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CHAPTER 1 

INTRODUCTION 

1—1 General considerations. 

In the literature dealing with the mechainical behavior of 

polymers and polymer solutions, several theories can be found, 
1-5) which attempt to describe this behavior on a molecular basis . 

In most cases, these theories concentrate on a rather narrow 

field of interest. Frequently, they yield contradictory con­

clusions. 

The work described in this thesis represents the first step 

in a series of projects which, when completed, should lead to 

a comprehensive molecular theory of the mechanical behavior of 

polymers. This should include not only rubber-elastic properties 

but also time-dependent or rheological behavior. 

Pure rubbery behavior is beat approached in gels diluted 

with inert solvents . Molecular theories of the rheological 

behavior of polymers have also usually been developed for 

dilute polymer solutions , althoiJgh they are very often also 

applicable to concentrated solutions. It is reasonable therefore 

to begin by studying polymer solutions and dilute networks. 

•Characterization of a network involves determination of the 

chemical and physical (entanglements) crosslinks. Chemical 

crosslinks can in principle, be determined by analytical 

methods '. Physical crosslinks are generally mechsmical 

couplings caused by chain entanglements, often called temporary 

crosslinks. The entanglements can be determined from their 

rheological effect' , 

If a rheometer were designed which could measure first the 

properties of an entanglement network, then those of the same 

sample after chemical crosslinking in situ, the effects of the 

chemical and entanglement crosslinks could be separated. 

Experiments of this type would thus provide a deeper insight 

into the topology of polymer networks. The dearth of knowledge 
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in this field, reflected in several controversies in current 

polymer network theories, provides the main impetus for research 

in this area. 

Molecular theories are still restricted to linear vlsco-

elastlc behavior of linear, randomly coiling polymer chains. 

Furthermore, the existing molecular theories must still be 

extended to the long-time regions where entanglements affect 

the viscoelastic properties ~ . 

Since the polymers are to be in dilute form, the viscoelastic 

measurements must be made dynamically (e.g. with sinusoidal 

deformations) at low temperatures. Moreover, the measvirements 

at low temperatures will be useful only if interference from 

secondary (or P-) transition regions is avoided. Thus molecules 

with side chains, which are considerably restricted in their 

rotation around the side chain axis for steric reasons , should 

not be used . The polymer should also crosslink readily and 

be easily soluble in common solvents. A polymer which fits all 

these requirements is poly-methyl acrylate (PMA). 

The phenomena which accompany the presence of entanglements 

are always associated with a region of very long relaxation 

times. In this region the total contour length of the molecule 

has a dominant influence. Por this reason, existing molecular 

theories always describe the mechanical behavior of polymer 

molecules with a uniform chain length. Unfortunately absolutely 

monodisperse polymer cannot be prepared. The molecular weight 

distribution, however, can approach monodispersity quite closely 
15) if appropriate polymerization techniques are used . An attempt 

was made therefore to prepare the polymer by the anionic, or 

"living polymer" polymerization technique of Szwarc . Under 

favorable conditions this yields a Poisson distribution of 

molecular weights. 

The fulfillment of each of the above requirements represents 

a sizeable project in itself. Not all of these have been com­

pleted in the work to be described in this thesis. Most importantly, 

the work has been restricted to a study of entanglement networks. 

In Chapter 2, a molecular theory is presented which permits a 

quantitative description of the relaxation spectrum of entangle­

ment networks. This theory is based on an extension of the 

molecular model of Rouse 
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A similar line of research has been followed independently by 
17) Duiser and Staverman and several conclusions reached in 

Chapter 2 of this thesis are based on their results. 

Chapter 3 describes the preparation and characterization 

of the anionically polymerized polymer. At the same time a 

radically polymerized polymer of about the same molecular 

weight was also characterized. 

A completely new rheometer, designed to measure dynamically 

the viscoelastic properties of polymer solutions and gels is 

described in Chapter 4. The design incorporates recently 

developed piezoelectric titanate ceramics, which permit a 

rather compact construction. 

The results of the theory are compared with experiments 

in Chapter 5, which consists of two parts. In the first part, 

the theoretical relaxation spectrum is checked against the 

detailed measurements on a poly-n-octyl methacrylate fraction 

published by Perry and co-workers. The second part gives the 

results of measurements on a solution of PMA in toluene per­

formed with the rheometer described in Chapter 4. 

1-2 Linear viscoelastlcity - Phenomenological treatment. 

In the following treatment only shear deformations are 

considered, as shown in Figure 1-1. 

If stress o and strain y are 

time dependent, the time-dependent 

shear modulus G(t) is given the 

general definition 

i a ( t ) = G(t) . Y ( t ) (1-1) 

^ ione=Y •'•" ^ s t r e s s r e l a x a t i o n e x p e r i -
o • ' 

n»i-i. Slavic ihcar deformation. ment, a sudden cons tan t s t r a i n t 

i s app l i ed so t h a t 

T (0) = 0 and T ( t ) = Y^ 

Then a ( t ) = G(t) . YQ (1-2) 
where G(t) i s a con t inuous ly dec rea s ing func t ion 

G(t) = Gg[l - «(t)J (1_3) 
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Here G is the glassy modulus, defined by G(0) = G smd the 

"relaxation function" *(t) is approximately described by an 

exponential function 

»(t) = p [l - exp(- at)] (1-4) 

where a and p are constants and p approaches 1. Clearly, 
•(0) = 0 and «(») = p . 

If Y changes continuously with time, as In a dynamic experi­

ment, Equation (1-1) is generalized by Boltzmann's superposition 

principle which states that the total stress due to a number 

of strains applied at different times is equal to the linear 

summation of all the stresses related to those strains at their 

respective elapsed times. In mathematical form: 

o(t) = AYQ ö(t) + AY, G(t-t^) + AY2 ̂ (t-tj) + (1-5) 

or s.=t 
1 

o(t) = yG(t-s^) AYi(s^) (1-6) 
sp= o 

Por a continuously varying strain Equation (1-6) becomes 

a(t) = j Jit-a) - f - ^ d s (1-7) 

and substitution of Equation (1-3) in Equation (1-7) yields 

a(t)=Gg [Y(t) - /«(t-s) - f ^ d s ] (1-8) 

which on integration by parts gives 

o(t) = ög [ T(t) - ƒ Y(S) <p(t-s)ds 1 (1-9) 

where ^t) = 8« (t)/at 

Putting s' for (t-s) 

o(t) = Gg [ Y(t) - ƒ Y(t-8') <p(B')dB' 1 (1-10) 

where the primes will be omitted in the following sections. 

If the strain is sinusoidal 

Y =T- expdwt) (1-11) 
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then 

« 
= G Y - "̂ g J 1̂ 0 expl iüj(t-s) I t (8)ds 

= G Y* 1 - ƒ ®^P( -^"s) (|i(8)ds1 (1-12) 
0 

Equation (1-12) may be written 

o* = G Y* 1 -j <p(t) cos wt.dt+i j 9(t)siniiit.dt 

= G Y_ coswt + i sin ut x 

jl - r (|. (t).cosut.dt + i r 9(t).sinu(t.dt I (1-13) 

Writing out the real parts of Equations (1-11) and (1-13) 

* 
ReY =Y(<rft) = T cos (lit 
He o = a(iiit) = G Y cosuit | 1 - j 9 (t).cosut.dt) 

S o L Jo 

-sinurtlf 9(t).sinort.dt } 1 (1-14) 

The integrals in Equation (1-14) are fiinctions of u only, 

so that Equation (1-14) gives the two components of a(iirt), 

one in phase, the other n/2 out of phase with Y(iot). Since 

sinurt; = cosdirt; - n/2), the last term in Equation (1-14) is 

the component which leads Y('^) by n/2. 

This result can be written in a shorter notation 

Y(iut) = Y- COSü(t 

o ( u*t) = a cos (ut + 6 ) 

= o (cosut cos5 - s i n u t s in5 ) 

= Y [ G'(u))cosuit - G"(u) s l n u t ] (1-15) 

which de f ine s G'(u)) = (o / Y ) . c o s 5 

G"(u) = {a^/y^).Blnb 

t a n 5 = Gf1[w)/G'(u) 
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The "loss-tangent", tan?)., 

is a measure for the ratio of 

the dissipated and stored energy 

per cycle. G' and G" are the resQ. 

and imaginary components of the 

complex modulus G», as shown 

in Figure 1-2 

Prom Equation (1-13) or 

(1-14), G'(u)) and G"(ÜI) are 

derived thus; 
Fig. 1-2. 

0*(iui) = -^-j- = G M - ƒ "ii(t).cosu(t.dt 1+ i 0 f % (t).sinut.dt 

whence 

(1-16) 

(1-17) 

(1-18) 

= 0'(w) + i G»(u) 

G'(ni) = G + r aG(t)/ at Lcosut.dt 

G"(u) = - f [8G(t)/ 8t].sinut.dt 
Jo 

Equations (1-17) and (1-18) are the relations between the 

dynamic moduli and the transient modulus. 

1-3 Relaxation Spectra. 

Usually, the value of p in Equation (1-4) is between 0.999 

and 1. For an uncrosslinked polymer, p = 1, which means that 

the polymer shows flow properties. Then Equation (1-3) reduces 

to 

G(t) = 0 exp(- ot) 

Substituting this in Equations (1-17) and (1-18) yields 

0'(u) = 0 - oö exp(- ot).cos ut.dt 
8 8 JQ 

= » [l - «Xl°°« «*1 ] = V , " ^°2, 2 
** -• * 1 + u / o 

CTv- lf(x)l is the Laplace transform of f(x) 

(1-19) 

(1-20) 

where 
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G" (u) = G of exp(- ot).sin ut.dt 
« •'o 

„ J I sin ut 1 „ u / g /. ~. \ 
= G auic^l ^ 1 = 3 . 27~2 i^-2^) 

Equations (1-19), (1-20) and (1-21) are identical with 

equations derived for a Maxwell element (a spring and a dashpot 

in series), where l/a = T , the relaxation time of the element. 

This becomes clear from the differential equation for the de­

formation of a Maxwell element with a spring constant G. and 

a dashpot viscosity i) .. 

For stress relaxation conditions 

1 a o o ao _ _ 
G^' a t 11̂  ~ at ~ " 

This gives G(t) = G^ exp(-t/T^) (1-22) 

where ^ J = 1̂  /̂ .i 

For dynamic loading conditions, substitution of 

Y* = Y exp(iut) and a* = a* exp(iut) 

in 

yields 2 2 
i u T . r - U T j iuiT 

Y = ( i/G^) + ( o/n^) 

„ • i u T . p U T . . lUITj -| 

' i •- 1 + U T . 1 + U T . -I 

It is rather unreasonable to expect a real polymer to 

behave as a system with only one relaxation time, because of 

the many possible modes of motion which a polymer chain can 

undergo. In fact, it is found that the experimental curves 

are not matched exactly by these equations. 
To obtain a better mathematical description of the experimental 

curve a series solution is required. The most convenient series 

to choose is 
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G(t) = 

G'(u.) = 

G"(u) = 

y G^ exp(-t/-t^) 
1-1 

N 

l 
N 

l G^u,,/( 

G^u^J/d 2 2x 

;i + 
2 2^ 

u t^l 

(1-24) 

(1-25) 

(1-26) 

which can also be represented by a series of Maxwell elements 

in parallel, as shown in Figure 1-3, where the summation is also 

carried out from i = 1 to i = N. 

A two-dimensional represent­

ation of the 2N constants G. and 

, T. takes the form of a discrete 

line spectrum (the relaxation 

spectrum). The height of each 

Hi. line is equal to G and the 
3. i 

^X. 

Fig.l-3. Gtntrollud Moxwcll model 

position on the abscissa is 

given by T .. With a high densit; 

of lines. Equation (1-24) 

approaches the form of a Laplace 

transform. If instead of a 

summation an integration is 

written, the relaxation spectrum 

can then be calculated by inverting the Laplace transform, 

provided the modulus G(t) is first expressed as a continuous 

analyticEil function. 

Experimental results are in fact obtained in the form of a 

continuous function and it is therefore necessary to re-write 

the above equations for an infinite number of terms. If 

Equation (1-24) is replaced by 

G(t) = Gg + ƒ F(T) exp(-t/T).dT (1-27) 

where G represents the spring constant of an element with 

infinite relaxation time (if present), this procedxzre then 

assigns an infinite array of relaxation times to the polymer 

network. Then, by definition 
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T+AT 

^ G^ = P(T)jkT (1-28) 

T 

In the case where the interval is chosen sufficiently small or 

where all the lines have equal height. Equation (1-28) can be 

written 

P(T) = G^di/dT (1-29) 

Then P(T) is equal to G. multiplied by the number of lines 

in a unit interval of AT = 1 . Equation (1-29) is of special 

importance in Chapter 2 because molecular theories yield dis­

crete spectra. 

P(T) is the linear relaxation spectrum, which, for practical 

reasons, is converted to a logarithmic relaxation spectrum, 

defined by H(T) = F(T).t or F(T).dT = H(T)d Inx Then, 

Equations (1-24), (1-25) and (1-26) are converted to 

ö(t) = Gg + ƒ H(T) exp(-t/T)d InT (l-30) 

G'du) = Og + ƒ H(T)Ü.^T^/(1 + u^T^).d InT (1-31) 

6"(II)) = r H(T)UT/(1 + u^T^).d InT (1-32) 
•'-oo 

The glassy modulus G can be obtained from Equation (1-31) by 

letting w approach infinity. 

G„ = G^ + f H(T)d InT (1-33) 
g e J 

— oo 

The definition of the complex viscosity i)• is similar to 

that of the complex modulus in Equation (1-16) 

By putting 

t) (iu) = o /Y 

• / \ . • •• 
= Y exp(iut) so that Y = î T 

clearly 

t|»(i«) = 0*(i«)/lu = (O"/*) ) - (i G'/u ) = t)'(<ii) - ir)''(«) 

(1-34) 
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ïrom Equation (1-32) the real part of the complex visoosity 

is obtainable as 

&"(«)/« - V(») = ƒ H(T).T/(1 + ui^T^). d InT (1-35) 
-a* 

The steady-flow visoosity follows readily by letting M 

approach zero. 

ƒ H(T).dT (1-36a) 
0 

for a continuous spectrum , or 

"e 
'0 

" e " / '̂i'̂i (1-36b) 

in the case of a discrete spectrum . 

If all the lines in the discrete relaxation spectrum hare 

equal heights of dimension N/m , then H(T) is equal to this 

height multiplied by the number of lines per unit interval 

A InT = 1. 

Usually, H is plotted, not against In T but against logT. 

Then PdT = H.d InT = 2.303.H.d logT. (1-37) 

ThuB, if the abscissa is chosen to be logT , the ordinate 

must be not H, but 2.303 H, in order to let 2.303 H be equal 

to the product of the height and the number of lines in a unit 

interval AlogT = 1. 
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CHAPTER 2 

MOLECULAR THEORY 

In this chapter a theory is developed for the viscoelastic 

behavior of entangled linear polymer molecules. The theory is 

a modification of the theory of Rousse . The molecular model 

on which Rouse's theory is based does not always give as close 

an agreement with experiment ~ as models proposed later ~ , 

but is easier to modify for the effect of temporary crosslinks 

due to chain entanglements and for the effect of permanent 

chemical crosslinks. The reason is that a very important part 

of the mechanical behavior in Rouse's theory is incorporated 

in a "mobility coefficient matrix" which accounts for the mobility 

at several points in the chain. It is possible to modify Rouse's 

theory by suitably changing this matrix. 

2-1 Theory of Rouse. 
4) As in Zimm'a theory the derivation considers only a 

single molecule. Originally, the Rouse treatment was intended 

for the explanation of the dynamic viscoelastic behavior of 

dilute polymer solutions. The results, however, are also 

applicable to transient loading problems and experiments also 

show that the results are a good approximation for more concen­

trated solutions, provided the molecular weight is low so that 

no entanglements occur. A monodisperse polymer is essentisil 

for the treatment. 

A free-draining molecule of randomly coiling, freely Jointed 

segments is considered, as postulated by Debye . The solution 

containing the molecule is assumed to be sheared by harmonio 

motion in the x-direction of a z = constant plane. The angular 

frequency of the motion is u . One end of the molecule is chosen 

as the origin of this coordinate system. The velocity gradient 

Y is assumed to be .undisturbed by the presence of the molecule, 

even at the center of the coil. 
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The molecule is thought of as being composed of N equal 

submolecules of a length, which is rather arbitrary, but is 

so chosen that the end-to-end distance of a submolec\ile follows 

a Gaussian probability distribution function. It is generally 

accepted that in flexible organic polymer chains the minimum 

length of the backbone chain of a submolecule is about 50 chain 

atoms, or more. The purely viscous resistance of the medium is 

imagined to be concentrated at the Junctions of the submolecules, 

while the submolecules themselves are supposed to act like 

ideal elastic entropy springs. 

A submolecule with a length which fulfils the above conditions 

has a R.M.S. end-to-end distance given by /r V = a /q, where 

q is the number of monomer units in the submolecule and a is 

the length of a freely Jointed segment. The spring constant 

for a submoleciile is then given by rubber elasticity theory 
2 2 

as 3kT/qa or 2kTp . Clearly, the R.M.S. end-to-end distance 

of the whole molecule is /r V = a^Z, where the degree of 

polymerization Z = Nq. 

Each submolecule has its own Cartesian coordinate system 

x.y.z. parallel to the original system x, y, z. The configuration 

of the entire molecule is then described by 3N coordinates. 

At equilibrium the probability of finding the chain in the 

3N dimensional volume-element d0 at x., y., z ^M •'-̂  

N 

1'ĵ<i0i =(P^A) exp[-p^ y (x^+y^+z^)]dx^ dẑ j (2-1) 

where p = 3/f20?^^). Perturbation of this distribution by a 

velocity gradient y , acting on v moleciiles in volume V, 

changes the number of molecules in d0.. At equilibrium, the 

number n. of molecules in d0. is n. = \>1 .d0.. In the perturbed 

state, this number is s^. 
10) Assuming that Wall's relation 

AF = - kT y s^ ln(n./s^) (2-2) 

i 

is valid at non-equilibrium conditions and that the number 

Sj can be expressed in a convergent series 
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. • 2 • "5 
s^ = n̂ (1 + Yf + T g + Y h + 

the Chemical potential I» . = 3 A F/ a s = U is found to be 

H = kTJ 1 + ln(l + Yf ) (2-3) 

where the higher powers in the series have been omitted, 

because the perturbation is assumed to be small. 

It should be noted that the concept of a chemical potential 

is applied here to a non-equilibrium situation. This is only 

valid at small deviation from equilibrium . This restriction 

makes the Rouse treatment applicable only to linear viscoelas­

tlcity, where strains are infinitesimally small. 

Motion of the end of the Jth submolecule (Jth Junction) 

ia dependent on two quantities: the influence of the velocity 

gradient on the position of the Junctions and the configurational 

diffusion of the Junctions towards their equilibrium positions. 

Thus the velocity of the Jth Junction 

(^J^ot = (̂ Ĵ Y * ^^J^D (2-4) 

where (x.). = Y Z . (2-5) 
J Y 3 

and (x.)^ is the back diffusion term during deformation. 

By analogy with Pick's first law for regular particle 

diffusion, or more generally, from irreversible thermodynamics, 

the driving force for the configurational diffusion is 

da /d Xy 
The configurational diffusion of the molecule, whose con­

figuration lies in d0., along the x. coordinate, can occur by 

displacement in the x direction of the (J-I)th or the Jth 

Junction, represented by 

«JV. ' - = [ % - ^ ] '̂ -" 
and 
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(i ) = _ B I -ï-^i- - -2J5 1 
"̂"ĵ d ^ L » x^ 8x ̂, J 

respectively (2-7) 

The mobility B is inversely proportional to the length chosen 

for the submolecule. All junctions except the (j-l)th in 

Equation (2-6) and the jth in Equation (2-7) are assumed to 

remain fixed. 

The sum of these velocities is equal to the last tezm in 

Equation (2-4) 

(i,'D - - =[- -Jt:; + 2 ' I* - -2-li 

»̂ j »Vl 
(2-8) 

The equation of motion of the polymer molecule in the various 

X directions in 3N space is then 

X = T Z 

where x = ^1' ^2' *3 

^%3 -^^ 

••*N ' 

2^, Zg, z_ "N 

= 1 -^ 
ex. 

8 
8x 

2 '*3 8x, 

(2-9) 

(2-10) 

(2-11) 

(2-12) 
N 

(2-10), (2-11) and (2-12) are column vectors and A^, is the 

square N order matrix 

=M 

3 

•1 

-1 

2 

- \ 
•' r 
2, - \ V _ -

N S S 
N S S 

\ \ N 
S s s 

N \ N 

X -1 '2 ^̂1 O -1 2 -1 

-1 3 

(2-13) 
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Similarly for the y and z directions: 

i = - B % 3 _Vy;i (2-14) 

z = - B A^^ _V̂ |i (2-15) 

As pointed out by Duiser and Staverman , the mobility 

of the submolecules at the ends of the chains must be taken 

as at least twice the average mobility of the submolecules 

in the middle. This accounts for the three's at the comers 

of the matrix, rather than two's as in the original Rouse 

treatment. 

Each (x.)jj depends on three differentials of \x with 

respect to x. .. , x. and x. ,. In order to solve the problem, 

a transformation must be carried out to new coordinates 

u V and w , such that (u )„ is a function of ( 8 (i / 8 u ) alone, 
p p p' p D ' p' 
This is done by an orthogonal transformation of the matrix 

A,, into a matrix _A_ by the operation 

R~̂  A,, R = A =[X 6 ] (2-16) 
-33 - — "̂  p pq-" 

and the new coordinates are related to the original coordinates 

by 

u = R"̂  X 

V = R~̂  Z (2-16a) 

w = R~ 2. 

The orthogonal matrix R need not be determined, K are the 

eigenvalues of A__ and 6 is the Kronecker delta. The solution 
-33 pq 

of the eigenvalues, which will be discussed later, is 

Xp = 4 sin2(pn /2N) (2-17) 

Equations (2-9 ), (2-14) and (2-15) then are transformed 

into 

u = Y w - B _A. I V u j (2-18) 
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V « - B _A_ 1 _V̂ H 1 (2-19) 

W = - B _A_ ( ^ f ) (2-20) 

At equilibrium, the density of points in configuration 

space is 

p^ = n^/d0^ =V 1 (2-21) 

Irl the disttirbed s t a t e , at time t , i t i s 

p = s^/d0^ = V ? (1 + Y f ) (2-22) 

By solving the equation of continuity 

S 8( pü ) a( p V ) 8(p w ) 
p =iuYV»f = - ^ - 5 - j j ^ > ^ ^ . - 5 ^ (2-23) 

p=1 P P P 

the function f is found by Rouse to be 

N 

^ = 72T 1 VP'P /̂^ ̂  ̂ ""P̂  ^̂-̂*̂^ 
V 3 / p=i 

where T = /r^\ /(6BkT X ) (2-24b) 
P \ s / / p 

Equation (2-24) is only a particular, time independent solution 

of the set of Equations (2-23) and T are the relaxation times 

of the polymer coil. 

This permits calculation of the average rate of input 

of free energy per molecule (P.) whose representative points 

lie in d0.: which is the scalar product of the velocity 

of the liquid (Vĵ ) and of the gradient of the thermodynamic 

potential (_7.|i ), both in the transformed 3N coordinates. 

?i = 4 - -̂ '' 

VT has 3N components! u,, v, and w. of which Vj. and w, 

are zero, while U T = Y w o r u = Y W = Y W COS U t . —h — p p o p 

_5j.li also has three components of which only the u-component 

7 |i is effective. Then P. is found to be 
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o n w ^ ( c o s u t + uiT^ s inw t . coswt) 
P^ = Y „ kT 

r n n V U U O U U T UIT OXIJ. U l / * U ( j a W U / 

y ^ E ^ (2_25a) 
2BkT X (1 + UI ' T ̂ ) 

p=1 P P 
The number of molecules whose points lie in d0.is 

nT (1 + Y f)d0.. To obtain the average rate of input of free 

energy per unit volume, this n\xmber is multiplied by P. and the 

product integrated over the whole configuration space. 

The result is 

N 2 2 
„ _ T cos u t +UT s i n u t . c o s u t 

P = T n kT ) -2 : 2 (2-25b) 
o £, , 2 2 

p-1 (1 + u S p 

The value of P can also be calculated from phenomenological 

considerations. If the strain Y = Y sinut, then 

Y = 111 Y cos ui t = Y COSut 

and the stress a can be written in terms of the complex viscosity 

as 

o = 7 ( 1 ' cosuit + t)" sinitft) o 

Then P = -fo = Y (I' COS ut + T) " sinut cosut) (2-25c) 

Comparing terms in Equations (2-25c) and (2-25b) yields 

the components of the complex viscosity t) ' and i) ", which are 

easily transformed into the components of the complex modulus 
N 

G' = n kT ^ u ^ T ^ / d + „ 2 ^ 2 ) (2-26) 

P=1 N 
0" =iiiti + nkT y IDT / ( I + u^T^) (2-27) 

s ^ p p 
P=1 

where n is the number of molecules per unit volume (n = w)« 

This expression is similar to that derived from a parallel 

series of Maxwell elements where the elastic constants are all 

equal to nkT and the relaxation times are those given in 

Equation (2-24b). 

For relaxation times where p ̂ N/5, the sine in Equation (2-17) 

CEin be replaced by its argument, so that T becomes 
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Tp = Z ̂ r2)c^/(6nVkT) (2-28) 

where C is the monomeric friction coefficient, defined by 
o 

Z C ̂  = N/B 

The relaxation spectrum representing this viscoelastic behavior 

is a discrete line spectrum, where all the lines have a height 

nkT. The first relaxation time (p = 1) is the longest. 

A further approximation can be made for relaxation times 
12) shorter than the first three (i.e. for p > 3). In this region, 

as shown in Chapter 1, the relaxation spectrum is 

H d(lnT ) = FdT =G.(8i/aT)dT 

and will now yield 

H d(lnT ) = - nkT.( ap/dT )d T (2-29) 

where the negative sign arises because p runs from right to 

left. Inserting Equation (2-28), in (2-29) gives 

H = ii^l y n/n )(Z C„ kT/6)^ T"-̂  (2-30) 

It should be noted that H represents the density of lines, 

times nkT, along the relaxation time axis. The moduli G' and G" 

follow from Equation (2-30) 

eo 

G' = ƒ Hw^T^/d+u^T^)^ In T =( i^2\in ) (z CjjkT/3)̂ u'̂  (2-31) 
— oo 

and G" is found to be equal to the R.H.S. of Equation (2-31). 

Because of the approximations involved, these values of G' and 

G" apply only to the region where 3<p<N/5. 

2-2 Modification of the single chain problem. 

As a first step in the derivation of a more extensive theory 

a single chain is again considered, but with the ends having a 

fixed position in space. These fixed ends can be seen as hypo­

thetical crosslinks. For real crosslinks this model is not 

valid, but it provides a useful start. In the following section, 
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motion of the crosslinks is taken into account. 

The matrix for such a chain with zero mobility at its 

ends and containing N submolecules, is 

A. 

1 -1 

-1 2 -1 

-1 2 -1 

\ V ^ 

-̂1 ^2 ^̂ 1 

2 -1 

-1 1 

(2-32) 

The eigenvalues of this matrix and of the matrix A,_ of 

the free chain in Equation (2-13) can be calculated by sub­

stituting X = z + — 
z in the characteristic equation: 

lA,, - X 0 (2-33) 

where z is a complex quantity and ̂  is a unit matrix. 

In this substitution, it must be noted that, since 2 -X 

is always real, the imaginary parts of z and 1/z must cancel. 

Writing z = P + IQ and l/z = (P - iQ)/(p2 + Q^), this means 
2 2 

that P + Q = 1 . Thus z always lies on the unit circle, 

unless Q = 0. X therefore varies between +4 and 0. 

This substitution yields: 

I A. 
33 ^ I I A-^jM _iz 2N n ( z -H1) 

ẑ \z - 1) 
= 0 (2-34) 

* The author is grateful to Professor H.J.A. Duparc, Mathematics 

Department, T.H., Delft, for suggesting this substitution. 
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whence X = 2 - 2Cos(p«/N) (p = 1,2 • N) (2-35) 

which proves Equation (2-19). 

With the same substitution 

^ 2N , w , . 
A (z) - ^ - 0 ( ^ - 1 

2 ( Z + 1 ) 
(2-36) 

whence 2 - 2C08 j (p-l)n/N} (p = 1,2 .N) (2-37) 

Equation (2-37) gives a first relaxation time at infinity since 

T is proportional to 1/x and for p = 1, x = 0 . 

Consider as an example five hypothetical fixed crosslinks 

in a free chain with 36 submolecules, the crosslinks being 

equally spaced at intervals of 6 submolec\iles. Then the 36th 

order A,, matrix of the free chain is converted into four 6th 

order A., matrices and two 6th order A,, matrices. 

The eigenvalues of A,, are found with the same substitution 

as above. 

A3^(z) = (z2N+ l)/z^ = 0 

whence 

S = 2 2cos ( (p - i)n/N| (p = 1,2 .N) 

zvolucsofA (36th.ordcr) 
33 

z values of 4 A (6 tK order) If 
"11 

and 2 A (6 th o rd i r l x 
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The change is illustrated in Figure 2-1. The 36 different 

roots of A_,(z) = 0 are evenly distributed over the unit circle 

in Figure 2-1 a. In Figure 2-1b the four interior sub-chains 

yield six groups of z values, which are the rootes of four 

identical equations A..(z) = 0. Thus each asterisk represents 

a four-fold root. One of these groups lies at +1, which means 

that there are four relaxation times at infinity. The two 

exterior sub-chains yield six groups of z values, which are 

the rootes of two identical equations A,..(z) = 0. 

In the relEixation spectrum of permanently crosslinked 

rubbers, a group of relaxation times is indeed found at infinity, 

whereas in the spectrum of rubbers with temporary crosslinks 

(entanglements) such a group lies not at infinity but closer 

to the glass transition region. 

The question therefore arises, whether an entanglement 

point can be regarded as an intermediate state between a free 

and a fixed Junction between submolecules. This intermediate 

state can be represented by assigning a higher friction coefficient 

to these points. This principle has already been applied, but 

only in mechanical models, by Bueche and Marvin . 

It is qualitatively clear from Figure 2-1 that such inter­

mediate states must give rise to a group of z values very close 

to the point z = +1 corresponding to a group of very high 

relaxation times. A representation of this type requires two 

additional parameters: a factor 6 reducing the mobility B at 

an entanglement point, and the number of entanglements (m-1 ) 

in one molecule. This modification of the Rouse model affects 

only the mobility coefficient matrix and consequently the 

eigenvalues. The rest of the treatment is unchanged. 

It must be noted, however, that this model accounts only 

for cooperative m.otions of neighbouring entanglements on i;he 

same molecule which floatea in a continuum,and not for 

cooperative motions of other surrounding molecules. 

Assigning a reduced mobility 6 B to the Jth Junction 

between submolecules yields instead of Equations (2-6) and (2-7): 
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- 'V.--'»[^--^] (2-39) 

Dividing the molecule into m sections by repeating this m-1 times 

yields a matrix of the form 

3 -1 
-1 2 -1 

a-

N 

-1 US -8 

- 8 M 

-1 2 -1 
-1 3 

(2-40) 

The relaxation spectrum of this molecule will be given the 

symbol H[m-l]. This relaxation spectrum is still a discrete 

line spectrum, where all the lines have a height kT. 

If 6 = 0 , m-2 relaxation times are infinite, resulting in 

an equilibrium shear modvilus per molecule of 

Gg = (m-2)kT 

If 6 is small, the m-2 relaxation times are finite, but large. 

The n\imber of relaxation times in this group will be the same 

no matter how the entanglements are distributed along the molecule. 

It has been fovind possible to express this complicated 

matrix A in a workable form so as to permit calculation of the 

eigenvalues . 

Experiment, however, always gives a continuous relaxation 

• The assistance of Dr. J. Ponstein, Shell Laboratory, Amsterdam, 
is gratefull.y acknowledged. 
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spectrum, so that the density of relaxation times is more 

Important thsin the relaxation times themselves. This affords a 
*• 

short-cut to the calc\xlation of the continuous relaxation 

spectrum H[m-1] by application of a property of the Sturm 
1 5) sequence , Random distribution of entanglement points over the 

entire molecule can now also be easily introduced. 

The method is based on the fact that, given a tri-diagonal 

determinant in the characteristic equation 

q-x| b, 

bf c,-\ 

b; c,-x 

(2-41) 

the subdeterminants (H.., H-p 

form the following sequence; 

H . = + 1 

,) indicated by dotted lines 

"11 

^22 

f33 

(°i -'Ko 
(cg - ̂ )H^i b.b.H 

1 1 00 
(2-42) 

(c^ -X)H22 - V2^11 

ii 
= ic^ -X)H 1-1,1-1 ^i-lVl ̂ 1-2,1-2 

A theorem exists which proves that if a certain value of X 

is substituted into this "Sturm sequence", the number of agree­

ments (a,) in sign between consecutive members of the sequence 

is equal to the number of eigenvalues greater than that X . 

If a H.. = 0 occurs, its sign is defined to be opposite to 

that of H, . . .• 

For instance, for X = 4 in the matrix A of Equation (2-40) 

^* The suggestion for this method was made by Professor S. van 
Spiegel, Mathematics Dept., T.H., Delft, whom the author ox-
presses his gratitude. 
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all the H.. will alternate in sign, giving no eigenvalues 

larger than +4. For X = 0 EOI the Ĥ ^̂  will be positive and thus 

all the eigenvalues will be larger than zero, as they should be. 

At this point the lengthy calculations must be taken over 

by a computer, which is given the following instructions: 

1) Determine the number of agreements a, for a certain x .. 

2) Determine the number of agreements a- for X - A X = x 

(where A is a multiplying factor, rather than an arithmetic 

increment, so as to give equal increments on a logarithmic 

scale). 

3) Find a_-a. and repeat the process until a, = N, the order 

of the matrix. 

4) Give the results converted into log TJJ values, where 

R̂ = lAi. 
For the Algol-program of this procediire see the Appendix. 

As a result of such a calculation it was found that 6 must 

be very small (10~ to 10" ) in order to affect significantly 

the spectznm obtained with the vinmodified Rouse matrix. Clearly 

this result does not only apply to a chain with free ends, i.e. 

a matrix with 3's in the corners, but also to a chain with 

fixed ends, i.e. a matrix with 1's in the comers,containing 

such chain distortions as appear in Equation (2-40). For instance 

if 5 = 0.1, the change is so slight as to be undetectable by 

experiment. This result is of importance in the following 

sections,and an example is given in Chapter 5. It does not mean, 

however, that the overall mobility of the Junctions is actually 

reduced a thousand or a million fold. This is physically un­

likely because then they would resemble fixed points. The physical 

significance of small 6 values will become clear in section 2-4. 

2-3 Modification for crosslinked networks. 

The ends of crosslinked chains are in fact not fixed in 

space. The line of reasoning in the preceding section must 

therefore be modified for cooperative motions of crosslinked 

or entangled molecules. 

Duiser has given a derivation for chemically crosslinked 

networks, with mobile crosslink points, which is repeated below. 

Consider the system of four chains between five crosslinks, 

shown in Figure 2-2. A, B, C and D are fixed point crosslinks 
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and P is a mobile crosslink 

halfway along AC and BD. Each 

chain contains N submolecules 

and the submolecules are numbered 

as follows: 

from A to P: 1 to N, from 

P to C: N + 1 to 2 N, from 

B to P: 2 N + 1 to 3 N and 

from P to D: 3 N + 1 to 4 N. 

Assume that the crosslink P 

has a reduced mobility B/2 be­

cause of the double mass asso­

ciated with the junction. This 

value of B / 2 is an estimate 

whose precision is of no conse­

quence: B/3 or B/5 would yield the same result in the following 

treatment. 

The velocity of back-diffusion in the x-direction at the 

point P is calculated as before. With all the Junctions fixed 

except the (N - 1)th 

^'^N^N-I 
Br4iL_-iJi-_-| (2-43) 

and with sill Junctions fixed except the Nth 

(^N^N 
B r j j L 
2 L »Xjj -

8|i JjL 8(1 

a X. N+1 8x 3N ax. 3N+1 • 
(2-44) 

where |i is the chemical potential of the whole four chain system. 

The sum of these velocities gives (xj,)-

<V.--B[-.-^ + 22Jf_ i 
8 ,1 

2 8x, 2 8x, 
N+l 

1 8 n 1 8 (1 1 
2 8X3JJ - 2 ax^jj^, J 

Similarly 

^^N+1 ̂ D .[. 1 i_t 
2 8XJJ 

3 8 u 
2 8x 'N+1 
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This result, expressed in a mobility coefficient matrix 

of order 4N, gives 

-12-1 

i-i 
-i i 

-) 2 -1 

-1 1 o 

O 1 -1 

-1 2 -I 

i -V 
-i i-

...J -i 

-1 2 -1 

-1 I 

(2-45) 

The characteristic equation | A. - xl | = 0 can be 

simplified as follows: The (2N)th row is added to the (2N+1 )th, 

the (2N-1)th row is added to the (2N+2)th, etc. Then the 2Nth 

column is subtracted from the (2N-1)th, the (2N+1)th column 

is subtracted from the (2N-2)th, etc. The resulting determinant 

can then be split into a product of three determinants, of 

which the first corresponds to a chain of 2N submolecules 

between fixed points and the other two correspond to two chains 

of N submolecules between fixed points. 

Thus the mathematical equivalence of this four-chain net­

work with one mobile crosslink is as shown in Figure 2-3. 

Physically, this can be explained as follows: the chain AC 

can move with almost complete freedom. Once it has chosen a 

configuration, however, the point P appears to the chain BD 

as if it were fixed. The sections BP and PD then choose their 

own configurations independently of each other. The system of 

four chains therefore has three degrees of freedom instead of 

the commonly accepted four. 



30 2-3 

There seems to be no obvious reason why this physical 

interpretation should not also apply to a case where P is not 

at the center of the chains AC and BD, although it is not 

easy to prove this mathematically. 

The principle of this mathematical equivalence can be applied 

to a whole network , To this end the network partly shown in 

Figure 2-4a is considered. The network is two-dimensional but 

can be regarded as the projection of a three-dimensional net­

work. All the crosslinks are fixed and the v chains between 
e 

them are all N submolecules in length. Now, half the crosslinks 

are given a mobility, indicated by a circle, and application of 



2-4 31 

the above principle results in stage (b). Again, half the 

remaining fixed crosslinks are given a mobility, as shown 

in (c) giving (d). This process is repeated until only four 

fixed crosslinks are left at the outer boundary of the net­

work. The relaxation spectrum of the final system of chains 

divided by v is given by 

oo 

Vrm.netw. = + «^^^ ^^ 1 ^ «^^^^^ ^'"^^^ 

where H(2 N) is the relaxation spectrum of a chain with fixed 

ends and of length 2 N submolecules. It should be noted that 

the spectrum represented by Equation (2-46) is no longer a 

series of lines of equal height. This relaxation spectrum 

H . has two important properties: 

a) The slope of -i of the log H logT plot (see Equation 

(2-30)) in the glass transition region is followed at higher 

T by a slope of -1, 

b) The number of infinite releixation times of height kT is half the 

number of effective network chains v in the initial network. 
e 

This follows from Equation (2-46), becaiise 

4 1 6 ^ 6 4 * " " * 

2-4 Modification for temporary or entanglement networks. 

In concentrated solutions, chain entanglement occ\irs provided 

the molecular weight is high enough. These entanglements are 

of a complicated geometrical nature. Molecules of polymers 

with very different degrees of chain flexibility caused by 

steric hindrance, seem to become entangled to the same extent, 

indicating that an entanglement is not concentrated at one 

point on a chain. When devising a model, however, one has 

no choise but to concentrate the effect of entanglement coupling 

on Infinitesimal points on the chain as is done in the model 

described below. The approximation does not seem serious, for 

theoretical and experimental results show a good fit. An essential 

requirement, however, is a large entanglement spacing along the 

molecule, i.e. the entanglement points should be separated 
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from each other by several (at least two) submolecules. The 

model is therefore not applicable to every undiluted polymer 

system, but only to those polymer systems, preferably diluted, 

which yield a maximum rubbery shear modulus G(t) or G'((i)) of 
6 2 

about 3x10 dynes/cm . 

An entanglement network is assumed, having four-functional 

entanglement points, which are all equal and are randomly 

situated over the entire length of the molecule. All molecules 

contain the same number of submolecules (monodisperse polymer) 

and are assumed to have the same mmber of entanglements. 

, The chains are assumed to slip slowly at their entanglement 

points. This slipping process must be much slower than the 

movement of a free submolecule if it is to explain the presence 

of a group of long relaxation times beyond the glass transition 

region. 

First a two-chain system is considered, like that in 

Figure 2-2, where the point P now represents a mobile entanglement 

point, while A, B, C and D are fixed. It is assumed that, as 

in the case of a crosslink,, the mobility is B/2 at the point 

P although there is some slip between the chains. With all 

junctions except the (N-1)th fixed, the velocity of back diffusion 

along the x„ coordinate becomes 

With all junctions except the Nth fixed, it becomes • 

N'N ' L a x̂ T 9Xjj_̂ ^ ' ̂ 3N 

- (1 - 2 5 ) ^Ji 

(2-48) 

' ^3N+1 

where (i is the chemical potential of the whole system of two 

chains, and (1 -2b) accounts for the reduction in the forces 

due to slip in the second chain. 6 is the slip parameter and, 

as mentioned above, must be much smaller than one. The factor 2 

is included merely for mathematical convenience. 
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The resulting (xjj)jj and (xjĵ ^ )jj are: 

(̂ N̂ D - - \ - ix^_^ * 2T^-^ "«"^J 

-•[ '*-"-fe-<t-)ï^,] 
•"3» "•3N+1-

(2-49) 

. . r 8 n 3 a 11 
^"^+1 D̂ = - ^ L~ * 8 Xjj * 2 8 Xj,_̂ ^ 

8 n 
8X, N+1 ] 

. _Br-(i-6)^+(i-6)V^l (2-! 

The (4N)th order mobility coefficient matrix then becomes 

50) 

I -1 

-12-1 

-i I 
i-8 

-1 2-1 

-1 I O 

O 1 -1 

i:8-i.B. 

i-. 1-.. -.J I,-' 
-1 2 -1 

-1 1 

(2-51) 

By applying the reduction previously applied to the characte­

ristic Equation of the matrix in Equation (2-45), the determinant 

of (2-51) is reduced to a product of the two determinants: 
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1-X -1 

-ifa-"6-xy-r; 
I I 

!6-l 2-fi-X;-1 

-1 1-X 

1-X -1 

-1 2-X -1 

-1 [u6-X -61 
! 

^ -1 

-I 1-X 

(2-52) 

The results of section 2-2 should now be recalled. It was 

shown then that only a very small 6 has an influence. To find 

the physical interpretation of Equation (2-52) the following 

cases must be examined for mathematical completeness: 

a) 5 is a large fraction, e.g. 1/3, 

b) 6 = 0 or is very small, 

c) 5 = 1 or almost = 1. 

If 6 is a large fraction, both determinants in Equation (2-52) 

reduce to the large 5 case discussed in section 2-2. The eigen­

values then hardly differ from those of two independent chains 

between fixed points. Since, in practice, entanglements do have 

an influence on the relaxation spectrum, this case must be 

rejected. 

If 6 = 0 , Equation (2-52) reduces to the resTilt of Duiser 

for a chemical crosslink, i.e. one long chain and two short 

chains between fixed points. If b is very small, the left-hand 

determinant corresponds to the large & case as above, but the 

right-hand determinant corresponds to a chain with 2N sub­

molecules between fixed ends and with an increased friction 

coefficient in the middle. 

If 6 = 1 , Equation (2-52) also reduces to the result of 

Duiser, the roles of the determinants being reversed. If 6 is 

almost = 1, the case with 5 very small is repeated, again with 

the roles of the determinants reversed. 

Thus the cases where 6 is very small, and almost one are 

physically identical, as can be seen from inspection of 

Equations (2-49) and (2-50). Prom these, it is clear that the 
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oase where 5 is almost one corresponds to the case where the 

segments DP and BP interchange their roles. Hereafter, 5 is 

taken to be very small. 

XX 
FI9.2-5 

Thus the mathematical equivalence of the system of two 

chains between four fixed points, with one mobile entanglement, 

is as shown in Figure 2-5. On the right hand side one of the 

resulting chains (AC) is undisturbed, while the second (BD) 

of equal length poseases a lower mobility at the former point 

of contact P'. The mobility at such a "slow point" P' is equal 

to 5 B. Physically 5 B represents the ease of slipping of the 

entanglement point along one of the two chains. The small 

value of 5 is now quite understandable, for this is now the 

mobility, not of the entanglement itself (as assumed in section 

2-2) but. of the slow point P' in the mathematical equivalent, 

In order to apply this principle to an entanglement net­

work, a fixed point network is first considered as shown in 

Figure 2-4a. All the chains between the fixed point crosslinks 

are of equal length (N submolecules) and the n primary molecules 

are eulso of equal length (m N submolecules). 

Now each of these crosslinks is successively replaced by 

an entanglement of mobility B/2 and slip parameter 6 , in 

such a manner that the tovr chain segments being considered 

are of the same length and terminate in a fixed point. As more 

and more crosslinks are transformed in this way, care must be 

taken that the remaining fixed points are symmetrically distri­

buted in the network, so that the four chain segments imder 

consideration contain the same number of slow points. Finally, 



36 2-4 

only four untransformed fixed points remain, which lie on the 

outside boundaries of the network. 

Thus an entanglement network consisting of n molecules, 

each containing (m-1) entanglements, may be transformed to its 

mathematical equivalent, which is a system of: 

n/4 molecules with (m-1) slow points 

+ 3n/8 " " (m-1)/2 slow points 

+ 3n/l6 " " (m-1)/4 slow points 

+ 3n/32 " " (m-1)/8 slow points, etc. 

The relaxation spectrum for one molecule of this entanglement 

network may now be written: 
oo 

«ent. = i H [m-1] + i ^ Ij H [(m-1 )/2^] (2-53) 

k=1 

where H [ (m-1)/2 ] is the relaxation spectrum of a molecule 

(m N submolecules long) with (m-1)/2 slow points. Equation (2-53) 

like Equation (2-46) represents a discrete line spectrum in 

which the lines are not all of equal height. 

The entanglement-network model for which Equation (2-53) 

was derived suffers from at least three imperfections, because 

in a real entanglement network: 

1) The chain segments between entanglements are not of equal 

length. 

2) The n primary molecules are not of eqizal length (i.e. the 

poljrmer is polydisperse). 

3) The number of elastically effective chains is not exactly 

equal to the number of network chains. 

The treatment outlined below to deal with these imper­

fections is also applicable to chemically crosslinked networks. 

1. A real entanglement network is not made up of equal 

chain segments; the entanglements are almost randomly distri­

buted along the molecules. From Figure 2-1 it can be seen that 

a chain regularly subdivided by (m-1) fixed points yields 

a spectrum with many maxima, including one maximum of 

(m-2) relaxation times at infinity. Likewise, a chain regularly 

subdivided by (m-1) slow points will exhibit a relaxation 



2-4 37 

spectrum with many maxima, including one group of (m-2) very 

large relaxation times. In contrast, a random distribution 

of the (m-1) slow points along the molecule will result in a 

much smoother spectrum. 

Equations (2-45) and (2-51) indicate that the procedure 

for transformation to the mathematically equivalent networks 

is also valid if the matrices (2-45) and (2-51) are not only 

symmetric about their principal diagonal (i.e. each element 

a,.. = a.j ) but are also symmetric about the other diagonal 

i.e. each element a.. = a/„ •j.iWw 4+i^ • Tliis means that if 

two chains are entangled as shown in Figure 2-6a, where the 

chains are divided into two pairs of equal chain segments, 

they can be represented by their mathematical equivalent as 

in Figure 2-6a. 

Fig. 2-6a 

This also means that a mathematical equivalence may be found 

for two entangling chains containing only two fixed points and 

two free ends, as shown in Figure 2-6b, provided the entangle­

ment divides the chains into two pairs of equal chain segments. 

Making use of this principle it was found possible to 

construct a network containing different chain lengths between 

the fixed points, in such a way that an.entanglement network is 
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obtainable by an unfixing process similar to that illustrated 

in Figure 2-4. Equation (2-53) is still valid for this special 

entanglement network, which is still not randomly entangled. 

It is now assumed that ths relaxation spectrum H . of 

an entanglement network with random distribution of chain lengths 

between entanglements, is also represented by Equation (2-53). 

This assumption is reasonable in the light of the physical inter­

pretation made for the transformation in the case of a chemical 

crosslink. Each term H [(m-1)/2 ] in this equation then re­

presents an average of all possible entanglement distributions 

for a molecule with (m-1)/2 slow points. In practical calculations, 

however, for each term H [(m-1)/2 ] , one of the many possible 

distributions must be chosen and an average spectrum calculated 

from 5 or 10 such choices, depending on the accuracy which is 

desired. 

The relaxation spectrum obtained in this fashion, plotted 

as log H . vs. log Tj. (where T „ is defined as t„ = ^ / \ ) 

has the following properties: 

a) In the short-time region, the spectrum is identical with 

the spectrum for a crosslinked network as derived by Duiser: 

The slope of --J- is followed by a slope of -1. 

b) A rather low minimum in the curve is followed by a group 

of long relaxation times, the sum of whose heights is 

exactly equal to half the number of elastically effective 

chains ( v ) in the entanglement network multiplied by kT. 

c) Beyond the maximum in this group, the slope is practically 

constant and equal to -i up to the highest relaxation time, 
17) 

as was already intuitively suggested by Ferry and coworkers . 
Examples of these calculations will be given in Chapter 5. 

2. Up to this point only a monodisperse polymer was being 

considered. Nevertheless, the calculated spectrum already showed 

a fairly good fit with the curves obtained from experiments on 

fractionated samples. For such samples, a KL/M ratio of 1.1 to 

1.3 is usually found, depending on the fractionation conditions. 

If the molecular weight distribution in the sample is 

approximately known, then instead of assvuning a continuous 
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cijrve (like e.g. a Schulz-Flory distribution) the sample is 

assumed to have a distribution like, for instance, the step-

curve shown in Figure 2-7. 

60r 

10*X(M) 

Fig. 2-7 Schuiz—Flory distribution for a radically polymerized polymer 
with Ki^=1.BxI0' ond n„ = 12xl0 ' 

The calculation of Equation (2-53) is carried out for each 

M., after which a weighted average is calculated from the 

r e s v i l t i n g H j . (M.) v a l u e s . 
en 0. 1 

With this refinement, the resulting relaxation spectrum 

shows a much smoother curve. The slope of -1 mentioned above 

is limited to a narrow time region or may even disappear. 

Only the slopes of -i will remain. 

2.. The third correction involves the calculation of the 

number of elastically effective network chains (v ). A treatment 

is given below in which the symbols differ from those used in 
18) 

Flory'8 derivation .It applies equally to chemically cross-
linked or entangled networks with 4-functional couplings. 

Consider n primary molecules per unit volume, coupled in 

pairs by one crosslink per two molecules. This process will 

require -J-n crosslinks. At this first stage the number of 

network chains ( v) and the number of effective network chains 

( V ) are both zero. [A network chain is defined as a chain 

which has a crosslink at both ends. An effective network chain 

is defined as one half of a closed circuit which must contain at 
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least two crosslinks. Both definitions are Identical with 

those of Plory. ] 

Every intermolecular crosslink subsequently formed creates 

two network chains until a second stage is reached where all 

the molecules form one giant lineaur macromolecule. If the total 

number of crosslinks is C, then 

V = 2(0 - -J-n) 

or C = i v + i n (2-54) 

At this second stage the number of network chains is equal to 

n-2, while the total number of crosslinks used is n-1 . 

Each new crosslink (evidently intramolecxilar) formed there­

after, produces two elastically effective network chains. If 

the number of effective crosslinks is C , then C = i v . 
e e e 

Since the number of crosslinks used to reach the second stage 

is (n-1), the number of effective crosslinks is 

Cg = C -(n-1) 

or i v g = ( i v + i n ) - ( n - 1 ) = i v - i n + 1 (2-55) 

Usually n » 2. Then Equation (2-55) reduces to 

V = V - n (2-56) 

e 

Thus the correction term for v is -n whereas Plory's deduction 

yields -2n. The difference is due to the quantity v ,which in 

Flory'a treatment is defined +n higher than in the derivation 

described above . 

2-5 Summary of Chapter 2. 

The theory of Rouse is outlined. This proposes a free-

draining model which c£in be modified for the effect of chemical 

crosslinks or entanglements through the "mobility coefficient 

matrix". With this model the relaxation spectinm of a free chain 

molecule is found to be equivalent to that of a set of Maxwell 

elements in parallel. 

The theory of Duiser extends the Rouse model to the case 

of a permanent network. A mathematical consequence is that a 
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mobile crosslink which Joins the centers of two equal chains, 

can be transformed into a fixed point at one of the centers, 

as shown in Figure 2-3. The physical interpretation appears 

plausibly extendable to chains crosslinked at any point along 

their length. 

This principle is applied to an entanglement network theory 

where an expression is derived and assumed to apply for a randomly 

entangled molecule (Equation (2-53)). The terms in this ex­

pression are identical with the relaxation spectra of uncoupled 

molecules containing a number of "slow points". These spectra 

are obtained by the application of a property of the "Sturm 

sequence". 

If the molecular weight distribution of a polymer is known, 

a correction procedure can be followed to account for the 

polydispersity. 

The number of elastically effective chains was newly 

derived. The same correction is also required in the calculation 

of the number of entanglement points. 

The spectra obtained from Equation (2-53) provide a means 

of determining the number ( v ) of elastically effective chains 

in an entanglement network. This can be done by integrating 

the total aiiea from the minimum to the highest relaxation time. 

This area is equal to i v kT. 
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CHAPTER 3 

PREFV^RATION AND CHARACTERIZATION 

OF THE POLYMERS 

3-1 Anionic polymerization. 

It has been pointed out in Chapter 1 that a polymer sample 

with a narrow molecular weight distribution is needed for an 

evaluation of the molectilar theory of Chapter 2. Radical poly­

merization gives a rather broad distribution. At best, the 

ratio M /M is about 1.5. Even after fractionation;,the distri­

bution in the fractions is by no means monodisperse. 

In principle, a polymerization in which the termination 

process is absent can yield a very sharp distribution . In 

practice, this is obtainable if the initiation rate is much 

greater than the propagation rate which in turn must be much 

greater than the termination or chain transfer rate. Then, 

after instantaneous initiation, the chains grow with equal 

probability of reaction and at the end, when all the monomer 

is consumed, they have about the same lengths. The molecules 

can continue to grow in length on addition of fresh monomer. 

Vinyl monomers can be polymerized in this fashion by an 
2) 

anionic mechanism in a homogeneous phase , by the process i 

I ® + M - M® ; M®+ M -> Mp® etc. 

Szwarc has described a method to prepare polystyrene by the 

above principles and has coined the term "living polymer" for 

the polymer grown in such a non-terminating reaction. The con­

ditions necessary to the formation of a "living" polymer are: 

a) The organometallic initiator and the polymer must remain 

in solution, b) the polymer and co\inter-ion should be well 

solvated, c) the temperature of the solution must remain below 

the ceiling temperature (above which the degradation rate ex­

ceeds the polymerization rate), and d) electrophylic reagents 

must be absent to prevent termination. 
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It can be proved that this method gives a Poisson dlstri-
4) 

bution of moleciilar weights , i.e. that 

X(M^) = [exp(-T)] T''"V(X-1)! (3-1) 

where X(M ) is the mole fraction of moleciilar weight M and 
mm ^ 

T = Z -1, where Z is the number-average degree of polymeri­

zation of the sample. For this distribution, it can be shown 

that 

\/M^ = 1 * 1/Z^ (3-2) 

It is not possible to prepare poly-methyl acrylate (PMA) 

anionically using this principle, since the carbonyl group of 

the ester side chain can accept nucleophilic agents, according 

to the following mechanism 

lo III ( I II > ex 
— • — < r + +lc-c-H — vN^-~N~c—c—c—H + cH,cr 

I ' ' ' ^ 
o=c 

I 
CHjO 

Thus, methyl acrylate is self-terminating under these conditions. 
5-6) Surprisingly, methyl methacrylate can form a living polymer 

which is even reasonably stable at room temperature . If a 

model of this polymer (PMMA) is made from Stuart atomic models, 

and compared with a model of PMA, it is seen that in the former 

the carbon atom of the carbonyl group is stericaJ-ly protected. 

It was found possible to apply this principle to the poly­

merization of acrylate esters by using tertisuTy butyl acrylate 

as the monomer. The bulky tertiaiT- butyl groups surrounded the 

polymer chain in such a way that the carbonyl carbon was again 

sterically protected, as could be seen from a model. Extra sta­

bility was given to the carbonyl carbon Eind to the tertiary 

hydrogen atom on the next carbon atom by the electron-releasing 

effect (+ I effect) of the tertiary butyl group. 

The tertiary hydrogen atom is not sterically protected and 

can therefore take part in side reactions, causing chain-transfer. 
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«^^^^^^Ni^l Le 
0=i 
t-BuO 

H — C — C 
I 
Ot-Bu 

-c-
I o=c 

t-BuO 

^ - C 

OtAi 

These side reactions fonn branched chains or may even lead to 

crosslinking. They must therefore be suppressed by polymerizing 

at very low temperature, where the propagation rate is still 

very high, while the chain transfer reaction rate, having a 

much higher activation energy, is greatly reduced, 

The solvent must therefore have a low freezing point, as 
7) well as good solvating properties . THF and ethylene glycol 

dimethyl ether have often been used in the preparation of living 

polymers and found satisfactory. Anionic polymerization in 

dimethyl ether (DME), however, has never been reported although 

there seems to be no reason why this should not be a good solvent, 

THP melts at -108°C while DME melts at -139°C. For this reason, 

and since it was assumed that it would also be a good solvent, 

DME was chosen rather than the more frequently used THP. Moreover, 

the low boiling point of DME (-24°C) facilitated distillation in 

the purification procedure. 

The initiator to be used should be completely ionized ia 

the solvent. Moreover, a monofunctional initiator is more suitable 

than a bifunctional, if a narrow distribution of molecular weights 
8) 

is required . Rather arbitrarily, cumyl potassium, also used 
9) by Rempp and co-workers , was chosen. 

The poly-tertiary butyl acrylate (PTBA), having been prepared, 

was then converted to PMA by alcoholysis. 
• 

3-2 Experimental procedure 

a) Preparation of cumyl potassium. 

Methyl-cumyl ether was first prepared by a method described 

by Ziegler and Dislich . The reaction consists of the addition 

of a molecule of methanol to a molecule of o-methyl stjrrene, 

with perchloric acid as catalyst, to form methyl cumyl ether. 

The author is very grateful to Mr. J.W.C. Adamse for the 

assistance given in the anionic polymerization experiments. 
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O —C 
II 
CH. 

+ CH,OH =-o-c". 
C—OCHj 

CK 

After a reaction time of 48 hours at 50 C, the reaction 

mixture was washed with a dilute solution of sodium hydroxide 

in water and distilled under reduced pressure. The distillate 

still contained some a-methyl styrene, which was converted to 

cumene by hydrogenation in solution in ethanol with hydrogen 

at atmospheric pressure and active platinum as catalyst. This 

reaction lasted 6 hours at room temperature. The mixture was 

filtered and distilled under reduced pressure. The fraction 

which boiled at 81 C and 20 mm Hg was collected and checked 

for the absence of a-methyl styrene by gas-liquid chromatography. 

The methyl-cumyl ether was reacted in THP with a liquid 

sodium-potassium alloy, giving ctunyl-potassium and potassiiun 

methylate, which are both soluble in THP. 

CK 
I ̂  

-C®K« 
I 

CH, CH. 
O I * 

— C —OCH3 + 2K- _^ /~~\. Ae^® . r-^r.®,,® + CHjO'̂ K̂  

•3 — 3 

The reaction was carried out in the apparatus shown in Figure 3-1. 

All the vessels contained a magnetic stirrer. All glass joints 

were sealed with silicone grease and the whole apparatus was 

thoroughly cleaned by heating all parts with a flame under 

vacuum, 

S=^ pcjv 

Fig, 3-1. Preporotion ol the initiator solution 

•Purified 

water-free THP 

was put in flask 

A and de-gassed 

under vacuum. 

In the de-gass­

ing procedure, 

the solvent was 

frozen with 

liquid nitrogen. 

The vessel was 

then evacuated and the vacuum valve was closed. The THF was 

melted, releasing bubbles of gas, and was re-frozen. The vessel 
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was then re-evacuated and the process repeated a few times, 

until no more gas was liberated. 

The vessel B contained sodiijm and naphthalene. It was eva­

cuated Eind the THF was distilled from A to B by cooling B with 

alcohol and solid COp, After some time, the mixture in B tvimed 

green, indicating that the THF had reached a sufficient degree 

of purity. This THF was then distilled into vessel C, which con­

tained a mixture of methyl cumyl ether and sodium-potassium alloy. 

The potassium immediately reacted with the methyl cumyl ether 

and the solution became dark red. After a certain amount of 

THF had been distilled into vessel C, the reaction was allowed 

to proceed for 2 hours. The concentration of cumyl potassium 

was then about 0.2 gmol/1 which was determined by titration with 

an aqueous NaOH solution. The solution was syphoned into vessel 

D through the filter and stored until needed. 

b) Preparation and pvirifioation of t-butyl acrylate. 

The monomer is not commercially available and must therefore 

be prepared. The laborious synthesis from acryloyl chloride Eind 

t-butanol ~ was tried but gave a very low yield (less than 

20 per cent referred to acryloyl chloride). 
13) A much more elegant method has been proposed by MoCloskey 

et al., who applied it to the preparation of di-t-butyl malonate. 

The preparation is based on the reaction of carboxylic acids 

with iso-butene which with a suitable catalyst gives t-butyl 

esters. 

The catalyst used by MoCloskey, sulfuric acid, was found 

to be unsuitable for t-butyl acrylate, A boron trifluoride-

phosphoric acid complex gave satisfactory results. It was 

prepared by the method of Greenwood and Thompson . A slow 

stream of BP_ was passed through lOOJJ H_PO. until an increase 

in weight was reached corresponding to eqtial moles of H^PO^ 

and BF_. The product was a liquid at room temperature. 

About 3 g of this complex, together with 48 g of acrylic acid, 

56 g of iso-butene and 66 g of methylene chloride, were placed 

in a small pressure vessel, and shaken for 17 hours at room 

temperature. The vessel was then cooled to -50 C and opened. 

* The author is indebted to Prof. H.C. Beyerman, Laboratory for 
Organic Chemistry, T.H. Delft, for suggesting this catalyst, 
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Fig. 3-2. Purification of the mononicr 

The excess acid was neutralized with solid potassiim carbonate 

and a small amount of hydroquinone was added for stabilization, 

The remaining liquid was distilled and the fraction with a 

B,P of 117 - 118 C at atmospheric pressure was collected. 

The yield was 59?̂  referred to acrylic acid. 

The piirification of t-butyl acrylate was carried out in the 

apparatus shown in Figure 3-2, Each vessel contained a magnetic 

stirrer. This 

JKI .,,—t>̂ lH'̂ °̂ - apparatus was 

cleaned and heated 

\mder vacuum as 

before. The parts 

from B to E were 

in one piece and 

contained no 

greased joints, 

The monomer, 

thoroTighly washed 

with a weak alkaline solution, dried and distilled through a long 

column, was placed in vessel A, where it was de-gassed under 

vacuum. The monomer was then distilled into vessel B, which 

contained some calcium hydride. The tube connecting A and B was 

seailed and the monomer was stored in B for one week. Then the 

monomer was distilled into flask C, which contained a sodium 

mirror, amd was de-gassed under vacuum. Flask C was then heated 

to room temperature and kept between 20 and 30 C for about 

1 hour until the liquid, through partial polymerization, had 

become viscous. Then the remaining monomer was quickly distilled 

into vessel D, which contained a sma31 amount of calcium hydride, 

which seemed to have a stabilizing action on the monomer. 

From D, the monomer was carefully distilled into the ampulles E, 

which were then sealed at low temperature. 

c) Purification of Nitrogen gas for use in the polymerization 

apparatus. 

The nitrogen in the cylinder contained about 10 ppm oxygen, 

which was removed as shown in Figure 3-3. The gas was passed 

through a column B kept at 70°C and filled with pellets of BTS 

catalyst 15] supplied by the Badische Anilin und Soda-Pabrik, 

file:///mder
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Fig. 3 -3 . ' Nllroqen 90» purification 

Ludwlgshafen, W. Germany. According to the literature on the 

subject, this step reduced the oxygen content to 0.1 ppm. 

The gas was 

I ^̂ fp:::̂ —»• then passed throiigh 

the three washbottles 

C, D and E, which 

contained a green 

solution of sodium 

naphthalene in THP 

and were cooled to 

-20°C to prevent 

excessive evaporation 

of the solvent. 

When the polymerization apparatus was under vacuum and had to 

be filled with nitrogen, the gas must flow gently through the 

pTirification vessels. The flow was regulated by the mercury valve 

P . The vessel G was empty and A was a mercury safety valve. 

d) Purification of DME and polymerization of t-butyl acrylate. 

Both reactions were carried out in the apparatus shown in 

Figure 3-4, which was cleaned and heated tinder vacuvun as before. 

The monomer ampulle 0 had already been attached to the vessel P 

and the monomer was kept frozen with liquid nitrogen. The vessels 

D and P contained nickel magnetic stirrers running on wheels. 

The DME was received in a cylinder from Oerling, Holz & Co., 

Hanau/Main, W, Germany, and was fed into the apparatus at A. 

Vessel B contained a little solid sodium and naphthalene, and 

could be turned so that the contents dropped to the bottom of 

vessel C, About one third the amount of DME needed was then con­

densed in vessel C by cooling it in alcohol and solid CO». The 

solvent apparently still contained too msiny impurities, because 

the solution did not t\im green. It was therefore de-gassed under 

vacuum and heated to -24°C (which was the B,P, at 1 atm.) after 

which an equal volume of a concentrated solution of soditun-

naphthalene in THF was added. The solution then remained green, 

The remaining two-thirds of the DME was added and the green 

solution was stored at -78 C overnight. It was then de-gassed 

under vacuum and distilled into vessel D. 

The apparatus was now filled with nitrogen at 1 atm. and the 

cumyl potassium solution was injected through the side tube M, 
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-To pinp 

Fig. 3-4. Polyirwrlzatlon apparatus 

which had a rubber serum-cap and a break-seal. The tube was 

sealed again, the initiator concentration was measured from 

the resistance of the solution between the platinum electrodes 
17) 

E and the initiator solution (about 1 1) was syphoned Into 

vessel P. 

Here the solution was again de-gassed under vacuum, heated 

to -120°C (by surrounding the vessel with melting ethyl bromide) 

and the monomer from 0 (about 34 g) was slowly distilled into 

vessel F over one ho\u:, while the solution was kept vigorously 

stirred. As it distilled over, the monomer immediately reacted 

and the red solution became colorless. The heating coil P pre­

vented condensation in the connecting tube. The polymerization 

could be terminated either by injecting a terminating agent 

through the side-tube N (identical with M) or by syphoning the 

solution into vessel K, in which some solid C0_ had been placed. 

L was an overflow to take care of any foaming. Each time a poly­

merization was performed as above, the yield was lOOfS. Several 

were carried out, and the apparatus was slightly improved 

between each one. The polymer from the last polymerization 

was caracterized after conversion to PMA. 
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e) Conversion of PTBA to PMA. 

In acid solution, t-butyl esters are rather unstable and 

methyl esters are fairly stable. The alcoholysis was therefore 

carried out with dry HCl as catalyst. 

About 3,5 g of PTBA were dissolved in 40 cm of methylene 
3 

chloride and 50 cm of methanol were added. The solution was 

reflioxed for 24 hours, while dry HCl gas was bubbled throTogh. 

The polymer was then precipitated with excess methanol and 

vacuum-dried at 50°C. 

The weight of the PMA indicates a quantitative conversion 

to the methyl ester. Titration of the polymer dissolved in 

dimethyl formamide with a tetramethylammonium hydroxide solution 

indicated the presence of 0.31^ - 0.01^ acrylic acid monomer 

units on the chain. Quantitative analysis of the carbon and 

hydrogen contents showed a content of 999̂  - 1^ methyl acrylate 

monomer units; thus the alcoholysis had gone to completion. 

3-3 Characterization of PMA polymers.* 

The anionically polymerized PMA and a radically polymerized 

PMA were characterized side by side. The evaluation of the 

anionic PMA distribution was thus checked against that of the 

radical PMA, whose ratio M fVi was expected to be between 

1.5 and 2.0. 

The latter polymer was prepared as follows. The inhibitor 

was removed from some methyl acrylate monomer by extracting 

with a dilute alkaline solution, after which the monomer was 

dried and distilled under reduced pressure. A quantity of this 

monomer was mixed with an equal volume of purified benzene, and 

the polymerization was carried out at 60 C, using azo-bis-iso-

butyronitrile as the initiator and triethylamine as a chain-

transfer agent. After a IO9S conversion was reached the reaction 

was stopped by adding a little inhibitor and cold methanol, 

which precipitated the polymer. 

Several such polymerizations were made with different 

amounts of initiator and triethylamine. The intrinsic viscosi­

ties [i]of the polymers defined by 

[ti] = lim(T) /c) = lim( 11- HB )/l8° (3-3) 
c -«O ^ C-» o 

A great deal of assistance with the characterization was given 

by Mr.J.D.Capel.to whom the author is very grateful. 
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were measured with a regular Ubbelohde viscometer. By suitable 

interpolation, a radical polymer could be prepared which had 

about the same intrinsic viscosity as the anionic polymer. 

The values of the viscosities determined to obtain [ri] 

are plotted in Figure 3-5.The intrinsic viscosity [i] and the 

viscosity-average molecular weight M are related by Staudinger's 

equation 

[T)] = K Ï P (3-4) 

where K and a are constants. These have been determined for 
,0^ , „ . . ^ . ̂ ,21] PMA in toluene at 30"C by Srinivasan et al". TJsing their vcaues 

of K = 3.1 X 10"^ and a = 0.58, the following molecular weights 

were calculated 

anionic PMA: M.̂  

radical PMA: M„ 

1.60 X 10^ 

1.68 X 10^ 

- H-Ze: (cn?h) 

O radical, M =1i8.OO0 
• anionic My=16OO00 

lo'c O/CTi') 

Fl». 3-5. 

» » 
Dcternwratien of [iQ 

ife-

The number average mole-

c\ilar weights M of the two ^ n 
samples were determined by 

osmometry in a toluene solution 

at 37 C using a membrane osmo­

meter, model 502, made by 

Mechrolab, Inc 

California. It can be shown' 

that the osmotic pressure ti 

is related to M by the equation 

Mountain View, 
4) 

n/RTc = 1/M (3-5) 

for an infinitely dilute solution. In real polymer solutions, 

the RMS of Equation (3-5) must be written in a power series in 

c on account of the non-ideal behavior of the solution. Thus 

the measurements must be extrapolated to c = o, as shown in 

Figure 3-6. This figure shows that the second virial coefficient 

is smaller for the anionic polymer than for the radical polymer. 

From these measurements, the following M values were oalctilated: 

anionic PMA: M̂ ^ = 0.67 x 10^ 

radical PMA: "n = °''̂ 5 ̂  '° 
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Pig. 3-6. Entrapolatien of osmotic pretMifeft to C = 0. 

centration gradient at the meniscus (5c/5x) 

RT fbc/bx\ RT 

The weight average mole­

cular weights M were deter­

mined by sedimentation in 

dilute solutions with an 

ultracentrifuge. The Archi­

bald method was used to cal­

culate the M . This method 

w 

considers the mass transport 

in the immediate neighbour­

hood of the meniscus. It can 
19) be shown that for an 

ideally dilute solution, the 

M is related to the con-w 
by 

M r fbcib£\ 
u? (1 -vp ) ox m 

-—• 6 
u* (1-vp) 

(3-6) 

where 6 is a constant for a given sample at a particular angular 

velocity u and the subscript m denotes the meniscus, p is the 

density of the solution, v is the partial specific volume of the 

polymer and x is the distance to the center of rotation. The 

concentration gradient 6c/6x was calculated from dn/dx, where 

n is the refractive index. The refractive index gradient was 

obtained from a photograph of the light passed through a Schlieren-

optical system. The concentration c was calc\ilated at different 

times by a suitable integration of a 6c/5x vs. x plot. 

The M at the meniscus decreases with time, and the solution 
w 

does not behave ideally, so that the value of 6 must be extra­

polated to t = o and c = o. This is shown in Figures 3-7 and 3-8. 

u 

to 

6„. (""•') 

.1 
rodlcal , 

-J_ 
1 a 

Fl«. 3-7 Eitrapolatien of 6^ to t : O 

u 

\o 

0» 

0.6 

0 4 

< 

-

^ 

) 

I 

^ 

^ 

V 
y 

/ -

y 

^ 

\ 
5 

^ 

^ 

-^^» 
^^ionic 

. - ^ i c o l 

1o'e (g/cn?) 

10 

Fig. 3-8. Extrapolotion of (6—)».Q 
to c=0. 
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The sedimentations were performed in butanone at 25°C in 

a Model E Ultracentrifiige (Beekman-Spinco, Palo Alto, California) 

at 11270 r.p.m. 

The values of the constants used in the calculation of M 

were: 

dn/dc = 0.0914 (with c in g/cm^), v = 0.8919 cm'/g 

and p = 0.8013 g/cm^. The extrapolated values for (6 )j. 

from Figure 3-8 are 1.53 and 2.12, which yield the results: 

anionic PMA: M^ = 0.95 x 10^ 

radical PMA: M„ = 1.32 x 10^ 

Thus, with the values of M obtained previously, the hetero­

geneity indices were: 

anionic PMA: M,/M =1.42 W n 
radical PMA: M^M^ =1.67 

These resialts indicate that the present technique for pre­

paring PMA anionically via PTBA gives a polymer with a molecular 

weight distribution, which is not a significant improvement 

over that of a radically polymerized PMA. 

There are several possible reasons for this. One possible 

cause may be the chain transfer reaction due to the tertiary 

hydrogen atoms on the main chain, which leads to branching. 

The molecular weight distribution in the anionic PMA, however, 

is a little narrower than in the radical PMA, showing that 

branching mnist have been slight. This effect could probably 

be suppressed by polymerizing at lower temperatures. However, 

lower temperatures might reduce the degree of dissociation of 

the initiator, which may be a second possible reason for th« 

wide distribution. 

The main reason for the wide molecular weight distribution, 

however, is probably the polymerization procedure itself. The 

propagation rates of acrylate monomers are generally so high 

that with the apparatus used, it was not possible to complete 

the mixing of all the Initiator and monomer before any polymer 

had been formed. The alternative used of gradually oondenaing 

the monomer on the surface of the living polymer solution may 

introduce a rather wide molecular weight distribution by pre­

venting an equal chance of reaction for every molecule at 

every moment^^'. 
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The task of considering every one of these difficulties in 

detail was such as to require an effort out of proportion to 

the main rheological endeavor. It was therefore decided to use 

the more readily obtained radically polymerized PMA in the 

rheological experiments to be described in the last chapter. 

To satisfy the requirement that the network should contain 

many entanglements, a sample of radical PMA was prepared with 

a very high molecular weight. The M was 1.8 x 10 and was deter­

mined by light scattering. The molecular weight distribution 

of this sample was assuiped to follow a Schulz-Flory distribution 

function with a ratio \M„ of 1.5. 
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CHAPTER 4 

THE RHEOMETER 

4-1 General construction of the rheometer. 

The rheometer was designed to measure directly the shearing 

force f, the shear deformation T • and the phase angle 6 between 

them. This permitted calculation of the real and imaginary 
* 

components G' and G" of the complex shear modulus G . 

This method was chosen rather than the indirect method 

which measures the mechanical impedance by means of an electro-
1-4) mechanical transducer , because the polymer-solvent mixtures 

to be investigated were expected to show a wide range of moduli 

in changing from liquid to solid-like consistencies, 
5-7) A resonance method was rejected, since the resonance 

frequency is proportional to the reciprocal of the square 

root of the vibrating mass. This makes difficult the design of 

an apparatus with a wide frequency range. 

The direct-measurement methods described in the literature 
ft—11 ̂  

tend to have rather elaborate and bulky designs ~ , especially 

in the vibration exciters, and thus tend to make good temperature 

control difficult. 

These diffic\ilties were avoided by using ferro-electric 

titsmate ceramics for the necessary electro-mechanical trans­

formations, which permitted compact construction of the apparatus 

and operation over a wide range of frequencies. Only one other 
12) rheometer, based on this principle, has been reported , 

also applied to a direct measurement method. 

When used as vibration exciters these ceramics have the 

disadvantage of rather small strain amplitudes. As force trans­

ducers, however, they have the advantage of infinitesimal dis­

placement amplitude losses and large pressure ranges ( • 6 decades). 

The ceramic is not suitable to D C. measurements, 
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The rheometer consisted basically of four parts, 

a) Two coaxial cylinders, holding the sample in the annular 

space between them, 

b) A ferro-electric ceramic vibration exciter, 

c) A ferro-electric ceramic force-transducer, 

d) A displacement transducer of an inductive type. 

The so-called Pochettino geometry consists of two 

coaxial cylinders having an annular space between them, which 

is filled with the SEimple. One of the cylinders is clamped and 

the other moves axially. In the present case the annular space 
-2 

was closed at the lower end with a "Teflon" foil, 5x10 mm thick. 

A disadvantage of this geometry is that the rheometer is diffi­

cult to fill, but this difficulty is minor when working with 

polymer solutions. 

Having chosen piezo electric devices for the vibration 

exciter and force transducer, the first model of the rheometer 

was as shown in Figure 4-1, which is a vertical cross-section 

through the apparatus. 

M. is a heavy metal body 

with a much greater mass 

than the vibrating piston 

M-. C. is the vibration 

exciter (the "driver") 

which gives the column 

consisting of Q, Cp and M_ 

a vertical harmonic motion 

and which is excited by a 

high voltage at A. 

The insulator Q is quartz-

glass. E is a Faraday cage 

which shields Cp from C.. 

The output of the force transducer C (the "pick-up'O FI9.4-1 

is meastired at B. 

Cp acts, in fact, as a pressure transducer, since the signal 

at B depends on the horizontal cross sectional area of Cp. 

The direction of polarization of C. and Cp was chosen parallel 

to the direction of vibration. 
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The narrow gap S contains the polymer solution, which is 

sheared by the metal piston Mp. T is the "Teflon" foil, described 

previously. 

The displacement of the piston relative to the body M. is 

measured at D by an inductive displacement transducer. Unlike 

the more common differential transformers with three coils, 

which have a fairly large zero signal, this displacement trans­

ducer has only two coils, with inductances L, and Lp which form 

two arms of a Wheatstone impedance bridge fed by a 50 Kc/s AC 

voltage. With a suitable demodulating amplifier, one can easily 
-4 

obtain clear signals from displacement amplitudes of 10 to 1 mm 

at frequencies from 0 to 10 Kc/s. 

The inductive type of transducer was chosen over the capaci-

tive type, since the latter is very sensitive to dust particles 

and to changes in the dielectric constant of the atmosphere 

between the plates (due e.g. to the presence of solvent vapors 

and to changes in temperature). 

The phase difference between B and D was measured with a 

phase angle meter. After calibrating for the effect of T and Mp, 

the angle b and G' and G" could thus be calculated. 

In order to simplify the design, it was decided to assemble 

the vibrating column by glueing the components (except the dis­

placement transducer core and the Teflon foil) together with 

very thin layers of adhesive. After some experiments, Eastman 910 

was chosen as the most suitable. This is a-cyano-methyl-acrylate 

monomer, which polymerizes anionically, traces of water on the 

surfaces to be Joined acting as initiator. 

In order to strain this glue layer as little as possible 

with changes of temperature, M,, Mp and E were made of invar 

whose coefficient of expansion is very close to that of the 

ceramics C, and C„. (Linear coefficients of expansion of invar 

A. and the ceramic PZT4 A^ are: A^ = 0.9x10" /°C 

A^ = 2.2x10"V°C) 

The insulator Q was of amorphous quartz ( A-, = 0.6x10" / C). 
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4-2 Deformation of the sample. 

Figure 4-2 shows an axial cross-section of the gap between 

the two cylinders. The piston has moved a distance x from its 

equilibrium position under the influence of a vertical force f. 

R9.4-2 

Consider first the transient loading case and the constant 

deformation rate case. In these cases the material is not 

accelerated and f fg = f at any coaxial cylindrical 

boundary, where f denotes the shearing force. The shear stress 

o on a cylindrical element of height h, mass m and radius r 

causes a deformation dx/dr. 

Then o = - 6 dx/dr in the case of a solid, 

or o = - T) dx/dr in the case of a liquid, 

where x = dx/dt and the negative sign is due to the negative dx/dr. 

When the solid or liquid is viscoelastic, the quantities 

a , 0 and t) become functions of time. r 
Experimentally, the force, rather than the stress is measured, 

so that the following is the suitable derivation; 

f (t)/2 fir h = - G(t)dx/dr (4-1) 
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rR rO 
f^(t)l dr/r = - 2n h G(t) j dx 

o 

f^ (t) = 2iih/ln(H/r^).6(t).x (4-2) 
o 

and similarly: 

f^ (t) = 2 nh/ln(.R/r̂ ).T)(t).i (4-3) 
o 

The factor 2 nh/ln(R/r ) = b is the well known form factor 
°15) for the Pochettino geometry . If R and r are large compared 

with Ar so that R/r *» 1, then ln(r/r ) can be replaced 

by Ar/r^ = (R-r^)/r^. 

Equation (4-1) shows that the strain dx/dr changes hyper-

bolically with r, so that the strain within Ar can only be 

taken as linear with r when A r is very small compared with R. 

Considering now the dynamic loading patterns, the quantity 

G(t) cannot be simply replaced by the complex modulus 
» 
G = 0' + i G", because now the piston and sample are subjected 

to an acceleration and their masses must be taken into account. 

Then f + fg and the equation of motion for a volume element 

is obtained as follows (the superscript * denotes complex 

quantities): 

• 
* * dx f = - 2 «G hr ^ 
r dr 

* # 
• • d x 9 / • 8x V f ^ , = 2 «G hr § ^ + T^ (2 nG hr | ^ - ) d r r+dr dr 3r or 

^r * ^r+dr = "^* *' 2 n 6* h ^ ( r | ^ ) . d r = 2 nrhp ' A r (4-4) 

,1* 

where p is the sample density and x is the acceleration at 

the center of gravity of the volume element. 
* ••* 2 * 

If X = X exp(iut), then x = - u x 
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and similarly 

or 

in accordance with 

G = G' + i G ' ' = luTi" + iu)ti' = iuT) 

Equations (4-5) and (4-6) are Bessel differential equations 

whose solutions are obtainable but cumbersome. In the present 

case, practical exigencies lead to an apparatus design in 

which both R/r «# 1 and Ar ̂ ^ /10, where \ is the sheair 

wave length in the radial direction. Moreover, the force given 

by integration of Equation (4-4) represents at most a 5% cor­

rection to the main shearing force as given by Equation (4-2). 

Thus precise solution of Equation (4-5) and (4-6) can be 
2 * / 2 circumvented by assuming that 3 x /ar = 0 over the distance 

Ar. Then the treatment for the volume-element may be extended 

to the entire volume of the sample. It follows then from 

Equation (4-4) that the extra force which accelerates the 

sample of mass m becomes simply: 

f^ + f„ = n(R''-rph.p.x = - -J-nh pu.''(R -r^)i (4-7) 
o \ 

..• , 2 * 
where x is- replaced by - -J-ui x because the center of 

• 
gravity of the sample moves only half the distance x . 

Equation (4-7) gives the additional force for the acceleration 

of the sample, which must be added to the shearing force 

(Equation (4-2)). Then 

f* = 2 nh.G*x*/ln(R/r ) - i nh pu^(R2-r^)x* 
0 

= nh[2 (ï*/ln(R/r^) - ipu,^(R^-r^) ] x* (4-8) 

where h is now the height of the sample. 

The second term in the brackets, which is the correction, 

term, will be important only at low moduli and high frequencies, 
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4-3 The piezoelectric devices. 

The ferroelectric material used for the driver and pick-up 

is PZT4, a lead-zirconium titanate ceramic made by the Brush 

Crystal Co. Hythe, Southampton, England. This ceramic is prepolar-

ized in manufacture at high voltage and high temperature. 

(The Curie point is 320°C) 

At low voltages, ferroelectric materials behave like piezo­

electric crystals. At high fields, however, especially at 

resonance, they may become depolarized or coimter-polarized. 

To avoid this, excitation field strengths over 1000 V/cm were 

never used, and the devices therefore always behaved purely 

piezoelectrically. 

Unpolarized lead-zirconium titanate is isotropic. The relation 

between stress o and strain y in one dimension is then 

T = So , where 3 is the compliance of the material. The relation 

between dielectric displacement D and electric field P in one 

dimension is D = E P , where c 

of the material. 

of the medium. 

Polarized PZT4 is anisotropic. The above relations must then 

be extended to three dimensions, while piezoelectric properties 
16) also appear 

PZT4 belongs to class C, of the Hexagonal system. This 

class has 5 elastic, 3 piezoelectric and 2 dielectric constants, 

which are given later. The z axis (subscript 3) is chosen parallel 

to the polarization direction, as usual. 

The dielectric displacement and the electric field are 

related by the second order tensor equation 

c c_ is the dielectric constant o r 
£ = the relative dielectric permittivity 

or 

••it 

°i-I ik'^R (i and k = 1, 2 or 3) 

(4-9) 

(4-9a) 

This tensor ia symmetric i.e. « J j, = SI-J» Equation (4-9) is 

equivalent to three equations, each with three terms on the 

right hand side. 

The stresses and strains are also second order tensors, 
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which for simplicity are written; 

•'t 2 

and 
T i l Tri2 

T2 2 

TlS 

Tas 

T»8 

The other coefficients below the main diagonail are equal to 

their mirror images and are left out for convenience. 

In piezoelectric materials the dielectric polarization P and 

the stress o are related by the third order tensor equation 

or 

Ï 

'.-11 

Sil 

^211 

i»ll 

-1 

i s l 

2 81 

s a l 

• 

f \ 
O i l 

"21 [ 

"slj 

•^ikl^kl 

^12l 

^2l 

i»2l 

(i, k and 1 

(4-10) 

1, 2 or 3) (4-1Oa) 

k 1 

This is called the direct piezoelectric effect, and d... 

is called the piezoelectric strain coefficient. This tensor is 

also symmetric, i.e. d.,, = d, .,. Equation (4-10) is equivalen 

to three equations each with nine terms on the right hand side 

The dielectric polarization P is related to the dielectric 

displacement D and the field P by 

E P 
o— (ï i)^o£ 

where E - 1 = HI the electric susceptibility of the medium, 

or, in tensor notation ^A = ) "j-i ^rJ^-\ 

J 

Similarly the strain x in the piezoelectric materials is 

related to the electric field P by the third order tensor 

equation 

Til 

T2I 

Tjl 

d 111 

^121 

^13 1 

'21I 

^221 

a i l 

3 2 l 

aal 

t 

f^il 
^ 
F 

' J 

(4-11) 

or 'kl l^. I k A ^̂ ' li: <̂i 1 1, 2 or 3) (4-11a) 
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This is called the inverse piezoelectric effect. Equation (4-11) 

is equivalent to nine equations, each with three terms on the 

right hand side. 

The stresses a., and strains T.• are related by the fourth 
Kl IJ 

order tensor equation 

Ti 

I 

or T .. = y y 

^ i j i l ^ i j2 l ^ i j a l 
^ 2 j l l 32j2l Sjj5l 

[ S a j i l S s j 2 i ^aja l j 

"il 

"21 r 

^ijkl^kl (i'O.lc and 1 = 1,2 or 3) 

(4-12) 

(4-12a) 

This tensor is also symmetric i.e. 3. ., - = 3..j, = S, , . . = 3,, . .. 

Equation (4-12) is equivalent to nine equations, each with nine 

terms on the right hand side. 

Because of the symmetry of the tensors, an abbreviated notation 

can be used instead of the full notation used above. The short 

notation suffers the disadvantage that with it, no coordinate 

axis transformation can be carried out. In the short notation 

double suffices are replaced by single suffices. For insteince 

the second order stress tensor 

'11 
becomes 

and Equations (lOa) and (11a) become 

, . o. 
L3 3 

and 'j 

0 
- Y d.,F, 

(4-13) 

(4-14) 

(i = 1,2 or 3 and J = 1 ,2, .6) 

Equation (4-14) applies to a stress-free crystal. Similarly 

Equation (4-13) applies to a field-free, open-circuit situation. 
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In cases where these conditions are not present. Equations 

(4-13) and (4-14) must be extended as follows 

Yd.. 
L 1] 

o . ^• 
J 

(i and k = 1, 2, 3 

I 
k 

and 

I 

i k 

J 

=i 

•o^k 

and 

" l 

1 1, 2 ...6) 

Y. = y d . . P. 
J ^ i j 1 

1 1 
The superscripts o and F have the following meaning: 

ik 0 and 

Similarly: d ^(3'( 

8 Ti 

Jl ~ \ 8 o,/ 
^ F 

) 
8T. 

8 P.. 

(4-15a) 

(4-15b) 

(4-16) 

This means that the direction of the polarization associated 

with a given strain is always the same, whether strain and pola­

rization are due to mechanical forces or to an impressed 

electric field . This result is of importance in section 4-6. 

In the present case, the piezoelectric ceramics were to be 

glued into the vibrating column. A precise calculation of their 

behavior according to Equations (4-15a) and (4-15b) would have 

been very laborious and the approximations represented by 

Equations (4-13) and (4-I4) were therefore used. For this class 

of crystal (Cg hexagonal). Relation (4-13) can be written 

^1 

^2 

'3 

"1 

0 

0 

•^31 

"2 

0 

0 

'v 

"3 

0 

0 

•^33 

"4 

0 

"^15 
0 

"5 °6 

•̂ 15 ° 
0 0 

0 0 

(4-17) 

Since, from symmetry considerations, dp. = d,_ and d_p 

Relation (4-14) can be written similarly. 
^31* 

The values of these piezoelectric coefficients for PZT4 
J7). 
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-130 X 10"^^ Coulombs/Newton 
31 
d,, = +300 X 10 

d.p = -1-450 X 10' 
1 ? 

-12 

•12 
Coulombs/Newton 

Coulombs/Newton 

Equation (4-12) for C, crystals can be written (using the 

short notation for the elastic constants): 

"1 

"2 

"3 

"4 

"5 

" 6 

^ 

^11 

^12 

^13 
0 

0 

0 

^2 

^12 

^11 

^13 
0 

0 

0 

^3 

^13 

^13 

^33 
0 

0 

0 

u 
0 

0 

0 

^44 
0 

0 

^5 

0 

0 

0 

0 

^44 
0 

^6 

0 

0 

0 

0 

0 

2 ( 3 ^ , - 3 , 2 ) 

The values of these compliances for PZT4 are 

3 

17), 

11 

^2 

^3 

•12 X 10"^^ m^/Newton 

-3.7 X 10 

12 

-12 

3 = 15 X 10 

44 39 X 10 
-12 

(4 

The relative dielectric permittivities c of PZT4 are; 

«̂ 22/̂ 0 '•u/'c 1360 ; e33/e^ = 1200 

and c^=9.10 
•12 Coul/Vm 

With these parameters in mind, the practical performance 

of the ceramics can be estimated. 

For the driver, the fields P. and Pp are zero. Application 

of F, therefore results in the strains: 

1̂ = ^31^3 
and T3 = d„F3 

Y, is the strain of interest in the deformation of the sample. 
—7 

If a displacement of 0.3 microns (3 x 10" m) is required, 

Al/1 = 3x10""̂ /I 
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where 1 is the thickness of the driver. The electric field P_ 

inducing the strain is P, = AV/l, where iV is the applied 

voltage. 

Therefore Al/1 = A . AV/l 

and AV 3x10~'^/3x10"^° = lO^VoltE 

As mentioned previously, the electric field must be kept 

below 100D Volts/cm. Consequently, the thickness of the driver 

was made one centimeter. The effects of the perpendicular 

strains Y. and YO ̂ ^^ discussed later in this chapter. 

For the pick-up crystal, if all stresses except o, are 

assumed to be zero, the only equation that remains of Equation 

(4-17) is 

P3 = d33 03 

c has such a large value for PZT4 ( »1200) that e «sx 

and 

P_«D_ = € E F., 
3 3 0 r 3 

so that 
1. 
"3 '̂ = ( V '0 'r)<'3 = ̂33°3 ^^-'^^ 

where g = 28.3x10~' Vm/Newton. 

Equation (4-19) shows that for maximum voltage from the pick-up 

the thickness of the pick-up should be large and its cross-

section small. However, the smaller the cross-section, the 

larger the stress on the glue Joints, while a large thickness 

influences considerably the resonance frequencies of the 

whole coliimn. 

A compromise was found by making the thickness of the pick-up 

equal to that of the driver, namely one centimeter, and the 

diameter of the column three centimeters. 

The length of the piston Mp was chosen to be 4.5 cms. 

The total length of the column, including insulating spacers, 

became 7 cm. 
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4-4 Operating limits. 

The following physical limitations of the design will im­

pose limits on the modulus and frequency ranges that can be 

covered. 

a) The bending and longitudinal vibrations in the column 

b) The dimensions of the sample 

c) The frequency limits of the electronic apparatus 

d) The finite modulus of the piston 

e) The sensitivity of the force transducer 

a) Resonance of the column vibrating as a cantilever must 

be avoided. The resonance frequency v of such a cylindrical 
15) ° 

rod is given by 

° nL-

where L = length of the rod = 0.07 m 

r = radius of the rod = 0.015 m 
0 

E = average Young's modulus at the base of the rod = 

. 7 X 10^° Newton/m^ 

(The moduli of quartz glass and of PZT4 are almost 

equal to this average value.) 

p. = average density of the rod = 8 x 10 Kg/m 

(The densities of invar and PZT4 are almost equal to 

this average.) 
B is a numerical constant, which, for the lowest harmonic, n 

is equal to 0.974. 

With these values v is found to be = 2.9 x 10 c/s. 

This resonance frequency was increased by boring out the center 

of the invar piston and a further increase is obtained by the 

damping effect of the sample. As a result of these effects, 

cantilever resonance was not observed below 5000 c/s. 

At high frequencies, phase differences can occur between 

the displacement at the force transducer and at the bottom of 

the piston. The combined lengths of these should therefore be 

small compared to the longitudinal wavelength \ , which is in-
a 

dependent of the presence of polymer; 



70 4-4 

Y(V p.) 
A. is given by X = * ^ (4-21 ) 
a ° " a v_ 

a 

where E. = Young's modulus of invar = 2.0x10" N/m . 

At 4000 o/s K is then 1.25 m. The distance from the pick-up 

to the displacement transducer core was 6.5 cm, or about 

X /20. This is equivalent to a phase difference of 18 , which 

was assumed to be the upper limit at which a correction for this 

phenomenon can still be made. 

b) For reasons similar to those cited Just above, the 

thickness of the sample must be kept smaller than one tenth of 

the shear wavelength X through the polymer solution. Since 

the gap between the cylinders was chosen to be 0.3 mm, the 

shortest wavelength allowed was 3 mm. The shear wavelength X 

is approximately given by 

^ mils) (4_22) 
T V 

r 
•I •» 

where p = density of polymer solution » 10"̂  kg/m . 
? 2 

Since G' = p X v it follows that, at v =100 c/s, 
"̂  r r ' r . ' ' 

the minimum allowable G' is 90 Newton/m and at v = 10 c/s the 
5 2 minimum allowable G' is 9x10 Newton/m . 

c) The impedance Z , of the driver limits the frequency 

range of the power amplifier. The capacity of the driver was 

calculated to be 765 pP, to which must be added the capacity 

of the feed cable, estimated at 250 pP. The impedance of this 

combination is then 

Zg = l/(jioC) w -j/( u.x10"^) Q 

The current at 1000 V and 5000 c/s is then about 32 mA. 

The high fidelity power amplifier purchased to meet this 

requirement had a lower frequency limit of 10 c/s. 

d) With a polymer solution of very high modulus, the piston 

will be compressed so that the displacement will be different 

at the two ends of the piston. 

Assuming that the stress gradient in the piston is still 

linear when these displacements differ by 209̂ , the modulus 

of the polymer can still be measured by introducing a correction. 
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At this limit 

f/A = E^. AL^/(k.L^) (4-23) 

where AL., the change in length of the piston, is 2O9J of the 

displacement amplitude, which has a maximum value of 0.3 microns 
11 P 

and E. = the Young's modulus of invar = 2.0 x 10 N/m . 
1 A o 

A = cross sectional area of the piston = 7.07 x 10 m 
—2 2 

L.= length of the piston =4.5 x 10 m 

k = 0.55, a correction factor for the effective length of the 

piston, to take account of the fact that the stress in the piston 

decreases linearly and is zero at the free end. 

The maximum allowable force on the piston is then, from 

Equation (4-23): 
f = 337 N max 

Equation (4-B) without correction term gives 

G* = f*/(b.x*) or G' = f oos5 /(b x ) (4-24) 

where b = 2nh/ln(R/r ), the form factor for the Pochettino 

geometry and f and x are the amplitudes of f and x , h = the 

height of the polymer = 4 x 10~ m which gives b = 12.7 m. 

If X = 0.3 X 10"^ m and f = 3.37 x 10^ N and cos 6 w 0.7 
o o 

Equation (4-24) gives 

G'(max) = 6.2 x 1 o"̂  N/m^ 

e) Assuming that the minimum measurable signal from the 

pick-up is 1 mV, Equation (4-19) gives a minimum measurable 

force of 2.5 x 10"' N. 

Prom Equation (4-24), assuming the same cos 5 and x , the 

lower limit of the polymer shear modulus becomes 

G'(min) = 4.6 x 10^ N/m^ 

The limits discussed above are illustrated in Figure 4-3, 

where they are labelled according to above paragraphs. 
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Fig. 4-3 
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4-5 Calibration of the pick-up. 

Consider the forces acting on the pick-up. They can be 

expressed by 
* « * « .,« 
f, =bx G -l-kx + m x 
t e (4-25) 

where f. = the total force. 

• • « 
bx G = f = the force due to the presence of the polymer 

kx = the force due to the Teflon foil T. 

..* 
m X = the force required to accelerate the parts of 

the column below and including the pick-up. 

The mass m is the sum of the effective masses of these parts, e 
where the effective mass of the pick-up is one half its real 

mass. The superscript • denotes complex quantities. 

If X = X exp(iuit) then f, = f. exp(iMt), where 
jt o Ü J. x, o 

f, is a complex quantity because G is generally complex. 
u , 0 

Inserting this in Equation (4-25) yields 

f. = b X (G' -f i G") -(- k X t,o o o 
2 m u x e o 

(4-26) 
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CsLLibration of the pick-up is thus possible by vibrating 

the rheometer in the absence of polymer and "Teflon" foil. 

Vibrating the rheometer with only the "Teflon" foil in place, 

permits determination of the elastic constant k, after which 
* 

the polymer can be put in and f, measured. G' and G" can 
"0,0 

then be c a l c u l a t e d from 

f * / x = (b G' - m u^ -I- k) -t- i b G" = t , o o e 

l^ t Q/^OI ( ° ° Ö ' + i ^^f ) (4-26a) t , o 

Because of the change in the piezoelectric constants with 

temperature, the calibration must be carried out at sill tempe­

ratures at which the viscoelastic properties are to be measured. 

4-6 Mechanical coupling between the driver and the pick-up. 

Early experiments with the apparatus shown in Figure 4-1 

indicated the need for an improvement. The lateral strains 

Y.. and Yp of the driver mentioned in section 4-3 would have 

no effect if the material between driver and pick-up had an 

infinite rigidity. 

In fact, two undesired vibration modes are imparted by 

the driver to the column and induce very large unwanted signals 

at the pick-up. The first of these is the simple transmission 

of the strains Y. and Yp in transverse waves along the surface. 

The second is due to the fact that the driver ia glued to two 

pieces which are not equally flexible. The result is that, 

for instance if Y. and YO ̂ ^^ positive, the driver C. tends 

to assume a shape as shown in Figure 4-4, where a and b are 

the undeformed and deformed states. The arrows indicate the 

direction of pre-polarizatlon. 

The two modes make contributions to the disturbance at 

the pick-up which are unknown in magnitude but opposite in 

phase for the following reasons. In the first mode, a positive 

Y. and Y p at the driver will induce a positive Y. and y^ at 

the pick-up, giving a signal in phase with that at A according 
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to Equation (4-16). In the 

second mode, a positive Y . 

and Y p will impart a convex 

curvature to the driver (as 

in Figure 4-4) which will in 

turn induce a concavity in 

the pick-up, giving a signal 

opposite in phase with that 

at A again according to 

Equation (4-16). To eliminate 

the restilting effect on the 

pick-up, it is then necessary 

to weaken the stronger of the 

two modes, 

Both modes can be compen­

sated by the introduction in 

the column of a third ceramic 

C (the "compensator") as 

shown in Figure 4-4. The com­

pensation of the first mode 

clearly requires a voltage on 

A' which is opposite in phase 

with that at A. The manner in 

which the compensator eliminates the effect of the second mode 

is shown in Figure 4-4, where the voltage at A' must clearly be 

in phase with that at A. Thus a suitable voltage at A' should, 

by weakening the stronger mode and strenghtening the weaker, 

lead to complete compensation of the disttirbing signal at Cp. 

These considerations were not verified individually. The 

only support of their validity is the fact that it was found 

possible to adjust the voltage at A' so as to give a signal at 

Cp less than 1 mV at low frequencies. Since this voltage had 

to be in phase with that at A, it was supplied from a voltage 

divider circuit between A and ground. 

In the empty rheometer, the only signal remaining is then 
, 2 N • due to (-mm -i- k)x . 

This construction worked satisfactorily at room temperature 

but at low temperatures (below -60 C), the glue layer tends to 

become brittle. The stresses set up by the opposite curvatures 

1 
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of C. and C_ then caused failure of the Joints. This problem 

was overcome by the use of ceramics in which a cylindrical hole 

was drilled out of the center, reducing the cross-sectional 

area by about one half. The three solid ceramics were thus 

replaced by three tubes of the same outside dimensions and a 

wall thickness of about 4 mm. 

The construction with hollow ceramics gave more reproducible 

results and required much lower voltages at A' (a* 0,07 of A) 

to suppress the effects of the two disturbing deformation modes, 

Even so, use of glued vibrating columns sets limits to the 

operating temperatures that can safely be used. Measurements 

were made at -80 to -1-30 without causing failure of the Joints, 

but it was felt that lower temperatures might lead to fracture 

and time consuming repairs. The upper limit could probably be 

increased to -hSO if the need arose. 

4-7 Additional details. 

The glued construction of the column made impossible the 

use of the usual deposited-silver electrodes. It was found 

necessary to have all parts of the column ground optically 

plane-parallel and to use thin invar plates glued to the 

ceramics as electrodes. 

Minute sparks across the edges of the ceramics and the 

electrodes were observed at high voltages ( >800 V). These were 

satisfactorily suppressed by smearing a fluorocarbon grease 

(Kel F90, 3M Company, Minnesota) on the spark sites. 

Since the rheometer was to be suitable for measurements 

on dilute gels as well as on polymer solutions, the sample 

gap must contract with decreasing temperature, in order to 

prevent the sample from becoming detached from the wall. 

Assuming ein average volume expansion coefficient for the 

samples of 10" / C, the gap was found to expand by the same 

amount if the outer cylinder was made of brass, 

To fill the sample gap with a polymer solution which was 

very viscous, it was found necessary to inject the solution 

through a hole in the brass cylinder using a hypodermic syringe 

fitted with a nozzle which screwed into the hole. 

The temperature at the center of the rheometer was measured 



76 4-7 

O 1 § 
"S o 

I 

I • 

^ I 
«• < 

o « 
w 

^ . 

&h-CIH-



4-8 77 

with a copper-constantan thermocouple, attached to the lower 

end of the piston. 

A detailed drawing of the rheometer is included at the end 

of this thesis. 

4-8 Electronic components. 

Figure 4-5 is a diagram of the final form of the rheometer 

and of its auxiliary circuitry. 

The following is a detailed list of the electronic parts, 

R.C. Oscillator! A Hewlett-Packard low frequency oscillator, 

model 202C with a frequency range of 1 c/s to 100 Kc/s. 

Power Amplifier; A Unitran N.V. (Weesp, Holland) 100-W high 

fidelity power amplifier, with a range of 10 c/s to 20 Kc/s, 

The output was fed to a high-ratio, 100-W transformer, also 

suitable from 10 c/s to 20 Kc/s. 

The capacitive load G. on the transformer output was 

balanced by a variable inductance across the input, which was 

adjusted at each frequency in order to minimize the amplifier 

output current. 

Piezo Amplifier: Because of the high output impedance of the 

pick-up ceramic, a special 10 -ohm input impedance piezo 

amplifier was used (Type TA-1/B, Vibro-meter Corp., Fribourg, 

Switzerland). This amplifier had a frequency range of 0 -150 Kc/s, 

an output impedance of 50 ohms, and a maximum output of 1 V. 

The amplification, controlled by an attenuator was 2.25 in the 

most sensitive range. 

Traces of water or other conducting impurities tended to 

condense on the surface of the pick-up when the apparatus 

was cooled. These were successfully removed by electrolizing 

with a 300 V DC. voltage applied for several hours before 

measuring. 

Voltmeter Amplifier: The signal from the piezo amplifier was 

measured with a Rohde 4 Schwarz (München ) type UVN millivolt-

meter amplifier, having a maxim\im amplification of 1000. 

The output at full scale deflection on the meter was 1 V. 

The frequency range was from 10 c/s to 100 Kc/s. 

The demodulating Amplifier and the inductive displacement 

pick-up were both made by Hettinger Messtechnik GMBH, Darmstadt. 

The displacement pick-up (Type W1E/3) had a sensitivity of 
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70 mV/V/mm displacement. Its working temperature range was 

from -100° to -i-150°C. It was fed with a 5V - 50 Kc/s excitation 

current from the Demodulating Amplifier, which made it possible 

to measure vibration displacements with frequencies from 

0 to 10 Kc/s. 

The Demodulating Amplifier (Type KW3 11/50) has, in the 

most sensitive position a high frequency output noise of 22 mV, 

In this position, a 0,5 micron displacement gave an output of 

4 V. Thus, accurate measurement of displacement amplitudes as 

small as 0.1 microns was possible. 

Phase angle meter and oscilloscope. The amplified force and 

displacement signals were fed to an AD-YU phase angle meter, 

Type 4051(AD-YU Electronics, Passaic, N.J.) and to a Hewlett-

Packard, Type 130c oscilloscope in parallel. 

The phase angle meter had a frequency range of 1 c/s to 

40 Kc/s and required two input signals of at least 0.3V, 

The accuracy was - 15'. 

The oscilloscope was only used for inspection of the wave­

form and of the sign of the phase angle, although it could have 

been used for phase angle measurements also, but to a lower 

accuracy. 

4-9 Low temperature bath. 

The rheometer was cooled or heated to the required tempe­

rature by enclosing it in a waterproof brass enclosure, which 

was immersed in an alcohol bath. The bath was heat insulated 

with a thick layer of polystyrene foam and was cooled to -77 C 

by dropping chopped solid COp into the alcohol. Further 

cooling could be achieved by blowing liquid nitrogen throvigh 

copper coils in the liquid, which was meanwhile kept gently 

stirred. The bath temperature could be raised by means of a 

22-ohm electric heating coil. 
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CHAPTER 5 

EXPERIMENTS AND RESULTS 

In this chapter, the theory of Chapter 2 is checked against 

some detailed results on a poly-n-octyl methacrylate fraction, 
1-4) published by Perry and co-workers . Results are then given 

of measurements on a solution of poly-methyl acrylate in toluene, 

made with the rheometer described in Chapter 4, 

5-1 Examples of computations of H[m-1] . 

The treatment given in section 2-2 is illustrated by the 

following examples, A hypothetical molecule was chosen, with a 

length of 1879 submolecules and whose motion was restricted by 

72 slow points. Then N = 1879 and m = 73, The computer in­

structions outlined in section 2-2 were then programmed in 

ALGOL 60^^ 

The program is given in the Appendix, together with an 

example of the type of input data used for the molecule. The 

third number in the first row is X., the fourth number is 6 , 

and the fifth is the square of the relative machine precision. 

The remaining 73 numbers represent distances (in numbers of 

submolecules) between consecutive slow points. These 73 numbers 

were randomly chosen and represent only one of the many possible 

distributions of slow points along the chain. 

The calculations were carried out by a Telefxmken TH4 com­

puter. The output consisted of a table giving the mimber of 

relaxation times in each intejrval AlogTp, where TJ, = l/x . 

This number is equal to 2.303 H[72] , where H[72] is the discrete 

relaxation spectrum of one molecule with 72 slow points and 

where each line in the spectrum has unit height. 

This calculation was repeated with four other distributions 

of slow points, and the average of these five spectra was ob­

tained. Figure 5-1 shows the results of the above process for 

four different values of 6, converted into continuous spectra. 
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— 6 = 0.1 
— 6 =0.01 

u 6 = 0.001 
1 5 = 0.0001 

-3 

-2 

•1 

-1 

n»s-t 

o i 2 3 4 5 6 7 8 

MaMtion ipcctrum 2.303 H [721 <or on< molccuk containing 1879 (ubmotacuki and 72 iloi» points. 

It can be seen that the larger values of 5 do not alter the 

Rouse spectrum, as already reported in section 2-2. 

5-2 Calculations with poly-n-octyl methacrylate (POMA). 

The preparation and fractionation of the sample used by 

Ferry and co-workers is described by Chinai et al. . The re­

laxation spectrum was obtained partly from dynamic and partly 
2-4) from transient-loading experiments for the fraction with 

M = 3.62 X 10 w The M of the fraction is not known but it is n 
shown below that this quantity is not critical. 

•It follows from section 5-1 that to compare the theory 

with Ferry's results, the latter must be divided by nkT (to give 

the spectrum for one molecule with lines of unit height) and 

multiplied by 2.303 (to change the abscissa from InT to logT), 

For an undiluted polymer nkT can be replaced by pRT/M , where 

p is the density of the polymer. 

In section 2-4 it was shown that: v = v - n. For a 
e 

single molecule, this equation reduces to: ^PR ~ ^R ~ ^ • 

For a rough estimate of n, the M was chosen as 2.71 x 10^, 

Then the resulting reduced relsucation spectrum 2,303 Hj, for one 

molecule is as given in Table 5-1, A plot of 2,303 Hg vs, log T 

can now be drawn and the area under the hump measured. This area is equal to i v „ lines. The integration yields i 
eR 31 lines, 
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Table 5-1 

Calculation of the degree of polymerization between entangle-

Dly-n-octyl methacrj 

for KM = 1.336. 
ment points of poly-n-octyl methacrylate at 100°C, 

Log T 

-5,0 

-4.0 

-3,0 

-2,0 

-1.5 

-1,0 

-0,5 

0 

0,5 
1,0 

1,5 
2,0 

2,5 
3.0 

3.5 

log H(dyn/cm ) 

6.06 

5.54 

5.00 

4,60 

4,41 

4.37 

4,47 

4,56 

4,68 

4.79 

4.58 

4.35 

4.09 

3.73 

3,39 

log(2,303 

2.39 

1.87 

1.33 

0.93 

0,74 

0,70 

0,80 

0,89 

1,01 

1,12 

0.91 

0.68 

0.42 

0,06 

-0,28 

«R) 2.303 Hg 

245 

74.1 

21.4 

8.51 

5-50 <,..(min) 
5,01 

6,31 

7.76 

10,23 

13.18 

8.13 

4.79 

2.63 

1,15 

0,52 

M^ = 3,62 X 10^ ; M^ = 2,71 x 10^ ; M̂  = 1.98 x 10^. 

pRT/M^ = 1,07 X lO'^ dyn/cm^, 

l og (2 .303) - l o g ( l . 0 7 X lO'^) = - 3.67 

ƒ 2.303Hg d logT = 30.98 a. 31 l i n e s with u n i t h e i g h t . 
-i.ss 

V p = 62 * v_ = 63 *• 64 en tangl /mol * m = 65 . 

Zjj = 2.71 X 1 0 / 1 9 8 = 1.37 X 10^ = 570 submolecules (each 24 monom.) 

T = 1.37 X 10'^/65 = 211 (a t 100°) . 
9 
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Table 5-II 

Calculation of the degree of polymerization between entangle­

ment points of poly-n-octyl methacrylate at 100 C, 

for M /M = 1.075 w n 

l o g T 

-5 .0 

-4 .0 

-3 ,0 

-2 ,0 

-1 .5 
-1 .0 

-0 .5 
0 

0.5 

1,0 

1,5 

2 ,0 

2 ,5 

3 .0 

3.5 

log H(dyn/cm ) 

6.06 

5.54 
5.00 

4.60 

4.41 

4.37 

4.47 
4.56 

4.68 

4.79 
4.58 

4.35 

4.09 

3.73 

3.39 

log(2.303 Hjj) 

2.49 

1.97 

1.43 

1.03 

0.84 
0.80 

0.90 

0.99 

1.11 
1.22 

1.01 

0.78 

0.52 

0.16 

-0.18 

M^ = 3.62 X 10^ ; M̂ ^ = 3.37 x 10^ ; M^ = 1.98 x 10^. 

pRT/Mj^ = 0.86 X lO'̂  dyn/cm^. 

log(2.303) -log(0.86 X 10^) = - 3.57. 

ƒ 2.303 Hg d log T = 39,29 a 39 lines with unit height, 
-UK , 

V J, = 78 • Vj. = 79 • 80 en tangl /mol * m = 8 1 . 

Z = 3.37 X 1 0 / 1 9 8 = 1.705 x 10 s 710 submolecules (each 24 monom) 

Z„ = 1.705 X l o V s i = 211 (a t 100°C). 
8 

2.303 Hg 

309 

93-3 

26.9 

10.72 

6.92 

6.31 

7.94 

9.77 

12.88 

16.60 

10.23 

6.03 

3,31 

1,45 
0.66 
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whence Vj, = 63, Thus there are 64 entanglements per molecule 

and m = 65, With a monomer molecular weight of M = 198, the 
0 

number average degree of polymerization between entanglements 

is g 

ê = M8x65 =''' (at100°C) 
When M was chosen as 3,37 x 10 , Z was again found to be 

211 (see Table 5-II), The method is therefore not sensitive 

to the accuracy of the molecular weight determination, 

This value of Z compares well with those obtained by other 
4) ® methods , which range from 250 to 580 monomer'units. 

If, for POMA, one submolecule is chosen to be 24 monomer 

units long, then am M of 2,71 x 10 is equivalent to 570 sub-
_n g 

molecules, while an M of 3,37 x 10 is equivalent to 710 sub­

molecules, 

These two cases are considered below. The relaxation spectrum 

H . (570) for a molecule having 570 submolecules and 64 entangle­

ment points was calculated as follows. Each term in Equation (2-53) 

was obtained by a procedure like that in section 5-1, with a 

6 value of 8 x 10" , which was chosen for the best fit of the 

final spectrum with the experimental data. The summation was 

carried out up to the tenn in H[l], i,e, until k log2 = log(m-l), 

H[l] was chosen as the penultimate term. The last term was then 

taken to be H[0] and was given a coefficient such as to make 

the sum of all the coefficients in the series equal to unity, 

Equation (2-53) then became 

Hg^^^(570) = i,H[64] + 3/8,H[32] + ...+ 3/256,H[l] + 3/256,H[O] 

(5-1) 

where the last term in the series is clearly the spectrum of 

a Rouse molecule. The calculation of the spectrum for one slow 

point distribution for H[32] is given as an example. 

Table 5-III gives the input data and Table 5-IV gives the 

output from the computer. For the evaluation of the series, 

36 such operations were carried out. Figure 5-2 is the averaged 

H[32] spectrum converted to a continuous curve. 

A similar spectrum was obtained for each term in the series 

and Figure 5-3 is the curve of B.^^^ (570) obtained by the sum­

mation in Equation (5-1). Since ^^^^ and 2.303 H_ are equivalent 
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Table 5-III 

Input data for the calculation of H[32]. 

= = a 6, 

u = 20, r = 2, 

+ 33, + 570, -(- 4, -t- 8,Q-6, + 10-20. 

+ 14, + 22, -F 12, + 6, + 10, + 24, -t- 10, + 16, + 15, + 

+ B, + 11, -f 14, -̂  7, -̂  13, -t- 25, -̂  13, -t- 15, + 19, •̂  

•̂  16, -t- 20, -t- 21 , -t- 9, -t- 23, -t- 18, + 28, -f 26, + 32, -t-

Table S-IV 

Output data for the spectrum H[32] 

lOgTg 

-0.60206 

-0.35164 

-0.10122 

•hO. 14920 

0.39962 

0.65004 

0.90046 

1.15088 

1.40130 

1.65172 

1.90214 

2.15256 

2.40298 

2.65340 

to 
II 

11 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

2 

-0.35164 

-0.10122 

-t-0.14920 

-1-0.39962 

0.65004 

0.90046 

1.15088 

1.40130 

1.65172 

1.90214 

2.15256 

2.40298 

2.65340 

2.90382 

.303 Hg 

245 

94 

58 

41 

31 

20 

16 

15 

9 

7 

3 

0 

0 

0 

lOgTg 

2.90382 

! 

5115760 

5.40802 

5.65844 

5.90886 

6.15928 

6.40970 

6.66012 

6.91054 

7.16096 

7.41138 

7.66180 

7.91222 

8.16264 

to 

; 
H 

n 

II 

It 

II 

It 

M 

II 

If 

I! 

M 

II 

It 

3.15424 

5:40802 

5.65844 

5.90886 

6.15928 

6.40970 

6.66012 

6.91054 

7.16096 

7.41138 

7.66180 

7.91222 

8.16264 

8.41306 
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^ 1 2 

F19.5-2. Relojotioci spectrum tor on« mokcuk ot 5 7 0 «ubmokcukt ccntaininj 32 iloi» point». 

The slip parameter 8 .8x10 . 

the experimental values calculated in Table 5-1 are also plotted 

in Figure 5-3, 

PI9.5-3. Relaxation spectrum ot POMA compared with a hypothetical monodlsptrte polymec 

containing 570 submolecules and 64 entanglements per molecule. 

The slip parameter S Is chosen as 8 x ICi' 

It can be seen that the value of 6 s 8 x 10~ causes the 

curves to coincide in both the right and the left hand regions 

where the slopes are -4-, This value of b was arrived at as 

follows; a few spectra were caloula"fed as in Figure 5-3 for 

different values of b, and the slopes of -i on the left, which 

all coincided were made to fit with that of the experimentsü. 

curve. The value of b for the best fit on the right could then 
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be found either by interpolation or by use of the property 

that the horizontal shift of̂  the right hand side is approxi­

mately proportional to -log 6, 

The left region with slope of -i is the glass-rubber 

transition region and is not affected by the above modification 

for entanglements. Therefore this part of the curve must coincide 

with the spectrum predicted by the Rouse treatment which is 

characterized by the parameters a and C as calculated by 

Ferry^ . Prom Equation (2-24b) 

'P0MA = ^^'l^^oV6^^ = °--'R (5-2) 

which gives the position of the relaxation times of the experi­

mental curve with respect to the T- values. Substituting 

Perry's values in Equation (5-2) the value of logD is found to be 

-4.9, which is also found on inspection of the two ascissae of 

Figure 5-3. 

The relaxation spectrum H . (710) of a molecule having 710 

submolecules and 80 entanglements with a 6 value of 8 x 10" 

was also calculated, and is given in Figure 5-4. The left and 

right regions of slope --i- still coincide with the experimental 

spectrum in Table 5-II. 

Fig. 5-4. Relaxation spectrum of POMA compared with a hypothetical monodisperse polymer 

containing 710 submolecuies and eO cntangicments per molecule. 

Th« slip parameter 5 is chosen os 8 x 1 0 * 
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It is not possible to make a comparison of the experimental 

curve with a theoretical spectrum in which the molecular weight 

distribution is taken into account, since the latter is not 

known. However, to show the effect of a finite molecular weight 

distribution, a hypothetical blend of four molecular weights, 

was considered. The blend is described in Table 5-V, where the 

first column gives the mole fractions Eind the second column 

the length of the molecules in number of submolecules. 

Table 5-V 

Composition of a hypothetical blend of 4 monodisperse samples. 

144500 

151230 

97470 

36980 

^ 
0.2 mol. 

0.3 " 

0.3 " 

0.2 " 

h 
850 submolec. 

710 

570 " -

430 

"i"i 

170 

213 

171 
86 

i 1 

K = [ l -i"'i]/l'^i«i = 672 

M^/M^=1.05 

This rather narrow distribution has a M M ratio of 1.05. The 
w n 

spectrum <^Mn)>°^ '''̂ ^̂  hypothetical sample was then the weighted 
average of the individual spectra, given by 

4 

<HMn>= 1 '^i-«ent("i) ^5-3) 
i=i 

and is plotted in Figure 5-5. 



5-3 89 

Fig. 5-5 Pclaxation spectrum of POMA compared with o hypothetical 

blend of 4 moleculor weights. The number overage chain length is 

chosen as 6 4 0 subinolecuks and ^ffci = ' ^ 5 . 

The slip parameter 6 is chosen as 8x10"* 

•5-3 Gonclusions from the results for POMA 

Figures 5-3 to 5-5 show that the theoretical curves give a 

reasonable fit with experimental data. A precise fit cannot 

be expected for the monodisperse cases of Figures 5-3 and 5-4 

since in practice, a sample must always have a finite molecular 

weight distribution. The strong effect on the theoretical 

relaxation spectrum of even a slight broadening of the distri­

bution is illustrated in Figure 5-5. It is clear from the 

figure that for a test of the theory, a narrow fraction should 

be used, since a broad distribution tends to smooth out the 

important features (minimum and maximum) of the spectra. Even 

for such a narrow fraction, the molecular weight distribution 

must be known. 

The spectrum for a broader distribution of molecular 

weights can be predicted from the theory, provided the distri­

bution and, in addition, the parEuneters Z and 6 are known. 

The number of entanglements per unit chain length found 

from the experimental curve seems to be independent of the 

total chain length, provided the molecular weight is very 

high, as it is in the case considered. 

A proof of the validity of the calculations performed by 

the computer is found in the slopes ot -i yielded by the 

calculations for the glass-rubber transition region of the 
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spectrum, and in the horizontal position of this part of the 

curve relative to the experimental spectrum. This position 

is fixed by Equation (5-2), where the molecular parameters 

a and C have been calculated by Ferry. 

The value of 6 found by fitting the theoretical and ex­

perimental spectra is a constant which is independent of the 

arbitrarily chosen length of the submolecule. By changing this 

length the position of the maximtim in the theoretical spectrum 

can be shifted along a line with a slope of --J-. An estimate of 

the actual length of a submolecule can thus be obtained by 

suitably adjusting the position of this maximum. 

5-4 Measurements with poly-methyl acrylate. 

The rheometer described in Chapter 4 was assembled with the 

Teflon foil in position. A driving voltage was applied and the 

voltage at A' was adjusted so as to compensate not only for 

the unwanted modes but alLO for the additional signal kx* due 

to the elasticity of the Teflon foil. For this adjustment, the 

voltage at A' was 6.43 per cent of the voltage at A. 

The empty rheometer was then cooled to several temperatures, 

and at each one a set of measurements of force, displacement 

Eind phase angle (•. ) was made over the entire frequency range. 

These were the "zero measurements". 

Since force and displacement were found to be exactly 

proportionsil, the force readings were all converted to a standEird 

displacement signal of 1 V, These converted force signals (f.) 

were plotted on log-log plots against frequency of which two 

examples are given in Figure 5-6. Except at very low frequencies, 

the plots were straight lines all with a slope of 2, in accordance 

with Equation (4-26). 

From this curve, the sensitivity of the force transducer 

was readily obtained by making the proper substitutions in the 

relation: 

* ,.2 2 
f̂  = - 4« V m^x^ 

where m is the effective vibrating mass Eind f and x the force e ^ 0 0 
Euid displacement amplitude at the frequency v. The mass m.was 

_7 
0.2501 Kg and x was 1.25 x 10 m, giving a signal of 1 Volt. 

At 100 c/s, f was then 1.235 x 10~2 Newton, which on the graph 

was equivalent to 8.7 mV. The conversion factor C of the force 



5-4 91 

R^5-6. Pick-up CQIIbration curves at ,6*0 and at -46.5*0. 

transducer was therefore 

1 mV = 1,42 x 10"^ N. = C 

This sensitivity was found to be almost independent of tempe­

rature . 

The measured phase angle «. was not equal to the actual 

phase angle between the force vector f̂  and the displacement, 

but contained also a phase shift contributed by the electronic 

components of the amplifiers, which is dependent on frequency. 

This contribution (*,) could be eliminated for those points 

in Figure 5-6 which lay on the straight line, since for them, 

the actual phase angle must be exactly 180°. For the points 

deviating from the straight line, the actual direction of zero 

phase angle was obtained from a second set of measurements 

where the Teflon foil was replaced by an elastic steel foil. 

The molecular weight distributions of the polymers prepared 

by the anionic polymerization technique and by radical poly­

merization were not very different. The more easily prepared 

radically polymerized polymer was therefore used, whose M^, 

determined by light-scattering was 1.8 x 10 . 
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This polymer was dissolved in toluene to a concentration of 

14 per cent (by weight), after which the solution was slowly 

evaporated to a concentration of 25.5 per cent. The solution 

was injected into the rheometer by means of a hypodermic syringe, 

as described in Chapter 4. 

The alcohol bath was cooled to - 77 C with solid COp and the 

rheometer was allowed to reach equilibrium at this temperature 

over a 6-hour period. After the first set of force, displacement 

and phase angle measurements at this temperature, the bath was 

heated to the other pre-determined temperatures and the measure­

ments were repeated. 

These force measurements were also converted to a standard 

displacement signal of 1 Volt. The converted force signals (fp) 

made a phase angle »p with the displacement. The suffix 2 was 

assigned to the "polymer measurements". The phase angles *„ were 

also not equal to the actual phase difference between force 

and displacement. 

Before the zero measurements could be subtracted vectorially 

from the polymer measurements, the phase shift *_ must be sub­

tracted from *, and *p. If 

«1 - »3 = 9, 

and *p - *- =90» 

the components of f. are f. cos f. and f. sin op, and 

the components of fp are fp cos tpp and fp sin«Pp. 

Then f* cos 5 = fp cos f„ - f. cosip, 

and f* sin 6 = f sin ipp - f, sinip. 

are the two components of the remaining electrical signal due 

only to the presence of the polymer, which is proportional to 

the complex modulus. These electrical signals were converted 

into Newtons by means of the conversion factor C obtained earlier. 

The storage and loss moduli G' and G" were then calculated 

from 

G' = (C.ff cos 6 )/bx = 1.119 X 10^ ff cos 5 

G" = (C.ft sin6)/bx = 1.119 x 10^ f« sin 6 
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Eoid are shown in Figures 5-7 and 5-8. At high frequencies, deter­

mination of G" becomes 

increasingly inaccurate, 

since it is obtained from 

the subtraction of two al­

most co-linear vectors. 

For this reason, only 3' 

vEilues were plotted at the 

high frequencies> whereas 

the G" values at frequencies 

above 1500 c/s were dis­

carded. 

These curves, obtained 

at different temperatures, 

must be converted into two 

master curves at a reference 

temperature T , before the 

relaxation spectrum could be 

obtained. This was done by 

shifting the curves hori­

zontally until they formed 

two continuous curves G' 

and G". The amount each curve was shifted was log Ê . . Since the 

same log a^ should apply to both the Ci' and G" curves, an average 

log a.r "^3 taken. 

It was assumed that the WLF equation^ 

log a^ = - c,(T- T^)/(C2 + T - T^) (5-4) 

Fig. 5-7. Storage modulus of a PMA solution in Toluene. 

,6) 

applied for this polymer system. The constants c. and Cp were 

obtained by plotting (T^-T) log a.̂  against T taking T^ as -46.5°C, 

and were found to be c, = 26.7 and Cp = 133.6. 

It must be noted that these values, in Equation 5-4, represent 

an unusually strong temperature dependence of the modulus. It 

was therefore not possible to use the modified VfLF equation, 

in which a reference temperature T is assumed, where T is about 

50 degrees above the glass transition temperature. 

The values of c. and Cp obtained from the plot were sub­

stituted in Equation (5-4) which permitted calculation of the 
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"1 1.5 2 25 3 Ï5" 

Fig 5 - 8 . Loss modulus of o PMA solution in Toluene. 

log a values at the 

temperatures of the measure­

ments. By plotting log G' 

and log Q" vs. log(ua ), 

the master curves at the 

reference temperature of 

-46.5°C were obtained. 

These are shown in Figure 

5-9. The loss tangent at 

-46.5 obtained from these 

curves is shown in Figure 

5-10. 

There are several 

approximation methods des-
4) 

cribed in the literature 

for calculating the rela­

xation spectrum from the 

components of the complex 

modulus. The method of 

Fig 5-9. Master curves of the storage modulus and loss modulus of a PMA solution (255%) in Toluene. 

Reference temperature T=-465'c 
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7) Ninomyia and Ferry 

was arbitrarily 

chosen. With this 

method, the slopes 

of the master curves 

Ea*e not measured 

directly, but are 

calculated from va­

lues of the ordinates 

in the vicinity of 

the point considered 

using the formulae 

Fig S-10. Loss tangent for a PMA solution (255%) in Toluene. 
Reference teinperature T̂  = - 4 6 5 ' C 

, > _ Q<(am) - Q ' ( u . / a ) 
'^^^> - 2 I n a 

af G'(a^iü) - G'(u>/a^) - 2 G'(aui) + 2 G'(ui/a) 

2 In a f 2 . s2 
(a - 1) 

(5-5) 
t-Vu) 

Fig.S-11. Reloxation spectrum of a PMA solution (25.5%) in Toluene, 

Reference temperature T^^-At-S'C 
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H( T ) = 2_SJliïl - 2a ^r(j„(a„) + G"(,./a) - 2 G"(u,)l 
n n(a - 1)2 L -J 

(5-6) 
T-Vo, 

The spectra obtained from G' and ö" should be identical. 

Points from both obtained with log a = 0.2 are plotted together 

in Figure 5-11, where the agreement appears reasonable. 

5-5 Conclusions from the results for PMA 

In general, the results of the measurements indicated that 

the rheometer worked very well. The compensator cerEunic eliminated 

not only unwanted signals from the disturbing modes but also the 

need to accoxmt for the effect of the Teflon foil. This reduced 

the number of osilculations required. 

The calibration curves with the empty rheometer were not only 

very accurate, but since they provided an absolute meEins of 

calibration, avoided the use of standard viscosity samples. 

Moreover, the sensitivity of the pick-up was practically inde­

pendent of temperature in the range in which it was used. 

The only disadvantage of the design, as indicated in section 

5-4, is the inaccuracy in the measurement of G" at high frequen­

cies. The temperature control of the rheometer appears satis­

factory, although the time required for reaching temperature 

equilibrium (about 2 hours) occupies the greater portion of the 

measuring time. 

The results, however, indicated that the polymer exhibited 

unexpected mechanical behavior. It has already been mentioned 

that the sensitivity of the moduli to temperature was unusuEilly 

high. This resulted in master curves which were spread over 

more than ten decades for only the rubbery and flow regions 

(Figure 5-9). 

It was also found that the moduli in the rubbery region were 

about 100 times higher than was to be expected from similar 
4) experiments found in the literatiire , while the mini mum value 

of the loss tangent was not as low as would be expected for a 

diluted rubber. Moduli of the magnitude found have not been 

previously reported for the rubbery regions of amorphous, un­

crosslinked polymers, but rather approach the level of the rubbery 

region for filled or crystalline polymers. 

As a result of these high moduli, the relaxation spectrum 

also has an unusually high plateau region without the expected 
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minimum. This high plateau region and the high value of G' 

in the rubbery region would indicate an impossibly short chain 

length between neighbouring temporary crosslinks. For this 

reason, the theory of Chapter 2 is not applicable. 

In order to explain the anomalous behavior, a mechanism was 

required which would account for both the high moduli and their 

strong temperature dependence. Dipole-dipole forces between the 

chains were considered but these alone cannot be responsible for 

the phenomenon, since it is not observed in the undiluted polymer. 

Crystallization was rejected, since it could not explain the 

strong temperature dependence. It was finally found that the 

polymer solution becEime cloudy when cooled below -25°C. This 

could only be attributed to phase separation, which on account 

of the high viscosity and the high concentration of the polymer, 

would occur on a microscopic scale. The extent of the phase 

separation would progress as the temperature was lowered producing 

more regions of higher polymer concentration. These must have 

a much higher modulus and may even tend to the glassy state, 

The formation of these regions thus gives rise to a spurious 

temperature dependence. The stiffening of the polymer by this 

process can be compared to the stiffening of a rubbery polymer 

by crystallization. 
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SUMMARY 

The linear viscoelastic behavior of polymers is reviewed, 

with particular attention to dynamic exper-"ments in shear de­

formation. 

A molecular theory is developed to describe quantitatively 

the mechanicEil behavior of entanglement networks of linear, 

randomly coiling molecules. The theory is based on the model of 

Rouse for a single molecule and is an extension of the theory 

of Duiser and Staverman for chemically crosslinked networks. 

The extensive calculations required for application of the 

theory make the use of a computer necessary. A computer program 

has been devised, which, using a property of the Sturm sequence, 

CEilculates the continuous relaxation spectrum from the "mobility 

coefficient matrix" of a molecule containing a number of "slow 

points", caused by the entanglements. 

Application of the theoiy to experimental data will yield 

the number of elastically effective network chains of the entangle­

ment network by integration of the area under the curve in the 

long-time region of the relaxation spectrum. This, in turn, 

yields the degree of polymerization between entanglement points, 

which is found to be almost independent of the accuracy with 

which the molecular weight of the sample is determined. The 

theory cannot yet account, however, for the dependence on mole­

cular weight of the rheological properties. 

A new molecular parameter 5, the "slip parameter", is intro­

duced, which is a constant for a given sample, since its value 

is not dependent on the chosen length of a submolecule. 

As 5 tends to zero the formulae reduce to those of the theory 

of Duiser & Staverman for chemically crosslinked networks. 

The above theory has been successfully applied to the data 

for a poly-n-octyl methacrylate fraction published by Ferry and 

co-workers. A very good fit has been achieved between experimental 



99 

and theoretical relaxation spectra. It has been found both 

necessary and possible to take a molecular weight distribution 

quantitatively into account. This is a significant difference 

from previous treatments which considered only monodisperse 

samples. 

Since the theory can best be checked with a monodisperse 

polymer sample, an attempt has been made to prepare a Poissom-

distribution sEimple of poly-methyl acrylate by the Szwarc 

"living polymer" technique. This can be achieved by using 

tertiary-butyl acrylate as the monomer and by polymerization 

at very low temperatures, followed by alcoholysis to convert 

the tertiary-butyl ester groups into methyl ester groups. An 

apparatus has been constructed in which batch polymerization 

was carried out using di-methyl ether as a solvent. The initiator 

used was cumyl-potassium and the reaction was conducted at 

-120°C. Although a 100 per cent conversion was obtained, indi­

cating no unwanted termination, the resulting polymer had an 

unsatisfactory molecular weight distribution. The reason probably 

lies in Ein insufficiently refined polymerization technique, 

rather thEin in failure of the principle. An efficient procediire 

has been developed to convert the poly-t-butyl acrylate into 

poly-methyl acrylate by using hydrochloric acid as catalyst 

and a mixture of methylene chloride and methanol as a solvent. 

The yield was almost quantitative. 

In order to investigate experimentally the linear visco­

elastic behavior of polymers, a Pochettino-type rheometer has 

been made which is suitable for solutions or diluted networks. 

It directly measures sinusoidally varying stress and strain 

together with the phase angle between them. The design maJces 

use of the piezoelectric properties of titanate ceramics for 

both the "driver" and the "pick-up". Thanks to these, the 

rheometer is rather compact, Eind temperature control is greatly 

simplified. The sample is located in a narrow gap (0.3 mm) 

between two coaxial cylinders. The very small displacements 

(0.1 microns) are measured with a high-resolution.inductive 

displacement trEuisducer. An ImportEint feature of the design 

is a "compensator" ceramic, between the driver and the pick-up, 

which eliminates secondary modes of motion generated by the 

driver. The rheometer is calibrated by an absolute method 
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which avoids the use of stEuidard viscosity samples. The instru-

ment can measure moduli from 500 to 6 x 10 N/m . The frequency 

range - not yet fully exploited - is from 10 to 3500 o/s. 

The temperature limits are not yet known, but measurements 

have been made between -80 C and + 30 C. 

With the above rheometer, the relaxation spectrum of a 25.5 

per cent solution of poly-methyl acrylate in toluene was ob­

tained. Values of the components of the dynamic modulus obtained 

at several temperatures were reduced to master ouarves at -46.5 C 

by means of the WLF equation. From these, the, relaxation spectrum 

was calculated using the approximation method of Ninomiya Eind 

Ferry. The observed behavior differed considerably from the ex­

pected pattern. The temperature dependence of the moduli was 

greater than any value previously reported. The moduli in the 

rubbery region were also anomalously high. The cause has been 

traced to phase separation in the sample. This hardening effect 

due to phase separation appears not to have been previously 

reported in the literature. The effect can be explained qualita­

tively by comparison with the stiffening effect of crystallization 

in a 37ubbery polymer. 



101 

LIST OF SYMBOLS 

a root mean square (or R.M.S.) end-to-end distance per square 

root of number of monomer units, or 

an intervsil on the logarithmic frequency scale 

a- number of eigenvalues larger than X 

a^ ratio of relaxation times at two different temperatures 

a.. element in the i-th row and in the j-th column of a matrix 

b sample coefficient or form factor 

b.,bl elements in a tridiagonal matrix 
1 1 -^ 

c concentration (g polymer per cm solution) 

c.,Cp coefficients in the WLF equation referred to To as reference 

c. elements in the main diagonal of a tridiagonal matrix 

d piezoelectric coefficient (charge output coefficient) 

e base of natural logarithms 

f chain parameter relating s. to n., or 

driving force in the piston 

f shearing force at radius r 

f complex driving force to shear a sample 

f. total complex driving force in the piston 

g piezoelectric coefficient (voltage output coeffcient), or 

chain parameter relating s. to n. 

h height of a sample 

i,J imaginary unit ( V~-T) 

k BoltzmEinn's constant, or 

spring constant of the "Teflon" foil 

1 thickness of a ceramic 

m number of sections of a molecule separated by slow points 

or entanglements, or 

mass of a sample 

m effective mass 
e 

n number of molecules per unit volume, or 

index of refraction 

n. number of molecules in the unperturbed state, or 

number of molecules with molecular weight M. 

p summation index 



102 

1 
r 

'o 

( • •^>* 

<'^>* 
8 

« i 
t 

"p'^P 
^L'^L 
V 

w 
p 

h 

number of monomer units per submolecule 

radius from the center of the piston 

radius of the piston 

R.M.S. end-to-end distance of a macromolecule (unperturbed) 

R.M.S. end-to-end distance of a submolecule 

running time variable 

number of molecules in the perturbed state 

time 

transformed coordinates of a submolecxile 

components of the velocity gradient of a liquid 

partial specific volxime of a polymer 

X distance to the center of rotation, or 

shear displacement, or 

linear displacement 

X shear displacement amplitude 

X complex shear displacement 

x.,y.,z. coordinates of a submolecule 

z complex quantity (p + i Q) 

A cross sectional area 

A.j,A ,A mobility coefficient matrix 

B translational mobility coefficient of a submolecule 

B numerical constant at the resonance frequency 

C number of crosslinks, or 

capicity, or 

conversion factor of the pick-up 

C n\imber of effective crosslinks 
8 

D conversion factor to reduce the experimental relaxation 
time to Trj» or 

dielectric displacement 

5 tensile modulus 

5 tensile modulus of ceramic 
0 

Bj tensile modulus of invar 

F linear relaxation spectrum (shear), or 

electric field 

6 complex dynamic shear modulus 

5' shear storage modulus 
a* shear loss modulus 
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G equilibrium shear modulus 

G. spring constant in the i-th MEixwell element 

G glasslike shear modulus 

G(t) shear relaxation modulus 

H logarithmic relaxation spectrum (shear) 

H.. sub-determinant in the Sturm sequence 

Hp relaxation spectrum reduced to one molecule 

H +(M.) relaxation spectinm of one molecule in an entanglement 

network with molecular weight M, 

/HJ, ^ relaxation spectrum of one molecule in a polydisperse 

entanglement network 

H(2 N) relaxation spectrum of a chain with 2 N submolecviles 

between fixed ends 

H[(m-1)/2 ] relaxation spectrum of a molecule with free ends and 

containing (m-1)/2 slow points 

I xmxt matrix 

K proportionality constant in Staudinger's eqxiatlon 

1 total length of the vibrating column 

L. length of the invar piston 

M molecular weight per monomer unit 

M molecular weight of a molecule with a degree of poly­

merization X 

M number average molecular weight 

M_ viscosity average molecular weight 

M weight average molecular weight 

[M..] concentration of growing radical molecules with weight 

N number of submolecules in a macromolecule 

N Avogadro's number 

P rate of input of free energy per unit volume, or 

dielectric polarization 

P. rate of input of free energy per molecule in d0. 

S gas constant, or 

outer radius of Pochettino rheometer 

fi orthogonal matrix 

B e reEuL part of a complex quantity 

S elastic compliEince 

T absolute temperature 

T reference temperature 
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Y volume 

v. velocity gradient of a liquid 

X(M.) mole fraction of molecules with weight M. 

Z degree of polymerization, or 

electrical impedance 

Z average degree of polymerization between entanglement points 

Z number average degree -of polymerization 

a constant in the relaxation function, or 

kinetic parameter in radical polymerization 

p constant in the relaxation function, or 

parameter in the Gaussian distribution function 

y shear strain, or 

Y rate of shear strain, or 

velocity gradient 
« 
•y complex djmaimic shear strain 

Y shear strain amplitude 

Y velocity gradient amplitude 

b slip parameter, or 

phase angle between sample strain and stress 

5_ SEimple constant at the meniscus of a solution 
D 
6 Kronecker delta 
pq 
e total dielectric constant 
e dielectric constant in vacuxun 
o e_ relative dielectric constant r 
C monomeric friction coefficient 
S 
ij complex dynamic shear viscosity 

T)' real part of complex viscosity 

T)" imaginary part of complex viscosity 

T) steady flow viscosity 

1]. viscosity of the dashpot in the i-th Maxwell element 

T| viscosity of a solvent 

specific viscosity 

intrinsic visoosity 

n(t) time dependent shear visoosity 

% electric susceptibility 

\ wave length, or 

eigenvalue 

[n] 
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K . highest eigenvalue (+4) 

X longitudinsil wave length (axial direction) 

X p-th eigenvalue 

X shear wave length (radial direction) 

I» chemical potential 

V number of molecules, or 

number of network chains, or 

frequency (cycles per second) 

V frequency in axial direction 

V number of effective network chains e 
V cantilever resonance frequency 

V shear wave frequency in radial direction 

1 osmotic pressure 

p density of a sample or of a solution, or 

density of points in configuration space 

p. density of invar 

p equilibrium density of points in configuration space 

a shear stress 
a shear stress at radius r r 
a complex dynamic shear stress 

o shear stress amplitude 

T relaxation time 

T. relEixation time of a Maxwell element 

T_ dimensionless reduced relaxation time (lA) 

<P time derivative of the relaxation function, or 

measured phase angle 

«n angular velocity (radians per second) 

A differencing symbol 

A coefficient of linear expansion 

A diagonal matrix (of eigenvalues) 

• relaxation function 

* probability density function of configurations 

Al change in thickness of a ceramic 

Ar width of a sample in the rheometer 

AP elastic free energy change in volume V 

AY voltage across the electrodes of a ceramic 

d0. 3N-dimensionEul volume element 
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APPENDIX 

==a2, 
'begin' 'comment' relaxation spectrum, m, n, delta; 

'integer' m, i, al, a2, ml, n, 1, k, q, m2; 

'real' gu, lambda, y, q1, pi, norm, delta, t, 

dt, t2, gamma, r; 

read (m, n, gu, delta, gamma); 

'begin' 'integer' 'array' w[l!m]; 

'array' p, c, b[l:n]; 

'procedure' sturm sequence; 

'begin' pi:=o; q1:=1; a1:=o; 

'for' i:=1 'step' 1 'until' n 'do' 

'begin' y!= (c[i]-l£imbda)-iql-p [i]«p1 ; 

pi := q1 ; q1:=y; 

' i f ' pi 'not l e s s ' o 'equiv' q1 
'not l e s s ' o ' then ' a l := al + 1 

' end ' ; 
' i f ' q1 'equal ' o 'and' pi ' g rea te r ' o ' then ' 
al : = a1 - 1 

' end ' ; 
c [ l ] := c[n]:= 3; k:= 1; 
b[n];= o; m2:= o; 
read(w); 
1:= 1; q:=w[l]; 

11 : ' fo r ' i := 1 ' s t e p ' 1 ' u n t i l ' q 'do' 
c [ i+ l ] := 2; 
' fo r ' i := 1 ' s t e p ' 1 ' u n t i l ' q + 1 'do ' 
b [ i ] := -1 ; 
' i f ' q 'not grea ter ' n - 3 ' t hen ' , 

'begin' c[q+2]:= c[q+3]:= 1 + del ta ; 
b[q+2] := -de l ta 

' end ' ; 
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==a6 

u=40 

r=10 

+73, 

+23, 

+17, 

+48, 

+19, 

+ 3 1 , 

+13, 

+30, 

+10 , 

* 
f 

f 

+1879, +4 

+35, 

+27, 

+23 , 

+37, 

+25, 

+24, 

+22, 

+18, 

+16, 

+20, 

+24. 

+34, 

+28, 

+32, 

+12, 

+29; 

, +0 . 

+29 , 

+33, 

+17, 

+23, 

+42, 

+17, 

+27, 

0001 , 

+14 , 

+18, 

+52 , 

+20, 

+18, 

+ 2 1 , 

+25, 

+10-12 . 

+ 2 1 , + 1 1 , +28 , +19 , +32 , 

+ 2 1 , +8 , +19, +40, +22, 

+20, +16 , + 3 1 , +13, +26 , 

+3 , +27, +44, +15, + 2 1 , 

+23, +25, +15, +36, +22, 

+6 , +26, +24, +16, +20, 

+30, +22, +14, +26, +38, 
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1:= q + 3; k:= k + 1; 
' i f ' k 'not grea ter ' m ' then ' 

'begin' q:= 1 + w[k]-1; 
'go t o ' 11 

' end ' ; 
norm:= abs(c[l])+ abs (b [ l ] ) ; 
' fo r ' i := 2 ' s t e p ' 1 ' u n t i l ' n 'do' 

'begin' r := abs (b[ i - l ] ) + abs(c[ i ] ) + abs (b [ i ] ) ; 
' i f ' r ' g rea te r ' norm ' then ' norm!= r 

' end ' ; 
p [ l ] := o; 
' fo r ' i := 1 ' s t ep ' 1 ' u n t i l ' n-1 'do' 

'begin' ' i f ' b[ i ] 'equal ' o ' then ' 
p[i+1];= gamma»norm»norm ' e l s e ' 
p[ i+l] := b [ i ]«b[ i ] 

' end ' ; 
12; lambda:= gu; 

sturm sequence; 

a2:= al ; 

lambda:= gu-0.78»gu/l.78; 

sturm sequence; 

ml ;= al - a2; 

t:= ln(l/gu)/ln(lO); 

dt:= ln(l/lambda)/ln(10); 

test(l/gu,1/lambda); 

print("interval=", t,"till", dt, "h=", 

ml, " a " ) ; 

m2:= m2 + ml; 

'if' m2 'less' n 'then' 

'begin' gu:= lambda; 

'go to' 12 

'end' 

' end' 

'end'; 
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STELLINGEN 

1. De relaxatiespeotra die door Tobolsky worden weergegeven, suggereren 

een oplossend vermogen dat onmogelijk met de hedendaagse apparatuur 

te verwezenlijken is. 

A.V.TobolBky ; Properties and Structure of Polymers, John Wiley 

Sons, Inc.(New York) I960, p.316 . 

A.J.Staverman4 P.Sohwarzl ; Die Physik der Hochpolymeren, IV , 

ed.H.A.Stuart;Springer ?erlag (Berlin)l956,p.46. 

2. Hatfield en Rathmann hebben vergelijkingen opgesteld voor de adhesie 

van vlsooelastisohe materialen aan een harde ondergrond. Met behulp 

van de door hen bepaalde molecule-parameters is de temperatuurafhan­

kelijkheid van de oritisohe ontheohtingskraoht te berekenen.De hier­

mee gevonden afhankelijkheid is dermate klein, dat de Juistheid van 

bovengenoemde vergelijkingen betwijfeld moet worden. 

M.E.Hatfield & G.B.Rathmann; J.Phys.Chem.60, 957, (1956) . 

3. Oedurende oopolymerisatie van multioomponent-syatemen verandert ge­

woonlijk de samenstelling van het zich vormende polymeer. Indien men 

de relatieve reaotiviteltsverhoudingen en de gemiddelde snelheids-

oonstante van de polymerisatie kent, kan men een zodanige continue 

voeding van monomeren berekenen, dat bovengenoemde drift in de samen­

stelling volkomen wordt opgeheven. 

T.Alfrey Jr.,J.J.Bohrer 4 H.Mark; Copolymerization, 

Intersoienoe Publ.Inc. (Hew York) 1952, p.156 , 

4. De vergelijking die Bamford, Jenkins en Johnston hebben voorgesteld 

ter vervanging van de aemi-eupirische Q-e-relatie van Alfrey en 

Price, is niet in staat een betere voorspelling te geven van de 

relatieve radicaalreactiviteiten dan de eenvoudiger vergelijking 

van Alfrey en Prio«. 

C.H.Bamford, A.D.Jenkins 4R.Johnston; Trans. Paraday Soo. 

55, 418, (1959). 

T.Alfrey4 C.C.Price; J.Polym.Sci. 2 , 101, (1947). 

J.CBevington ; Radical Polymerization ; Academic Press 

(London) 1961 , p. 86-89. 



5. De opvatting van Kraus en Moczvgemba over de structuur van polymeer­

netwerken berust op een principiële vergissing. 

G.Kraus 4 G.A.Moczvgemba ; J.Polym.Scl.A , 2 , 277 , (1964). 

6. De voor geconcentreerde polymeeroplossingen uitgevoerde berekeningen 

van Kelley en Bueche, die gebaseerd zijn op de additlviteit van het 

vrije volume, kunnen beter vervangen worden door die van Pujita en 

Kishimoto. 

P.N.Kelley 4P.Bueche; J.Polym.Sci. 50 , 549 , (1961). 

H.PuJita4 A.Kishimoto; J.Polym.Sci. 28 , 547 , (.958) 

en J.Chem.Phys. 34 , 593 , (1961). 

7. De door Patton opgestelde empirische relatie voor alkydharsen ter 

berekening van de hardheid van een aan de lucht gedroogde vernis-

film, wekt ten onrechte de indruk, dat de vereateringsgraad niet 

van invloed is. 

T.C.Patton ; Alkyd Resin Technology , Intersoienoe Publishers 

(New York) 1962 , p. 179 . 

R.Bult ; Offlc.Dig.Pederation Soos.Paint.Technol. 33, 1594(1961). 

8. Het door Oarmiohael en Kinsinger voorgestelde model ter berekening 

van de ongestoorde dimensies van polymeren, waarbij aan alle 

mogelijke minima van de rotatiepotentiaal rond de ketenbindingen 

een gelijke potentiaal wordt toegekend, is weinig zinvol daar bovenge­

noemde veronderstelling tot grote fouten aanleiding geeft. 

J,B.Oarmiohael J.B.Kinsinger; J.Polym.Sci.A , j_ , 2459 (1963). 

9. Het centrum van een verstrengeling van ketens, zoals die zich mani­

festeert in het rheologlsch gedrag van een macromoleculalre stof, 

kan men aanduiden met het woord "warpunt". 


