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Abstract

Satellite navigation is a system that makes use of satellites to provide geo-positioning.
Global Navigation Satellite System (GNSS) is a global system, not only for ground-based
users but also for satellites determining their own trajectories in Earth orbit. While GNSS
determines position by making use of other satellites, gravity gradiometry is a technology
that can potentially determine position with only on-board data. Gravity gradiometry is com-
monly used in missions such as ESA’s GOCE to obtain a map of Earth’s gravity field. By
using a gravity field model, orbital position can be obtained.

This thesis investigates how gravity gradiometry and gravity field models can be used for
autonomous satellite navigation. In an autonomous environment, the satellite can navigate
independently from any data which is not its own. Specifically, it evaluates the accuracy
of a least squares orbit determination algorithm. It calculates a gravity gradient vector in
the geocentric spherical frame with the use of factorisation. It also includes the estimation
of the scale coefficient and bias as calibration parameters, and includes white noise error.
There are two versions of the algorithm. The corrected version includes the estimation of
calibration parameters, while the uncorrected does not.

This algorithm estimates satellite position based solely on a gravity field model and gravity
gradient measurements in orbit. This process is programmed in Rust, using an optimised
generation of the normalised associated Legendre functions to evaluate the gravity gradi-
ent calculation for every degree and order. This process assumes the gravity field models
are static and up to date, and the instruments are all perfectly aligned with most systematic
errors negligible.

A sensitivity analysis is performed to better understand the algorithm. It is observed that
higher deviations from the correct trajectory take the algorithm more iterations to converge,
and deviations larger than 211[km] on one of the axes converge into incorrect positions.
Another test indicates that higher altitude orbits estimate positions with a higher converged
deviations, while lower altitude orbits take more iterations to converge. One last test demon-
strates that the computation of associated Legendre functions is the main factor for the du-
ration of each least squares iteration. Iteration duration shows an exponential growth with
maximum degree and order.

To verify the functionality of the algorithm, the process is done by comparing the differences
between gravity field models. The measured gravity gradient is calculated from amodel and
the estimated gradient is calculated with another. Both the differences between gradients
and position estimation deviation show linearity, thus verifying the procedure.

To validate the algorithm, real data is used in the form of GOCE satellite information pro-
vided by ESA. Level 2 data is used to obtain the measured gravity gradient. The least
squares algorithm estimates positions with an average deviation of up to 0.688254% relative
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to GOCE’s GNSS positions. Despite the low percentage, it is a difference in the scale of
10[km], caused by the GOCE gradiometer errors and misalignments.

Test results show how several parameters affect the accuracy of the algorithm. An increase
in maximum degree and order used for the estimation of gravity gradient increases the com-
putation time exponentially. On the other hand, it shows an exponential decay in deviation
that converges from maximum degree and order 80 onwards. When introducing scale co-
efficient and bias errors, a large deviation of up to 3.14% in the estimations is seen. When
introducing a randomly generated white error between 0.1[E] and −0.1[E], a perpetual de-
viation is formed with an average of 10−10%. This is done with an uncorrected version of
the algorithm. If the corrected version of the algorithm is used with bias, scale coefficient
and white noise, it only generates a radial deviation average in the scale of 10−5%. The
corrected deviation is significantly smaller than the uncorrected deviation for bias and scale
coefficient errors. This shows that the corrected least squares method can be used for an
improvement in navigation of approximately 105%.

A final accuracy test is performed in which an initial deviation bias, scale coefficient and
white noise are introduced. An optimal combination for the algorithm settings is obtained
by decreasing the number of least squares iterations per epoch to the feasible amount of
2 to perform the estimation within the epoch time. And the maximum D/O used for esti-
mation is 80. When using the combination, it yields average deviations of 9.81658 · 10−5%,
9.43886 · 10−5%, 9.99120 · 10−5% for radius, longitude and latitude respectively.

Although the test results are promising and verifiable. Comparison to GOCE data shows
that there are more calibration parameters to estimate. The accelerometer parameters in
the gradiometer are not perfectly aligned with the gradiometer reference frame. The star
trackers that provide transformation matrices when retrieving data also contain their own
calibration parameters and errors. The next step to evaluate the least squares algorithm
is to research how these parameters can affect its accuracy. Future work should include
refined frame transformations, multiple epoch combinations, and further testing on a wider
variety of orbits and bodies.
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Nomenclature

Abbreviations
Abbreviation Definition

COM Centre Of Mass
D/O Degree and Order
EGG Electrostatic Gravity Gradiometer
GGT Gravity Gradient Tensor
GNSS Global Navigation Satellite System
GOCE Gravity field and Ocean Circulation Explorer
GRF Gradiometer Reference Frame
GSF Geocentric Spherical Frame
SGG Satellite Gravity Gradiometry
SSRF Star Sensor Reference Frame

Symbols
Symbol Definition Unit

a⃗ Acceleration [m/s2]
A Design Matrix [-]
b⃗ Accelerometer Bias [m/s2]
C⃗ Scale coefficient [-]
Cpq, Spq Spherical Harmonic Stokes Coefficients [-]
d⃗ Non Gravitational Accelerations on COM [m/s2]
Eal Accelerometer Misalignment Error [-]
Eco Inter-Axis Coupling Error [-]
g⃗ Arbitrary Gravity Acceleration vector [-]
G Gravitational Constant [Nm2/kg2]
K Scale Factor Error [-]
K2 Transfer Function Error [s2/m]
n⃗ White Noise [m/s2]
M Mass of Celestial Body [kg]
p Degree [-]
Ppq Associated Legendre Function [-]
P p
q Superscript Associated Legendre Function [-]

q Order [-]
r Radial position in GSF [m]
l⃗ Distance from Accelerometer to COM [m]
R Equatorial Radius of Celestial Body [m]
u GSF reference frame [-]
V Gravity Potential [m2/s2]
V⃗u Gravity Acceleration [m/s2]
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Symbol Definition Unit

V⃗uu Gravity Gradient Vector [s−2]
Vuu Gravity Gradient Tensor [s−2]
w Weight Factor [-]
W Weight Matrix [-]
y⃗ Position Estimate [m]

ρ Density [kg/m3]
ω Angular Velocity Component [rad/s]
Ω Angular Velocity Matrix [rad/s]
Ω̇ Angular Acceleration Matrix [rad/s2]
λ Longitude in GSF [rad]
ϕ Latitude in GSF [rad]
τ Dampening Factor [-]
∇ Vector Differential Operator [-]



1
Introduction

1.1. Motivation
Over the past decade, the space sector has experienced a resurgence, driven in part by
increased involvement from private companies and rapid technological advancements. As
a result, larger and more ambitious missions are becoming feasible. However, the current
global economic climate places greater emphasis on cost-efficiency, pushing the need for
alternative technologies and methods in space engineering. One of the areas with signifi-
cant potential for improvement is satellite navigation.

Traditional navigation systems, such as the Global Navigation Satellite System (GNSS) for
Earth or the Deep Space Network (DSN) for interplanetary missions, rely heavily on external
infrastructure. These systems can be costly, mass-intensive, and less efficient, particularly
for orbits around distant bodies from Earth, where communication delays and large anten-
nas add tomission complexity. A promising alternative is satellite gravity gradient navigation.
Gravity gradiometry first proposed in the 1950s and applied to find Earth’s gravity field by
R. Rummel and O.L. Colombo in 1985 [1].

Since then, gravity field modeling and gravity gradiometry have advanced considerably.
Modern gradiometers have become smaller, lighter, and more efficient, enabling more prac-
tical deployment. These advantages make Satellite Gravity Gradiometry (SGG) based nav-
igation a compelling solution, particularly for missions where reliance on GNSS systems is
difficult such as Lunar orbits, or impossible such as Mars orbits. Each celestial body has a
unique gravity gradient signature, which can be used to estimate a satellite’s relative posi-
tion to a known gravity field model. While Earth’s gravity field is highly dynamic due to tides,
tectonic shifts, and human activity, more geologically stable bodies such as the Moon or
Mars often have more consistent gravity models.

1.2. State of the Art
A literature study is performed separately from this document, in which the actual advance-
ment in gravity gradient navigation is researched.

TheGravity Field andOcean Circulation Explorer (GOCE) is a satellite that has been used to
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1.3. Research Proposal 4

obtained a detailed of Earth’s gravity field by making use of gravity gradiometry. A. Bobojc et
al. [1] proposes using gravity gradiometry data from the future GOCE mission to enhance
satellite orbit determination. They found improvements when combining GNSS and gra-
diometer data via a weighted method to reduce errors, though this compromises the goal of
full self sufficiency. One of the primary challenge noted was bias due to limited gradiometer
bandwidth.

By 2015, Chen et al. [2] introduced an eigen-decomposition approach using GOCE’s star
tracker, gravity gradient data, and Earth rotation models. Their method achieved position
and velocity errors of 120[m] and 0.125[m/s] respectively but lacked bias correction, reduc-
ing its real-world applicability.

In 2016, Sun et al. [2] addressed this by incorporating accelerometer biases into an Un-
scented Kalman Filter (UKF), based on Park et al. [3] sigma point propagation. Position
errors ranged from 10.8[m] to 1208.3[m], and velocity errors from 0.013[m/s] to 1.2[m/s].
By adjusting the bias variance matrices, errors were reduced to 10.4[m] – 677.0[m] and
0.012[m/s] – 0.80[m/s]. This showed that axis-specific tuning of bias parameters can im-
prove estimation. In 2022, Chen et al. [4] implemented an Extended Kalman Filter (EKF)
with least squares to estimate and correct bias.

Kalman filter methods provide more accuracy gravity gradient navigation, but they also add
complexity and further computation time. Spherical harmonic gravity gradient estimation is
already a time consuming and computationally demanding process. Additional processing
extends this disadvantage.

To address this, there is a need to research if a simpler least squares algorithm can han-
dle previous limitations such as bias estimation. On top of this, gravity gradient navigation
shows promise for orbits around celestial bodies that don’t have GNSS availability. Algo-
rithms have not yet been tested around a non-Earth orbit, since there is not as much orbital
data to assess their success. This can be addressed by an orbit simulation.

1.3. Research Proposal
1.3.1. Questions
There is a no navigation algorithms for satellites outside of Earth orbit (non-GNSS environ-
ment), which use least squares to estimate bias too. This leads to the main question of the
thesis:

How accurately can a least squares algorithm estimate satellite position in an envi-
ronment without GNSS?

This is then divided into multiple sub-question.

• How can bias and the scale factor be implemented into the least squares algorithm?
• How do variables affect the accuracy of the gravity gradient navigation method?
• What is the accuracy of the algorithm when real data is used?
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1.3.2. Requirements
The requirement are in the form of assumptions. This helps in focusing the research to-
wards a more specific point, to better quantify results, and to know the limitations of the
project. Here they are stated:

• The gravity field models are up to date. When it comes to performing any procedures
around Earth, it is important to note that the gravity field of Earth shifts. Tectonic
movement and tides for example, change the distribution of the mass of Earth. The
errors that could arise from this fact are not taken into account.

• The accelerometer calibration parameters K2, Eco, Eal can be assumed to be cali-
brated, and thus not included. The two exceptions being the bias b⃗ and the scale
factor K (formulated as scale coefficient C⃗) of transforming from voltage to accelera-
tion, as defined in Section 2.3.1.

• The bias b⃗ is assumed to be 3 global values (1 per axis) instead of 3 per accelerome-
ter. This assumption is taken to estimate bias as part of the state in the least squares
algorithm in each orbital epoch. This simplification is further touched upon in Sec-
tion 2.3.1 and later in Section 7.3, where the consequences of taking this assumption
are explained.

• Bias b⃗ is assumed to be static, thus, non-changing as the satellite orbit progresses
because the testing of this algorithm is done through shorter orbit periods to keep the
testing feasible in terms of computation time. With a short time frame, bias can be
assumed to not change.

• White noise n⃗ is assumed to be a randomGaussian value with mean 0 and amaximum
amplitude obtained from modern gradiometer accuracy in literature.

• In Chapter 6, the high D/O estimation of gravity gradient from theMoon orbit simulation
is assumed to act as the measured gravity gradient.

• The distance between the accelerometers of the gradiometer l is assumed to be known
by design, making it a parameter in the measured gravity gradient equation that does
not have to be estimated.

1.3.3. Planning
This planning shows how different sections of this thesis help in answering the questions
proposed in Section 1.3.1 and add to the content itself.

• Themethodology (Chapter 2) answers the first sub-question, specifically Section 2.3.1
and Section 2.3.2, where calibration parameters are included into the estimation of the
least squares method. The rest of the sections in the methodology describe the con-
struction of the least squares algorithm, as well as details in how they are programmed.

• The Sensitivity Analysis (Chapter 3) partially answers the 2nd sub-question, in which
initial deviation, orbital altitude and D/O are assessed on how they affect the algorithm.
Primarily, it also serves as a section to know the limitations of the algorithm and how
different circumstances can yield different results.

• The Verification (Chapter 4) is a section that is used to make sure the algorithm works
correctly, not only as it is intended, but physically too.

• The Validation (Chapter 5) answers the 3rd sub-question by making use of a real case
scenario in the form of GOCE data. It also describes the process in which this data is
retrieved and transformed to be used by the algorithm.
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• The Results (Chapter 6) finalise the answer to the 2nd sub-question by testing al-
gorithm variables that can affect accuracy by making use of data from a Moon orbit
simulation. With the knowledge of the optimal algorithm variables for this orbit, a final
test is conducted where all calibration parameters and errors are introduced to finally
answer what the accuracy to answer the main question.

• The Conclusion (Chapter 7) discusses directly the answers to the thesis questions. It
also tackles the limitations of the algorithm and recommends future work.



2
Algorithm Design

This chapter describes the design of the least squares estimation algorithm on which the
accuracy assessment is based.

2.1. Gravity Gradient Formulation
The objective is to obtain the data needed to analyse gravity gradient satellite navigation.
For this, knowledge of the gravity field is needed. This section explains how the gravity
gradient is calculated, and what each of its components are.

Gravity field is conservative, which means that it is path independent, thus the potential
energy differences between points in the field are a function of position only. This charac-
teristic is relevant to using gravity field for navigation, as their position dependant values do
not change because of the orbit path the satellite performs. The basic properties of the grav-
ity field are associated with a linear potential field V (x, y, z) (where x, y, z are coordinates of
arbitrary axes) such that:

∇V = −g⃗

∇× V = 0

d2

dr2
V +

d2

dλ2
V +

d2

dϕ2
V = 0

, (2.1)

due to the gravity field being harmonic. Gravity gradient is obtained as a second spacial
derivative of gravity potential V . Assuming the source is a point mass, the simplified equa-
tion for the gravity potential is

V = −G
M

r
, (2.2)

where G is the gravitational parameter of the body, M is its mass, and r is the radial dis-
tance from its centre of mass (COM). Equation 2.2 is an ideal equation, and not true to
asymmetrical bodies. Gravitational force, as seen in in the same equation, comes from the
mass of a body. Bodies such as large as planets or natural satellites are more complex
than a point mass. They vary in shape and density. This means, that gravity potential can
be formulated as the integral of density over radius through volume:

7



2.1. Gravity Gradient Formulation 8

∇2V = V = −G

∫ ∫ ∫
ρ(x, y, z)

r(z, y, z)
dxdydz (2.3)

To be able to represent gravity field, spherical harmonics are used, which are a solution of
Laplace’s equation in spherical coordinates. They make use of the associated Legendre
function Ppq and a pair of coefficients Cpq and Spq called the Stokes coefficients:

Vuu =
GM

r

∞∑
p=0

p∑
q=0

(
R

r

)p+1

(Cpq cos (qλ) + Spq sin (qλ))Ppq(sin (ϕ)), (2.4)

where Vuu is the gravity gradient tensor (GGT). Equation 2.4 depends on the spherical co-
ordinates in the Geocentric Spherical Frame (GSF) u(r, λ, ϕ), where r is radius from the
centre of the celestial body, λ is the longitude, and ϕ is the latitude, u i sued to represent
all 3 spherical coordinates. The associated Legendre function makes use of degree p and
order q. The larger the degree and order (D/O), the smaller the details it represents in the
body. The last components that make this possible for mapping are the Stokes coefficients
Cpq and Spq. These determine how prominent each degree and order term in the summa-
tion is. These coefficients come from gravity field models obtained from measurements
with gradiometers in missions such as GOCE. These are unique to each body, but vary
from model to model due to different techniques used, measuring instrument accuracy, and
time in which they are measured. In summary, with a spherical harmonic gravity field, by
summing up all elements which vary in D/O, every point around the body becomes unique
in its gravity potential. This will be the basis for the method used in this thesis.

2.1.1. Stokes Coefficients
One of the key components in representing a gravity field with spherical harmonics are the
Stokes coefficients Cpq, Spq. These coefficients are taken from gravity field models and
encapsulate the gravitational characteristics of a celestial body. The maximum resolution
of the gravity field model is determined by the maximum D/O that can be reliably used in
the spherical harmonic expansion. These coefficients are commonly given in a normalised
form. Section 2.1.2 shows more details on this normalisation.

The gravity field models used in this thesis are limited to those constructed solely from satel-
lite data, without incorporating ground-based measurements. This restriction aligns with the
main objective of the work: to assess navigation with satellite autonomous data in an envi-
ronment where only gradiometer data is used. While some Earth gravity models achieve
high resolution, like ”XGM2019e” [5], reach up to D/O 5540, 2190 and 760. A high resolu-
tion is because of terrestrial gravity data. Instead, for Earth, a model like ”GOSG02S” [6]
reaches D/O 300 and it is purely formed from data obtained by GOCE.

In this thesis, the algorithm makes use of the ”GOSG02S” gravity field model for Earth and
the ”GRGM600PRIM ” model [7], which is a version of the ”GRGM1200A” model truncated
to D/O 660 for the Moon. Other models may be used for their respective bodies. The results
in this case should yield similar patterns, with small changes to the results due to differ-
ent measurements being used to create the models, a different maximum D/O, or different
techniques used to formulate the gravity field.
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2.1.2. Associated Legendre Function

The Associated Legendre Function, denoted as P q
p (x), is a variable function that arises in

the solution of the Laplace equation in spherical coordinates. It plays an important role in the
representation of the gravitational potential of a celestial body using spherical harmonics by
providing a latitudinal dependence that forms the shape of the field. From Equation 2.4, it
can be seen that it is a contributor to the shape of the gravity field, and thus the calculation
of gravity potential and gradient. The value of the associated Legendre function can be
obtained with the use of the Legendre polynomials:

P q
p (x) = (−1)q(1− x2)

q
2
dq

dxq
Pp(x), (2.5)

where Pp represents the Legendre polynomial, a formula dependent only on degree p and
not order. It is an integer based solution to the Legendre differential equation. This is
obtained by using Rodrigues’ Formula:

Pp(x) =
1

2pp!

dp

dxp

(
(x2 − 1)p

)
(2.6)

At lower D/O, the associated Legendre function is relatively straightforward to compute.
However, as the D/O increase, the formulation becomes more complex and computationally
expensive. The Legendre polynomial is unfortunately difficult and lengthy to derive for high
degrees, particularly when using Equation 2.6. To address this, Dobrokhotov et al. [8]
indicates that a more efficient alternative formulation is:

(p+ 1)Pp+1(x) = (2p+ 1)Pp − pPp−1

pPp(x) = (2p− 1)Pp−1 − (p− 1)Pp−2

Pp =
2p− 1

p
Pp−1 −

p− 1

p
Pp−2

(2.7)

Equation 2.7 encounters a second problem upon computation. This function is dependent
on 2 lower degree functions. These lower degree functions subsequently are dependant
on 2 lower degree functions each, and so on until reaching degree 0. When approached
directly in a computer algorithm, the number of equations computed by this method scale
with 2n, where n is the degree computed at that point. Figure 2.1 shows how this happens.

Figure 2.1: Flowchart of how Equation 2.7 computes the Legendre polynomial.
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In high degrees such as 300, the number of equations needed to compute P300 is 2300. Even
though this bypasses having to make use of symbolic differentiation 300 times, it introduces
a new problem of nested functions. When evaluating a gravity function, such as gravity
acceleration, with spherical harmonics, all degrees must be computed. What this means is
that number of equations computed increases now to

∑n
0 2

n.

To bypass this next problem, a new method to make use of Equation 2.7 is proposed in this
thesis. The process is initialised by setting the first two Legendre Polynomials to P0 = 1
and P1 = x. They are both saved into a list of computed functions. Then, the next one is
computed by making use of the previous two by using Equation 2.7. It is saved to the list
and used for the next one subsequently, and so on, until the maximum degree is obtained.
Figure 2.2 shows a flowchart of how this works.

Figure 2.2: Flowchart of how Equation 2.7 can be used in this new more effective manner

The new method accomplishes 2 things:

1. Reduces the number of computations needed to form a Legendre function from 2n to
n, as there are no longer any nested functions.

2. Due to the fact that each computed function is saved before approaching the next
degree, it means that during the computation of the highest degree, all others are
saved too. The number of equations needed to be solved goes from

∑n
0 n to n.

The overall improvement is immensely noticeable with a transition in the computations
needed of

∑n
0 2

n → n. A test is done in Rust, to compare the time needed to compute
Legendre polynomials up to and including degree p = 60. The nested method yields a
computation time of 630.87[s]. The new method yields a computation time of 9.0510 · 10−4[s].
The change in computation time should be in the scale of 10−15%, but the limitations of the
hardware being used for this thesis form a change in the scale of 10−4%. The change is
still an extremely significant difference in computation time, and justifies the new method
via which the associated Legendre function is computed.

To compute the associated Legendre Function, the notation used is used in spherical har-
monics. Equation 2.4 shows Ppq. This is because Ppq cancels out the intermittent negative
sign in the associated Legendre function:

Ppq(x) = P q
p (x)(−1)q

Ppq(x) = (1− x2)
q
2
dq

dxq
Pp(x)

(2.8)

The associated Legendre Function introduces order q, which scales from 0 up to the current
degree p. An expanded version of Equation 2.7 can be used, which incorporates the order
and is used to compute higher degrees within the same order, as shown in Equation 2.9.
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Ppq =
2p− 1

p− q
Pp−1 q −

p+ q − 1

p− q
Pp−2 q (2.9)

Figure 2.3: Flowchart of how the associated Legendre functions are computed. It shows how Equation 2.8
formulates the values, as represented by solid arrows. It also shows how adding the recurrence in

Equation 2.9 streamlines the formulation, as represented by dashed arrows.

With this, all the associated Legendre functions can be pre-computed as a symbolic equa-
tion before the main algorithm runs, which can be later evaluated by substituting its x ele-
ments by the numerical values of sin (ϕ) when computing spherical harmonic gravity gradi-
ent. By pre-computing the equations in a symbolic state, all the process of calculating the
associated Legendre functions in every computation is reduced to evaluating them, as seen
in Equation 2.4.

Tomake the associated Legendre functions compute adequately in a functional gravity equa-
tion, it needs to be normalised. As mentioned in Section 2.1.1, the Stokes coefficients are
given in a normalised form. Associated Legendre function values tend to get extremely high
at high D/O. This makes it impossible to compute through regular means without overflow-
ing numerical computations. To avoid this, the functions are normalised too with a specific
coefficient Npq.

Npq =

√
(2n+ 1)

(p− q)!

(p+ q)!
(2.10)

This normalised form provides computational stability, and prevents high D/O solutions from
diverging into values too large to calculate.

2.2. Gravity Gradient Tensor and Factorisation

To obtain the gravity gradient derivative, the gravity gradient estimate must firsts be calcu-
lated. For this, the second derivative of the spherical harmonic gravity potential equation
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(Equation 2.4) is obtained. Appendix A contains the exact equations of all derivatives, while
below there is an example the equation for the second spacial derivative of the gravity po-
tential with respect to state r:

Vrr =
GM

R

(
1

r2

) pmax∑
p=0

p∑
q=0

(p+ 1)(p+ 2)

(
R

r

)p+1

(Cpq cos (qλ) + Spq sin (qλ))Ppqs (2.11)

The computation of each element of the tensor V requires evaluating numerous terms, and
it takes a significant amount of computations to calculate. This is especially due to the
inclusion of the associated Legendre function. To make these computations more efficient,
the factorisation mentioned below is done in order to build these equations more efficiently.
Firstly, it must be observed in Equation 2.41, there are only 6 distinct forms of Vuu, due
to the symmetrical nature of a gravity gradient tensor, in which Vrλ = Vλr, Vrϕ = Vϕr, and
Vλϕ = Vϕλ. With the derived equations for the gravity gradient tensor elements (derivations
shown in Section A.1.3), and knowing that each parameter is independent from each other,
their factors can be isolated:

F⃗ (r) =
[(

R
r

)p+1
(p+ 1)

(
−1

r

) (
R
r

)p+1
(p+ 1)(p+ 2)

(
1
r2

) (
R
r

)p+1
]

(2.12)

F⃗ (λ) =
[
Cpq cos (qλ) + Spq sin (qλ) q(−Cpq sin (qλ) + Spq cos (qλ)) −q2(Cpq cos (qλ) + Spq sin (qλ))

]
(2.13)

F⃗ (λ) =
[
Ppq(sin (ϕ)) cos (ϕ)P ′

pq(sin (ϕ)) cos (ϕ)2P ′′
pq(sin (ϕ))− sin (ϕ)P ′

pq(sin (ϕ))
]

(2.14)

A vector Q with only 1 is formed with the amount of distinct elements (6) in the gravity
gradient tensor, since it is a symmetrical matrix.

Q⃗ =
[
1 1 1 1 1 1

]T (2.15)

By Multiplying these two vectors, a matrix with the number of columns being the number of
factors in F (r) and the number of rows being the number of distinct elements in the GGT.

Q⃗F⃗ r =



(
R
r

)p+1
(p+ 1)

(
−1

r

) (
R
r

)p+1
(p+ 1)(p+ 2)

(
1
r2

) (
R
r

)p+1(
R
r

)p+1
(p+ 1)

(
−1

r

) (
R
r

)p+1
(p+ 1)(p+ 2)

(
1
r2

) (
R
r

)p+1(
R
r

)p+1
(p+ 1)

(
−1

r

) (
R
r

)p+1
(p+ 1)(p+ 2)

(
1
r2

) (
R
r

)p+1(
R
r

)p+1
(p+ 1)

(
−1

r

) (
R
r

)p+1
(p+ 1)(p+ 2)

(
1
r2

) (
R
r

)p+1(
R
r

)p+1
(p+ 1)

(
−1

r

) (
R
r

)p+1
(p+ 1)(p+ 2)

(
1
r2

) (
R
r

)p+1(
R
r

)p+1
(p+ 1)

(
−1

r

) (
R
r

)p+1
(p+ 1)(p+ 2)

(
1
r2

) (
R
r

)p+1


(2.16)

Finally, a new matrix is formed to represent which factors are on each of the GGT elements.
In the case of r, the matrix is:
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E(r) =


0 0 1
0 1 0
0 1 0
1 0 0
1 0 0
1 0 0

 (2.17)

TheQF matrix is elevated element by element to the power of E. And then, all the elements
per row are multiplied:

Πj(r)

j=1(Q⃗F⃗
(r)
j )E

(r)

=



(p+ 1)(p+ 2)
(

1
r2

) (
R
r

)p+1

(p+ 1)
(
−1

r

) (
R
r

)p+1

(p+ 1)
(
−1

r

) (
R
r

)p+1(
R
r

)p+1(
R
r

)p+1(
R
r

)p+1


(2.18)

This process is done for all parameters and then all the factors are multiplied as seen below:

Vuupq =
GM

R
Πk=r,λ,ϕΠ

jk

j=1(Q⃗F⃗ k
j )

Ek (2.19)

where p and q are the degree and order respectively, which are parameters present in the λ
factors. With all 6 Vuupq elements obtained, the same process is done in Appendix A to ob-
tain its Jacobian ∇3Vpq = Vuuupq , of which, out of the 18 possible values, only 10 are unique.
This is used to construct both Vuu and Vuuu in the least squares algorithm. Figure 2.4 shows
the process carried for the spherical harmonic gravity calculation.

The orbital position state y⃗ at the present epoch is introduced. The current degree and order
(initialised at 0 and 0 respectively) are introduced. With the D/O, the Stoke coefficients
Cpq an Spq are extracted from their list. Similarly, the associated Legendre function and its
differentials Ppq, P ’pq, and P ’’pq are extracted from their symbolic list. The state y⃗ is used
to evaluate the symbolic associated Legendre functions. Then, it is used to compute the
separate factors that will be used in the factorisation process for F (r), F (λ) and F (ϕ). With
the factorisation vectors, the constructions of the actual components occurs as shown in
Equation 2.19. Since the value of Vuupq or Vuuupq is for one D/O combination only, it is
summed to a total Vuu or Vuuu and the process is repeated until all the D/O combinations
are covered up to the maximum D/O. Vuuu is computed as the gradient of the GGT elements.
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Figure 2.4: Diagram of how Vuu is computed in the algorithm.

Factorisation reduces the number of computations. Each element in the GGT has different
factors, and the number of times their factors are computed are reduced from 6 to 3 in the
case of Vuupq and from 10 to 4 in the case of Vuuupq . This reduction of at least 50% means
that the computational time for this part is halved, plus the time it would take to perform the
matrix calculations in Equation 2.16 and Equation 2.18.

2.3. Least Squares Method

The gravity field is measured by making use of gradiometers to obtain the GGT, which is
presented as Vuu. In this case, the coordinates are represented as r, λ, ϕ, which means that
the second derivatives can be written as:

Vuu =

Vrr Vrλ Vrϕ

Vλr Vλλ Vλϕ

Vϕr Vϕλ Vϕϕ

 (2.20)
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In this thesis, this form is referred to as the uncorrected GGT, because it does not take into
account any kind of calibration parameter correction. When performing derivatives, it can
be seen in Equation 2.4 that each of the terms that contain the spherical coordinates are
independent from each other. The derivatives can thus be done only for each parameter
independently. This means that the matrix seen in Equation 2.20 is a symmetric matrix.
Only 6 of the 9 parameters need to be obtained.

Vuu can be formulated in the uncorrected vector form V⃗uu as shown in Equation 2.21, where
only its 6 distinct terms are used.

V⃗uu =


Vrr

Vrλ

Vrϕ

Vλλ

Vλϕ

Vϕϕ

 (2.21)

With V⃗uu and observations the an uncorrected least squares approach can be used to esti-
mate the position of the satellite. This can be represented as:

y⃗i+1 = (ATA)−1AT (V⃗ (measured)
uu − V⃗uu(y⃗i)) + y⃗i (2.22)

where y⃗0 is an initial guess of the satellite position to start the algorithm. i represents the
iteration number, since Equation 2.22 is performed multiple times in each orbital epoch
while using the result of the previous calculation to converge into an estimated point. The
JacobianA represents the uncorrected designmatrix of the least squaresmethod. Themea-
sured gravity gradient vector is V⃗

(measured)
uu , which represents the measurement data. This,

instead of coming from Equation 2.4, comes from the measurements of the instrumentation
within the satellite. The satellite position state is represented by the uncorrected position
vector y⃗ in GSF:

y⃗ =

rλ
ϕ

 (2.23)

Equation 2.22 is used in an iterative manner so that the position estimate converges towards
a value.

Thus, the design matrix is the Jacobian of the gravity gradient vector and equivalent to the
GGT gradient, thus A = Vuuu.

A =
d

du
V⃗uu =


Vrrr Vrrλ Vrrϕ

Vrλr Vrλλ Vrλϕ

Vrϕr Vrϕλ Vrϕϕ

Vλλr Vλλλ Vλλϕ

Vλϕr Vλϕλ Vλϕϕ

Vϕϕr Vϕϕλ Vϕϕϕ

 (2.24)



2.3. Least Squares Method 16

2.3.1. Accelerometer equation

The acceleration measured by the accelerometers within a satellite can be formulated in
the form of:

a⃗ = (Ω2 + Ω̇− Vuu)⃗l + d⃗ (2.25)

where a⃗ is the measured acceleration, Ω is the angular velocity of the satellite used for
the centrifugal acceleration Ω2l⃗, Ω̇ is the angular acceleration of the satellite used for the
Euler acceleration Ω̇l⃗, l⃗ is the distance from the accelerometer to the centre of mass of
the satellite, d⃗ represents all the combined non gravitational accelerations such as solar
radiation or acceleration caused by attitude control devices within the satellite itself. The
angular velocity Ω is expressed in the form of the matrix as shown in:

Ω =

 0 −ωϕ ωλ

ωϕ 0 −ωr

−ωλ ωr 0

 (2.26)

The acceleration Ω̇ is expressed similarly as:

Ω̇ =

 0 −ω̇ϕ ω̇λ

ω̇ϕ 0 −ω̇r

−ω̇λ ω̇r 0

 (2.27)

The square of the angular velocity Ω2 used to find centrifugal acceleration is expressed as:.

Ω2 =

−ωλ − ωϕ ωrωλ ωrωϕ

ωrωλ −ωr − ωϕ ωλωϕ

ωrωϕ ωλωϕ −ωr − ωλ

 (2.28)

Equation 2.25 can be re-arranged in order to obtain Vuu:

Vuu = −a⃗
1

l⃗
+Ω2 + Ω̇+ d⃗

1

l⃗
(2.29)

From what can be seen in the equation, it is possible to obtain Vuu from the acceleration
data a⃗ given by the accelerometers, while Ω and Ω̇ can be obtained by attitude determina-
tion instrumentation such as a star tracker, the non-gravitational accelerations d⃗ however,
can be determined with gradiometer readings by using common mode, in which accelera-
tions between two opposing accelerometers are averaged and l = 0, thus leaving only d⃗
from these readings. This is not the only unknown. The acceleration obtained from the
accelerometer readings also contains systematic errors:

a⃗ = (K + Eal + Eco)⃗a
(real) +K2a⃗

(real)2 + b⃗+ n⃗ (2.30)

The real acceleration is represented by a⃗(real), The errors and calibration parameters are
the following:
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• The scale factor K, as mentioned by P. Touboul et al. [9] is an uncertainty in the
electrostatic gain when converting voltage to acceleration within the accelerometers,
thus it is a coefficient to acceleration a⃗(real). In this thesis, it is not ignored, as it is a
very common systematic error.

• Accelerator misalignment Eal and inter-axis coupling Ermco are two causes for calibra-
tion parameters in the equation. Eal occurs as a result of an angular deviation from
the ideal accelerometer arrangement. Eco occurs as a result of accelerometer axes
not being perfectly perpendicular to each other. In this thesis, accelerometers and all
instrumentation is assumed to be aligned to make the processing of data easier, thus
Eal and Eco are assumed to be 0.

• C. Stummer [10] writes about the quadratic factor error, which appears from the trans-
fer function when converting the accelerometer’s voltage into acceleration. It is rep-
resented by K2, and it acts as a coefficient with a⃗(real)

2. B. Frommknecht [11] states
that non linear acceleration errors can be calibrated by making use of a control loop.
In this thesis, it is assumed that this error is also 0.

• Systematic white noise, represented by n⃗, comes from the accelerometers measure-
ments. The measurements have a degree of uncertainty, represented by noise. Noise
happens in all 3 axes and here it is assumed to be white noise. It has a Gaussian prob-
ability distribution.

• Accelerometer bias is present in each of its 3 axes and is represented by b⃗. A bias
is a specific value that each accelerometer has due to any imperfection or drift within
its mechanism. Unlike noise, it is not a random error, but instead a starting value
which may drift with time. In a 3 axis gradiometer, there are 18 different biases to take
into account due to the 6 accelerometers that are utilised. In this thesis, the bias is
assumed to be global to the gradiometer, instead of local to each accelerometer. This
is done to have 3 bias elements corrected so that it can be done in 1 epoch. It is also
assumed to be static.

With most of the errors assumed to not take place, the equation is left as:

a⃗ = Ka⃗(real) + b⃗+ n⃗ (2.31)

Substituting into Equation 2.29

V ′
uu = −(Ka⃗+ b⃗+ n⃗)

1

l⃗
+Ω2 + Ω̇+ d⃗

1

l⃗
(2.32)

V ′
uu = −Ka⃗

1

l⃗
+Ω2 + Ω̇+ d⃗

1

l⃗
− b⃗

1

l⃗
− n⃗

1

l⃗
(2.33)

Here, the corrected GGT V ′
uu is formulated to introduce calibration parameters and errors

into the least squares algorithm. The prime superscript ′ represents that this GGT considers
accelerometer calibration parameters. It is known in this thesis as ”corrected”. The addition
of the bias component can be represented in matrix form as:

b⃗
1

l⃗
=

brbλ
bϕ

 1

||⃗l||2
[
lr lλ lϕ

]
(2.34)
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The values of the l⃗ vector in Equation 2.34 are different for each satellite design and config-
uration, but they are assumed to always be known. This only leaves the terms br, bλ, and
bϕ as unknowns, which need to be estimated along with the position state of the satellite.

Equation 2.33 can be rearranged into:

V ′
uu = CVuu − b⃗

1

l⃗
− n⃗

1

l⃗
(2.35)

where C is a coefficient which acts as an unknown to represent K and d⃗ and is formulated
as:

C =
−Ka⃗1

l⃗
+Ω2 + Ω̇+ d⃗1

l⃗

−a⃗1

l⃗
+Ω2 + Ω̇+ d⃗1

l⃗

(2.36)

In this thesis, it is named the Scale Coefficient. The denominator of this coefficient corre-
sponds to the previously set formulation of Vuu in Equation 2.29. This is done in order to
keep d⃗ as part of C, and thus a parameter which can be estimated by least squares. The
matrix form for Ka⃗1

l⃗
is:

Ka⃗
1

l⃗
=

Krar
Kλaλ
Kϕaϕ

 1

||⃗l||2
[
lr lλ lϕ

]
(2.37)

The representation of d⃗ in matrix form is very similar to Equation 2.34.

d⃗
1

l⃗
=

drdλ
dϕ

 1

||⃗l||2
[
lr lλ lϕ

]
(2.38)

The top rows of unknowns all correspond to the r terms, the middle row to the λ terms, and
the bottom row to the ϕ terms. This makes it possible to formulate C and subsequently
CVuu as the following formula.

CVuu =

Cr 0 0
0 Cλ 0
0 0 Cϕ

Vrr Vrλ Vrϕ

Vλr Vλλ Vλϕ

Vϕr Vϕλ Vϕϕ

 (2.39)

White noise n⃗ is assumed to be a random Gaussian value with a mean of 0. The stan-
dard deviation depends on the accuracy of the instrumentation provided. The new GGT is
formulated as:

V ′
uu =

V ′
rr V ′

rλ V ′
rϕ

V ′
λr V ′

λλ V ′
λϕ

V ′
ϕr V ′

ϕλ V ′
ϕϕ

 =


CrVrr − brlr

||⃗l||2
CrVrλ − brlλ

||⃗l||2
CrVrϕ − brlϕ

||⃗l||2

CλVλr − bλlr
||⃗l||2

CλVλλ − bλlλ
||⃗l||2

CλVλϕ − bλlϕ

||⃗l||2

CϕVϕr − bϕlr

||⃗l||2
CϕVϕλ − bϕlλ

||⃗l||2
CϕVϕϕ − bϕlϕ

||⃗l||2

 , (2.40)

where it is shown how the corrected GGT V′
uu relates to the uncorrected GGT Vuu.
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2.3.2. Corrected Design Matrix

With bias, scale coefficient to be estimated, the least squares method must be expanded to
accommodate them. As observed from Equation 2.40, V ′

uu is no longer a symmetric matrix,
and all 9 terms need to be computed. The corrected vector form V⃗ ′

uu for the least squares
method is:

V⃗ ′
uu =



V ′
rr

V ′
rλ

V ′
rϕ

V ′
λr

V ′
λλ

V ′
λϕ

V ′
ϕr

V ′
ϕλ

V ′
ϕϕ


=



CrVrr − br
lr

||⃗l||2

CrVrλ − br
lλ

||⃗l||2

CrVrϕ − br
lϕ

||⃗l||2

CλVrλ − bλ
lr

||⃗l||2

CλVλλ − bλ
lλ

||⃗l||2

CλVλϕ − bλ
lϕ

||⃗l||2

CϕVrϕ − bϕ
lr

||⃗l||2

CϕVλϕ − bϕ
lλ

||⃗l||2

CϕVϕϕ − bϕ
lϕ

||⃗l||2



(2.41)

The design matrix is the differential of this vector with respect to the coordinates, the scale
coefficients C⃗ and the biases b⃗. The corrected state y⃗′ to be estimated is:

y⃗′ =
[
r yλ yϕ Cr Cλ Cϕ br bλ bϕ

]T (2.42)

The corrected design matrix A′ contains 81 elements.

A′ =
d

dy⃗
V⃗ ′
uu =



V ′
rrr V ′

rrλ V ′
rrϕ V ′

rrCr
V ′
rrCλ

V ′
rrCϕ

V ′
rrbr

V ′
rrbλ

V ′
rrbϕ

V ′
rλr V ′

rλλ V ′
rλϕ V ′

rλCr
V ′
rλCλ

V ′
rλCϕ

V ′
rλbr

V ′
rλbλ

V ′
rλbϕ

V ′
rϕr V ′

rϕλ V ′
rϕϕ V ′

rϕCr
V ′
rϕCλ

V ′
rϕCϕ

V ′
rϕbr

V ′
rϕbλ

V ′
rϕbϕ

V ′
λrr V ′

λrλ V ′
λrϕ V ′

λrCr
V ′
λrCλ

V ′
λrCϕ

V ′
λrbr

V ′
λrbλ

V ′
λrbϕ

V ′
λλr V ′

λλλ V ′
λλϕ V ′

λλCr
V ′
λλCλ

V ′
λλCϕ

V ′
λλbr

V ′
λλbλ

V ′
λλbϕ

V ′
λϕr V ′

λϕλ V ′
λϕϕ V ′

λϕCr
V ′
λϕCλ

V ′
λϕCϕ

V ′
λϕbr

V ′
λϕbλ

V ′
λϕbϕ

V ′
ϕrr V ′

ϕrλ V ′
ϕrϕ V ′

ϕrCr
V ′
ϕrCλ

V ′
ϕrCϕ

V ′
ϕrbr

V ′
ϕrbλ

V ′
ϕrbϕ

V ′
ϕλr V ′

ϕλλ V ′
ϕλϕ V ′

ϕλCr
V ′
ϕλCλ

V ′
ϕλCϕ

V ′
ϕλbr

V ′
ϕλbλ

V ′
ϕλbϕ

V ′
ϕϕr V ′

ϕϕλ V ′
ϕϕϕ V ′

ϕϕCr
V ′
ϕϕCλ

V ′
ϕϕCϕ

V ′
ϕϕbr

V ′
ϕϕbλ

V ′
ϕϕbϕ



=



CrVrrr CrVrrλ CrVrrϕ Vrr 0 0 − lr
||⃗l||2

0 0

CrVrrλ CrVrλλ CrVrλϕ Vrλ 0 0 − lλ
||⃗l||2

0 0

CrVrrϕ CrVrλϕ CrVrϕϕ Vrϕ 0 0 − lϕ

||⃗l||2
0 0

CλVrrλ CλVrλλ CλVrλϕ 0 Vrλ 0 0 − lr
||⃗l||2

0

CλVrλλ CλVλλλ CλVλλϕ 0 Vλλ 0 0 − lλ
||⃗l||2

0

CλVrλϕ CλVλλϕ CλVλϕϕ 0 Vλϕ 0 0 − lϕ

||⃗l||2
0

CϕVrrϕ CϕVrλϕ CϕVrϕϕ 0 0 Vrϕ 0 0 − lr
||⃗l||2

CϕVrλϕ CϕVλλϕ CϕVλϕϕ 0 0 Vλϕ 0 0 − lλ
||⃗l||2

CϕVrϕϕ CϕVλϕϕ CϕVϕϕϕ 0 0 Vϕϕ 0 0 − lϕ

||⃗l||2



(2.43)
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V⃗ ′
uu and design matrix A′ are computed with the current estimated state y⃗′i.

2.3.3. Scaling and Dampening
The state λ and ϕ are at a scale of ≈ 0 to 2π. The state r is at a scale factor of ≈ 106 to
107. This can be a problem when computing least squares because a change in Vrr is not
in the same scale as a change in Vrλ or Vϕϕ. As a result, a very large change in the state y⃗
on the first least-squares estimation of each epoch leads to an overshoot in the result. This
happens specially for the parameter r.

To partially mitigate this problem, the weighed least squares method is used. It makes use
of the weighed matrix W , which is a diagonal matrix where each term is 1

wij
, where wij

normalises the corresponding V⃗ ′
uu values. i and j are the corresponding rows and columns

respectively.

To prevent the least-squares method from spiking in the first iteration of each epoch, the
Levenberg–Marquardt damping method is used. Gavin, H. P. [12] shows that a diagonal
matrix with all its terms being the dampening factor τ can prevent these spikes. Both of
these methods are done within the least squares equation in such way that:

y⃗i+1 = (ATWA− τI)−1ATW (V⃗ (measured)
uu − V⃗uu(y⃗i)) + y⃗i , (2.44)

where i is the iteration number within each epoch. To let the subsequent iterations calculate
a change large enough to converge, the default dampening factor is attenuated with each
iteration by τ = (1 · 10−7)i.

Figure 2.5 shows how the iterative process is carried out in the algorithm. The initial state y⃗’0
is either the initially guessed state (if it’s the first epoch being calculated) or final estimation
of the state on the previous epoch. With the current state, the gravity gradient tensorVuu and
its derivative Vuuu are calculated as shown in Section 2.2. With these, they are converted
into the gravity gradient vector V⃗ ’uu and the design matrix A’ are formulated by including
the calibration parameter corrections as seen in Section 2.3.2. From the measurement data,
the gravity gradient vector V⃗ (measured)

uu is extracted. With this, the least squares method from
Figure 2.5 is used to compute dy⃗i. This is the process for an iteration, in which dy⃗i is added
to y⃗i to form ⃗yi+1, which shall serve as the state for computing the next iteration. The state
computed at the end of the final iteration, is the final estimation for the epoch. After which,
the iteration number i is reset to 0, and the iterative process restarts-

2.4. Iterative Process

There are two criteria to stop the iterative process. One option is to set an convergence
threshold which has to be crossed. The change in state dy⃗ must be equal or inferior to this
limit set. This criteria evaluates the speed of the process i.e., how many iterations it takes to
converge. The second criteria is to set a finite amount of iterations. This can be especially
used for missions with a limited time and thus number of iterations to compute position, or
for testing, where the real point is known and the final error for each coordinate compared
to this point can be computed. This criteria evaluates how potentially accurate the process
can end up being regardless of the number of iterations, while arriving at an estimated point.
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The following two sections will review each of the types of criterion.

1. Error Threshold: For the error threshold, a limit to how much of a deviation from the
objective point is set. To be consistent, the error is set to be in the form a of a distance
(in [m]). The results, however, are in spherical co-ordinates. This means that for the
angular co-ordinates λ and ϕ, the error has to be converted into radians. For the radius
r this is not needed. The radius threshold error is set as ϵthrr, it is implemented as

ϵthrλ = ϵthrϕ = arcsin
(ϵthrr

r

)
(2.45)

where ϵthrλ and ϵthrϕ correspond to λ and ϕ respectively. As a result, the higher the
altitude of the satellite, the higher the accuracy is needed in terms of spherical co-
ordinate angles.

2. Finite Iterations: A set amount of iterations is assigned to the process. Upon reach-
ing this number, the iterative loop stops. This setting is not efficient at all for practical
processes because it is most likely that for most epochs, there will be insufficient it-
erations. This approach is used for analytical and testing purposes. It can truncate
iterations to only 1 in order to analyse how initialisation and details within a single iter-
ation works. It can truncate iterations to beyond the usual needed to reach the error
threshold to evaluate if solutions converge and to evaluate the final error.

Once the iterative process is finished, the next epoch of the satellite’s orbit will be processed.
An important note is that all the final estimations of the elements in y are kept as the initial
guess for the next epoch. There are two reason for doing this.

• Systematic errors such as b and K are almost static and do not change too much
during one orbital revolution.

• Position r, λ and ϕ change every epoch, as well as non-gravitational accelerations d⃗.
Nevertheless, It is much more efficient to take the previous epoch as an initial guess,
rather than to start the process from scratch every single epoch. By taking the last
epoch’s final guess, there is a potential of having a better performance when more
epochs are computed, specially at last for the initial ones.

A diagram of how this iterative process can be observed in Figure 2.5
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Figure 2.5: Diagram of how the least squares iterative process works, where the initial state y⃗′0 and the
gradiometer measurements V⃗ ′

uu are the inputs and the estimated state y⃗′ is the output for each orbital epoch.

2.5. Programming

Two programming languages are used in this thesis. Python is an easy language to program
and its large amount of modules and libraries. The main problem is that Python is a very
high level programming language, and very slow. For processes which need a substantial
amount of computational power, it is not effective. To adress this, Rust is used because it
is extremely fast and can be used efficiently.

• Python: Used for more specific functions which can be done outside of the main
process:

– Graphs for results and main display.
– Extracting data from GOCE gradiometer data files.
– Generating data for the Lunar orbit simulation in Chapter 6.

• Rust: It is mainly used for the bulk of the computations:

– Reading the files containing Stokes coefficients from gravity field models.
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– Forming all associated Legendre functions in a symbolic state, as shown in Equa-
tion 2.8 and Figure 2.3. This process is one of the biggest notable differences
with Python. In Rust, forming the functions takes about 300[s], while in Python,
it takes more than 72[hr], especially when symbolic differentiation’s need to be
done.

– Preforming the least squares iterations shown in Figure 2.5, which is another part
in which Rust shines over python. At D/O 100, 20604 computations of V uu

pq and
V uuu
pq need to be done in each iteration. Speed and efficiency are needed for this,

since Python computes a maximum D/O of 100 in 15[hr], while Rust does this
same process within 10[s]

The details on how the software is installed can be seen in Appendix B.

2.6. Simulation

The Lunar orbit simulation is generated in Tudat. Tudat is an astrodynamics tool and library
provided by TU Delft which can be used in C++ and Python. in this case, Python is used
along with this tool to generate all the data needed within the orbit to obtain V⃗

′(measured)
uu . The

accuracy of the simulation is not what is being tested in this thesis. The most important
points to take from the simulation is the position data needed to obtain V⃗

′(measured)
uu . Bias

and scale coefficient which are afterwards added to it, including white noise too. The least
squares estimation does not interact with the actual position of the satellite, and is only used
to measure the accuracy of the prediction itself. The biases and the scale coefficient are
not known to the least squares algorithm either and are used only to construct V⃗ ′(measured)

uu .
Figure 2.6 shows the version of Figure 2.5 that is used to run the algorithmwith the simulated
data
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Figure 2.6: Diagram of how the least squares iterative process works for the Moon orbit simulation data.



3
Sensitivity Analysis

A sensitivity analysis intends to evaluate the least squares computational method. While the
results of this thesis are an analysis of similar kind, this section is dedicated to a sensitivity
analysis on initial deviation, orbital altitude, degree and order to assess how they affect the
results and efficiency of the least squares algorithm

3.1. Initial Deviation
An undeviated initial position y⃗obj is set. From this, a deviated initial guess is assumed to ob-
serve the amount of iterations it takes to approach the undeviated position. If the process is
done correctly, there should be a pattern in which a larger deviation correlates with a larger
amount of iterations to converge, since there is more distance to correct from at higher initial
deviation. This test uses the uncorrected form of the least squares method to have a bet-
ter perspective on how initial deviation affects the algorithm without error correction being
made. To generate deviations, the scalar (in [m]/[km]) forms are obtained for all axis. After
this, the deviations corresponding to the latitude λ and the longitude ϕ are converted with
the use of Equation 2.45 into angular deviations. The deviations are randomly generated in
a range between 0.577[km] and 300[km] for each axis. The lower limit is set so that the total
combined minimum deviation is of 1[km]. The higher limit is set in this particular number so
that there are enough correctly converged results to find a pattern. Higher values for this
limit generate more values which converge away from the undeviated point.

This test is carried out in a lunar environment, with an undeviated position of r = 3000000[m], λ =
1.1[rad], ϕ = 0.1[rad]. These are arbitrarily chosen values, as this test is only focused on
deviation. If other angular GSF coordinates are used, they yield a similar pattern neverthe-
less. It makes use of a maximum D/O of 100 to obtain high accuracy without needing a
long computation time. The algorithm is undampened to not constrain the progress of any
iteration towards the converged value. It is assumed that the convergence occurs when
dy⃗ is less than the threshold, which is set to 1[km] (or 10−6 times the undeviated position).
A total of 30 different deviations are generated, with a random seed of 42 in the random
number generator.

25
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Figure 3.1: Amount of uncorrected least squares iterations for different initial deviations at a threshold of
10−6.

Figure 3.1 shows an overall pattern in which the number of iterations to converge increases
as the initial deviation increases, thus displaying positive correlation between an increase
in iterations to converge and the initial deviation. Positive correlation is proof of a working
algorithm, because the least squares takes longer to converge with a larger initial deviation.
These are not all 30 results, because 4 of the randomly generated results converge into
incorrect points. This is due to the deviation being too large. The deviations of these 4
mentioned points are seen in the following table:

Total Deviation [m] r Deviation [m] λ Deviation [deg] Φ Deviation [deg]
264910 −3974.62 1.17208 · 10−1 5.06409
211437 −211285 −1.10562 · 10−1 1.05496 · 10−1

280504 −280395 −2.33517 · 10−2 1.47028 · 10−1

246238 620.556 4.69575 3.39922 · 10−1

Table 3.1: Initial deviations that lead to converging into a different point, with the bold values being the main
contributor.

By observing the total combined deviations in Table 3.1, and comparing them to the ones
shown in Figure 3.1, it can be deduced that total deviation is not the cause of the incorrect
convergences. Instead, it is because of the individual axis deviations. Table 3.1 highlights
the axes that are higher than any of the correctly converged points. The angular main
contributors seen in this table are equivalent to a deviation of 264810[m] for ϕ in the first
row of the table and 245594[m] for λ in the 4th row of the table. Least squares resolves
navigation with each axis values separate, and all of them contributing to dy⃗. A deviation of
at least 211.285[km] in any axis leads to convergence into points which are too significantly
deviated from the actual orbit to be considered a valid estimate. This is additional insightful
knowledge of the limitations of the algorithm presented in this thesis.

3.2. Orbit Altitude Test

Spherical harmonic models offer a detailed map of the gravity field based on the Stokes
coefficients. The shape of the gravity field is formed by using associated Legendre func-
tions. The level of detail of this shape is based on the level of D/O that is used, but it is
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not the only variable. The orbital altitude affects greatly the intensity of gravity gradient, as
seen in Section A.1.3. At higher altitudes, the gravity potential, acceleration and gradient
become less intense, thus the gravity field map (and thus gravity gradient maps) become
less detailed.

In this test, an arbitrary initial estimate deviated state of 1 · 104[m] is set away from the real
position state. The real position state is what the estimated state is compared to. When
testing the effects of orbital altitude, instrument measurement sensitivity needs to be taken
into account too. Spero, R. [13] indicates that the signal-to-noise ratio of a gradiometer is:

SNR =
Vuu

nuu

, (3.1)

where Vuu is a component of GGT to be measured by the gradiometer in GSF, and nuu is the
corresponding noise to the component. In gravity gradient equations, the d2

dr2
component

is proportional to altitude by 1
r3
, the d2

drdλ
, d2

drdϕ
components are proportional by 1

r2
, and the

rest of the components are proportional by 1
r
, hence it can be predicted that there should be

a larger deviation of the estimated state at higher altitudes, since the signal to noise ratio
decreases as much.

A noise of 0.1[E] = 1·10−10[1/s2] is added to the elements of V⃗ (measured)
uu . It is assumed that for

this test, the noise remains constant instead of random to act as a constant variable, since
the independent variable is orbital radius. An arbitrary maximum D/O of 50 is taken. The
iterative process is set to stop after a convergence threshold (mentioned in Section 2.4) of
2[m]. In this test, the orbital radius r is changed to represent a change in the orbital altitude.
This same test is also conducted with an increased initial deviation. Table 3.2 shows the
outcome of this test.

Initial r [m] Initial Deviation [m] Error [m] Iterations to converge [−]

2 · 106 1 · 103 3.72529 · 10−8 3
1 · 104 3.74857 · 10−8 4

2 · 107
1 · 103 9.27210 · 10−3 2
1 · 104 9.27210 · 10−3 3
1 · 105 9.27211 · 10−3 4

2 · 108
1 · 103 6.05539 · 101 2
1 · 104 6.05539 · 101 3
1 · 105 6.05538 · 101 3

2 · 109
1 · 103 5.74359 · 105 3
1 · 104 5.74359 · 105 3
1 · 105 5.74359 · 105 3

2 · 1010 1 · 103 4.34124 · 109 20

Table 3.2: Least squares accuracy difference affected by the orbital altitude.

The results show 3 ways in which altitude affects the results of the least squares algorithm:

• Converged error: As predicted, the error shown in Table 3.2 indicates that a low
orbital altitude of 2 · 106[m] shows an error in the scale of 10−8[m] = 5 · 10−13%, while
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a high orbital altitude of 2 · 1010[m] shows an error in the scale of 109[m] = 5%. The
pattern seen is that the higher the orbital altitude, the higher the error of the converged
state.

• Convergence speed: By having the same maximum D/O on all tests conducted in
this section, each iteration takes a similar amount of time, as demonstrated in Sec-
tion 3.3. Convergence speed is instead measured by the number of iterations to con-
verge. Table 3.2 shows that higher altitudes take less iterations to converge. This is
explained by the fact that at higher altitudes, the map of the gravity gradients loses
detail and becomes smoother. The lack of detail facilitates a quicker route towards
the estimated state. More importantly, this is also because of the scale of the initial
deviation compared to the orbital altitude. In higher altitudes, the same initial deviation
is proportionally smaller.

• Maximum converging deviation: When the error becomes large enough, conver-
gence becomes more unstable. Table 3.2 shows that at r = 2 · 109[m], it needs more
iterations to converge than previous lower altitudes. At r = 2 · 1010[m], the number
of iterations to converge spikes up to 20. This can be explained buy the fact that at
an altitude high enough, the error becomes larger than the initial deviation to correct,
thus the convergence having to cover more distance.

3.3. Computation Performance test
When evaluating the least squares algorithm, the performance and efficiency has to be mea-
sured. If the computation time does not follow the predicted pattern, the algorithm does not
process the calculations accordingly.

Themajority of the computational cost is attributed to the evaluation of the associated Legen-
dre functions. Each evaluation corresponds to substituting a specific value into the variable
x. In the context of this test, a computation is the calculation of a D/O combination, while an
evaluation is the substitution of a value into x. From amathematical perspective, higher D/O
require significantly more computations than lower ones. In this context, an ”equation com-
putation” refers to the complete evaluation of the Legendre function for a specific D/O. The
initial estimate of the total number of such computations performed during a single iteration
of the least squares process is:

Ncomp =
1

2
p2max =

pmax∑
p=0

p∑
q=0

1, (3.2)

where Nmax is the number of computations, and pmax is the maximum degree. This is the
equivalent to the amount of Stokes coefficients, or associated Legendre equations being
used. The number of computations is not the only contributor to the computation time. An
evaluation is every time a value is substituted into a symbolic Associated Legendre function
to get the result for a given point. To really know the performance in a more detailed manner,
the number of evaluations must be known. The number of evaluations that have to be done
within each iteration of the least squares method is:

Titer ∝ Neval =

pmax∑
p=0

p∑
q=0

1

2
(p+

1

2
) (3.3)
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When looking at the Equation 3.3, the number of evaluations is an approximate average,
since the amount of evaluations does not scale gradually, but in jumps every 2 degrees.
The table below shows this detail.

Degree p [-] Legendre Polynomials Neval [-] Neval w.r.t. degree p
0 1 0 1

2
p

1 x 1 1
2
(p+ 1)

2 1
2
(3x2 − 1) 1 1

2
p

3 1
2
(5x3 − 3x) 2 1

2
(p+ 1)

4 1
8
(35x4 − 30x2 + 3) 2 1

2
p

5 1
8
(63x5 − 70x3 + 15x) 3 1

2
(p+ 1)

6 1
16
(231x6 − 315x4 + 105x2 − 5) 3 1

2
p

Table 3.3: Proof of the number of evaluations needed for each Legendre Polynomial.

In Table 3.3, the 1
2
represents that Legendre polynomials make use of of 1 out of every

2 powers of x in Pp(x). The most important data is Neval with respect to degree p, which
formulates how many evaluations there are in a certain degree. The table shows that they
alternate in a 1:1 ratio between 1

2
p and 1

2
(p + 1). The average between the two can be

made to be 1
2
(l+ 1

2
). The numbers seen in the table are not the only Legendre polynomials

being computed during the iterations, but additionally there are the 1st, 2nd and 3rd degree
derivatives: P ′

pm(x), P ′′
pm(x), P ′′′

pm(x) respectively. For these, their Legendre polynomials are
different in terms of number of evaluations, as shown in Table 3.4 for the 1st derivatives.

Degree p [-] Legendre Polynomials Neval [-] Neval w.r.t. degree p
0 0 0 -
1 1 0 1

2
(p− 1)

2 3x 1 1
2
p

3 1
2
(15x2 − 3) 1 1

2
(p− 1)

4 1
8
(140x3 − 60x) 2 1

2
p

5 1
8
(315x4 − 210x2 + 15) 2 1

2
(p− 1)

6 1
16
(1386x5 − 1260x3 + 210x) 3 1

2
p

Table 3.4: Proof of the number of evaluations needed for each 1st derivative of Legendre Polynomial.

Table 3.4 shows that this data now alternated between 1
2
(p−1) and 1

2
p. This makes the aver-

age 1
2
(p− 1

2
) for the amount of evaluations per degree in the first derivative of the Legendre

polynomials. When calculating a low maximum D/O of 30, the amount of computations is
1984. The amount of evaluations in the Legendre polynomial are 0 for degree 0, thus making
it more negligible towards the pattern as maximum D/O increases.

Degree p [-] Legendre Polynomials Neval [-] Neval w.r.t. degree l
0 0 0 -
1 0 0 -
2 3 0 1

2
(p− 2)

3 15x 1 1
2
(p− 1)

4 1
8
(420x2 − 60) 1 1

2
(p− 2)

5 1
8
(1260x3 − 420x) 2 1

2
(p− 1)

6 1
16
(6930x4 − 3780x2 + 210) 2 1

2
(p− 2)

Table 3.5: Proof of the number of evaluations needed for each 2nd derivative of Legendre Polynomial.
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Table 3.5 shows the data for the 2nd derivative. where it is also assumed that the degree 1
computations (2 out of 1984 at max D/O f 30) are also negligible towards the global average.
The average is between 1

2
(p− 2) and 1

2
(p− 1), making it 1

2
(p− 3

2
).

Degree p [-] Legendre Polynomials Neval [-] Neval w.r.t. degree p
0 0 0 -
1 0 0 -
2 0 0 -
3 15 0 1

2
(p− 3)

4 105x 1 1
2
(p− 2)

5 1
8
(3780x2 − 420) 1 1

2
(p− 3)

6 1
16
(27720x3 − 7560x) 2 1

2
(p− 2)

Table 3.6: Proof of the number of evaluations needed for each 3rd derivative of Legendre Polynomial.

Table 3.6 shows the data for the 3rd derivative, where it is assumed that the degree 2
computations (3 out o 1984 at max D/O of 30) are also negligible towards the global average.
The average for the 3rd derivative is 1

2
(p − 5

2
). With this, the total amount of iterations for

computing al the associated Legendre functions is derived with:

Neval =

pmax∑
p=0

p∑
q=0

1

2
(p+

1

2
) +

pmax∑
p=1

p∑
q=0

1

2
(p− 1

2
) +

pmax∑
p=2

p∑
q=0

1

2
(p− 3

2
) +

pmax∑
p=3

p∑
q=0

1

2
(p− 5

2
) (3.4)

where N is not the duration, but instead the number of iterations related the max D/O.

The algorithm is executed with models with different maximum D/O to get a good idea of
how the relation of N correlates with actual computation time. Table 3.7 shows the results
for computation time.

Model Maximum D/O N (eval) Time for iterations [s]
GOSG02S (GOCE) 300 1.80895 · 107 276.80
GGM03S (Grace) 180 3.92011 · 106 56.252

ITG_Champ01K (Champ) 70 2.33463 · 105 3.6162
GEM9 30 1.8863 · 104 0.38927

Table 3.7: Computation time taken for a single iteration for different gravity field models.

Table 3.7 shows the an increase in the form of T (comp) = (2 · 10−5)D/O2.8509, where T (comp)

is the computation time. Due to the significant increase in computation time, more efficient
testing can be done by truncating high D/O models.



4
Verification

The contents of the algorithm are verified in this chapter. Due to the sensitivity of the re-
sults depending on the correct formulation of associated Legendre functions, unit testing is
performed on them too.

4.1. Unit Testing

Unit testing for associated Legendre functions is done to ensure that their formulation works
adequately.

Associated Legendre functions all converge into a common value for Ppq(1). Figure 4.1
shows the pattern of various associated Legendre Functions at order q = 0.The pattern
indicates that all associated Legendre functions at order 0 (Legendre polynomials) converge
to 1when x = 1. Figure 4.2 shows that all associated Legendre functions of order 1 or above
converge to 0 when x = 1. In this figure, the associated Legendre functions are noted as
P q
p , which is the way it is expressed in Equation 2.5, with the only notable differences being

a negative sign in half of the computed associated Legendre functions, thus converging in
0 as well.

Figure 4.1: Legendre functions as a function of x at
order q = 0. [14]

Figure 4.2: Legendre functions as a function of x at
orders q = 1, 2, 3. [14]

To test if the associated Legendre function generation is computed correctly, a maximum

31
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D/O of 200 of symbolically generated equations is set to perform an evaluation of their func-
tion at 1 instead of at sin (ϕ). Indeed, all functions generated yielded 1 for order 0 and 0 for
any other orders.

Figure 4.3: Value of the Associated Legendre functions evaluated at x = 1 for all orders q in degree p = 200.

4.2. Errors in Gravity Field Models

As stated in Section 1.3.2, the gravity field models are assumed to be up to date. In reality,
Earth’s gravity field constantly changes, even in small quantities. Additionally, as technol-
ogy advances, the gravity field map details and accuracy increases. To demonstrate the
effect this assumption has on the results of the least squares algorithm, 3 different gravity
field models for Earth are compared:

• GOSG02S [6] is a 2023 gravity field model made from GOCE satellite data only, with
no prior gravity field data used in this its creation. It uses data from GOCE’s elec-
trostatic gravity gradiometer (EGG), and high-low satellite-to-satellite tracker (hl-SST)
(which makes use of GNSS). Normal equations from both are combined. Tikhonov
regularisation is used for orders q < 20 in degrees d <= 200, and for all D/O with
degrees d > 200.

• GO_CONS_GCF_2_TIM_R6 (TIM_R6) [15] is a 2019 model that makes use of the
GOCE satellite data only. It also makes use of GOCE’s EGG and hl-SST data by
combining their normal equations. Kaula regularisation is a variation of Tikhonov reg-
ularization and it is used for high D/O 201 < p, q < 300.

• GO_CONS_GCF_2_TIM_R6e (TIM_R6e) [16] is a an extension of the 2019 TIM_R6
model. In addition to the satellite data used by the previous model, it also uses ter-
restrial observations (TER) for angles approximating the poles. The hl-SST, SGG and
TER normal equations are combined. It uses the same regularisation as the 2019
TIM_R6 model.

This test is conducted by setting an initial orbital position for the satellite. Instead of making
use of V⃗ (measured)

uu (as shown in Equation 2.44) as an external value to the algorithm, it is ob-
tained from the same type of calculation used for V⃗uu seen in Section 2.2 and Section 2.3.2.
V⃗uu is calculated with the Stokes coefficients from the ”TIM_R6e” model, while V⃗

(measured)
uu
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is calculated with the coefficients from the ”GOSG02S” model. Both are started from the
same initial position y⃗0. V⃗uu and V⃗

(measured)
uu are applied to the least squares equation as:

y⃗i+1 = (ATA)−1AT (V⃗ (GOSG02S)
uu (y⃗0)− V⃗ (TIM_R6e)

uu (y⃗i)) + y⃗i (4.1)

where the uncorrected design matrixA is computed with the ”GOSG02S” model. The differ-
ence between V⃗

(GOSG02S)
uu and V⃗

(TIM_R6e)
uu is related to the difference between the two models.

With each iteration, the position that the ”TIM_R6e ” model would estimate moves towards
the position that the ”GOSG02S” model would estimate.

This results in deviations of 34.4919[m], 5.95340 · 10−4[deg], 6.81139 · 10−4[deg] for r, λ, ϕ
respectively. The deviation is because of the different values of their Stokes coefficients.
”TIM_R6e” makes use of additional ground data and a different regularisation. Figure 4.4
shows a line representing the estimated position of y⃗ in the three GSF axes when compared
to the initial position. This shows the deviation there is between the points estimated with
different models.

Figure 4.4: Deviation progression with each iteration of the least squares method with a comparison
between the ”GOSG02S” model and the ”TIM_R6e” model.

A new test is conducted using the ”TIM_R6” model instead of its ”TIM_R6e” variant. The
output for the estimate deviations are 79.5654[m], 8.28032 · 10−4[deg], 7.90466 · 10−4[deg]
for r, λ, ϕ respectively. These differences are because of the different in regularisation
techniques used, as well as the D/O in which they are used each. This difference is larger
than the results when using ”TIM_R6e”, even though ”TIM_R6e” makes use of terrestrial
measurements that ”GOSG02S” does not use. Terrestrial data may provide additional detail
that approximates ”TIM_R6e to ”GOSG02S” closer than ”TIM_R6”. Similarly to Figure 4.4,
Figure 4.5 shows a line representing the deviation of the estimated state y⃗ compared to the
initial guess through multiple iterations of the least squares algorithm in Equation 4.1.
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Figure 4.5: Deviation progression with each iteration of the least squares method with a comparison
between the ”GOSG02S” model and the ”TIM_R6” model.

A final test is conducted, with ”TIM_R6e” used to compute V⃗
(measured)
uu and ”TIM_R6” repre-

senting V⃗uu. The deviations are 45.0862[m], 2.33100 · 10−4[deg], 1.09167 · 10−4[deg] for r, λ,
ϕ respectively. The deviation is caused from the R6e model making use of ground data on
top of the R6 model and including it into the sum of their normal equations.

The comparison between the R6 and R6e models is a result which verifies this process
further; the difference between ”GOSG02S” and ”TIM_R6e”, and the difference between
”GOSG02S” and ”TIM_R6” differ to approximately the difference between ”TIM_R6e” and
”TIM_R6e”. A visual representation of how this works is shown in Figure 4.6.

Figure 4.6: Visual representation of how dy⃗ are related in a vector space.

The difference in estimated states is:
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dy⃗1,2 − dy⃗1,3 = dy⃗3,2 79.5654
8.28032 · 10−4

7.90466 · 10−4

−

 34.4919
5.95340 · 10−4

6.81139 · 10−4

 =

 45.0735
2.32692 · 10−4

1.09326 · 10−4

 ≈

 45.0862
2.33100 · 10−4

1.09167 · 10−4

, (4.2)

with the sub 1 representing ”GOSG02S”, the sub 2 representing ”TIM_R6” and the sub 3
representing ”TIM_R6e”. The expression for dy⃗ is equivalent to a linear expression:

dy⃗ = (ATA)−1AT∆V⃗uu (4.3)

To prove linearity with the gravity field models, the gravity gradient vector differences ∆V⃗uu

are extracted, and are compared similarly.

∆V⃗uu1,2 −∆V⃗uu1,3 = ∆V⃗uu3,2
−9.84927 · 10−11

9.54011 · 10−7

−6.92491 · 10−7

3.06139 · 10−7

4.84468 · 10−6

−7.30911 · 10−6

−


−4.27804 · 10−11

7.67171 · 10−7

−1.63340 · 10−7

1.61833 · 10−7

1.83039 · 10−6

−3.02335 · 106

 =


−5.57123 · 10−11

1.86684 · 10−7

−5.29151 · 10−7

1.44306 · 10−7

3.01429 · 10−6

−4.28576 · 10−6

 ≈


−5.57270 · 10−11

1.86763 · 10−7

−5.29438 · 10−7

1.44954 · 10−7

3.01624 · 10−6

−4.28865 · 10−6


(4.4)

In Equation 4.4, it is observed how∆V⃗uu shows a linear pattern. The linearity is due to the 2
elements in the gravity gradient equations (as shown in Section A.1.3) that are taken from
gravity field models are the Stokes coefficients Cpq and Spq. All elements of the GGT show
a linear proportionality to the Stokes coefficients, meaning that a change in the coefficients
is a direct change in the value of the GGT, and subsequently ∆V⃗uu. The values displayed
are verified with manual calculations.

One last point to highlight from the results in both Equation 4.4 and Equation 4.2, is that
the differences (shown after the = sign) are not exactly the value computed (shown ≈ sign).
Instead, they contain a small deviation from the actual values that they should display. The
deviation is explained by the fact that the models taken for this test are truncated at lower
D/O than 300 (their maximum D/O) to efficiently run the algorithm.



5
Validation With GOCE Data.

Validation is essential to prove that this method can work in a practical sense. In this chap-
ter, the least squares algorithm is tested using GOCE gradiometer data as the measured
gravity gradient introduced into the process. The chapter is divided into a section which
describes the process of retrieving and processing information from GOCE, and a section
where the results of this test are analysed.

5.1. Gravity Gradient in Different Reference Frames
This section shows a difference between the frame in which the gradiometer data is given,
and the frame in which the least squares algorithm works, and how to transform from one
frame to the other. The gradiometer data is taken from GOCE level 2 data [17], which, un-
like the level 1 data, is calibrated.

Data is given in two frames: the Gradiometer Reference Frame (GRF), which is the gra-
diometer’s own local frame, and the Local North Oriented Frame (LNOF), which is a local
frame to the satellite that aligns directionally with GSF, despite one being geocentric and
the other one being local. GSF is formulated in spherical coordinates. The Earth Centred
Reference Frame (EFRF) is the Cartesian form of GSF. The relation between EFRF, LNOF
and GRF is shown in Figure 5.1.

36
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Figure 5.1: Graph to show the relation between the frames used by ESA by Th. Gruber, R. Rummel et al
[18].

The angles that the LNOF alignment uses relates to the ECRF. r and z(LNOF ) are in the
same direction, ϕ and x(LNOF ) are in the same direction, and λ and y(LNOF ) are in opposite
direction.

Despite the alignment, the results estimated by the code are in GSF. This means that to
properly compare, they need to be transformed to LNOF. To know the relation between GSF
and LNOF for the GGT, a transformation matrix is not enough. Tensors are the second
differential with respect to each frame, and so there is a curve difference between both
tensors which has to be calculated. To achieve this, the Christoffel symbols of the second
kind are used. The fundamental formula for this is:

Γk
ij =

1

2
gkl
(
δglj
δui

+
δgil
δuj

− δgij
δul

)
(5.1)

Appendix A shows all the related derivations. As calculated and confirmed by Reed, G. B.
[19], LNOF gravity gradient relates to GSF as:

Vxx =
1

r2
Vϕϕ +

1

r
Vr

Vyy =
1

r2 cos (ϕ)2
Vλλ −

sin (ϕ)
r2 cos (ϕ)

Vϕ +
1

r
Vr

Vzz = Vrr

Vxy = − 1

r2 cos (ϕ)
Vλϕ −

sin (ϕ)
r2 cos (ϕ)2

Vλ

Vxz =
1

r
Vrϕ −

1

r2
Vϕ

Vyz = − 1

r cosϕ
Vrλ +

1

r2 cos (ϕ)
Vλ

, (5.2)
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where the entire derivation process can be found in ??.

By applying Equation 5.2, the estimated values are in Cartesian form, meaning that they are
linear instead of angular. With this, the Laplace second order partial differential equation
can be applied as follows:

d2V

dx2
+

d2V

dyy
+

d2V

dz2
= Vxx + Vyy + Vzz = 0 (5.3)

Level 2GOCEdata is retrieved from the ESA dissemination service by the name of ”EGG_TRF_2_”
[20]. By using the Laplace second order partial differential equation results from the gradi-
ents retrieved from the data, in values in scales ranging between 10−11 − 10−10[1/s2], with
an RMS of 1.57620 · 10−11[1/s2]. Figure 5.2 shows the range of results through 150 epochs
of the GOCE level 2 gradiometer data. This scale is close to 0, but it is important to point
out that it is not completely 0. By taking results displayed by Siemes, C. et al. [21], it can be
seen that there is a discrepancy between gravity gradient elements on a scale of 10−10[1/s2]
at low frequencies and 10−11[1/s2] at high frequencies. This is an indicator that there are
errors in the level 2 data, even if these results have been calibrated and corrected. Mea-
surement errors, transformation matrices and numerical errors contribute to this deviation
from 0.

Figure 5.2: Result of the Laplace equation shown in Equation 5.3 when using level 2 GOCE data in LNOF
for 150 epochs.

When performing the simulation for the analysis shown in Section 5.2, the GGT elements
in each epoch can be changed into the LNOF Cartesian form with Equation 5.2. With these
relations known, the gravity gradients provided by GOCE data can be transformed into GSF
used in the estimation, shown in:
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Vrr = Vzz

Vrλ = −r cos (ϕ)Vyz +
1

r
Vλ

Vrϕ = rVxz +
1

r
Vϕ

Vλλ = r2 cos (ϕ)2Vyy + sin (ϕ) cos (ϕ)Vϕ − r cos (ϕ)2Vr

Vλϕ = −r2 cos (ϕ)Vxy −
sin (ϕ)
cos (ϕ)

Vλ

Vϕϕ = r2Vxx − rVr

(5.4)

5.2. Analysis
GOCE’s orbital position data is taken from the level 2 mentioned in Section 5.1, specifically
the file corresponding to the orbit data between the 1st of February and the 12th of February,
2010, with the _0100 suffix. The data needed in the file is found under ”GG_spatial_record”,
where the GPS time, the GNSS provided GOCE position and the gravity gradient elements
are found. The orbital position data is already in GSF, so there is no need to transform it.
With the gravity gradient V⃗ (measured)

uu calculated from the transformation in Equation 5.4, the
corrected least squares algorithm estimates the positions as shown in Figure 5.4.

Figure 5.3: Orbital state (r, λ, ϕ) of the estimated position (max D/O of 100) compared to the actual GOCE
positions provided by ESA.

Figure 5.3 displays a plot for each of the coordinates in satellite’s position. The estimated
line and the GOCE line follow a close pattern for both the second and third plot, which cor-
respond to the longitude λ and latitude ϕ. Latitude ϕ shows the closest pattern. Most of the
deviation occurring in the first 20 seconds, and has an average deviation of 0.276142[deg] =
31970.4[m] ≈ 0.969%. Longitude λ shows a turbulent set of initial deviations from the true
value before converging to the GOCE data with a deviation of 0.473453[deg] = 54813.4[m] ≈
0.486%. Figure 5.4 shows the deviations between the estimated state and the GNSS pro-
vided state of GOCE.
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Figure 5.4: Orbital state (r, λ, ϕ) deviation from the estimated position (max D/O of 100) compared to the
GNSS estimated GOCE positions.

The largest visual deviation from the pattern is for the estimation of radius r, with an RMS r
error of 54862.3[m] ≈ 0.827%. This may not look like a significant amount of deviation, but it
is far larger than most other tests in this Thesis. There are multiple factors that cause this
significant deviation.

• The problem arises when transforming in frames, as seen in Equation 5.4, because
the first derivatives (gravity acceleration) (Vr, Vλ, Vϕ) are required. Even though they
are obtained at high accuracy, it is still part of the estimator, and not the real data. Thus,
there is a discrepancy between the actual GSFmeasured gravity gradient and the one
calculated for this test. The gravity acceleration measured by the instruments can be
obtained by using common mode calculations, or by integrating the gravity gradient
tensor, and then performing an estimation of each integration arbitrary constant.

• The GOCE data from ESA is not a perfect match to the real position and gravity gradi-
ents experienced by the satellite. There are errors and calibration parameters in the
gradiometer, as seen in Section 2.3.1 which are not assumed to not be present (such
asK2, Eal or Eco. The GNSS data is also an estimation of the position, which, despite
its accuracy, does not ensure a perfect measurement.

• Bias b⃗ and scale coefficient C⃗ are not only 3 values for the entire gradiometer, as
assumed in this thesis. Instead, there are 3 separate values local to each accelerom-
eters. By observing data from what is shown by Visser, P.N.A.M∙ et al. [22], there
is average bias of (−187.426, 301.097, −67.1223) [nm/s2] in the GRF, but each ac-
celerometer has very different values between each others, with also different drifts.
Scale factors (and by extension, scale coefficients) are also seen to have distinct val-
ues for each accelerometer.

Both of these factors are the cause for the significant amount of deviation between the state
value estimated by the least squares algorithm, and the data state.



6
Results

In this chapter, the least squares algorithm is applied to the data of a simulated Lunar orbit.
Several parameters are tested to find the optimal algorithm settings for the simulated orbit.
With this combination, the main thesis question is answered by running the algorithm while
including errors, a realistic number of iterations per epoch, and calibration parameters.

6.1. Procedure
The primary objective of this thesis is to assess the feasibility and accuracy of satellite
navigation based solely on gravity gradiometry. This approach relies exclusively on gravity
gradient data, without the use of GNSS signals or ground-based information. To accomplish
this, the accuracy is evaluated in an orbit around the Moon, in which GNSS is not as readily
available. In a real scenario, the data used for estimation is the measured gravity gradient
from the satellite and gravity field model data of the Moon. To generate the results in the
thesis, a simulation of a lunar orbit is performed.

As described in Section 2.6, the orbital simulation is performed by using only the spherical
harmonic acceleration as a result of the Moon’s mass and shape. The settings for the initial
state are: semi-major axis of 2.99279 · 106[m], an eccentricity of 4.03294 · 10−3, an inclination
of 1.1[rad], an argument of periapsis of 1.31226[rad], and a longitude of ascending node of
3.82958 · 10−1[rad]. Figure 6.1 shows the position parameters.

41
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Figure 6.1: Spherical coordinates of the satellite position in the simulated Lunar orbit.

Figure 6.1 shows the orbit truncated to the first 100 epochs (1000 seconds). The orbit data
is shortened to this time length in order to produce the accuracy tests in a feasible time
frame.

Figure 2.6 is used to compute the gravity gradient component vector V⃗ (measured)
uu of maxi-

mum D/O 200 in every epoch for this section. The high D/O is to simulate highly accurate
readings so that errors and calibration parameters can be introduced separately. .

6.2. Accuracy Analysis
Several parameters influence the accuracy of the estimation process and must be consid-
ered when evaluating its performance. These parameters affect the reliability and precision
of the navigation solution and are therefore critical to the assessment.

6.2.1. Degree and Order
The level of detail in a gravity field model is determined not only by its accuracy but also
by the maximum D/O used in its definition. A higher D/O enables the representation of
more complex gravitational variations, thereby capturing finer details of the celestial body’s
gravity field. In gravity gradiometry, the accuracy of the GGT, as seen in Equation 2.4, also
depends on the chosen maximum D/O. To evaluate the effect of D/O on navigation perfor-
mance, position estimates are computed using varying maximum D/O values. These tests
are performed with an uncorrected algorithm to better show exactly how maximum D/O
affects the estimation without error correction involved, and with 5 iterations per epoch to
make sure the estimations converge. Figure 6.2 and Figure 6.3 illustrate the effect of vary-
ing the maximum D/O on the estimated geocentric radius r because among all estimated
parameters, r is the one that visually shows best the deviation from the simulated position.
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Figure 6.2: Estimated position compared to the
simulation for 40 epochs at a maximum D/O of 20.

Figure 6.3: Estimated position compared to the
simulation for 40 epochs at a maximum D/O of 180.

The most notable result from Figure 6.2 and Figure 6.3 is that position estimations using
lower maximum D/O of 20 exhibit significantly larger deviations from the actual trajectory
compared to those using higher D/O values of 180, with an RMS radial r deviation of
88.3560[m]. A maximum D/O of 180 generates an RMS radial r deviation of 2.85158·10−10[m].
Lower degrees provide the main contributions to the gravity gradient with higher scale val-
ues and less detailed shapes. Higher degrees provide the smaller details that can lead to
more accurate estimations. The impact of D/O combinations can be observed in:

Figure 6.4: Fraction of relevance (power) each D/O combination has within the formulation of gravity
gradients for the GRGM1200B model for the Moon.
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This graph shows the power and thus significance each Stokes Coefficient has for each
D/O combination. Lighter coloured D/O combinations have more of an impact on the over-
all value of the gravity potential. This is also applied to its second spatial derivative, the
gravity gradient. The graph is made with the use of a Moon gravity field model. It can be
seen that, for the Moon’s gravity field, the first 100 D/O combinations are the strongest, mak-
ing up for 99.9391% of the final value. The change on gravity gradient quantities after D/O
100 can be assumed to be almost negligible, since they contribute 0.0608953%.

Figure 6.5 shows scattered points representing the average r deviation when the least
squares algorithm is run at a different maximum D/O, which indicates the maximum D/O
impacts the overall accuracy of the results, where the curves of best fit are found by expo-
nential regression.

Figure 6.5: Average deviation of the estimated
position for calculations using different levels of

maximum D/O.
Figure 6.6: Average duration for calculations using

different levels of maximum D/O.

The position deviations converge with points with a larger maximum D/O of 75 to 1.0458145 ·
10−5 [m]. The largest improvements to the deviations reach a plateau between from D/O
of 80. This shows the correlation between the converged deviation from the maximum D/O
and the power of each D/O combination shown in Figure 6.4. Another point of notice is
the time it takes to compute the estimated positions, which increases significantly with the
maximum D/O. Figure 6.6 shows a scatter of points indicating the computation time for a
different maximum D/O. This is the same behaviour as the one found in Section 3.3. The
best D/O to maximise accuracy and minimise computation time is 80.

6.2.2. Instrument Scale and Biases
The accuracy of the instruments measuring the GGT affect the accuracy of the navigation
estimates. The errors in measurement are included in the V⃗

′(measured)
uu observation vector.

A change in V⃗
′(measured)
uu affects not only the position in which each least squares epoch

converges, but the entire corrected state y⃗ that it estimates. To deal with this, parameter
estimations from the corrected least squares method (as seen in Section 2.3.2) can be
utilised to deal with inaccuracies caused. Figure 6.7 and Figure 6.8 shows how a scale
coefficient and bias can affect the estimations respectively. In these tests, a large scale
coefficient C⃗ of 1.2 in all GSF directions or a large bias b⃗ of 0.2[1/s2] in all GSF directions are
introduced respectively. An arbitrary maximum D/O of 100 is considered for the estimation
of V⃗uu for a fast but detailed computation, and the uncorrected least squares algorithm (as
seen in Equation 2.23, Equation 2.21 and Equation 2.24) is utilised to compare the results
to how the corrected algorithm deals with this.
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Figure 6.7: Estimated position compared to the
simulation with uncorrected errors C⃗ = (1.2, 1.2, 1.2).

RMS r deviation of 94824.6[m].

Figure 6.8: Estimated position compared to the
simulation with uncorrected biases b⃗ = (0.2, 0.2, 0.2).

RMS r deviation of 13313.0[m].

In Figure 6.7 and Figure 6.8, the first epoch estimated position (orange line) deviates the
most, by≈ 107500[m] and≈ 17000[m] respectively, from the simulated path (blue line). Both
the scale coefficient C⃗ and bias b⃗ have a very significant influence on the accuracy of the
least squares method when uncorrected. The values of the gravity gradient V⃗ (measured)

uu af-
fected by the calibration parameters lead the least squares algorithm into a different point to
estimate, thus the large jump for the first epoch’s estimate in both figures. Larger parame-
ters cause a larger deviation in measured gravity gradient, hence causing a larger deviation
in the estimated points by the least squares algorithm.

6.2.3. Instrument white noise
In addition to scale factor and bias, white noise is also a relevant factor, as seen in Equa-
tion 2.35. Gradiometers can have white noise n⃗ error of 0.1[E] = 1 ·10−10[1/s2] in the form of
white noise [23]. For this test, white noise is randomly generated in a Gaussian distribution
between 0.1[E] and−0.1[E] and added to V⃗

(measured)
uu in an uncorrected algorithm. Figure 6.9

shows the deviation, which is very small compared to the deviation caused by the scale co-
efficient and bias. The pattern shows the random nature of deviations caused by random
white noise, and creates an RMS error of 4.26065 ·10−6[m] that can not be minimised by this
algorithm.
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Figure 6.9: Estimated position deviation compared
to the simulation with white noise 0.1[1/s2]. RMS r

deviation = 8.10972 · 10−6[m].

Figure 6.10: Estimated position compared to the
simulation with corrected scale coefficients

C⃗ = (1.2, 1.2, 1.2), biases b⃗ = (0.2, 0.2, 0.2), and
white noise 0.1[1/s2]. Average r deviation

= 9.56970 · 10−1[m].

6.2.4. All Instrument Errors
This test evaluates the accuracy of the least squares algorithm with all errors considered
during estimation. Instead of the uncorrected algorithm, this test considers the corrected
version, as seen in Equation 2.42, Equation 2.41 and Equation 2.43. Figure 6.10 shows the
estimated position (blue line) following a close pattern to the simulated position (orange line),
which shows a significant improvement in state estimation compared to the uncorrected ver-
sions seen in Figure 6.8 and Figure 6.7. Figure 6.11 shows the deviation between the esti-
mated position and the simulated position in full detail and how all combined measurement
errors affect the corrected estimated positions.

Figure 6.11: Position deviation of the least squares algorithm from the actual simulated positions while
correcting for scale factor C⃗, bias b⃗ and white noise n⃗.

The RMS errors of the estimations are 9.56970 · 10−1[m] for r, 4.17161[m] for λ, and 5.94129 ·
10−1[m]. The corrected algorithm significantly reduces the converged deviation from the
simulated position, making it reliable to use to estimate calibration parameters. Figure 6.11
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shows similar paters for all parameters, but with a larger error in the λ direction. This is
attributed to λ being the parameter with rate of change during the orbit, and thus having
more distance between epochs to converge.

6.2.5. Number of Iterations and Dampening Factor
All the previous figures in Section 6.2.2 Section 6.2.3 and Section 6.2.4 show the estimation
process done with 5 least squares iterations per orbit epoch. The number of iterations is
done within each epoch and allows the estimation to converge on a value before moving on
to the next epoch, which is estimated independently as seen in Section 2.4, while carrying
the estimate for the previous epoch as an initial guess. Reducing the number of iterations
reduces the computation time proportionally, while also reducing the accuracy. This section
reports how many iterations are enough to converge at an accurate estimate with less than
10[m] of deviation from the simulated position. Since the dampening factor τ , as shown in
Section 2.3.3, changes with each iteration, the initial dampening factor is a variable to take
into account in this test.

All tests in this section are done using the corrected least squares algorithm. For the first
test, the number of iterations is reduced to 2 without changing the dampening factor. The ex-
pected effect is that a high dampening factor slows down the convergence rate by iteration,
while a low dampening factor, even though it is more unstable, yields a faster convergence
rate by iteration. Figure 6.12 shows how only 2 iterations per epoch affect the estimation
with a dampening factor of τ = 1 · 10−7.

Figure 6.12: Position of the least squares algorithm compared to the actual simulated position. 2 iterations
per epoch, initial τ = 1 · 10−7.

The largest visual deviation from the simulated pattern is shown to be associated with the
estimated radius r, as depicted by the distance between the yellow and blue lines in the top
plot of Figure 6.12 with an RMS r deviation of 16.4411[m]. On the other hand, the largest
total deviation of 88.1222[m] for λ. The graph also displays a pattern in shows that the blue
line moves towards the orange one with a delay, which means that the least squares algo-
rithm estimations are directed towards the simulated state, but have too much dampening
to attain a value large enough to converge closer.
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For a new test, instead of changing the number of iterations, the dampening factor tau is
reduced, and thus the convergence per iteration becomes larger. The initial dampening
factor is reduced to τ = 1 · 10−9 to increase convergence by 102 fo the first iteration and
by 104 for the second iteration when compared to τ = 1 · 10−7 (as seen how dampening
functions, as shown in Section 2.3.3. Figure 6.13 shows how this change has affected the
estimated r, which was previously shown to be the visually deviated from the pattern.

Figure 6.13: Radius r of the least squares algorithm compared to the actual simulated r. 2 iterations per
epoch, initial τ = 1 · 10−9.

In these results, the RMS r deviation is reduced to 3.83494[m], while the λ error is reduced
to 2.21244[m]. With less dampening, each iteration converges faster to the estimated value,
making the estimations significantly closer to the correct values. The reduction in dampen-
ing factor also leads to more extreme first iterations per epoch.

A third test is conducted in which the dampening factor reduced to τ = 0.0 to test how no
dampening affects the iterations.

Figure 6.14: Radius r of the least squares
algorithm compared to the actual simulated r. 2

iterations per epoch, initial τ = 0.

Figure 6.15: Radius r of the least squares
algorithm compared to the actual simulated r

including the first iteration result. 2 iterations per
epoch, initial τ = 0.

Figure 6.14 shows a further improvement in the final iteration of the estimation, with the
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blue estimated line following an even closer pattern to the orange line and an r deviation of
1.45132 · 10−2[m]. Figure 6.15 shows the same test, but includes the estimation data from
the first of the 2 iterations in each epoch. The first iterations in each epoch can be seen
creating spike patterns on the blue line. With no dampening, the first iteration overshoots
by estimating a dy⃗ that is too large. Even though the second iteration results are improved
in every epoch, there are large spikes in the estimations for the first iterations. In this test,
these spikes do not affect the end result. In an orbit with a higher altitude, spikes may
overshoot enough to reach the wrong convergence threshold seen in Section 3.1, and yield
an incorrect estimation.

6.3. Combined Test
Realistically, all of the factors that affect the accuracy of the estimator happen at the same
time. For a final test, all errors are introduced as white noise of 0.1[E], C⃗ = (1.15, 0.95, 1.05),
b⃗ = (0.05, 0.10,−0.20)[m/s2]. The biases and errors are arbitrarily chosen values that repre-
sent a more extreme case when compared to the ones provided in the GOCE data in Chap-
ter 5. An arbitrary initial estimation deviation of 1000[m] is set to observe how the algorithm
also deals with deviation in a combined setting. When it comes to iterations, dampening
factor and maximum D/O, the most optimal combination is chosen. A maximum D/O of 80
is close to the error convergence seen in Figure 6.5 so it is chosen as part of the optimal
combination for this test. In the device (Intel(R) Core(TM) i7-13700H CPU, 16 GB RAM)
in which tests are conducted in this thesis, a D/O of 80 iteration takes ≈ 4[s] to compute.
The Sampling rate of the gravity gradient observations, and, consequently, of the orbital
positions considered in the simulation is 10[s]. With an iteration time of 4[s], it leaves room
to perform 2 iterations. For these iterations, the initial dampening factor is τ = 1 · 10−9, as
it is shown in Section 6.2.5 to be an optimal dampening factor with 2 iteration, but is still
high enough to be safe against sudden divergence. Figure 6.16 shows the final position
results, in which the blue line that represents the estimated state follows a close pattern to
the simulated line, while having deviations, especially observed in the pattern of the r state.

Figure 6.16: Orbital state y⃗(r, λ, ϕ) of the estimated position (max D/O of 80) compared to the simulated
positions with all errors introduced.

The final result for this test shows an RMS radius r deviation of 6.89922[m] ≈ 2.29630·10−4%,
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λ deviation of 1.78146 · 10−4[deg] ≈ 2.22683 · 10−4%, and ϕ deviation of 1.56926 · 10−4[deg] ≈
2.57256 ·10−4%. Figure 6.17 shows the deviations of the estimated position when compared
to the simulated position.

Figure 6.17: Orbital state r, λ, ϕ deviation of the estimated position (max D/O of 80) from the simulated
positions with all errors introduced.

In Figure 6.17, it can be observed that the longitude λ shows more unstable patterns in the
form of larger spikes. Longitude is the state that changes the most during an orbit, from
going through a range of −100[deg] to −60[deg], while r and ϕ don’t change as significantly
as λ. In between each epoch, λ is the state that changes the most, as seen in Figure 6.1.
Thus, the least squares algorithm converges in values of λ slower than the other 2 states.

6.4. Additional Observations
A polar orbit is taken as reference to assess how extreme values of latitude ϕ are processed.
Figure 6.18 shows a severe sudden deviation after 350[s] of orbit in the estimations. This is
generated by running the algorithm on a polar orbit with 40 epochs, 5 iterations, a dampening
factor of 1 · 10−7, uncorrected, no errors, and no initial deviations. .
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Figure 6.18: Spherical coordinate estimation of the satellite position in the Tudat Lunar polar orbit simulation.

The sudden spike is caused by the latitude angle ϕ approaching ±90[deg]. The calcula-
tions during the least squares estimation involve involve terms of the form of 1

cos (ϕ) . As ϕ

approaches this value, cos (ϕ) approaches 0, causing the expression to diverge toward in-
finity and resulting in a sharp numerical instability. By taking the results of this orbit, the
divergence starts when ϕ = −90.08[deg]. With this, it can be deduced that the range for this
singularity point is ±89.92− 90.08[deg].

This behaviour highlights one of the primary drawbacks of using spherical coordinates: the
presence of singularities at specific angles, particularly near the poles, which can introduce
significant errors in estimation.
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Conclusion

GNSS data, as proven during the verification process, is overall more accurate and faster
than a self reliant gravity gradient method. Thus, the purpose this thesis is best suited
for other celestial bodies. Such as the Moon or Mars, which have been very accurately
mapped in terms of gravity field. Additionally, there is the benefit that their gravity field
is less dynamic than Earth’s, which means that such missions have the potential to rely
on accurate navigation without having to communicate with other satellites or Earth-bound
positioning techniques. On top of this, the mission will be much more reliable and able to
operate autonomously for longer durations of time.

7.1. Assumptions
Before a conclusive discussions, the assumptions made during this thesis project need to
be mentioned, which are:

• The gravity field models are up to date. When it comes to performing any procedures
around Earth, it is important to note that the gravity field of Earth shifts. Tectonic
movement and tides for example, change the distribution of the mass of Earth. The
errors that could arise from this fact are not taken into account.

• The accelerometer calibration parameters K2, Eco, Eal can be assumed to be cali-
brated, and thus not included. The two exceptions being the bias b⃗ and the scale
factor K (formulated as scale coefficient C⃗) of transforming from voltage to accelera-
tion, as defined in Section 2.3.1.

• The bias b⃗ is assumed to be 3 global values (1 per axis) instead of 3 per accelerome-
ter. This assumption is taken to estimate bias as part of the state in the least squares
algorithm in each orbital epoch. This simplification is further touched upon in Sec-
tion 2.3.1 and later in Section 7.3, where the consequences of taking this assumption
are explained.

• Bias b⃗ is assumed to be static, thus, non-changing as the satellite orbit progresses
because the testing of this algorithm is done through shorter orbit periods to keep the
testing feasible in terms of computation time. With a short time frame, bias can be
assumed to not change.

• White noise n⃗ is assumed to be a randomGaussian value with mean 0 and amaximum
amplitude obtained from modern gradiometer accuracy in literature.

52
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• In Chapter 6, the high D/O estimation of gravity gradient from theMoon orbit simulation
is assumed to act as the measured gravity gradient.

• The distance between the accelerometers of the gradiometer l is assumed to be known
by design, making it a parameter in the measured gravity gradient equation that does
not have to be estimated.

7.2. Thesis Question Discussion
After analysing the tests carried during this thesis, the questions proposed at the start can
now be answered.

• How can bias and the scale factor be implemented into the least squares algorithm?

The assumption that all measurement devices are aligned along the same coordinate axes
allows for the simplification of sensor modelling by grouping all instrument biases and scale
factors into a single value per frame axis. Systematic errors can be incorporated into the
gravity gradient equations in the form of a scale coefficient C⃗ (which substitutes the scale
factor) and bias b⃗. As a result, the gravity gradient tensor (GGT) is no longer symmetrical,
since every term becomes different, making them 9 distinct values.

The coefficients and biases are introduced into the state vector as (Cr, Cλ, Cϕ, br, bλ, bϕ),
corresponding to scale and bias terms in the radial, longitudinal, and latitudinal directions,
respectively. Incorporating the additional coefficient and bias states modifies the Jacobian
of the GGT, which in turn affects the structure of the design matrix used in the least squares
estimation process. With a total of 9 observations and 9 unknowns, it becomes possible to
simultaneously estimate the position, scale coefficients at the same time while using least
squares.

• How do variables affect the accuracy of the gravity gradient navigation method?

Orbit estimation is a process that requires a large amount of variables which change the
outcome, and thus the accuracy of the results.

During sensitivity analysis tests, it is observed that a larger deviation in the starting posi-
tion estimate causes a slower convergence towards the actual value. Deviations of around
1[km] need 3 iterations to converge. Deviations around 100[km] need 5 iterations to con-
verge. Deviations of more than 211.285[km] on each axis converge into incorrect points. It
is also observed on an orbital altitude test that orbits at higher altitudes converge at a faster
rate, needing 1 less iteration to arrive at the final estimation. On the other hand, higher alti-
tudes but display a larger deviation after convergence, with an error of up to 105[m] or even
109[m] at an altitude of 2 · 109[m] and 2 · 1010[m] respectively. The convergence rate may
be caused by the smoother pattern of the gravity field models at higher altitudes, making
a faster convergence towards a value. The larger error is caused by the significant drop
in intensity of gravity gradient at higher altitudes, at which the noise is far more significant
relative to the signal detected by the gradiometer.

Testing different gravity field models also proves the impact of small variations in gravity field.
When 3 models derived from GOCE data are compared, they yield a difference in position
in the order of 10 to 100[m]. Although this is a small difference; it shows that different which
gravity field models impact this method. It also proves that around celestial bodies such as
the Moon or Mars, in which the gravity field is less dynamic, this method is potentially more
accurate.
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Testing the algorithm with GOCE data shows that transformations between frames require
a large volume of data, most of which comes from gradiometer and star tracker data, which
means that there is a significant amount of errors that can be introduced from the moment
the gradiometer measures the gravity gradient, to introducing the gravity gradient into the
least squares algorithm. Because of this, there is a notable discrepancy between the esti-
mated and the observed state position values.

During the final testing, multiple other variables are found to affect accuracy, notably the
maximum degree and order (D/O) used in the estimations. A low maximum D/O of 20 can
result in estimations different from the actual orbital positions, and which don’t even follow its
pattern, with an RMS radial r deviation of 88.3560[m] and a computation time of 0.22[s]. High
maximum D/O of 180 display more accuracy, with an RMS r deviation of 2.85158 · 10−10[m],
at the cost of a severe increase in computation time of up to 33[s] per iteration. When
introducing scale factors (scale coefficient C⃗), biases b⃗ and white noise n⃗, the results are
also affected, with RMS r deviations of even 94824.6[m] and 13313.0[m]. When introducing
a white noise with an amplitude of 0.1[E] = 10−10[1/s], a randomly fluctuating deviation
from the simulated position with an RMS of 8.10972 · 10−6[m]. When using the corrected
least squares algorithm designed to estimate scale coefficient and bias instead, the error is
reduced to 10−1 to 100[m]. Each epoch is independently processed over multiple iterations of
the least squares method. The number of iterations has a significant impact on the accuracy,
with a lower amount of iterations leaving less chances for the least squares algorithm to
converge. Although this can be compensated by lowering the dampening factor τ , it can
also lead to more unstable estimation, specially when the there is a large deviation in the
initial estimate.

• What is the accuracy of the algorithm when real data is used?

The algorithm is applied to real data from GOCE orbital positions and gravity gradients.
The gravity gradient tensor (GGT) is the measured gravity gradient used as input for the
least squares algorithm, and the positions serve as a reference to determine the error. The
RMS accuacy is of 54862.3[m], or about 0.688254% of orbital radius r. The relative change
seems small, but a deviation of more than 10000[m] is very significant, and for autonomous
satellites basing their navigation on this algorithm, it can lead to incorrect attitude or orbital
control responses. A cause for this deviation is related to the systematic errors which are
not estimated in this algorithm. The gradiometer data needs to be transformed from the
body to the LNOF which requires star tracker data that carries additional errors. On top of
this, the provided in a local north oriented frame (LNOF), while the algorithm is implemented
in the geocentric spherical frame (GSF). To transform from LNOF to GSF, the first derivative
of gravity potential is needed. This is computed by the implemented algorithm for the GOCE
position. Since the gravity accelerations are computed while the gravity gradients are taken
from the data, the discrepancy between these two forms causes further errors.

How accurately can a least squares algorithm estimate satellite position in an envi-
ronment without GNSS?

The last test carried during this thesis evaluates the accuracy of the algorithm in a Lunar
orbit. Event hough recent development shows that some GNSS signals can reach satellites
in orbits around the Moon [24], it is still an environment in which an autonomous navigation
system can be an advantage. For the final test, white noise, bias and scale factor errors
are added into the measured GGT. It also includes an initial deviation of 1000[m]. It shows
that, under the assumptions made in this thesis, a least squares algorithm can estimate
with a deviation of 6.89922[m] ≈ 2.29630 · 10−4%, 1.78146 · 10−4[deg] ≈ 2.22683 · 10−4%,
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1.56926 · 10−4[deg] ≈ 2.57256 · 10−4% for radius r, longitude λ and latitude ϕ respectively.

7.3. Limitations
Despite its demonstrated feasibility, the proposed algorithm presents several limitations that
must be acknowledged.

A primary limitation stems from the use of GSF as the reference frame for the estimation
process. While this frame aligns naturally with the representation of gravity fields with spher-
ical harmonics, it introduces several computational and numerical challenges. One such
challenge is that two of the parameters in GSF, latitude (ϕ) and longitude (λ), are angular
rather than linear. This complicates the error propagation and comparison process within
the least squares estimation, as angular quantities require a wight factor in the least squares
to ensure consistent and meaningful results. Small changes in angular values can result in
disproportionately large errors.

Another significant drawback of the GSF is the presence of coordinate singularities, partic-
ularly when ϕ approaches ±89.92 − 90.08[deg]. The mathematical formulation involves the
term 1

cos (ϕ) . At these points, the term diverges toward infinity, leading to instability and sharp
spikes in the estimated values. Singularities can severely affect the navigation performance,
meaning that the algorithm is not suitable for polar orbits.

Additionally, the algorithm assumes that all noise and estimation errors are aligned with the
axes of the selected coordinate frame. This simplification makes error handling within the
algorithmmore straightforward. However, it does not reflect the true nature of measurement
errors in practical systems. In reality, sensor errors are axis-dependent and vary based on
the orientation and characteristics of each individual instrument. By combining and treat-
ing errors as if they were aligned, the algorithm doesn’t estimate the individual calibration
parameters of each accelerometer. This causes a deviation from the actual position when
compared to real-world measurements, reducing the physical fidelity of the results. This is
one of the causes for the large deviation between GOCE data and estimations.

An important limitation to also note is the maximum deviation possible to converge into
the correct position. With a deviation of at least 211285[m] in one of the axes, the least
squares algorithm converges into an incorrect position. Thus, the initial estimation should
not deviate more than this value. As a result, it is imperative that the weighed method is
used to compensate for the scale differences between the linear and angular components
of the algorithm.

The last limitation worth mentioning is the computational cost. Although the algorithm devel-
oped in this thesis runs on a personal computer, the use of rust and the proposed Legendre
function implementation greatly reduces the computation time. It starts being specially no-
ticeable at a maximum D/O of 80. It also means that to obtain accurate results feasibly, the
tests conducted in this thesis are shortened to orbital epochs between 40 and 100 depending
on the test.

The limitations above highlight the trade off between computational convenience and physi-
cal accuracy. Addressing them would require alternative coordinate representations, better
handling of angular quantities, and a more realistic error modelling framework.

7.4. Research Plan Assessment
This section reiterated the research plan, the complications during the thesis project, and
how it affected the process. First, a recap of the plan is layed out:
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• Themethodology (Chapter 2) answers the first sub-question, specifically Section 2.3.1
and Section 2.3.2, where calibration parameters are included into the estimation of the
least squares method. The rest of the sections in the methodology describe the con-
struction of the least squares algorithm, as well as details in how they are programmed.

• The Sensitivity Analysis (Chapter 3) partially answers the 2nd sub-question, in which
initial deviation, orbital altitude and D/O are assessed on how they affect the algorithm.
Primarily, it also serves as a section to know the limitations of the algorithm and how
different circumstances can yield different results.

• The Verification (Chapter 4) is a section that is used to make sure the algorithm works
correctly, not only as it is intended, but physically too.

• The Validation (Chapter 5) answers the 3rd sub-question by making use of a real case
scenario in the form of GOCE data. It also describes the process in which this data is
retrieved and transformed to be used by the algorithm.

• The Results (Chapter 6) finalise the answer to the 2nd sub-question by testing al-
gorithm variables that can affect accuracy by making use of data from a Moon orbit
simulation. With the knowledge of the optimal algorithm variables for this orbit, a final
test is conducted where all calibration parameters and errors are introduced to finally
answer what the accuracy to answer the main question.

• The Conclusion (Chapter 7) discusses directly the answers to the thesis questions. It
also tackles the limitations of the algorithm and recommends future work.

The complications and their effects are addressed here:

• When testing the algorithm, it showed erratic and unstable behaviour when it comes to
converging into the correct position states. This was found to be due to the difference
in scale between the linear and angular components in the gravity gradient vector
V⃗uu. Because of this difference, as part of the methodology, the weighed method is
implemented into the least squares algorithm, and a dampening factor is included
which were not previously planned.

• When testing with GOCE data, the frame differences between the data provided and
the data being used in the algorithm made it not possible to directly use it. This pre-
sented a large roadblock to the thesis process until the frame transformation was
studied by using the Chistoffel symbols of the second kind, as shown in ??, which
extended the thesis time.

7.5. Future Work
There are several aspects of this research that can be explored in future work. First, there
is the co-ordinate frame limitation. From the previous section, it can be seen that there is a
very significant drawback from using GSF for the least squares estimation. Future work on
this aspect should focus on finding the Cartesian form of GGT, its derivative, and applying
it to the least squares algorithm.

The next step in for this algorithm is to research how to obtain, transform and use raw
data from star trackers and accelerometers. This is a step forward to implementing a more
accurate algorithm that considers real data, frames, as well as inaccuracies, errors and
transformation matrices as a starting reference point. Even though GOCE data is for Earth
orbit, it provides the methods to process data and generate a measured gravity gradient
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parameter for the least squares process.

With the retrieval of instrument data, it is possible to have a more detailed overview of errors.
This thesis assumes all instrument errors are aligned in the same axis. If this assumption
is not taken, all these errors become separate. It allows for a more accurate estimation of
measurement errors, and thus, a more accurate estimation of the orbital position state.

The proposed algorithm makes use of 1 epoch to estimate 9 different elements. If instead,
several epochs are used at a time, more elements can be estimated, such as the individual
accelerometer and star tracker calibration and data combination parameters can be esti-
mated.



A
Derivations

A.1. Gravity Gradient Factorisation Derivation
To simplify and make it easier to follow, the associated Legendre functions with x = sin (ϕ)
are simplified as:

Ppq(sin (ϕ)) = Ppqs (A.1)

The gravity potential equation is used as a reference in the appendix to follow the derivations
that stem from it:

Vpq =
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A.1.1. Gravity Acceleration derivation
Gravity acceleration is obtained by differentiating the gravity potential shown in Equation A.2
over the 3 different coordinates. In this case, where the spherical coordinates are u(r, λ, ϕ),
it is derived into Vrpq , Vλpq and Vϕpq respectively as:
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A.1.2. Gravity Acceleration
Gravity acceleration can be arranged in the form of a vector V⃗upq , where each component
corresponds to each axial direction:

V⃗upq =

Vrpq

Vλpq

Vϕpq

T

(A.6)

A.1.3. Gravity Gradient Derivation
Gravity gradient is obtained by taking the second differential of the gravity potential Vpq, or
the first differential of gravity acceleration V⃗upq with respect to the coordinate parameters
u(r, λ, ϕ):
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A.1.4. Gravity Gradient Tensor and Vector
Gravity gradient is commonly arranged in the form of a matrix tensor Vuupq as:

Vuupq =

Vrrpq Vrλpq Vrϕpq

Vλrpq Vλλpq Vλϕpq

Vϕrpq Vϕλpq Vϕϕpq

 (A.13)

where it is important to note that, as shown by the derived equations for each individual
element in the matrix, the gravity gradient tensor is a symmetric matrix. This means that
there are only 6 unique elements. These elements can be arranged into a gravity gradient
vector V⃗uupq , as:
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A.1.5. Gravity Gradient Derivatives
Differentiation is conducted to find the third derivatives of gravity potential. In this case, the
gravity gradient spatial derivative vector V⃗uupq is:
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A.1.6. Factorisation
As shown in Section 2.2, each element in the derivations for V⃗uu and V⃗uuu is independent
to r, λ and ϕ. This means that it can be divided into separate common factors. The factors
corresponding to each coordinate state are arranged into vectors F⃗ :
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F⃗ λ =
[
Cpq cos (qλ) + Spq sin (qλ) q(−Cpq sin (qλ) + Spq cos (qλ)) −q2(Cpq cos (qλ) + Spq sin (qλ))

]
(A.17)

F⃗ ϕ =
[
Ppq(sin (ϕ)) cos (ϕ)P ′
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]

(A.18)

The F⃗ vectors are repeated into a matrix for each element in the gravity gradient vector V⃗uu

(which is 6). This is useful for steps that come after this one. The following equations show
the steps to accomplish this:

Q⃗ =
[
1 1 1 1 1 1

]T (A.19)
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, (A.20)
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Q⃗F⃗ λ =


Cpq cos (qλ) + Spq sin (qλ) q(−Cpq sin (qλ) + Spq cos (qλ)) −q2(Cpq cos (qλ) + Spq sin (qλ))
Cpq cos (qλ) + Spq sin (qλ) q(−Cpq sin (qλ) + Spq cos (qλ)) −q2(Cpq cos (qλ) + Spq sin (qλ))
Cpq cos (qλ) + Spq sin (qλ) q(−Cpq sin (qλ) + Spq cos (qλ)) −q2(Cpq cos (qλ) + Spq sin (qλ))
Cpq cos (qλ) + Spq sin (qλ) q(−Cpq sin (qλ) + Spq cos (qλ)) −q2(Cpq cos (qλ) + Spq sin (qλ))
Cpq cos (qλ) + Spq sin (qλ) q(−Cpq sin (qλ) + Spq cos (qλ)) −q2(Cpq cos (qλ) + Spq sin (qλ))
Cpq cos (qλ) + Spq sin (qλ) q(−Cpq sin (qλ) + Spq cos (qλ)) −q2(Cpq cos (qλ) + Spq sin (qλ))

 ,

(A.21)

Q⃗F⃗ ϕ =
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(A.22)

The exponential matrices determine which version of each factor is used for each gravity
gradient component, for example, Vrr, which has the second differential wit respect to r, has
an Er segment of

[
0 0 1

]
, but has

[
1 0 0

]
as segment for Eλ and Eϕ.

Er =


0 0 1
0 1 0
0 1 0
1 0 0
1 0 0
1 0 0

 (A.23)

Eλ =


1 0 0
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0

 (A.24)
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With the QFE matrices, the individual parts for each gravity gradient component are com-
puted:
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Πjϕ

j=1(Q⃗F⃗ ϕ
j )

Eϕ

=



Ppq(sin (ϕ))
Ppq(sin (ϕ))

cos (ϕ)P ′
pq(sin (ϕ))

Ppq(sin (ϕ))
cos (ϕ)P ′

pq(sin (ϕ))
cos (ϕ)2P ′′

pq(sin (ϕ))− sin (ϕ)P ′
pq(sin (ϕ))

 (A.31)

A.2. GSF and LNOF relation
??

GSF is a geocentric frame and LNOF is a local frame, with basis (i1, i2, i3) and (e1, e2, e3)
respectively. Assuming Cartesian state vector x⃗ = [x, y, z]T , and spherical state vector
u⃗ = [ϕ, λ, r], their coordinates relate as:
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x = r cos (ϕ) sin (λ)
y = r cos (ϕ) cos (λ)
z = r sin (ϕ)

(A.32)

The covariant of the local basis en is given in terms of the geocentric basis:

e⃗n = im
xm

un
(A.33)

The composition of dx
du

is shown in:
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 (A.34)

The inner products of the basis expressed this way is defined as:

gnm = e⃗n · e⃗m (A.35)
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e1 = −r sin (ϕ) cos (λ)i1,−r sin (ϕ) sin (λ)i2, r cos (ϕ)i3
e2 = −r cos (ϕ) sin (λ)i1, r cos (ϕ) sin (λ)i2, 0i3
e3 = cos (ϕ) sin (λ)i1, cos (ϕ) sin (λ)i2, sin (ϕ)i3

(A.36)
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With the inverse being:
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The Chistoffel symbols of the second kind are:
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With the use of the Equation A.40, the derivative of the local basis em are given by:
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= Γs
mnes (A.41)

The fist partial derivatives of gravity potential (gravity acceleration) are expressed as:

∇V = em
dV

dum

∇ = em
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dum

(A.42)

Knowing the expression for the operator∇, the second derivatives of gravity potential (grav-
ity gradient) are expressed as:
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(A.43)

Each local basis em has a normalised equivalent êm where 1
r2
, 1
r2 cos (ϕ)2 , 1 are the normaliser

factors for ê1, ê2 and ê3 respectively. With this, the transition from GSF gravity gradients to
LNOF gravity gradients is:
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Vyy =
1

r2 cos (ϕ)2
(
Vλλ −

(
Γ1
22Vϕ + Γ2

22Vλ + Γ3
22Vr

))
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A.3. Star Tracker Quaternion Processing
Quaternions are 4 numbers which represent the satellite attitude, and are the result of data
collected by star trackers. Rotation in the GOCE data files is represented by quaternions,
since GOCE makes use of star trackers, and they are used to derive a rotation matrix as:

R(q) =

2(q20 + q21)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q2o + q22)− 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1

 (A.50)

Equation A.50 forms part of the transformation from the gradiometer reference frame (GSF)
to the inertial reference frame (IRF), as seen in Figure 5.1. The actual transformation for
the GOCE data is provided in the EGG_NOM_1b levell 1 data file. To transform from IRF
to the Earth centred Earth fixed frame (ECEF), Earth’s rotation, precession, polar motion
and nutation are needed. These transformations are not covered in this thesis, but they are
a significant aspect of an autonomous navigation system when using gravity gradiometry.



B
Programming Details

The program can be found in 2 parts. A python part, which is used for orbit simulation, data
generation and plotting. A rust part, which is used for the main algorithm and all the tests.
The rust code is provided in a repository [25]
Each one of them has a README to be used for instructions on the installation and execu-
tion of the code.
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C
Literature Study

C.1. Introduction
The contents of the literature study introduction are discussed in Section 1.1.

C.2. Literature Research
Traditionally, gravity gradient orbit determination has been aided by external sources, but as
stated by Anthony DeGregoria [26], these are inconvenient, slower and much less reliable
than the potential that gravity gradiometry has for autonomous guidance. It also shows a
great potential for navigation algorithms fully dependant on gravity gradients. It deals with
map matching, but it shows the improvement it has when a Kalman filter is applied to the
algorithm. Low altitude bodies such as aeroplanes or satellites can greatly benefit from this
concept, which is limited by the accuracy for making Earth gravity models and measuring
gravity gradient.

Further research also reveals that gravity gradiometry aided navigation can yield results
with the same accuracy as GPS aided navigation. Justin A. Richeson et al. [27] shows that
a gravity gradiometry independent method can yield errors smaller even than GPS. The
only limitation with this method, is the size and mass of the gradiometers available when
published, which were of a mass of approximately 280[kg]. Upon more investigation, it is
also found out that according to a design by S. Weiner et al. [28], new gradiometers are
capable of being less than 70[kg], while still providing optimal results. This statement is
done based on a cold-atom gradiometer design, of which its flaws will be commented later.
Nevertheless, it is clear that the shrinking of technology will inevitably make this a viable
option.

An important addition to the literature research is that most of this field has recently been
highly researched by Chinese sources. Most of them are extremely useful and serve as a
source of inspiration for the goal of this research. An example of these methods is given
by X. Sun et al. [23], in which an extended version of the Kalman filter, the unscented least
squares (USL) filter is developed, which will most likely be used as a basis for this research
later.
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Gravity Field Map
The concept of a gravity field has been part of physics for a long time. Isaac Newton pub-
lished the law of gravitational attraction in 1687, in which a simple equation describes what
was then then considered to be the gravitational potential of Earth. This can be seen in
Equation C.1, where V represents gravitational potential, G represents Earth’s gravitational
constant, M represents its mass, and r the radius from the centre of mass at which the
potential is being measured.

V = −G
M

r
(C.1)

The problem with this simple equation was that it could not work unless Earth was perfectly
uniform in density and a perfect spherical shape. This is not the case. Taking the previous
equation, it can be turned into Equation C.2, where x, y, z the dimensions of volume, and
ρ is density as a function of the coordinates. This is to show that density does differ, thus
gravity field is not uniform.

V = −G

∫ ∫ ∫
ρ(x, y, z)

r(z, y, z
)dxdydz (C.2)

T. M. MacRobert [29] explains how in 1785, Laplace published a memoir his own concept
for gravitational potential. Laplace described potential as a spherical harmonic function. A
function composed of layers of functions with degree and order. Legendre, with who he
had been in contact with, was thus led to the discovery of what we now know today as the
associated Legendre functions, by which gravitational spherical harmonics is expressed
nowadays. Equation C.3 shows how gravity is expressed in terms of spherical harmonics,
with p being degree and q being order.

V =
GM

R

∞∑
p=0

p∑
q=0

(
R

r

)p+1

(Cpq cos (qλ) + Spq sin (qλ))Ppq(sin (ϕ)) (C.3)

Degree and power is what defines every component of gravity field. The associated Leg-
endre function Ppq, the sine coefficient Spq and the cosine coefficient Cpq define the shape
of each component and the values corresponding to the specific spherical coordinate. Fig-
ure C.1 shows how degree and order components work.
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Figure C.1: Visualisation of how degree and order works on gravity field as shown by J. Hollebon et al. [30],
in which n is degree and m is order.

It is also vital to know about the best gravity field models of Earth there are. This is in order
to know to what extent is gravity gradiometry reliable at this time, and thus feasible. It is
important to learn what are the most advanced sources for these models. the accuracy of
spherical harmonic models is based on the accuracy of the coefficients Cpq and Spq and how
much degree and power can be attained.

The latest verified model computed by Philipp Zingerle et al. [31] goes up to degree and
order 5540. This is obtained by a combined calculation of data taken by satellite, as well
as ground stations. Despite this, the pure satellite data with combinations only goes up to
degree and order 716, with GOCE data alone not surpassing degree and order 300.

GOCE (Gravity field and Ocean Circulation Explorer) [32] was a satellite mission in Low
Earth Orbit (LEO) with the purpose of mapping Earth’s gravity field and getting insights into
its interior structure and ocean depths. This mission is a very significant contribution to grav-
ity field models and the functionality of gravity gradiometers as a viable instrument in space.

A way to verify that GOCE data does not surpass degree and order 300 is by looking at a
report written by the the European GOCE Gravity Consortium [33]. It can be observed that
data processed from GOCE is limited to degree and order 300. Because the models ob-
served are only to be used as a reference of what a gradiometer measures, taking degree
and order 300 is the best way to evaluate the present state. On the other hand, it is also
convenient to study higher degree and orders such as 716 and 5540 to demonstrate the
feasibility of orbit determination by gravity gradiometry in the future.

It is also important to point out that the gravity model of Earth is constantly changing. Srini-
vas Bettadpur [34] shows the dependency of the gravity model, and how it dynamically
changes depending on factors present on our planet such as Earth tides, ocean tides, at-
mospheric variation, and rotational deformation. This is a possible set-back when verifying
a gravity gradiometry method in real time, as the field would be constantly shifting. But as a
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way to develop and test a method, this doesn’t have to be taken into account. The assump-
tion is made that a static model of Earth is sufficient. When looking at further possibilities
like the Moon and Mars, their field is not dynamic. Thus, it does not face these problems.
On top of this, the Moon and Mars cannot rely on GNSS as much as Earth. Relay satellites
are a possibility, but Mars orbiters would have a significant time delay from all the signals
which have to be sent back and forth and its distance. Lunar orbiters are unable to use
navigation on the dark side of the moon.

To validate this, it can be seen from official NASA sources [35] [36], that the Moon’s gravity
field model goes up to degree and order 1200 and Mars’ model goes up to degree and order
110, all while both are static and reliable gravity field maps.

This is a vital piece of information. It indicates the best usage for gravity gradient satellite
navigation. With it’s usage being a navigation tool for bodies in which GNSS navigation is
not available or reliable enough.

Gradiometers
In this section, the functionality and management of accelerometers and their subsequent
usage as gradiometers will be discussed.

The original concept of a gradiometer was a torsion balance. It was proposed ad made
by R. Eotvos [37]. It consists on 2 test masses hanging on a beam. Their acceleration is
measured by the torsion of the fibre the beam is being carried on. In 1981, the first practical
application was proposed by G. Balmino et al. [38]. It suggests the usage of gradiometry in
opposition to satellite-to-satellite tracking. It states it to be cheaper and less complex. And
thus, with the advancement of technology, gradiometers are improving their accuracy every
year too.

Accuracy is key to know the position of a satellite in orbit. To determine the degree of accu-
racy in which the position can be obtained, the accuracy of the gradiometers must be known
too. This is because the magnitude of errors in these devices greatly affects the computed
state.

According to C. Siemes et al. [39], the gravity gradiometry data can be calibrated and im-
proved over GOCE’s data. This yields errors in gravity gradient ranging from 6[mE] for Vxx

and Vyy to 12[mE] for Vzz and Vxz on band-passed readings from 1 − 10[mHz] (E stands
for the unit of measurement Eotvos, which is equivalent to 10−9[s−2]). Despite these being
optimal results, these do not represent reality, as they have already been calibrated to a pre-
set data collected by GOCE. The accuracy that needs to be known is the inherent accuracy
of the gradiometers at their moment of use, to be able to calculate the position while in orbit.

Electrical Gradiometers
Electrical gradiometers have been the most commonly used devices to measure gravity
field. They work by making use of electrostatic accelerometers. According to P. Touboul et
al. [40], the principle of an electrostatic accelerometer lies on the movement of a proof mass
within a sensor cage. When making use of accelerometers within Earth, the proof mass is
linked to the cage by a mechanical stiffness. But for space applications, the proof mass is
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not linked in any of the 3 dimensions. This makes it possible to make the accelerometer
work in 3 dimensions and yield higher resolution results. This proof mass is kept passively
motionless within the cage. On each axis, a pair of electrodes is kept at either side of the
proof mass in order to sense position by the use of a capacitive sensor. The difference in
signal can later be computed in order to get the position of the poof mass and subsequently,
its acceleration. This can be seen visually in Figure C.2.

Figure C.2: Graph of how an electrostatic accelerometer works according to P. Touboul et al. [40].

There has been a steady advancement in gradiometer technology within the last 25 years
alone. D. DiFrancesco et al. [21] shows major gradiometer advancements up to 2009.
It indicates how, gradiometers for functions that require a much lower resolution (ranging
within 1[E/Hz0.5]) are less prone to error. Any small change and shift in mass on Earth is
a change and shift in the gravity field. This means that The larger the resolution, the more
dynamic and small errors are detected. A satellite mission such as GOCE, which is made
for the purpose of satellite gradient readings, has a gradiometer of an accuracy ranging in
0.004[E/Hz0.5]. The gradiometer in GOCE is used explicitly for this purpose and thus has
its data processed after. This implies that readings with this amount of accuracy may not
be as reliable when depending on the gradiometer readings alone.

University of Maryland has a design for Gradiometer, as seen from C. E. Griggs et al.
[41], which can reach an accurate as low as 1.4 · 10−4[E/Hz0.5] between 1 − 50[mHz] and
2 · 10−5[E/Hz0.5] between 0.1 − 1[mHz]. According to X. Sun et al [23] gradiometers can
have a noise of down to 0.1[E]. This was found at a specific frequency from J. A. Richeson
et al. [27]

The most useful example for an electrical gradiometer is the Electrostatic Gravity Gradiome-
ter (EGG), developed for the GOCE mission [42]. M. R. Drinkwater et al. [43] specify the
performance characteristics of this gradiometer. It makes use of a measurement bandwidth
of 5 · 10−3[Hz] to 0.1[Hz] with an error margin of 3 · 10−3[E/Hz0.5]. Z. Zhu et al. [44] states
that GOCE’s accuracy was of 1 · 10−2[E/Hz0−5] to 2 · 10−2[E/Hz0−5].

D. DiFrancesco et al. [21] also touches upon possible error and noise sources for gra-
diometers. It mentions standard instrument noise such as electronic noise, eddy currents,
temperature, pressure and humidity variations and geologic noise. These come from the
set up of the equipment and the vehicle itself, as well as other external accelerations. But
the most vital types of errors which affect gradiometers are external inputs. Errors will be
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discussed later on.

Quantum Gradiometers
There is a second way o measuring the gravity field of Earth. This is by making use of quan-
tum gradiometers. This is technology which has a substantial amount of potential promise.
It was first suggested by H. A. Chan and H. J. Paik [45]. The model proposed makes use of
a Superconducting Quantum Interference Device (SQUID). The principle by which it works
is a superconductive mass being attached to a weak spring. This spring lets the mass move
enough with acceleration changes. The conversion of acceleration into a signal is caused
by the transducer, made from sensing coils which generate current and magnetic flux due
to the mass movement. The current is detected by its the SQUID and its voltage amplified.
Figure C.3 shows how this works. This version, however, is plagued with calibration param-
eters and noises.

Figure C.3: Graph showing how a quantum gradiometer works based on SQUID technology [45].

J. Zhong et al. [46] suggests a more modern design called Atom Gravity Gradiometers
(AGG). It states that they are highly immune to any other acceleration noises. W. Lyu et
al. [47] explains how the design works through the use of Light-Pulsed Atom Interferometer
(LPAI). Within each interferometer, a cold atom cloud is split, moved and recombined by
laser pulses. Excited atoms can be imprinted by the phase of the laser pulses. This phase
changes with gravity, hence giving signals when there is any acceleration change.

However, according to the latest advancements in these devices according to B. Stray et al.
[48], the precision is 20[E], which is way too high to even consider it viable in comparison to
the 0.1[E] observed from the electronic gradiometers. AGGs also seem to be mostly used
for other purposes other than space. As seen from J. Vovrosh et al. [49], they are mostly
used for Earth mapping, archaeology, hydrology and earthquake detection among many
others. This unfortunately makes them less likely to be used in the near future. Despite this,
it is a topic to be encouraged to advance in, as their designs show promise.

Errors and Calibration Parameters
Both internal and external factors have a significant effect on the results of orbit position
determination. Because of this, it is vital to have knowledge on what these factors are, how
they function ad how large they are.
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External Noises
From X. Sun et al. [50], the most significant external factors are deduced. These can
potentially alter the measurements.

• The centrifugal acceleration: represented by Ω2r⃗i. It is the acceleration caused by
the angular velocity in a radial direction to the motion. Ω is the angular velocity of the
satellite and ri is the distance between the accelerometer i and the COM (centre of
mass) of the gradiomter.

• The linear angular acceleration: caused by an a change in angular velocity. This one
is tangential to the rotating motion, and therefore normal to the centrifugal acceleration
in direction. It is represented by Ω̇r⃗i. Ω̇ is the rate of change of angular velocity.

• Linear accelerations: These accelerations affect the body without rotation. They do
not depend on the positioning of the accelerometers. Thus, it can be assumed that
they act on the COM of the gradiometer. This means that there is no need to multiply
it by r⃗i or any other factor. They are represented by d⃗.

• Tidal effect and others: It affects the reading of the gravity gradient by only 0.1 ·
10−4[E] according to X. Sun et al. [50]. It is thus not considered to be large enough to
make any significant difference on the gravity gradiometry, and thus it can be assumed
to be ignored. Other forces such as Coriolis are weaker than the tidal effect, and thus
can be assumed out too.

These are the 3 main sources for noise in a gradiometer when wanting to evaluate the
gravity field. The measurement perceived by the accelerometers within the gradiometer
involves the gravity gradient tensor (GGT) Vuu. The GGT is the second derivative of the
gravity potential V with respect to the coordinates.
This, in turn creates the following equation (Equation C.4) for the perceived acceleration
caught by an accelerometer

a⃗i = Ω2r⃗i + Ω̇r⃗i − Vuur⃗i + d⃗ (C.4)

A it can be observed in this equation, the only components exclusive to the accelerometers
are the measured acceleration a⃗i and the distance from the gradiometer COM r⃗i. Ω and
Ω̇ can be obtained through attitude determination devices. This means that it is possible
to find out Vuu through only 2 accelerometers or even 1 if the linear accelerations d⃗ are
assumed to not be in place. This can be shown in Equation C.5.

Vuu = Ω2 + Ω̇+
d⃗+ a⃗i
r⃗i

(C.5)

Calibration parameters and white noise
It can also be seen, from this same paper, that gradiometers contain systematic errors and
parameters too.

• The first of them is covered by P. Touboul et a. [9] and is an uncertainty in the elec-
trostatic gains/scale factors used in accelerometers to convert voltage to acceleration.
It is represented by K in this case and it is a coefficient with acceleration. There
are ways to avoid this but it is better not to assume this out, as it is a very common
systematic error.

• There are two other errors which can also be a coefficient with acceleration. These
two are errors caused by the accelerometer misalignment and the inter-axis coupling.
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They are represented by Eal and Eco respectively in this case. Eal occurs as a product
of an angular deviation from the ideal accelerometer arrangement. Eco occurs as a
product of a deviation from the arranged axes the accelerometers would ideally be
placed at.

• C. Stummer [10] talks about the quadratic factor error. This one appears from the
transfer function when converting the accelerometer’s voltage into acceleration to be
measured. It is represented by K2, and it acts as a coefficient with a2 (the real accel-
eration) to give a value.

• Accelerometer bias. Each accelerometer has a bias in each of its 3 axes. It is repre-
sented by b. This means that in a 3 axis gradiometer, there are 18 different biases to
take into account. It is possible, to reduce it to 3, since ideally all accelerometers have
the same orientation, and thus all biases facing the same axis can be summed up into
a total gradiometer bias. This, on top of the fact that any misalignment and inter-axis
coupling errors are already taken into account. A bias is a specific value that each
accelerometer has due to any imperfection or drift within its mechanism. Unlike noise
(explained after), it is not a random error, but instead a starting value which may drift
with time. It is possible to assume a fixed value bias in theory, but it must be stated
before yielding results.

• Systematic noise. This may come from the accelerometers, their measurements, their
information transfer or any system which operates in between. Systematic noise hap-
pens in all 3 axes and it can be treated as white noise. It is represented by n. It is
treated as a Gaussian Random variable (GRV) in order to implemented within calcu-
lations.

Equation C.6 shows the arrangement in which an accelerometer calculates acceleration.

a⃗ = (K + Eal + Ecoa⃗
(real) +K2a⃗(real)

2

+ b⃗+ n⃗ (C.6)

In here, a is the real acceleration, ã is the measured accelerometer acceleration.

From C. Siemes [51], it is seen that these factors can be easily cancelled out in real sce-
narios by making use of a proof-mass shaking and science mode procedure. During the
science mode procedure according to C. Siemes et al. [52], a closed loop is implemented
in which accelerometer data is read and ion thrusters are used to counteract the anomalies.
Shaking mode procedure is different.

As said by B. Frommknecht [11], the first step is to get rid of non-linear errors, in this case
K2. Figure C.4 shows how this signal is fed into the closed loop, with a gain G and a
transfer function H. If the gain is affected by the quadratic term, a signal of a frequency of
the sum and differences of the frequencies present in the input will appear. This way both
the shaking input and this frequency are filtered. After this, a modulation appears as a result
of high frequency pulses. The amplitude of this modulation is proportional to K2.
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Figure C.4: Diagram of the high frequency signal fed on the control loop to determine the K2 error, given by
B. Frommknecht et al. [11].

Secondly, cold gas thrusters are used to shake the spacecraft at high levels of linear and
angular acceleration. This way it is far more significant than the gravity gradient signals. To
explain this briefly, this allows to determine the parameters of the gradiometers without the
shaking and helps distinguish each of the accelerations from each other by making them
weakly correlated.

With this done, the proof-masses are positioned relative to their cages in order to zero out
this error. The error which appears from this procedure is insignificant, and thus irrelevant,
making it possible to ignore it. This procedure however, is done periodically throughout the
early part of the spacecraft’s orbit. This means that objects with a short flight time cannot
apply this process. This will not be a problem for functioning satellites and long running
vessels.

This leaves the vital and most important calibration parameters. The scale factor, unknown
bias, and white noise from the equipment. By only taking these into account, the accelerom-
eter measurement equation should look as shown in Equation C.7

a⃗ = Ka⃗(real) + b⃗+ n⃗ (C.7)

Attitude Determination Devices
Electric accelerometers have an output that depends on not only the gravity gradient, but
other elements too. This can be seen in Equation C.4, now re-formulated as Equation C.8.

a⃗i = (Ω2 + Ω̇− Vuu)r⃗i + d⃗ (C.8)

In order to obtain the GGT, Ω needs to be known.

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (C.9)

The angular velocities ω are obtained by an attitude. In this case, the most commonly used
technology and most accurate are Star Trackers. There is a large variation in star track-
ers. AI-based real-time star trackers are a relatively new and potential method to make
use of star tracking. According to G. Carmeli et al. [53], the accuracy can be as low as
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0.01[deg] which is equivalent to 36[arcsec]. On the other hand, much more developed and
tested form of star trackers, such as the one tested by R. W. Bezooijen et al. [54], can have
an accuracy of even 1[arcsec]. For now, this seems like the most viable option to go with.
The same can be seen with the APS autonomous star sensor from the Jena-Optronik com-
pany [55], in which random errors are smaller than 1[arcsec] and biases are smaller than
5[arcsec]. This knowledge can also be used to know the angular velocity accuracy of a star
tracker. T. Sun et al. [56] indicates that for an accuracy of 5[arcsec], the error in angular
velocity would be of 0.0014[deg/s]. Star trackers have an additional disadvantage of needing
to be oriented towards the exterior of the satellite. This means that it is possible that the
Star Sensor Reference Frame (SSRF) is different from the Gradiometer Reference Frame.
This is the case for GOCE as shown by C. Siemes [51], in which each of the 3 star track-
ers had a reference frame of its own which needed to be rotated into the gradiometer frame.

Other devices exist which can provide attitude measurements. Magnetometers are devices
most commonly used on Earth orbit. Using a similar method of measuring and mapping as
we are trying to accomplish, but with the magnetic field of Earth. These subsequently then
obtained the orientation of the satellite through this process. Magnetometers have been
used to attitude determination in combination with attitude control. However, its accuracy
is not as high as a star tracker. S. Carletta et al. [57] show in a recent article that it has
an angular accuracy of 10[deg] and angular velocity accuracy of 0.2[deg/s]. These values
are too high in comparison with star trackers, and to even be able to get good data from
gradiometers. On top of this, the article also states that by using an extended Kalman filter,
it can reach an accuracy of 1[deg] and 0.01[deg/s], which are still not comparable values to
a star tracker.

Magnetometers can also be coupled with solar sensors. According to the article byQ. Zhang
et al. [58], while the angular rate accuracy does not change, the angular accuracy can be
reduced to 0.3[deg]. Despite this, angular rate is what this research is most interested on
and thus it means that star trackers are still the best option.

By taking a look at the level of accuracy of each of these sensors, it is perfectly clear that
star trackers hold a very significant advantage when it comes to measuring attitude. They
were also used in GOCE, making them even more tested for complementing these kinds of
missions.

Previous Work
In 2003, A. Bobojc e al. [1] made an initial suggestion for this satellite orbit determination
using gradiometry. It was by what was then the future GOCE mission’s gravity gradiometry
observations. The paper shows an improvement in the orbit determination by means of the
the use of gravity gradient. This is not enough and suggests that it is best to make this a
joint process between the GPS observations of an orbit and the gradiometer readings. This
would be done via a weighted method in order to optimise the errors. Of curse, this defeats
the purpose of self sufficiency, which is the actual potential of gravity gradiometry in this
case. It states the main issue for error is bias due to the limited gradiometer bandwidth.

In 2015, P. Chen et al. [2] proposes a method based on eigen-decomposition for GOCE
data, in which errors are reduced. The overall process can be seen in Figure C.5. The data
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taken is that of the star tracker, in order to get knowledge of the attitude of GOCE via star
trackers, the gravity gradiometer, to obtain the gravity gradient and the Earth rotation model
to be able to perform the correct rotations and handling data within axis.

Figure C.5: Process by which results from P. Chen et al. [2] are obtained.

The results show an average position error of 120[m] and a velocity error of 0.125[m/s]. While
this is a method proven to work decently, it still cannot be applied to any practical cases.
This is due to the fact that it does not take into account the accelerometer biases. Without
this, when comparing to real world counterparts, errors are much larger.

In 2016, X. Sun et al. [50] do take into account calibration parameters such a bias, and
make use of a batch least squares algorithm as a version of a Kalman filter design called
the Unscented Kalman Filter (UKF) to perform orbit estimation. The algorithm used is one
proposed by E. Park et al. [3] which propagates sigma points. Sigma points χ, according
to S. J. Julier [59], are arbitrary state points used for a non-linear transformation of a vec-
tor. Instead of using a random Gaussian distribution for these points, they are chosen so
that their sample weighted mean is the augmented state. The augmented state is a vector
which contains both the state vector and the process noise vector. For a better insight on
this process, Figure C.6 shows a full description of the process.

The results from this method yield position errors in the range of 10.8[m] to 1208.3[m] and
velocity errors in the range of 0.013[m/s] to 1.2[m/s]. While the lower range of errors is an
accomplishment for a more realistic scenario like this one, in which calibration parameters
are taken into account, the higher values indicate that one of the axes much more affected
by errors than the other two. This is later changed by modifying the variance matrices of
the biases for each accelerometer device by increasing the values corresponding to to the
devices with the highest errors. The yy component is increased by a factor of 10 and the
xy, yz components are increased by a factor of 100. This reduces the range to 10.4[m] to
677.0[m] and 0.012[m/s] to 0.80[m/s]. This method to reduce the bias estimation errors is
done in this case by knowing the results. Nevertheless, this could be effectively used by
modifying the variance matrix components by accelerometer part depending on how large
the errors are relative to each other after a certain epoch.

The 2016 publication also compared different gravity field models to EGM2008, the gravity
model they used. They measured the differences between this one and EGM96, JGM3,
EIGEN-6C4 and GGM05G. It shows great consistency in between them, with JGM3 having
more significant errors on the along track and radial axes fro either position of velocity.
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Figure C.6: Process by which results from X. Sun et al. [50] are obtained.

In 2022, P. Chen et al. [4] a process in which the bias is taken into account is done. in
this process, an extended Kalman filter (EKF) is used along with a least squares solution to
figure out the bias of the gradiometers. Most importantly, this research also gives a better
perspective on how different variables can affect the results of orbit determination by this
method.

• Orbit inclination seems to severely affect the ”along track” position error and ”radial”
velocity error the most. With the more inclination, the smaller the error gets.

• Orbital altitude is a significant variable that changes results. The lower the altitude,
the smaller the errors are all across the board. This is as expected, as accelerometers
will be able to pick up gravitational gradients more accurately closer they are to Earth.
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• Gravity field models also affect the results. When using a J2 assumption model, the
errors are large throughout all parts. Later, the EGM2008 gravity model is used. one
truncated at degree and order 10 and the other at 50. The higher degree and order
truncation yielded the smaller errors.

• Gradiometer noise is also observed. errors when using a noise of 0.01[E] and 0.1[E]
seem to be very close and within the same range. Despite this, the 1[E] noise data
appears to have amuch larger jump in error increase. This leads to the conclusion that
the current technology of gradiometers (with an accuracy or noise of 0.1[E]) already
yield satisfactory results, without taking into account how these affect biases. It also
further solidifies the fact that quantum gradiometers (with a accuracy of 20[E]) are not
enough to yield good results.

This data is very useful for knowing what to expect when performing validation and verifica-
tion, as well as knowing what different variables are expected to cause.

This, however, is done with data known already after the mission about all the orbit. While
it gives a every accurate set of information, it is all retroactively obtained. The objective of
this research is to find a way to execute this but as the mission is ongoing and autonomous
from ground procedures for positioning.

The method which will be used this time is of a least squares computation. By making
use of V⃗uu and its derivative with respect to position Vuuu, the objective will be to measure
how accurate this can be done with an initial position estimate of y⃗0. Equation C.10 and
Equation C.11 show a simplified overlook of how the principal behind the least squares
works.

dV⃗uu

du
= Vuuu = A (C.10)

y⃗i+1 = (ATA)−1AT (V⃗uu − V⃗ (measured)
uu ) + y⃗i (C.11)

This process, if taking bias into account, has not yet been seen within the literature. Accu-
racy will not be the only parameter measured. The speed at which each position is calcu-
lated will also be measured and compared.

C.3. Conclusion
The conclusion to this literature study is a re-formulation of the sub-questions which are
eventually used in this thesis report, and which can be found in Section 1.3.1, as well as a
plan for this thesis, found in Section 1.3.3.
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