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Abstract
This study explores the use of Code Churn and Pattern Size (PSIZ) metrics to iden-

tify bug-prone areas in Haskell codebases. The primary research questions addressed
are whether these metrics can effectively predict areas of code instability and poten-
tial bugs. Our contributions include a comprehensive analysis of these metrics across
three large Haskell projects, examining the correlation between high metric values and
documented bugs.

Our findings reveal that Code Churn is a significant indicator of potential bugs,
with ’buggy’ files showing markedly higher mean code churn values. However, the
PSIZ metric proved ineffective in predicting bug-prone areas, as the mean and median
values for both projects and ’buggy’ files were similar and low. These results suggest
that while Code Churn is a useful metric for identifying unstable code areas, PSIZ does
not offer the same predictive value. Future research should expand the dataset and
consider additional metrics to enhance the reliability of these findings.

1 Introduction
In exploring the life cycle of software artifacts, particularly within the realm of Haskell, we
encounter a significant gap in understanding compared to more mainstream languages like
Java. While extensive studies exist for languages such as Java [2][3][5], encompassing various
aspects of the software life cycle, including release life cycles, maintenance activities, and
risk management, the landscape for Haskell remains notably under-reported.

Haskell’s distinctive characteristics, such as its robust compiler, have fostered a percep-
tion within the community of a fundamentally different programming experience, one less
prone to bugs. However, emerging research suggests that despite these inherent strengths,
developers often exhibit familiar behaviors, such as resorting to print statements [1], and
may even knowingly execute code they anticipate will fail compilation.

By analyzing various Haskell metrics, we aim to shed light on several key questions:

1. Average Metric Values: What are the typical changes in the mean values of different
metrics across the life cycle of a project? Understanding these changes and mean values
can provide a baseline for assessing the quality and complexity of Haskell projects and
functions.

2. Correlation with Bug Occurrence: Do certain Haskell metrics correlate with the occur-
rence of bugs or defects in software? By establishing correlations, we can potentially
identify metrics that serve as early indicators of code quality issues or areas prone to
bugs, thus dedicating more resources and testing to these specific areas.

Addressing these questions not only fills a crucial void in our understanding of Haskell’s
software life cycle but also offers valuable insights for developers, project managers, and
researchers alike.

There has been a paper delving into different metrics to measure in Haskell from Chris
Ryder and Simon Thompson [6]. They outline various software metrics applicable to Haskell
programs. Through the examination of two case study programs, they demonstrate the
potential utility of certain metrics in identifying functions with a heightened likelihood of
containing errors. Consequently, these findings suggest that such functions could benefit
from better testing procedures. However, they assess the metrics only on two case studies so
their results cannot be generalized for all Haskell projects. Additionally, they haven’t been
able to look into type-based metrics.
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The main research question we will be answering is "What are the mean values of Haskell
Metrics in various projects and how do they correlate with bug occurrence rates?". The goal
of the project is to look into these metrics for large and used projects to see if there is some
correlation between bug occurrences and the metrics.

The questions that will be answered are:

• What are metrics that can be used to evaluate Haskell code?

• What are the mean and median values for these metrics for various Haskell projects?

• Is there a correlation between the values of the metrics and the chance of bugs ap-
pearing?

In section 2, we’ll delve into what other researchers have discovered about the topic
in Related Work, examining their findings and pinpointing areas where questions remain.
Moving on to section 3, Methodology, we’ll outline the steps we took to conduct our research,
explaining why we chose these particular methods. Section 4, Results, will present the
outcomes of the research in a straightforward manner, using figures and tables to illustrate
our findings in line with the research questions. In section 5, Discussion, we’ll interpret these
results and reflect on the methodology used, exploring the implications of our findings.
Section 6, Responsible Research, will scrutinize the ethical considerations of the study,
including how we ensured the reproducibility of the methods and maintained fairness in
the data practices. In section 7, Conclusions and Future Work, we’ll summarize our main
findings, draw conclusions, and suggest avenues for further research, highlighting key insights
and areas for improvement. Finally, in section 8, Acknowledgements, we’ll express gratitude
to those who contributed to our research journey.

2 Related Work
There is some previous work that delves into different code metrics. Code churn, often re-
ferred to as code volatility or code instability, is a significant metric in software development
that measures the frequency of code changes within a repository over time[4]. Numerous
studies in the realm of software engineering have explored the implications of code churn in
various programming languages and software projects. However, when it comes to Haskell-
specific research, the literature on code churn is relatively sparse. While there exists a wealth
of research on code churn in mainstream languages such as Java, C++, and Python[7], the
same cannot be said for Haskell. Haskell’s unique features, such as its strong static typing
and functional programming paradigm, may lead to different patterns of code churn com-
pared to imperative or object-oriented languages. Thus, there is a gap in understanding
how code churn manifests in Haskell projects and its implications for software development
practices. Moreover, this research aims to investigate not only how code churn manifests
in Haskell projects but also to check if there is any correlation with occurrences of bugs,
providing deeper insights into software quality and reliability.

Additionally, in their paper "Software Metrics: Measuring Haskell"[6] Chris Ryder and
Simon Thompson introduced metrics for analyzing Haskell code, including a large variety
of metrics - pattern metrics, distance metrics, callgraph metrics and metrics for function
attributes. While these metrics offer promising avenues for understanding Haskell code
quality and design, it’s essential to note that their evaluations have been limited to a small
number of case studies. Ryder and Thompson’s work primarily examined these metrics in
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the context of two relatively small Haskell programs because they needed to evaluate the
metrics manually, which may not fully represent the diversity and complexity of real-world
Haskell projects. As a result, their findings cannot be generalized for all Haskell projects.
Additionally, this research seeks to extend their work by exploring potential correlations
between some of these metrics and bug occurrences in Haskell projects, providing a more
comprehensive understanding of software quality factors in functional programming con-
texts.

Despite the advancements in understanding code churn and the introduction of various
Haskell metrics, several questions remain unanswered. Specifically, there is a need to explore
code churn and these metrics in a bigger set of Haskell Projects and see if there are any
repeating patterns or correlations with bugs. This research will conduct a comprehensive
empirical study of these metrics in a bigger and more diverse set of Haskell projects. By
analyzing a more representative sample of Haskell repositories, this study aims to provide
more robust insights into the effectiveness of various metrics in assessing Haskell code quality.
Furthermore, by examining the correlation between these metrics and bug occurrences, this
research aims to contribute to the understanding of software quality and reliability in Haskell
development.

3 Methodology

3.1 The metrics
In this section, we describe the metrics utilized in the study to analyze Haskell programs.
Due to limitations in time and the available processing power, we looked only into two
metrics.

3.1.1 Code Churn

The first metric that we look into is code churn. Code churn measures the frequency and
extent of changes made to the code over time. It provides insights into the volatility and sta-
bility of the software system. Higher code churn may indicate areas of frequent development
activity or potential code quality issues that require attention.

For evaluating the code churn on the repositories, we decided to use a Python script
from Francis Lacle.

3.1.2 Pattern Size (PSIZ)

The second metric we evaluated was inspired by Chris Ryder and Simon Thompson’s Pattern
Size (PSIZ) metric [6]. Their metric quantifies the complexity of patterns used in pattern
matching within Haskell code. It measures the size of a pattern by counting the number of
components in the abstract syntax tree (AST) of the pattern. The assumption is that as
pattern sizes increase, they become more complex, potentially leading to increased cognitive
load for developers and impacting code readability and maintainability. Thus, the more
complex the function is, the more likely it is to contain a bug.

However, counting the number of components in the AST is a little bit ambiguous as
there are different definitions of how to count them, and also different libraries may build
the AST from the code in a different way. Thus we settled for our version of the PSIZ metric
where instead of counting the number of components of the AST for each pattern, we count
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Figure 1: Example of the difference between the PSIZ metrics

the cases in the pattern matching for each function. In Figure 1 we show the differences
between the two PSIZ metrics.

3.2 The projects
When picking the repositories to evaluate our metrics on, it is important that the projects
have a well-documented commit history and also reporting for bugs. As we want to look
at big and used projects across their whole life cycle to find some patterns, the project’s
commit history needs to have good documentation. Also, in order to check for correlations
with bug occurrences, it is important to know at what point of the project’s life cycle were
the bugs introduced and fixed. Taking these requirements into account we picked three large
projects on which to evaluate our metrics.

The three initial repositories are showed in Table 1:

Repository Name Number of
Commits

Github Stars

quickcheck 1174 700
hackage-server 2350 410

lens 4332 2002

Table 1: Used repositories

3.3 The plan
The steps that we plan to take to achieve the aim of our research and answer the questions
we have set at the beginning are as follows:

1. Pick the metrics to evaluate on Haskell projects

2. Pick the initial projects on which to evaluate the metrics

3. Evaluate the metrics on the initial projects

4. Analyze the data and check if there can be found some correlation between bug oc-
currences and the metrics’ values

This can also be seen in Figure 2 with connections between the different tasks.
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Figure 2: Diagram of the steps taken for the experiment

4 Results
In this section, we will look at the results that were achieved while evaluating the different
metrics on the repositories. It is divided in two subsections - 4.1 where we look into the
results from the metric Code Churn and 4.2 where we look into the results from the PSIZ
metric.

4.1 Code Churn
First, we evaluate the code churn metric on the whole repositories across the entire commit
history of the projects.

Figure 3: quickcheck cumulative Figure 4: quickcheck non-cumulative

We display the data we achieved in two ways - cumulative and non-cumulative. In
Figures 3, 5 and 7 we show the cumulative code churn values. For each commit, we display
the code churn that has been added from the start of the project until now. In this way, we
can see how the code churn grows over time and also it is helpful to visualize how the code
churn has been changing across the project’s life cycle.

We also show the non-cumulative code churn values across the whole commit history in
Figures 4, 6, and 8. There we only show for each commit only the code churn value that
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Figure 5: hackage-server cumulative Figure 6: hackage-server non-cumulative

Figure 7: lens cumulative Figure 8: lens non-cumulative

this commit has added. So in the perfect scenario where we don’t want any code churn, all
the commits in these Figures will have 0 as values. However, that is not the case and we
can see that each project has some code churn - some across the whole project’s commit
history, and some have big spikes where probably big changes were made.

However, this is not enough to argue about the occurrences of bugs and how code churn
correlates with that. So we also searched in these repositories for ’buggy’ files. By ’buggy’
file we mean files in the project that have had a documented existing bug and this bug has
been fixed. We did that by looking into issues that have been closed and have the bug tag,
and then seeing what files were changed to fix the bug/issue.

In Table 2 we can see the mean and median values of the whole repositories and also of
the ’buggy’ files.

Project Mean Median File File’s Mean File’s Median

quickcheck 2.76 0
Property 19.38 1

Gen 16.50 0
Arbitrary 6.62 0

hackage-server 8.40 0 Html 18.18 1
UserDetails 101.33 61

lens 15.68 0

FieldTH 60.29 4.50
At 96.06 6.50
TH 75.10 0

Cons 175.83 28.50

Table 2: Mean and Median Code Churn Values for Projects and Buggy Files
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An interesting result here that needs to be taken into account is that all the mean values
of the ’buggy’ files are larger than the mean values of the projects there are in. Additionally,
the median of all three repositories is 0, which means that most commits in the projects
don’t add code churn. However, 6/9 of the ’buggy’ files have a median that is larger than 0,
which means that most of the commits in these files add code churn to the project, so have
been changing frequently in a short time.

4.2 PSIZ
First, we evaluate the PSIZ metric on the whole repositories across the entire commit history
of the projects. However, unlike with code churn where we can get one value for the entire
project per commit, the PSIZ metric is evaluated on single functions. So for each commit,
we show the mean value of the PSIZ metric in the project (the sum of the PSIZ metric for
each function that uses pattern matching divided by the total number of functions that use
pattern matching) and also the median value for the PSIZ metric (the median of the PSIZ
metric from all functions that use pattern matching).

Figure 9: quickcheck PSIZ values

In Figures 9, 10 and 11 we can see how the mean and median values of the PSIZ metric
change across the whole commit history of the project. Additionally, the mean of the means
and the median of the medians are also shown.

However, this again is a good visualization of the metric but it is not enough to argue
about the occurrences of bugs and how that correlates with the values of the metric. So
again we evaluated the metric on the ’buggy’ files that were described in Section 4.1 and
displayed the data in Table 3.

Unlike with the code churn metric, here the results are not that drastically different.
We can see that the median in all the projects is 1 which means that most of the functions
that use pattern sizes have only one pattern case. From the median of the ’buggy’ files,
we can see that this is also the case for them and there cannot be made some distinction.
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Figure 10: hackage-server PSIZ values

Figure 11: lens PSIZ values

Additionally, two of the files have a median of 0 which means that for most of their commits,
these files don’t have any functions that use pattern matching.

Additionally, we can see that the means of the ’buggy’ files are also less than the mean
of the repositories and overall the mean of the repositories is around 1 with a maximum of
around 1.80 (can be seen from the figures).
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Project Mean Median File File’s Mean File’s Median

quickcheck 1.36 1
Property 0.64 1

Gen 1.23 1
Arbitrary 1.00 1

hackage-server 1.15 1 Html 0 0
UserDetails 1 1

lens 1.13 1

FieldTH 1.10 1
At 0.69 1
TH 0.44 0

Cons 0.89 1

Table 3: Mean and Median PSIZ Values for Projects and Buggy Files

5 Discussion

5.1 Explanation of Findings
Our study aimed to analyze the occurrences of bugs using two primary metrics: Code
Churn and Pattern Size (PSIZ). The results obtained from these metrics provided insightful
information about potential areas prone to bugs.

Code Churn:
The results we got when evaluating the code churn metric revealed significant insights

into the occurrences of bugs in the given repositories. Only by looking at the means we can
see a significant difference between the ’buggy’ files’ means and the projects’ means. All
the ’buggy’ files have a higher mean (some even 10x more) which means that the files that
have had documented and fixed bugs, have been changed a lot more frequently, thus having
a larger code churn value. So from these results on these large and used projects, it can be
seen that files that have had bugs have a larger code churn mean value than the mean of
the entire project.

Another interesting result to look into is also the median. All the repositories have a
code churn median of 0 which means that most commits don’t bring any new code churn
into the project which is good. However, if we compare that to the ’buggy’ files, we see that
almost all of them have a code churn median that is larger than 0, so most of their commits
have introduced code churn and thus have been changed a lot more and frequently.

Lastly, we can see that the mean of the projects grows with the commit size, so the
bigger the commit history, the bigger the code churn. Of course that is not always true as
some projects may have commits that introduce less code churn than others, but still from
looking into these famous and large projects, we can see that even projects that are used
often in practice and have a lot of contributors, still have code churn and the more commits
they have, the bigger the chance is that they average code churn is also bigger.

Pattern Size (PSIZ):
Unfortunately, the results here were not positive as with code churn. Looking at the

median we can see that here the values for the projects are all pretty similar and close to 1.
The median PSIZ values for the ’buggy’ files are also close to 1. Even though all of them
are smaller than the mean of the repositories, the differences aren’t big enough to draw any
conclusions. And after further evaluations, some of the values are so low because in some
commits the files don’t have any functions that use pattern matching. Thus the PSIZ value
is probably not a good metric to check for occurrences of bugs as in the first place these files
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and repositories don’t use functions with large pattern sizes.
This is additionally proven by looking into the medians of the repositories and ’buggy’

files. The medians of the repositories are all 1, so that means that for all the functions that
use patter matching in the projects, they have only one case in most cases. And we can
also see from the medians for the ’buggy’ files that their PSIZ values are also 1 in almost
all cases. So, the ’buggy’ files don’t really have complex pattern-matching functions and are
pretty similar to the average PSIZ values of their repositories.

However, this is still a helpful result as it show that for larger projects and more used
projects, there is no need to look into the pattern sizes of functions as they are really close to
1. An interesting observation is also that here we can see that for all there projects the mean
PSIZ value is around 1, despite them being quite different in size and number of commits.
So there may be some mean value around one that most big Haskell projects will have but
further evaluation will be needed to draw such a conclusion.

5.2 Reflection on Methodology
Our methodology provided a robust framework for evaluating the selected metrics, but it
also had several limitations that need to be acknowledged.

Project Selection:
We selected projects with well-documented commit histories and bug reports, which is

crucial for correlating metric values with bug occurrences. However, the limited number of
projects (three in total), despite being large and diverse, may not provide a comprehensive
view of the broader Haskell ecosystem. Expanding the analysis to include more projects
with various characteristics could help generalize the findings.

Data Analysis:
Our approach to analyzing cumulative and non-cumulative code churn provided a de-

tailed view of code stability over time. However, the evaluation of PSIZ values at the file
level, while informative, may have obscured broader trends. Trying to evaluate the PSIZ
on ’buggy’ functions instead of files may yield more specific results to further solidify our
findings or to propose counter-examples to our results. Additionally, incorporating statisti-
cal techniques to test the significance of correlations between metrics and bug occurrences
could strengthen the validity of the findings.

5.3 What does that mean
For Haskell Developers:

Our results and findings for Haskell developers mean that the code churn metric can be
a really good indicator for the occurrences of bugs. So if they have a big project but not
enough resources to thoroughly test it, it may be a good idea to run a code churn script or
software for the whole repository and then for all the files to see the mean and median values.
And then only check the files that have a really large mean and median value compared to
the whole repository. Of course, this is not a foolproof method and is not guaranteed to
catch all bugs but is a good and cheap way to focus your attention and resources on files
that have a bigger chance to have bugs.

Similarly, it may not be useful to spend resources trying to find files with bugs using
PSIZ metrics as they may be not that effective and not even have a correlation with bug
occurrence rates.

For fellow Researchers:
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For fellow researchers, our findings and implemented methods can be a good starting
point to further evaluate these metrics or use the results to compare to other evaluations. For
both the code churn and PSIZ metric, evaluation on a bigger set of projects will contribute
greatly to solidifying out results and conclusions in this research.

Additionally, researchers who are also looking into evaluating metrics for Haskell code can
already see that there has been research on code churn and PSIZ and focus their attention
on other metrics so that the field of Haskell metrics can be reported more extensively.

6 Responsible Research
In conducting this project, which involves evaluating different coding metrics across var-
ious repositories to assess potential correlations with bug occurrence, we have prioritized
responsible research practices to ensure the integrity and reliability of our findings. We have
meticulously documented the methodologies used, ensuring transparency and reproducibil-
ity in our approach. Every data point was treated fairly throughout the evaluation process,
and no information was omitted. The commitment to responsible data handling extends to
sharing our findings, enabling others to replicate our analysis and validate conclusions. By
upholding these principles, we aim to contribute robust and trustworthy insights to the field
while fostering a culture of ethical research conduct.

7 Conclusions and Future Work
This research aimed to investigate the effectiveness of two specific metrics, Code Churn and
Pattern Size (PSIZ), in predicting bug-prone areas within Haskell projects. The primary
research questions we sought to answer were:

• What are the mean values of Haskell metrics across various projects, and how do they
change over the project lifecycle?

• Do certain Haskell metrics correlate with the occurrence of bugs or defects in the
software?

Our goal was to understand if these metrics could provide early indicators of code quality
issues, helping developers and project managers identify areas that may require additional
resources or testing.

The Code Churn metric, which measures the frequency and extent of changes made
to code, proved to be a significant indicator of potential bugs. Our analysis across three
large Haskell projects showed that files labeled as ’buggy’ consistently exhibited higher mean
code churn values compared to the overall project means. This suggests that files undergoing
frequent changes are more likely to contain bugs. The median values also supported this
conclusion, as the ’buggy’ files had medians greater than zero, indicating frequent changes,
while the project-wide medians were zero.

The PSIZ metric, inspired by the work of Chris Ryder and Simon Thompson, was less
effective in predicting bug-prone areas. The PSIZ metric measures the complexity of patterns
used in pattern matching within the code. Our analysis showed that the median PSIZ values
for both the entire projects and the ’buggy’ files were similar and close to 1, indicating no
significant correlation between pattern size complexity and bug occurrences.
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While Code Churn is a valuable metric for identifying unstable and bug-prone areas
in Haskell code, PSIZ does not offer the same predictive value. Expanding the analysis
to include more diverse projects and exploring additional metrics related to code quality
could provide deeper insights into the dynamics of Haskell projects. Additionally, further
research could investigate the potential combination of multiple metrics to improve predictive
accuracy, ultimately contributing to the development of more reliable and maintainable
software systems.
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