,” Physical Review E, vol. 106, no. 5, 11 2022.

[32] Y. Li, P. Wang, Q. Zhang, K. Li, Y. Zhang, L. Kan, W. Xin,
J. Feng, J. Cai, and C. Laschi, “Robots Evolved from Non-
Euclidean Composite Origami,” IEEE Robotics and Automa-
tion Letters, 2025.

[33] C. C. Addis, S. Rojas, and A. F. Arrieta, “Connecting the
branches of multistable non-Euclidean origami by crease stretch-
ing,” Physical Review E, vol. 108, no. 5, 11 2023.

[34] N. Bende, “Non-Euclidean Shells: A Study of Growth-
Induced Fabrication and Mechanical Multi-Stability
Item Type dissertation,” 2017. [Online]. Available:
https://hdl.handle.net/20.500.14394/17197

[35] M. K. Thompson and J. M. Thompson, ANSYS mechanical
APDL for finite element analysis. Butterworth-Heinemann,
2017.

[36] T. G. Nelson, A. Avila, L. L. Howell, J. L. Herder, and D. F.
Machekposhti, “Origami-inspired sacrificial joints for folding
compliant mechanisms,” Mechanism and Machine Theory, vol.
140, pp. 194–210, 10 2019.

[37] P. Pavliuchenko, M. Teller, and G. Hirt, “Analysis of
influencing factors on the achievability of bistable fully closed
shells by semi-analytical modelling,” 3 2021. [Online]. Available:
https://engrxiv.org/index.php/engrxiv/preprint/view/1541

[38] ANSYS, “Granta EduPack 2022 R1,” 2022. [Online]. Available:
https://www.ansys.com/products/materials/granta-edupack

[39] I. L. Delimont, S. P. Magleby, and L. L. Howell, “Evaluating
compliant hinge geometries for origami-inspired mechanisms,”
Journal of Mechanisms and Robotics, vol. 7, no. 1, 2015.

[40] J. Keizer, “Design of a lamina emergent joint as an alternative
for a groove joint,” Tech. Rep., 2023.

[41] D. F. Machekposhti, N. Tolou, and J. L. Herder, “A review
on compliant joints and rigid-body constant velocity universal
joints toward the design of compliant homokinetic couplings,”
2015.

[42] L. Huang, P. Zeng, L. Yin, B. Liu, Y. Yang, and J. Huang,
“Design and kinematic analysis of a rigid-origami-based under-
water sampler with deploying-encircling motion,” Mechanism
and Machine Theory, vol. 174, 8 2022.

[43] C. Shi, Q. Zhang, J. Feng, and J. Cai, “Mechanical performance
of reconfigurable origami structures fabricated by cutting and
planar assembly,” Extreme Mechanics Letters, vol. 77, 6 2025.

[44] C. Shi, Q. Zhang, J. Feng, S. D. Kim, and J. Cai, “Tensile
self-locking behavior of reconfigurable origami structure,” En-
gineering Structures, vol. 335, 7 2025.

A
Detailed explanation of numerical

procedure 1

This appendix includes the ANSYS Mechanical APDL code used to model a single rigid facet non-
Euclidean vertex. The code is explained in blocks and contains comments in the script to guide the
reader.

The first block of code contains the commands to define the element types (including key options),
material model, and section used for the flexible creases.

1 FINISH !exit current processor
2 /CLEAR !clear APDL database
3
4 /PREP7 !initialize preprocessor
5
6 !!!=== Define element types and material properties
7
8 ET,1,281 !Element for panels (SHELL281)
9 ET, 2,MPC184 !Element for rigid connections

10 KEYOPT, 2, 1, 1 !Last number defines whether it is a link (0) or beam (1). Should always be
beam for this application.

11 KEYOPT, 2, 2, 1 !Change kinematic constraint method to be able to use coupling (to Lagrange
multiplier method)

12 MP,ex,1,1.85*10**11 !Define Young's Modulus
13 MP,nuxy,1,0.3 !Define Poisson's ratio
14
15 !!!=== Define section of creases
16
17 t=(0.02)*10**(-3) !Thickness used for creases
18
19 SECTYPE,1,shell,, !section of crease line
20 SECDATA,t,,,5 !defines the thickness, material ID, angle (for anisotropic materials) and

number of integration points in layer, respectively.
21 SECOFFSET,MID !defines the section offset

Listing A.1: Definition of element types (including key options), material model, and section.

The second block of code contains the commands to define the geometry of the unassembled non-
Euclidean vertex. The geometry is built up using keypoints, lines, and areas.

22 !!!=== Define geometry of the model
23
24 pi=3.14159265 !Definition of pi
25 Rsmall = 4*10**(-3) !Radius of inner circle of the vertex
26 Rbig = 25*10**(-3) !Radius of outer circle of the vertex
27 Creasewidth = 3*10**(-3) !Width of the creases of the vertex
28
29 alpha1_deg= 60 !Sector angle of the first facet

12

13

30 alpha1=(alpha1_deg/360)*2*pi !Conversion of alpha1 to radians
31
32 alpha2_deg= 90 !Sector angle of the second facet
33 alpha2=(alpha2_deg/360)*2*pi !Conversion of alpha2 to radians
34
35 alpha3_deg= 135 !Sector angle of the third facet
36 alpha3=(alpha3_deg/360)*2*pi !Conversion of alpha3 to radians
37
38 alpha4_deg= 75 !Sector angle of the fourth facet (the facet that is split)
39 alpha4=(alpha4_deg/360)*2*pi !Conversion of alpha4 to radians
40
41 alphasurplus_deg= -5 !Angle that is added or subtracted to each sector angle to get the non-

Euclidean vertex. Negative for deficit, positive for surplus
42 alphasurplus=(alphasurplus_deg/360)*2*pi !Conversion of Alpha to radians
43
44 !Intermediate variables, used to construct the model
45 Sdiagonal = sqrt((Rsmall)**2-(Creasewidth/2)**2)
46 Sdiagonal2 = sqrt((Rbig)**2-(Creasewidth/2)**2)
47
48 Radialline = Rbig - Rsmall - (Rbig-Sdiagonal2) + (Rsmall-Sdiagonal)
49
50 effective_angle3 = alpha1 + alpha2 + alpha3 + 3*alphasurplus - 3*pi/2
51
52
53 X3 = Creasewidth/2*sin(alpha1 + alphasurplus) + Sdiagonal*cos(alpha1 + alphasurplus)
54 Y3 = -Creasewidth/2*cos(alpha1 + alphasurplus) + Sdiagonal*sin(alpha1 + alphasurplus)
55
56 X4 = -Creasewidth/2*sin(alpha1 + alphasurplus) + Sdiagonal*cos(alpha1 + alphasurplus)
57 Y4 = Creasewidth/2*cos(alpha1 + alphasurplus) + Sdiagonal*sin(alpha1 + alphasurplus)
58
59 X5 = Creasewidth/2*cos(alpha1 + alpha2 + 2*alphasurplus - pi/2) - Sdiagonal*sin(alpha1 +

alpha2 + 2*alphasurplus - pi/2)
60 Y5 = Creasewidth/2*sin(alpha1 + alpha2 + 2*alphasurplus - pi/2) + Sdiagonal*cos(alpha1 +

alpha2 + 2*alphasurplus - pi/2)
61
62 X6 = -Creasewidth/2*cos(alpha1 + alpha2 + 2*alphasurplus - pi/2) - Sdiagonal*sin(alpha1 +

alpha2 + 2*alphasurplus - pi/2)
63 Y6 = -Creasewidth/2*sin(alpha1 + alpha2 + 2*alphasurplus - pi/2) + Sdiagonal*cos(alpha1 +

alpha2 + 2*alphasurplus - pi/2)
64
65 X7 = -Creasewidth/2*cos(-effective_angle3) - Sdiagonal*sin(-effective_angle3)
66 Y7 = Creasewidth/2*sin(-effective_angle3) - Sdiagonal*cos(-effective_angle3)
67
68 X8 = Creasewidth/2*cos(-effective_angle3) - Sdiagonal*sin(-effective_angle3)
69 Y8 = -Creasewidth/2*sin(-effective_angle3) - Sdiagonal*cos(-effective_angle3)
70
71
72 !!!=== Keypoints
73
74 K,1, Sdiagonal, -Creasewidth/2, 0
75 K,2, Sdiagonal, Creasewidth/2, 0
76
77 K,3, X3, Y3, 0
78 K,4, X4, Y4, 0
79
80 K,5, X5, Y5, 0
81 K,6, X6, Y6, 0
82
83 K,7, X7, Y7, 0
84 K,8, X8, Y8, 0
85
86 K,9, Rsmall*sin((alpha4 + alphasurplus)/2 + effective_angle3), -Rsmall*cos((alpha4 +

alphasurplus)/2 + effective_angle3), 0
87 K,10, Rsmall*cos((alpha4 + alphasurplus)/2), -Rsmall*sin((alpha4 + alphasurplus)/2), 0
88
89 K,11, Sdiagonal + Radialline, -Creasewidth/2, 0
90 K,12, Sdiagonal + Radialline, Creasewidth/2, 0
91
92 K,13, X3 + Radialline*cos(alpha1 + alphasurplus), Y3 + Radialline*sin(alpha1 + alphasurplus),

0
93 K,14, X4 + Radialline*cos(alpha1 + alphasurplus), Y4 + Radialline*sin(alpha1 + alphasurplus),

14

0
94
95 K,15, X5 - Radialline*sin(alpha1 + alpha2 + 2*alphasurplus - pi/2), Y5 + Radialline*cos(

alpha1 + alpha2 + 2*alphasurplus - pi/2), 0
96 K,16, X6 - Radialline*sin(alpha1 + alpha2 + 2*alphasurplus - pi/2), Y6 + Radialline*cos(

alpha1 + alpha2 + 2*alphasurplus - pi/2), 0
97
98 K,17, X7 - Radialline*sin(-effective_angle3), Y7 - Radialline*cos(-effective_angle3), 0
99 K,18, X8 - Radialline*sin(-effective_angle3), Y8 - Radialline*cos(-effective_angle3), 0

100
101 K,19, (Rbig)*sin((alpha4 + alphasurplus)/2 + effective_angle3), -(Rbig)*cos((alpha4 +

alphasurplus)/2 + effective_angle3), 0
102 K,20, (Rbig)*cos((alpha4 + alphasurplus)/2), -(Rbig)*sin((alpha4 + alphasurplus)/2), 0
103
104 K,21, 0,0,0 !Origin, used for center of curvature
105
106
107 !!!=== Lines between keypoints
108
109 !First ring arcs
110 LARC, 1, 2, 21, Rsmall
111 LARC, 2, 3, 21, Rsmall
112 LARC, 3, 4, 21, Rsmall
113 LARC, 4, 5, 21, Rsmall
114 LARC, 5, 6, 21, Rsmall
115 LARC, 6, 7, 21, Rsmall
116 LARC, 7, 8, 21, Rsmall
117 LARC, 8, 9, 21, Rsmall
118 LARC, 1, 10, 21, Rsmall
119
120
121 !Second ring arcs
122 LARC, 11, 12, 21, Rbig
123 LARC, 12, 13, 21, Rbig
124 LARC, 13, 14, 21, Rbig
125 LARC, 14, 15, 21, Rbig
126 LARC, 15, 16, 21, Rbig
127 LARC, 16, 17, 21, Rbig
128 LARC, 17, 18, 21, Rbig
129 LARC, 18, 19, 21, Rbig
130 LARC, 11, 20, 21, Rbig
131
132 !Radial lines
133 L,1,11
134 L,2,12
135 L,3,13
136 L,4,14
137 L,5,15
138 L,6,16
139 L,7,17
140 L,8,18
141 L,9,19
142 L,10,20
143
144 !!!=== Creating areas between lines
145
146 AL,1,10,19,20 !Area 1 (crease)
147 AL,2,11,20,21 !Area 2 (rigid facet)
148 AL,3,12,21,22 !Area 3 (crease)
149 AL,4,13,22,23 !Area 4 (rigid facet)
150 AL,5,14,23,24 !Area 5 (crease)
151 AL,6,15,24,25 !Area 6 (rigid facet)
152 AL,7,16,25,26 !Area 7 (crease)
153 AL,8,17,26,27 !Area 8 (rigid facet)
154 AL,9,18,19,28 !Area 9 (rigid facet)

Listing A.2: Building the geometry of the unassembled non-Euclidean vertex.

The third block of code contains the commands to create the central nodes and alignment nodes of the
rigid panels, mesh the crease areas, and create rigid connections to the central nodes and alignment

15

nodes. After this block of code, a screenshot shows how the model looks after the preparation steps.

155 !!!=== Create component containing the flexible areas (creases)
156
157 ASEL,S,AREA,,1,7,2
158 CM,flexible_areas,AREA !Create a component of the selected areas
159 ALLSEL !select everything (so reset selection done before)
160
161 !!!=== Create central and aligning nodes used for rigid facets
162
163 !Base & other pre-assembled facets
164 N, 1, Rbig*cos((alpha1 + alphasurplus)/2), Rbig*sin((alpha1 + alphasurplus)/2), 0 !Central

node for base rigid facet
165 N, 2, -Rbig*sin((alpha1 + alphasurplus) + (alpha2 + alphasurplus)/2 - pi/2), Rbig*cos((alpha1

+ alphasurplus) + (alpha2 + alphasurplus)/2 - pi/2), 0 !Central node for second rigid
facet

166 N, 3, -Rbig*cos((alpha1 + alphasurplus) + (alpha2 + alphasurplus) + (alpha3 + alphasurplus)/2
- pi), -Rbig*sin((alpha1 + alphasurplus) + (alpha2 + alphasurplus) + (alpha3 +

alphasurplus)/2 - pi), 0 !Central node for third rigid facet
167
168
169 !Alignment nodes for panel A
170 N, 4, Rbig*cos((alpha4 + alphasurplus)/2), -Rbig*sin((alpha4 + alphasurplus)/2), 0 !A1
171 N, 5, (Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 + pi/24), -(Rbig + 10e-3)*sin((alpha4 +

alphasurplus)/2 + pi/24), 0 !A2
172 N, 6, (Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 - pi/24), -(Rbig + 10e-3)*sin((alpha4 +

alphasurplus)/2 - pi/24), 0 !A3
173
174 !Alignment nodes for panel B
175 N, 7, Rbig*sin((alpha4 + alphasurplus)/2 + effective_angle3), -Rbig*cos((alpha4 +

alphasurplus)/2 + effective_angle3), 0 !B1
176 N, 8, (Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + effective_angle3 - pi/24), -(Rbig + 10e

-3)*cos((alpha4 + alphasurplus)/2 + effective_angle3 - pi/24), 0 !B2
177 N, 9, (Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + effective_angle3 + pi/24), -(Rbig + 10e

-3)*cos((alpha4 + alphasurplus)/2 + effective_angle3 + pi/24), 0 !B3
178
179 !!!=== Mesh crease areas
180
181 CMSEL, S, flexible_areas !Select crease areas
182 AATT, 1, , 1, , 1 !Define associates element attributes with the selected, unmeshed areas.

Entries are material ID, real constants, element type, coordinate system and section
number respectively

183 ESIZE, Creasewidth/6 !Define element size as a function of crease width
184 AMESH,ALL !Mesh all selected areas
185 ALLSEL !Select everything (so reset selection done before)
186
187 !!!=== Creating rigid connections between creases to central nodes to create the rigid

panels
188
189 TYPE,2 !Select rigid beam element for creating new elements
190
191 !!!=== Base facet
192
193 !Select the nodes associated to the lines bordering a rigid facet
194 LSEL,S,LINE,,20,21 !Select lines surrounding rigid facet
195 NSLL,S,1 !Selects the nodes associated with the selected lines. Choose 1 to include nodes at

the end of the lines.
196
197 *GET,base_surrounding_nodes_count ,NODE,0,count !Get the number of nodes (count) in the

selected set.
198 *DIM,base_surrounding_nodes_IDs ,array,base_surrounding_nodes_count !Make parameter to store

node IDs of the selected nodes
199 *VGET,base_surrounding_nodes_IDs ,NODE,,nlist !Get the node IDs of selected nodes and store

them in the parameter
200 ALLSEL !Select everything (so reset selection done before)
201
202 !Loop to make rigid connections between the surrounding nodes to the central node of the

rigid facet
203 *DO,i,1,base_surrounding_nodes_count ,1 !Do loop continues for as long as we have surrounding

nodes
204 E, 1, base_surrounding_nodes_IDs(i) !Rigid connection is made between central node to

16

all surrounding nodes
205 *ENDDO
206
207 !facet 2
208
209 !Select the nodes associated to the lines bordering a rigid facet
210 LSEL,S,LINE,,22,23 !Select lines surrounding rigid facet
211 NSLL,S,1 !Selects the nodes associated with the selected lines. Choose 1 to include nodes at

the end of the lines.
212
213 *GET,facet2_surrounding_nodes_count ,NODE,0,count !Get the number of nodes (count) in the

selected set.
214 *DIM,facet2_surrounding_nodes_IDs ,array,facet2_surrounding_nodes_count !Make parameter to

store node IDs of the selected nodes
215 *VGET,facet2_surrounding_nodes_IDs ,NODE,,nlist !Get the node IDs of selected nodes and store

them in the parameter
216 ALLSEL !Select everything (so reset selection done before)
217
218
219 !Loop to make rigid connections between the surrounding nodes to the central node of the

rigid facet
220 *DO,i,1,facet2_surrounding_nodes_count ,1 !Do loop continues for as long as we have

surrounding nodes
221 E, 2, facet2_surrounding_nodes_IDs(i) !Rigid connection is made between central node

to all surrounding nodes
222 *ENDDO
223
224 !facet 3
225
226 !Select the nodes associated to the lines bordering a rigid facet
227 LSEL,S,LINE,,24,25 !Select lines surrounding rigid facet
228 NSLL,S,1 !Selects the nodes associated with the selected lines. Choose 1 to include nodes at

the end of the lines.
229
230 *GET,facet3_surrounding_nodes_count ,NODE,0,count !Get the number of nodes (count) in the

selected set.
231 *DIM,facet3_surrounding_nodes_IDs ,array,facet3_surrounding_nodes_count !Make parameter to

store node IDs of the selected nodes
232 *VGET,facet3_surrounding_nodes_IDs ,NODE,,nlist !Get the node IDs of selected nodes and store

them in the parameter
233 ALLSEL !Select everything (so reset selection done before)
234
235
236 !Loop to make rigid connections between the surrounding nodes to the central node of the

rigid facet
237 *DO,i,1,facet3_surrounding_nodes_count ,1 !Do loop continues for as long as we have

surrounding nodes
238 E, 3, facet3_surrounding_nodes_IDs(i) !Rigid connection is made between central node

to all surrounding nodes
239 *ENDDO
240
241 !!!=== Panels to couple
242
243 !panel A
244
245 !Select the nodes associated to the lines bordering a rigid panel
246 LSEL,S,LINE,,19 !Select lines surrounding rigid panel
247 NSLL,S,1 !Selects the nodes associated with the selected lines. Choose 1 to include nodes at

the end of the lines.
248
249 *GET,panelA_surrounding_nodes_count ,NODE,0,count !Get the number of nodes (count) in the

selected set.
250 *DIM,panelA_surrounding_nodes_IDs ,array,panelA_surrounding_nodes_count !Make parameter to

store node IDs of the selected nodes
251 *VGET,panelA_surrounding_nodes_IDs ,NODE,,nlist !Get the node IDs of selected nodes and store

them in the parameter
252 ALLSEL !Select everything (so reset selection done before)
253
254
255 !Loop to make rigid connections between the surrounding nodes to the central node of the

rigid panel

17

256 *DO,i,1,panelA_surrounding_nodes_count ,1 !Do loop continues for as long as we have
surrounding nodes

257 E, 4, panelA_surrounding_nodes_IDs(i) !Rigid connection is made between central node
to all surrounding nodes

258 *ENDDO
259
260 !panel B
261
262 !Select the nodes associated to the lines bordering a rigid panel
263 LSEL,S,LINE,,26 !Select lines surrounding rigid panel
264 NSLL,S,1 !Selects the nodes associated with the selected lines. Choose 1 to include nodes at

the end of the lines.
265
266 *GET,panelB_surrounding_nodes_count ,NODE,0,count !Get the number of nodes (count) in the

selected set.
267 *DIM,panelB_surrounding_nodes_IDs ,array,panelB_surrounding_nodes_count !Make parameter to

store node IDs of the selected nodes
268 *VGET,panelB_surrounding_nodes_IDs ,NODE,,nlist !Get the node IDs of selected nodes and store

them in the parameter
269 ALLSEL !Select everything (so reset selection done before)
270
271
272 !Loop to make rigid connections between the surrounding nodes to the central node of the

rigid panel
273 *DO,i,1,panelB_surrounding_nodes_count ,1 !Do loop continues for as long as we have

surrounding nodes
274 E, 7, panelB_surrounding_nodes_IDs(i) !Rigid connection is made between central node

to all surrounding nodes
275 *ENDDO
276
277 !Create extra connections to second and third alignment nodes to align and couple panels A

and B
278 E, 4, 5
279 E, 4, 6
280
281 E, 7, 8
282 E, 7, 9
283
284 FINISH !exit current processor
285
286 !!!=== Preparation complete

Listing A.3: Creating central and alignment nodes, mesh the crease areas, and create rigid connections between nodes.

18

Figure A.1: Screenshot of the model after the preparation steps of procedure 1.

The last blocks of code contain the commands to stepwise assemble the vertex. The step numbers
before each loadstep correspond to the step numbers in the main paper. In between the code, there
are screenshots of how the model looks after every main displacement step.

287 !!!=== Non-Euclidean assembly starting here
288
289 !!!=== Step 1 of the procedure
290 /SOLU !Initialize solution processor
291 ANTYPE, 0, new !Specifies a new static analysis
292 NLGEOM, on !Non-linear large deflection behavior on or off, including stress stiffening
293 OUTRES,all,all !Controls the solution data written to the database. All solution items at all

substeps are written to the database.
294 AUTOTS, on !Use automatic time stepping
295 NEQIT, 1000 !Specifies the maximum number of equilibrium iterations for nonlinear analyses.
296 NSUBST,30,,10 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
297
298 D,1,ALL,0 !Fix the base node in 6 DOFs
299
300 D,4,ROTX, -pi/6 !Rotate the central nodes A1 and B1 out of their original plane and toward

each other. The closer they get, the better it is.
301 D,7,ROTX, -pi/6 !Rotate the central nodes A1 and B1 out of their original plane and toward

each other. The closer they get, the better it is.
302
303 SOLVE !solve current study
304 FINISH !exit current processor
305
306 /POST1 !Initialize post1 processor
307 /DSCALE,ALL,1 !Scaling of displacement displays, set to 1 for true scale and 0 for auto

scale
308 PLDISP,0 !Displays the displaced structure, key is used to show or not show the undisplaced

structure

Listing A.4: Loadstep 1 of assembling the non-Euclidean vertex.

19

Figure A.2: Screenshot of the model after loadstep 1 of the assembly procedure.

309 !!!=== Step 2 of the procedure
310 /SOLU !Initialize solution processor
311 ANTYPE, 0, restart, 1, last, continue !Continue onwards from the end of the last load step
312 AUTOTS, off !Switch auto timestepping off when applying reaction forces
313 NSUBST,1 !Use 1 substep when applying reaction forces
314
315 !Replace the rotation applied to A1 with its corresponding reaction moment
316 DDELE,4,ALL
317 *GET, Xmoment_4, NODE, 4, RF, MX
318 F,4,MX, Xmoment_4
319
320 !Replace the rotation applied to B1 with its corresponding reaction moment
321 DDELE,7,ALL
322 *GET, Xmoment_7, NODE, 7, RF, MX
323 F,7,MX, Xmoment_7
324
325 !Fix all three translational DOFs of A1 and B1
326 D,4,UX,%_FIX%
327 D,4,UY,%_FIX%
328 D,4,UZ,%_FIX%
329 D,7,UX,%_FIX%
330 D,7,UY,%_FIX%
331 D,7,UZ,%_FIX%
332
333 SOLVE !Solve current study
334 FINISH !exit current processor
335
336
337 !!!=== Step 3 of the procedure
338 /SOLU !Initialize solution processor
339 ANTYPE, 0, restart, 2, last, continue !Continue onwards from the end of the last load step
340 AUTOTS, on !Use automatic time stepping
341 NSUBST,50,,30 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
342
343 !Stepwise reduce the applied reaction moments to zero
344 F,4,MX, 0
345 F,7,MX, 0
346

20

347 !Get displacement of A1 relative to its initial position
348 *GET,UX4,NODE,4,U,X
349 *GET,UY4,NODE,4,U,Y
350 *GET,UZ4,NODE,4,U,Z
351
352 !Get initial position of A1 and B1
353 *GET,LOCX4,NODE,4,LOC,X
354 *GET,LOCX7,NODE,7,LOC,X
355 *GET,LOCY4,NODE,4,LOC,Y
356 *GET,LOCY7,NODE,7,LOC,Y
357 *GET,LOCZ4,NODE,4,LOC,Z
358 *GET,LOCZ7,NODE,7,LOC,Z
359
360 !Get distances between initial positions of A1 and B1
361 DLOCX7_4 = LOCX7 - LOCX4
362 DLOCY7_4 = LOCY7 - LOCY4
363 DLOCZ7_4 = LOCZ7 - LOCZ4
364
365 !Displace B1 based on the displacement of A1 relative to its initial position and the

distances between initial positions of A1 and B1
366 D,7,UX,UX4 - DLOCX7_4
367 D,7,UY,UY4 - DLOCY7_4
368 D,7,UZ,UZ4 - DLOCZ7_4
369
370 SOLVE !Solve current study
371 FINISH !exit current processor
372
373 /POST1 !Initialize post1 processor
374 PLDISP,0 !Check whether the nodes align properly

Listing A.5: Loadsteps 2-3 of assembling the non-Euclidean vertex.

Figure A.3: Screenshot of the model after loadstep 3 of the assembly procedure.

375 !!!=== Step 4 part 1 of the procedure (step needs to be divided over two loadsteps)
376 /SOLU !Initialize solution processor
377 ANTYPE, 0, restart, 3, last, continue !Continue onwards from the end of the last load step
378 AUTOTS, off !Switch auto timestepping off when coupling nodes
379 NSUBST,1 !Use 1 substep when coupling nodes

21

380
381 FDELE, ALL !Delete all applied forces (as they are zero)
382 DDELE,7,ALL !Delete all displacements applied to B1, as A1 will lead this node from now on
383
384 CP,NEXT,UX,4,7 !Couple nodes in UX, first number is the primary node (A1), second number is

the node for which the DOF is deleted (B1)
385 CP,NEXT,UY,4,7 !Couple nodes in UY, first number is the primary node (A1), second number is

the node for which the DOF is deleted (B1)
386 CP,NEXT,UZ,4,7 !Couple nodes in UZ , first number is the primary node (A1), second number is

the node for which the DOF is deleted (B1)
387
388 SOLVE !Solve current study
389 FINISH !exit current processor
390
391
392 !!!=== Step 4 part 2 of the procedure (step needs to be divided over two loadsteps)
393 /SOLU !Initialize solution processor
394 ANTYPE, 0, restart, 4, last, continue !Continue onwards from the end of the last load step
395 AUTOTS, off !Switch auto timestepping off when applying reaction forces
396 NSUBST,1 !Use 1 substep when applying reaction forces
397
398 !Replace all displacements applied to A1 with its corresponding reaction forces
399 DDELE,4,ALL
400 *GET, Xforce_4, NODE, 4, RF, FX
401 *GET, Yforce_4, NODE, 4, RF, FY
402 *GET, Zforce_4, NODE, 4, RF, FZ
403 F,4,FX,Xforce_4
404 F,4,FY,Yforce_4
405 F,4,FZ,Zforce_4
406
407 !Fix two translational DOFs of A2 and B2
408 D,5,UZ,%_FIX%
409 D,8,UZ,%_FIX%
410 D,5,UX,%_FIX%
411 D,8,UX,%_FIX%
412
413 SOLVE !Solve current study
414 FINISH !exit current processor
415
416
417 !!!=== Loadstep 5 of the procedure
418 /SOLU !Initialize solution processor
419 ANTYPE, 0, restart, 5, last, continue !Continue onwards from the end of the last load step
420 AUTOTS, on !Use automatic time stepping
421 NSUBST,30,,10 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
422
423 !Get displacement of A2 relative to its initial position
424 *GET,UX5,NODE,5,U,X
425 *GET,UZ5,NODE,5,U,Z
426
427 !Get initial position of A2 and B2
428 *GET,LOCX8,NODE,8,LOC,X
429 *GET,LOCX5,NODE,5,LOC,X
430 *GET,LOCZ8,NODE,8,LOC,Z
431 *GET,LOCZ5,NODE,5,LOC,Z
432
433 !Get distances between initial positions of A2 and B2
434 DLOCX8_5 = LOCX8 - LOCX5
435 DLOCZ8_5 = LOCZ8 - LOCZ5
436
437 !Displace B2 based on the displacement of A2 relative to its initial position and the

distances between initial positions of A2 and B2
438 D,8,UX,UX5 - DLOCX8_5
439 D,8,UZ,UZ5 - DLOCZ8_5
440
441 SOLVE !Solve current study
442 FINISH !Exits normally from a processor
443
444 /POST1 !Initialize post1 processor
445 PLDISP,0 !Check whether the nodes align properly

22

Listing A.6: Loadsteps 4-5 of assembling the non-Euclidean vertex.

Figure A.4: Screenshot of the model after loadstep 5 of the assembly procedure.

446 !!!=== Step 6 part 1 of the procedure (step needs to be divided over two loadsteps)
447 /SOLU !Initialize solution processor
448 ANTYPE, 0, restart, 6, last, continue !Continue onwards from the end of the last load step
449 AUTOTS, off !Switch auto timestepping off when coupling nodes
450 NSUBST,1 !Use 1 substep when coupling node
451
452 DDELE,8,ALL !Delete all displacements applied to B2, as A2 will lead this node from now on
453
454 CP,NEXT,UX,5,8 !Couple nodes in UX, first number is the primary node (A2), second number is

the node for which the DOF is deleted (B2)
455 CP,NEXT,UZ,5,8 !Couple nodes in UZ, first number is the primary node (A2), second number is

the node for which the DOF is deleted (B2)
456
457 SOLVE !Solve current study
458 FINISH !exit current processor
459
460
461 !!!=== Step 6 part 2 of the procedure (step needs to be divided over two loadsteps)
462 /SOLU !Initialize solution processor
463 ANTYPE, 0, restart, 7, last, continue !Continue onwards from the end of the last load step
464 AUTOTS, off !Switch auto timestepping off when applying reaction forces
465 NSUBST,1 !Use 1 substep when applying reaction forces
466
467 !Replace all displacements applied to A2 with its corresponding reaction forces
468 DDELE,5,ALL
469 *GET, Xforce_5, NODE, 5, RF, FX
470 *GET, Zforce_5, NODE, 5, RF, FZ
471 F,5,FX,Xforce_5
472 F,5,FZ,Zforce_5
473
474 !Fix one translational DOF of A3 and B3
475 D,6,UZ,%_FIX%
476 D,9,UZ,%_FIX%

23

477
478 SOLVE !Solve current study
479 FINISH !exit current processor
480
481
482 !!!=== Loadstep 7 of the procedure
483 /SOLU !Initialize solution processor
484 ANTYPE, 0, restart, 8, last, continue !Continue onwards from the end of the last load step
485 AUTOTS, on !Use automatic time stepping
486 NSUBST,30,,10 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
487
488 !Get displacement of A3 relative to its initial position
489 *GET,UZ6,NODE,6,U,Z
490
491 !Get initial position of A3 and B3
492 *GET,LOCZ9,NODE,9,LOC,Z
493 *GET,LOCZ6,NODE,6,LOC,Z
494
495 !Get distances between initial positions of A3 and B3
496 DLOCZ9_6 = LOCZ9 - LOCZ6
497
498 !Displace B3 based on the displacement of A3 relative to its initial position and the

distances between initial positions of A3 and B3
499 D,9,UZ,UZ6 - DLOCZ9_6
500
501 SOLVE !Solve current study
502 FINISH !exit current processor
503
504 /POST1 !Initialize post1 processor
505 PLDISP,0 !Check whether the nodes align properly

Listing A.7: Loadsteps 6-7 of assembling the non-Euclidean vertex.

Figure A.5: Screenshot of the model after loadstep 7 of the assembly procedure.

506 !!!=== Step 8 part 1 of the procedure (step needs to be divided over two loadsteps)
507 /SOLU !Initialize solution processor
508 ANTYPE, 0, restart, 9, last, continue !Continue onwards from the end of the last load step

24

509 AUTOTS, off !Switch auto timestepping off when coupling nodes
510 NSUBST,1 !Use 1 substep when coupling node
511
512 DDELE,9,ALL !Delete all displacements applied to B3, as A3 will lead this node from now on
513
514 CP,NEXT,UZ,6,9 !Couple nodes in UZ, first number is the primary node (A3), second number is

the node for which the DOF is deleted (B3)
515
516 SOLVE !Solve current study
517 FINISH !exit current processor
518
519
520 !!!=== Step 8 part 2 of the procedure (step needs to be divided over two loadsteps)
521 /SOLU !Initialize solution processor
522 ANTYPE, 0, restart, 10, last, continue !Continue onwards from the end of the last load step
523 AUTOTS, off !Switch auto timestepping off when applying reaction forces
524 NSUBST,1 !Use 1 substep when applying reaction forces
525
526 !Replace the displacement applied to A3 with its corresponding reaction force
527 DDELE,6,ALL
528 *GET, Zforce_6, NODE, 6, RF, FZ
529 F,6,FZ,Zforce_6
530
531 SOLVE !Solve current study
532 FINISH !exit current processor
533
534
535 !!!=== Loadstep 9 of the procedure
536 /SOLU !Initialize solution processor
537 ANTYPE, 0, restart, 11, last, continue !Continue onwards from the end of the last load step
538 AUTOTS, on !Use automatic time stepping
539 NSUBST,100,,10 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
540
541 !Stepwise reduce all remaining forces to zero
542 F,4,FX,0
543 F,4,FY,0
544 F,4,FZ,0
545 F,5,FX,0
546 F,5,FZ,0
547 F,6,FZ,0
548
549 SOLVE !Solve current study
550 FINISH !exit current processor
551
552 /POST1 !Initialize post1 processor
553 PLDISP,0 !Check whether the assembly of the vertex is complete and correct
554
555 !!!=== Assembly of non-Euclidean vertex complete

Listing A.8: Loadsteps 8-9 of assembling the non-Euclidean vertex.

25

Figure A.6: Screenshot of the model after all loadsteps of the assembly procedure.

B
Detailed explanation of numerical

procedure 2

This appendix includes the ANSYS Mechanical APDL code used to model a single rigid facet non-
Euclidean vertex. The code is explained in blocks and contains comments in the script to guide the
reader.

The first block of code contains the commands to define the element types (including key options),
material model, and sections used for the flexible creases and facets.

1 FINISH !exit current processor
2 /CLEAR !clear APDL database
3
4 /PREP7 !initialize preprocessor
5
6 !!!=== Define element types and material properties
7
8 ET,1,281 !Element for panels (SHELL281)
9 ET, 2,MPC184 !Element for rigid connections

10 KEYOPT, 2, 1, 1 !Last number defines whether it is a link (0) or beam (1). Should always be
beam for this application

11 KEYOPT, 2, 2, 1 !Change kinematic constraint method to be able to use coupling (to Lagrange
multiplier method)

12 MP,ex,1,1.85*10**11 !Define Young's Modulus
13 MP,nuxy,1,0.3 !Define Poisson's ratio
14
15 !!!=== Define sections of creases and flexible facets
16
17 t=(0.02)*10**(-3) !Thickness used for creases
18
19 SECTYPE,1,shell,, !Section of creases
20 SECDATA,t,1,,5 !Defines the thickness, material ID, angle (for anisotropic materials) and

number of integration points in layer, respectively
21 SECOFFSET,MID !Defines the section offset. Shell node will be offset to midplane of the

section
22
23 SECTYPE,2,shell,, !Section of flexible facets
24 SECDATA,3*t,1,,3 !Defines the thickness (3 times the crease thickness), material ID, angle (

for anisotropic materials) and number of integration points in layer, respectively
25 SECOFFSET,MID !Defines the section offset. Shell node will be offset to midplane of the

section

Listing B.1: Definition of element types (including key options), material model, and sections.

The second block of code contains the commands to define the geometry of the unassembled non-
Euclidean vertex. The geometry is built up using keypoints, lines, and areas.

26 !!!=== Define geometry of the model

26

27

27
28 pi=3.14159265 !Definition of pi
29 Rsmall = 4*10**(-3) !Radius of inner circle of the vertex
30 Rbig = 25*10**(-3) !Radius of outer circle of the vertex
31 Creasewidth = 3*10**(-3) !Width of the creases of the vertex
32
33 alpha1_deg= 60 !Sector angle of the first facet
34 alpha1=(alpha1_deg/360)*2*pi !Conversion of alpha1 to radians
35
36 alpha2_deg= 90 !Sector angle of the second facet
37 alpha2=(alpha2_deg/360)*2*pi !Conversion of alpha2 to radians
38
39 alpha3_deg= 135 !Sector angle of the third facet
40 alpha3=(alpha3_deg/360)*2*pi !Conversion of alpha3 to radians
41
42 alpha4_deg= 75 !Sector angle of the fourth facet (the facet that is split)
43 alpha4=(alpha4_deg/360)*2*pi !Conversion of alpha4 to radians
44
45 alphasurplus_deg= -5 !Angle that is added or subtracted to each sector angle to get the non-

Euclidean vertex. Negative for deficit, positive for surplus
46 alphasurplus=(alphasurplus_deg/360)*2*pi !Conversion of Alpha to radians
47
48 !Intermediate variables, used to construct the model
49 Sdiagonal = sqrt((Rsmall)**2-(Creasewidth/2)**2)
50 Sdiagonal2 = sqrt((Rbig)**2-(Creasewidth/2)**2)
51
52 Radialline = Rbig - Rsmall - (Rbig-Sdiagonal2) + (Rsmall-Sdiagonal)
53
54 effective_angle3 = alpha1 + alpha2 + alpha3 + 3*alphasurplus - 3*pi/2
55
56
57 X3 = Creasewidth/2*sin(alpha1 + alphasurplus) + Sdiagonal*cos(alpha1 + alphasurplus)
58 Y3 = -Creasewidth/2*cos(alpha1 + alphasurplus) + Sdiagonal*sin(alpha1 + alphasurplus)
59
60 X4 = -Creasewidth/2*sin(alpha1 + alphasurplus) + Sdiagonal*cos(alpha1 + alphasurplus)
61 Y4 = Creasewidth/2*cos(alpha1 + alphasurplus) + Sdiagonal*sin(alpha1 + alphasurplus)
62
63 X5 = Creasewidth/2*cos(alpha1 + alpha2 + 2*alphasurplus - pi/2) - Sdiagonal*sin(alpha1 +

alpha2 + 2*alphasurplus - pi/2)
64 Y5 = Creasewidth/2*sin(alpha1 + alpha2 + 2*alphasurplus - pi/2) + Sdiagonal*cos(alpha1 +

alpha2 + 2*alphasurplus - pi/2)
65
66 X6 = -Creasewidth/2*cos(alpha1 + alpha2 + 2*alphasurplus - pi/2) - Sdiagonal*sin(alpha1 +

alpha2 + 2*alphasurplus - pi/2)
67 Y6 = -Creasewidth/2*sin(alpha1 + alpha2 + 2*alphasurplus - pi/2) + Sdiagonal*cos(alpha1 +

alpha2 + 2*alphasurplus - pi/2)
68
69 X7 = -Creasewidth/2*cos(-effective_angle3) - Sdiagonal*sin(-effective_angle3)
70 Y7 = Creasewidth/2*sin(-effective_angle3) - Sdiagonal*cos(-effective_angle3)
71
72 X8 = Creasewidth/2*cos(-effective_angle3) - Sdiagonal*sin(-effective_angle3)
73 Y8 = -Creasewidth/2*sin(-effective_angle3) - Sdiagonal*cos(-effective_angle3)
74
75
76 !!!=== Keypoints
77
78 K,1, Sdiagonal, -Creasewidth/2, 0
79 K,2, Sdiagonal, Creasewidth/2, 0
80
81 K,3, X3, Y3, 0
82 K,4, X4, Y4, 0
83
84 K,5, X5, Y5, 0
85 K,6, X6, Y6, 0
86
87 K,7, X7, Y7, 0
88 K,8, X8, Y8, 0
89
90 K,9, Rsmall*sin((alpha4 + alphasurplus)/2 + effective_angle3), -Rsmall*cos((alpha4 +

alphasurplus)/2 + effective_angle3), 0
91 K,10, Rsmall*cos((alpha4 + alphasurplus)/2), -Rsmall*sin((alpha4 + alphasurplus)/2), 0

28

92
93 K,11, Sdiagonal + Radialline, -Creasewidth/2, 0
94 K,12, Sdiagonal + Radialline, Creasewidth/2, 0
95
96 K,13, X3 + Radialline*cos(alpha1 + alphasurplus), Y3 + Radialline*sin(alpha1 + alphasurplus),

0
97 K,14, X4 + Radialline*cos(alpha1 + alphasurplus), Y4 + Radialline*sin(alpha1 + alphasurplus),

0
98
99 K,15, X5 - Radialline*sin(alpha1 + alpha2 + 2*alphasurplus - pi/2), Y5 + Radialline*cos(

alpha1 + alpha2 + 2*alphasurplus - pi/2), 0
100 K,16, X6 - Radialline*sin(alpha1 + alpha2 + 2*alphasurplus - pi/2), Y6 + Radialline*cos(

alpha1 + alpha2 + 2*alphasurplus - pi/2), 0
101
102 K,17, X7 - Radialline*sin(-effective_angle3), Y7 - Radialline*cos(-effective_angle3), 0
103 K,18, X8 - Radialline*sin(-effective_angle3), Y8 - Radialline*cos(-effective_angle3), 0
104
105 K,19, (Rbig)*sin((alpha4 + alphasurplus)/2 + effective_angle3), -(Rbig)*cos((alpha4 +

alphasurplus)/2 + effective_angle3), 0
106 K,20, (Rbig)*cos((alpha4 + alphasurplus)/2), -(Rbig)*sin((alpha4 + alphasurplus)/2), 0
107
108 K,21, 0,0,0 !Origin, used for center of curvature
109
110
111 !!!=== Lines
112
113 !First ring arcs
114 LARC, 1, 2, 21, Rsmall
115 LARC, 2, 3, 21, Rsmall
116 LARC, 3, 4, 21, Rsmall
117 LARC, 4, 5, 21, Rsmall
118 LARC, 5, 6, 21, Rsmall
119 LARC, 6, 7, 21, Rsmall
120 LARC, 7, 8, 21, Rsmall
121 LARC, 8, 9, 21, Rsmall
122 LARC, 1, 10, 21, Rsmall
123
124 !Second ring arcs
125 LARC, 11, 12, 21, Rbig
126 LARC, 12, 13, 21, Rbig
127 LARC, 13, 14, 21, Rbig
128 LARC, 14, 15, 21, Rbig
129 LARC, 15, 16, 21, Rbig
130 LARC, 16, 17, 21, Rbig
131 LARC, 17, 18, 21, Rbig
132 LARC, 18, 19, 21, Rbig
133 LARC, 11, 20, 21, Rbig
134
135 !Radial lines
136 L,1,11
137 L,2,12
138 L,3,13
139 L,4,14
140 L,5,15
141 L,6,16
142 L,7,17
143 L,8,18
144 L,9,19
145 L,10,20
146
147 !!!=== Creating areas between lines
148
149 AL,1,10,19,20 !Area 1 (crease)
150 AL,2,11,20,21 !Area 2 (flexible facet)
151 AL,3,12,21,22 !Area 3 (crease)
152 AL,4,13,22,23 !Area 4 (flexible facet)
153 AL,5,14,23,24 !Area 5 (crease)
154 AL,6,15,24,25 !Area 6 (flexible facet)
155 AL,7,16,25,26 !Area 7 (crease)
156 AL,8,17,26,27 !Area 8 (flexible facet)
157 AL,9,18,19,28 !Area 9 (flexible facet)

29

Listing B.2: Building the geometry of the unassembled non-Euclidean vertex.

The third block of code contains the commands to create the necessary hard points (which will turn
into the first alignment nodes) and the second and third alignment nodes. After that, the crease and
facet areas are meshed and rigid connections are created from the first alignment nodes to the second
and third alignment nodes. There is also a piece of code that creates the components consisting of
the first alignment nodes. After this block of code, a screenshot shows how the model looks after the
preparation steps.

158 !!!=== Create component containing the creases
159
160 ASEL,S,AREA,,1,7,2
161 CM,crease_areas,AREA !Create a component of the selected areas
162 ALLSEL !select everything (so reset selection done before)
163
164 !!!=== Create hard points and nodes used for aligning the facets
165
166 !Alignment hard points and nodes for panel A. A1_1 and A1_5 are made automatically as they

are at a corner of a meshed area.
167
168 HPTCREATE,LINE,28,,COORD, ((1 - 0.25)*Rsmall + 0.25*Rbig)*cos((alpha4 + alphasurplus)/2),

-((1 - 0.25)*Rsmall + 0.25*Rbig)*sin((alpha4 + alphasurplus)/2), 0 !A1_2
169 HPTCREATE,LINE,28,,COORD, ((1 - 0.5)*Rsmall + 0.5*Rbig)*cos((alpha4 + alphasurplus)/2), -((1

- 0.5)*Rsmall + 0.5*Rbig)*sin((alpha4 + alphasurplus)/2), 0 !A1_3
170 HPTCREATE,LINE,28,,COORD, ((1 - 0.75)*Rsmall + 0.75*Rbig)*cos((alpha4 + alphasurplus)/2),

-((1 - 0.75)*Rsmall + 0.75*Rbig)*sin((alpha4 + alphasurplus)/2), 0 !A1_4
171
172 N, 1, (Rsmall + 10e-3)*cos((alpha4 + alphasurplus)/2 + pi/24), -(Rsmall + 10e-3)*sin((alpha4

+ alphasurplus)/2 + pi/24), 0 !A2_1
173 N, 2, ((1 - 0.25)*Rsmall + 0.25*Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 + pi/24), -((1 -

0.25)*Rsmall + 0.25*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + pi/24), 0 !A2_2
174 N, 3, ((1 - 0.5)*Rsmall + 0.5*Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 + pi/24), -((1 -

0.5)*Rsmall + 0.5*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + pi/24), 0 !A2_3
175 N, 4, ((1 - 0.75)*Rsmall + 0.75*Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 + pi/24), -((1 -

0.75)*Rsmall + 0.75*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + pi/24), 0 !A2_4
176 N, 5, (Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 + pi/24), -(Rbig + 10e-3)*sin((alpha4 +

alphasurplus)/2 + pi/24), 0 !A2_5
177
178 N, 6, (Rsmall + 10e-3)*cos((alpha4 + alphasurplus)/2 - pi/24), -(Rsmall + 10e-3)*sin((alpha4

+ alphasurplus)/2 - pi/24), 0 !A3_1
179 N, 7, ((1 - 0.25)*Rsmall + 0.25*Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 - pi/24), -((1 -

0.25)*Rsmall + 0.25*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 - pi/24), 0 !A3_2
180 N, 8, ((1 - 0.5)*Rsmall + 0.5*Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 - pi/24), -((1 -

0.5)*Rsmall + 0.5*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 - pi/24), 0 !A3_3
181 N, 9, ((1 - 0.75)*Rsmall + 0.75*Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 - pi/24), -((1 -

0.75)*Rsmall + 0.75*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 - pi/24), 0 !A3_4
182 N, 10, (Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 - pi/24), -(Rbig + 10e-3)*sin((alpha4 +

alphasurplus)/2 - pi/24), 0 !A3_5
183
184 !Alignment hard points and nodes for panel B. B1_1 and B1_5 are made automatically as they

are at a corner of a meshed area.
185
186 HPTCREATE,LINE,27,,COORD, ((1 - 0.25)*Rsmall + 0.25*Rbig)*sin((alpha4 + alphasurplus)/2 +

effective_angle3), -((1 - 0.25)*Rsmall + 0.25*Rbig)*cos((alpha4 + alphasurplus)/2 +
effective_angle3), 0 !B1_2

187 HPTCREATE,LINE,27,,COORD, ((1 - 0.5)*Rsmall + 0.5*Rbig)*sin((alpha4 + alphasurplus)/2 +
effective_angle3), -((1 - 0.5)*Rsmall + 0.5*Rbig)*cos((alpha4 + alphasurplus)/2 +
effective_angle3), 0 !B1_3

188 HPTCREATE,LINE,27,,COORD, ((1 - 0.75)*Rsmall + 0.75*Rbig)*sin((alpha4 + alphasurplus)/2 +
effective_angle3), -((1 - 0.75)*Rsmall + 0.75*Rbig)*cos((alpha4 + alphasurplus)/2 +
effective_angle3), 0 !B1_4

189
190 N, 11, (Rsmall + 10e-3)*sin((alpha4 + alphasurplus)/2 + effective_angle3 - pi/24), -(Rsmall +

10e-3)*cos((alpha4 + alphasurplus)/2 + effective_angle3 - pi/24), 0 !B2_1
191 N, 12, ((1 - 0.25)*Rsmall + 0.25*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 +

effective_angle3 - pi/24), -((1 - 0.25)*Rsmall + 0.25*Rbig + 10e-3)*cos((alpha4 +
alphasurplus)/2 + effective_angle3 - pi/24), 0 !B2_2

30

192 N, 13, ((1 - 0.5)*Rsmall + 0.5*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + effective_angle3
- pi/24), -((1 - 0.5)*Rsmall + 0.5*Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 +

effective_angle3 - pi/24), 0 !B2_3
193 N, 14, ((1 - 0.75)*Rsmall + 0.75*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 +

effective_angle3 - pi/24), -((1 - 0.75)*Rsmall + 0.75*Rbig + 10e-3)*cos((alpha4 +
alphasurplus)/2 + effective_angle3 - pi/24), 0 !B2_4

194 N, 15, (Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + effective_angle3 - pi/24), -(Rbig + 10e
-3)*cos((alpha4 + alphasurplus)/2 + effective_angle3 - pi/24), 0 !B2_5

195
196 N, 16, (Rsmall + 10e-3)*sin((alpha4 + alphasurplus)/2 + effective_angle3 + pi/24), -(Rsmall +

10e-3)*cos((alpha4 + alphasurplus)/2 + effective_angle3 + pi/24), 0 !B3_1
197 N, 17, ((1 - 0.25)*Rsmall + 0.25*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 +

effective_angle3 + pi/24), -((1 - 0.25)*Rsmall + 0.25*Rbig + 10e-3)*cos((alpha4 +
alphasurplus)/2 + effective_angle3 + pi/24), 0 !B3_2

198 N, 18, ((1 - 0.5)*Rsmall + 0.5*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + effective_angle3
+ pi/24), -((1 - 0.5)*Rsmall + 0.5*Rbig + 10e-3)*cos((alpha4 + alphasurplus)/2 +

effective_angle3 + pi/24), 0 !B3_3
199 N, 19, ((1 - 0.75)*Rsmall + 0.75*Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 +

effective_angle3 + pi/24), -((1 - 0.75)*Rsmall + 0.75*Rbig + 10e-3)*cos((alpha4 +
alphasurplus)/2 + effective_angle3 + pi/24), 0 !B3_4

200 N, 20, (Rbig + 10e-3)*sin((alpha4 + alphasurplus)/2 + effective_angle3 + pi/24), -(Rbig + 10e
-3)*cos((alpha4 + alphasurplus)/2 + effective_angle3 + pi/24), 0 !B3_5

201
202
203 !!!=== Mesh crease and facet areas
204
205 CMSEL, S, crease_areas !Select crease areas
206 AATT, 1, , 1, , 1 !Define associates element attributes with the selected, unmeshed areas.

Entries are material ID, real constants, element type, coordinate system and section
number respectively

207 ESIZE, Creasewidth/6 !Define element size as a function of crease width
208 AMESH, ALL !Mesh all selected areas
209 ALLSEL !Select everything (so reset selection done before)
210
211 CMSEL, S , crease_areas !Select crease areas
212 ASEL, INVE !Inverse current selection, so select all areas instead of the crease areas
213 AATT, 1, , 1, , 2 !Define associates element attributes with the selected, unmeshed areas.

Entries are material ID, real constants, element type, coordinate system and section
number respectively

214 ESIZE, Creasewidth/2 !Define element size as a function of crease width
215 AMESH, ALL !Mesh all selected areas
216 ALLSEL !Select everything (so reset selection done before)
217
218
219 !!!=== Find the node numbers from nodes created using hard points
220
221 TOL = 1e-6 !Tolerance of the area we look for the nodes at. Could be decreased even further

if more than 1 node is selected.
222
223 XLOC_A1_1 = Rsmall*cos((alpha4 + alphasurplus)/2) !The X location at which the node should be

located
224 YLOC_A1_1 = -Rsmall*sin((alpha4 + alphasurplus)/2) !The Y location at which the node should

be located
225 NSEL,S,LOC,X,XLOC_A1_1-TOL,XLOC_A1_1+TOL !Select the nodes around the correct X location
226 NSEL,R,LOC,Y,YLOC_A1_1-TOL,YLOC_A1_1+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
227 CM,NODE_A1_1,NODE !Create a component the found node
228 *GET, NODE_A1_1_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number
229 ALLSEL !Select everything (so reset selection done before)
230
231 XLOC_A1_2 = ((1 - 0.25)*Rsmall + 0.25*Rbig)*cos((alpha4 + alphasurplus)/2) !The X location at

which the node should be located
232 YLOC_A1_2 = -((1 - 0.25)*Rsmall + 0.25*Rbig)*sin((alpha4 + alphasurplus)/2) !The Y location

at which the node should be located
233 NSEL,S,LOC,X,XLOC_A1_2-TOL,XLOC_A1_2+TOL !Select the nodes around the correct X location
234 NSEL,R,LOC,Y,YLOC_A1_2-TOL,YLOC_A1_2+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
235 CM,NODE_A1_2,NODE !Create a component the found node
236 *GET, NODE_A1_2_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number

31

237 ALLSEL !Select everything (so reset selection done before)
238
239 XLOC_A1_3 = ((1 - 0.5)*Rsmall + 0.5*Rbig)*cos((alpha4 + alphasurplus)/2) !The X location at

which the node should be located
240 YLOC_A1_3 = -((1 - 0.5)*Rsmall + 0.5*Rbig)*sin((alpha4 + alphasurplus)/2) !The Y location at

which the node should be located
241 NSEL,S,LOC,X,XLOC_A1_3-TOL,XLOC_A1_3+TOL !Select the nodes around the correct X location
242 NSEL,R,LOC,Y,YLOC_A1_3-TOL,YLOC_A1_3+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
243 CM,NODE_A1_3,NODE !Create a component the found node
244 *GET, NODE_A1_3_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number
245 ALLSEL !Select everything (so reset selection done before)
246
247 XLOC_A1_4 = ((1 - 0.75)*Rsmall + 0.75*Rbig)*cos((alpha4 + alphasurplus)/2) !The X location at

which the node should be located
248 YLOC_A1_4 = -((1 - 0.75)*Rsmall + 0.75*Rbig)*sin((alpha4 + alphasurplus)/2) !The Y location

at which the node should be located
249 NSEL,S,LOC,X,XLOC_A1_4-TOL,XLOC_A1_4+TOL !Select the nodes around the correct X location
250 NSEL,R,LOC,Y,YLOC_A1_4-TOL,YLOC_A1_4+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
251 CM,NODE_A1_4,NODE !Create a component the found node
252 *GET, NODE_A1_4_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number
253 ALLSEL !Select everything (so reset selection done before)
254
255 XLOC_A1_5 = Rbig*cos((alpha4 + alphasurplus)/2) !The X location at which the node should be

located
256 YLOC_A1_5 = -Rbig*sin((alpha4 + alphasurplus)/2) !The Y location at which the node should be

located
257 NSEL,S,LOC,X,XLOC_A1_5-TOL,XLOC_A1_5+TOL !Select the nodes around the correct X location
258 NSEL,R,LOC,Y,YLOC_A1_5-TOL,YLOC_A1_5+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
259 CM,NODE_A1_5,NODE !Create a component the found node
260 *GET, NODE_A1_5_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number
261 ALLSEL !Select everything (so reset selection done before)
262
263
264 XLOC_B1_1 = Rsmall*sin((alpha4 + alphasurplus)/2 + effective_angle3) !The X location at which

the node should be located
265 YLOC_B1_1 = -Rsmall*cos((alpha4 + alphasurplus)/2 + effective_angle3) !The Y location at

which the node should be located
266 NSEL,S,LOC,X,XLOC_B1_1-TOL,XLOC_B1_1+TOL !Select the nodes around the correct X location
267 NSEL,R,LOC,Y,YLOC_B1_1-TOL,YLOC_B1_1+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
268 CM,NODE_B1_1,NODE !Create a component the found node
269 *GET, NODE_B1_1_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number
270 ALLSEL !Select everything (so reset selection done before)
271
272 XLOC_B1_2 = ((1 - 0.25)*Rsmall + 0.25*Rbig)*sin((alpha4 + alphasurplus)/2 + effective_angle3)

!The X location at which the node should be located
273 YLOC_B1_2 = -((1 - 0.25)*Rsmall + 0.25*Rbig)*cos((alpha4 + alphasurplus)/2 + effective_angle3

) !The Y location at which the node should be located
274 NSEL,S,LOC,X,XLOC_B1_2-TOL,XLOC_B1_2+TOL !Select the nodes around the correct X location
275 NSEL,R,LOC,Y,YLOC_B1_2-TOL,YLOC_B1_2+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
276 CM,NODE_B1_2,NODE !Create a component the found node
277 *GET, NODE_B1_2_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number
278 ALLSEL !Select everything (so reset selection done before)
279
280 XLOC_B1_3 = ((1 - 0.5)*Rsmall + 0.5*Rbig)*sin((alpha4 + alphasurplus)/2 + effective_angle3) !

The X location at which the node should be located
281 YLOC_B1_3 = -((1 - 0.5)*Rsmall + 0.5*Rbig)*cos((alpha4 + alphasurplus)/2 + effective_angle3)

!The Y location at which the node should be located
282 NSEL,S,LOC,X,XLOC_B1_3-TOL,XLOC_B1_3+TOL !Select the nodes around the correct X location
283 NSEL,R,LOC,Y,YLOC_B1_3-TOL,YLOC_B1_3+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
284 CM,NODE_B1_3,NODE !Create a component the found node

32

285 *GET, NODE_B1_3_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node
number

286 ALLSEL !Select everything (so reset selection done before)
287
288 XLOC_B1_4 = ((1 - 0.75)*Rsmall + 0.75*Rbig)*sin((alpha4 + alphasurplus)/2 + effective_angle3)

!The X location at which the node should be located
289 YLOC_B1_4 = -((1 - 0.75)*Rsmall + 0.75*Rbig)*cos((alpha4 + alphasurplus)/2 + effective_angle3

) !The Y location at which the node should be located
290 NSEL,S,LOC,X,XLOC_B1_4-TOL,XLOC_B1_4+TOL !Select the nodes around the correct X location
291 NSEL,R,LOC,Y,YLOC_B1_4-TOL,YLOC_B1_4+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
292 CM,NODE_B1_4,NODE !Create a component the found node
293 *GET, NODE_B1_4_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number
294 ALLSEL !Select everything (so reset selection done before)
295
296 XLOC_B1_5 = Rbig*sin((alpha4 + alphasurplus)/2 + effective_angle3) !The X location at which

the node should be located
297 YLOC_B1_5 = -Rbig*cos((alpha4 + alphasurplus)/2 + effective_angle3) !The Y location at which

the node should be located
298 NSEL,S,LOC,X,XLOC_B1_5-TOL,XLOC_B1_5+TOL !Select the nodes around the correct X location
299 NSEL,R,LOC,Y,YLOC_B1_5-TOL,YLOC_B1_5+TOL !Reselect the node that is also at the correct Y

location. This should be the correct node, reduce TOL if multiple nodes are selected.
300 CM,NODE_B1_5,NODE !Create a component the found node
301 *GET, NODE_B1_5_NUM, NODE, 0, NUM, MIN !Create a parameter that contains the found node

number
302 ALLSEL !Select everything (so reset selection done before)
303
304
305 ===!!! Create extra connections to second and third alignment nodes to align and couple

panels A and B
306
307 TYPE,2 !Select rigid beam element for creating new elements
308
309 E, NODE_A1_1_NUM, 1
310 E, NODE_A1_1_NUM, 6
311
312 E, NODE_A1_2_NUM, 2
313 E, NODE_A1_2_NUM, 7
314
315 E, NODE_A1_3_NUM, 3
316 E, NODE_A1_3_NUM, 8
317
318 E, NODE_A1_4_NUM, 4
319 E, NODE_A1_4_NUM, 9
320
321 E, NODE_A1_5_NUM, 5
322 E, NODE_A1_5_NUM, 10
323
324
325 E, NODE_B1_1_NUM, 11
326 E, NODE_B1_1_NUM, 16
327
328 E, NODE_B1_2_NUM, 12
329 E, NODE_B1_2_NUM, 17
330
331 E, NODE_B1_3_NUM, 13
332 E, NODE_B1_3_NUM, 18
333
334 E, NODE_B1_4_NUM, 14
335 E, NODE_B1_4_NUM, 19
336
337 E, NODE_B1_5_NUM, 15
338 E, NODE_B1_5_NUM, 20
339
340 FINISH
341
342 !!!=== Preparation complete

Listing B.3: Create alignment nodes, mesh the crease and facet areas, and create rigid connections between alignment
nodes.

33

Figure B.1: Screenshot of the model after the preparation steps of procedure 2.

The last blocks of code contain the commands to stepwise assemble the vertex. The step numbers
before each loadstep correspond to the step numbers in the main paper. In between the code, there
are screenshots of how the model looks after every main displacement step.

343 !!!=== Non-Euclidean assembly starting here
344
345 !!!=== Step 1 of the procedure
346 /SOLU !Initialize solution processor
347 ANTYPE, 0, new !Specifies a new static analysis
348 NLGEOM, on !Non-linear large deflection behavior on or off, including stress stiffening
349 OUTRES,all,all !Controls the solution data written to the database. All solution items at all

substeps are written to the database.
350 AUTOTS, on !Use automatic time stepping
351 NEQIT, 1000 !Specifies the maximum number of equilibrium iterations for nonlinear analyses.
352 NSUBST,30,,10 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
353
354 !!!=== Fix the base facet in 6 DOFs
355
356 LSEL,S,LINE,,20,21 !Select the outer lines of the base facet that also border a crease
357 NSLL,S,1 !Selects the nodes associated with the selected lines. Choose 1 to include nodes at

the end of the lines.
358 D,ALL,ALL,0 !Fix all the selected nodes in 6 DOFs
359 ALLSEL !Select everything (so reset selection done before)
360
361 !!!=== Rotate the central nodes A1_n and B1_n out of their original plane and toward each

other. The closer they get, the better it is.
362
363 D,NODE_A1_1,ROTX, -pi/4
364 D,NODE_A1_2,ROTX, -pi/4
365 D,NODE_A1_3,ROTX, -pi/4
366 D,NODE_A1_4,ROTX, -pi/4
367 D,NODE_A1_5,ROTX, -pi/4
368
369 D,NODE_B1_1,ROTX, -pi/4
370 D,NODE_B1_2,ROTX, -pi/4
371 D,NODE_B1_3,ROTX, -pi/4
372 D,NODE_B1_4,ROTX, -pi/4

34

373 D,NODE_B1_5,ROTX, -pi/4
374
375 SOLVE !Solve current study
376 FINISH !Exits normally from a processor
377
378 /POST1 !Initialize post1 processor
379 /DSCALE,ALL,1 !Scaling of displacement displays, set to 1 for true scale and 0 for auto

scale
380 PLDISP,0 !Displays the displaced structure, key is used to show or not show the undisplaced

structure

Listing B.4: Loadstep 1 of assembling the non-Euclidean vertex.

Figure B.2: Screenshot of the model after loadstep 1 of the assembly procedure.

381 !!!=== Step 2 of the procedure
382 /SOLU !Initialize solution processor
383 ANTYPE, 0, restart, 1, last, continue !Continue onwards from the end of the last load step
384 AUTOTS, off !Switch auto timestepping off when applying reaction forces
385 NSUBST,1 !Use 1 substep when applying reaction forces
386
387 !!!=== Replace the rotations applied to A1_n with their corresponding reaction moments
388
389 DDELE,NODE_A1_1,ALL
390 DDELE,NODE_A1_2,ALL
391 DDELE,NODE_A1_3,ALL
392 DDELE,NODE_A1_4,ALL
393 DDELE,NODE_A1_5,ALL
394
395 *GET, Xmoment_NODE_A1_1, NODE, NODE_A1_1_NUM, RF, MX
396 F,NODE_A1_1,MX, Xmoment_NODE_A1_1
397
398 *GET, Xmoment_NODE_A1_2, NODE, NODE_A1_2_NUM, RF, MX
399 F,NODE_A1_2,MX, Xmoment_NODE_A1_2
400
401 *GET, Xmoment_NODE_A1_3, NODE, NODE_A1_3_NUM, RF, MX
402 F,NODE_A1_3,MX, Xmoment_NODE_A1_3
403
404 *GET, Xmoment_NODE_A1_4, NODE, NODE_A1_4_NUM, RF, MX

35

405 F,NODE_A1_4,MX, Xmoment_NODE_A1_4
406
407 *GET, Xmoment_NODE_A1_5, NODE, NODE_A1_5_NUM, RF, MX
408 F,NODE_A1_5,MX, Xmoment_NODE_A1_5
409
410 !!!=== Replace the rotations applied to B1_n with their corresponding reaction moments
411
412 DDELE,NODE_B1_1,ALL
413 DDELE,NODE_B1_2,ALL
414 DDELE,NODE_B1_3,ALL
415 DDELE,NODE_B1_4,ALL
416 DDELE,NODE_B1_5,ALL
417
418 *GET, Xmoment_NODE_B1_1, NODE, NODE_B1_1_NUM, RF, MX
419 F,NODE_B1_1,MX, Xmoment_NODE_B1_1
420
421 *GET, Xmoment_NODE_B1_2, NODE, NODE_B1_2_NUM, RF, MX
422 F,NODE_B1_2,MX, Xmoment_NODE_B1_2
423
424 *GET, Xmoment_NODE_B1_3, NODE, NODE_B1_3_NUM, RF, MX
425 F,NODE_B1_3,MX, Xmoment_NODE_B1_3
426
427 *GET, Xmoment_NODE_B1_4, NODE, NODE_B1_4_NUM, RF, MX
428 F,NODE_B1_4,MX, Xmoment_NODE_B1_4
429
430 *GET, Xmoment_NODE_B1_5, NODE, NODE_B1_5_NUM, RF, MX
431 F,NODE_B1_5,MX, Xmoment_NODE_B1_5
432
433 !!!=== Fix all three translational DOFs of A1_n and B1_n
434
435 D,NODE_A1_1,UX,%_FIX%
436 D,NODE_A1_1,UY,%_FIX%
437 D,NODE_A1_1,UZ,%_FIX%
438
439 D,NODE_A1_2,UX,%_FIX%
440 D,NODE_A1_2,UY,%_FIX%
441 D,NODE_A1_2,UZ,%_FIX%
442
443 D,NODE_A1_3,UX,%_FIX%
444 D,NODE_A1_3,UY,%_FIX%
445 D,NODE_A1_3,UZ,%_FIX%
446
447 D,NODE_A1_4,UX,%_FIX%
448 D,NODE_A1_4,UY,%_FIX%
449 D,NODE_A1_4,UZ,%_FIX%
450
451 D,NODE_A1_5,UX,%_FIX%
452 D,NODE_A1_5,UY,%_FIX%
453 D,NODE_A1_5,UZ,%_FIX%
454
455 D,NODE_B1_1,UX,%_FIX%
456 D,NODE_B1_1,UY,%_FIX%
457 D,NODE_B1_1,UZ,%_FIX%
458
459 D,NODE_B1_2,UX,%_FIX%
460 D,NODE_B1_2,UY,%_FIX%
461 D,NODE_B1_2,UZ,%_FIX%
462
463 D,NODE_B1_3,UX,%_FIX%
464 D,NODE_B1_3,UY,%_FIX%
465 D,NODE_B1_3,UZ,%_FIX%
466
467 D,NODE_B1_4,UX,%_FIX%
468 D,NODE_B1_4,UY,%_FIX%
469 D,NODE_B1_4,UZ,%_FIX%
470
471 D,NODE_B1_5,UX,%_FIX%
472 D,NODE_B1_5,UY,%_FIX%
473 D,NODE_B1_5,UZ,%_FIX%
474
475 SOLVE !Solve current study

36

476 FINISH !Exits normally from a processor
477
478
479 !!!=== Step 3 of the procedure
480 /SOLU !Initialize solution processor
481 ANTYPE, 0, restart, 2, last, continue !Continue onwards from the end of the last load step
482 AUTOTS, on !Use automatic time stepping
483 NSUBST,200,,100 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
484
485 !!!=== Stepwise reduce the applied reaction moments to zero
486 F,NODE_A1_1,MX,0
487 F,NODE_B1_1,MX,0
488
489 F,NODE_A1_2,MX,0
490 F,NODE_B1_2,MX,0
491
492 F,NODE_A1_3,MX,0
493 F,NODE_B1_3,MX,0
494
495 F,NODE_A1_4,MX,0
496 F,NODE_B1_4,MX,0
497
498 F,NODE_A1_5,MX,0
499 F,NODE_B1_5,MX,0
500
501 !!!=== Displace B1_n to A1_n. Process explained for B1_1 and A1_1, and repeated for the

rest.
502
503 !Get displacement of A1_1 relative to its initial position
504 *GET,UXNODE_A1_1,NODE,NODE_A1_1_NUM,U,X
505 *GET,UYNODE_A1_1,NODE,NODE_A1_1_NUM,U,Y
506 *GET,UZNODE_A1_1,NODE,NODE_A1_1_NUM,U,Z
507
508 !Get initial position of A1_1 and B1_1
509 *GET,LOCXNODE_A1_1,NODE,NODE_A1_1_NUM,LOC,X
510 *GET,LOCXNODE_B1_1,NODE,NODE_B1_1_NUM,LOC,X
511 *GET,LOCYNODE_A1_1,NODE,NODE_A1_1_NUM,LOC,Y
512 *GET,LOCYNODE_B1_1,NODE,NODE_B1_1_NUM,LOC,Y
513 *GET,LOCZNODE_A1_1,NODE,NODE_A1_1_NUM,LOC,Z
514 *GET,LOCZNODE_B1_1,NODE,NODE_B1_1_NUM,LOC,Z
515
516 !Get distances between initial positions of A1_1 and B1_1
517 DLOCXNODE_B1_1_NODE_A1_1 = LOCXNODE_B1_1 - LOCXNODE_A1_1
518 DLOCYNODE_B1_1_NODE_A1_1 = LOCYNODE_B1_1 - LOCYNODE_A1_1
519 DLOCZNODE_B1_1_NODE_A1_1 = LOCZNODE_B1_1 - LOCZNODE_A1_1
520
521 !Displace B1_1 based on the displacement of A1_1 relative to its initial position and the

distances between initial positions of A1_1 and B1_1
522 D,NODE_B1_1,UX,UXNODE_A1_1 - DLOCXNODE_B1_1_NODE_A1_1
523 D,NODE_B1_1,UY,UYNODE_A1_1 - DLOCYNODE_B1_1_NODE_A1_1
524 D,NODE_B1_1,UZ,UZNODE_A1_1 - DLOCZNODE_B1_1_NODE_A1_1
525
526
527 *GET,UXNODE_A1_2,NODE,NODE_A1_2_NUM,U,X
528 *GET,UYNODE_A1_2,NODE,NODE_A1_2_NUM,U,Y
529 *GET,UZNODE_A1_2,NODE,NODE_A1_2_NUM,U,Z
530
531 *GET,LOCXNODE_A1_2,NODE,NODE_A1_2_NUM,LOC,X
532 *GET,LOCXNODE_B1_2,NODE,NODE_B1_2_NUM,LOC,X
533 *GET,LOCYNODE_A1_2,NODE,NODE_A1_2_NUM,LOC,Y
534 *GET,LOCYNODE_B1_2,NODE,NODE_B1_2_NUM,LOC,Y
535 *GET,LOCZNODE_A1_2,NODE,NODE_A1_2_NUM,LOC,Z
536 *GET,LOCZNODE_B1_2,NODE,NODE_B1_2_NUM,LOC,Z
537
538 DLOCXNODE_B1_2_NODE_A1_2 = LOCXNODE_B1_2 - LOCXNODE_A1_2
539 DLOCYNODE_B1_2_NODE_A1_2 = LOCYNODE_B1_2 - LOCYNODE_A1_2
540 DLOCZNODE_B1_2_NODE_A1_2 = LOCZNODE_B1_2 - LOCZNODE_A1_2
541
542 D,NODE_B1_2,UX,UXNODE_A1_2 - DLOCXNODE_B1_2_NODE_A1_2
543 D,NODE_B1_2,UY,UYNODE_A1_2 - DLOCYNODE_B1_2_NODE_A1_2

37

544 D,NODE_B1_2,UZ,UZNODE_A1_2 - DLOCZNODE_B1_2_NODE_A1_2
545
546
547 *GET,UXNODE_A1_3,NODE,NODE_A1_3_NUM,U,X
548 *GET,UYNODE_A1_3,NODE,NODE_A1_3_NUM,U,Y
549 *GET,UZNODE_A1_3,NODE,NODE_A1_3_NUM,U,Z
550
551 *GET,LOCXNODE_A1_3,NODE,NODE_A1_3_NUM,LOC,X
552 *GET,LOCXNODE_B1_3,NODE,NODE_B1_3_NUM,LOC,X
553 *GET,LOCYNODE_A1_3,NODE,NODE_A1_3_NUM,LOC,Y
554 *GET,LOCYNODE_B1_3,NODE,NODE_B1_3_NUM,LOC,Y
555 *GET,LOCZNODE_A1_3,NODE,NODE_A1_3_NUM,LOC,Z
556 *GET,LOCZNODE_B1_3,NODE,NODE_B1_3_NUM,LOC,Z
557
558 DLOCXNODE_B1_3_NODE_A1_3 = LOCXNODE_B1_3 - LOCXNODE_A1_3
559 DLOCYNODE_B1_3_NODE_A1_3 = LOCYNODE_B1_3 - LOCYNODE_A1_3
560 DLOCZNODE_B1_3_NODE_A1_3 = LOCZNODE_B1_3 - LOCZNODE_A1_3
561
562 D,NODE_B1_3,UX,UXNODE_A1_3 - DLOCXNODE_B1_3_NODE_A1_3
563 D,NODE_B1_3,UY,UYNODE_A1_3 - DLOCYNODE_B1_3_NODE_A1_3
564 D,NODE_B1_3,UZ,UZNODE_A1_3 - DLOCZNODE_B1_3_NODE_A1_3
565
566
567 *GET,UXNODE_A1_4,NODE,NODE_A1_4_NUM,U,X
568 *GET,UYNODE_A1_4,NODE,NODE_A1_4_NUM,U,Y
569 *GET,UZNODE_A1_4,NODE,NODE_A1_4_NUM,U,Z
570
571 *GET,LOCXNODE_A1_4,NODE,NODE_A1_4_NUM,LOC,X
572 *GET,LOCXNODE_B1_4,NODE,NODE_B1_4_NUM,LOC,X
573 *GET,LOCYNODE_A1_4,NODE,NODE_A1_4_NUM,LOC,Y
574 *GET,LOCYNODE_B1_4,NODE,NODE_B1_4_NUM,LOC,Y
575 *GET,LOCZNODE_A1_4,NODE,NODE_A1_4_NUM,LOC,Z
576 *GET,LOCZNODE_B1_4,NODE,NODE_B1_4_NUM,LOC,Z
577
578 DLOCXNODE_B1_4_NODE_A1_4 = LOCXNODE_B1_4 - LOCXNODE_A1_4
579 DLOCYNODE_B1_4_NODE_A1_4 = LOCYNODE_B1_4 - LOCYNODE_A1_4
580 DLOCZNODE_B1_4_NODE_A1_4 = LOCZNODE_B1_4 - LOCZNODE_A1_4
581
582 D,NODE_B1_4,UX,UXNODE_A1_4 - DLOCXNODE_B1_4_NODE_A1_4
583 D,NODE_B1_4,UY,UYNODE_A1_4 - DLOCYNODE_B1_4_NODE_A1_4
584 D,NODE_B1_4,UZ,UZNODE_A1_4 - DLOCZNODE_B1_4_NODE_A1_4
585
586
587 *GET,UXNODE_A1_5,NODE,NODE_A1_5_NUM,U,X
588 *GET,UYNODE_A1_5,NODE,NODE_A1_5_NUM,U,Y
589 *GET,UZNODE_A1_5,NODE,NODE_A1_5_NUM,U,Z
590
591 *GET,LOCXNODE_A1_5,NODE,NODE_A1_5_NUM,LOC,X
592 *GET,LOCXNODE_B1_5,NODE,NODE_B1_5_NUM,LOC,X
593 *GET,LOCYNODE_A1_5,NODE,NODE_A1_5_NUM,LOC,Y
594 *GET,LOCYNODE_B1_5,NODE,NODE_B1_5_NUM,LOC,Y
595 *GET,LOCZNODE_A1_5,NODE,NODE_A1_5_NUM,LOC,Z
596 *GET,LOCZNODE_B1_5,NODE,NODE_B1_5_NUM,LOC,Z
597
598 DLOCXNODE_B1_5_NODE_A1_5 = LOCXNODE_B1_5 - LOCXNODE_A1_5
599 DLOCYNODE_B1_5_NODE_A1_5 = LOCYNODE_B1_5 - LOCYNODE_A1_5
600 DLOCZNODE_B1_5_NODE_A1_5 = LOCZNODE_B1_5 - LOCZNODE_A1_5
601
602 D,NODE_B1_5,UX,UXNODE_A1_5 - DLOCXNODE_B1_5_NODE_A1_5
603 D,NODE_B1_5,UY,UYNODE_A1_5 - DLOCYNODE_B1_5_NODE_A1_5
604 D,NODE_B1_5,UZ,UZNODE_A1_5 - DLOCZNODE_B1_5_NODE_A1_5
605
606 SOLVE !Solve current study
607 FINISH !Exits normally from a processor
608
609 /POST1 !Initialize post1 processor
610 PLDISP,0 !Check whether the nodes align properly

Listing B.5: Loadstep 2-3 of assembling the non-Euclidean vertex.

38

Figure B.3: Screenshot of the model after loadstep 3 of the assembly procedure.

611 !!!=== Step 4 part 1 of the procedure (step needs to be divided over two loadsteps)
612 /SOLU !Initialize solution processor
613 ANTYPE, 0, restart, 3, last, continue !Continue onwards from the end of the last load step
614 AUTOTS, off !Switch auto timestepping off when coupling nodes
615 NSUBST,1 !Use 1 substep when coupling nodes
616
617 FDELE,ALL !Delete all applied forces (as they are zero)
618
619 !!!=== Delete all displacements applied to B1_n, as A1_n will lead these nodes from now on
620
621 DDELE,NODE_B1_1,ALL
622 DDELE,NODE_B1_2,ALL
623 DDELE,NODE_B1_3,ALL
624 DDELE,NODE_B1_4,ALL
625 DDELE,NODE_B1_5,ALL
626
627 !!!=== Coupling of A1_n to B1_n. Process explained for A1_1 and B1_1, and repeated for the

rest.
628
629 CP,NEXT,UX,NODE_A1_1_NUM,NODE_B1_1_NUM !Couple nodes in UX, first number is the primary node

(A1_1), second number is the node for which the DOF is deleted (B1_1)
630 CP,NEXT,UY,NODE_A1_1_NUM,NODE_B1_1_NUM !Couple nodes in UY, first number is the primary node

(A1_1), second number is the node for which the DOF is deleted (B1_1)
631 CP,NEXT,UZ,NODE_A1_1_NUM,NODE_B1_1_NUM !Couple nodes in UZ, first number is the primary node

(A1_1), second number is the node for which the DOF is deleted (B1_1)
632
633 CP,NEXT,UX,NODE_A1_2_NUM,NODE_B1_2_NUM
634 CP,NEXT,UY,NODE_A1_2_NUM,NODE_B1_2_NUM
635 CP,NEXT,UZ,NODE_A1_2_NUM,NODE_B1_2_NUM
636
637 CP,NEXT,UX,NODE_A1_3_NUM,NODE_B1_3_NUM
638 CP,NEXT,UY,NODE_A1_3_NUM,NODE_B1_3_NUM
639 CP,NEXT,UZ,NODE_A1_3_NUM,NODE_B1_3_NUM
640
641 CP,NEXT,UX,NODE_A1_4_NUM,NODE_B1_4_NUM
642 CP,NEXT,UY,NODE_A1_4_NUM,NODE_B1_4_NUM
643 CP,NEXT,UZ,NODE_A1_4_NUM,NODE_B1_4_NUM
644
645 CP,NEXT,UX,NODE_A1_5_NUM,NODE_B1_5_NUM

39

646 CP,NEXT,UY,NODE_A1_5_NUM,NODE_B1_5_NUM
647 CP,NEXT,UZ,NODE_A1_5_NUM,NODE_B1_5_NUM
648
649 SOLVE !Solve current study
650 FINISH !Exits normally from a processor
651
652
653 !!!=== Step 4 part 2 of the procedure (step needs to be divided over two loadsteps)
654 /SOLU !Initialize solution processor
655 ANTYPE, 0, restart, 4, last, continue !Continue onwards from the end of the last load step
656 AUTOTS, off !Switch auto timestepping off when applying reaction forces
657 NSUBST,1 !Use 1 substep when applying reaction forces
658
659 !!!=== Replace all displacements applied to A1_n with their corresponding reaction forces
660
661 DDELE,NODE_A1_1,ALL
662 DDELE,NODE_A1_2,ALL
663 DDELE,NODE_A1_3,ALL
664 DDELE,NODE_A1_4,ALL
665 DDELE,NODE_A1_5,ALL
666
667 *GET, Xforce_NODE_A1_1, NODE, NODE_A1_1_NUM, RF, FX
668 *GET, Yforce_NODE_A1_1, NODE, NODE_A1_1_NUM, RF, FY
669 *GET, Zforce_NODE_A1_1, NODE, NODE_A1_1_NUM, RF, FZ
670 F,NODE_A1_1,FX,Xforce_NODE_A1_1
671 F,NODE_A1_1,FY,Yforce_NODE_A1_1
672 F,NODE_A1_1,FZ,Zforce_NODE_A1_1
673
674 *GET, Xforce_NODE_A1_2, NODE, NODE_A1_2_NUM, RF, FX
675 *GET, Yforce_NODE_A1_2, NODE, NODE_A1_2_NUM, RF, FY
676 *GET, Zforce_NODE_A1_2, NODE, NODE_A1_2_NUM, RF, FZ
677 F,NODE_A1_2,FX,Xforce_NODE_A1_2
678 F,NODE_A1_2,FY,Yforce_NODE_A1_2
679 F,NODE_A1_2,FZ,Zforce_NODE_A1_2
680
681 *GET, Xforce_NODE_A1_3, NODE, NODE_A1_3_NUM, RF, FX
682 *GET, Yforce_NODE_A1_3, NODE, NODE_A1_3_NUM, RF, FY
683 *GET, Zforce_NODE_A1_3, NODE, NODE_A1_3_NUM, RF, FZ
684 F,NODE_A1_3,FX,Xforce_NODE_A1_3
685 F,NODE_A1_3,FY,Yforce_NODE_A1_3
686 F,NODE_A1_3,FZ,Zforce_NODE_A1_3
687
688 *GET, Xforce_NODE_A1_4, NODE, NODE_A1_4_NUM, RF, FX
689 *GET, Yforce_NODE_A1_4, NODE, NODE_A1_4_NUM, RF, FY
690 *GET, Zforce_NODE_A1_4, NODE, NODE_A1_4_NUM, RF, FZ
691 F,NODE_A1_4,FX,Xforce_NODE_A1_4
692 F,NODE_A1_4,FY,Yforce_NODE_A1_4
693 F,NODE_A1_4,FZ,Zforce_NODE_A1_4
694
695 *GET, Xforce_NODE_A1_5, NODE, NODE_A1_5_NUM, RF, FX
696 *GET, Yforce_NODE_A1_5, NODE, NODE_A1_5_NUM, RF, FY
697 *GET, Zforce_NODE_A1_5, NODE, NODE_A1_5_NUM, RF, FZ
698 F,NODE_A1_5,FX,Xforce_NODE_A1_5
699 F,NODE_A1_5,FY,Yforce_NODE_A1_5
700 F,NODE_A1_5,FZ,Zforce_NODE_A1_5
701
702 !!!=== Fix two translational DOFs of A2_n and B2_n
703
704 D,1,UX,%_FIX%
705 D,1,UY,%_FIX%
706 D,2,UX,%_FIX%
707 D,2,UY,%_FIX%
708 D,3,UX,%_FIX%
709 D,3,UY,%_FIX%
710 D,4,UX,%_FIX%
711 D,4,UY,%_FIX%
712 D,5,UX,%_FIX%
713 D,5,UY,%_FIX%
714
715 D,11,UX,%_FIX%
716 D,11,UY,%_FIX%

40

717 D,12,UX,%_FIX%
718 D,12,UY,%_FIX%
719 D,13,UX,%_FIX%
720 D,13,UY,%_FIX%
721 D,14,UX,%_FIX%
722 D,14,UY,%_FIX%
723 D,15,UX,%_FIX%
724 D,15,UY,%_FIX%
725
726 SOLVE !Solve current study
727 FINISH !Exits normally from a processor
728
729
730 !!!=== Loadstep 5 of the procedure
731 /SOLU !Initialize solution processor
732 ANTYPE, 0, restart, 5, last, continue !Continue onwards from the end of the last load step
733 AUTOTS, on !Use automatic time stepping
734 NSUBST,50,,30 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
735
736 !!!=== Displace B2_n to A2_n. Process explained for B2_1 and A2_1, and repeated for the

rest.
737
738 !Get displacement of A2_1 relative to its initial position
739 *GET,UX_A2_1,NODE,1,U,X
740 *GET,UY_A2_1,NODE,1,U,Y
741
742 !Get initial position of A2_1 and B2_1
743 *GET,LOCX_A2_1,NODE,1,LOC,X
744 *GET,LOCY_A2_1,NODE,1,LOC,Y
745 *GET,LOCX_B2_1,NODE,11,LOC,X
746 *GET,LOCY_B2_1,NODE,11,LOC,Y
747
748 !Get distances between initial positions of A2_1 and B2_1
749 DLOCXAB2_1 = LOCX_B2_1 - LOCX_A2_1
750 DLOCYAB2_1 = LOCY_B2_1 - LOCY_A2_1
751
752 !Displace B2_1 based on the displacement of A2_1 relative to its initial position and the

distances between initial positions of A2_1 and B2_1
753 D,11,UX,UX_A2_1 - DLOCXAB2_1
754 D,11,UY,UY_A2_1 - DLOCYAB2_1
755
756
757 *GET,UX_A2_2,NODE,2,U,X
758 *GET,UY_A2_2,NODE,2,U,Y
759
760 *GET,LOCX_A2_2,NODE,2,LOC,X
761 *GET,LOCY_A2_2,NODE,2,LOC,Y
762 *GET,LOCX_B2_2,NODE,12,LOC,X
763 *GET,LOCY_B2_2,NODE,12,LOC,Y
764
765 DLOCXAB2_2 = LOCX_B2_2 - LOCX_A2_2
766 DLOCYAB2_2 = LOCY_B2_2 - LOCY_A2_2
767
768 D,12,UX,UX_A2_2 - DLOCXAB2_2
769 D,12,UY,UY_A2_2 - DLOCYAB2_2
770
771
772 *GET,UX_A2_3,NODE,3,U,X
773 *GET,UY_A2_3,NODE,3,U,Y
774
775 *GET,LOCX_A2_3,NODE,3,LOC,X
776 *GET,LOCY_A2_3,NODE,3,LOC,Y
777 *GET,LOCX_B2_3,NODE,13,LOC,X
778 *GET,LOCY_B2_3,NODE,13,LOC,Y
779
780 DLOCXAB2_3 = LOCX_B2_3 - LOCX_A2_3
781 DLOCYAB2_3 = LOCY_B2_3 - LOCY_A2_3
782
783 D,13,UX,UX_A2_3 - DLOCXAB2_3
784 D,13,UY,UY_A2_3 - DLOCYAB2_3

41

785
786
787 *GET,UX_A2_4,NODE,4,U,X
788 *GET,UY_A2_4,NODE,4,U,Y
789
790 *GET,LOCX_A2_4,NODE,4,LOC,X
791 *GET,LOCY_A2_4,NODE,4,LOC,Y
792 *GET,LOCX_B2_4,NODE,14,LOC,X
793 *GET,LOCY_B2_4,NODE,14,LOC,Y
794
795 DLOCXAB2_4 = LOCX_B2_4 - LOCX_A2_4
796 DLOCYAB2_4 = LOCY_B2_4 - LOCY_A2_4
797
798 D,14,UX,UX_A2_4 - DLOCXAB2_4
799 D,14,UY,UY_A2_4 - DLOCYAB2_4
800
801
802 *GET,UX_A2_5,NODE,5,U,X
803 *GET,UY_A2_5,NODE,5,U,Y
804
805 *GET,LOCX_A2_5,NODE,5,LOC,X
806 *GET,LOCY_A2_5,NODE,5,LOC,Y
807 *GET,LOCX_B2_5,NODE,15,LOC,X
808 *GET,LOCY_B2_5,NODE,15,LOC,Y
809
810 DLOCXAB2_5 = LOCX_B2_5 - LOCX_A2_5
811 DLOCYAB2_5 = LOCY_B2_5 - LOCY_A2_5
812
813 D,15,UX,UX_A2_5 - DLOCXAB2_5
814 D,15,UY,UY_A2_5 - DLOCYAB2_5
815
816 SOLVE !Solve current study
817 FINISH !Exits normally from a processor
818
819 /POST1 !Initialize post1 processor
820 PLDISP,0 !Check whether the nodes align properly

Listing B.6: Loadstep 4-5 of assembling the non-Euclidean vertex.

Figure B.4: Screenshot of the model after loadstep 5 of the assembly procedure.

42

821 !!!=== Step 6 part 1 of the procedure (step needs to be divided over two loadsteps)
822 /SOLU !Initialize solution processor
823 ANTYPE, 0, restart, 6, last, continue !Continue onwards from the end of the last load step
824 AUTOTS, off !Switch auto timestepping off when coupling nodes
825 NSUBST,1 !Use 1 substep when coupling nodes
826
827 !!!=== Delete all displacements applied to B2_n, as A2_n will lead this node from now on
828
829 DDELE,11,ALL
830 DDELE,12,ALL
831 DDELE,13,ALL
832 DDELE,14,ALL
833 DDELE,15,ALL
834
835 !!!=== Coupling of A2_n to B2_n. Process explained for A2_1 and B2_1, and repeated for the

rest.
836
837 CP,NEXT,UX,1,11 !Couple nodes in UX, first number is the primary node (A2_1), second number

is the node for which the DOF is deleted (B2_1)
838 CP,NEXT,UY,1,11 !Couple nodes in UY, first number is the primary node (A2_1), second number

is the node for which the DOF is deleted (B2_1)
839
840 CP,NEXT,UX,2,12
841 CP,NEXT,UY,2,12
842
843 CP,NEXT,UX,3,13
844 CP,NEXT,UY,3,13
845
846 CP,NEXT,UX,4,14
847 CP,NEXT,UY,4,14
848
849 CP,NEXT,UX,5,15
850 CP,NEXT,UY,5,15
851
852 SOLVE !Solve current study
853 FINISH !Exits normally from a processor
854
855
856 !!!=== Step 6 part 2 of the procedure (step needs to be divided over two loadsteps)
857 /SOLU !Initialize solution processor
858 ANTYPE, 0, restart, 7, last, continue !Continue onwards from the end of the last load step
859 AUTOTS, off !Switch auto timestepping off when applying reaction forces
860 NSUBST,1 !Use 1 substep when applying reaction forces
861
862 !!!=== Replace all displacements applied to A2_n with their corresponding reaction forces
863
864 DDELE,1,ALL
865 DDELE,2,ALL
866 DDELE,3,ALL
867 DDELE,4,ALL
868 DDELE,5,ALL
869
870 *GET, Xforce_1, NODE, 1, RF, FX
871 *GET, Yforce_1, NODE, 1, RF, FY
872 F,1,FX,Xforce_1
873 F,1,FY,Yforce_1
874
875 *GET, Xforce_2, NODE, 2, RF, FX
876 *GET, Yforce_2, NODE, 2, RF, FY
877 F,2,FX,Xforce_2
878 F,2,FY,Yforce_2
879
880 *GET, Xforce_3, NODE, 3, RF, FX
881 *GET, Yforce_3, NODE, 3, RF, FY
882 F,3,FX,Xforce_3
883 F,3,FY,Yforce_3
884
885 *GET, Xforce_4, NODE, 4, RF, FX
886 *GET, Yforce_4, NODE, 4, RF, FY
887 F,4,FX,Xforce_4

43

888 F,4,FY,Yforce_4
889
890 *GET, Xforce_5, NODE, 5, RF, FX
891 *GET, Yforce_5, NODE, 5, RF, FY
892 F,5,FX,Xforce_5
893 F,5,FY,Yforce_5
894
895 !!!=== Fix one translational DOF of A3_n and B3_n
896
897 D,6,UZ,%_FIX%
898 D,7,UZ,%_FIX%
899 D,8,UZ,%_FIX%
900 D,9,UZ,%_FIX%
901 D,10,UZ,%_FIX%
902
903 D,16,UZ,%_FIX%
904 D,17,UZ,%_FIX%
905 D,18,UZ,%_FIX%
906 D,19,UZ,%_FIX%
907 D,20,UZ,%_FIX%
908
909 SOLVE !Solve current study
910 FINISH !Exits normally from a processor
911
912
913 !!!=== Loadstep 7 of the procedure
914 /SOLU !Initialize solution processor
915 ANTYPE, 0, restart, 8, last, continue !Continue onwards from the end of the last load step
916 AUTOTS, on !Use automatic time stepping
917 NSUBST,30,,10 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
918
919 !!!=== Displace B3_n to A3_n. Process explained for B3_1 and A3_1, and repeated for the

rest.
920
921 *GET,UZ6,NODE,6,U,Z !Get displacement of A3_1 relative to its initial position
922 *GET,LOCZ16,NODE,16,LOC,Z !Get initial position of B3_1
923 *GET,LOCZ6,NODE,6,LOC,Z !Get initial position of A3_1
924 DLOCZ16_6 = LOCZ16 - LOCZ6 !Get distances between initial positions of A3_1 and B3_1
925 D,16,UZ,UZ6 - DLOCZ16_6 !Displace B3_1 based on the displacement of A3_1 relative to its

initial position and the distances between initial positions of A3_1 and B3_1
926
927 *GET,UZ7,NODE,7,U,Z
928 *GET,LOCZ17,NODE,17,LOC,Z
929 *GET,LOCZ7,NODE,7,LOC,Z
930 DLOCZ17_7 = LOCZ17 - LOCZ7
931 D,17,UZ,UZ7 - DLOCZ17_7
932
933 *GET,UZ8,NODE,8,U,Z
934 *GET,LOCZ18,NODE,18,LOC,Z
935 *GET,LOCZ8,NODE,8,LOC,Z
936 DLOCZ18_8 = LOCZ18 - LOCZ8
937 D,18,UZ,UZ8 - DLOCZ18_8
938
939 *GET,UZ9,NODE,9,U,Z
940 *GET,LOCZ19,NODE,19,LOC,Z
941 *GET,LOCZ9,NODE,9,LOC,Z
942 DLOCZ19_9 = LOCZ19 - LOCZ9
943 D,19,UZ,UZ9 - DLOCZ19_9
944
945 *GET,UZ10,NODE,10,U,Z
946 *GET,LOCZ20,NODE,20,LOC,Z
947 *GET,LOCZ10,NODE,10,LOC,Z
948 DLOCZ20_10 = LOCZ20 - LOCZ10
949 D,20,UZ,UZ10 - DLOCZ20_10
950
951 SOLVE !Solve current study
952 FINISH !Exits normally from a processor
953
954 /POST1 !Initialize post1 processor
955 PLDISP,0 !Check whether the nodes align properly

44

Listing B.7: Loadstep 6-7 of assembling the non-Euclidean vertex.

Figure B.5: Screenshot of the model after loadstep 7 of the assembly procedure.

956 !!!=== Step 8 part 1 of the procedure (step needs to be divided over two loadsteps)
957 /SOLU !Initialize solution processor
958 ANTYPE, 0, restart, 9, last, continue !Continue onwards from the end of the last load step
959 AUTOTS, off !Switch auto timestepping off when coupling nodes
960 NSUBST,1 !Use 1 substep when coupling nodes
961
962 !!!=== Delete all displacements applied to B3_n, as A3_n will lead this node from now on
963
964 DDELE,16,ALL
965 DDELE,17,ALL
966 DDELE,18,ALL
967 DDELE,19,ALL
968 DDELE,20,ALL
969
970 !!!=== Coupling of A3_n to B3_n. Process explained for A3_1 and B3_1, and repeated for the

rest.
971
972 CP,NEXT,UZ,6,16 !Couple nodes in UZ, first number is the primary node (A3_1), second number

is the node for which the DOF is deleted (B3_1)
973 CP,NEXT,UZ,7,17
974 CP,NEXT,UZ,8,18
975 CP,NEXT,UZ,9,19
976 CP,NEXT,UZ,10,20
977
978 SOLVE !Solve current study
979 FINISH !Exits normally from a processor
980
981
982 !!!=== Step 8 part 2 of the procedure (step needs to be divided over two loadsteps)
983 /SOLU !Initialize solution processor
984 ANTYPE, 0, restart, 10, last, continue !Continue onwards from the end of the last load step
985 AUTOTS, off !Switch auto timestepping off when applying reaction forces
986 NSUBST,1 !Use 1 substep when applying reaction forces

45

987
988 !!!=== Replace all displacements applied to A3_n with their corresponding reaction forces
989
990 DDELE,6,ALL
991 DDELE,7,ALL
992 DDELE,8,ALL
993 DDELE,9,ALL
994 DDELE,10,ALL
995
996 *GET, Zforce_6, NODE, 6, RF, FZ
997 F,6,FZ,Zforce_6
998
999 *GET, Zforce_7, NODE, 7, RF, FZ

1000 F,7,FZ,Zforce_7
1001
1002 *GET, Zforce_8, NODE, 8, RF, FZ
1003 F,8,FZ,Zforce_8
1004
1005 *GET, Zforce_9, NODE, 9, RF, FZ
1006 F,9,FZ,Zforce_9
1007
1008 *GET, Zforce_10, NODE, 10, RF, FZ
1009 F,10,FZ,Zforce_10
1010
1011 SOLVE !Solve current study
1012 FINISH !Exits normally from a processor
1013
1014
1015 !!!=== Loadstep 9 of the procedure
1016 /SOLU !Initialize solution processor
1017 ANTYPE, 0, restart, 11, last, continue !Continue onwards from the end of the last load step
1018 AUTOTS, on !Use automatic time stepping
1019 NSUBST,50,,30 !Specifies the size of substeps. If automatic time stepping is on, the second

and third numbers specify the maximum and minimum amount of substeps.
1020
1021 !!!=== Stepwise reduce all remaining forces to zero
1022
1023 F,NODE_A1_1,FX,0
1024 F,NODE_A1_1,FY,0
1025 F,NODE_A1_1,FZ,0
1026 F,NODE_A1_2,FX,0
1027 F,NODE_A1_2,FY,0
1028 F,NODE_A1_2,FZ,0
1029 F,NODE_A1_3,FX,0
1030 F,NODE_A1_3,FY,0
1031 F,NODE_A1_3,FZ,0
1032 F,NODE_A1_4,FX,0
1033 F,NODE_A1_4,FY,0
1034 F,NODE_A1_4,FZ,0
1035 F,NODE_A1_5,FX,0
1036 F,NODE_A1_5,FY,0
1037 F,NODE_A1_5,FZ,0
1038
1039 F,1,FX,0
1040 F,1,FY,0
1041 F,2,FX,0
1042 F,2,FY,0
1043 F,3,FX,0
1044 F,3,FY,0
1045 F,4,FX,0
1046 F,4,FY,0
1047 F,5,FX,0
1048 F,5,FY,0
1049
1050 F,6,FZ,0
1051 F,7,FZ,0
1052 F,8,FZ,0
1053 F,9,FZ,0
1054 F,10,FZ,0
1055
1056 SOLVE !Solve current study

46

1057 FINISH !Exits normally from a processor
1058
1059 /POST1 !Initialize post1 processor
1060 PLDISP,0 !Check whether the assembly of the vertex is complete and correct
1061
1062 !!!=== Assembly of non-Euclidean vertex complete

Listing B.8: Loadstep 8-9 of assembling the non-Euclidean vertex.

Figure B.6: Screenshot of the model after all loadsteps of the assembly procedure.

C
Additional information case study

This section of the appendix provides additional information on the case study discussed in the main
paper. The first part is focussed on details of the finite element method model, while the second part
provides details regarding fabrication and testing.

C.1. Finite Element Method
Figure C.1 shows the steps that were applied to assemble the case study mechanism in ANSYS APDL.
This assembly order was chosen to avoid multistabilities during the assembly process, but an assembly
order starting with assembling the non-Euclidean vertices would also work.

Figure C.2 shows the stress/strain plots of the three material models that were applied to the FEM
analysis. Table C.1 lists the parametric values of the same material models.

47

C.1. Finite Element Method 48

2 3

1

4 5

Coinciding & aligning nodes in all 6 DOFsFixed node (all 6 DOFs)

Coupled nodes (all 6 DOFs) Preparational rotations before alignment

Figure C.1: Stepwise visualisation of the actual assembly procedure in FEM leading to the fully assembled case study
mechanism.

C.2. Fabrication & Testing 49

0 0.005 0.01 0.015 0.02
Strain (-)

0

500

1000

1500

St
re

ss
 (G

Pa
)

Fully elastic model
Plastic model [30]
Plastic model Granta Edupack (1/2 hardness)

Figure C.2: Stress/strain plots of used material models in case study FEM analysis. The stainless steel alloy is 1.4310.

Material Model Young’s Modulus (GPa) Yield Stress (MPa) Tangent Modulus (GPa)
Fully Elastic Model 185 – –
Plastic Model [30] 159 918 30.5
Plastic Model
Granta Edupack

197 772 2.64

Table C.1: Parameter values of used material models in case study FEM analysis. The stainless steel alloy is 1.4310.

C.2. Fabrication & Testing
Figure C.3 shows how the components of the case study mechanism are assembled to form the com-
plete prototype.

Figure C.4 shows the average test data per prototype per test moment. The average is taken from
a total of 15 loading cycles, as the prototypes are clamped three times, and loaded five times per
clamping setup.

C.2. Fabrication & Testing 50

Parts subassembly 2

SA1 SA2 SA2SA1

Subassembly 2 (SA2)

Complete prototype, before connecting its ends

Complete prototype, including clamping components

Subassembly 1 (SA1)Parts subassembly 1

A B

C D

E

F

Figure C.3: Overview of components and physical assembly steps needed for a fully assembled case study prototype.

C.2. Fabrication & Testing 51

-20 -15 -10 -5 0 5
Displacement (mm)

-0.15

-0.1

-0.05

0

0.05

0.1
Fo

rc
e

(N
)

Testmoment 1 prototype 1
Testmoment 1 prototype 2
Testmoment 1 prototype 3
Testmoment 2 prototype 1
Testmoment 2 prototype 2
Testmoment 2 prototype 3

1 2

Figure C.4: Average test data per prototype per test moment.

D
Literature review

52

Literature Review for
Designing an

Origami-Inspired
Linear Guide

by

Max Benninga

Student Name Student Number

Max Benninga 4956710

Supervisor: D. Farhadi Machekposhti
Supervisor: M. Zhang
Faculty: Faculty of Mechanical Engineering, Delft

Abstract

Compliant linear guides are vital components in high-tech machinery due to their vacuum compatibility
and high-precision. Unfortunately, all current state of the art compliant linear guides suffer from one or
more drawbacks. This is why countless researchers work on developing novel and superior compliant
linear guides. Whereas these researchers often investigate initially curved flexure mechanisms, this
paper explores the possibility to employ origami mechanisms as possible solutions.

This literature review discusses all necessary subjects to start designing, analysing, manufacturing and
testing origami-inspired linear guides. Besides this, the current state of the art of compliant linear guides
is also elaborated for comparing purposes. This paper serves as a stepping-stone to create an origami
linear guide that should rival or surpass current state of the art compliant linear guides. Additionally, it
lays the groundwork for future research into a wider variety of subjects related to origami mechanisms.

i

Contents

Abstract i

1 Introduction 1

2 Literature 2
2.1 State of the Art of Compliant Linear Guides . 2

2.1.1 Parallelogram Joints . 2
2.1.2 Folded Leaf Spring Mechanisms . 3
2.1.3 Diaphragm Mechanisms . 3
2.1.4 Initially Curved Flexure Mechanisms . 3
2.1.5 Summarising State of the Art Solutions . 3

2.2 General Origami Principles . 4
2.2.1 Origami Definitions . 4
2.2.2 Links Between Origami and Compliant Mechanisms 4
2.2.3 Foldability . 5
2.2.4 Multi-Stability in Origami Mechanisms . 6

2.3 Synthesis of Origami Linear Guides . 6
2.3.1 Classification and Design Possibilities of Compliant Linear Guides 6
2.3.2 Existing Origami Tessellation-Based Synthesis 7
2.3.3 Algorithmic Computational Synthesis . 8
2.3.4 Synthesis by Applying Orimimetrics to Existing Mechanisms 9

2.4 Origami Simulations . 9
2.4.1 General Overview of Origami Simulations . 9
2.4.2 Bar and Hinge Models . 10
2.4.3 Commercial FEA Software Packages . 10
2.4.4 Comparison of the Methods . 10

2.5 Fabrication and Testing of Origami Linear Guides . 11
2.5.1 Fabrication Options . 11
2.5.2 Experimental Validation . 11

3 Discussion 12

4 Research Plan 13

5 Conclusion 14

References 15

A Detailed Research Plan 18

B Research Planning 20

ii

1
Introduction

Today’s industry is in constant need of more advanced mechanisms to accommodate higher precision,
speed and special needs such as vacuum compatibility. This also applies to one of the most funda-
mental building blocks in machines, linear guides. Linear guides are mechanisms that allow for a linear
translation of its End-Effector (EE), while constraining all other translations and rotations of the end-
effector. The performance characteristics of an ideal linear guide are: zero parasitic displacements,
zero stiffness in the degree of freedom, infinite stiffness in the degrees of constraint and infinite range
of motion along the degree of freedom. Originally, linear guides consist of ball bearings, roller bearings
or slide bearings. All of these examples generate particles in operation and can therefore not be used
in vacuum environments. The current main solution for this issue is the use of compliant mechanisms
as linear guides, like parallelogram joints [1, 2], folded leaf spring mechanisms [3, 4], diaphragm mech-
anisms [5, 6] or initially curved flexure mechanisms [4, 7, 8]. All of these individual solutions have their
own strengths and weaknesses, which means that there is still room for novel and better solutions. The
strengths and weaknesses of these compliant linear guides will be discussed in more detail in Chapter
2, Literature.

The ancient art of origami has gradually worked its way into science and engineering. The practice,
originally performed for aesthetic and traditional reasons, is used as an inspiration for a wide variety
of applications. Advancements in mathematics help to investigate origami in a more scientific way,
which opened the door for functional origami. The most straight-forward functionality of origami is
its capacity to be stored and transported in a flat configuration, while it can be transformed into an
arbitrary 3D shape when needed. If this transformation happens only during deployment, this is called
static origami. These static origami models are, for example, used in structural applications [9], space
applications [10, 11], emergency housing [12] or safety equipment [13].

Another important functionality of origami is its ability to use its crease lines as hinges, which makes
them behave like compliant mechanisms. Going by the definition of Howell, ”Compliant mechanisms
gain their motion from the deflection of flexible members rather than from traditional bearings and
hinges” [14]. When, at least some of, the creases of an origami model are constantly acting as hinges
during operation, the model is called kinematic origami. Examples of applications for kinematic origami
are: actuators [15], medical devices [16, 17] and locomotion robotics [18, 19].

In this literature review, kinematic origami is examined as a potential new solution for compliant linear
guides. Kinematic origami solutions are expected to perform well because of the ability to use coupled
secondary deformations to maintain high support stiffness over a large range of motion. The goal of
this research is to evaluate literature relevant for the design of an origami-inspired linear guide.

1

2
Literature

The literature in this chapter was found in a combination of ways. First of all, the search engine Google
Scholar was used to find valuable papers for this literature research. Keywords to input in the search
engine are mentioned at the start of each section. Next to this main strategy, a lot of papers were
found in the references of previously discovered literature. Lastly, the platform ResearchRabbit was
used occasionally to find similar, earlier and later work of previously discovered literature.

2.1. State of the Art of Compliant Linear Guides
Keywords: compliant/flexure mechanism, linear guide, parallelogram, folded leaf spring, diaphragm,
initially curved flexure, constraint stiffness, parasitic displacement, range of motion.

2.1.1. Parallelogram Joints
One of the most used compliant linear guides is the (double) parallelogram joint. The difference be-
tween a parallelogram joint and a double parallelogram joint is the addition of a secondary stage. The
purpose of this secondary stage is to prevent parasitic displacements. However, the addition of this
extra stage does affect the stiffness of the joint in both the degree of freedom (DOF) and the degrees
of constraint (DOCs). An undesired effect of adding the secondary stage is the significant decrease in
stiffness in the degrees of constraint.

Both these parallelogram flexure modules lose a significant share of their constraint stiffness when
displaced in their degree of freedom. This is the main problem with these linear guides. It is found that
improving one performance characteristic of beam-based flexure modules, such as range of motion,
constraint stiffness or parasitic motion, often is accompanied by a deterioration of another performance
characteristic [1, 2]. Figure 2.1 shows how a displacement in x causes a parasitic displacement and
decrease in constraint stiffness in y.

Figure 2.1: Parallelogram joint in its neutral (A) and displaced (B) configuration. When displaced, a parasitic displacement in
the y direction takes place. The constraint stiffness in the y direction decreases when the end-effector is displaced in x.

2

2.1. State of the Art of Compliant Linear Guides 3

2.1.2. Folded Leaf Spring Mechanisms
A big portion of compliant linear guides consists of folded leaf springs. A normal folded leaf spring
constraints just one translation, along its fold line. As a rigid body in 3D space has a total of six degrees
of freedom, at least five folded leaf springs are needed to create a linear guide. A variation on an original
folded leaf spring is the torsion reinforced folded leaf spring, which constraints one translation and two
rotations. Due to these extra constraints, just two torsion reinforced folded leaf springs are needed to
create a linear guide [3].

Both folded leaf spring mechanisms possess good range of motion properties due to their long flexure
elements. Unfortunately, folded leaf spring mechanisms also lose a significant portion of their constraint
stiffness when displaced over their range of motion, just like the compliant parallelogram mechanisms.

2.1.3. Diaphragm Mechanisms
The third type of commonly used linear guide is the diaphragm mechanism. These mechanisms are
generally made from a single sheet of material, and can be made using just 2D machining methods.
The biggest drawback of this type of mechanism is its relatively small range of motion. This is due to
the fact that the material of the diaphragm needs to elongate to move in the out-of-plane direction. This
drawback can be resolved bymountingmultiple flat diaphragms in series to increase the range of motion
of the combined system. It should be noted that many flat diaphragms mounted in series effectively
construct a bellows. The downside of combining multiple diaphragms is the reduced constraint stiffness
[6].

Another potential disadvantage of diaphragm mechanisms is its susceptibility to rotational parasitic
motions. Awtar and Slocum developed two diaphragm mechanisms in an attempt to remove the para-
sitic rotations of a traditional diaphragm mechanism. The first design was made symmetric, effectively
freeing it of parasitic rotations. However, this design suffered from over-constraints, which in turn com-
promised the range of motion. Their second design was insensitive to parasitic rotations and offered a
larger range of motion, but compromised with respect to the constraint stiffness. In general, the design
objectives of diaphragm mechanisms are mutually conflicting [5].

2.1.4. Initially Curved Flexure Mechanisms
The current best solution to the problem of decreasing constraint stiffness over a range of motion is the
use of initially curved flexures instead of straight flexures. This finding was shown in multiple studies
[4, 7, 8].

Initially curved flexures help to maintain constraint stiffness due to their ability to provide a relatively high
support stiffness, called a stiffness singularity, at a specific point in their range of motion. Generally, this
stiffness singularity takes place at the point where the flexure is deformed to its straight configuration.
Using multiple initially curved flexures, which all reach their stiffness singularity at a different point in the
mechanism’s range of motion, can reduce the loss of constraint stiffness over the mechanism’s range
of motion. A good example of this design strategy is provided by Rommers and Herder [4].

Modelling initially curved flexure mechanisms does pose a harder challenge than modelling straight
flexures, but research has been done to build these models [20, 21].

2.1.5. Summarising State of the Art Solutions
To conclude the state of the art of compliant linear guides, the current solutions are summarised and
their corresponding strengths and weaknesses are qualitatively evaluated in Table 2.1. The term ’rel-
ative constraint stiffness’ is used to describe the ratio between the lowest stiffness of all degrees of
constraint divided by the stiffness in the degree of freedom.

It can be observed in table 2.1 that none of the current mechanisms scores positive in all three criteria.

Initially curved flexures are currently used to help maintain constraint stiffness over the range of motion
of amechanism. In this way, initially curved flexures could potentially be used tomake a linear guide that
scores positive in all three aspects. However, in this literature review another approach is considered.
In the following sections it is explored how origami mechanisms can be used as compliant linear guides
that outperform the current state of the art.

2.2. General Origami Principles 4

Table 2.1: Qualitative evaluation of state of the art compliant linear guides. The design criteria Range of Motion, Parasitic
Displacement and Relative Constraint Stiffness are abbreviated to RoM, PD and RCS respectively.

Mechanism RoM PD RCS
Parallelogram joint + - -

Double parallelogram joint + + - -
Folded leaf spring mechanism + + -

Torsion reinforced folded leaf spring mechanism + + -
Traditional diaphragm mechanism - - +

Over-constrained diaphragm mechanism - + +
Low constraint stiffness diaphragm mechanism + + -

2.2. General Origami Principles
Keywords: origami, Graph Theory, Euclidean, developable, rigid foldable, flat foldable, Principle of
Three Units, bi/tri/multi-stability, stable state.

2.2.1. Origami Definitions
In order to understand general origami principles, some definitions need to be introduced. Origami
consists of two main components: facets and creases. Facets are the surfaces in between creases.
The creases themselves are the lines around which the facets can rotate. A third important concept of
origami is the intersection of multiple creases, called a vertex. The amount of creases that intersect at
a vertex is defined as the degree of a vertex.

Lastly, there are two types of angles present in origami models. Sector angles describe the angles
between creases. Dihedral angles represent the angles between the facets of a an origami model.
During folding, sector angles stay the same, while dihedral angles change. Figure 2.2 visually explains
the concepts mentioned in this subsection.

Figure 2.2: Visual explanation of the following concepts: facet, crease, (degree of a) vertex, sector angle (A) and dihedral
angle (B).

2.2.2. Links Between Origami and Compliant Mechanisms
As mentioned in the introduction of this literature review, kinematic origami mechanisms are compliant
mechanisms. The most important requirement for an origami model to be a compliant mechanism is
the presence of hinge creases. As the name suggests, these creases acts as hinges during operation
of the mechanism [22].

2.2. General Origami Principles 5

Next to hinge creases, the other type of origami crease is the construction crease. This type of crease
is only subjected to folding when the origami model is deployed, after which its mobility is ’sacrificed’.
The concept of sacrificial hinges in origami is introduced and researched in 2019 by Nelson et al. [23].
It should be noted that kinematic origami can include both construction and hinge creases or only hinge
creases. An origami model that contains only construction creases is classified as static origami.

Origami mechanisms are highly inter-dependent compliant mechanisms. Every dihedral angle of a
crease line can influence other dihedral angles of creases intersecting at the same vertex. If these
secondary creases are in turn connected to other vertices, the effect of a single fold can propagate
through an entire origami model.

A useful method to evaluate origami mechanisms as compliant mechanisms is the Graph Theory, ini-
tially presented by Marcus in the year 2020 [24]. A graph consists of points, called vertices, and lines
between points, called edges. When applying this theory to origami, the vertices correspond with the
(near-)rigid facets of an origami model, while the edges correspond with the compliant creases. It
should be noted that the definition of a vertex in the Graph Theory does not correspond with the defini-
tion of an origami vertex. Graphs Theory allows for a better understanding of the interaction between
motion and structure of origami, and it can help to predict complex motion and to develop mechanisms
[22].

2.2.3. Foldability
Counterintuitively, not all origami models start as a flat sheet of material. The distinction can be made
between Euclidean and non-Euclidean origami. Euclidean origami, also referred to as developable
origami, is folded from a planar developable surface. This means that the sector angles of a Euclidean
vertex always add up to 360 degrees. On the other hand, non-Euclidean origami is a subset of origami
that is folded from non-planar developable surfaces [25]. The sector angles of a non-euclidean vertex
add up to a total of more, or less than 360 degrees. Figure 2.3 illustrates the differences between Eu-
clidean and non-Euclidean origami. Non-Euclidean origami is mainly used for its multi-stable behaviour,
which will be further discussed in the next subsection.

Figure 2.3: Visualisation of Euclidean and non-Euclidean origami, in which β represents the angular deficiency. (i) shows a
Euclidean vertex (zero angular deficiency), while (ii), (iii) and (iv) show non-Euclidean vertices. The sum of the sector angles of
(ii) is bigger than 360 degrees (negative angular deficiency), while the sum of the sector angles of (iii) and (iv) is smaller than

360 degrees (positive angular deficiency). This figure is adapted from a paper of Addis et al.[25].

An origami that can fold continuously without any deformation in its facets is called rigid foldable [26].
Global rigid foldability can only be the case when every vertex of the model is rigid foldable. Both non-
Euclidean and Euclidean origami can be rigid foldable up to a certain dihedral angle, but non-Euclidean
can never fold rigidly to a configuration where all dihedral angles are Pi radians (flat).

2.3. Synthesis of Origami Linear Guides 6

A special case of rigid foldability is flat foldability. This classification applies to origami models of which
every crease can be folded over an angle of Pi radians. This entails starting from a flat configuration
and consequently ending in a dihedral angle of 0 radians. Note that it is never possible to fold further
than this, as at this point the facets coincide with each other, and they are not able to penetrate each
other. Non-Euclidean origami is never able to fold flat in a rigid-foldable manner [25].

Zimmermann and Stanković [26] presented an article in which they derived a necessary and sufficient
condition for the rigid foldability of a developable degree-four vertex. In later research, by Zimmermann
et al., the research was extended to degree-n vertices. In this later work Zimmerman et al. presented
the Principle of Three Units (PTU) which provides an efficient approach to model the kinematics of
degree-n vertices [27].

2.2.4. Multi-Stability in Origami Mechanisms
Origami mechanisms can be multi-stable. Stable states can be found by looking into the energy land-
scape, as these stable states are represented by (local) energy minima. This energy landscape also
shows the energy barrier that needs to be overcome to transition between stable states [28].

As mentioned in the last subsection, non-Euclidean origami exhibits multi-stability naturally. This can
be explained by the impossibility of flat foldability of non-Euclidean origami. This results in two discon-
nected configurations, each with the same dihedral angles but opposite handedness [25]. Waitukaitis
et al. realized an origami inverter that physically demonstrates tri-stable behaviour [29].

Regular, Euclidean origami can also exhibit multi-stability. Waitukaitis et al. [30] show that a Euclidean,
rigid, degree-four vertex can have up to six minima in its energy landscape, which causes it to behave
hexa-stable.

When examining non-rigid origami, Silverberg et al. [31] show how the traditional square twist crease
pattern, which has zero degrees of freedom, can be folded due to panel bending deformations. These
hidden degrees of freedom result in bi-stability of the origami mechanism.

The unit cell of the most researched origami tessellation, the Miura-Ori tessellation, is naturally bi-stable.
The unit cell is either in its original configuration, or it is ’popped’. These popped unit cells are called
Pop Through Defects (PTDs). The PTDs can influence the stiffness characteristics of the Miura-Ori
sheet. Also, the interaction between multiple PTDs has an effect on the stiffness characteristics. For
example, a column of PTDs on alternating vertices behaves like a hinge while a column of PTDs on
consecutive vertices generates a rigid corrugated structure [32].

2.3. Synthesis of Origami Linear Guides
Keywords: origami mechanism, kirigami mechanism, local support stiffness, stiffness singularity, tes-
sellation, algorithmic/computational synthesis, reinforced mechanism, Inverse Design Strategy, orimi-
metrics, pseudo-rigid body model, linear guide, straight-line mechanism.

2.3.1. Classification and Design Possibilities of Compliant Linear Guides
The possibilities for designing compliant linear guides are infinite. This classification aims to structure
some of the design possibilities of compliant linear guides and to offer inspiration for synthesising a
design of an origami linear guide.

Spacial Placement with Respect to the DOF
The first and foremost classification of compliant linear guides is its spacial placement with respect to its
degree of freedom. This classification can be divided in axial and transverse placement with respect to
the DOF. Axial placement means that the EE of a compliant linear guide translates axially by expanding
or contracting of the mechanism in this direction.

Transverse placement with respect to the DOF is the opposite of axial placement. In this case, the
mechanism is placed in a plane perpendicular to the DOF. The EE of the mechanism moves along
the DOF, while the base of the mechanism remains in the original plane of placement. The (double)
parallelogram joint is an example of a transversely placed compliant linear guide.

2.3. Synthesis of Origami Linear Guides 7

Making Use of Multi-Stability
Multi-stability can be used as a tool to develop compliant linear guides with high constraint stiffness.
One way to harness multi-stability, is by using it in a discrete configuration mechanism. Multi-stability
could be used to create a mechanism with just a few stable configurations. After this is done, it is
possible to add a second mechanism with high local constraint stiffness at the locations of the stable
configurations. Rommers and Herder developed a method with which high local support stiffness could
be achieved [4].

Another way of harnessing multi-stability for high support stiffness of a compliant linear guide is to use
multi-stability to alter stiffness characteristics of a mechanism. An example of a mechanism that can
change its stiffness characteristics due to its multi-stability is the Miura-Ori tessellation presented by
Silverberg et al. [32].

Making use of Stiffness Singularities
A stiffness singularities is a local increase in stiffness at a specific position. When relating this to
constraint stiffness, a stiffness singularity can be useful, but also deceiving. It can be deceiving as a
designer of a compliant mechanismmight report the constraint stiffness value at the stiffness singularity,
while the constraint stiffness drops significantly at other places in its range of motion. This problem could
be observed in the example of the (double) parallelogram joint [2].

However, stiffness singularities can also be used and combined to gain a high constraint stiffness over
a longer range of motion. This method was used by Rommers and Herder when designing a compliant
mechanism with initially curved folded leaf springs [4].

Making use of Origami Pitch Hinges for Improved Stiffness Characteristics
Origami enables to design origami hinges with coupled secondary deformations. These secondary
deformations could help to maintain or increase the constraint stiffness of the hinge over its range of
motion. Some origami hinge examples are developed by Nelson et al. in their research concerning
sacrificial joints [23]. Out of their developed hinges, the pitch hinges are deemed most interesting due
to their simplicity.

Schematic Overview of Design Possibilities of Compliant Linear Guides
Summarising the classification and design possibilities of compliant linear guides, a schematic overview
can be found in Figure 2.4. Note that this schematic just gives an indication of the possibilities, and
therefore does not include every possible solution. The schematic will be discussed in more detail in
chapter 3, Discussion.

2.3.2. Existing Origami Tessellation-Based Synthesis
Having established an overview of design possibilities, it will now be explored how to move from a
conceptual design of an origami linear guide to a detailed design.

The first method to synthesise origami mechanisms is by using existing origami or kirigami tessellations.
Kirigami is a practice related to origami. When practicing kirigami, the practitioner is allowed to use cuts
in addition to folds. In this literature review, the tessellations are categorized in three groups, cylindrical
origami, planar origami and kirigami. The categories cylindrical and planar origami represent their
approximate spacial shape in their folded state.

The tessellations in the first subset of origami are approximately cylindrical in their folded state. The
reviewed origami tessellations are listed below, in combination with the sources where each tessellation
was mentioned.

• Miura Ori Tube [33]
• Miura Cylinder [15, 28]
• Tachi–Miura Polyhedron Cylinder [10]
• Waterbomb Cylinder [28, 34]
• Triangulated Cylinder [35]
• Kresling Cylinder [10, 15, 28]

2.3. Synthesis of Origami Linear Guides 8

Figure 2.4: Schematic overview of the design possibilities of compliant linear guides.

• Accordion Cylinder [10, 15]
• Yoshimura Cylinder [15, 28]

The tessellations in the second category of origami are approximately planar in their folded state.

• Miura Ori sheet [32, 34, 36, 37]
• Square-twist pattern [28, 31]

The last subset of reviewed tessellations is kirigami tessellations. A list of found kirigami tessellations
with their corresponding sources can be found below.

• Miura kirigami [38]
• Cubic kirigami [38]
• Parallel cuts kirigami [34]
• Fractal cut kirigami [34]
• Square array cut kirigami [38]

All of the tessellations mentioned before can be used as a starting point to synthesise origami mech-
anisms. The tessellations can be optimised, adapted or combined to yield optimal properties for the
intended mechanism.

2.3.3. Algorithmic Computational Synthesis
Another method for synthesising origami designs is by generating them computationally. This has been
done by Zimmermann et al. [39], after which Walker and Stankovic continued the work [40]. In both of
these papers, however, the research is strictly focused on kinematics. This is not ideal for synthesising
a linear guide, as maximising the constraint stiffness of the linear guide is one of the prime objectives,
which is not considered in these algorithmic syntheses. An example of an origami mechanism syn-
thesised by algorithmic computation is the origami-based Constant-height Walking system made by
Sluijter [18].

2.4. Origami Simulations 9

One strategy that could be applied, is to first generate an origami mechanism computationally, after
which the mechanism is reinforced to gain better constraint stiffness characteristics. Rommers et al.
[3] developed a torsion-reinforced compliant linear guide, which could offer inspiration for developing
reinforced structures. VanManen used another method to reinforce compliant mechanisms, the Inverse
Design Strategy (IDS). The strategy uses known mechanisms with very low stiffness in the desired
direction, and ’inverses’ them to get a mechanism with a very high stiffness in the desired direction.
This method may not always yield good results, but it does help the designer to potentially get new
insights [41].

2.3.4. Synthesis by Applying Orimimetrics to Existing Mechanisms
The final method for synthesising origami mechanism designs is applying orimimetrics to existing mech-
anisms. Orimimetrics is the practice to use the concept of folding to solve problems. The seed mecha-
nisms, to which the concept of orimimetrics is applied, can both be traditional rigid-body mechanisms
or compliant mechanisms. The method works as follows: a seed mechanism with desired kinematic
properties is found, after which its rotational joints are replaced by origami hinges. In the case of apply-
ing orimimetrics to a compliant mechanism, a Pseudo-Rigid Body Model (PRBM) should first be made
of the mechanism, in order to replace individual rotational joints with origami hinges [14].

The inspiration for the origami hinges is provided by Nelson et al. in their research paper ’origami-
inspired sacrificial joints for folding compliant mechanisms’ [23]. From this paper, the degree-four and
degree-five pitch joints are selected due to their simplicity. A third type of pitch joint is added, which can
be called a degree-six pitch joint. The degree-four,-five and -six pitch joints have one, two and three
degrees of freedom respectively.

An example of applying orimimetrics to a compliant mechanism is provided by Van den Berg [42]. In
his research, he used degree-four origami pitch joints to replace the two rotational joints in the PRBM
of a single leaf flexure with a fixed-guided boundary condition.

In the case of synthesising origami linear guides, it is possible to use straight-line mechanisms as seed
mechanisms. However, in many cases the end-effector of a straight line mechanism rotates during its
translational motion. This is not desired, and therefore this issue needs to be resolved. This can, for
example, be done by adding an extra rotational joint at the end-effector and mirroring the straight line
mechanism to the other side of the end-effector. This possibility is illustrated in Figure 2.5.

Figure 2.5: Linear guide mechanism, constructed from two Peaucellier-Lipkin inversor straight-line mechanisms

2.4. Origami Simulations
Keywords: origami simulation/modelling, kinematics, mechanics, finite element analysis, bar and
hinge model, shell elements, parametric study.

2.4.1. General Overview of Origami Simulations
After synthesising an origami linear guide, it should be evaluated in an origami simulation. This is
needed to be able to assess a design, and possibly to optimise it.

Origami simulations can be subdivided in kinematics-, mechanics- andmulti-physics-based simulations.
In this classification, the former does not offer enough detail and the latter is too extensive, so in this
section the focus will be on mechanics-based simulations [43].

2.4. Origami Simulations 10

There are two main methods to mechanically simulate origami designs, namely using bar and hinge
models or Finite Element Analysis (FEA) solvers.

As the name suggests, bar and hinge models consist of two main elements, bars and (spherical) hinges.
The bars of the model can only deform axially and represent the in-plane stiffness of origami panels,
such as stretching and shearing. The hinges connect the bars to each other and are accompanied by
rotational springs. The hinges are used to capture out-of-plane behaviour, such as crease bending and
panel bending [44].

FEA solvers are amore general tool for mechanics-based simulations. Any structure or mechanism can
be meshed into finite elements and can subsequently be analysed. For origami models, it is generally
possible to use the computationally more favorable shell elements for the panels and creases instead
of solid elements [43].

2.4.2. Bar and Hinge Models
In this review, MERLIN, MERLIN2 and SWOMPS were evaluated as viable bar and hinge models. All
three of these are related to each other, with the first developed package being MERLIN and the newest
package being SWOMPS.

It is clear that MERLIN was the first developed package. The software offers the least customisation
possibilities, making it difficult to model complex origami behaviour effectively. Although this software
package is limited by itself, it did lay the foundation for later packages to excel [45].

Logically, MERLIN2 followed MERLIN as its successor. There are two most important changes be-
tween these software packages. The first one being the possibility to use the generalized N5B8 panel
model on top of just N4B5. This new panel model can better capture bending of panels and allows
for consideration of polygonal panels. The other extension of the software is the possibility to use
displacement loading next to force loading. This allows for more flexibility in simulations [46, 47].

The final considered bar and hinge model is SWOMPS. The SWOMPS software package made sev-
eral big improvements to the simulation possibilities. The first notable extension is panel contact, which
can be simulated by SWOMPS. Another new possibility in this software package is the consideration
of compliant creases. Compliant creases allow for more realistic crease line modelling, as this exten-
sion enables the user to specify the width of a crease. Thirdly, SWOMPS supports residual stress
specifications in a design. This could be very helpful when modelling a design in its neutral, but al-
ready assembled state. Lastly, SWOMPS support sequential loading, which is crucial for multi-stage
simulations and could be very helpful for determining stiffness characteristics [48, 49].

SWOMPS also offers multi-physics simulations, but this functionality is likely not needed for the analysis
of origami linear guides.

2.4.3. Commercial FEA Software Packages
There are countless commercial FEA software packages available to use. In this section, two pop-
ular options are evaluated, ANSYS Mechanical APDL and COMSOL multiphysics. ANSYS Mechan-
ical APDL offers users a versatile programming language to create parametric models for systemic
analyses. COMSOL multiphysics is a more intuitive FEA software package, but lacks the parametric
capabilities of ANSYS Mechanical APDL [50].

2.4.4. Comparison of the Methods
Using bar and hinge models for origami analyses has some drawbacks and limits. One of these limits
is its incapability to deform in every arbitrary way, like a real system does. The degrees of freedom of
the individual bars and hinges are a simplification of the degrees of freedom of actual origami creases
and panels. Due to this, it is for example not possible to capture all possible panel bending modes.

Another drawback of bar and hingemodels is its inability to capture localized behaviours such as crease
buckling, panel buckling, stress concentrations, and local material plasticity in the origami mechanisms.
All of these can be captured by FEA [43].

The last drawback of bar and hinge models is its lack of options in the current analysis software. It is
for example not possible to constrain rotations of nodes, and forces and displacements can only be

2.5. Fabrication and Testing of Origami Linear Guides 11

located at a few discrete points.

FEA solvers also have some drawbacks compared to bar and hinge models. Generally, FEA solvers
require longer computation time and require a more extensive model. Due to this reason, global be-
haviour of simple origami mechanisms can be studied easier with bar and hinge models.

Lastly, FEA solvers are made more general, so they do not offer all data that is specifically relevant
for origami models. An example of this is SWOMPS’s possibility to plot the energy associated to the
specific deformation modes of origami, being: crease bending, crease stretching, panel bending and
panel stretching. This information can give crucial insights in the kinetics of an origami mechanism,
and could aid in improving a design.

2.5. Fabrication and Testing of Origami Linear Guides
Keywords: origami mechanism, fabrication/manufacturing, emergent lamina mechanism/joint, groove
joint, 3D printing, testing/experiment.

2.5.1. Fabrication Options
Origami-inspired mechanisms can be fabricated in multiple different ways. In this subsection, three
fabrication methods are elaborated.

The first way of fabricating origami mechanisms is to only use 2D manufacturing methods. This is done
by using Emergent Lamina Joints (ELJs) for the origami crease lines. These joints consist of a pattern
of flexure elements and holes, and should be flexible when folding, while being as stiff as possible when
loaded in other ways. The big advantage of this fabrication method is the simplicity of 2Dmanufacturing
methods. Disadvantages of this fabrication method are the lower constraint stiffness and limited range
of motion of ELJs [31, 42, 51].

Another popular fabrication method is ’sandwiching’ a flexible sheet of material in between thicker parts.
These thicker parts will then serve as the panels of the origami model, while the flexible sheets between
the thicker parts function as crease lines. In this way, groove joints are created instead of emergent
lamina joints. The advantage of this fabrication method is the better performance of groove joints
compared to emergent lamina joints. The main disadvantage of this method is the need for assembly,
which makes it more prone to fabrication errors. This is especially concerning when there are over-
constraints in play.

Lastly, 3D printing can also be considered as a fabrication method. Mak et al. used this technique to
print an origami-inspired actuator [15]. The main advantage of 3D printing origami mechanisms is the
possibility to print the model in its folded configuration. Normally, origami mechanisms are produced
in a flat configuration, after which they are folded to the shape of the mechanism. Due to this, the
mechanism is already pre-stressed in the neutral position. This issue can be prevented by 3D printing.
3D printing origami also has a number of disadvantages, such as anisotropic material behaviour and
printing limitations.

2.5.2. Experimental Validation
After fabricating an origami model, it is often desired to experimentally validate the carried out simula-
tions. It is important to know that origami hinges, being compliant mechanisms, have shifting centers
of rotation. It is therefore important to avoid over-constraints during testing, as these could lead to in-
correct stiffness observations. The over-constraints in the test setup make the mechanism stiffer than
it is in reality. Grey et al. propose a test setup for testing the fold stiffness of a single origami hinge in
their research, without over-constraining it [52]. A drawback of their proposed setup is it’s inability to
analyse origami hinges around their flat configuration.

3
Discussion

A broad review of literature, relevant for designing an origami-inspired linear guide, is executed in this
paper. This review serves as a stepping-stone to design, analyse, manufacture and test an origami
linear guide that should rival or surpass current state of the art compliant linear guides. To this regard,
subsection 2.3.1, Classification and Design Possibilities of Compliant Linear Guides, offers insight in
the core considerations for conceptually designing an origami linear guide. Figure 2.4, on page 8,
illustrates the key design choices for the conceptual design. In this figure, the red blocks represent
the current state of the art compliant linear guides. These mechanisms are not origami-inspired. The
orange blocks contain origami solutions that were previously found as a result of the same research
objective as in this paper. The green blocks consist of potential new origami linear guide solutions, and
can be considered as knowledge gaps.

To consider the knowledge gaps and to choose a conceptual design to research, the green blocks are
evaluated in detail. The green blocks are elaborated from left to right.

The leftmost green block is the only solution in this figure that makes use of multi-stability. As this
concept is only stable in three positions in its range of motion, the applicability of this solution is limited
compared to the rest of the solutions. One potential use for this concept is a pick-and-place machine,
using the three stable positions for picking, moving and placing.

The second green block from the left consists of a concept which makes use of one stiffness singularity.
This stiffness singularity is placed asymmetrically, whichmakes it different from the origami-inspired leaf
flexure developed by Van den Berg [42]. The side opposite from the stiffness singularity should gain
constraint stiffness in another way, for example by using coupled origami deformations that increase
the surface moment of inertia of the design.

The origami linear guide concept in the middle is very similar to mechanisms consisting of multiple
initially curved flexures. The difference is that these initially curved flexures would be replaced by
initially curved origami leaf flexures. This concept would, however, be prone to over-constraints.

The second to last concept is very general, being an origami linear guide without stiffness singularities.
The drawback of this concept is that it misses the constraint stiffness benefits that stiffness singularities
provide.

The final and rightmost green block contains origami hinge Sarrusmechanisms. This is the only concept
which is axially placed with respect to the DOF. Symmetric axial mechanisms are insusceptible to
parasitic motions, which is a big advantage. Several physical models have already been made for this
concept, and the initial signs are promising. Due to this reason, this concept is chosen to be investigated
further in a following research. This study will explore whether origami hinge Sarrus mechanisms can
rival or even excel current state of the art compliant linear guides. The plan for this research will be
discussed in Chapter 4 and, in a more detailed manner, in Appendix A.

12

4
Research Plan

As mentioned at the end of chapter 3, Discussion, it was chosen to research origami-inspired Sarrus
mechanisms.

In essence, the research will consist of three parts:

1. Make a decision on key practical considerations. These decisions include: the prototype’s mate-
rial, the fabrication method and the simulation method.

2. Perform an analysis of the building blocks of the several Sarrus mechanisms: the line hinge and
the origami hinges (degree-four, -five and -six). Experimentally validate the simulation results.
This step serves as proof of concept for the actual research performed in the step 3.

3. Perform an analysis of a normal compliant Sarrusmechanism and several origami-inspired Sarrus
mechanisms. Experimentally validate the simulation results.

Paper models of three origami-inspired Sarrus mechanisms can be seen in Figure 4.1. The three
mechanisms differ due to the varying configurations of their origami pitch hinges.

A more detailed, step-by-step research plan can be found in Appendix A. The corresponding research
planning can be found in Appendix B.

Figure 4.1: Paper models of origami-inspired Sarrus mechanisms. (A) point-in-point-out (B) points-in (C) points-out

13

5
Conclusion

The goal of this literature review was to evaluate literature relevant for the design of an origami-inspired
linear guide. The paper discusses all necessary subjects to start designing, analysing, manufacturing
and testing origami-inspired linear guides. Next to this, the current state of the art of compliant linear
guides is also elaborated for comparing purposes.

In this paper’s discussion, five separate origami linear guide concepts were identified and evaluated.
Out of these five concepts, one is selected to be researched further. However, the other four concepts
can just as well be used as a starting point for further research.

Further research could also focus on a specific subject discussed in this literature review, rather than
focusing on designing an origami linear guide. This could for example be the development of a more
advanced bar-and-hinge simulation software, targeting the drawbacks described in this paper. Another
example of a possible future research subject would be the creation of a novel fabrication method for
origami mechanisms. It can also be concluded that this literature review lays the groundwork for future
research into a wide variety of subjects related to origami mechanisms.

14

References

[1] Shorya Awtar. Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms. Tech. rep.
1998.

[2] Shorya Awtar, Alexander H. Slocum, and Edip Sevincer. “Characteristics of beam-based flexure
modules”. In: Journal of Mechanical Design 129.6 (2007), pp. 625–639. ISSN: 10500472. DOI:
10.1115/1.2717231.

[3] J. Rommers et al. “A Flexure-Based Linear Guide With Torsion Reinforcement Structures”. In:
Journal of Mechanisms and Robotics 14.3 (June 2022). ISSN: 19424310. DOI: 10 . 1115 / 1 .
4052971.

[4] J. Rommers and J. L. Herder. “Design of a Folded Leaf Spring with high support stiffness at large
displacements using the Inverse Finite Element Method”. In: Mechanisms and Machine Science.
Vol. 73. Springer Science and Business Media B.V., 2019, pp. 2109–2118. DOI: 10.1007/978-
3-030-20131-9{_}209.

[5] Shorya Awtar and Alexander H Slocum. Flexure Systems based on a Symmetric Diaphragm
Flexure. Tech. rep. 2005.

[6] Mario Di Giovanni. Flat and Corrugated Diaphragm Design Handbook. 1982.
[7] F W F Colin. Variable thickness and initially curved flexures for improved flexure mechanisms.

Tech. rep. 2023. URL: http://repository.tudelft.nl/.
[8] N K Meinders. Compensating parasitic motions and cross-couplings in compliant mechanisms.

Tech. rep. 2021. URL: http://repository.tudelft.nl/..
[9] Yi Zhu and Evgueni T. Filipov. “Large-scale modular and uniformly thick origami-inspired adapt-

able and load-carrying structures”. In:Nature Communications 15.1 (Dec. 2024). ISSN: 20411723.
DOI: 10.1038/s41467-024-46667-0.

[10] Jessica Morgan, Spencer P. Magleby, and Larry L. Howell. “An approach to designing origami-
adapted aerospace mechanisms”. In: Journal of Mechanical Design 138.5 (May 2016). ISSN:
10500472. DOI: 10.1115/1.4032973.

[11] Collin Ynchausti et al. “Hexagonal Twist Origami Pattern for Deployable Space Arrays”. In: ASME
Open Journal of Engineering 1 (Jan. 2022). DOI: 10.1115/1.4055357.

[12] David Melancon et al. “Multistable inflatable origami structures at the metre scale”. In: Nature
592.7855 (Apr. 2021), pp. 545–550. ISSN: 14764687. DOI: 10.1038/s41586-021-03407-4.

[13] K Seymour et al.Origami-Based Deployable Ballistic Barrier. Tech. rep. 2018, pp. 763–778. URL:
https://scholarsarchive.byu.edu/facpub.

[14] Larry L. Howell, Spencer P. Magleby, and Brian M. Olsen, eds. Handbook of Compliant Mecha-
nisms. Wiley, Feb. 2013. ISBN: 9781119953456. DOI: 10.1002/9781118516485.

[15] Yoeko X. Mak, Alexander Dijkshoorn, and Momen Abayazid. “Design Methodology for a 3D Print-
able Multi�Degree of Freedom Soft Actuator Using Geometric Origami Patterns”. In: Advanced
Intelligent Systems (May 2024). ISSN: 2640-4567. DOI: 10.1002/aisy.202300666. URL: https:
//onlinelibrary.wiley.com/doi/10.1002/aisy.202300666.

[16] Brandon Sargent et al. “An Origami-Based Medical Support System to Mitigate Flexible Shaft
Buckling”. In: Journal of Mechanisms and Robotics 12.4 (Aug. 2020). ISSN: 19424310. DOI:
10.1115/1.4045846.

[17] Marco Salerno et al. “A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Mini-
mally Invasive Surgery”. In: IEEE Transactions on Robotics 32.3 (June 2016), pp. 484–498. ISSN:
15523098. DOI: 10.1109/TRO.2016.2539373.

15

https://doi.org/10.1115/1.2717231
https://doi.org/10.1115/1.4052971
https://doi.org/10.1115/1.4052971
https://doi.org/10.1007/978-3-030-20131-9{_}209
https://doi.org/10.1007/978-3-030-20131-9{_}209
http://repository.tudelft.nl/
http://repository.tudelft.nl/.
https://doi.org/10.1038/s41467-024-46667-0
https://doi.org/10.1115/1.4032973
https://doi.org/10.1115/1.4055357
https://doi.org/10.1038/s41586-021-03407-4
https://scholarsarchive.byu.edu/facpub
https://doi.org/10.1002/9781118516485
https://doi.org/10.1002/aisy.202300666
https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300666
https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300666
https://doi.org/10.1115/1.4045846
https://doi.org/10.1109/TRO.2016.2539373

References 16

[18] Jim Sluijter. The Development and Geometric Analysis of an Origami-based Constant-height
Walking Locomotion System. Tech. rep. 2023.

[19] S. Felton et al. “A method for building self-folding machines”. In: Science 345.6197 (Aug. 2014),
pp. 644–646. ISSN: 10959203. DOI: 10.1126/science.1252610.

[20] Guimin Chen et al. “Modeling large deflections of initially curved beams in compliant mechanisms
using chained beam constraint model”. In: Journal of Mechanisms and Robotics 11.1 (Feb. 2019).
ISSN: 19424310. DOI: 10.1115/1.4041585.

[21] Steven E Boer et al. “Modelling and Optimization of a Curved Hinge Flexure”. In: 2010.
[22] H. C. Greenberg et al. “Identifying links between origami and compliant mechanisms”. In: Me-

chanical Sciences 2.2 (2011), pp. 217–225. ISSN: 2191916X. DOI: 10.5194/ms-2-217-2011.
[23] Todd G. Nelson et al. “Origami-inspired sacrificial joints for folding compliant mechanisms”. In:

Mechanism and Machine Theory 140 (Oct. 2019), pp. 194–210. ISSN: 0094114X. DOI: 10.1016/
j.mechmachtheory.2019.05.023.

[24] Daniel A Marcus. Graph theory. Vol. 53. American Mathematical Soc., 2020.
[25] Clark C. Addis, Salvador Rojas, and Andres F. Arrieta. “Connecting the branches of multistable

non-Euclidean origami by crease stretching”. In: Physical Review E 108.5 (Nov. 2023). ISSN:
24700053. DOI: 10.1103/PhysRevE.108.055001.

[26] Luca Zimmermann and Tino Stanković. “Rigid and Flat Foldability of a Degree-Four Vertex in
Origami”. In: Journal of Mechanisms and Robotics 12.1 (Feb. 2020). ISSN: 19424310. DOI: 10.
1115/1.4044737.

[27] Luca Zimmermann, Kristina Shea, and Tino Stanković. “Conditions for Rigid and Flat Foldability
of Degree-n Vertices in Origami”. In: Journal of Mechanisms and Robotics 12.1 (Feb. 2020). ISSN:
19424310. DOI: 10.1115/1.4045249.

[28] Lu Lu, Sophie Leanza, and Ruike Renee Zhao. “Origami With Rotational Symmetry: A Review
on Their Mechanics and Design”. In: Applied Mechanics Reviews 75.5 (Sept. 2023). ISSN: 0003-
6900. DOI: 10.1115/1.4056637.

[29] Scott Waitukaitis, Peter Dieleman, and Martin Van Hecke. Non-Euclidean Origami. Tech. rep.
[30] Scott Waitukaitis et al. “Origami multistability: From single vertices to metasheets”. In: Physical

Review Letters 114.5 (Feb. 2015). ISSN: 10797114. DOI: 10.1103/PhysRevLett.114.055503.
[31] Jesse L. Silverberg et al. “Origami structures with a critical transition to bistability arising from

hidden degrees of freedom”. In: Nature Materials 14.4 (2015), pp. 389–393. ISSN: 14764660.
DOI: 10.1038/nmat4232.

[32] Jesse L Silverberg et al. Using origami design principles to fold reprogrammable mechanical
metamaterials. Tech. rep. 2014. URL: https://www.science.org.

[33] Evgueni T. Filipov et al. “Origami tubes assembled into stiff, yet reconfigurable structures and
metamaterials”. In: Proceedings of the National Academy of Sciences of the United States of
America 112.40 (Oct. 2015), pp. 12321–12326. ISSN: 10916490. DOI: 10.1073/pnas.1509465
112.

[34] Sebastien J.P. Callens and Amir A. Zadpoor. From flat sheets to curved geometries: Origami and
kirigami approaches. Apr. 2018. DOI: 10.1016/j.mattod.2017.10.004.

[35] Zirui Zhai, Yong Wang, and Hanqing Jiang. “Origami-inspired, on-demand deployable and col-
lapsiblemechanical metamaterials with tunable stiffness”. In:Proceedings of the National Academy
of Sciences of the United States of America 115.9 (Feb. 2018), pp. 2032–2037. ISSN: 10916490.
DOI: 10.1073/pnas.1720171115.

[36] Mark Schenk and Simon D. Guest. “Geometry of Miura-folded metamaterials”. In: Proceedings of
the National Academy of Sciences of the United States of America 110.9 (Feb. 2013), pp. 3276–
3281. ISSN: 00278424. DOI: 10.1073/pnas.1217998110.

[37] Z. Y. Wei et al. “Geometric mechanics of periodic pleated origami”. In: Physical Review Letters
110.21 (May 2013). ISSN: 00319007. DOI: 10.1103/PhysRevLett.110.215501.

https://doi.org/10.1126/science.1252610
https://doi.org/10.1115/1.4041585
https://doi.org/10.5194/ms-2-217-2011
https://doi.org/10.1016/j.mechmachtheory.2019.05.023
https://doi.org/10.1016/j.mechmachtheory.2019.05.023
https://doi.org/10.1103/PhysRevE.108.055001
https://doi.org/10.1115/1.4044737
https://doi.org/10.1115/1.4044737
https://doi.org/10.1115/1.4045249
https://doi.org/10.1115/1.4056637
https://doi.org/10.1103/PhysRevLett.114.055503
https://doi.org/10.1038/nmat4232
https://www.science.org
https://doi.org/10.1073/pnas.1509465112
https://doi.org/10.1073/pnas.1509465112
https://doi.org/10.1016/j.mattod.2017.10.004
https://doi.org/10.1073/pnas.1720171115
https://doi.org/10.1073/pnas.1217998110
https://doi.org/10.1103/PhysRevLett.110.215501

References 17

[38] Ahmad Rafsanjani and Katia Bertoldi. “Buckling-Induced Kirigami”. In: Physical Review Letters
118.8 (Feb. 2017). ISSN: 10797114. DOI: 10.1103/PhysRevLett.118.084301.

[39] Luca ; Zimmermann et al. “A Computational Design Synthesis Method for the Generation of Rigid
Origami Crease Patterns”. In: Journal of Mechanisms and Robotics 14.3 (2021). DOI: 10.3929/
ethz-b-000512541. URL: https://doi.org/10.3929/ethz-b-000512541.

[40] Andreas Walker and Tino Stankovic. “Algorithmic design of origami mechanisms and tessella-
tions”. In: Communications Materials 3.1 (Dec. 2022). ISSN: 26624443. DOI: 10.1038/s43246-
022-00227-5.

[41] R Van Manen. Rotational stiffness in compliant mechanisms: theory, method and application.
Tech. rep. 2017.

[42] Y Van den Berg. “Design of an origami-inspired leaf flexure as an alternative to classical 2D
flexures”. In: (2023).

[43] Yi Zhu,Mark Schenk, and Evgueni T. Filipov. “A Review onOrigami Simulations: FromKinematics,
to Mechanics, Toward Multiphysics”. In: Applied Mechanics Reviews 74.3 (May 2022). ISSN:
00036900. DOI: 10.1115/1.4055031.

[44] Yi Zhu and Evgueni T. Filipov. “A Bar and Hinge Model for Simulating Bistability in Origami Struc-
tures with Compliant Creases”. In: Journal of Mechanisms and Robotics 12.2 (Jan. 2020). ISSN:
19424310. DOI: 10.1115/1.4045955.

[45] Ke Liu and Glaucio H Paulino. MERLIN: A MATLAB implementation to capture highly nonlinear
behavior of non-rigid origami. Tech. rep. 2016.

[46] Ke Liu and Glaucio H Paulino. Highly efficient nonlinear structural analysis of origami assem-
blages using the MERLIN2 software. Tech. rep.

[47] Sofie E. Leon et al. “On the effect of constraint parameters on the generalized displacement
control method”. In: Mechanics Research Communications 56 (Mar. 2014), pp. 123–129. ISSN:
00936413. DOI: 10.1016/j.mechrescom.2013.12.009.

[48] Yi Zhu and Evgueni T. Filipov. “Sequentially working origami multi-physics simulator (SWOMPS):
A versatile implementation”. In: Proceedings of the ASME Design Engineering Technical Confer-
ence. Vol. 8B-2021. American Society of Mechanical Engineers (ASME), 2021. ISBN: 9780791885451.
DOI: 10.1115/DETC2021-68042.

[49] K. Liu and G. H. Paulino. “Nonlinear mechanics of non-rigid origami: An efficient computational
approach”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 473.2206 (Oct. 2017). ISSN: 14712946. DOI: 10.1098/rspa.2017.0348.

[50] Mary Kathryn Thompson and JohnMartin Thompson.ANSYSmechanical APDL for finite element
analysis. Butterworth-Heinemann, 2017.

[51] Julian Keizer. Design of a lamina emergent joint as an alternative for a groove joint. Tech. rep.
2023.

[52] Steven W. Grey, Fabrizio Scarpa, and Mark Schenk. “Mechanics of paper-folded origami: A cau-
tionary tale”. In: Mechanics Research Communications 107 (July 2020). ISSN: 00936413. DOI:
10.1016/j.mechrescom.2020.103540.

https://doi.org/10.1103/PhysRevLett.118.084301
https://doi.org/10.3929/ethz-b-000512541
https://doi.org/10.3929/ethz-b-000512541
https://doi.org/10.3929/ethz-b-000512541
https://doi.org/10.1038/s43246-022-00227-5
https://doi.org/10.1038/s43246-022-00227-5
https://doi.org/10.1115/1.4055031
https://doi.org/10.1115/1.4045955
https://doi.org/10.1016/j.mechrescom.2013.12.009
https://doi.org/10.1115/DETC2021-68042
https://doi.org/10.1098/rspa.2017.0348
https://doi.org/10.1016/j.mechrescom.2020.103540

A
Detailed Research Plan

General first steps
1. Make a decision on material/fabrication method.
2. Make a decision on simulation method.

Hinge Analysis
1. Decide on the experimental setups for determining all stiffnesses, both in the DOF and all DOCs

of the hinges.
2. Model line hinges and origami hinges (degree 4, 5, and 6). Keep the total size, crease width, and

material thicknesses the same. Numerically determine all stiffnesses, both in the DOF and all
DOCs, over the entire range of motion. Ensure that the hinge does not surpass the yield stress
(or maybe even the fatigue stress) during its range of motion.

(a) Possibility: Do a parametric study or optimization for all three origami hinges by varying the
origami angle and the width of the flaps.

3. Experimentally validate the results, using an arbitrary value for the origami angle and side flaps,
or using the optimized hinge models.

Sarrus Mechanism Analysis
1. Perform kinematic simulations in SolidWorks to evaluate current origami Sarrus mechanism de-

signs and potentially find new designs. The mechanisms should have one DOF in theory.
2. Decide on the experimental setups for determining all stiffnesses, both in the DOF and all DOCs

of the Sarrus mechanisms.
3. Model a normal compliant Sarrus mechanism in ANSYS APDL. Limit the size to the project de-

scription. Pick values for crease width and material thicknesses, ensuring that the mechanism’s
range of motion is sufficient according to the project description without surpassing the yield stress
(or maybe even the fatigue stress). Numerically determine all stiffnesses, both in the DOF and
all DOCs, over the entire range of motion.

(a) Possibility: Find out which normal compliant Sarrus mechanism is most suitable: 3-, 4-, or
6-sided Sarrus mechanism.

4. Model the different origami-inspired Sarrus mechanisms in ANSYS APDL. Use the size from the
project description and an optimal tessellation. Use the same values for crease width andmaterial
thicknesses as for the normal compliant Sarrus mechanism. Ensure that the mechanism’s range
of motion is sufficient according to the project description without surpassing the yield stress (or
maybe even the fatigue stress). Numerically determine all stiffnesses, both in the DOF and all
DOCs, over the entire range of motion.

18

19

5. For the next steps, there are two options for moving forward. This choice has not been made yet:

(a) Option 1: Try to find out which origami-inspired Sarrus mechanism has the best performance,
using standard values for the origami angle and flap width for all of them.

i. Possibility: Do a parametric study or optimization for the best origami-inspired Sarrus
mechanism by varying the origami angle and the width of the flaps.

(b) Option 2: Do a parametric study or optimization for all origami-inspired Sarrus mechanism
concepts by varying the origami angle and the width of the flaps. Afterwards select the best
origami-inspired Sarrus mechanism.

6. Experimentally validate the results. Do this for both the normal compliant Sarrus mechanism and
the best origami-inspired Sarrus mechanism. For the origami-inspired Sarrus mechanism, use
an arbitrary value for the origami angle and side flaps, or use the optimized model.

B
Research Planning

Figure B.1: Research planning. The yellow boxes represent optional steps that will be executed if time allows for it.

20

	Preface
	Detailed explanation of numerical procedure 1
	Detailed explanation of numerical procedure 2
	Additional information case study
	Finite Element Method
	Fabrication & Testing

	Literature review
	Abstract
	Introduction
	Literature
	State of the Art of Compliant Linear Guides
	Parallelogram Joints
	Folded Leaf Spring Mechanisms
	Diaphragm Mechanisms
	Initially Curved Flexure Mechanisms
	Summarising State of the Art Solutions

	General Origami Principles
	Origami Definitions
	Links Between Origami and Compliant Mechanisms
	Foldability
	Multi-Stability in Origami Mechanisms

	Synthesis of Origami Linear Guides
	Classification and Design Possibilities of Compliant Linear Guides
	Existing Origami Tessellation-Based Synthesis
	Algorithmic Computational Synthesis
	Synthesis by Applying Orimimetrics to Existing Mechanisms

	Origami Simulations
	General Overview of Origami Simulations
	Bar and Hinge Models
	Commercial FEA Software Packages
	Comparison of the Methods

	Fabrication and Testing of Origami Linear Guides
	Fabrication Options
	Experimental Validation

	Discussion
	Research Plan
	Conclusion
	References
	Detailed Research Plan
	Research Planning

