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Abstract
Composite structures in transportation industries have gained significant attention due 
to their unique characteristics, including high energy absorption. Non-destructive test-
ing methods coupled with machine learning techniques offer valuable insights into failure 
mechanisms by analyzing basic parameters. In this study, damage monitoring technologies 
for composite tubes experiencing progressive damage were investigated. The challenges 
associated with quantitative failure monitoring were addressed, and the Genetic K-means 
algorithm, hierarchical clustering, and artificial neural network (ANN) methods were 
employed along with other three alternative methods. The impact characteristics and dam-
age mechanisms of composite tubes under axial compressive load were assessed using 
Acoustic Emission (AE) monitoring and machine learning.Various failure modes such as 
matrix cracking, delamination, debonding, and fiber breakage were induced by layer bend-
ing. An increase in fibers/matrix separation and fiber breakage was observed with altered 
failure modes, while matrix cracking decreased Signal classification was achieved using 
hierarchical and K-means genetic clustering methods, providing insights into failure mode 
frequency ranges and corresponding amplitude ranges. The ANN model, trained with 
labeled data, demonstrated high accuracy in classifying data and identifying specific fail-
ure mechanisms. Comparative analysis revealed that the Random Forest model consistently 
outperformed the ANN and Support Vector Machine (SVM) models, exhibiting superior 
predictive accuracy and classification using ACC, MCC and F1-Score metrics. Moreover, 
our evaluation emphasized the Random Forest model’s higher true positive rates and lower 
false positive rates. Overall, this study contributes to the understanding of model selection, 
performance assessment in machine learning, and failure detection in composite structures.
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1  Introduction

Filament winding is one of the most suitable production processes for cylindrical struc-
tures, which are usually used to produce tubes, shafts, and pressure vessels, due to control-
ling the volume fraction of the fibers, and making the desired angles [1]. These structures 
are subjected to various loads during installation and operation. These loads may be caused 
by various factors and cause significant internal damage that causes a sharp decrease in the 
strength at these sections. Therefore, the behavior of composite structures against incoming 
loads and also the parameters affecting them should be carefully investigated and studied, 
so that by knowing the behavior of these structures against various types of loading, the 
reliability of the structure can be increased. In order to investigate the characteristics of 
energy absorption in composite structures, it is necessary to identify the functional mecha-
nisms of energy absorption and determine the effect of each one on the energy absorption 
[2]. This issue has led to conducting research on the material properties and identifying 
damage mechanisms of composite materials due to external loading. The acoustic emission 
(AE) method is one of the methods used to check the mentioned cases. In the following, 
the research conducted in the AE field will be reviewed.

Fotouhi et al. [3] investigated the damage mechanisms of glass/epoxy samples with an 
initial interlayer separation under the three-point bending loading by classifying the AE 
signals with the C-means method. Ameur et  al. [4] investigated and identified failure 
mechanisms of carbon/flax hybrid composites by AE method. They obtained four classes 
of AE events by using an amplitude range, the cumulative number of impacts, and energy 
activity. Beheshtizadeh et  al. [5] used wavelet transform and Choi-Williams analysis to 
determine different failure mechanisms in three-point bending loading. Three types of fail-
ure mechanisms, including matrix failure, fiber rupture from the matrix, and fiber breakage 
were determined and the frequency range of each failure mechanism was determined.

Today, the use of artificial intelligence techniques has been widely considered by many 
researchers to analyze the data received from experimental tests. In this regard, Jung and 
Chang [6] proposed a reliable SHM system consisting of an optimal predictive CNN-based 
model that can perform impact detection by analyzing received signals in smart compos-
ite structures. A discrete wavelet transform (DWT) was applied to the impact signals to 
convert them into input image data for the predictive convolutional neural network-based 
models. Then, the performance of each optimized neural network model was investigated 
by comparing the test errors under each applied condition. Azizian and Almeida [7] ana-
lyzed the progressive damage of composite structures by developing efficient alternative 
finite element [8] models built with ANN models and design of experiments (DOE) meth-
ods. The response surface method (RSM), combined with FE analysis, was used to gener-
ate the dataset. Key results showed that for complex models, ANN metamodels are more 
accurate than RSM models. Park et al. [9] investigated the design of grid composites with 
optimization methods based on deep neural networks (DNN). They proposed a multiscale 
kernel neural network (MNet) that can efficiently predict the strain field within a grid 
composite subject to external loading. Cui et al. [10] developed a data-driven deep learn-
ing (DL) approach based on the convolutional neural network (CNN). The DL technique 
automatically selects the most sensitive wave features based on the learned training data. 
In addition, the network’s generalization capabilities allow the detection of damage that 
can be different from the training scenarios. The classification algorithm included batch 
normalization, mini-batches, L2-norm regularization, and adaptive moment estimation 
(ADAM) optimization [11] to enhance the performance of both the training phases and 
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testing phases. The results indicated that the damage-imaging performance depends on the 
type of signal excitation utilized for the PZT transmitters. Seventekidis and Giagopoulos 
[12] presented a SHM framework using simulated FE models and a DL CNN hierarchical 
classifier for a test CFRP pin-joined truss structure.

In other cases, many researchers used machine learning methods to investigate and ana-
lyze manufacturing structures [13–15]. Zhao et al. [16] presented the basic theory of modal 
macro strain-based long gauge distributed sensing technology, and DL theory. Results 
showed that the proposed deep learning-based approach is a promising way to identify 
damage types, the location of the excitation load, and support locations, especially when 
the structural types are complicated and the ambient environment is changing. Due to com-
plexities of composite structures in different shapes and dimensions, the optimal identifica-
tion and diagnosis of failure mechanisms under various static and dynamic loads by super-
vised and unsupervised methods is a very challenging issue.

Given the procedural constraints delineated in previous literature, it becomes imperative 
to employ an appropriate methodology for attaining a more intricate understanding of dam-
age mechanisms. This research endeavors to proactively ascertain the deleterious effects 
stemming from the progressive failure of composite tubes crafted through the filament 
winding technique, utilizing AE outcomes as machine learning input via both supervised 
and unsupervised algorithms. The dataset is scrutinized by implementing an unsupervised 
Genetic K-means approach, along with hierarchical and supervised ANN models, with the 
aim of predicting the distinct damage mechanisms arising in each case. A quantitative evalu-
ation of these mechanisms assumes paramount significance in comprehending the energy 
absorption dynamics within the ultimate structure, thus facilitating the optimization of struc-
tures based on efficacious damage mechanisms. Furthermore, to assess the performance 
of the supervised ANN, the dataset undergoes scrutiny by various alternative algorithms, 
including Random Forest, SVM, and Naive Bayes. This comprehensive evaluation empow-
ers the identification of the most potent algorithm yielding optimal results in predicting the 
damage mechanisms. Also comparative analyses encompassing Confusion Matrix, ROC 
curves, Predicted Class Distribution, ACC, F1-Score, and MCC techniques are employed to 
assess the individual proficiency of these algorithms in detecting failure mechanisms.

2 � Experimental Considerations

2.1 � Optimal Energy Absorption

In recent years, achieving an optimal structure in order to absorb maximum energy has 
been the focus of many researchers, so ferrous, non-ferrous, and composite structures 
have always been of interest. In the meantime, the major damages in structures are clas-
sified into two general groups, catastrophic and progressive damages. In catastrophic 
failures, we generally see a sharp drop in the force-displacement (FD) diagram after the 
ultimate tensile strength (UTS) point, and most of the failures in ferrous and non-ferrous 
metals fall into this category. On the other hand, in composite structures, in the case of 
precise design with optimal dimensions, the ability of the structure to absorb energy can 
be increased, so after the UTS, the structure has the ability to carry more load and can 
withstand failures, in such a way that after the gradual decrease of the force at UTS, an 
increase in force can be seen again in the FD diagram. This feature has caused the area 
under the FD diagram in composites to be significantly higher than other metals and 
makes them a suitable selection for energy absorption.
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2.2 � Manufacturing Process

In this study, the wet filament winding method, in which a resin bath is used to wet the 
fibers, has been used to fabricate composite tubes. After checking the wetting angle 
of resin with fibers, resin viscosity and fiber wetting rate, LR630 resin with LH630 
hardener and T-700-24k carbon fiber were selected as the most suitable materials for 
the manufacturing process. An X-winder desktop winding machine was used to make 
composite tubes. More details, including the completely described fabrication process 
of composite samples and composite tubes, are reported in [17].

In order to collect primary data for network training, the AE method, which is a non-
destructive method, was used. To monitor the AE activity during the test, an eight-channel 
AE AMSY-6 and a Vallen System with a maximum sampling frequency of 40 MHz were 
used. The typical experimental setup of the axial compression testing of the composite 
tube is shown in Fig. 1. According to this schematic, AE sensors were placed on the com-
posite tube. By compressing the sample under axial loading, the damage is slowly created 
in the tube, and cracks spread along the longitudinal and transverse directions on the sam-
ple’s surface. The sensors simultaneously receive the waves caused by the failure and after 
filtering the waves, transmit them to the computer processing system. Finally, the raw data 
are analyzed by different methods.

3 � Amplitude and Frequency Criteria for Damage Mechanisms

In the operational phase, a composite structure can encounter various forms of dam-
age, encompassing matrix cracking, fiber breakage, fiber/matrix debonding, and 
delamination [18]. The nature of damage is contingent upon multiple factors, includ-
ing the direction and rate of loading, the materials constituting the resin and fibers, 
the arrangement of laminates, the quality of adhesion between the fiber and matrix, as 
well as environmental conditions such as temperature and humidity. Examination of 

Fig. 1   Sample preparation and research process
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existing literature [19] highlights that each damage mechanism observed in composite 
materials typically yields distinct AE signals. For instance, matrix cracking is com-
monly characterized by signals exhibiting low amplitude, low frequency, prolonged 
duration, long rise time, and significant counts.

Conversely, delamination manifests as signals with intermediate amplitude, low fre-
quency, and remarkably long duration. Moreover, fiber breakage is indicated by sig-
nals possessing high amplitude, high frequency, and a short rise time [20–23].

Among the multitude of AE features available, such as amplitude, rise time, dura-
tion, energy, centroid frequency, and peak frequency, peak frequency, and amplitude 
are regarded as the most prominent for the purpose of damage identification. Nota-
bly, peak frequency demonstrates superior resilience to the attenuation phenomenon, 
making it a preferable parameter for distinguishing damage compared to amplitude. 
Table 1. provides an overview of the peak frequency and amplitude reported in exist-
ing literature for AE signals associated with various damage mechanisms in diverse 
composite materials. The observed variations in the reported values for each damage 
mode can be attributed to factors such as sensor types, loading and boundary condi-
tions, as well as sensor placement. Despite these variations, a consistent finding is that 
matrix cracking is consistently characterized by the lowest amplitude and frequency, 
whereas fiber breakage consistently exhibits the highest amplitude and frequency. 
Delamination and interfacial debonding are typically identified by average values of 
frequency and amplitude.

In the context of composite tubes, aside from the aforementioned failure mecha-
nisms, SEM images depicted in previous literature demonstrate the occurrence of addi-
tional mechanisms such as brooming and kink bands. However, it is crucial to acknowl-
edge that these mechanisms are also induced by the primary failure mechanisms and are 
not autonomous entities. To gain a deeper comprehension of this matter, Šofer et al. [8] 
conducted an investigation on the bending loading of composite tubes, providing a com-
prehensive data that outlines various failure mechanisms as shown in Table 2.

In structures manufactured using the filament winding technique, the occurrence of fail-
ure mechanisms associated with inter-layer separation (specifically, fiber/matrix debonding 
and delamination) is minimized due to the continuous nature of the structure. Moreover, in 
the event of a catastrophic failure, the occurrence of delamination within the structure is 
unlikely. However, alternative failure mechanisms may take precedence over the aforemen-
tioned mechanisms. Consequently, studying the prevalence of these failure mechanisms 
allows for the control of the structure’s response to various loadings, thereby ensuring opti-
mal performance. By effectively managing interlayer separation failure mechanisms, it is 
possible to transform the structure’s behavior from catastrophic failure to progressive fail-
ure. As a result, the structure’s capacity to absorb energy and its performance as a shock 
absorber against axial loads can be significantly enhanced.

4 � Data Classification Methods

In this section, numerous strategies that can be used to analyze the AE signals are exam-
ined. Since the obtained signals due to the compressive loading of the FW composite tubes 
are related to various types of failure mechanisms, it’s essential to apply methods that can 
accurately detach the signals. In this study, supervised and unsupervised methods are used for 
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detecting signals caused by various failures. In fact, these methods of classifying AE signals 
are related to machine learning methods.

In the supervised learning method, the system is given a set of input–output pairs and the 
system tries to learn a function that transforms the input into the output. Supervised learning 
needs some input data in order to train the system.

In this study, supervised and unsupervised methods are used to classify and separation of 
received signals. The Genetic K-means and hierarchical methods, are used for classification in 
an unsupervised method, and ANN method is used for classification in a supervised method. 
By choosing the best classification method, a more accurate diagnosis of each of the failure 
mechanisms is possible. In the following, the results obtained from each of the data classifica-
tion methods will be discussed.

4.1 � Genetic K‑means Cluster

Genetic K-means is a classification method that tries to classify the data in such a way that the 
ratio of the total distance of the data within a group to the distance between the centers of the 
groups is minimized [33]. The k-means algorithm has two steps. This algorithm first randomly 
selects the center of the primary clusters according to Eq. (1), and each data point is assigned 
to a cluster with the nearest cluster center. In the second step, according to Eq. (2), the new 
center of each cluster is updated to the mean amount of all the data points that are inside the 
cluster, where C(t)

i
  is cluster i and m(t)

i
 is the center of cluster i at iteration t  [34].

4.2 � Hierarchical Cluster

The hierarchical pattern is executed in one of two figures: divisive and agglomerative. In 
the divisive method, each data point is initially considered a cluster. Then, the algorithm 
detects the two nearest clusters and develops a new cluster containing both data points. 
The algorithm calculates the distance between the new cluster and the old one again and 

(1)C
(t)

i
= {Xn ∶

‖‖‖
Xn − m

(t)

i

‖‖‖

2

≤
‖‖‖
Xn − m

(t)

j

‖‖‖

2

∀j, 1 ≤ j ≤ k}

(2)m
(t+1)

i
=

1

|||
C
(t)

i

|||

∑

Xj ∈C
(t)

i

Xj

Table 2   AE signal characteristics for damage mechanisms in carbon fiber-reinforced polymer (CFRP) 
composite tubes

Damage Mechanism AE Signal Characteristics

Amplitude (dB) Duration (μs) Frequency (kHz)

Fiber break 50–100 100–10,000 300–700
Matrix micro cracks 30–40  < 1000 100–250
Matrix micro cracks 

(propagation)
40–80 1000–10,000 100–250

Delamination  > 70 1000–10,000 250–300
Debonding  < 60 - About 300
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combines the two closest clusters. This process is continued to reach the eligible number of 
clusters. The agglomerative procedure is exactly the reverse of the divisive. The disadvan-
tage of the hierarchical pattern is the low rate of the clustering process [35, 36].

5 � Machine Learning Methods

5.1 � ANN Method

In addition to the previous attempt to classify the failure type of the composite tubes, 
supervised learning methods were used as a secondary approach for the classification 
task of determining the composite failure under the compression forces. For this purpose, 
ANNs were used to train the machine learning model for the classification tasks. Figure 2, 
illustrates a schematic of a typical ANN. As the figure illustrates, an ANN is basically 
comprised of several layers, each consisting of several computation units. The computation 
units of any ANN with Multi-Layer Perceptron (MLP) architecture are constituent of sev-
eral linear algebraic units (Eq. (3)) followed by nonlinear computations (Eq. (4)).

In Eq. (3) xjn represents the nth neuron in the jth hidden layer, while xi represents each of 
the neurons in the preceding layer. Additionally, wi represents the weights connecting the 
neurons of the ith layer with the neurons of the jth layer in the neural network, while bjn is 
the bios term for the nth  neuron in the jth layer. Equation (4) illustrates the nonlinear com-
putation unit followed by the linear algebraic computation.

As mentioned above, ANNs were used as an attempt to classify the failure types of the 
composite tubes. For this purpose, an ANN with the MLP architecture was modeled and 
developed using the Tensor flow-Keras library in Python programming language. Table 3. 

(3)xj
n
=

m∑

i=1

wixi + bj
n

(4)ReLU ∶ f (x) =

{
0. x < 0

x. x ≥ 0

Fig. 2   A scheme of an ANN with 
MLP architecture
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provides information about the network architecture developed in this study. Furthermore, 
the scheme of the network architecture is represented in Fig. 3.

5.2 � Random Forest Classifier Method

The Random Forest Classifier is an ensemble learning technique that uses a collection of 
decision trees for classification tasks. It is applicable to both binary and multi-class clas-
sification and is known for its computational efficiency, resilience to noisy data, and ability 
to capture nonlinear relationships. Each decision tree in the ensemble individually predicts 
the class label for a new input, and the Random Forest combines the votes from all trees to 
assign the predicted class label.

5.3 � Naive Bayes Method

Naive Bayes is a classification algorithm based on Bayes’ theorem. It calculates the con-
ditional probability of a class given the observed features. Naive Bayes assumes feature 
independence, making it suitable for tasks like text classification, document categorization, 
spam filtering, and sentiment analysis. It estimates prior probabilities and likelihoods from 
training data and uses Bayes’ theorem to calculate posterior probabilities for classification. 
It is simple, efficient, and effective for high-dimensional datasets.

5.4 � SVM Method

SVM is a powerful supervised learning algorithm used for classification and regression. 
It is particularly effective in cases with complex or non-linear decision boundaries. SVM 
finds an optimal hyperplane that separates data points of different classes with the largest 
possible margin. It formulates an optimization problem using a hinge loss function and a 
regularization term. The kernel trick allows SVM to handle non-linear decision bounda-
ries efficiently. The decision function is determined by support vectors, which are the data 
points closest to the hyperplane.

Table 3   The architecture of the Neural Network developed for failure mechanism classification

Number of 
Neurons

Activation Function Dropout Layer 
Percentage

Batch Normalizor

Input Layer 2 - - Not Utilized
First Layer 20 ReLU 30% Utilized
Second Layer 15 ReLU 25% Utilized
Output Layer 4 Softmax - Not Utilized
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6 � Results and Discussion

In this section, the obtained results of unsupervised and supervised methods are investi-
gated. Thereupon quasi-static compressive loading of the composite tubes and receiving 
the AE signals, the data is filtered to separate the best-received signals. In the following, 
the results of these methods will be examined.

6.1 � Results of Unsupervised Methods

According to the sophisticated terms between various features of AE signals, the process 
of acoustic data clustering is commonly done by machine learning-based methods. One 
of the methods of classification of failure mechanisms is the use of unsupervised meth-
ods. By reviewing the literature, it is obvious that the privileged parameters for classifying 
AE date are amplitude and frequency. Hereupon, in order to categorize the AE signals, 

Fig. 3   Neural network architecture used in supervised method
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these two parameters were opted from among other AE specifications. As can be seen from 
Fig. 4, in the hierarchical classification method, the signals relevant to the first cluster were 
identified with a range of 46–81 dB, with a frequency range of 68 to 200 kHz. Also, the 
second cluster was specified with an amplitude range of 50–81 and 61–93 dB and a fre-
quency range of 210–350 kHz. Finally, the third cluster was demonstrated by signals with 
an amplitude range of 45–85 dB and frequencies with a range of more than 380 kHz. The 
next step is to apply these categories to the interlaminar and intralaminar failure mecha-
nisms. Although there are remarkable differences among the frequency ranges stated for 
the failure mechanisms in the literature, which is mainly due to the usage of AE systems 
with different characteristics, however, the common trait of most of the executed research 
is that the lowest range of the frequency is related to the matrix cracking and the highest 
frequency range is related to fiber breakage, and the frequency range of interlaminar sepa-
ration is between these two limits [27, 29, 37]. Therefore, the categories of AE signals are 
assigned to the failure mechanisms as follows:

First class, which has the lowest frequency, refers to matrix cracking. Third class, with 
the highest frequency, is assigned to fiber breakage, and the second class, which has a fre-
quency between these two categories, is assigned to interlaminar separation. By comparing 
the second group of received signals, it can be seen that in the progressive failure mode, two 
different types of received signals were obtained in the range of 50–81 dB and 61–93 dB. 
It seems that these two received signal ranges belong to various failure mechanisms. Also, 

Fig. 4   Hierarchical method
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it seems rather challenging to distinguish between the failure mechanisms of fiber-matrix 
debonding and delamination, as both failure mechanisms are the same frequency spectra.

The examination of the morphology of composite tubes under compressive load demon-
strated that in the progressive failure mode due to the layered bending, the failure initiates 
from the top of the sample and continues in the form of petals with delamination. Therefore, 
in the progressive failure mode, both failures including fiber separation from the matrix and 
delamination occurs simultaneously. The literature demonstrates that the amplitude range of 
received signals from the failure phenomenon of delamination is greater than the fiber/matrix 
debonding [8, 19]. Therefore, to further investigate the possibility of distinguishing between 
these areas, the Genetic K-means algorithm was used to classify the data, and finally, the 
middle interval was divided into two categories with different amplitude domains.

As can be seen from Fig. 5, the Genetic K-means algorithm divides the frequency range 
of the progressive failure mode into four clusters with ranges of 68–166 kHz, 173–269 kHz, 
310–386, and a cluster with frequencies greater than 404 kHz. It seems that the amplitude 
range of 50–81 dB is related to the separation of fibers from the matrix and the amplitude 
range of 61–93 dB is related to interlaminar separation. As can be seen from the above fig-
ures, it seems that the prediction of both methods, the hierarchical and Genetic K-means 
methods, are close to each other for the catastrophic failure mode and there is a good agree-
ment between the results. However, in the progressive failure mode, it was observed that the 

Fig. 5   Genetic K-means method
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Genetic K-means algorithm showed a much more accurate prediction than the hierarchical 
method, so with this method, the failure modes of delamination and fiber/matrix debonding 
can be separated to each other.

6.2 � Results of Supervised Methods

Before the training process, the data was undergone a preprocessing procedure. For this 
purpose, the input features (frequency and amplitude) were normalized and the data was 
labeled into four distinct classes each representing a different mechanical failure behaviors. 
Then the data was split into three subsets known as the training set, the validation set, and 
the test data set. The training and the validation datasets were fed to the network during the 
training process, whereas the test dataset was kept out of reach until the training process of 
the network was done. Then the network was exposed to the test dataset to evaluate the per-
formance of the network and determine how accurate the network could classify the failure 
mechanisms given the frequency and the amplitude values as input features of the network. 
The network was comprised of a total of 4 layers. The activation functions usedfor the hid-
den layers was the ReLU function as described by Eq. (4). However, the function used at 
the output layer was the Softmax function which took care of the multiclass classification 
tasks. (Eq. (5))

where, S(xi) in Eq. (5) represents the probability of the occurrence of each class predicted 
by the neural network. exp(xi) is the probability of the occurrence of the ith class in the 
network and the term in the denominator ( 

∑
j=1∶nexp(xj) ), is the sum of the likelihood of 

all the classes in the network. Since the problem at hand was a multiclass classification 
problem, categorical cross entropy function (Eq.  (6)) was utilized as the loss function to 
calculate the cost of the predictions made by the network after every turn (epoch) during 
the training process.

In Eq. (4), yi is the actual class of the ith instance in the training data, while ŷi is the 
estimated class predicted by the neural network after each training epoch. Furthermore, 
N refers to the total number of training and validation datasets. For the training process 
to be accurate, Adam optimizer, as illustrated in Eqs. (7) – (10), was used as optimiza-
tion method during the backpropagation for the learning process to be complete after 
each epoch was done. Table 4. provides information about the hyperparameters used in 
this study for the training process of the ANN.

(5)S
�
xi
�
=

exp
�
xi
�

∑
j=1∶nexp (xj)

(6)L =
1

N

∑
yi log

(
ŷi
)
+
(
1 − yi

)
log

(
1 − ŷi

)

Table 4   Selected 
hyperparameters during the 
training process of the ANN

� �1 �2 N �

Learning Rate Adam 
optimizer 
parameter

Adam 
optimizer 
parameter

Number 
of 
Epochs

Batch size

0.001 0.99 0.95 100 8
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In Eqs. (7), and (8), �1 , and �2 are the hyperparameters of the Adam optimizer. vt , and 
st are the exponential average of gradients along wj , and exponential average of square 
of gradients along wj . gt describes the gradients of the weights of each layer at time t  . 
In Eq.  (9), � is the learning rate defining the rate at which the weights of the neural 
network are updated at each epoch. Also, � in Eq. (9), is the hyperparameter decreasing 
the effects of the initial learning rate (�) as the training process of the neural network 
progresses. Finally, Eq. (10), updates the weights of each layer in the ANN during the 
backpropagation process during each training epoch.

The network was trained on a system with 11,320 H 3.2 Gb Core i5 CPU, and DDR4 
16 Gb RAM for 100 epochs with other specifications provided in Table 4. During the 
training process, both the training and the validation datasets were fed to the network 
for the purpose of training. After the training was done, the network achieved a 0.266 
loss value on training dataset and a loss value of 0.0406 on the validation datasets. To 
better evaluate the performance of the network during the training, accuracy metrics 
was used resulting in a training accuracy of 91.18% while the final validation accuracy 
was 98.69%. The details of the training process is illustrated in Fig. 6. In Fig. 6, the plot 
on the left depicts the loss function evolution for both the training and the validation 
datasets, meanwhile, the plot on the right represents the evolution of the accuracy met-
rics for the training and the validation datasets.

(7)vt = �1 ⋅ vt−1 −
(
1 − �1

)
⋅ gt

(8)st = �2 ⋅ st−1 −
(
1 − �2

)
⋅ g2

t

(9)Δwt = −�
vt

√
st + �

⋅ gtwt+1

(10)Δwt = −�
vt

√
st + �

⋅ gtwt+1 = wt + Δwt

Fig. 6   Loss function and Accuracy evolution of the training and validation data during the training process 
of the neural network
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Algorithm. 1 Pseudocode describing the learning hierarchy in ANN

1 Initialize learning rate (α ← 0.001)
2 Initialize Adam Optimizer parameters (β1 ← 0.99, β2 ← 0.95)
3 Define Training epochs (N ← 100) and learning batch size (η ← 8)
4 Preprocess learning data
5 Divide learning data into training, validation, and test datasets
6 Initialize i:  i←1
7 While i < N
8 Feed batches of training data into the ANN for forward propagation based on Eqs. (3), and (4)
9 Make predictions based on the provided input features based on Eq. (5)
10 Calculate loss based on Eq. (6)
11 Calculate gradients of each layer using the chain rule
12 Update weights during the backpropagation based on Eqs. (7) – (10)
13 Feed the validation data to evaluate the network performance after each training epoch
14 Calculate validation loss based on Eq. (6)
15 i ← i + 1
16 End While
17 Feed test data to the fully trained network to evaluate the network performance on the test data

After the training procedure of the ANN was completed, the network performance was 
evaluated by feeding the test dataset to the trained model. Similar to the training and vali-
dation datasets accuracy metrics was used to illustrate the performance of the network. 
To enhance the assessment and estimation of the performance of the ANN model, addi-
tional machine learning models, including SVM, Naive Bayes, and Random Forest, were 
employed. This approach aimed to provide comprehensive insights into the applicabil-
ity and effectiveness of these models alongside the ANN. Figure 7, shows the confusion 
matrix of the trained machine learning models on the test dataset.

As represented on the Fig. 7, the horizontal axes shows the number of actual instances 
while the vertical axes is the instances predicted by the network. The numbers on the main 
diameter of the matrix refer to the instances where the network successfully predicted the 
correct class for each input. However, all the other numbers appearing anywhere except 
the main diameter are the instances where the network failed to predict the class of the 
corresponding input features correctly. Upon careful examination of the various compo-
nents depicted in Fig. 7, it becomes evident that the Random Forest model outperforms the 
other learning models, exhibiting only one misclassification at the boundary between fiber 
breakage and delamination. Notably, the Random Forest model demonstrates the lowest 
error rate in the sub-diameter categories, surpassing both ANN and SVM models. Con-
versely, the ANN and SVM models exhibit the highest error rates, with four misclassifica-
tions in diagnosing boundaries between matrix cracking and debonding, and one misclas-
sification in the boundary of fiber breakage with delamination, thus indicating their subpar 
performance. Furthermore, the Naive Bayes model achieves the second lowest error count, 
signifying its relatively favorable performance. Consequently, following the Random For-
est model, Naive Bayes demonstrates a commendable ability to accurately identify data.

Using the information provided in the confusion matrix, the accuracy of the network on 
the test dataset was calculated based on Eq. (11):



	 Applied Composite Materials

1 3

Given the binary nature of the classification task, the model’s predictions were cate-
gorized into four distinct groups: True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN). The TP and TN categories denote the accurate identifi-
cation of data points belonging to the positive and negative classes, respectively, as con-
firmed by the machine. Conversely, FP signifies instances where the machine incorrectly 
classified negatives as positives, while FN represents cases where the machine misclassi-
fied positives as negatives. The ACC amount of the models are provided in Table 1, along-
side another metric factor.

ACC represents the model’s ability to correctly classify instances. Although ACC offers a 
direct quantitative measure of model performance, an alternative metric, known as the Mat-
thews Correlation Coefficient (MCC), has also been introduced for assessing model per-
formance. MCC, which ranges from -1 to 1, was employed in evaluating the models. Equa-
tion (12) defines the MCC criterion. As the MCC criterion approaches the upper limit of its 
range, it is anticipated that the model’s performance will improve.

(11)ACC =
TP + TN

TP + TN + FP + FN

(12)MCC =
TP.TN − FP.FN

√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

Fig. 7   Confusion matrix representing the performance of the trained a ANN, b Random Forest, c SVM, and 
d Naive Bayes on the test dataset
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As shown in Table 5, among the models tested, the Random Forest model exhibits 
the highest performance, achieving remarkable ACC and Mean MCC values of 99.24% 
and 0.993, respectively. These results indicate the superior predictive capabilities of 
the Random Forest model compared to other models. Furthermore, the MCC values 
obtained for the remaining models also exhibit reasonable performance, suggesting their 
effectiveness in the given context. However, it is noteworthy that ANN and SVM mod-
els display lower MCC values compared to the other models. This observation high-
lights the superiority of the alternative models over the ANN and SVM models in terms 
of predictive accuracy and reliability.

The overall quality of damage classification is assessed by accuracy. Given the pres-
ence of sample imbalance, Precision was employed to appraise the quality of positively 
predicted true positives, while Recall was employed to evaluate the quality of positive 
predictions. The computation of the F1 score, a harmonic mean between precision and 
recall, yielded a value ranging from 0 to 1. The calculations proceeded as outlined below:

Table  6 presents the calculated mean F1-scores for Random Forest, Naive Bayes, 
Support SVM, and ANN models. Notably, Random Forest exhibited a mean F1-score 
of 0.9705, surpassing the other models. Naive Bayes achieved a commendable mean 
F1-score of 0.9581, followed by SVM with a value of 0.9102, and ANN with 0.9073. 
These high mean F1-score values, all exceeding 90%, attest to the exceptional classifi-
cation potential of the models across various types of acoustic emission raw sequence 
data associated with matrix cracking, debonding, delamination, and fiber breakage in 
composite materials. Upon meticulous examination of the data, a conspicuous similarity 
emerges between the trend displayed by the F1-Score criterion and the MCC criterion 
across the models. Hence, it is evident that both these criteria can be employed as reli-
able and complementary methods for the evaluation of the models.

(13)Precision =
TP

TP + FP

(14)Recall =
TP

TP + FN

(15)F1 − score =
2 × (Precision × Recall)

Precision + Recall

Table 5   Various quantitative metrics using the performance of the trained models on the test data

MCC Mean 
MCC

ACC​

Models Matrix Cracking Debonding Delamination Fiber 
Breakage

ANN 0.8859 1.0 0.9614 1.0 0.9618 96.21%
Random Forest 1.0 1.0 0.9720 1.0 0.9930 99.24%
SVM 0.8497 1.0 0.9614 1.0 0.9528 96.08%
Naive Bayes 1.0 1.0 0.9410 1.0 0.9850 98.48%
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In addition to the accuracy metrics, the Receiver Operating Characteristic [38] curve 
for each of the classes was extracted using the multiclass ROC technique. ROC curve is a 
graph representing the performance of the network on each of the classes. The ROC curve 
is extracted based on two parameters known as the True Positive Rate (TPR), and False 
Positive Rate (FPR). These parameters represent the instances where the network makes 
a correct and incorrect predictions for each input instance, respectively. Figure 8, shows 
the ROC curve for each of the classes each representing a certain failure mechanisms. The 
dashed line in the middle shows the performance of the untrained network on each failure 
class, while the curve shows the actual performance of the network on each of the classes 
after the network is trained.

Along with the ROC curve, the Area Under Curve (AUC) was calculated for each of the 
classes. An AUC is a metric to evaluate the performance of the network on each classes 
and can be extracted from the ROC curve. The AUC can take any number within the range 
of 0 and 1 with 0 being the least accurate performance and 1 being the highest performance 
accuracy. The AUC values were calculated for each of the classes separately and reported 
on the ROC curve of each of the classes.

As depicted in Fig. 8, the ROC curves of the Random Forest model closely resemble 
the ideal state. Notably, in three out of the four scenarios, the area under the curve reaches 
1, indicating the model’s remarkable performance in accurately detecting each failure cri-
terion. The Naive Bayes model’s curve also exhibits a similar performance to that of the 
Random Forest model. However, it is slightly less effective in detecting delamination dam-
age, as evident from the divergence in the green curve. Conversely, the ROC curves of 
the ANN and SVM models showcase smaller areas under the graphs, particularly in the 
blue curve corresponding to Matrix Cracking. This observation highlighted the limitations 
of these models in effectively distinguishing data associated with this failure mechanism, 
which aligns well with the findings of the Confusion Matrix analysis.

Additionally, the performance of the networks on the test dataset is visualized in Fig. 9. 
The plots on the right represent the real distribution of the data in the input feature field. 
Whereas, the plots on the left show the predicted classes. As shown in the Fig. 9, the net-
works were capable of correctly classifying the instances where the input features were 
distinctively different from each other. On the other hand, the networks were prone to 
incorrectly classify the instances where the input features of the data were similar to the 
input features of the opposing class. Upon scrutinizing the actual and predicted patterns, 
it became evident that the presence of color disparities among data points within each 
model corroborated the findings derived from the Confusion Matrix and ROC curves. For 
instance, in the Random Forest model, the Confusion Matrix illustrated a solitary detected 
error in the sub-diagonal of the matrix, as showcased in Fig.  9b, thereby signifying its 

Table 6   F1 - Score metric using the performance of the trained models on the test data

F1 - Score Mean
F1 - Score

Models Matrix Cracking Debonding Delamination Fiber 
Breakage

ANN 0.7869 1.0 0.8541 1.0 0.9102
Random Forest 1.0 1.0 0.8821 1.0 0.9705
SVM 0.7752 1.0 0.8541 1.0 0.9073
Naive Bayes 1.0 1.0 0.8324 1.0 0.9581
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superior performance. Conversely, both the ANN and SVM models exhibited a cumulative 
count of five within the sub-diagonals of the Confusion Matrix, aligning with the number 
of disparities observed between the real and predicted graphs. This discrepancy serves to 
emphasize the relatively weaker performance of ANN and SVM models in comparison to 
the Random Forest and Naive Bayes models.

The extracted results in the study provided a set of useful information about the per-
formance of each algorithm and the computation time consumption outlined as follows: 
The detailed analysis of different observed failure mechanisms revealed that four different 
failure mechanisms occurred during the tests. This information was later utilized for the 
classification purposes of the failure mechanisms using the hierarchical clustering algo-
rithm as a hyperparameter to determine the failure type. However, as the results revealed 

Fig. 8   The Receiver Operating Characteristic curve for each failure mechanism (Blue (Matrix Cracking), 
Red (Debonding), Green (Delamination), and Yellow(Fiber Breakge)): a ANN, b Random Forest, c SVM, 
and d Naive Bayes
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the algorithm was unable to classify the data correctly and put them in correct clusters as 
it separated the data into only three classes. This issue mainly stemmed from the fact that 
the input features of the collected data in the upper regions of the both input features were 
close to each other and therefore the algorithm could not separate them from each other. 
More specifically, the hierarchical algorithm assumed the two failure mechanisms as one 
entity since the input features were close to each other. Contrary to hierarchical clustering 
algorithm, Genetic K-means was able to correctly classify the data based on the given input 
features into four clusters mapping each input feature correctly to the corresponding cluster 
representing a certain failure mechanism. It was obvious that the Genetic K-means out-
performed the hierarchical clustering method in terms of accuracy and performance. Fur-
thermore, despite the previous algorithm, no hyperparameter was provided to the Genetic 
K-means for the clustering purposes and the algorithm itself was able to figure out the 
correct number of clusters. This is mainly because of the metaheuristic algorithms within 
the Genetic K-means and the embedded cost function that helps the algorithm classify all 
the data correctly in true clusters. Similar to Genetic K-means, ANN was also able to clas-
sify the dataset correctly and put them in correct orders with higher train and test accuracy 
rates. However, despite Genetic K-means the data needed to be labeled for the training pur-
poses of the ANN Algorithm due to its supervised learning behavior. Whereas, in Genetic 

Fig. 9   Comparison between the actual class distribution of the test dataset and the predicted class distribu-
tion extracted by the trained: a ANN, b Random Forest, c SVM, and d Naive Bayes
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K-means the raw data did not need to be labeled due to the unsupervised behavior of the 
algorithm and the algorithm could determine the number of clusters by itself through itera-
tive algorithm execution. Nevertheless, the iterative execution of Genetic K-means through 
all the possible increases the computation time of the algorithm. The same issue persists 
in ANN as well. More specifically, if the neural network architecture is more complicated 
or the data at hand is bigger the computation time of the neural network performance will 
increase to considerable extents lowering the computation time, memory consumption, and 
performance efficiency yet the performance accuracy will be higher and more accurate. 
The mentioned computation time and memory consumption issues stated in the previous 
methods do not have huge effects on the hierarchical clustering method making it more 
suitable for utilizations yet in the event of a complicated data the algorithm does not guar-
antee to perform properly in contrast to the other algorithms. Table 7. recapitulates all the 
algorithms and makes a fair comparison among them.

From the comparison of supervised and unsupervised graphs obtained from both meth-
ods with the experimental results of previous research [17], it can be concluded that super-
vised clusters are generally precise in discovering common failures in composites, but they 
cannot effectively discover uncharted failures (When data from different failure mechanisms 
are too close to each other, they do not correctly detect adjacent or near failure boundaries). 
One of the issues with the supervised approach is that in its retrospective mode, scientists 

Fig. 9   (continued)
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mostly have to define and clarify experiments related to previous events [39]. That is the 
reason why their results cannot be simply generalized to the real-time or upcoming state, 
particularly when failure modes are changing drastically. On the other hand, unsupervised 
clusters are generally less precise than supervised ones, since their learning procedure does 
not depend on labeled train information. After all, the precision of unsupervised clusters 
does not suffer significant demotion in case of unfamiliar failure mechanisms. Also, pre-
sumptions required for the supervised method can only be justifiable and lead to decision-
making effectiveness for cases where a fair and unprejudiced definition of success can be 
formulated as an objective function. In contrast, the results demonstrated using an unsuper-
vised method leads to a more reasonable balance of effectiveness and efficiency when the 
formulation of a fair and unprejudiced definition of success is not possible.

7 � Conclusions

In this study, the impact characteristics and damage mechanisms of composite tubes under 
axial compressive load were assessed using AE monitoring and machine learning meth-
ods. The ANN model was compared with Random Forest, SVM, and Naive Bayes models. 
Matrix cracking, delamination, debonding, and fiber breakage were induced by the bend-
ing of the layers. As the failure mode was altered, an increase in fibers/matrix separation 
and fiber breakage was observed, while a decrease in matrix cracking was noted.

The hierarchical classification method categorized signals into three frequency ranges: 
68–200 kHz, 210–350 kHz, and 380 kHz < f, with corresponding dB ranges of 46–81 dB, 
50–93 dB, and 45–85 dB. The K-means genetic method clustered the progressive failure 
mode frequency range into four groups: 68–166 kHz, 173–269 kHz, 310–386 kHz, and 
frequencies greater than 404 kHz. The K-means genetic method distinguished fibers/matrix 
separation (81–50 dB) from interlaminar separation (61–93 dB) failure modes more accu-
rately than the hierarchical method.

The ANN model, using amplitudes and frequencies as input features, exhibited higher 
accuracy in classifying data, with each class representing a specific failure mechanism. 
The Random Forest model consistently outperformed the ANN and SVM models, demon-
strating superior predictive accuracy across multiple evaluation metrics. It achieved higher 
true positive rates and lower false positive rates compared to the other models. The pre-
dicted class distribution analysis further substantiated the superiority of the Random Forest 
model, closely aligning with the actual class distribution. In conclusion, our comprehensive 

Table 7   Comparison between different classification algorithms used in this study

Hierarchical Clustering Genetic K-means 
Clustering

Artificial Neural 
Network

Learning Type Unsupervised Learning Unsupervised Learning Supervised Learning
Hyperparameter 

tuning for clustering / 
classification

Required Not Required Required

Performance Accuracy Low High High
Computation Time Low High High
Memory allocation Low High High
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evaluation highlighted the Random Forest model’s superior performance in terms of pre-
dictive accuracy and classification using ACC, MCC and F1-Score metrics. These findings 
contribute to the understanding of model selection and performance assessment in machine 
learning, providing valuable insights for future research and practical applications.

The quantitative assessment of each failure mechanism can enhance the failure effi-
ciency of composite structures by controlling the proportion of damage mechanisms. 
Future work will focus on optimizing algorithms for failure detection in different compos-
ites and shapes, enabling robust failure detection using machine learning techniques, even 
without explicit information about failures in the training data.
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