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Abstract 

A self-consistent theory is developed for the hexagonal phase of semiflexible polyelectrolytes. The electrostatic 
interactions analyzed in the Poisson-Bolzmann approximation, couple non-linearly to the undulations of the 
polyions so that the intermolecular forces may be enhanced by an order of magnitude. The theory is in good 
agreement with the osmotic stress measurements an DNA by Podgornik et al. It also seems to bear on 
unresolved discrepancies arising in stress experiments on tobacco mosaic virus and muscle thin filament. 

Keywords: Polyelectcolyte gels; Undulation-enhanced electrostatic forces; Hexagonal phase theory 

1. Introduction 

The osmotic stress technique [l] allows one to 
monitor the intermolecular forces between hexag- 
onally packed biopolymers as a function of their 
mean spacing which is measured by X-ray diffrac- 
tion. The method has been applied to cylindrical 
gels of stiff macromolecules like tobacco mosaic 
virus (TMV) [2-41, muscle filaments [3,4] DNA 
15-71, xanthan [Sl and schizophyllan [81. Under 
conditions where the electrostatic interactions 
may be presumed to dominate, the measured 
forces [2-4,6] are often an order of magnitude 
greater than expected on the basis of the non-lin- 
ear Poisson-Bolzmann equation. This equation is 
certainly not exact but the effect of ion correla- 
tions [91 appears way too small to rationalize the 
discrepancy. Besides, it should be explained why 
the Poisson-Boltzmann equation sometimes does 
work and at other times does not. 

Podgomik and Parsegian [lo] argued that chain 
fluctuations would give rise to an enhanced decay 
length. They hypothesized that the semiflexible 
macromolecule could be modeled by a Gaussian 
chain enclosed in a non-fluctuating tube. Their 
model agrees with their data [6] on DNA pro- 
vided the step length is adjusted to about 4 nm. 
This turns out to be close to an a priori estimate 
of the deflection length [ll]. Podgornik and 
Parsegian’s treatment goes some way toward a 
qualitative explanation of the enhancement of the 
intermolecular forces. The problem with their 
calculation is of course that the Gaussian $tep 
length of DNA is not 4 nm but actually about 100 
run. Furthermore, in practice [l-8], the effective 
tube in hexagonal biopolymer gels is of the order 
of the interchain spacing or perhaps even sub- 
stantially less; so thin in fact thtit the stiff polyions 
undulate without folding along the long hexago- 
nal axis (see Fig. 1). In effect, in this limit the 
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recent studies on interacting surfaces [12,13]. In 
particmar, the electrostatic potential in a stack of 
charged membranes was found to be modulated 
by the surface undulations in a highly non-linear 

i 

fashion [13]. Here, the hexagonal gel of wormlike 

Z polyelectrolytes is investigated along similar lines 
in order to assess the magnitude of the undula- 
tion-enhanced electric forces. 

yI 
(b) k-- p 

X 
Fig. 1. (a) Undulating semiflexible polyions aligned along the 
long hexagonal z-axis, and (b) a section perpendicular to the 
z-axis. The points denote the intersection with the centerlines 
of polyion cylinders in the reference configuration, a perfect 
hexagonal array. Because of thermal motion the centerlines 
are displaced at any given moment. ‘the origin of the (x, y)- 
axes is placed at the reference point of the test chain we focus 

attention on. 

Gaussian chain model becomes completely in- 
valid so one must resort to the wormlike chain 
model because scales much smaller than the per- 
sistence length are sampled in the configurational 
statistics. Moreover, since any one test chain ex- 
periences a fluctuating electric field exerted by its 
neighbours, we have to solve, in general, a form- 
idable problem in statistical physics. Still, under 
certain conditions, the fluctuations may be rather 
small in some sense, so it becomes realistic to 
formulate a theory in which all the macromolecu- 
lar fluctuations are treated self-consistently, Such 
a line of attack was adopted by the author in two 

2. Free energy of confinement 

In principle it is possible to set up a complete 
self-consistent field theory of the hexagonal phase 
of wormlike chains in terms of a distribution 
function depending on both position and orienta- 
tion of an infinitesimal segment of a test chain by 
extending refs. [14-161. One complication is the 
geometry of the hexagonal lattice; another is the 
effect of electrostatic twist [15,17,24]. Fortu- 
nately, in the experiments [2-61 the orientational 
fluctuations of the chains turn out to be modest 
so that we may adopt a highly simplified ap- 
proach. We assume the undulations are fairly 
weak in a manner to be quantified below (even 
so, they may stil1 enhance considerably the elec- 
trostatic interaction, as we shall see). Hence, it is 
sensible to postulate a Gaussian distribution for 
the Cartesian position (x, y) of an infinitesimal 
segment of some particular chain we happen to 
focus on, defined with respect to its position in 
the reference configuration of the chain. The 
latter configuration is the one where there are no 
undulations, i.e. a straight rod parallel to the long 
hexagonal axis z. 

G(x, y) = P-‘d-I exp[ -(x2 +~*)/d*] (1) 

The coordinates x and y are defined within the 
plane perpendicular to the z-axis (Fig. 1). Fluctu- 
ations along the z-axis are disregarded. Because 
of the imposed self-consistency, eq. (1) pertains 
to all the chains in the array. Clearly, the varia- 
tional parameter d must be much smaller than 
the interaxial spacing R of the hexagonal lattice 
otherwise the isotropic Gaussian distribution G 
loses meaning. Equation (1) may be interpreted 
as a Boltzmann factor involving an effective har- 
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manic potential; accordingly, we expect it to be 
valid in an asymptotic sense. 

Equation (1) implies each wormlike chain is 
effectively confined within a cylindrical tube along 
the z-axis of approximate diameter d. If the 
polyion is semiflexible with a persistence length 
P(P s d), the characteristic scale of the undula- 
tions along the z-axis is the deflection length [ll] 

h = d2/3p1/3 
(2) 

The free energy per unit length of chain is given 
by [11,16,181 

AF,,,, = ck,T/A (3) 
where k, is Boltzmann’s constant and T the 
absolute temperature, because h is the sole rele- 
vant scale (and not PI. The logarithmic factor of 
ref. [ll] is spurious 1151; an estimate of the coeffi- 
cient c is 2 -2/3 *. Computer simulations by Dijk- 
stra and Frenkel [191 for a worm trapped in a 
hard tube appear to bear out eq. (3). As d de- 
creases the free energy of confinement is en- 
hanced by an entropic effect: an increasing num- 
ber of configurations is frozen out. In order to 
determine d, we next need an expression for the 
electrostatic repulsion which becomes smaller as 
d is diminished. 

3. Electrostatic free energy 

If the double layers between two neighboring 
chains interpenetrate, the mathematical problem 
of calculating the electric potential is very intri- 
cate, especially because the undulations couple 
strongly with the distribution of “condensed” 
counterions close to the polyion surfaces. If we 
wish to leave unperturbed the inner double layers 
surrounding the polyions in our array, we require 
that the lattice spacing R is typically larger than 
about D + 2d + 2~~’ where K-’ is the Debye 
screening length and D is the polyion diameter. 
In addition, we demand that the deflection length 
greatly exceeds K-I so a deflection segment be- 

* This is obtained by a second moment condition (.r’) = $d* 

i.e. we set p = f in eq. (13) of ref. [18]. Our estimate is 
approximate since the Helfrich distribution is not exactly 
Gaussian. 

haves like a rod, electrostatically speaking. With 
these restrictions in mind, it becomes possible to 
make substantial headway since the electrostatic 
potential of interaction in the hexagonal array is 
determined in the main by the outer double lay- 
ers of effectively rodlike sections. 

It is expedient to write the far field of the 
electric potential 4 exerted by a cylindrical 
polyion beyond its inner double layer as 1171 

(27r)“*t,, e-ar 

(Kr)“’ 

The dimensionless potential $ = q 14 I k,T felt 
by an elementary charge 4 at a distance r from 
the centerline of the polyion decays essentially as 
a zero-order modified Bessel function of the sec- 
ond kind when r 2 $I + K-‘. The dimensionless 
charge parameter & = Qu,rf can be calculated 
within the nonlinear Poisson-Boltzmann approxi- 
mation [20]; Q = q’/ck,T is the Bjerrum length 
and u,rr is the effective linear charge density i.e. 
the number of charges per unit length viewed 
along the polyion axis. The solvent which has a 
uniform permittivity E, contains excess monova- 
lent electrolyte of concentration it, so that the 
Debye length is given by K* = 87rQn,. 

Next, for stiff biopolymers the deflection length 
h will be substantially greater than the variational 
parameter d (see eq. (2)). The polyions are virtu- 
ally parallel to the long hexagonal axis. Then, the 
renormalized potential of a particular polyion i.e. 
the potential averaged over its undulations, at a 
distance s from its axis in the reference configu- 
ration is given by 

I&( KS) = j-~_dx/;_dyc(x~ Y) 

x$(K[(S+y)2+xz]1'2) 

in view of eq. (1). Note that simple superposition 
applies because our concern is solely with the 
outer double layer, i.e. s which ultimately will be 
O(R), is much greater than both d and K-I. We 
now expand K((S + y>* + x2v2 = KS + KY 

+ L~x2S-’ + 0(Kd3s-*) keeping in mind that we 2 
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must retain the third term for it may sometimes 
be O(1). Equations (11, (4) and (5) then yield tot 
leading order 

J/R(Ks) N (2~)“~&.~~ exp( --KS + tK2d2) 
(Ks)“*(l+ $cd2S-y* 

(6) 

This exhibits a potentially large renormalizing 
factor exp $c2d2. 

In view of the screening, a test polyion in a 
certain configuration experiences on the average 
only six potentials +n exerted by its six neigh- 
bours in the hexagonal lattice. If we now average 
over all the undulations of the test macro- 
molecule, we derive the lead term for the electro- 
static free energy of interaction per unit length of 
poIyion * 

3(2n)1’2&& exp( --KR + +K2d2) 

Q( KR)“*(I + $cd2R-‘) 

(7) 

Note that a second renormalization has taken 
place with respect to eq. (6). 

4. Minimization of the total free energy 

The correct variational principle is as follows: 
we have to minimize the total Helmholtz free 

energy F,,, = AF,, + A Fe, with respect to d at a 
fixed volume of the system i.e. at a fixed spacing 
R of the polyelectrolyte gel. Equations (3) and (7) 
then yieId to the leading order 

d8/3 efK2d* 2cQR l/2 &cR 

(l+ $cd2R-‘) = 9(2a)“2&‘1’3~3’2 
(8) 

* In eq. (7) a factor of 3 occurs instead of 6 because we have 
to correct for doublecounting: if we neglect end effects, 
there are 3M pairs of interacting macromolecules in an 

hexagonal array of M polyions. 

The osmotic pressure rr,, is derived by using an 
expression valid for an hexagonal gel [51 

(9) 

The contribution from the imphcit differentiation 
vanishes. Hence, we have 

Zck,T 
ro’os = 33&Rd8/3p1/3 

where d has to be determined numerically from 
eq. (8). The relative error in eqs. (71, (8) and (10) 
is estimated to be of order d/h or (d/P)1/3 and 
is caused by the neglect of orientational fluctua- 
tions in the electric repulsion. 

5. Discussion 

Equation (8) shows a strong non-linear cou- 
pling of electrostatic interactions and chain undu- 
lations through the renormalizing factor 
exp TK d . 1 * 2 This factor arises for two reasons: (1) 
the six worms surrounding a test polyion undu- 
late; and (2) the test chain itself undulates too. 
It is remarked that the correlations among the 
respective configurational fluctuations are here 
accounted for only in a mean-field fashion via the 
Ansatz eq. (1). When the persistence Iength be- 
comes large, the “tube diameter” d in eq. (8) 
becomes much smaller than the Debye length 
K-~ so that eq. (10) reduces to the pressure 
exerted by an hexagonal array of perfectly rigid, 
cylindrical polyions [3], as it should. When the 
“tube diameter” is of the order of the Debye 
length, the pressure is substantially enhanced but 
the import of the non-linear eq. (8) is best gauged 
in a comparison with experiments. 

5.1 DNA in aqusow NaCl 

Podgornik et al. [16] converted the experimen- 
tally determined osmotic pressure for DNA gels 
to the force f per unit length exerted on one 
DNA molecule by a neighbouring chain 

f = 3-‘12R,rr,, (11) 
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Table 1 

The theoretical values of the force per unit length f (dynes 
cm-‘) compared with the experimental results f,, of Pod- 
gornik et al. 16) (estimated from their Fig. 2) as a function of 
the interaxial spacing R, for DNA in 2 M salt. (K-I = 0.21 
nm; .&r = 365). The values of f if DNA were supposed 
infinitely stiff are given in parentheses. The effect of undula- 
tions is also monitored by the parameter fed. 

R (nm) 

3.0 3.5 4.0 

Kd 0.96 1.70 2.45 
0.50 (0.13) 0.19 (0.11) 
1.0 0.32 

They obtained f as a function of the interaxial 
spacing R of the hexagonal DNA gel at a tem- 
perature T of 293 K. The Bjerrum length Q is 
then 0.72 nm and K-I = 0.30 rz;l/’ nm if the 
NaCl concentration n, is given in moles per liter. 
Estimates of their f are displayed in Tables 1 and 
2 together with theoretical predictions calculated 
from eqs. (S), (10) and (11) employing the follow- 
ing representative values for the DNA parame- 
ters: linear charge density u = 1 charge per 0.17 
nm, or 6 = 4.2; diameter D = 2.4 nm; persistence 
length P = 50 nm, The effective charge parame- 
ter & = Qu,,, has been evaluated in accordance 
with the procedure outlined in ref. [17] using the 

Table 2 

As in Table 1 but for NaCl concentrations, n,: 0.8 M (K- ’ = 

0.34 nm, .& = 45.6), 0.4 M (K-’ = 0.47 nm, tee = 17.7), 0.3 
M (~l=0.55 nm, EelI= 12.3) and 0.2 M (K-‘=0.67 nm, 

.& = 8.4). 

% R (nm) 
(M) 4.0 4.5 5.0 

0.8 Kd 1.32 
L 0.44 0.50 (0.19) 

0.4 Kd 0.83 
L 0.89 0.63 (0.63) 

0.3 Kd 0.67 

L 

1.2 I (0.9) 
0.79 

0.2 Kd 0.52 
1.71 (1.5) 
1.12 

1.80 2.27 
0.19 (0.042) 0.10 (0.009) 
0.35 0.17 
1.14 1.48 
0.38 (0.21) 0.19 (0.07) 
0.45 0.32 
0.90 1.17 
0.55 (0.37) 0.27 (0.14) 
0.56 0.45 
0.68 0.87 
0.83 (0.65) 0.43 (0.31) 
0.63 0.50 

analytical calculations of Philip and Wooding [20]. 
In order to assess the influence of undulations, 
the predicted values of f for infinitely stiff 
polyions (P = 66) have also been presented. The 
present theory incorporating undulations is in 
quite good agreement with the experiments on 
DNA [6] if we consider that no adjustable param- 
eters have been used. Recall that the double-layer 
interaction is not always in perfect agreement 
with other experiments [21-231 even though un- 
dulations are expected to have a negligible effect 
when positional order is absent. Had we assumed 
the undulation enhancement to be non-existent 
(P = m) in the experiments at hand 161, we would 
have been at a loss to explain several of the 
anomalously low values of the force in Tables 1 
and 2. The entry in Table 2 at 0.2 M and 4 nm 
separation may appear bothersome, but at this 
stage the double layers are starting to overlap so 
we are pushing the theory beyond its range of 
validity. For this reason the present author has 
not included data [6] for smaller R. 

Another item of interest is that the values of d 
range from about 0.2 to 0.8 nm which is in fair 
agreement with the variation (0.3 to 0.9 nm) in 
the lattice fluctuations determined by Podgornik 
et al. [61 from the peak widths of the X-ray 
scattering. On the whole, it appears that the 
undulation-enhancement theory is on the right 
track for a biopolymer like DNA of medium 
stiffness. The restrictions inherent in the theory 
are adhered to in this case. In particular, the 
orientational fluctuations are always small (angle 
= d/h = (d/P) ‘i3 < 1) and dK never greatly ex- 
ceeds unity. The polyions are essentially parallel 
so the twisting force [15,17,24] should not appear 
(twist becomes important when the angle be- 
tween two polyions becomes larger than ~/KA for 
thin rods or D1/2/~1/2A for thick rods). 

5.2 TMV in sodium phosphate buffer 

The compressibility of TMV gels is reasonabry 
well comprehended in terms of pure double layer 
and dispersion interactions [2-41. However, at 
high ionic strengths anomalies occur for the os- 
motic pressure is systematically higher than ex- 
pected. This is the regime where undulation en- 
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hancement of the electric forces, if applicable, 
should make its presence felt. Using parameter 
values typical of the buffered TMV geIs [2] (D = 
18 nm, R=21 nm, Q-O.71 nm, K-‘=0.32 nm 
and u = 70 nm-‘1, we obtain a pressure of 7 
Torrs from eqs. (8) and (10) assuming an infinite 
persistence length, which increases to 28 Torrs if 
we set P equal to lo4 nm. The latter value for P 
is not unreasonable judging from the very slight 
undulations of TMV discernible in electron mi- 
crographs. The theory seems to rationalize some- 
what the value of 40 Torrs found by Millman et 
al. [Z]. We tentatively conclude that minute undu- 
lations in TMV may lead to experimentally ob- 
servable effects. 

overlap so one expects the theory to break down, 
as it does in fact. At larger separations, undula- 
tions of the filaments may well enhance the elec- 
trostatic interactions. The magnitude of the pres- 
sure is clearly underestimated, though for P = 10’ 
nm the slope levels to -0.4 at large spacings, 
close to the experimental one. 

6. Concluding remarks 

5.3 Muscle thin filaments in KC1 buffer 

Millman has reviewed the ~T,,--R curves of 
various hexagonal muscle gels [41. The experi- 
mental slope of “log roS versus R is about -0.35 
with slight variations depending on the type of 
muscle, whereas the Poisson-Bolzmann theory 
for an hexagonal array of rigid cylinders predicts 
a slope of about -0.65. Is enhancement of the 
electric forces by undulations possible in this 
case? 

For instance, for a muscle thin filament dis- 
cussed by Millman [4], we may set D = 9 nm, 
Y = 15 nm-‘, Q = 0.71 nm, K-’ = 0.80 nm and 
.& = 650. In Table 3, we show the pressures 
predicted by eq. (10) for several persistence 
lengths (the author is not aware of any measured 
P). At a spacing of 10 nm, the double layers 

In summary, whenever the unenhanced 
Coulomb repulsion is too low by an order of 
magnitude to explain the osmotic stress experi- 
ments on hexagonal biopolymer lattices, undula- 
tion of the charged chains turn out to be strong 
enough to enhance the predicted stress signifi- 
cantly. It is not hard to understand this enhance- 
ment effect qualitatively. At high salt concentra- 
tions, a slight deflection in a stiff chain of about 
one tenth of a nanometer is all that is needed to 
interfere with the screening because the Debye 
shielding length is small also. The screening is 
then diminished for there are a substantial num- 
ber of configurations where a test polyion is closer 
to one or more others in the hexagonal array. 
Such minuscule undulations may occur even if 
the biopolymer is extremely stiff. At the other 
extreme, the details of the undulating chains be- 
come irrelevant at very low ionic strength so the 
electrostatic forces are not enhanced in that case. 
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