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Preface

"Hence any one, even if he has no ear for music or is quite unpractised in detecting musical sounds, is put
in a condition to pick the required simple tone, even if comparatively faint, from out of a great number of
others. The proper tone of the resonator may even be sometimes heard cropping up in the whistling of the
wind, the rattling of carriage wheels, the splashing of water." [19]

I came across this passage while reading through a section of On the Sensations of Tone as a
Physiological Basis for the Theory of Music by Hermann von Helmholtz, first translated to the English

language in 1875. It describes the composition of noise in a very simple and understandable

manner; as a superposition of a great number of tones (or frequencies), and it described the

possibility to distinguish between the individual tones through a resonating device. It amazes

me that this technology, initially purposed for music, is now applied in complex industries such

as the automotive, maritime and energy sector.

During the first few weeks of this research I gradually became acquainted to the abstract field

of underwater acoustics. Thank you, Yaxi, for guiding me through this period and for your

help in building a basis of fundamental knowledge of this field. After some time, the level of

abstractness of this research increased when the field of acoustic metamaterials became relevant.

Andrei, thank you for introducing me to this remarkable field and for always making time for

discussions, and for making me think twice about my own questions. Additionally, I want to

thank Apostolos Tsouvalas for always showing great interest in my research and constructively

criticising my work, which ever motivated me.

Finally, I would like to show my gratitude to Seaway7 for providing me with the means to conduct

this research and for giving me the time and space to grow during this research. Bas and Luuk,

thank you for your patience during our weekly meetings discussing the seemingly never ending

supply of plots, and for keeping me sharp whilst I was inside the bubble of my own research.

Thank you, Jeroen, and the rest of the Development Team, for making me feel at home at Seaway7

and for providing me with a very motivating work environment.

And to the reader of this thesis; I hope that it sparks your interest in underwater noise mitigation

and its importance in reducing a small part of the burden that we put upon our natural

environment as a modern society.
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Abstract

Several studies have highlighted the negative impact of underwater impact pile driving on

marine life, underscoring the need for effective noise mitigation systems (NMS). While bubble

curtains are commonly used, recent research also focuses on near-pile NMSs. For instance, with

resonating devices such as Helmholtz resonators, which are known for their tunability and

effectiveness in specific frequency ranges. However, the potential for broadband noise mitigation

using arrays of Helmholtz resonators in offshore impact pile driving remains uncertain. This

thesis aims to address this research gap.

Locally resonant acoustic metamaterials, characterised by unusual properties such as negative

or zero-valued effective mass, have shown potential for broadband noise mitigation. This

thesis defines an acoustic metamaterial composed of Helmholtz-type resonators and investigates

its combined effects. The study employs the finite element method (FEM) and the lumped-

component method to define the resonator characteristics of a reference Helmholtz-type resonator.

Subsequently, the boundary element method (BEM) is used to examine the acoustic behaviour of

horizontal arrays of Helmholtz-type resonators, appropriately named Helmholtz-type acoustic

metamaterials, in the frequency domain. Multiple configurations of these systems are analysed.

Finally, a case study approximating the pressure field radiated by a vibrating monopile excited

by an impact hammer is conducted in the time domain using the FEM.

The results indicate that Helmholtz-type acoustic metamaterials amplify sound pressure at

frequencies below the natural frequency of the individual resonators and reduce it at frequencies

above. Functional grading, achieved by incrementally decreasing the natural frequencies of

the individual resonators in steps of up to 3 Hz along each horizontal array, can reduce the

low-frequency amplification while maintaining the high-frequency attenuation. In a vertical

system of Helmholtz-type acoustic metamaterials similar behaviour is observed. A vertical

system comprising of horizontal arrays of 20 resonators with a horizontal spacing of 0.1 meter

and a vertical spacing of 1 meter between each array shows a promising balance between

attenuation and unwanted amplification. However, the system’s performance is sensitive to

maintaining optimal volume of encapsulated air within the resonators, as the target frequency can

significantly increase if a large percentage of the encapsulated air is lost. The transient response

behaviour aligns with frequency domain observations, showing low-frequency amplification

and high-frequency mitigation. Additionally, it is found that the orientation of the resonators

does not significantly affect the transient response. Finally, it is important to note that mechanical

coupling effects, which are not included in this study, may introduce additional low-frequency

interactions.

This study demonstrates the potential of using Helmholtz-type acoustic metamaterials in near-pile

NMSs for offshore impact pile driving, emphasising the system’s sensitivity to the frequency of

the applied force and the importance of air volume maintenance. The findings suggest that while

Helmholtz-type resonators can effectively mitigate noise in specific frequency ranges, careful

configuration is crucial for achieving broadband noise mitigation and for minimising the risk of

unwanted amplification of the pressure field.
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1
Introduction

Recently, the Dutch government published plans to install a total of 21 GW of offshore wind

capacity in the North Sea before the end of 2032 [34]. The largest wind farm that is currently

operational has a total capacity of 1529 MW, comprising of 139 11 MW wind turbines on monopile

foundations with a diameter of 7-8 meter and a length of 76.5 meter [35][14]. In the near-future,

it is expected that the size of the monopiles will increase to at least a diameter of 11 meters and a

length of 105 meters to support the increasing size of offshore wind turbines [15].

Studies have shown that the underwater noise radiated during the installation of offshore

foundation piles can cause behavioural disturbances for ocean life [3][12]. For instance, bottlenose

dolphins have a threshold for behavioural disturbances at noise levels of 140 dB re 1 𝜇Pa (peak-

to-peak broadband level) at distances of up to 50 km from the source [45]. Additionally, oceanic

fish species such as cod and sole show behavioural anomalies starting at peak pressure levels

(𝐿𝑝,𝑝𝑒𝑎𝑘) of 140 dB re 1 𝜇Pa [31]. Similarly, pile-driving noise disrupts the structure and dynamics

of sea bass shoals, where reduced cohesiveness, directional ordering and speed correlation are

observed [20]. To reduce the impact of underwater noise on marine life, the German Federal

Environmental Agency set limitations for offshore noise in 2011 [5]. The limitations for the Sound

Exposure Level (𝐿𝐸) and 𝐿𝑝,𝑝𝑒𝑎𝑘 are 160 dB re 1 𝜇Pa and 190 dB re 1 𝜇Pa, respectively, measured

at 750 meters from the source. To comply with the imposed limitations, offshore contractors

apply Noise Mitigation Systems (NMS).

At the FINO III test site in the German Bight, measurements of the pile-driving noise during

the monopile installation for the DanTysk offshore wind farm have been conducted [16]. The

FINO III hydrophone, located 3.8 kilometres from the studied monopile, measured consistently

𝐿𝑝 levels of around 165 dB re 1 𝜇Pa. During construction, Big Bubble Curtains (BBCs) were used

as a pile-driving NMS. The NMS achieved a noise reduction ranging from 7 to 12 dB re 1 𝜇Pa

(𝐿𝑝). This led to a significant decrease in the oceanic area impacted by pile driving noise, with

up to a 75% reduction compared to scenarios where pile driving was conducted without any

noise mitigation measures [10]. This is in agreement with measurements at the Borkum West

II offshore wind farm, where a reduction of the exposed ocean area of 90% has been recorded

[33]. At both projects, the BBCs show the highest attenuation at frequencies above 1000 Hz.

For animals such as harbour porpoises and bottlenose dolphins, the threshold for behavioural

anomalies is lower at high frequencies [12][10]. Therefore, the BBCs show a positive effect on the

affected marine mammals.

As mentioned in the previous paragraph, the BBCs show the highest attenuation at frequencies

above 1000 Hz. However, results from the measurements conducted at DanTysk and Borkum

West II show that the most energy propagates at frequencies below 1000 Hz [16][33]. In order

to be in agreement with the imposed broadband noise restrictions, systems that target specific

low-frequency ranges and systems that target broadband frequency ranges are being developed.

An example of a broadband NMS is the IHC Noise Mitigtion Screen (IHC-NMS). According to
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2 Chapter 1. Introduction

the German Federal Maritime and Hydrographic Agency (FMHA), the IHC-NMS can facilitate a

broadband noise attenuation of 17 dB (SEL)[29]. A downside to the IHC-NMS is its size and

weight, making its logistics an obstruction for efficient use. An example of a lightweight NMS is

the Hydro Sound Damper, for which the FMHA reports a maximum broadband attenuation of

12 dB (SEL) with the side note that the noise attenuation is mainly in the low-frequency range

[30]. The HSD can be used in combination with a BBC to realise broadband attenuation. Another

low-frequency NMS is a near-pile window blind-like system based on Helmholtz resonance,

currently under development by AdBm Technologies [1]. Panels of inverted open-ended cups,

naturally filled with air during deployment and with specific natural frequencies provide noise

attenuation in a specific frequency range, similar to the working principle of a traditional

Helmholtz resonator. Because of its simplicity and high tune-ability, the Helmholtz resonator

shows potential to be successfully applied noise reduction campaigns for offshore impact pile

driving. However, research on the behaviour of such an NMS has not yet been widely published.

Nonetheless, the field of underwater noise propagation has been widely studied. For instance,

Jensen et al. (2011) published a comprehensive book on computational ocean acoustics [23], and

Reinhall and Dahl (2011) first developed a numerical method describing the noise from offshore

impact pile driving [40]. In 2014, several research groups contributed to the first benchmark case

for the modelling of sound emissions from offshore impact pile driving, called COMPILE [26].

Subsequently, the modelling of NMSs gained momentum. Tsouvalas (2015, 2016) introduced a

semi-analytical model capable of including an air-bubble curtain in a waveguide [51][49][52].

More recently, Peng at al (2018) published results of a semi-analytical study on the behaviour of a

Helmholtz resonator based NMS [37]. In order to thoroughly understand the behaviour of NMSs

for offshore impact piling, studies like the aforementioned in combination with field testing is

critical. Any near-field noise mitigation system should be thoroughly checked for performance at

the low end of the frequency spectrum as data has shown that emitted sound can be amplified at

low frequencies when such systems are deployed.

1.1. Knowledge Gap and Novelty
In 2014, Wochner et al. published a paper on the attenuation of low frequency underwater noise

using arrays of air-filled resonators [56]. They reported the results of laboratory measurements

and lake tests of the noise attenuation of a prototype open-ended resonator design, based on the

principle of Helmholtz resonance. Moreover, Wochner published a new paper in 2016, where

they conducted field tests at a monopile installation site in the North Sea [55]. However, these

tests where conducted in the far field, while the system is supposed to be deployed in the near

field. Peng et al. (2018) researched the behaviour of a vertical array (a single layer) of underwater

Helmholtz-type resonators using the Boundary Element Method (BEM) and Finite Element

Method (FEM) [37]. The key finding in their work is that the NMS is sensitive to unwanted

amplifications, and that this can be mitigated by using resonators with different properties. By
doing this, a wider band of noise reduction can be achieved and the [constructive] interference can be
mitigated, Peng et al. (2018).

To the authors knowledge, the interaction of acoustically coupled Helmholtz resonators in

periodic (i.e. evenly spaced) horizontal arrays has not yet been researched in the field of noise

mitigation for offshore impact pile driving. However, the study of periodic structures has a long

history in the field of acoustics. For instance, methods previously devised to address damping

and nonlinear effects in structural dynamics offer valuable insights for tackling the challenge of

wave propagation in periodic materials and structures [22]. To fully understand the behaviour

of a periodic NMS, it is important to investigate the acoustic coupling between individual

resonators in an array and its subsequent influence on a two-dimensional, depth dependent

NMS. Furthermore, (numerical) modelling of Helmholtz-type resonators in this application has

not been widely conducted. Therefore, this thesis aims to contribute to the knowledge base

of periodic, low-frequency NMSs for offshore impact pile driving through literature research,

semi-analytical modelling and numerical modelling.
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1.2. Research Questions and Thesis Layout
On the basis of the knowledge gap and novelty introduced in the previous paragraph, a research

question and two research sub-questions are drafted. The main research question reads

What is the optimal configuration of a periodic Helmholtz-type NMS for offshore impact pile driving?

The configuration of the periodic Helmholtz-type NMS is tested on the sensitivity of its lattice

constant (e.g. the horizontal distance between each resonator) and the vertical distance between

each horizontal section on the noise attenuation of the NMS and the characteristics of the

individual resonators. Additionally, different combinations of resonators, based on their

characteristics, are researched. Two modelling tools are used to answer the research question:

the FEM is used to determine the pressure at the open end of a resonator, which is then used

to define the resonator characteristics. Additionally, the BEM is used to model the periodic

Helmholtz-type NMS.

On resonator level, two research sub-questions are included. Firstly, the effect of air escaping

from the resonators is investigated by testing the sensitivity of the amount (in mass) of air inside

the Helmholtz-type resonators on the noise attenuation of the NMS. Secondly, the sensitivity of

the tilt of the resonators inside the NMS and its impact on the noise attenuation of the NMS is

tested.

A How does the air-water ratio of the resonators inside a Helmholtz-type NMS influence its noise
reduction properties?

B How does the tilt of the resonators inside a Helmholtz-type NMS influence its noise reduction
properties?

In the next chapter, historical background and relevant literature on Helmholtz resonators and

acoustic metamaterials is discussed. Chapter 3 discussed the solution method for solving the

wave equation for pressure, and subsequently the setup of the BEM and FEM models that are used

in this thesis. The depth-dependent Helmholtz resonator characteristics are defined in chapter 4,

which is required to answer the first research sub-question. In chapter 5, the influence of the

horizontal spacing between the individual resonators on the noise attenuation of a Helmholtz

resonator based NMS is discussed. Furthermore, the influence of different air volumes inside

the resonators on the noise attenuation of a Helmholtz resonator based NMS is discussed in

chapter 6. The influence of the tilt of the resonators inside the Helmholtz resonator based NMS

is studied in chapter 7. From this, the second research sub-question can be answered. Finally, the

conclusions are given in chapter 8. Additionally, the limitations of this thesis and the authors

recommendations for research improvements are provided.

1.3. Scope
In this section, the key assumptions considered in this thesis are briefly discussed.

1. The dynamics of a monopile excited by an impact hammer are not examined and the

pile-driving process is not modelled. The vibrating monopile is represented by a point

source (chapter 4, chapter 5, chapter 6), or by an array of phased point sources (chapter 7).

2. This thesis does not examine the propagation of acoustic pressure waves through soil. The

soil is represented by a rigid boundary.

3. The damping mechanism of an underwater Helmholtz resonator is not examined in this

thesis. Instead, arbitrary damping is added to the speed of sound through air to approximate

the behaviour of an underwater Helmholtz resonator.

4. The mechanical coupling of the resonators in an array, or system, of resonators is not

modelled. Each resonator remains stationary within its domain and is acoustically coupled

to all other resonators.

5. In chapter 6, the NMS behaviour is studied for varying air volumes, representing air loss

during pile-driving. This thesis does not model air escape from the system; instead, it

assumes a total percentage of lost air.





2
Literature Review

On the basis of the knowledge gap, novelty and research questions introduced in the introduction

of this thesis, this chapter covers a literature review on Helmholtz resonators and acoustic

metamaterials. The motivation of this literature review is to explain the principle of Helmholtz

resonance and its application in Helmholtz-type acoustic metamaterials. This creates the

foundation of this research.

2.1. Helmholtz Resonator

Figure 2.1: A spherical, brass Helmholtz

resonator based on the original design. Source:

Physics Dept, Case Western Reserve University.

The original Helmholtz resonator was introduced in the

book On the Sensations of Tone as a Physiological Basis for
the Theory of Music by Hermann von Helmholtz in 1862

[19]. It comprises of a hollow sphere with two openings,

made of glass or metal. The first opening, connected to

the body of the sphere through a hollow neck, is located

at the top of the sphere. On the bottom the second, larger

opening is found. This device was originally developed

to manipulate incoming sound at the human ear, thus

being able to pick up specific frequencies and filter out

unwanted frequencies.

The working principle of a Helmholtz resonator is the

vibration of a volume of air in the neck of the resonator.

On the basis of the assumption that the diameter of

the neck is much smaller than the wavelength of the

incoming pressure wave [39], the Helmholtz resonator is

described as a Single Degree-of-Freedom (SDoF) mass-

spring system [2]. The spring stiffness is defined by the

air in the cavity of the Helmholtz resonator and the mass

is defined by the air in the neck of the resonator. From

this, the magnitude of the mass and spring stiffness

define the natural frequency of an SDoF system as 𝜔𝑛 =

√
𝑘
𝑚 . The fact that the mass of an

SDoF system resonates at its natural frequency, gives a Helmholtz resonator the characteristic

of interacting with incoming acoustic waves in a narrow frequency band around the natural

frequency of the resonator.

Rayleigh (1916) was the first to mathematically derive the velocity potential of a spherical

Helmholtz resonator, using Legendre’s functions [39]. His work is based on the earlier research

of Sondhauss (1850) [44], who first examined the influence of the size and shape of a resonator

chamber on the resonance frequency of the resonator, and Hermann von Helmholtz (1860) [18],

from which the resonator bears it’s name [21]. Sondhaus (1850) found through experiments that

5



6 Chapter 2. Literature Review

the pitch of a flask partly filled with water was not altered when the flask was inclined [44][46]. However,

Alster (1972) repeated this experiments using bottles with a volume of 1 litre, and observed a

clear difference in pitch of about two tones [2]. On this basis, he defined a new calculation of the

shape dependant resonance frequency of a Helmholtz resonator.

From the definition of the natural frequency of an SDoF system, it is clearly observed that the

dimensions of the Helmholtz resonator govern its natural frequency. Because of this simple

characteristic, the Helmholtz resonator has been widely applied in acoustics to reduce noise

in a specific narrow frequency band [9]. In the automotive industry, Helmholtz resonators

are often used on automobile mufflers to reduce engine noise [58], or to mitigate tire acoustic

cavity resonance (which is a significant source of vehicle interior noise) [4][38][11]. In industrial

gas turbine installations, Helmholtz resonators are used to mitigate acoustic pulsations [6][53].

The sound absorption characteristics of Helmholtz resonators are even used in architectural

acoustics. For instance, Helmholtz resonators are used to to provide sound absorption in a

specific frequency band, or increase the transmission loss through a wall without openings [25].

More recently, the application of Helmholtz(-type) resonators in aquatic environments has been

studied. Zhao et al. (2022) [60] and Rodriguez et al. (2023) [41] have published researches on

the absorption of long waves by Helmholtz-type resonators in oscillating water column (OWC)

structures. According to Zhao and Rodriguez, the principle of Helmholtz resonance in an

OWC is analogous to the acoustic Helmholtz resonator introduced in the previous paragraphs.

Zhao developed a semi-analytical model based on the potential flow theory to investigate the

interaction of long waves with the OWC system. The results show that long waves can be

effectively absorbed through Helmholtz resonance. Rodriguez solved a similar problem using

the BEM. They show that the efficiency of the system can be greatly improved by tuning the neck

parameters (e.g. the natural frequency) to the wave period of the incoming long waves. It is

important to note that the long waves discussed by Zhao and Rodriguez are transverse surface

waves, and that acoustic waves are longitudinal pressure waves. Nonetheless, these studies show

that Helmholtz resonators can be tuned to absorb waves in specific frequency ranges.

Peng et al. (2018) published a paper on the development and modelling of a Helmholtz resonator-

based NMS for offshore impact pile driving [37]. They describe the Helmholtz-type resonator as

an equivalent SDoF system, of which the parameters are derived by fitting the frequency-response

function of the SDoF system on the frequency-response magnitude ratio obtained from COMSOL

Multiphysics. They use the BEM to determine the pressure field in a domain that is excited

by a vertical array of point sources, encircled by different configurations of Helmholtz-type

resonator based NMSs. It is found that the Helmholtz-type resonators are sensitive to the

manually defined pressure attenuation in the air cavity of the resonator. In some cases, unwanted

destructive interference at the non-target frequencies is observed. Wochner et al. conducted

field tests with a panel of air-filled resonators based on the Helmholtz resonator [55]. They

observed a net increase in sound pressure at frequencies below the natural frequency of the

resonators. According to Wochner et al. (2016), this is due the fact that a collective resonance of the
panel is excited and the incoming sound wave can be coherently scattered [55]. This is an important

consideration, as this means that the acoustic behaviour of a Helmholtz resonator based NMS

is different from the acoustic behaviour of a single Helmholtz resonator, or from the acoustic

behaviour of several stand-alone Helmholtz resonators. In other words, a mechanically coupled

Helmholtz resonator based NMS is excited as a whole with dynamics at low frequencies, whereas

stand-alone resonators are not mechanically coupled.

An important take-away of this section is that Helmholtz resonators can absorb sound in a

specific, narrow frequency range for a variety of applications. Additionally, unwanted noise

amplification can, in some cases, be expected at frequencies below the natural frequency of the

system.

2.2. Acoustic Metamaterials
In this section, one-dimensional arrays of evenly spaced (periodic) Helmholtz resonators are

researched. Firstly, the subject of periodicity is introduced. Subsequently, two categories
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of periodic materials showing unusual characteristics are introduced. Materials with such

characteristics are called metamaterials and are well studied.

Acoustic waves are described as vibrations that propagate as longitudinal elastic waves. In

pioneering works such as Newton’s Principia and Rayleigh’s The Theory of Sound, the phenomenon

of periodicity is first introduced in the field of acoustics. For instance, Newton used a simple

periodic mono-atomic mass-spring lattice to derive a first estimation of the speed of sound

through air [8]. In other words, Newton considered a discrete system of identical (mono-atomic),

evenly spread (periodic) masses connected to each other by mass-less springs. From this moment

in time, numerous studies have researched phenomena originating from periodicity. A very

comprehensive review on the state-of-the-art in phononic crystals and metamaterials by Hussein

et al. (2014) [22], and more recently an elaborate book on elastic waves and metamaterials by

Young (2023) [59], provide excellent historical and theoretical background on the subject.

2.2.1. Phononic Crystals and Bragg Scattering
Historically, as introduced in the beginning of this section, the principle of periodicity has

been used to derive early approximations of nowadays widely used and accepted material

characteristics. Interestingly, periodic lattices are known to have a more complex wave behaviour

than original continuous media [22]. In the works of Bradley (1994) [7], and Sugimoto and

Horioka (1995) [47] it is explained that wave propagation through a spatially periodic waveguide

in frequency domain, known as Floquet wave propagation, can experience the formation of

band gaps. A band gap is a range in the frequency domain where wave propagation is not

possible, which can occur because phenomena such as Bragg scattering and local resonance.

Bragg scattering is introduced in order to set the stage for the phenomenon of local resonance,

which is relevant for this thesis.

In the work of Sugimoto and Horioka (1995), acoustic wave propagation in a tunnel with a

periodic array of Helmholtz resonators constructed within its floor is examined. In their research,

a narrow band gap is observed around the resonance frequency of the individual Helmholtz

resonators, using a lumped-component approach and numerical software. Additionally, a Bragg

scattering band gap is observed at a frequency of more than three times the natural frequency

of the resonators. Bragg scattering occurs when the lattice constant (i.e. the spacing between

individual elements) becomes a multiple of a half-wavelength,

𝑑 =
1

2

𝜆. (2.1)

A material with this characteristic is called a phononic crystal. This term originates from

optics where photonic crystals are a class of composite materials, which are periodic arrays of

dielectric scatterers in homogeneous dielectric matrices [24]. The term crystal does not refer

to the crystalline solid material, but to the lattice structure observed in these materials. The

formation of band gaps as a result of Bragg scattering shows great potential in the attenuation of

low frequency sound. On the basis of the work of Sugimoto and Horioka (1995), Wang and Mak

(2012) show that Bragg scattering induced band gaps occur in a duct loaded with periodically

spaced Helmholtz resonators, when the periodic spacing becomes a multiple of a half-wavelength

(Figure 2.2a, stop-bands II). Additionally, a local resonance band gap is observed around the

natural frequency of the individual resonators (Figure 2.2a, stop-band I).
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(a) Periodicity of 𝐷 = 45 cm. (b) Periodicity of 𝐷 = 34.4 cm.

Figure 2.2: Transmission loss in a duct with 𝑁 resonators, analytical (dotted lines) and numerical (solid lines) predictions

[54].

Finally, they show a third, broader, band gap type around the natural frequency of the resonator

(Figure 2.2b, stop-band III). This band gap shows the combined effects of a Bragg scattering

band gap and a local resonance band gap, where the frequency range of the local resonance is

governing and the shape of the Bragg scattering band gap is adopted. This shows promising

applications for situations with high frequencies, where the wavelengths are small (or situations

where the order of magnitude of the dimensions of the metamaterial is not an issue). In the

offshore installation environment, NMSs with dimensions in the order of magnitude of the

wavelength of impact pile driving noise is unfortunately not practical. This makes phononic

crystals unsuitable for the application in NMSs for offshore impact pile driving. However, the

effect of local resonance shows promising possibilities for NMSs for offshore impact pile driving.

This phenomenon is discussed in the next paragraphs.

2.2.2. Acoustic Metamaterials and Local Resonance
In the previous section, it is introduced that the lattice constant or periodicity of a phononic

crystal has to be in the order of magnitude off the target wavelength to be effective. Because of this,

phononic crystals are mainly used in the ultrasonic regime [28]. Locally resonant metamaterials

can resolve this problem, as well as introduce characteristics that are usually not observed in

ordinary composites. The resonance frequency of a unit cell of a locally resonant metamaterial

depends on the inertia and the restoring force of the system [28]. Therefore, the resonance

frequency can be tuned to an arbitrary magnitude. In other words, the dimensions of the unit cells

can be orders of magnitude smaller than the wavelength. Consequently, the effective medium

approximation is valid [13].

The effective medium theory describes the macroscopic properties of advanced composite

materials. In materials science, advanced composite materials are materials that are characterised

by unusually high stiffness or elasticity, while bound together by weaker matrices compared to

their conventional counterparts. These sub-wavelength characteristics are a common feature

in different types of metamaterials. In acoustic metamaterials, these unusual characteristics

occur in the form of negative (or zero valued) effective acoustic properties [59][22]. For instance,

a negative bulk modulus implies that volume change is out of phase with applied dynamic

pressure, and negative mass density implies that acceleration is out of phase with the dynamic

pressure gradient [13]. Because these properties induce out-of-phase behaviour, energy of a

propagating wave can be decreased. In the unit cells of locally resonant acoustic metamaterials,

these characteristics occur in a narrow band around the resonance frequency of the unit cell.

Consequently, band gap formation can be observed around the resonance frequency of the

unit cells. These sub-wavelength characteristics are promising for offshore applications, as

the wavelengths of the pressure waves radiated during offshore impact pile driving are large.

Additionally, acoustic metamaterials are useful in manipulating acoustic waves that are governed
by Newton’s law of motion, the fluid continuity equation, and the thermodynamic equation of state (for
adiabatic process), according to Ma and Sheng (2016) [28].

Similarly to the unit cell of a locally resonant metamaterial, a Helmholtz resonator can achieve

narrow banded noise attenuation at an arbitrarily low frequency range (section 2.1). Liu and

Yang (2017) describe that a periodically mounted array of Helmholtz resonators can facilitate
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absorption in a broader frequency range, compared to the narrow frequency range at which a

single Helmholtz resonator acts [27]. In their work, one narrow attenuation range is observed for

a system with a single Helmholtz resonator (Figure 2.3a, pink graph). However, for a system

with four periodically spaced Helmholtz resonators, two broad attenuation ranges are observed

(Figure 2.3a, blue and black graphs). One band gap is formed in a broad frequency range around

the natural frequency of the individual resonators, and the other band gap begins at a frequency

where the lattice constant is equal to half the wavelength. Additionally, the acoustic band

structure of an ideal periodic seawater pipe system shows exactly the same attenuation ranges

as the system with four periodically spaced Helmholtz resonators (Figure 2.3b). An interesting

observation is that the band gap resulting from the local resonance of the array of resonators

is significantly broader than the attenuation range of a single resonator. Moreover, this band

gap is not the result of thermo-viscous losses in the Helmholtz resonators, e.g., it also occurs in

a lossless case. This shows that Helmholtz-type locally resonant metamaterials can realise the

formation of broad band gaps around the natural frequency of a single Helmholtz resonator (e.g.

unit cell).

(a) Array of four Helmholtz resonators (b) Infinite array of Helmholtz resonators

Figure 2.3: Local Resonance and Bragg scattering: band gap formation from Helmholtz resonators in a seawater piping

system [27].

According to Liu and Yang, the principle of a Helmholtz-type locally resonant metamaterial rests

on two conditions:

1. If an array of Helmholtz resonators is configured periodically with a lattice constant much

smaller than the acoustic wavelength, the periodic system will behave as a homogenised

effective medium where a band gap is expected.

2. If the dimensions of a Helmholtz resonator are much smaller than the acoustic wavelength,

the Helmholtz-resonator can be defined as a local resonator.

These conditions are very similar to the condition regarding the effective medium approximation

discussed in the beginning of this subsection, and are used to check the validity of an underwater

Helmholtz-type metamaterial.

2.2.3. Functionally Graded Metamaterials
Functionally Graded Materials (FGMs) represent a sophisticated category within the broader

family of engineering composites, characterised by the integration of two or more constituent

phases that exhibit a continuous and smooth variation in composition. The distinctiveness of

these advanced materials lies in their engineered gradients of composition, structure, and/or

specific properties, which are oriented in a preferred direction. This unique configuration makes

these materials better than similar materials with a homogeneous composition.

In materials engineering, FGMs have been widely used to give homogeneous metamaterials an

additional or a broader stop band. For instance, Pedersen et al. (1982) published a paper on the

impedance matching properties of an inhomogeneous matching layer [36]. They studied the

performance of the matching layer for varying characteristics, such as sound speed and density,
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and found the transmission and reflection properties. The inhomogeneous matching layer is

configured with an exponential profile. Similarly to Pedersen, Sepehri et al. (2020) investigated

structures made of FGMs with an exponential profile and the effect of the functional grading on

the band gap formation in elastic wave propagation [43]. They found that FGMs show a higher

percentage of band gaps and that these characteristics can be tuned to a specific application by

changing specific characteristics.

Thus far, functional grading has been mainly used in material science by gradually changing

specific material properties in a solid, in order to realise behaviour that a homogeneous material

can not show. In order to gain insight on what impact functional grading can have in other

applications, it is interesting to research this phenomenon in the application of discrete acoustic

metamaterials.

2.3. Conclusion
Helmholtz resonators are capable of interacting with sound at a frequency coinciding with its

natural frequency, which is based on the geometry of the resonator. Studies show that, because

of this characteristic, Helmholtz resonators are easy to tune and subsequently applied to mitigate

noise in very specific frequency ranges. The downside of Helmholtz resonators is that the noise

mitigation occurs always in a narrow frequency band.

Metamaterials show characteristics that the conventional materials of which they are built up

of can not show. In acoustics, metamaterials are used in the form of phononic crystals and

locally resonant acoustic metamaterials to introduce broadband noise attenuation. It is noted

that phononic crystals are not suitable in the application of NMSs for offshore impact pile

driving, because their geometry is related to the target wavelength. In contrast, locally resonant

metamaterials work in sub-wavelength configurations. Locally resonant acoustic metamaterials

exist in the form of arrays of Helmholtz resonators, where the limiting narrow band characteristics

of Helmholtz resonators are resolved. This shows large potential for the mitigation of low-

frequency noise emitted during offshore impact pile driving. Additionally, functional grading is

sometimes applied to metamaterials. Studies show that FGMs show better characteristics than

their homogeneous counterpart.

In the next chapters, the large potential of the application of locally resonant metamaterials in

Helmholtz-type NMSs for offshore impact pile driving is investigated. The setup of the BEM

and the FEM models are introduced in chapter 3, after which these are applied to define the

characteristics of a reference resonator and to investigate the behaviour of a periodic Helmholtz-

type NMS.



3
Solution Method and Model Setup

In this chapter, the method used to solve the acoustic wave equation is introduced. Subsequently,

the model setup of the BEM and FEM in different coordinate systems are discussed.

3.1. Solution Method
The acoustic wave equation in a homogeneous medium without a source is given by

∇2𝑝(𝑡) − 1

𝑐2

𝜕2𝑝(𝑡)
𝜕𝑡2

= 0, (3.1)

where ∇2
is the Laplace operator, 𝑝 is the acoustic pressure, 𝑡 is the time and 𝑐 is the speed

of sound through the medium. Equation 3.1 is in the time domain, however, problems in

ocean acoustics are often solved in the frequency domain. The primary advantage is that in the

frequency domain, an ordinary differential equation is solved. In contrast, in the time domain, a

partial differential equation is solved, which requires more computational power [23]. Therefore,

the frequency-time Fourier transform pair is used to obtain the frequency-domain acoustic wave

equation, or the homogeneous Helmholtz equation. A source term is easily included in the

right-hand side of the equation, resulting in the inhomogeneous Helmholtz equation[
∇2 + 𝑘(𝜔)2

]
𝑝(𝜔) = 𝑓 (𝜔). (3.2)

Here, 𝜔 is the angular frequency, 𝑘(𝜔) is the wave number and 𝑓 (𝜔) is the forcing term. An

inhomogeneous linear differential equation, such as Equation 3.2, is satisfied by a Green’s function

if the right-hand-side is an impulse. Therefore, the Green’s function satisfies the inhomogeneous

Helmholtz equation as follows[
∇2 + 𝑘(𝜔)2

]
𝐺𝜔(r, r0) = −𝛿(r − r0), (3.3)

where [∇2 + 𝑘(𝜔)2] is the linear differential operator, r is any location in the field, r0 is the location

of the source and 𝛿 is the Dirac delta function defining a unit impulse (this is important for

the validity of the Green’s function, discussed in Appendix A). A general Green’s function is

introduced by Jensen (2011), which comprises of a particular solution 𝑔𝜔(r, r0) and a homogeneous

solution 𝐻𝜔(r):
𝐺𝜔(r, r0) = 𝑔𝜔(r, r0) + 𝐻𝜔(r), (3.4)

where 𝐻𝜔(r) is any function that satisfies the homogeneous Helmholtz equation and 𝑔𝜔(r, r0)
is any function that satisfies the radiation condition [23]. A substitution of the two solutions

satisfies the boundary conditions and the radiation condition.

A semi-analytical method for solving problems in which Green’s functions are calculated, is

the Boundary Element Method (BEM). The BEM is a computational method for solving linear

11
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partial differential equations which are formulated as integral equations. Jensen et al. (2011) [23]

introduced the solution of the inhomogeneous Helmholtz equation in a bounded medium as

𝑝(r, 𝜔) =
∫
𝑆

[
𝐺𝜔 (r, r0)

𝜕𝑝 (r0)
𝜕n0

− 𝑝 (r0)
𝜕𝐺𝜔 (r, r0)

𝜕n0

]
𝑑𝑆0 −

∫
𝑉

𝑓 (r0)𝐺𝜔 (r, r0) 𝑑𝑉0 , (3.5)

where n0 is the outward-pointing normal on any surface 𝑆0 inside the domain, and 𝑉0 is the

volume of the source.

3.2. Model Setup: BEM
In this section, the application of the BEM in two different coordinate systems is discussed.

Firstly, the Green’s function and boundary integral formulation for a one-dimensional model

are introduced. Secondly, the Green’s function and boundary integral formulation for a two-

dimensional model are introduced.

3.2.1. One-Dimensional System
In chapter 2, the phenomenon of periodicity in structures is introduced. To study periodic effects

in Helmholtz-type NMSs, a horizontal array of Helmholtz-type resonators is introduced to an

infinite domain. The domain is excited by a point source centred at the origin of the domain. In

an infinite domain the system is conveniently described in spherical coordinates (r = 𝑟, 𝜃, 𝜙), in

which the propagation of the pressure wave and the location of each resonator only depends on

the range 𝑟 from the source. Therefore, this system becomes one-dimensional in the r-direction

(r = 𝑟, 0, 0). Correspondingly, the Laplace operator is

∇2 =
1

𝑟2

𝜕

𝜕𝑟
𝑟2

𝜕

𝜕𝑟
. (3.6)

As discussed in the beginning of this chapter, the Green’s function satisfies the Helmholtz

equation (Equation 3.3). In an infinite domain there exist no boundary conditions, i.e., the system

must only satisfy the radiation condition at 𝑟 = ∞. Therefore, the Green’s function only comprises

of a particular solution (the homogeneous solution is equal to zero and therefore omitted). For a

point source in an infinite domain, the Green’s function is defined by Jensen et al. (2011) [23] as

𝑔𝜔(r, r0) =
𝑒 𝑖𝑘 |r−r0 |

4𝜋|r − r0 |
, (3.7)

where 𝑘 is the medium wave number, r0 is the location of the source and r is any range in the

field. The Green’s function is then included in the boundary integral formulation introduced in

the previous section, resulting in the boundary integral for a point source in an infinite domain.

Peng et al. (2018) introduced a method to include underwater Helmholtz-type resonators to the

boundary integral formulation, to consider their effect on the resulting pressure field [37]. The

resonators are included as surfaces in the first integral of Equation 3.8, and their effect on the

pressure field is included through their frequency response function. In order to realise this, the

pressure at the centre point of each resonator must be determined. In Equation 3.8, the location

of the point r in the field is replaced by the location of the centre point of each resonator r𝑅 as

r = r𝑅𝑚 . This results in a linear system which is solved for the pressure 𝑝̃(r𝑅𝑚 , 𝜔) at the centre of

each resonator. The full derivation of the linear system is included in Appendix C. Subsequently,

the pressure 𝑝̃(r𝑅𝑚 , 𝜔) is reintroduced in the boundary integral formulation, resulting in the final

pressure field.

𝑝̃(r, 𝜔) =
𝑀∑

𝑚=1

{∫
𝑆

[
𝑔𝜔

(
r, r𝑅𝑚

) 𝜕𝑝̃
(
r𝑅𝑚

)
𝜕n0

− 𝑝̃
(
r𝑅𝑚

) 𝜕𝑔𝜔
(
r, r𝑅𝑚

)
𝜕n0

]
𝑑𝑆0

}
−
∫
𝑉

𝑓 (r0)𝑔𝜔(r, r0)𝑑𝑉0 , (3.8)

where the first integral is solved for each resonator 𝑟𝑅𝑚 , resulting in 𝑀 solutions. These solutions

are then summed to obtain the coupled pressure response of the system of resonators.
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3.2.2. Two-dimensional System
In offshore activities such as monopile installation for offshore wind turbines, the pressure field

produced during impact pile driving is best described in a cylindrical coordinate system. This

is convenient because the pressure field can be assumed to be axisymmetric around the z-axis,

reducing it to a plane. In this case, the Laplace operator is

∇2 =
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕

𝜕𝑟
+ 𝜕2

𝜕𝑧2

. (3.9)

From the equation above it is observed that the system is two-dimensional, dependent on the

range 𝑟 and the depth 𝑧. A numerically attractive method for solving the Helmholtz equation

in a two-dimensional cylindrical coordinate system is the normal mode method. The normal

mode method assumes that the pressure field can be decomposed into a sum of normal modes.

These modes are similar to the modes of a vibrating string, where mode 𝑚 is a sine wave with 𝑚
anti-nodes and 𝑚 + 1 nodes. The pressure field is then constructed by summing the contributions

of each mode. The contribution of each mode is determined by the dispersion relation, which

relates the mode’s frequency to its horizontal wavenumber (Equation 3.10). Solving the Helmholtz

equation leads to an eigenvalue problem, where the modes are characterised by an eigenfunction

(mode shape function) and an eigenvalue (horizontal wavenumber). On the basis of the boundary

conditions, the vertical wavenumber is also derived (Equation 3.11). This solution process is

clearly documented in Computational Ocean Acoustics by Jensen et al. (2011) [23], and is included

in Appendix B.

𝑘𝑟 =

√(𝜔
𝑐

)
2

−
[(
𝑚 − 1

2

)
𝜋
𝐷

]
2

(3.10)

𝑘𝑧 =

√(𝜔
𝑐

)
2

− 𝑘2

𝑟 (3.11)

Similar to the one-dimensional model, the Green’s function satisfies the inhomogeneous

Helmholtz equation. The main difference is that this domain is bound at the seabed and

the sea surface, in addition to the radiation condition. For simplicity, the seabed is described by a

rigid boundary condition where the velocity is equal to zero

𝑣̃𝑧(𝑟, 𝑧𝐷 , 𝜔) = 0, (3.12)

𝜕𝜙̃

𝜕𝑧𝐷
= 0. (3.13)

The sea surface is described by a pressure release boundary where the pressure is equal to zero,

because the impedance difference between the seawater and atmosphere is large

𝑝̃(𝑟, 𝑧0 , 𝜔) = 0, (3.14)

𝜙̃(𝑟, 𝑧0 , 𝜔) = 0, (3.15)

𝜓̃(𝑟, 𝑧0 , 𝜔) = 0. (3.16)

From this, the Green’s function is obtained from Jensen et al. (2011) [23] and Peng et al. (2018)

[37]

𝐺𝜔(r, r0) =
∞∑

𝑚=1

[
𝑖

2𝐷
𝑠𝑖𝑛(𝑘𝑧𝑧0)𝑠𝑖𝑛(𝑘𝑧𝑧)𝐻(1)

0
(𝑘𝑟𝑟′)

]
, (3.17)

where 𝐷 is the water depth, r is the location of a point in the field with respect to the source

location r0 and 𝑚 is the mode number. 𝐻
(1)
0
(𝑘𝑟𝑟′) is the Hankel function of the first kind, used to

express the propagation of the waves resulting from the cylindrical wave equation. In this thesis,

the Hankel function of the first kind is used, because the positive value of the horizontal wave

number is used (Appendix B).



14 Chapter 3. Solution Method and Model Setup

The Green’s function for a bounded domain is then included in the boundary integral formulation

(Equation 3.5), resulting in the boundary integral for an point source in a bounded domain

𝑝̃(r, 𝜔) =
𝑀∑

𝑚=1

{∫
𝑆

[
𝐺𝜔

(
r, r𝑅𝑚

) 𝜕𝑝̃
(
r𝑅𝑚

)
𝜕n0

− 𝑝̃
(
r𝑅𝑚

) 𝜕𝐺𝜔
(
r, r𝑅𝑚

)
𝜕n0

]
𝑑𝑆0

}
−
∫
𝑉

𝑓 (r0)𝐺𝜔(r, r0)𝑑𝑉0. (3.18)

Similar to the boundary integral formulation of an infinite domain, the first integral is solved for

each resonator 𝑟𝑅𝑚 and summed over 𝑀 solutions. The method to derive the pressure at the open

end of each resonator is the same as for the one-dimensional model. In summary, the location of

the field point is replaced by the location of the centre point of each resonator r𝑅. The resulting

linear system is then solved for the pressure 𝑝(r𝑅 , 𝜔). In the next subsection, the setup of the

model in COMSOL Multiphysics is discussed.

3.3. Model Setup: FEM
In this thesis, the Pressure Acoustics package of the Acoustic Module of COMSOL Multiphysics

(CM) is used to solve the Helmholtz equation with the FEM. Similar to the BEM models, an

infinite domain and a bounded domain are created.

3.3.1. Geometry
In section 3.2, it is discussed that the propagation of a pressure wave radiated by a point source in

an infinite domain is conveniently described in a spherical coordinate system. In CM, a domain is

created by introducing a geometry into a coordinate system. For convenience, a sphere is created

(Figure 3.1a). Additionally, a point geometry is included at the location of the source (e.g. the

origin). Finally, the underwater Helmholtz-type resonator is included as two connected cylinders.

One cylinder represents the air cavity in the resonator and the other cylinder represents the water

column in the resonator (Figure 3.1c).

Similarly, a bounded domain is created by means of a cylindrical geometry (Figure 3.1b). A point

geometry is included at half the height of the cylinder and the resonator (arrays) is (are) included

at 𝑟 = 2 m from the point geometry.

(a) One-dimensional spherical geometry (b) Two-dimensional cylindrical geometry (c) Underwater Helmholtz-type resonator

Figure 3.1: Images of the spherical and cylindrical domain, and the Helmholtz-type resonator.

3.3.2. System Parameters and Boundary Conditions
The seawater and the air inside the resonator are specified as linear elastic fluids. That is, no

losses are initially included. Defining the sound attenuation of a Helmholtz-type resonator is a

difficult task and is not within the scope of this thesis, as discussed in chapter 1. Therefore, the

damping inside the Helmholtz-type resonator is included by adding an imaginary part to the

speed of sound through air as

𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖 . (3.19)

The properties of the fluids are listed in Table 3.1.
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General

Temperature 283 K

Background pressure 101325 Pa

Water

Speed of sound 1490 m/s

Density 1025 kg/m
3

Air

Speed of sound 337 m/s

Density 1.25 kg/m
3

Table 3.1: User-defined system parameters.

A point source is included in CM by specifying the physics of a monopole point source on

the point geometry introduced in the previous paragraph. The source strength is defined as a

monopole amplitude and set to 𝑆 = 1 N/m. This source yields a pressure amplitude of unity at

𝑟 = 1 m.

In the bounded model, the rigid boundary at the seabed is modelled as a Sound Hard Boundary.

That is, the normal component of the acceleration (e.g. the velocity) at the boundary is zero.

Additionally, a Sound Soft Boundary is included at the sea surface. Here, the pressure equals zero

at the boundary. Recall that the same boundary conditions are included in the BEM model. In

both the infinite and bounded models the radiation condition is included as a Perfectly Matched
Boundary, which is analogous to a fully permeable radiation condition.

The shell of the Helmholtz-type resonators are specified as Interior Sound Hard Boundary. Similar

to the Sound Hard Boundary, the boundary is fully reflective and the normal component of the

acceleration is zero at the shell.

3.3.3. Meshing
In CM, the meshing can be done manually, or automatically through the physics-controlled mesh

for pressure acoustics. The physics-controlled mesh is based on the frequency range of the study.

It appropriately defines the meshing, based on the maximum frequency defined in the frequency

step. The default value is set to 5 nodes per wavelength, however, this is increased to six to create

a slightly finer mesh. The mesh will automatically be different for the resonator and the rest

of the domain as the speed of sound through air is different than the speed of sound through

water, resulting in a more efficient model. The mesh automatically resolves the wave and the

perfectly matched boundaries are appropriately meshed [32]. The resulting meshes are depicted

in Figure 3.2.

(a) One-dimensional spherical geometry

mesh

(b) Two-dimensional cylindrical geometry

mesh

(c) Underwater Helmholtz-type resonator

mesh

Figure 3.2: Images of the meshing of the spherical and cylindrical domain, and the Helmholtz-type resonator.

In the next chapter, the Helmholtz-type resonator is defined using the lumped-component
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approach. The mass, spring stiffness and damping ratio are defined by using the pressure at

the open end of the resonator and the lumped-component equation of motion to define the

frequency-response magnitude ratio of the resonator.



4
Defining the Resonator

Characteristics

In this chapter, the characteristics of a reference Helmholtz-type resonator are defined. The

resonator is cylinder-shaped, with an open end at the bottom flat side. The height 𝐿 of the

resonator is 0.035 meter and the radius is 0.03 meter. As discussed in the previous section,

the walls of the resonator are assumed to be rigid. Firstly, the frequency response function of

the reference resonator is defined. Thereafter, spring stiffness and damping ratio are obtained

through the lumped-component approach.

It is important to recall that the main working principle of a Helmholtz resonator is the vibration

of a fluid in the neck of the resonator. Figure 4.1 shows the vertical cross section of the reference

resonator, schematised as a lumped-component system. The resonating mass is represented

by the volume of water 𝑉𝑤 pushed inside the resonator through hydrostatic pressure, and the

volume of air 𝑉𝑎 trapped between the rigid walls of the resonator and 𝑉𝑤 represents the air-filled

cavity.

Figure 4.1: Lumped-component model of a Helmholtz-type resonator, describing a unit cell of a Helmholtz-type acoustic

metamaterial.

Similar to the SDoF mass-spring system of the original Helmholtz resonator, Newton’s second

law of motion is conveniently used on a SDoF mass-spring-damper system analogous to the

Helmholtz-type resonator [57][42][9]. Additionally, it is assumed that the wavelengths of the

17
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incoming acoustic pressure waves are much larger than the diameter of the open end of the

underwater Helmholtz-type resonator. The assumption is checked for the highest frequency

used in this study (300 Hz), as this results in the smallest wavelength. Equation 4.1 shows that

the assumption is valid.

𝜆 =
𝑐

𝑓
=

1490

300

= 4.97𝑚, 4.97𝑚 >> 0.06𝑚 (4.1)

From this, the pressure 𝑝𝑤 over the area of the open end is constant, subsequently providing the

force 𝐹𝑤 that excites the mass-spring-damper system. The equation of motion is expressed as

𝜕2𝑋(𝑡)
𝜕𝑡2

+ 2𝜁𝜔𝑛
𝜕𝑋(𝑡)
𝜕𝑡

+ 𝜔2

𝑛𝑋(𝑡) = 𝜔2

𝑛

𝑘
𝐹𝑤(𝑡) (4.2)

where 𝜔𝑛 =

√
𝑘𝑎
𝑚𝑤

and 𝜁 =
𝑐𝑎

2

√
𝑚𝑤 𝑘𝑎

, which are both unknowns. In order to study the dynamic

behaviour of an underwater Helmholtz-type resonator, the frequency response function has to

be defined.

Firstly, the displacement amplitude of the volume of water has to be derived. Based on

the assumption that the volume of air in the resonator fluctuates when it is excited by an

acoustic pressure wave, the displacement amplitude of the volume of water can be obtained. In

subsection 2.2.2, it is stated that acoustic metamaterials are useful in manipulating acoustic waves

that are governed by the thermodynamic equation of state for adiabatic processes. Therefore, the

ideal gas law for a gas undergoing a reversible adiabatic process is considered

𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (4.3)

where 𝛾 is the adiabatic index, which is equal to
7

5
for diatomic gasses. For the purpose of this

thesis, this law is rewritten in the following form

𝑃1𝑉
𝛾
1
= 𝑃2𝑉

𝛾
2
. (4.4)

Secondly, let us recall that the mass in the lumped-component model (Figure 4.1) is a point mass

specified by the volume of the water column inside the resonator. Therefore, the displacement 𝑋
of the point mass is directly proportional to the change in volume of the air inside the resonator.

Because of this, Equation 4.4 is reformulated into

𝑃1𝑉
𝛾
1
= 𝑃2(𝑉1 − |𝑋(𝜔)|𝐴𝑟)𝛾 (4.5)

where |𝑋(𝜔)| and 𝐴𝑟 are the absolute displacement of the point mass and the area of the open

end of the Helmholtz-type resonator. 𝑃1 is the hydrostatic pressure, 𝑉1 is the initial volume

of the air pocket and 𝑃2 is the pressure in the new state at the air-water interface inside the

Helmholtz-type resonator. In an unforced environment, 𝑃2 is equal to 𝑃1 and is easily calculated

using

𝑃2 = 𝑃0 + 𝜌𝑤 𝑔𝑧 (4.6)

where 𝑃0 is the atmospheric pressure at the sea surface, 𝑔 is the gravitational acceleration and

𝑧 is the depth of the resonator. In the case of a forced environment, 𝑃2 is obtained using the

FEM model introduced in the previous chapter. For the reference Helmholtz-type resonator at a

depth of 𝑧 = 0.5 m, the real and imaginary part of the pressure at the air-water interface in the

resonator are depicted. The complex pressure is split into its real and imaginary part in order to

showcase the damping included in FEM, as explained in section 3.3.
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Figure 4.2: Pressure at the open end of an underwater Helmholtz-type resonator with radius 𝑟 = 0.03 m and height

𝐿 = 0.035 m, at a water depth of 𝑧 = 0.5 m.

Equation 4.2 is transformed into the frequency domain by use of the Fourier transform, after

which the frequency-response magnitude ratio is written in the form of the dynamic flexibility����𝑋(𝜔)
𝑋(0)

���� = 1√(
1 − 𝜔2

𝜔2

𝑛

)
2

+ 4𝜉2 𝜔2

𝜔2

𝑛

(4.7)

where 𝑋(0) is the static displacement for 𝜔 → 0. As mentioned in the beginning of this chapter,

𝜔𝑛 , 𝑘 and 𝜉 are unknown. To solve for the unknowns, the pressure 𝑃2 from Figure 4.2 is

inserted into Equation 4.5, which is solved for the displacement amplitude 𝑋(𝜔). The frequency-

response magnitude ratio is then plotted and curve-fitted for the right-hand-side of Equation 4.7

using a least-squares curve-fitting tool, this is depicted in Figure 4.3. The resulting resonator

characteristics are listed in Table 4.1.

Figure 4.3: Frequency-response magnitude ratio of the volume of water inside an underwater Helmholtz-type resonator

with radius 𝑟 = 0.03 m and height 𝐿 = 0.035 m, at a water depth of 𝑧 = 0.5 m.
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Natural frequency 𝜔 477.05 rad/s

Spring stiffness 𝑘 12600.01 N/m

Damping ratio 𝜉 0.0192

Table 4.1: Characteristics of an underwater Helmholtz-type resonator with radius 𝑟 = 0.03 m and height 𝐿 = 0.035 m, at

a water depth of 𝑧 = 0.5 m.

Similarly, this method is used to determine the frequency response function for different water

depths. For this, the relationship between the hydrostatic pressure and the mass of the water

column inside the resonator is required. The length of the water column 𝐿𝑤 is described as

𝐿𝑤 =
𝑉𝑟 −𝑉𝑎

𝐴𝑟
, (4.8)

where 𝑉𝑟 and 𝐴𝑟 are the volume of the resonator and the area of the open end of the resonator,

respectively. In correspondence with the ideal gas law, the volume of air inside the resonator is

described as

𝑉𝑎 =
𝑚𝑎

𝜌𝑎
=

𝑚𝑎𝑉𝑟𝑅𝑇

𝑃0

, (4.9)

where 𝑚𝑎 and 𝜌𝑎 are the mass and density of the air inside the resonator in dry conditions, 𝑅 is

the specific gas constant, 𝑇 is the temperature and 𝑃0 is the hydrostatic pressure. By combining

Equation 4.8 and Equation 4.9, it is derived that the length of the water column inside the

resonator is described as

𝐿𝑤 =
𝑉𝑟

𝐴𝑤

(
1 − 𝜌𝑎𝑅𝑇

𝑃0

)
. (4.10)

From 𝐿𝑤 , the depth dependent volumes 𝑉1 and 𝑉2 are determined. The results are plotted in

Figure 4.4 for three cases. Firstly, it is assumed that the mass of the air inside the resonator is

equal to the mass of the air inside the resonator when the system is in-air. Secondly, a reduction

of 30% of air is considered. Finally, a reduction of 70% of air is considered. The effect of the

reduction of air on the noise attenuation of a Helmholtz-type NMS is discussed in chapter 6.

(a) Natural frequency (b) Spring stiffness (c) Damping ratio

Figure 4.4: Resonator characteristics of a resonator with radius 𝑟 = 0.03 m and height 𝐿 = 0.035 m, for depths between

𝑧 = 0.25 m and 𝑧 = 10 m.
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To understand how the natural frequency, spring stiffness and damping ratio change if part of the

trapped air is lost, the lumped-component approach must be recalled. From this, the definition

of the spring stiffness is

𝑘𝑎 =
𝑃𝑆𝐴𝑟

𝑋(0) , (4.11)

where, 𝑃𝑆 is the static pressure at the open end of the resonator at 𝜔 → 0, 𝐴𝑟 is the cross sectional

area of the resonator and 𝑋(0) is the static displacement at 𝜔 → 0. Hence, the spring stiffness

is inversely proportional to the volume of trapped air. Because 𝑃𝑆 and 𝐴𝑟 remain constant,

the spring stiffness increases when the volume of trapped air decreases. From this, the spring

stiffness and the lumped mass define the natural frequency 𝜔𝑛 as

𝜔𝑛 =

√
𝑘𝑎

𝑀𝑤
(4.12)

where 𝑘𝑎 is the spring stiffness and 𝑀𝑤 is the mass of the water inside the resonator. Both 𝑘𝑎
and 𝑀𝑤 increase when trapped air is lost. However, the increase in spring stiffness is larger

than the increase in mass, because the air volume change impacts the spring stiffness due to its

inverse proportionality, whereas the same volume change results in a relatively small increase in

mass. From this, it is expected that the natural frequency increases. Finally, the damping ratio is

defined as

𝜉 =
𝑐𝑎

2

√
𝑀𝑤 𝑘𝑎

, (4.13)

where 𝑐𝑎 is the damping coefficient. While the spring stiffness and the lumped mass increase, it is

assumed that the damping coefficient remains constant. Therefore, the damping ratio decreases.

The influence of the varying lumped-component characteristics on the noise attenuation of the

Helmholtz-type NMS is investigated in the following section.





5
Periodic Systems of Helmholtz-type

Acoustic Metamaterials

In the previous chapters, the model setup is discussed and the depth-dependent characteristics of

the reference Helmholtz-type resonator are defined. In this chapter, the influence of periodicity

on the noise attenuation of various systems of Helmholtz-type resonators is studied. In section 5.1,

the influence of periodicity on a horizontal array of Helmholtz-type resonators, henceforth called

a Helmholtz-type acoustic metamaterial, is studied. On the basis of the findings from section 5.1,

the influence of periodicity on a vertical system of Helmholtz-type acoustic metamaterials is

studied in section 5.2.

5.1. Helmholtz-type Acoustic Metamaterial
In the literature review (chapter 2), the application of Helmholtz(-type) resonators in acoustic

metamaterials is introduced. Results from several studies show that broadband attenuation can be

realised when acoustic metamaterials are tuned to a specific configuration. Therefore, this section

studies the sensitivity of the number of resonators, the distance between the individual resonators

and the type of grading of the array, on the sound pressure attenuation of a Helmholtz-type

acoustic metamaterial.

Figure 5.1: Helmholtz-type acoustic metamaterial in an infinite domain excited by a point source. A spherical radiation

condition is considered.

The Helmholtz-type acoustic metamaterial is modelled in the infinite domain introduced in

subsection 3.2.1, of which a schematisation is included in Figure 5.1. The source 𝑆 is located at

the origin of the domain and the receiver is located at a distance of 𝑟1 + 𝑁 · Δ𝑟 + 𝑟2 from the

source, where 𝑁 is the number of resonators within the Helmholtz-type acoustic metamaterial.

The parameters that define the geometry of the system above are listed in Table 5.1. The value for

𝑟1 is based on an approximation of the difference in radius of a monopile and a near-pile NMS.

Additionally, the value of 𝑟2 in the main study is based on a study considering the sensitivity of

the distance between the final resonator in the array and the receiver (Appendix D).
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[m] Validation Main study

𝑟1 2 2

Δ𝑟 - 0.05, 0.1, 0.5, 1, 5

𝑟2 2 229 − 𝑟1 − (𝑁 · Δ𝑟)

Table 5.1: System parameters for a Helmholtz-type acoustic metamaterial in an infinite domain.

The sound attenuation of a Helmholtz-type acoustic metamaterial is studied in the quantity of

absolute pressure, which is defined as follows

|𝑝̃(𝑟, 𝑧, 𝜔)| =
√
(𝑅𝑒(𝑝̃(𝑟, 𝑧, 𝜔))2 + (𝐼𝑚(𝑝̃(𝑟, 𝑧, 𝜔))2. (5.1)

5.1.1. Validation of a Single Resonator
Throughout this section, the pressure fields are solved using the BEM with the solution method

introduced in chapter 3. To check the validity of the assumptions made in chapter 4, the pressure

field containing a single reference resonator is solved using the BEM and the FEM, of which

the results are compared. The characteristics of the reference resonator are equivalent to the

characteristics obtained in chapter 4 at a depth of 0.5 meter. As listed in Table 5.1, the pressure is

measured at a distance of 4 meters from the source, or 2 meters from the centre of the open end

of the resonator. The results are plotted in Figure 5.2.

Figure 5.2: Validation of a single resonator in an infinite domain excited by a point source. The mitigated and

unmitigated situations, obtained from BEM and FEM, are plotted.

It is observed that the models show qualitative similarities. However, some quantitative differences

are observed. Firstly, the pressure response in BEM has a slightly smaller amplification at

frequencies below the natural frequency of the resonator and a slightly larger pressure reduction

at frequencies above the natural frequency of the resonator. These differences fall within an

acceptable range. Additionally, the results of the FEM model show a discrepancy at near-zero

frequencies. This is a very minor discrepancy, most probably attributed to the behaviour of the

numerical FEM solver at near-zero frequencies, and is therefore negligible.

Because the resonator shows similar behaviour in the BEM and in the FEM, i.e. the shape,

location and magnitude of the amplification and the reduction of the pressure field are similar,

the lumped-component resonator is considered validated.
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5.1.2. Metamaterial with Identical Resonators
In this subsection, a Helmholtz-type acoustic metamaterial with identical resonators is studied.

In addition to the characteristics of the resonator, the number of unit cells in the acoustic

metamaterial and the distance between them define the configuration of the Helmholtz-type

acoustic metamaterial. Therefore, to study the influence of periodicity on the sound pressure

attenuation of a Helmholtz-type acoustic metamaterial, a parametric study is conducted, varying

the number of unit cells and the distances between them. The arrays consist of 𝑁 resonators,

where 𝑁 equals 10, 20, 30 or 40. Each array is analysed for five different lattice constants Δ𝑟. The

results are depicted in Figure 5.3.

(a) 𝑁 = 10 (b) 𝑁 = 20

(c) 𝑁 = 30 (d) 𝑁 = 40

Figure 5.3: The absolute pressure in an infinite domain measured at 229 meters from the source, using 20 different

configurations of Helmholtz-type acoustic metamaterials with identical unit cells.

According to the theory on phononic crystals, introduced in subsection 2.2.1, a Bragg scattering

band gap is expected when the lattice constant of a periodic lattice is a multiple of a half-

wavelength of the incident pressure wave. In the results depicted in Figure 5.3, this would be

expected at 150 Hz for the system with a lattice constant of 5 meters, for instance. However,

no separate Bragg scattering band gap is observed. This is explained by the fact that for a

simple point source in an infinite domain, the field is known to propagate as a spherical wave

with the medium wave number through an isotropic (uniform speed of sound and directional

independence) medium [23]. Additionally, the volumes of the resonators are much smaller than

the volume of water of a truncated infinite domain. Therefore, this type of wave propagation

does not favour Bragg scattering, which generally relies on directional interference and periodic

interactions. From this, the limitations of using a point source in an infinite isotropic medium for

studying phenomena like Bragg scattering become clear.

In contrast to the absence of a Bragg scattering band gap, effects related to the lattice constant

and number of resonators are clearly observed. Firstly, it is observed that for every increment
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of 𝑁 the amplification of the pressure field at frequencies below the natural frequency of the

individual resonators increases. Conversely, the reduction of the pressure field at frequencies

above the natural frequency of the individual resonators does not show this consistent behaviour.

Interestingly, the configurations with lattice constants of Δ𝑟 = 0.05 and Δ𝑟 = 0.1 show large

reduction of the pressure field at frequencies above the natural frequency of the individual

resonators for 𝑁 = 10 and 𝑁 = 20 resonators, whereas this behaviour deteriorates for 𝑁 = 30 and

𝑁 = 40 resonators. The configurations with lattice constants of Δ𝑟 = 0.5, Δ𝑟 = 1 and Δ𝑟 = 5 show

constant behaviour, where both the amplification and the reduction of the pressure field increase

for each increment of 𝑁 . Secondly, when comparing the four sub figures in Figure 5.3 it is

observed that the magnitude of the pressure is negatively correlated to the number of resonators

𝑁 for arrays with lattice constants of Δ𝑟 = 0.5, Δ𝑟 = 1 and Δ𝑟 = 5. It shows that the homogenised

behaviour decreases for increasing lattice constant, which is in agreement with the first condition

on which the principle of a Helmholtz-type locally resonant metamaterial rests (introduced by

Liu and Yang (2017) [27], listed in subsection 2.2.2):

If an array of Helmholtz resonators is configured periodically with a lattice constant much smaller than the
acoustic wavelength, the periodic system will behave as a homogenised effective medium where a band gap
is expected.

For example, consider the configuration with a lattice constant Δ𝑟 of 5 meters, with a local natural

frequency of approximately 75 Hz. In this case the wavelength is approximately 20 meters,

which results in the fact that the lattice constant is only a quarter wavelength. Therefore, the

condition introduced by Liu and Yang is not valid. This results in a system where the effect of

the individual resonators is governing, in stead of the effect of a homogenised behaviour.

Important in these observations is the fact that the unwanted amplification of the pressure at

frequencies below the natural frequency of the individual resonators increases dramatically for

some configurations, which shows that the system is sensitive for specific combinations of 𝑁 and

Δ𝑟. Additionally, it must be noted that the resonators comprising the Helmholtz-type acoustic

metamaterials are not mechanically coupled. Therefore, the effects are purely based on acoustic

coupling.

5.1.3. Functionally Graded Metamaterial
In the previous section, significant amplification of the pressure field at frequencies below the

natural frequency of the individual Helmholtz-type resonators within the arrays is observed.

Additionally, the sensitivity of the system is addressed. This section extends the study to examine

the effect of functional grading on sound pressure attenuation in a Helmholtz-type acoustic

metamaterial within an infinite domain. Functional grading involves configuring metamaterials in

a specific manner, leading to different acoustic behaviours compared to their regular counterparts.

In this study, functional grading is applied by varying the natural frequencies of the resonators

along the length of the array. The influence of this grading on the sound pressure attenuation is

then investigated.

An array of 𝑁 = 20 resonators with a lattice constant of Δ𝑟 = 0.1 m is placed in an infinite domain.

In Figure 5.3b of the previous section, it is observed that this configuration shows a large reduction

of the pressure field at frequencies above the natural frequency of the individual resonators,

as well as a significant amplification of the pressure field at lower frequencies. Therefore,

this configuration is suitable to examine the effects of functional grading on the behaviour of

Helmholtz-type acoustic metamaterials. To understand the impact of functional grading, three

frequency steps (Δ 𝑓 ) are considered: 1 Hz, 2 Hz, and 3 Hz. The natural frequencies are either

increased or decreased along the length of the array. In Figure 5.4a, the pressure field results are

plotted for a frequency range of 0 Hz to 300 Hz.
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(a) Decreasing natural frequencies (b) Increasing natural frequencies

Figure 5.4: The absolute pressure in an infinite domain measured at 229 meters from the source, using 6 configurations

of functionally graded Helmholtz-type acoustic metamaterials. Figure 5.4a shows functional grading with decreasing

increments and Figure 5.4b shows functional grading with increasing increments.

In Figure 5.4, the effects of functional grading on the pressure field are presented. It is observed

that for both types of functional grading the amplification of the pressure field is significantly

decreased compared to a Helmholtz-type acoustic metamaterial with identical resonators. In

some configurations the attenuation increases (1 Hz decreasing, 2 Hz decreasing, 1 Hz increasing),

and in some configurations, the attenuation decreases (3 Hz decreasing, 2 Hz increasing, 3 Hz

increasing). In accordance with literature on functionally graded metamaterials, functional

grading can show improved behaviour.

The reduction in pressure amplification can be explained by considering the resonators with

natural frequencies lower than those in the system with identical resonators. These lower

frequency resonators shift their influence on the pressure field to lower frequency ranges, thereby

reducing the overall amplification in the original frequency range of interest. Interestingly, a

functional grading of Δ 𝑓𝑛 = 1 Hz shows increased attenuation, whereas this deteriorates for larger

Δ 𝑓𝑛 . This suggests that the homogenised effects, initiated by the locally resonant characteristics,

are reduced when the increment (or decrement) in the functional grading becomes too large.

Whilst the reduction of the amplification of the pressure field at low frequencies becomes larger

for increasing Δ 𝑓𝑛 , the noise attenuation decreases. Therefore, the trade-off between these

characteristics must be considered. In this thesis, the potential effect of functional grading on the

unwanted amplification of the pressure field is investigated. Because of this, functional grading

in the form of decreasing natural frequencies with increments of 3 Hz is preferred.
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5.2. Vertical System of Helmholtz-type Acoustic Metamateri-
als

Following the study on identical and functionally graded Helmholtz-type acoustic metamate-

rials, this section studies a vertical system of multiple Helmholtz-type acoustic metamaterials

within a bounded domain and aims to investigate the sound pressure attenuation for different

configurations. The setup of the system is depicted in Figure 6.1 and the system parameters are

listed in Table 6.1.

Figure 5.5: Vertical system of Helmholtz-type acoustic metamaterials in a bounded domain excited by a point source.

The domain is bound by a pressure release boundary at 𝑧0 = 0 m and a rigid boundary at 𝑧𝐷 = 10 m. A cylindrical

radiation condition is considered.

[m] Validation Main study

𝐷 1 10

𝑟1 2 2

𝑟2 1 1

Δ𝑟 - 0.1

𝑧𝑆 0.5 5

𝑧𝑅 0.5 5

Δ𝑧 - 0.5, 1, 2

Table 5.2: Parameters for a vertical system of Helmholtz-type acoustic metamaterials in a bounded domain.

In contrast to the previous study on Helmholtz-type acoustic metamaterials, which was conducted

in absolute pressure, this study is conducted in the quantity of 𝑆𝑃𝐿. This is a conventional unit

to describe noise reduction in NMSs for offshore impact pile driving and is thus used in this part

of the study. 𝑆𝑃𝐿 is calculated from the absolute pressure as follows:

𝑆𝑃𝐿 = 10 log
10

(√
2

2

|𝑝̃𝑟𝑚𝑠(𝑟, 𝑧, 𝜔)|2
(10

−6)2

)
. (5.2)

5.2.1. Validation of a Single Resonator
In addition to the validation of a single resonator in an infinite domain, conducted in the previous

section, the behaviour of a single resonator must be validated in a bounded domain. The

resonator is located in a domain with a depth 𝐷 of 1 meter, at a water depth 𝑧 of 0.5 meter and a

distance 𝑟 of 2 meters from the source. The pressure field is solved using both the BEM and the

FEM. The results are plotted in the Figure 5.6, where good agreement between the BEM and

FEM results is observed. Therefore, the solution method is considered to be validated.
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Figure 5.6: Validation of a single resonator in a bounded domain excited by a point source. The mitigated and

unmitigated situations, obtained from BEM and FEM, are plotted.

5.2.2. System with Identical Resonators
Helmholtz-resonator based NMSs are convenient near-field systems because the mechanism of

trapping air in the cavities of the individual resonators is passive, i.e. the individual resonators

fill with air during deployment and the air is naturally compressed because of the hydrostatic

pressure. In chapter 4, the natural frequency, spring stiffness and damping ratio are determined

for a reference resonator at depths between 0.25 meter and 10 meters. Building on this, this

section investigates the acoustic behaviour of a system of Helmholtz-type acoustic metamaterials

in different vertical configurations.

The system comprises of horizontal Helmholtz-type acoustic metamaterials with a lattice constant

Δ𝑟 of 0.1 meter. Three vertical configurations are investigated, each with a different vertical

spacing Δ𝑧. For convenience, the system is discretised into a matrix with 𝑀 columns and 𝑁
rows. The number of columns 𝑀 (i.e. the number of resonators in each horizontal array) is

determined on the basis of the previous section and is the same for all three configurations.

Each configuration has a different number of rows 𝑁 (i.e. the number of horizontal arrays). The

different combinations are listed in Table 5.3.

Configuration 1

M = 20 Δ𝑟 = 0.1

N = 5 Δ𝑧 = 2

Configuration 2

M = 20 Δ𝑟 = 0.1

N = 5 Δ𝑧 = 1

Configuration 3

M = 20 Δ𝑟 = 0.1

N = 5 Δ𝑧 = 0.5

Table 5.3: Three configurations for a naturally compressed vertical system of Helmholtz-type acoustic metamaterials

with identical resonators.

The results of the three studies are plotted in Figure 5.7, where configuration 1 is the blue graph,

configuration 2 is the yellow graph and configuration 3 is the green graph. Here, Figure 5.7a

shows the response in SPL and Figure 5.7b shows the response in transmission loss (TL), which

is obtained by subtracting the mitigated responses from the unmitigated response. It is observed
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that for each configuration an amplification of the sound pressure level occurs between 0 Hz

and 80 Hz (negative transmission loss), as well as a broad attenuation range between 80 Hz and

180 Hz (positive transmission loss). This observation is in accordance with the results of the

previous section where similar amplification and attenuation ranges are distinguished for a single

Helmholtz-type acoustic metamaterial. Therefore, it is noted that this is the approximate range

of influence of the acoustic metamaterial and is thus attributed to the effects of local resonance.

Additionally, it is observed that there are outliers at frequencies of approximately 80 Hz, 110 Hz,

180 Hz and 275 Hz, attributed to the effect of local resonance and the frequencies at which the

second, third and fourth normal mode start, respectively. An elaboration on how the normal

modes govern the shape of the frequency-domain pressure response of a depth-dependent

domain is provided in Appendix B.

The differences between the results of configurations 1, 2, and 3 lie mainly in the magnitudes

of the amplification and the attenuation of the sound pressure. An interesting observation is

that the attenuation in configuration 2 (Δ𝑧 = 1 m) is larger than the attenuation observed in

configuration 3 (Δ𝑧 = 0.5 m), while it consists of fewer resonators. Therefore, the sound pressure

attenuation is sensitive to the vertical distance between the individual Helmholtz-type acoustic

metamaterials and the number of resonators of which the system comprises. From this, the

configuration consisting of 10 Helmholtz-type acoustic metamaterials with a vertical spacing of

Δ𝑧 = 1 m, each comprising of 𝑁 = 20 identical resonators with a horizontal spacing of Δ𝑟 = 0.1 m,

shows the best noise attenuation properties. However, it is noted that the unwanted amplification

of the pressure field at low frequencies is the highest for this configuration. In the next section,

the effect of functional grading on this unwanted amplification is investigated.

(a) Sound Pressure Level (b) Transmission Loss

Figure 5.7: Naturally compressed vertical system of Helmholtz-type acoustic metamaterials with identical resonators.

5.2.3. Functionally Graded System
In subsection 5.1.3, it is observed that a functionally graded Helmholtz-type acoustic metamaterial

can reduce unwanted amplification of the pressure field for frequencies below the natural

frequencies of the individual resonators. Building upon this finding, functional grading is

applied to the system studied in the previous subsection, were the unwanted amplification is

also observed. The grading is considered in the form of decreasing natural frequencies, with

increments of 3 Hz, as this shows the highest reduction of the unwanted amplification of the

pressure field with a single Helmholtz-type acoustic metamaterial present (subsection 5.1.3).

Three vertical configurations are considered, in which the horizontal spacing of the unit cells and

the number of unit cells remain the same. The aim of this subsection is to investigate the effect

of functional grading on the transmission loss of a vertical system of Helmholtz-type acoustic

metamaterials. In Table 5.4, the additional simulations are listed. The results are plotted in

Figure 5.8.
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Configuration 1

M = 20 Δ𝑟 = 0.1

N = 5 Δ𝑧 = 2

Configuration 2

M = 20 Δ𝑟 = 0.1

N = 10 Δ𝑧 = 1

Configuration 3

M = 20 Δ𝑟 = 0.1

N = 20 Δ𝑧 = 0.5

Table 5.4: Three studies for a naturally compressed system comprising of functionally graded Helmholtz-type acoustic

metamaterials.

Similar to the study of a vertical system of Helmholtz-type acoustic metamaterials with identical

resonators in Figure 5.7, the normal-mode outliers are observed at 110 Hz, 180 Hz and 275

Hz. Additionally, a similar broad band of transmission loss is observed between 80 Hz and

180 Hz, as well as negative transmission loss at frequencies below 80 Hz. It is observed that

configuration 2 (orange graph) shows the highest transmission loss. Additionally, it is observed

that the magnitude of the unwanted amplification is similar for systems with 10 vertical layers

and with 20 vertical layers. To clearly show the effect of functional grading, the transmission

loss graphs for a vertical system with identical resonators and a functionally graded system are

compared in Figure 5.9.

(a) Sound Pressure Level (b) Transmission Loss

Figure 5.8: Naturally compressed vertical system of Helmholtz-type acoustic metamaterials with functionally graded

resonators.

As expected, the effect of functional grading on the system is mainly observed at the local

resonance induced sound pressure amplification. The amplification of the sound pressure

between 0 Hz and 80 Hz is reduced by approximately 2-3 dB, except for the system with 20

vertical layers. Furthermore, sound pressure attenuation between 80 Hz and 180 Hz increases

slightly. These observations are in accordance with the results from subsection 5.1.3.

Figure 5.9: One-on-one TL comparison between system with identical resonators and functionally graded system.
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5.3. Conclusion
In this chapter, the periodic behaviour of a system of Helmholtz-type resonators is studied. To

understand the periodic behaviour of the system, a single horizontal array of Helmholtz-type

resonators is first analysed under the excitation of a point source in an infinite domain. Initially,

the reference Helmholtz-type resonator is validated by comparing results from the BEM and

the FEM. Subsequently, the sensitivity of the lattice constant and the number of resonators in

a homogeneous array of Helmholtz-type resonators is studied. Finally, functional grading is

applied to the array of Helmholtz-type resonators. These studies provide a comprehensive

understanding of the sensitivity of the configuration of a horizontal array of Helmholtz-type

resonators.

A functionally graded Helmholtz-type resonator array demonstrates the ability to mitigate the

pressure amplification that occurs in a Helmholtz-type acoustic metamaterial with identical

resonators. By varying the natural frequencies along the array, the graded configuration

redistributes the resonator influence across different frequency ranges, decreasing pressure

amplification without reducing attenuation. This behaviour highlights the potential advantages of

using functionally graded metamaterials in applications where controlling pressure amplification

and maintaining attenuation are important.

Based on the insights obtained from section 5.1, the behaviour of a vertical system of Helmholtz-

type acoustic metamaterials under the excitation of a point source in a bounded domain is

studied. Again, the reference Helmholtz-type resonator is validated by comparing results from

the BEM and the FEM. The depth-dependent lumped-component parameters (𝜔𝑚 , 𝑘, 𝜉), defined

in chapter 4, are applied to each horizontal array of Helmholtz-type resonators. Similar to the

study in section 5.1, the vertical system of Helmholtz-type acoustic metamaterials is investigated

configuration with identical resonators, and functionally graded configurations.

The results demonstrate that functionally graded vertical systems effectively reduce pressure

amplification while maintaining or improving attenuation performance. These findings highlight

the potential advantages of functional grading in designing efficient noise mitigation systems for

various applications. Additionally, it is found that the noise attenuation of the vertical system of

Helmholtz-type acoustic metamaterials is sensitive to the frequency of the source that excited the

domain because the noise mitigation occurs in a specific frequency band.



6
Air Volume Reduction in a Vertical

System of Helmholtz-type Acoustic
Metamaterials

In the introduction to this thesis, the need to develop NMSs tuned to target specific frequency

ranges is discussed. It is noted that a Helmholtz-resonator based NMS is a promising solution

for reducing underwater noise emitted during offshore impact pile driving, as it is easy to

manufacture and highly tunable. However, the performance of the system, in its simplest form,

is based on the assumption that the resonators are naturally filled with air during deployment.

It is uncertain if the validity of this assumption is continuous throughout the duration of the

installation process. Disturbances such as surface waves, currents and the impact pile driving

process itself all influence the domain. Moreover, the system returns to its in-air state when

retracted. Consequently, it is difficult to monitor whether the air volume in the resonators

decreases during the monopile installation process. This chapter investigates the influence of a

reduction of encapsulated air on the sound attenuation of a vertical system of Helmholtz-type

acoustic metamaterials. The model setup is depicted in Figure 6.1, where the air inside the

resonators is highlighted with a blue shading.

Figure 6.1: Vertical system of Helmholtz-type acoustic metamaterials in a bounded domain excited by a point source.

The domain is bound by a pressure release boundary at 𝑧0 = 0 m and a rigid boundary at 𝑧𝐷 = 10 m. A cylindrical

radiation condition is considered.
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Chapter 6. Air Volume Reduction in a Vertical System of Helmholtz-type Acoustic

Metamaterials

6.1. Frequency-Domain Analysis
In chapter 4, the depth dependent resonator characteristics for a naturally compressed reference

resonator are determined. Additionally, the characteristics are determined for reference resonators

with a 30% and 70% reduction of encapsulated air. To study the effect of a reduction of

encapsulated air on the behaviour of a vertical system of Helmholtz-type acoustic metamaterials,

the three sets of resonator characteristics are applied to the system introduced in the beginning of

this chapter. The system parameters are listed in Table 6.1. In Figure 6.2, the frequency response

functions of the different systems are plotted. Additionally, a transmission loss plot is included.

[m] Main study

𝐷 10

𝑟1 2

𝑟2 1

Δ𝑟 0.1

𝑧𝑆 5

𝑧𝑅 5

Δ𝑧 1

Δ𝑉𝑎 0%, 30%, 70%

Table 6.1: Parameters for a vertical system of Helmholtz-type acoustic metamaterials in a bounded domain, excited by a

point source.

For a decrease in air volume of 30%, it is observed that the frequency range in which sound

amplification occurs shifts to slightly higher frequencies. Subsequently, the attenuation range

due to local resonance shifts to a slightly higher frequency range, which is in line with the

change in natural frequency observed in Figure 4.4a. Furthermore, the unwanted amplification

at low frequencies slightly decreases because the spring stiffness slightly increases. The large

downward outlier at 110 Hz is exactly at the cut-on frequency of the second propagating mode

and is therefore attributed to the semi-analytical solution method. Other than this, in a case

where 30% of the air inside the resonators is lost, no extreme sensitivity is observed. However,

in a case where the air level inside the resonator decreases by 70% more complex behaviour is

observed. The attenuation due to local resonance coincides with the broadband attenuation range

between 80 Hz and 180 Hz. Therefore, the positive transmission loss at frequencies above the

natural frequencies of the individual resonators is shifted to higher frequencies, which decreases

the frequency range in which positive transmission loss occurs (this is observed especially well

in Figure 6.2b). Similar to the other graphs, an outlier is observed at the cut-on frequency of

the second, third and fourth normal modes. Furthermore, it is observed that the unwanted

amplification of the sound pressure level is dramatically decreased. This is in agreement with

the steep increase in spring stiffness observed in Figure 4.4b.
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(a) Sound Pressure Level (b) Transmission Loss

Figure 6.2: Frequency response function of a vertical system of Helmholtz-type acoustic metamaterials, for three

different cases (0% air loss, 30% air loss and 70% air loss).

It must be added that the sensitivity (or robustness) of the system is now only analysed on the

basis of acoustic coupling. The mechanical coupling, when a Helmholtz-resonator based NMS

is fabricated into a mechanical structure, is not taken into account. Therefore, any additional

low-frequency resonance, attributed to the structure, is not taken into account.

6.2. Conclusion
This chapter examines how changes in the air volume affect the noise attenuation capabilities

of a vertical system of Helmholtz-type acoustic metamaterials. It is found that variations of air

volumes in the resonators at a specific water depth impact the lumped component characteristics

of the resonator. The natural frequency and the spring stiffness increase if the volume of

encapsulated air decreases, whereas the damping ratio decreases. This is in accordance with the

theory that describes the lumped component mass-spring-damper.

To investigate the effect of a reduction of encapsulated air on the noise mitigation performance of

a Helmholtz-type meta-NMS, systems with a 0%, 30% and 70% reduction of encapsulated air are

compared. A 30% reduction of encapsulated air results in a minimal change in the frequency

range where sound amplification occurs. Additionally, the frequency range in which positive

transmission loss occurs becomes slightly more narrow. These observations are attributed to

the fact that the target frequencies are slightly more spread out over depth. However, at this

level of reduction, the system still shows behaviour similar to the case without a reduction of air

and is therefore robust to a moderate loss of air. At a 70% loss of air, however, the robustness of

the system becomes more sensitive. This is expected as the natural frequency, spring stiffness

and damping ratio of the resonators all show a significantly larger increment (or decrement)

over depth. It is observed that the magnitude of the amplification is decreased dramatically, and

that the peak of the amplification is clearly shifted to a higher frequency. This is attributed to

the significant increase in natural frequency and spring stiffness of the individual resonators.

Because of this, the region of amplification overlaps with the initial frequency range where

positive transmission loss occurs, subsequently narrowing the region of transmission loss. This

shows that the behaviour of the system is sensitive to a large reduction of encapsulated air, and

that this effect is not straightforward to predict. Therefore, the tuning process requires great

care. If the amplification of the pressure field shifts to frequencies with higher energy, this can

cause dramatic increase in noise. Additionally, if the frequency range in which noise is mitigated

becomes more narrow, the noise mitigation properties of the system decrease. Furthermore, any

effects because of mechanical coupling expected for an actual Helmholtz-resonator based NMS

structure would provide additional low-frequency interaction, which will results in even more

unpredictable behaviour. These findings indicate that the performance of the system depends on

maintaining an optimal air volume within the resonators.





7
Case Study: Approximation of a

Mach Wave from Offshore Impact
Pile Driving

In the previous chapters, a single point source is used to investigate the behaviour of different

configurations of (systems of) Helmholtz-type acoustic metamaterials. Because of their mathe-

matical simplicity, point sources are a convenient application when researching the behaviour

of, and interaction between, acoustically coupled resonators. However, it does not accurately

represent the pressure field radiated by a vibrating monopile excited by an impact hammer. To

address this limitation, the pressure field radiated by a vibrating monopile is approximated by

exciting a vertical array of phased monopole point sources, based on the work of Reinhall and

Dahl (2011) [40]. The sources are distributed equally along the z-axis of the domain (Δ𝑧𝑆), at

𝑟0 = 0 m. A schematisation of the domain is included in Figure 7.1 and the parameters are listed

in Table 7.1

Figure 7.1: Vertical system of Helmholtz-type acoustic metamaterials in a bounded domain excited by an array of 10

phased point sources. The domain is bound by a pressure release boundary at 𝑧0 = 0 m and a rigid boundary at 𝑧𝐷 = 10

m. A cylindrical radiation condition is considered.

Firstly, the definition of the new source term is discussed. Thereafter, the resulting pressure

field is analysed. Finally, the noise attenuation of different configurations of a vertical system of

Helmholtz-type acoustic metamaterials is investigated.
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[m] Main study

𝐷 10

𝑟1 2

𝑟2 2

Δ𝑟 0.1

Δ𝑧𝑟 1

Δ𝑧𝑆 1

Table 7.1: Parameters for a vertical system of Helmholtz-type acoustic metamaterials in a bounded domain, excited by an

array of phased point sources.

7.1. Acoustic Sources
The most simple representation of an acoustic source is a monopole point source. A monopole

point source is a point with negligible geometry (i.e. negligible with respect to its surroundings),

that alternately acts as a fluid source and a fluid sink. The frequency, or frequency range, at

which this alternation occurs defines the radiated pressure field. For a simple point source, the

source term of the inhomogeneous Helmholtz equation is expressed as

𝑓 (𝜔) = 𝑆𝜔𝛿(r − r0), (7.1)

where 𝑆𝜔 represents the amplitude of the source and 𝛿(r − r0) represents the Dirac delta function.

The propagation pattern of a monopole point source is different than that of offshore pile driving

noise [17]. In offshore monopile foundation installation, an impact hammer is most widely

used to drive the pile into the seabed. The force of an impact hammer can be modelled as a

Gaussian-type impulse. However, the response of a hammer impulse is not sufficient to accurately

represent the vibrations that are radiated into the water column during pile driving. For instance,

Tsouvalas (2014) describes monopiles as high-order, thin-walled shells and the water column

(and soil) as a three-dimensional continuous medium [48]. To investigate the behaviour of a

vertical system of Helmholtz-type acoustic metamaterials, an approximation of the pressure wave

radiated during offshore impact pile driving is sufficient. In chapter 4, chapter 5 and chapter 6 the

pressure field is defined by a monopole point source. However, in this chapter the approximation

of the pressure field radiated by a vibrating monopile is implemented. Therefore, it is important

to briefly elaborate on the influence of the monopile material and shape on the orientation of the

pressure wave through the water column.

Figure 7.2: Finite element model of a monopile excited by an impact hammer and the resulting pressure field at four

different time steps [50][40].

The compressive waves through a monopile due to an impact hammer strike are Mach waves

[17]. A Mach wave is a wave of which the speed is greater than its surroundings [40]. Through a
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steel solid, the compressive wave travels at a speed of 𝑐𝑝 = 5000 m/s (at 20 degrees Celsius). The

speed of sound through water is 𝑐𝑤 = 1461 m/s (at 20 degrees Celsius). Therefore, the pressure

wave radiates into the water column in a conical pattern. An example of this is provided in

Figure 7.2. This conical pattern is called a Mach cone, and its angle is defined by Reinhall and

Dahl (2011) [40] as

𝜃𝑤 = 𝑠𝑖𝑛−1

(
𝑐𝑤

𝑐𝑝

)
, (7.2)

where 𝜃𝑤 is the angle under which the Mach cone propagates. It is possible to approximate the

pressure field resulting from a Mach cone shock wave by using a sequence of point sources with

a time delay in the form of a phase lag [37]. In the frequency domain, a point source can be

represented by Equation 7.3, where 𝐴( 𝑓 ) is the amplitude of the source, 𝑓 is the frequency and 𝜏
is the time delay of the point source, which is equal to the source depth divided by the speed of

sound through the monopile.

𝑆𝜔 = 𝐴( 𝑓 )𝑒 𝑖2𝜋 𝑓 𝜏. (7.3)

To approximate a vibrating monopile, the source strength 𝐴( 𝑓 ) is defined by an amplitude

weighting spectrum, which Reinhall and Dahl (2011) derived from measurements (Figure 7.3).

For the sake of simplicity, this research does not implement a weighted amplitude spectrum.

Instead, a uniform amplitude is assumed.

Figure 7.3: Amplitude weighting spectrum [40].

7.2. Unmitigated Pressure Field in Frequency Domain
On the basis of the method for creating a monopile-like source in the form of an array of monopole

point sources introduced in section 7.1, this section discusses the pressure field resulting from

such a source type. The pressure field is plotted along a 2D slice for individual source frequencies

of 𝑓 = 75 Hz (Figure 7.4a) and 𝑓 = 300 Hz (Figure 7.4b). In total, 10 monopole point sources are

included in a bounded domain in FEM, as introduced in section 3.3. Similar to the point sources

in the frequency-domain simulations conducted in the previous chapters, the individual point

sources have an amplitude of 1 N/m.
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(a) 75 Hz. (b) 300 Hz.

Figure 7.4: Pressure field of a schematised monopile source, consisting of 10 phased point sources.

It is important to note that a frequency-domain representation of a pressure field induced by an

array of phased point sources does not capture transient shock wave formation. Therefore, a Mach

cone pressure wave can not be observed. However, the spatial structure of a Mach cone pressure

wave can be observed by analysing the amplitudes and the phase changes of the pressure field in

frequency domain. In Figure 7.4, it is observed that the line along which the pressure is equal

to zero (zero-pressure line, caused by destructive interference) is predominantly straight for a

source frequency of 75 Hz, whereas the the zero-pressure lines show a more complex pattern at

300 Hz. This is explained by the fact that the phase change is proportional to the frequency of

the source. From Figure 7.4a, the geometry and angle of the Mach cone can be deduced, which

are in accordance with the expected shape of the actual Mach cone pressure wave introduced by

Reinhall and Dahl (2011) [40]. Additionally, Figure 7.4b shows finer details of the interaction

between different wavefronts at 300 Hz, which is a result of more rapid phase changes. The

corresponding phase plots are included in Appendix F.

As the pressure wave propagates under an angle, it is hypothesised that a vertical orientation

is not optimal for an underwater Helmholtz-type resonator. Considering the assumption that

the pressure is equal over the entire surface of the open end of the resonator, the mass of the

resonator (water inside the resonator) can only move vertically. Therefore, it is expected that the

resonator is excited optimally if the pressure wave propagates in the direction of the degree of

freedom of the resonator. This hypothesis is tested in the next section.

7.3. Transient Response of a Mitigated Pressure Field
To investigate the relationship between the orientation of the resonators in a system of Helmholtz-

type acoustic metamaterials and the angle under which the pressure wave propagates, four

frequency-domain simulations are conducted using the FEM. Firstly, the pressure field is

produced without resonators present. Thereafter, three mitigated pressure fields are produced.

The resonators within the Helmholtz-type meta-NMS are positioned under three different angles

in the rz-plane: -34 degrees, 0 degrees and 17 degrees. The domain is excited by the array of

monopole point sources introduced in the previous section. The pressure is measured at 𝑟 = 𝑧 = 5

m, after which the inverse Fourier transform is applied to obtain the time-domain response

(Appendix E). The results are plotted in Figure 7.5. Two main observations are discussed below.
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Figure 7.5: Transient pressure response at 𝑟 = 5 m and 𝑧 = 5 m for three vertical systems of Helmholtz-type acoustic

metamaterials with different resonator orientations.

Firstly, it is observed that the orientation of the resonators within the system of Helmholtz-type

acoustic metamaterials does not significantly influence the pressure response. From this study, it

is not clear why no distinct differences are observed. Therefore, additional analysis is required.

At the end of this section, the SEL of the different configurations is analysed.

Secondly, it is observed that the pressure response is amplified after approximately 0.04 seconds,

in the domains with resonators present. In order to further analyse the signals and substantiate

this observation, a time-frequency analysis is conducted. A time-frequency analysis is an analysis

that simultaneously studies time and frequency domains. The time signal is sectioned into bins,

where each bin represents a unique part of the time signal. Each bin shows the amplitude of

the frequency, or frequencies, of which that section of the impulse is built up. In Figure 7.6,

time-frequency plots of two of the signals from Figure 7.5 are depicted; the unmitigated signal

and the signal mitigated by the system of vertically orientated resonators.

(a) Unmitigated. (b) Mitigated.

Figure 7.6: Time-frequency analysis.

In Figure 7.6a, it is observed that the governing frequency of the first bin, which corresponds

to the first 0.025 seconds of the signal, is in the range of 40-50 Hz, with additional frequencies

centred around 125 Hz and 175 Hz. In Figure 7.6b, it is observed that the magnitude of the

energy at the two high frequencies reduces and that the governing frequency of the mitigated
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signal is concentrated around 50 Hz. This suggests that, in the first 0.025 seconds of the impulse,

the energy is transferred from high to low frequencies when resonators are present, which is in

accordance with the frequency-domain results obtained in chapter 5. A drawback of analysing

the entire transient response is that the details in the part of the signal with low amplitudes (i.e.

after the first bin) get lost in the time-frequency plot because the scale is based on the highest

amplitude of the signal, which is present in the first 0.025 seconds of the impulse. Therefore, a

snippet of the signal is produced to analyse the rest of the transient response.

Figure 7.7: Snippet of the time series introduced in Figure 7.5.

In the figure above, a snippet (0.05 to 0.15 seconds) of the original signals plotted in Figure 7.5

is depicted. It is observed that, because the scale of the y-axis is smaller, this section of the

signal shows more details than the corresponding section in Figure 7.5. This is confirmed by the

time-frequency plots of the snippet, included in the figure below. It is important to note that

the scaling between the two time-frequency plots is still different, which is in accordance with

the amplitudes of the pressure response in Figure 7.7. Nonetheless, Figure 7.8 shows a clear

breakdown of the governing frequencies within the signals.

(a) Unmitigated. (b) Mitigated.

Figure 7.8: Time-frequency analysis.

It is observed that the governing frequencies in this section of the unmitigated signal are much

higher than 50 Hz, whereas in the mitigated signal they are concentrated between 50 Hz and 75
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Hz. From chapter 5, it is known that for a Helmholtz-type meta-NMS with identical resonators

amplification occurs at frequencies between 0 and 75 Hz, with the highest amplifications between

50 Hz and 75 Hz. When combining the observations made when analysing the time-frequency

plots in Figure 7.6 and Figure 7.8, it is found that the presence of the resonators amplifies the

low-frequency contribution of the transient response and reduces the high frequency contribution

of the response. This is again in accordance with the frequency-domain results obtained in

chapter 5.

To investigate the influence of the manipulation of different parts of the transient response

discussed above, the transient responses are analysed by calculating the single event time-

integrated sound pressure level, usually called the sound exposure level (𝐿𝐸). This provides the

sound pressure level of an isolated single sound impulse, or transient sound, over a stated time

interval 𝑇. The sound exposure level is defined as

𝐿𝐸 = 10𝑙𝑜𝑔10

©­«
∫ 𝑡2

𝑡1
𝑝2(𝑡)𝑑𝑡
𝐸0

ª®¬ , (7.4)

where 𝑝(𝑡) is the pressure at time 𝑡, 𝑡1 and 𝑡2 denote the beginning and the end of the impulse

time interval 𝑇 and 𝐸0 is the reference pressure value (10
−6 𝑃𝑎2𝑠 in water). The results are

included in Table 7.2.

Configuration SEL [dB]

Unmitigated 69.29

0
◦

tilt 69.77

-34
◦

tilt 69.73

17
◦

tilt 69.75

Table 7.2: Sound exposure level of the four transient pressure responses plotted in Figure 7.5.

Interestingly, the sound exposure levels are very similar for all four configurations. Firstly, the

results suggest that the system of Helmholtz-type acoustic metamaterials does not actually

mitigate the transient sound. It is important to note, however, that the sources used to obtain the

transient responses are impulses with identical amplitudes for each frequency. It is known that

the pressure waves radiated by a vibrating monopile can be defined by a weighted amplitude

spectrum. An example of such an amplitude weighting spectrum is defined by Reinhall and

Dahl (2011) and depicted in Figure 7.3, where the highest amplitudes are present at frequencies

between 100 Hz and 400 Hz [40]. From this, it is deduced that there is much more energy present

in the frequency range where transmission loss would occur, compared to the frequency range

that would be amplified. Therefore, these observations must be taken with great care. Secondly,

it is observed that the 𝐿𝐸 measurements in the domains in which tilted resonators are included

show a very minimal decrease in 𝐿𝐸 measurement compared to the domain in which vertically

orientated resonators are included. In addition to this, it must be noted that the tilt of a resonator

changes the shape of the air- and water volume inside the resonator. A result from this is that

the encapsulated air inside the resonator becomes more prone to leakage during operation,

causing uncertain behaviour of the system (discussed in chapter 6). This, in combination with

the minimal magnitude of the difference in SEL, suggests that a vertically orientated resonator is

most effective.

7.4. Conclusion
In this chapter, the pressure field resulting from a phased array of monopole point sources is

produced, approximating the pressure field corresponding to a vibrating monopile excited by

an impact hammer. It is noted that the geometry and angle of the Mach cone are in accordance

with the expected shape of a Mach cone pressure wave approximating a pressure wave radiated

by a vibrating monopile. From this, it is hypothesised that the orientation of a Helmholtz-type

resonator influences its performance. This hypothesis is tested by introducing a vertical system of
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Helmholtz-type acoustic metamaterials with tilted resonators into the domain and examining the

corresponding transient responses. Analysis of the transient responses shows that the orientation

of the resonator does not significantly influence the transient response of the Helmholtz-type

meta-NMS. Additional reasoning suggests that a vertical orientation is most feasible, as this

respects the geometrical simplicity and robustness of an open-ended resonator most.

Furthermore, the behaviour of the transient responses for a mitigated and an unmitigated system

are analysed. It is observed that the impulse is initially mitigated. However, the frequency of the

mitigated transient response becomes lower, and the amplitude increases. This is in accordance

with the results obtained in chapter 5, where it is observed that the low-frequency component

of the response is amplified and the high-frequency component of the response is mitigated.

Therefore, the governing frequency of the mitigated transient response is concentrated at 50-75

Hz. An important consideration regarding this observation is that the amplitude spectrum of

the source is unweighted, or constant, whereas the amplitude spectrum of a realistic vibrating

monopile is weighted. Therefore, it is expected that the mitigation of the transient response using

a weighted amplitude spectrum increases. From this, it is concluded that the performance of the

system is sensitive to type of source, especially its frequency spectrum, and should therefore

always be carefully tuned to its target frequency.
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Conclusions and

Recommendations

This thesis aims to contribute to the knowledge base of periodic, low-frequency NMSs for

offshore impact pile driving through literature research, semi-analytical modelling and numerical

modelling. In this chapter, the research questions are answered based on the sub conclusions

drawn throughout this research. Additionally, the limitations discussed in the introduction to

this thesis are recalled, and their implications are discussed. Finally, recommendations for future

work are provided.

8.1. Conclusions
The main research question of this thesis reads: What is the optimal configuration of a periodic
Helmholtz-type NMS for offshore impact pile driving To answer this research question, the following

studies have been conducted. Firstly, the behaviour of a single, horizontal array of Helmholtz-type

resonators is studied in multiple configurations. The key findings are:

1. Local resonance causes amplification of the pressure field at frequencies below the natural

frequency of the individual resonators within the array.

2. Local resonance causes reduction of the pressure field at frequencies above the natural

frequency of the individual resonators within the array.

3. The effects of local resonance are more pronounced for arrays with a smaller lattice constant.

4. The effects of local resonance are more pronounced for arrays with a larger number of

resonators.

5. Functional grading demonstrates the ability to reduce this amplification, while maintaining

the reduction of the pressure field.

Secondly, the behaviour of a Helmholtz-type NMS comprising of multiple horizontal arrays of

Helmholtz-type resonators with depth-dependent characteristics, evenly spaced throughout the

water column, is studied in multiple configurations. The key findings are:

1. Similar to the results of the study above, the amplification and reduction of the pressure

field due to local resonance is observed.

2. The amplification and reduction of the pressure field is larger if more horizontal arrays of

resonators are included in the domain (i.e. the vertical gap between each layer decreases).

Thirdly, a case study examining the effect of a Helmholtz-type NMS on an approximation of a

pressure field radiated by a vibrating monopile. Here, a vertical array of point sources, activated

with a phase lag, produces a pressure field which is examined in the time domain. The key

findings are:

45
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1. The local orientation of the individual resonators does not significantly influence the noise

mitigation performance of a Helmholtz-type NMS.

2. The low-frequency component of the transient response is amplified, whereas the high-

frequency component of the transient response is mitigated. In other words, energy is

transferred from high to low frequencies.

3. In the case of an array of sources with an unweighted amplitude spectrum, the sound

exposure level is not reduced when a system of Helmholtz-type acoustic metamaterials is

implemented. However, it is expected that the sound exposure level will be reduced when

a realistic, weighted amplitude spectrum is applied.

On the basis of these results, the main research question is answered as follows:

A Noise amplification is expected at frequencies below the natural frequency of the individual

Helmholtz-type resonators within the system, and noise attenuation is realised at fre-

quencies above the natural frequency of the individual Helmholtz-type resonators within

the system. Therefore, the energy in high frequencies is transported to low frequencies.

Horizontal arrays of 20 resonators with a horizontal spacing of 0.1 meter, and a vertical

spacing of 1 meter between each array show a promising balance between the magnitude

of the attenuation and the unwanted amplification.

B Functional grading, in the form of incrementally decreasing the natural frequencies of the

individual resonators in steps of up to 3 Hz along each horizontal array, demonstrates

the ability to reduce this pressure amplification while also providing improved noise

attenuation. This is therefore a promising addition to the configuration of a Helmholtz-type

NMS.

C A vertical resonator orientation is most feasible, respecting the simplicity and robustness of

the open-ended resonator.

In addition to the main research question, two research sub-questions are drafted. The first

research sub-question reads: How does the air-water ratio of the resonators inside a Helmholtz-type NMS
influence its noise reduction properties? To answer this question, the depth-dependent characteristics

are determined for two additional situations: a 30% reduction of air volume inside the resonators

and a 70% reduction of air volume inside the resonators. The key findings are:

1. In the case of a 30% reduction, the amplification of the pressure field is reduced. However,

the noise mitigation is slightly reduced as well.

2. A reduction of 70% of the air inside the resonators reduced the unwanted amplification

dramatically. However, it causes noise mitigation to occur at a frequency of 50 Hz more

than the benchmark case (0% air reduction).

From this, it is concluded that the system is sensitive to a large reduction of air volume inside the

resonators.

The second research sub-question reads: How does the tilt of the resonators inside a Helmholtz-type
NMS influence its noise reduction properties? This question is answered by examining the transient

response of a vertical, phased array of point sources mimicking a vibrating monopile in FEM,

and comparing three cases where resonators are included under different orientations. The key

finding is:

1. The noise attenuation does not significantly increase if the resonators are tilted, compared

to vertically orientated resonators.

From this, it is concluded that the Helmholtz-NMS attenuates noise most efficiently if the

resonators are orientated vertically.

This study demonstrates the effect of periodicity in a Helmholtz-type NMS for offshore impact

pile driving. An important take-away, based on the conclusions above is that the system can be

sensitive to the type of force, especially the frequency at which the force radiates pressure waves.

For instance, it is known that the bulk of the energy radiated by a monopile during pile driving
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is in the lower end of the frequency spectrum. Especially if air is lost from the system during the

pile driving process, the risk of amplifying the pressure field increases.

8.2. Limitations
In the introduction (chapter 1), the limitations of this thesis are briefly introduced by defining

the scope of the study. Based on this, the implications of these limitations are discussed in this

section:

• Source. In the bulk of this thesis, a point source is used to radiate a pressure wave into a

domain. It is clear that the pressure wave radiated by a point source does not accurately

represent the pressure wave radiated by a vibrating monopile. In order to accurately model

noise from offshore impact pile driving, an array of phased point sources is not sufficient

either. One of the main consequences of this is that the source amplitude spectrum is

not accurately described. If the results are misinterpreted, or if the limitations are not

carefully considered, this can in potentially misleading conclusions. For instance, the sound

exposure level calculations in chapter 7 show that the system does not actually mitigate the

single event time-integrated sound pressure level. However, the results do clearly show

the frequency-dependency of the Helmholtz-type meta-NMS. Therefore, it is concluded

these results are strongly related to the assumption that the amplitude spectrum is constant,

instead of weighted.

• Seabed. The seabed is modelled as a rigid, fully reflective boundary in the studies

considering a bounded domain. In reality, pressure waves that are radiated into the soil

through the monopile are also re-radiate into the water column. In order to properly

include the influence of the soil into the model, sophisticated acoustic wave propagation

models, lab testing and field testing is required. However, as a near field NMS is not

designed to mitigate pressure waves that are radiated into the water column from the soil,

this limitations is not governing in the study of the acoustic coupling of the resonators

within a Helmholtz-resonator based NMS. Nonetheless, it must be noted that in reality

additional, soil-related, pressure dynamics are expected in the far field.

• Damping. The damping ratio has been determined by applying ideal gas theory to the

pressure at the open end of a resonator obtained from COMSOL Multiphysics. Contradictory,

COMSOL Multiphysics requires user-defined damping as a model input. Therefore, the

user-defined damping governs the resulting damping ratio. As discussed in chapter 4,

damping is included in COMSOL Multiphysics in the form of a complex speed of sound.

In order to properly define the damping of a Helmholtz-type resonator, the attenuation

characteristics must therefore be correctly defined first. For instance, reflection and

scattering at the shell of the resonators must be examined, as well as visco-thermal losses

within the resonator cavity.

• Mechanical Coupling. In this study, the acoustic coupling between individual Helmholtz-

type resonators in a system of Helmholtz-type resonators is studied. When considering an

actual Helmholtz-resonator based NMS, the resonators are embedded within a structure.

Therefore, it is expected that the response of the actual system and its mechanical coupling

will be different. This will, most likely, influence the low-frequency spectrum of the

response. It is important to note that amplification of the pressure field is expected at low

frequencies. Therefore, the behaviour at low-frequencies will be even more sensitive when

the actual structure is modelled.

• Offshore Conditions. This study is conducted in a controlled virtual environment. In other

words, the potential influence of the current, surface waves and vessel interaction is not

considered. It must be noted that the performance of the system is very much dependent

on the volume of encapsulated air within the individual Helmholtz-type resonators.

Therefore, the conclusions drawn in this study are always with careful consideration of the

approximations and simplifications.
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8.3. Recommendations
On the basis of the limitations discussed in the previous section, recommendations for future

research are discussed. As mentioned in the previous section, there are uncertainties regarding

the damping characteristic of a Helmholtz-type resonator. In a conventional Helmholtz resonator,

attenuation occurs in the form of visco-thermal losses in the neck and cavity. Additionally,

in many applications refraction, reflection and scattering also occur. However, in an offshore

application much is unknown about the attenuation of a Helmholtz-type resonator. Therefore,

it is interesting to conduct a series of controlled physical scale tests in which the damping

characteristics of a Helmholtz-type resonator, or an array of Helmholtz-type resonators, is

investigated.

In addition to the acoustic interaction between individual Helmholtz-type resonator and its

influence on the noise mitigation of an Helmholtz-resonator based NMS, it is mentioned that the

dynamics of the structure of the NMS will have an influence on its noise mitigation performance.

From literature, it is known that the collective resonance of the NMS structure acts in the low-

frequency end of the noise spectrum. To predict the behaviour of a Helmholtz-resonator based

NMS with fewer uncertainties, a full structure including a frame and the arrays of Helmholtz-

type acoustic metamaterials must be modelled. This can be done, for instance, by mechanically

coupling the individual resonators through a series of springs or rods with characteristics similar

to that of a steel frame. By comparing this to a system where the Helmholtz-type resonators

are modelled individually, without mechanical coupling, a better understanding of the acoustic

behaviour of the full system is obtained. It is expected that the sound pressure is amplified at very

low frequencies. For monopiles with a relatively small diameter (compared to XXL monopiles),

this does not pose a big problem as the energy in the pressure wave radiated during offshore

impact pile driving is lower at low frequencies. However, it is expected that for larger monopiles

(diameter of 11 meters) low frequencies become more governing. Therefore, the structural

resonance of a near-pile NMS can amplify the governing frequencies, causing a dramatic increase

in sound pressure level. In addition to this, it is possible that the frequency range at which this

amplification becomes broader if the volume of encapsulated air in the resonators decreases

during operation, or if the system is not tuned to the correct monopile or environment. In this

case, the low-frequency behaviour of the system becomes even more unpredictable.

Based on the above, an interesting new field of research lies in the composition of the structure

of near-pile NMSs. For instance, metamaterial theory can be used to design a structure that

is capable of mitigating structural vibrations in specific frequency ranges through stop bands,

in addition to the stop bands obtained from the acoustic coupling of the resonators within

the structure. In this case, additional frequency ranges can be targeted, or the low-frequency

excitation of the structure can be reduced.
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A
Appendix: Green’s Function

To explain the theory behind the Green’s function, the following linear system is considered

𝐿𝑢(𝑥) = 𝑓 , (A.1)

where 𝐿 is a linear differential operator on the domain 𝑥 ∈ [0, 𝑙] with prescribed boundary

conditions. The solution of this system is easily formulated as

𝑢(𝑥) = 𝐿−1 𝑓 . (A.2)

Next, consider the Dirac delta function 𝛿(𝑥 − 𝑥0). A specific property of the Dirac delta function

is defined as follows 〈
𝑓 (𝑥), 𝛿(𝑥 − 𝑥0)

〉
= 𝑓 (𝑥0). (A.3)

Equation A.3 shows the so called sifting property of the Dirac delta function. The inner product

of a forcing function 𝑓 (𝑥) and the Dirac delta function results in the value of the forcing function

at 𝑥0. This is an important property for the construction of a Green’s function. In order to solve

the Green’s function, consider the following steps〈
𝐿𝑢(𝑥), 𝐺

〉
=
〈
𝑓 , 𝐺

〉
〈
𝑢(𝑥), 𝐿∗𝐺

〉
=
〈
𝑓 , 𝐺

〉〈
𝑢(𝑥), 𝛿(𝑥 − 𝑥0)

〉
=
〈
𝑓 , 𝐺

〉
𝑢(𝑥0) =

〈
𝑓 , 𝐺

〉
=

∫ 𝑙

0

𝑓 (𝑥0)𝐺(𝑥, 𝑥0)𝑑𝑥0.
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B
Appendix: Normal Mode Method

In acoustics, the wave number is the spatial frequency of an acoustic wave (radians per meter).

The wave number relates the angular frequency of a wave through a medium to the speed

of sound through a medium. In a two-dimensional domain with cylindrical coordinates two

wave numbers exist to account for the spatial frequency of the wave in horizontal and vertical

direction, these wave numbers are called the horizontal wave number and the vertical wave

number, respectively. The form of the horizontal and vertical wave numbers define the type of

Hankel function 𝐻
(𝑛)
0

is required. The Hankel functions, or the Bessel functions of the third kind,

are linear combinations of the first and second Bessel functions. The Hankel functions express

outward- and inward-propagating cylindrical wave solutions of the cylindrical wave equation

for 𝑟 → ∞, and play an important role in correctly implementing geometrical spreading in a

cylindrical coordinate system.

𝐻
(1)
0
(𝑘𝑟) = 𝐽0(𝑘𝑟) + 𝑖𝑌0(𝑘𝑟) ≃

√
2

𝜋𝑘𝑟
𝑒 𝑖(𝑘𝑟− 𝜋

4
)

(B.1)

𝐻
(2)
0
(𝑘𝑟) = 𝐽0(𝑘𝑟) + 𝑖𝑌0(𝑘𝑟) ≃

√
2

𝜋𝑘𝑟
𝑒−𝑖(𝑘𝑟− 𝜋

4
)

(B.2)

In [23] the horizontal and vertical wave numbers in a cylindrical coordinate system are derived

by applying the normal mode method to the well defined Isovelocity Problem, which solves a

profile with constant density (and subsequently constant sound speed) over depth. Consider the

general solution

Ψ𝑚(𝑧) = 𝐴 sin(𝑘𝑧𝑧) + 𝐵 cos(𝑘𝑧𝑧), (B.3)

with vertical wavenumber 𝑘𝑧

𝑘𝑧 =

√(𝜔
𝑐

)
2

− 𝑘2

𝑟 . (B.4)

Where 𝑘𝑟 is the horizontal wavenumber, 𝜔 is the angular frequency and 𝑐 is the speed of sound.

At the surface (𝑧 = 0), a pressure release boundary condition is considered, resulting in 𝐵 = 0. At

the seabed (𝑧 = 𝐷), a rigid boundary condition is considered, which leads to

𝐴𝑘𝑧 cos(𝑘𝑧𝐷) = 0. (B.5)

In this case, either 𝐴 = 0 or

𝑘𝑧𝐷 =

(
𝑚 − 1

2

)
𝜋, 𝑚 = 1, 2, ... (B.6)

Where𝑚 is the mode number. Combining Equation B.4 and Equation B.6 results in the formulation

of the horizontal wavenumber

𝑘𝑟 =

√(𝜔
𝑐

)
2

−
[(
𝑚 − 1

2

)
𝜋
𝐷

]
2

. (B.7)
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Equation B.6 and Equation B.7 denote the relation between the frequency and wave number of a

complex wave and subsequently the dispersion relation. The real and imaginary parts of the

horizontal and vertical wavenumbers are plotted in Figure B.1 for a frequency range between 0

and 300 Hz, i.e. the dispersion relation. It is observed that the real and imaginary part of the wave

numbers are positive. Therefore, the Hankel function of the first kind is used for propagating

waves in the Green’s function (Equation 3.17).

Figure B.1: Dispersion relation for a waveguide with a water depth of 𝐷 = 10 m, 300 Hz.

In the figure below, the horizontal dispersion relation for a waveguide with a water depth of

𝐷 = 10 m is depicted for frequencies from 0 to 300 Hz (e.g. the relation between the horizontal

wave number 𝑘𝑟 and the frequency). It is observed that for this combination of water depth and

frequency range, four propagating modes exist.

Figure B.2: Dispersion relation for a waveguide with a water depth of 𝐷 = 10 m, 0 to 300 Hz.

In the figure below, the absolute pressure at 𝑟 = 4 m from a monopole point source with unit

strength resulting from Equation 3.18 is depicted. Similarly to Figure B.2, the four propagating
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modes are clearly visible.

Figure B.3: Absolute pressure in a domain with a water depth of 𝐷 = 10 m exited by a monopole point source with unit

strength, measured at 4 m from the source.





C
Appendix: Linear System

Based on a paper by Peng et al. (2018), the method to derive the pressure at the open end of a

Helmholtz-type resonator is provided [37]. First, consider the boundary integral formulation for

a point source in a bounded medium [23].

𝑝̃(r, 𝜔) =
∫
𝑆

[
𝐺𝜔 (r, r0)

𝜕𝑝̃ (r0)
𝜕n0

− 𝑝̃ (r0)
𝜕𝐺𝜔 (r, r0)

𝜕n0

]
𝑑𝑆0 −

∫
𝑉

𝑓 (r0)𝐺𝜔 (r, r0) 𝑑𝑉0. (C.1)

Substitute the location of the the field location r by the location of the centre point of the resonator

r𝑅 as r = r𝑅𝑚 . The boundary integral formulation then becomes

𝑝̃(r𝑅𝑚 , 𝜔) =
𝑀∑
𝑛=1

{∫
𝑆𝑅
𝑛

[
𝐺𝜔

(
r𝑅𝑚 , r𝑛

) 𝜕𝑝̃
(
r𝑅𝑛
)

𝜕n0

− 𝑝̃
(
r𝑅𝑛
) 𝜕𝐺𝜔

(
r𝑅𝑚 , r𝑛

)
𝜕n0

]
𝑑𝑆0

}
−
∫
𝑉

𝑓 (r𝑆)𝐺𝜔

(
r𝑅𝑚 , r𝑆

)
𝑑𝑉0.

(C.2)

In this formulation, 𝑟𝑅𝑚 is the location of resonator 𝑚 and the surface of the open end of resonator

𝑛 is denoted by 𝑆𝑅
𝑛 . The spatial derivative is substituted by the frequency response function

𝜕𝑝̃
(
r𝑅𝑛
)

𝜕n0

= 𝜌𝑤𝜔
2𝐻(𝜔)𝑝̃

(
r𝑅𝑛
)
. (C.3)

and every term including the pressure at the open end of the resonator is moved to the left-hand

side of the equation. From this, Equation C.2 is represented as a linear system
ℒ𝑅

1,1
ℒ𝑅

1,2
· · · ℒ𝑅

1,𝑀

ℒ𝑅
2,1

ℒ𝑅
2,2

· · · ℒ𝑅
2,𝑀

...
. . .

...
...

ℒ𝑅
𝑀,1

ℒ𝑅
𝑀,2

· · · ℒ𝑅
𝑀,𝑀


·


𝑝̃
(
r𝑅
1
, 𝜔

)
𝑝̃
(
r𝑅
2
, 𝜔

)
...

𝑝̃
(
r𝑅
𝑀
, 𝜔

)

=


q
(
r𝑅
1
, 𝜔

)
q
(
r𝑅
2
, 𝜔

)
...

q
(
r𝑅
𝑀
, 𝜔

)


(C.4)

Where L𝑅 = I + B𝑅

I =


1 0 · · · 0

0 1 · · · 0

...
...

. . . 0

0 0 · · · 1

 , B𝑅 =


ℬ𝑅

1,1
ℬ𝑅

1,2
· · · ℬ𝑅

1,𝑀

ℬ𝑅
2,1

ℬ𝑅
2,2

· · · ℬ𝑅
2,𝑀

...
. . .

...
...

ℬ𝑅
𝑀,1

ℬ𝑅
𝑀,2

· · · ℬ𝑅
𝑀,𝑀


. (C.5)

The terms ℬ𝑅
𝑚,𝑛 and q𝑅

𝑚 are defined as follows

ℬ𝑅
𝑚,𝑛 = −𝛼𝑆𝑅

𝑛𝐺𝜔

(
r𝑅𝑚 , r𝑅𝑛

)
𝜌𝜔2𝐻(𝜔) +

𝜕𝐺𝜔
(
r𝑅𝑚 , r𝑅𝑛

)
𝜕𝑧

(C.6)
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q𝑅
𝑚 = 𝑆𝜔𝐺𝜔

(
r𝑅𝑚 , r𝑆

)
(C.7)

By solving this linear system for p, the pressure at the open end of each resonator in the domain

is obtained.



D
Appendix: Sensitivity Receiver

Location for 1D Periodicity Study

To define the minimal distance of the receiver 𝑅 from the source 𝑆 at which the pressure ratio

(i.e. mitigated pressure at a specific range 𝑟 divided by the unmitigated pressure at that same

point) remains constant, a sensitivity study is conducted. In Figure D.1, the pressure ratio due to

a single resonator at 𝑟 = 2 m from the source is measured at six distances 𝑟 from the resonator. It

is observed that from 𝑟 = 2 m to 𝑟 = 16 m the pressure ratio decreases notably, whereas from

𝑟 = 32 m the pressure ratio converge to constant values. Therefore, in the study of section 5.1 the

receiver 𝑅 is located at a distance of 𝑟 = 32 m from the final resonator in the array.

Figure D.1: Caption
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E
Appendix: Time Domain Source

The time-domain pressure response of the source is transformed to a frequency-domain response

𝑆𝜔 by use of the Forward Fast Fourier Transform. The frequency-domain response 𝑆𝜔 is then

used at input in the boundary integral formulation in the BEM. The pressure response resulting

from the BEM calculations are subsequently transformed back to a time-domain response by use

of the Inverse Fast Fourier Transform. The Fourier transform pair is included in the equations

below.

𝑓 (𝑡) = 1

2𝜋

∫ ∞

−∞
𝑓 (𝜔)𝑒 𝑖𝜔𝑡𝑑𝜔 (E.1)

𝑓 (𝜔) =
∫ ∞

−∞
𝑓 (𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 (E.2)

In order to successfully apply the Fourier transform pair, the frequency- and time steps have to

be carefully defined. Jensen at al. (2011) provide a clear overview of the discretisation of the

time and frequency axes for Fast Fourier Transforms. Table E.1 shows the relevant parameters to

successfully apply both Fourier transforms in this study.

𝑁 𝑓 [-] 4800

𝑁𝑡 [-] 2 · 𝑁 𝑓

𝑡0 [s] 0

Δ𝑡 [s]
1

𝑁𝑡

𝑇 [s] 2 · Δ𝑡 · 𝑁 𝑓

Δ 𝑓 [Hz]
1

𝑇
𝑓0 [Hz] Δ 𝑓

𝑓𝑚𝑎𝑥 [Hz] 0.5 1

Δ𝑡

Table E.1: Time-stepping.
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F
Appendix: Phase Plots

Figure F.1: Phase at 75 Hz

Figure F.2: Phase at 300 Hz
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