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Voorwoord

Promoveren is een job op zichzelf wordt wel eens gezegd. Nu mijn
promotietraject is afgerond kan ik dit bevestigen en kan ik mijn bestaan als
Promovendus “oude stijl” definitief vaarwel zeggen. Het schrijven van een
proefschrift in deeltijd vraagt veel en misschien wel te veel van een mens.
Promoveren laat je nooit los en gedurende het gehele promotietraject ben je
bezig tijd te vinden. Als promovendus oude stijl had ik het voorrecht mijn
onderzoeksonderwerp vrij te mogen kiezen. Na overleg met Prof.dr.ir. ].C. van
Dam heb ik besloten mij te richten op de modellering van de neerslag-afvoer
relatie op fysisch gebaseerde grondslag. Een onderwerp waarvoor in Nederland
nog nauwelijks belangstelling bestond en waarover weinig expertise aanwezig
was. Gedurende de eerste jaren van het promotietraject heb ik weinig
vakinhoudelijke steun kunnen genieten van vakgenoten en heb ik al mijn
autodidactische talenten aan moeten spreken om mij deze geheel nieuwe
vakdiscipline eigen te maken. Gelukkig kreeg het onderwerp in de
internationale onderzoekswereld wel steeds meer aandacht waardoor ik
geinspireerd bleef en met interesse aan dit onderwerp kon blijven werken.

Dat ik het proefschrift nu succesvol af kan ronden komt mede door niet
nalatende steun van een groot aantal mensen. Zeer veel dank ben ik
verschuldigd aan Prof.dr.ir. J.C. van Dam die mij, vlak voor zijn afscheid van
de TUD, stimuleerde een proefschrift te gaan schrijven. Hij sprak zijn
vertrouwen in mij uit en heeft mij, ook nadat hij met emeritaat is gegaan, nog
lange tijd gesteund en met advies bijgestaan. Zijn kritische beschouwingen heb
ik met veel waardering en respect ontvangen en zijn voor mijn functioneren
nog steeds van grote waarde.

Ongeveer 5 jaar geleden is de rol van promotor overgenomen door Prof.dr.ir.
Peter van der Veer, dit nadat wij een aantal persoonlijke gesprekken hadden
gevoerd. Daarin werd mij wederom vertrouwen geschonken en hebben wij
besloten het vervolgtraject in nauwe wisselwerking af te gaan leggen. Peter,
jouw rol als promotor heb ik als zeer plezierig ervaren waarbij jouw positief
kritische beschouwingen mijn werk naar een hoger niveau hebben getild. Na
onze voortgangsgesprekken vond ik altijd weer nieuwe motivatie en stimulans.
Voor het genoten vertrouwen en begeleiding ben ik je zeer veel dank
verschuldigd. Verder ben ik je bijzonder erkentelijk voor jouw menselijke
inbreng. Diverse keren heb je mij door vertroebeld vaarwater kunnen loodsen
en heb je mij altijd onvoorwaardelijk gesteund. Zonder jouw persoonlijke




commitment was het voor mij denk ik niet mogelijk geweest het proefschrift af
te ronden.

Een bijzonder woord van dank wil ik richten aan Prof.dr.ir. Majid
Hassanizadeh. Majid, hoewel je niet direct inhoudelijk betrokken was bij mijn
proefschrift heb ik ook bij jou altijd het gevoel van waardering en respect
mogen ontvangen. Op gezamenlijk initiatief hebben wij diverse
onderzoeksprojecten op kunnen zetten en uit kunnen voeren die in het
verlengde van mijn proefschrift lagen. Op deze wijze heb je voor mij een
belangrijker rol vervuld. Kenmerkend voor onze samenwerking is dat je
ondanks je zeer drukke agenda toch altijd tijd vrij maakte om even persoonlijk
en vakinhoudelijk bij te praten. Hiervoor spreek ik mijn waardering uit.

Prof.dr.ir Huub Savenije wil ik danken voor zijn rol als promotor die ongeveer
een jaar geleden gestalte kreeg. De vakinhoudelijke discussies die wij sindsdien
hebben gevoerd heb ik als constructief ervaren waarbij ik mijn waardering
uitspreek voor de wijze waarop je aan mijn proefschrift hebt bijgedragen.

Andere collega’s en oud-collega’s die ik, in alfabetische volgorde, wil bedanken
zijn Reinder Boekelman,Margreet Evertman, Gu Albert Oude Essink, Paolo
Reggiani, Betty Rothfusz, Ruud Schotting, Chris te Stroet, Hans Vermeulen en
Willem-Jan Zaadnoordijk. Een ieder van jullie heeft op eigen wijze bijgedragen
maar gezamenlijk hebben jullie een belangrijke rol voor mij vervuld. Zonder
jullie support was het voor mij ook heel moeilijk geworden het proefschrift op
succesvolle wijze af te ronden.

Tot slot wil ik een woord van dank richten aan Jan Boll die mij de data set van
de Troy-basin beschikbaar heeft gesteld. Zonder deze set had ik mijn
berekening niet uit kunnen voeren. Oud-afstudeerders die op een of andere
wijze hebben bijgedragen aan het proefschrift zijn Marcel Boomgaard, Edwin
Dado, Guus Fransen, Neeltje Goorden, Robbert Petter, Arjen Pilot en Johan
Valstar. De samenwerking met jullie heb ik zeer gewaardeerd en als heel
plezierig ervaren.

Mijn allerlaatste en bijzonder woord van dank wil ik richten aan mijn ouders,
familie en vrienden. Als een van jullie mij weer eens vroeg of
“Promoticonderzoek doen” nu wel of niet leuk was zei ik altijd “Het is maar
hoe je het bekijkt; jezelf gedurende langere tijd kunnen verdiepen in een
onderwerp waarin je interesse hebt is een voorrecht, het feit dat je vele
onvoorziene omstandigheden tegenkomt waar je eigenlijk helemaal niet op zit
te wachten is niet leuk”. Voordat ik bij de TU ging werken had ik eigenlijk
nooit overwogen een proefschrift te gaan schrijven. Nu het werk af is heb ik er




een ambivalent gevoel aan overgehouden. Hoewel op dit moment het gevoel
van tevredenheid overheerst zou ik promoveren op dezelfde manier niet over
willen doen. Veel tijd is verloren gaan aan inefficiéntic als gevolg van mijn
dubbele taakstelling en door werkperikelen als gevolg van het veranderde
werkklimaat. Het zijn met name jullie en mijn oud-collega’s die mijn gevoelens
daarover kennen en daar begrip voor hebben.

Mijn allerlaatste woord van dank richt ik aan Marjolein. Jij hebt me altijd alle
steun en ruimte gegeven mijn werk voort te kunnen zetten. Met jouw
stimulans en positivisme gaf je me energic c¢n schepte je vertrouwen voor een
goede afloop. De tijd die nu vrijgekomen is hoop ik met jou door te brengen
want het proefschrift is nu echt helemaal af.
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» Calibration: The finc-tuning of a hydrologic model. Such tuning can
be achieved by optimising the model parameter values, modifying the
model concept, improving the estimates of meteorological model
inputs, modifying boundary conditions.

¢ Catchment parameter: A characteristics of a catchment that that
remains constant in time but generally changes over the three
dimensional space.

¢ Computer code: A computer code or computer programme is a
listing of lines of a computer language that, when compiled by a
software compiler, produces a computer programme that enables a
modeller to create a hydrologic model.

¢ Conceptual rainfall-runoff model: At the core of the mathematical
model a set of equations resides that is based on conservation
equations of mass combined with equations that describe the
hydrologic model behaviour by an empirical expressions.

¢ Distributed model: Model domains are discretised in space by use of
uniform on non-uniform grid elements.

¢ Empirical models: At the core of the mathematical model a set of
equations resides that only is able to simulate input-output patterns.
Such models often are termed transfer models.

o Equivalence: Parameter sets are equivalent in such a manner that
parameter sets gives equivalent model output within predefined
limits.

e Hydrology: Hydrology is the science of the occurrence, the behaviour
and the chemical and physical properties of water in all its phases on
and under the surface of the earth, with the exception of water in the
seas and oceans. [CHO-TNO, 1986].

¢ Hydrologic model: A hydrologic model or simply “model” is a
simplified representation of a (part of a complex) hydrologic system
by means of a mathematical model, model parameters, state-variables,
meteorological stresses and possibly boundary conditions.
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Hydrologic system: a structure or volume in space, surrounded by a
boundary, that accepts water and other inputs, operates on them
internally, and produces them as output, [Ven Te Chow, Maidment &
Mays, 1988].

Inverse Modelling: the procedure in which measurements of state
variables are used to calibrate a model.

Lumped: the spatial distribution of model input data is averaged over
the spatial model domains and expressed by single values.

Mathematical model: A mathematical model is defined as a set of
mathematical equations and logical statements that, when combined,
allows the simulation of a hydrologic system.

Model error: The cumulated calculation error due to insufficiencies
in the model concept, incorrectness of parameter values and the
erroneous modelling of meteorological and hydrologic influences.

Model concept: Represents the concept a hydrologic model is based
on and relates to the applied discretisation of the model domain, the
selected mathematical equations, the allowed interchanges between
sub-models, the manner distributions of parameter values are
modelled and the manner meteorological stresses and external
influences are modelled.

Model parameter: Model input data that represents some catchment
characteristic that remains constant in time.

Model parameterisation: Assigning values to model parameters.

Non-uniqueness: Within a parameter set many different
combinations of parameter values can be defined that all give
satisfactory simulation results. Although parameter values are
optimised and uniquely defined, many different but yet optimised
parameter values can be defined.

Over-parameterisation: Effects of single parameters on calculated
model output cannot be defined exclusively due to dependency
relations between parameters.

Parameter set: A set of model parameters for which parameter values
are defined.
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¢ Parameter value: A value of a parameter.

Physically Based Rainfall-Runoff model: At the core of the
mathematical model resides a set of equations that describe the “real
world” physics that governs nature. Such a set of equations is based
on conservation equations of mass and momentum and, in particular
cases, also energy and entropy.

Residual error: The difference between observed and model
calculated state variables. The cumulated error due to insufficiencies
in the model concept, incorrectness of parameter values and the
erroncous modelling of meteorological and hydrologic influences and
state observation error.

State variable: A characteristic of a system that is measured and that
can assume different values at different times.

Trial and Error: Optimisation of parameter values by a manual
procedure.
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2 1 Introduction

1.1 The rainfall-runoff relation and society

It is commonly known that the relation between rainfall and runoff plays
an important role in many water related societal issues. Generally
speaking, one can say these issues relate to a) the operational aspects of
(real-time) water management practices such as high and low water
forecasting b) the simulation of hydrologic processes and systems for
defining design criteria for infra structural works and ¢) defining effects
of land use and climate change on runoff processes. An example of the
role of rainfall-runoff processes in operational water management is the
optimal use of limited available water volumes for domestic and/or
agricultural use. By quantifying the runoff volumes in a channel network
system, a strategy can be developed to manage, redistribute and allocate
the water spatially and temporally over the various water users. It is
obvious that optimal water management becomes even more important
under extreme meteorological conditions such as droughts where runoff
volumes decrease over time. As a consequence, water availability is
reduced and emphasis is laid on developing advanced water management
and allocation strategies. Contrary to the drought conditions are the
extreme meteorological conditions of rainfall that lead to high water
levels in the catchment channel system. An understanding of the rainfall-
runoff relation becomes very important when rainfall is expected to cause
hazardous flooding conditions. Infra-structural works such as dikes and
dams have to be designed, dimensioned and enforced to prevent
floodings and thereby societal damage.

The unambiguous understanding of the relation between rainfall and
runoff has been a subject of hydrologic research for many decades.
Research focussed on various subjects such as an understanding of the
meteorological processes, an understanding of the rainfall-runoff
transformation process and, in particular, the modelling of this
transformation process. Many modelling studies use computer codes
which are selected and/or developed to model the transformation
process. A computer code often is termed a computer programme and
describes and solves a set of equations by means of numerical, analytical
and/or statistical methods. By use of a computer code a hydrologic model
of the area under study (often a catchment) can be built and the
hydrologic behaviour and meteorological conditions of the system under
study can be simulated. A hydrologic model here is interpreted as a
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simplified representation of a (part of a complex) hydrologic system by
means of a mathematical model, model parameters, (state)-variables and
a predefined model concept.

A critical note on modelling studies however is that society only benefits
from modelling when hydrologic models are reliable. A requirement of a
‘good’ hydrologic model for example must be that the model is able to
simulate and possibly forecast runoff volumes and/or runoff stages as
close as possible to the real world observations. Hydrologic models,
however, in general have great difficulties in describing the very complex
real world behaviour and models have shortcomings related to different
aspects of the rainfall-runoff process.

Since their early development, frequently heard criticisms are that
models are ‘unreliable, uncertain, not trustworthy and that the
performance of a model often is not sufficient’. Especially for the past
decade, research in the field of rainfall-runoff modelling focussed on
improving the modelling results by developing more sophisticated
modelling approaches as compared to approaches that are developed in
the seventies and eighties. An important research topic herewith deals
with the calibration of a hydrologic model that also is the main topic of
this thesis.

1.2 Background, problem definition and objectives

In December 1993, January 1995 and December 1998 the Dutch society
was confronted with extreme high water levels in the transboundary
rivers Meuse and Rhine. The river Meuse flooded 8% of the province of
Limburg in December 1993. In January 1995 an even larger area flooded.
In January 1995 the river Rhine flooded large areas of the province of
Gelderland. Societal damages due to these floodings were enormous. The
Ministry of Public Works [1994] reports that only the 1993 flood of the
river Meuse caused material damage of M 254 to the province of
Limburg.

During and after the floods many questions were posed in society such as

“where did the abundant amount of water come from”; “what caused
the extremeness of the floods”; and “can we expect even higher water
levels in the (near) future”.
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It is obvious that a better understanding of the hydrologic catchment
behaviour of the rivers Meuse and Rhine under conditions of heavy,
prolonged rainfall is required. Runoff generation and contributions of
various runoff processes therefore have to be quantified as a function of
time and space. The size of the catchments of the rivers Meuse and
Rhine, 33.000 km® and 185.000 km? respectively makes the modelling of
the real world hydrologic behaviour virtually impossible. Large scale
catchments of fluvial scale (10* to 107 km?) must be partitioned into
smaller subcatchments of maximum regional scale (10* to 10° km?) to be
able to model the real world hydrologic runoff behaviour at, model wise,
manageable space and time levels. Catchments of regional scale must be
modelled by computer codes that, at the core of the computation
algorithm, apply the physical laws of mass and momentum conservation.
Such computer codes are termed ‘physically-based’ and enable the
modelling of the real world runoff behaviour.

The first objective of this research is to improve the modelling of the
hydrologic catchment behaviour under meteorological conditions that
cause the generation of saturation overland flow. Runoff volumes from
this process caused major contributions to the floods in 1995 and 1998
and, as such, a better understanding of the runoff production mechanism
is required. By this requirement, the natural mechanisms for runoff
generation and the various flow- and runoff processes in the catchment
first must be identified and understood. A computer code must be
applied for the modelling and model calculations must be ‘as reliable as
possible’. Such a code must be able to simulate the natural runoff
generation mechanisms causing the development of extreme runoff
volumes and the dominant flow processes underlying these runoff
generation mechanisms. As such, the code must be based on physically-
based flow equations and requires spatially distributed real world
catchment data.

A second objective is to develop and apply a modelling framework for
improved model calibration of physically-based rainfall-runoff models.
This framework must be footed on the use of a distributed, physically-
based rainfall-runoff model that, combined with an inverse modelling
approach, must result in improved methodology for catchment
parameterisation and consequently runoff modelling. The use of
multiple state variables of a different nature, such as piezometer data and
channel runoff data, is desired as part of model calibration. As part of the
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research, a critical analysis will investigate whether physically-based
rainfall-runoff modelling can be improved by implementing a multi-
objective model calibration approach.

Other objectives of this study are:

o To present a review of the simulation of the hydrologic catchment
behaviour with respect to the rainfall-runoff relation.

To evaluate and analyse rainfall-runoff modelling approaches that are
footed on a distributed model concept and physically-based flow
equations.

To develop a distributed Physically-Based Rainfall-Runoff (PBRR)
computer code to simulate the saturation overland flow mechanism.
This objective includes pre-processing and post-processing of model
input and model output using a raster Geographical Information
System (GIS).

e To review the issue of model performance and model reliability
particularly when automated model calibration procedures are
applied. Procedures will first be reviewed and conclusions will be
drawn on usefulness.

To develop and investigate the performance of a new modelling
framework for improved model calibration based on the new PBRR
computer code and selected procedure for automated model
calibration.

1.3 Outline

The structure of this thesis is as follows. In Chapter 2, a short
description of the catchment hydrologic cycle is presented since
distributed modelling of rainfall-runoff processes is closely related to
quantifying the various components of this cycle. In this chapter a brief
description on common model concepts to model the rainfall-runoff
relation is presented.

Chapter 3 reviews literature studies on the catchment rainfall-runoff
behaviour and on PBRR modelling. To understand the relation between
rainfall and runoff, an in-depth review of hydrologic catchment
behaviour due to rainfall is presented in section 3.2. In section 3.3
modelling approaches, model concepts and some modelling results of
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four distributed PBRR models are reviewed and model performance is
evaluated. Analysis with respect to the model concept focuses on aspects
like the applied model discretisation, selected mathematical models and
how meteorological inputs are modelled. By comparing the approaches
and the applied model concepts, it is shown that significant differences
exist with respect to a) the applied spatial and temporal model
discretisations, b) the number of flow processes simulated, c) how these
processes are simulated, d) the applied flow equations and e) how
meteorological inputs are simulated. By an evaluation of the simulation
results it is shown that PBRR models perform poorly and that PBRR
modelling suffers from major set-backs relating to the high data demand
to create a model and the parameterisation of a hydrologic model. In
section 3.4 summary remarks are presented on the model concept to be
developed and the modelling approach to be implemented in order to
fulfil the main objective of this study.

Chapter 4 presents the new computer code ‘Flowsim’. Five sub-models
are defined including rainfall and evaporation, overland flow,
unsaturated subsurface flow, saturated subsurface flow and channel flow.
The mathematical equations applied to each of these sub-models are
presented and flux exchanges between the sub-models are described. In
this chapter the applied spatial discretisation and required model input
parameters and calculated state variables also are presented.

In Chapter 5 model calibration is reviewed and conclusions on suitability
of calibration procedures to optimise model parameterisation are drawn.
In section 5.1 the Trial and Error calibration procedure is presented.
This procedure is a manual calibration procedure and is applied to all
modelling studies that are described in section 3.3. In sections 5.2
through 5.5 four automated calibration procedures are described. In
section 5.2 a Monte Carlo-based calibration procedure called Generalised
Likelihood Uncertainty Estimation procedure is presented. In section 5.3
evolutionary procedures are described for single and multi-objective
model calibration, In section 5.4 automated calibration based on
Maximum Likelihood Estimation is described. In section 5.5 automated
calibration by use of Artificial Neural Networks is presented. A summary
on applicability, innovation and implementation of these procedures with
respect to the research objectives in section 2.1 is provided in section 5.6.
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In Chapter 6 a case study is presented where the modelling of rainfall-
runoff processes in a distributed manner by Flowsim is combined with
the selected Maximum Likelihood Estimation procedure for automated
model calibration. The case study is performed at the Troy catchment
located in the state of Idaho in the United States of America.
Conclusions are drawn with respect to usefulness of the modelling
approach and the selected calibration procedure to improve PBRR
modelling.

In Chapter 7 the research as presented in this thesis is discussed and
conclusions are presented. Finally, recommendations for future research
in the field of distributed PBRR modelling are presented.
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2.1 Introduction

Rainfall-runoff modellers deal with the question, as Penman formulated
it in 1961;

“What happens to the rain”.

Ever since progress has been made in modelling the relation between
rainfall and runoff. Rainfall-runoff modelling involves many aspects of
hydrology since runoff as gauged in the channel network can be
interpreted as the integrated effect of all upstream flow processes and
meteorological processes like precipitation, evaporation and
transpiration. Precipitation in the form of rainfall will result in the
generation of runoff in the channel network due to infiltration water that
moves through the unsaturated and saturated subsurface or over the land
surface to the channel. Meteorological processes that act in a catchment
are precipitation, evaporation and transpiration of vegetation. In section
2.2, the hydrologic cycle at the catchment scale is discussed since
rainfall-runoff modelling to a large extent involves the quantification of
the various components of this cycle.

The relation between rainfall and runoff can be described by computer
codes that, erroneously, often are termed mathematical models. A
computer code is a ‘source code’, ‘computer programme’ or ‘a listing of
lines of a computer language’ that, when compiled by a software
compiler, produces a computer programme that enables a modeller to
create a hydrologic model. By such model the hydrologic catchment
behaviour can be simulated. A mathematical model is defined as a set of
mathematical equations and logical statements that, when combined,
allows the simulation of a hydrologic system. The complexity of a
mathematical model to a large extent is defined by the selected model
concept. This since selections on for example the model discretisations,
the number of flow processes to be simulated, the necessary flux
exchanges between flow processes primarily are defined in the model
concept. In runoff hydrology a large number of mathematical models are
developed ranging from very simple models to very complex.

Mathematical models are categorised and classified in deterministic and
stochastic ones. In this study it is decided that a deterministic rainfall-
runoff model will be used. This class of mathematical models is
subdivided in ‘Black Box’ (BB) models, ‘Conceptual Rainfall-Runoff’
(CRR) models and in ‘Physically-based Rainfall-Runoff’ (PBRR)
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models. For each subclass, aspects rclating to the mathematical model
and the model concept are briefly described in section 2.3.

Early scientific interests to describe the rainfall-runoff relation by an a-
priory defined model concept date from the fifties. The development of
BB and CRR model concepts has been a general research topic ever
since. From 1980 hydrologic research redirected due to the development
and usage of advanced data capture and data storage facilities and the,
relatively, enormous increase in computing and processing capacities.
Model approaches also became more advanced and complex and
distributed conceptual models were devcloped. In the late eighties and
early nineties complex environmental issues once again redirected the
research due to a growing socictal interest to simulate real world
processes by real world process descriptions. This resulted in increased
efforts towards the development and application of physically-based
model approaches.

2.2 The catchment hydrologic cycle

The generation of runoff at a catchment due to rainfall deals with several
stages of water transport in the hydrologic cycle. Figure 2.1 presents a
schematic of the hydrologic cycle at the catchment scale where only the
most important meteorological and hydrologic processes are added.

The key process for the generation of runoff from a catchment is
precipitation that is spatially and temporally distributed. Subject to the
geographical position of the catchment and the time of the year
expressed by seasonal effects, precipitation can be in the form of snow,
hail, dew, rain and rime. In this study precipitation is considered to be in
the form of rain only.

Rainfall rcaching the earth surface can be intercepted and stored at the
vegetation canopy. In case of continuing rainfall, stem flow and water
drip from the canopy is produced and water can be intercepted at the
canopy. Interception is known as a loss function to catchment runoff
depending on the vegetation type and vegetation density. Interception
losses, however, only are of significance when rainfall events are short
and when the rainfall depth is small. After rainfall ceases, intercepted
water evaporates and the ability of the canopy to store rainfall water
increases again. Rainfall reaching the land surface is known as
‘throughfall’ and often is tcrmed ‘effective’ rainfall. Rainfall remains at
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Figure 2.1: Major processes of the schematised cycle at the catchment scale
(modified after Chow et al., 1988).

the land surface as depression storage and either evaporates, infiltrates or
is discharged as overland flow. Soil water evaporates from the subsurface
or, in case of a vegetation cover, transpirates from the vegetation due to
water uptake by the roots. Both processes contribute to the reduction of
water volumes stored in a catchment. By infiltration of rainwater, the
soil water content in the unsaturated zone increases. Infiltration water
moves primarily in downward direction by unsaturated subsurface flow
and recharges the saturated subsurface. This process is termed
percolation or natural recharge and fills the aquifers of the groundwater
system.

Evaporation and transpiration at the land surface cause the decrease of
water storage in the subsurface. As a consequence unsaturated flow in
upward direction is generated. This upward flow is termed capillary rise
and is subject to the hydraulic pressure gradient across the unsaturated
zone. This pressure gradient is highly non-linear and is bounded by the
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pressure head at the water table and the pressure head at the land
surface. By capillary rise, the volume of water stored in the saturated
zone reduces.

Through interactions between the groundwater system and the
catchment drainage system, groundwater is discharged through the
channel network system. Aquifers of the groundwater system also can
discharge groundwater across the catchment boundary. Unsaturated
zones, especially at the bottom part of a hill slope, may become saturated
during a period of rainfall. Under specific catchment flow conditions,
which are described extensively in subsection 3.2, water exfiltration at
the land surface could occur. At the land surface overland flow is then
generated that is discharged to the channel network system as rill and
stream flow. The part of rainfall that is not lost by evaporation, canopy
interception and depression storage is called saturation excess rainfall.

The various flow components can be quantified in a water balance.
Components may have very different magnitudes and time scales subject
to climatic, physiographic and geomorphologic factors and geographic
position of the catchment. Examples of climatic factors are precipitation
and potential evaporation while the most important physiographic
catchment factors are a) geometry factors like size, shape and b) physical
factors like soil type distributions and land use (Chow, 1964).
Physiographic channel characteristics are size and shape of the channel
cross-section, slope and length of channel segments and channel bed
roughness. Geomorphologic factors for the subsurface are for example
the granular compositions of soil layers and the number and geometry of
the geologic layers. For the land surface the elevation, slopes and the
drainage density are characteristic geomorphologic characteristics.
Geographically a catchment is referenced by its longitude, latitude and
altitude.

Water balances can be defined for any time domain such as hour, day,
week, decade, month, year and any space domain. The space domain can
be the catchment scale, sub-catchment scale, a discretised spatial unit or
a flow domain. Catchments and sub-catchments are bounded by water
divides that are assumed to be in correspondence with topographic
divides. This implies that effective rainfall falling within a topographic
divide must be discharged as stream flow or as deep groundwater flow or
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Figure 2.2: Water balance components for specific catchment domains.

it must evaporate. Characteristic domains within a catchment are the
land surface, unsaturated subsurface and saturated subsurface.

The water balance components in [L T"'] for any balance period of
interest, AT, for the specific catchment domains are presented in figure
2.2. For each of the catchment domains, the change of water storage is
calculated over the balance period and is expressed in [L].

P, = precipitation on the land surface

P, = precipitation on open water bodies

Es = evaporation from the land surface

E, = evaporation from open water bodies

E,, = evaporation from the unsaturated zone

Qst = runoff from the land surface

Qu; = runoff from the unsaturated zone

Qs; = runoff from the saturated zone

AC = change of the canopy interception

AS; = change of water storage at the land surface zone

AS,; = change of water storage in the unsaturated zone

AS,; = change of water storage in the saturated zone
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I
I

it

infiltration at the land surface

exfiltration at the land surface

1

Qgin = groundwater inflow

Qgout = groundwater outflow

CR

capillary rise from the groundwater table

PR

percolation to the groundwater table

2.3 Deterministic rainfall-runoff model approaches

Over the past decades many efforts are made to develop techniques to
simulate the rainfall-runoff relation. Rainfall-runoff model approaches
are developed to describe and to calculate the hydrologic response of a
pre-defined geographical area, i.e. a catchment, a hill slope or any region
of interest, in terms of a channel flow discharge due to rainfall.

Model input data and model output data of such models are stochastic or
deterministic by nature. A model is termed stochastic when model input
and output variables are expressed by a probability density distribution.
In deterministic modelling data input is uniquely defined, that in
combination with pre-defined initial and boundary conditions, gives the
model output with an assumed deterministic uniqueness.

Model input data and model output data are lumped or spatially
distributed over the model domain. A rainfall-runoff model is termed a
lumped model if the spatial distribution of model input data is averaged
over the spatial model domains and expressed by single values. In
distributed rainfall-runoff models the spatial variations of model input
data are simulated by uniform or non-uniform grid elements. These
elements are interconnected and make up a model grid layer. By use of
multiple overlaying grid layers vertical distributions of input data are
simulated. For each of the grid elements model input data is lumped and
as such, the term lumped is applicable to spatial units of any size. Such
unit can represent an entire catchment, a sub catchment or a grid
element of a model grid layer.

Models require model parameter values for the parameterisation of the
model equations. In this thesis a model parameter stands for model input
data that remains constant in time. Such parameters serve to
parameterise the model equations and to represent catchment
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characteristics such as elevation, hydraulic conductivity and thickness of
a soil layer. A state variable is a characteristic of a system that is
measured and that assumes different values at different times such as
rainfall intensity, soil moisture content or runoff discharge. In
hydrologic modelling the common objective is to simulate hydrologic
variables that are of interest to the modeller. Such variables generally are
termed ‘calculated state variables’ since variables represent model-
calculated counterparts of observed real world state variables.

As described in section 2.1, the group of deterministic rainfall-runoff
model approaches is sub-classified in BB, CRR and PBRR. Differences
between the sub-classes predominantly relate to the selected model
concept and the mathematical model. The usefulness of the various
approaches is subject of ongoing discussion and debate. With regard to
the mathematical models, the author identifies the following principle
differences. At the core of the mathematical model of a BB model
approach a set of equations resides that allows the modelling of input-
output patterns based on empiricism only. At the core of mathematical
models of a CCR model approach a set of equations resides that is based
on a conservation equation of mass combined with equations that
describe the hydrologic model behaviour by an empirical expression. At
the core of the mathematical model of a PBRR model approach a set of
equations resides that describe the real world physics that governs
nature. Such set is based on conservation equations of mass, fnomentum,
energy and, in particular cases, also entropy. Since literature about each
sub-class of model concepts is widely available, characteristics of the
sub-classes are discussed here only briefly.

In black box modelling mostly empirical relations are simulated by use
of (multiple) regression type equations. By such equations the discharge
or the water level for a selected location and time is described as a
function of a number of rainfall and runoff observations and/or water
levels. Time series of observations may be from one station or from
multiple gauging stations.

The general form of such a function is:

Q,, = f(Q5 Q5 Q QL2 PE P LR BT L Y 4, [1.1]
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Where:

Q! = discharge observation at location x at time instant t [T
Q" = discharge observation at location x at time instant t-1 [L°.T
Q)" = discharge observation at location y at time instant t-1 [L> T
P' = precipitation observation at location m at time instant t-1 [L T"']
P/ = precipitation observation at location n at time instant t-1 [L T"']
g, = error term [L*T].

In black box modelling, the number of observations and the weight every
observation must have in the mathematical model has to be defined.
Weights are defined by regression analysis and are expressed by a
regression coefficient (see Rientjes and Boekelman, 2001). Model output
in general consist of a summation of the weighted observations:

Qu =0,Qy +a,Q " +a,Q 7 +0, QY +B P +B, P +BP T 2, [1.2]

Black box modelling is based on empiricism and causes that the selected
model approach always is catchment dependent and not exchangeable to
other catchments. The long term validity of regression models is
restricted since values of the time-invariant regression coefficients are
based on historical observations. When model performance becomes
inconsistent with measured hydrograph data due to for example land use
or climate change, models must be re-calibrated and re-validated.

A second group of BB model concepts are Artificial Neural Networks
(ANN). Applications of ANNs in general are in the field of recognising
certain system input-output patterns such as a rainfall-runoff relation.
ANNs often are characterised a function approximator that simulates
some uncertain function. The model concept and applications of ANNs
in the field of rainfall-runoff modelling are further described in section
5.5.

In conceptual rainfall-runoff modelling a pre-defined and designed
concept to model processes is adopted where the mathematical model is
based on the conservation of mass equation combined with equations
that describe the hydrologic model behaviour by means of empirical
expressions. Model concepts may be classified as lumped or distributed
and describe topographic, physiography and climatic factors in a very
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simplified manner. In the approaches, a large number of catchment
characteristics is not modelled explicitly but, model wise, are aggregated
into model parameters that in general have a weak physical meaning. The
use of aggregated model input data make CRR model approaches
relatively simple and cause that approaches still are very popular.
Although mass balance equations make part of the mathematical model,
model concepts and model input requirements differ and are subject to
the chosen empirical expressions. A very well known and one of the
oldest examples in CRR modelling is the Unit Hydrograph (UH)-model
concept as introduced by Sherman [1932]. Simplifying model
assumptions in the UH theory are:

o effective rainfall is spatially and temporally uniformly distributed over
the model domain for specified rainfall duration,

o the base time of a runoff Hydrograph is constant for any effective
rainfall of unit duration,

o ordinates of the direct-runoff hydrographs have a common base time
and are directly proportional to the total volume of direct runoff as
defined by the total rainfall excess; this is known as the principle of
linearity or proportionality,

e the runoff hydrograph caused by the rainfall depth for a given period,
reflects all the aggregated physiographic characteristics of the
catchment; the latter is known as the principle of time invariance.

By these model assumptions, the UH-theory only is applicable to event
based rainfall-runoff simulation in areas smaller than the sub fluvial
scale (< 10* km?). The applicability of CRR model approaches in general
relies on the simplifying assumptions such as described for the UH-
theory. Subject to the selected assumptions and model equations, CRR
model approaches differ significantly and cause this group to be the
largest group. In lumped CRR modelling, very well known examples are
Sacramento (Burnash et al., 1973) and Stanford (Crawford and Linsley,
1966) model approaches. In distributed CRR modelling well known
examples are the Hydrologiska Byrins Vattenbalansavdelning (HBV)
(Bergstrom and Forsman, 1973) and the Topmodel (Beven and Kirkby,
1979) model approaches. CRR modelling is not described further since
this is outside the scope of this thesis.
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Physically-based rainfall-runoff modelling approaches apply a
distributed model domain and apply a set of equations that are based on
conservation equations of mass, momentum, energy and, in specific
cases, also entropy. Mathematical models always include physical
characteristics and properties of the ‘real world” and models require
input of initial and boundary conditions since flow processes are
described by differential equations. In the computer codes, numerical
procedures are applied to solve model algorithms. This causes
mathematical models to be more complex compared to mathematical
models of BB and CRR approaches. Also computational demands
become much higher.

Due to the real world character of physically-based modelling we are
able to calculate the hydrologic runoff behaviour in a (sub)catchment, to
quantify single flow processes and to calculate state variables for any
time instant over the model domain. Models often are termed process
models and/or multi-output models since models are able to describe the
processes in detail and since multiple state variables can be simulated
simultaneously. The detailed simulation of all flow process and
components of the hydrologic cycle, however, becomes very demanding
for input data. Large amounts of time variant and time in-variant data are
required to simulate the flow processes. Despite the mathematical
complexity and high data demand this type of modelling came within
reach mainly due to the availability of new methods and facilities to
collect, store and process data. Although considerable progress has been
made in PBRR modelling over the past two decades, developments still
are at an experimental stage. In Chapter 3 an extensive review of
distributed rainfall runoff modelling is presented.

In describing the relation between rainfall and runoff, the runoff
response of a catchment often is expressed by a channel flow hydrograph
that is observed at the catchment outlet. By an understanding of the
catchment runoff behaviour it is obvious that the shape of the
hydrograph is a function of all upstream processes and thus a hydrograph
must be interpreted as an integrated response function of all upstream
flow processes. Runoff in this respect refers to a (runoff) discharge such
as the channel flow discharge, the overland flow discharge or a
groundwater flow discharge while a flow process only refers to the actual
movement of water within a catchment. In this thesis this differentiation
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is adapted so when referring to a flow process this does not necessarily
means that, by the movement of water, catchment runoff is generated.



3

Review of Physically-Based
Rainfall-Runoff modelling
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3.1 Historic perspective

Since approximately 1960 research is carried out after the development
and validation of distributed PBRR models. In this section a brief review
on this research is presented that is followed by more detailed reviews on
runoff hydrology and PBRR modelling in sections 3.2 and 3.3
respectively.

Research by Betson [1964], Ragan [1968]; Dunne and Black [1970a],
among others, had a focus on identifying hill slope and catchment scale
hydrologic processes. The main research objective was to gain an
understanding of the hydrologic runoff behaviour at the hill slope and
catchment scale where runoff was due to rainfall. Research was
supported by field evidence (see Betson, 1964; Dunne and Black,
1970a,b; Freeze, 1972a,b) and has significantly contributed to our
perception of the catchment runoff behaviour. During the time, an
interest was developed for PBRR modelling. Freeze and Harlan [1969]
outlined a blueprint for a physically-based digitally hydrologic simulation
model and stated:

“the necessary numerical solutions to mathematical boundary problems
Jor groundwater flow, unsaturated porous media flow, overland flow,
and channel flow were already available” and “that developments in
digital computer technology at the time could provide the impetus for a
necessary redirection of research in digital simulation”.

Onstad and Brakensiek [1968], Dunne and Black [1970b] and Freeze,
[1971] also reported on design and modelling aspects of distributed
model approaches and selected process schematisations. At a later stage
the focus was on quantifying effects of spatial and temporal variability
of model input parameters and variables on runoff generation (see
Freeze, 1980 and Kleme§, 1983). Research in modelling primarily
focussed on simulating single flow processes thus ignoring many
aspects that are of relevance for the rainfall-runoff transformation
process. In this respect Beven [1985] stated:

“the development of distributed modelling has been a slow, faltering
process. The modelling of individual processes has been the subject of
numerous papers, but relatively few papers have appeared on models
interacting processes and on the application of catchment-scale models
to real world problems.”
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Research on PBRR modelling gained much attention during the late
eighties and early nineties when modelling became increasingly more
important. Research focussed on the development of integrated model
approaches in which thc most relevant runoff processes are simulated.
Special attention was paid to fundamental modelling aspects such as
process schematisations to be applied and model algorithms to be
selected (sce e.g. Beven, 1989; Grayson et al., 1992a). The design and
development of few modcl concepts and computer codes was reported by
Beven et al.[1987], Bathurst et al. [1986a,b], Moore and Grayson [1991],
among others. In research it was demonstrated that model performance
was low due to high parameter uncertainty and our inability to define
most optimal parameter sets. In research the scale issue was identificd as
the main source of parameter uncertainty. Beven [1989] stated:

“particularly for distributed physically-based models a central issue to
deal with is the problem of scale and spatial variability.”

This statement refers to discrepancies that exist between our detailed
mathematical descriptions of the real world runoff behaviour and our
inability to simulate the runoff behaviour in a consistent manner at
relatively large grid scales. Freeze [1972b] already had described this
aspect of distributed modelling and stated that scale issues could be a
potential cause of poor model performance. Bronstert [1999] addressed
the scale issue after reporting poor simulation results by the ‘Hillslope’
model. The scale issue was identified as the mail cause of poor model
performance. In section 3.2 various aspects of scale issues are discussed
in more detail.

For the past decade research had a focus on issues of model calibration
and parameterisation (see Beven and Binley, 1992; Refsgaard, 1997,
among others). By an understanding of the complexity of PBRR
modelling, it also was understood that model calibration results were
poor due to, among other aspects, model over-parameterisation, the high
demand for model input data and scale issues (sec Rientjes and Reggiani,
2001). Nowadays in runoff modelling it is common knowledge that the
practical implementation of PBRR models is seriously hampered and the
awareness is still growing that building reliable and trustworthy models
by far is a trivial task. Distributed PBRR modelling in terms of model
concept development and model calibration is still an important subject
of academic research
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3.2 Catchment runoff behaviour

3.2.1 Flow processes

Chow [1964] distinguishes surface runoff, subsurface runoff and
groundwater runoff as three dominant runoff contributing components.
Chow defines these runoff components as follows.

Surface runoff is “that part of the runoff which travels over the
ground sutface and through channels to reach the basin outlet”.

Subsurface runoff is “that part of precipitation which infiltrates the
surface soil and moves laterally through the upper soil horizons towards
streams as ephemeral, shallow, perched groundwater above the main
groundwater level”.

Groundwater runoff is “that part of the runoff due to deep
percolation of the infiltrated water which has passed into the ground,
has become groundwater, and has been discharged into the stream”.

Flow processes that are of importance in these runoff components are
described as follows.

Surface runoff: Flow processes are overland flow, stream flow and
channel flow. Overland flow is defined as the water flow over the
land surface following the contours of the highest downslope gradient
and is subject to the hydraulic characteristics of the land surface. Flow
is as a thin water layer over the land surface (i.e. ‘sheet flow’) or as
converged flow into small rills (i.e. ‘rill flow’). Overland flow is
known as Horton overland flow or saturation overland flow. In
sub-section 3.2.2 mechanism by which these processes are generated
are discussed in detail. Overland flow is observed as sheet flow, rill
flow or stream flow. At hill slopes rill flow is initiated by sheet flow
that generally only is observed at very small spatial scales. Travel
distances of sheet flow are very small and hardly observable since
small rills are easily shaped by the presence of small topographic
irregularities at the land surface. After convergence of multiple rill
flow pathways small streams develop. Stream flow is defined as water
flow in small streams due to the convergence of rill flow discharges. At
a hill slope the lengths of travel paths of rill flow discharges are short
as compared to the length of the flow path of stream flow discharges.
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Stream flow gradually converges into channel flow and is defined as
the flow of water in the catchment channel system.

Subsurface runoff: Flow processes are unsaturated subsurface flow,
perched subsurface flow and macro pore flow. Based on rescarch
by Pilgrim et al, [1979], the definition of Chow of subsurface runoff is
modified in such manner that macro pore flow also contributes to
subsurface runoff. Subsurface runoff is generated by infiltrated water
moving through the upper soil layers towards the streams and
channels where subsurface runoff is in Darcian and Non-Darcian flow
conditions. In Darcian flow conditions the subsurface forms a
continuum of the anisotropic and heterogeneous soil matrix while in
Non-Darcian flow conditions the soil matrix is discontinuous due to
the presence of voids, natural pipes and cracks in the soil.
Unsaturated subsurface flow is observed in Darcian flow conditions
where flow is governed by hydraulic pressure gradients. The dominant
flow direction of unsaturated subsurface flow is the vertical direction
since variations of the soil moisture contents in vertical direction are
much larger than in horizontal direction and since water moves in the
direction of decreasing energy status. Runoff contributions due to
unsaturated flow are very small and generally of no significance for the
total catchment runoff. Perched subsurface flow is observed in
perched (saturated) subsurface conditions where water moves in

lateral flow direction and where the movement of water is subject to
lateral hydraulic head gradients. For the generation of perched
subsurface flow, the hydraulic conductivity of a given soil layer must
significantly be lower than the hydraulic conductivity of the overlaying
soil layer. By the lower hydraulic conductivity, infiltration of water in
the less permeable layer is obstructed and infiltrated water is drained
laterally. Perched subsurface flow can have significantly contributions
to runoff generation and is often observed in catchments where the
upper soil layers are characterised by relatively high hydraulic
permeabilities. In many catchments upper layers are less compacted
and also are more permeable by the presence of roots. When upper
layers are densely rooted, the soil matrix of upper soil layers often is
discontinuous by the presence of macro pores. Macro pores such as
voids, natural pipes, cracks and fractures are caused by drought, by
animal life, by rooting of vegetation or by physical and chemical
geological processes. Macro pore flow is characterised as a Non-
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Darcian subsurface flow process in voids, natural pipes and cracks in
the soil structure. Water flow is not governed by hydraulic pressure
gradients but occurs at atmospheric pressure. Runoff contributions by
macro pore flow may be significant in mountainous, densely vegetated
and fractured rock areas. Macro pore flow that is not directly
discharged as subsurface runoff recharges the unsaturated or saturated
zone of the groundwater system.

e Groundwater runoff: Such runoff is generated by percolation of
infiltrated water that causes the filling of the groundwater system and
consequently a rise of the water table. Groundwater is discharged as
rapid groundwater flow in the upper part of the initially unsaturated
subsurface domain or as delayed groundwater flow in the lower part
of the saturated subsurface that, prior to the rainfall, already is
saturated. Some hydrologists consider rapid groundwater flow as
‘groundwater flow on top of the groundwater system’ while delayed
groundwater flow is considered as ‘the flow through the deeper
aquifers’.

In figure 3.1 a cross section of a hill slope is presented and a simplified
representation of the flow processes is added. Each of the processes has a
characteristic time and space scale and, when observed in a catchment,
make up the catchment runoff behaviour.

3.2.2 Mechanisms of runoff generation

Since the 1960’s theories on runoff generation are developed as based on
field research. Catchment runoff behaviour at the real world scale is a
function of physiographic, geologic and meteorological catchment
conditions and is (very) complex and highly dynamic. In the following
the mechanisms that cause the generation of runoff and the most
important runoff processes that cause the (rapid) development of a peak
runoff discharge are described. Flow processes described are Horton
overland flow, saturation overland flow and the aggregated subsurface
storm flow processes of perched subsurface flow, macro pore flow and
rapid groundwater flow. Runoff generating mechanisms are the
infiltration excess, saturation excess and subsurface storm flow
mechanisms.
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1 Horton overland flow

2 Saturation overland flow

3 Unsaturated subsurface flow
4 Perched subsurface flow

5 Macro pore flow

6 Rapid groundwater flow

7 Delayed groundwater flow

8 Channel flow

Figure 3.1: Cross-sectional presentation of hill slope flow processes.

Infiltration excess mechanism

The mechanism that controls the amount of water available for overland
flow is infiltration. Horton in 1933 identified the role of infiltration in
the hydrologic cycle and in runoff generation in particular. Horton
described the relation between rainfall intensity and the capacity of the
soil to absorb water. Rubin and Steinhardt [1963] described the Horton
infiltration theory in a more scientific framework. Conceptual
infiltration models are developed by Philip [1957]; Holtan [1961];
Morel-Seytoux, [1976], Smith and Parlange [1978], among others.

Amerman and McGuinness [1967] stated:

“in the simplest form, the infiltration theory of runoff predicts that
prolonged rain falling on the slopes of a drainage basin having a
uniform initial infiltration capacity will, if its intensity is greater than
the lower limiting infiltration capacity, ultimately produce overland
flow (Hortonian) more or less simultaneously over all the basin after
an initial abstraction due to surface storage.”

Freeze [1980] described the conditions for the generation of overland
flow by the Horton infiltration theory:

“the rainfall rate must exceed the saturated hydraulic conductivity of
the top soil and the rainfall duration must be longer than the required
ponding time of the land surface.”
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This so called ‘Horton overland flow’ (Dunne, 1978; Freeze, 1980; Kirkby,
1988), is common in areas where rainfall intensities are high and where
soil hydraulic conductivities are low while the hydraulic resistance to
overland flow is small. In literature the terms ‘concentrated overland flow’
and ‘infiltration excess overland flow’ are also applied. In this thesis the term
‘Horton overland flow’ is used. According to Dunne [1978], [1983] and
Bras [1990], Horton overland flow is common in arid climatic zones
when rainfall events are heavy and when mountainous hill slopes are bare
or covered by thin vegetation.

For a long period of time, Horton overland flow was identified as the only
overland flow process that caused the rapid rise of a channel flow
discharge although extensive field evidence was not present that large
Horton overland flow runoff volumes had caused high channel flow
discharges. The mechanism by which Horton overland flow is generated is
termed ‘infiltration excess mechanism’ and is simulated in most PBRR model
approaches (see Freeze, 1971; 1980; Correia and Matias, 1991; Abbott et
al., 1986a,b; Cabral et al., 1990; Grayson and Moore, 1988).

Saturation excess mechanism

A different overland flow process identified by Ragan [1968] and Dunne
and Black [1970a] and described by Dunne [1978] and [1983] is termed
‘saturation overland flow’ or, as some researchers prefer ‘saturation excess
overland flow’. In this thesis the first term is used. Saturation overland
flow is generated as the soil becomes saturated due to the rise of the
water table to the land surface or due to the lateral and vertical
percolation of infiltration water above an impeding horizon (Dunne and
Black, 1970a,b; Bonell and Gilmour, 1978; Dunne, 1983). Under the
latter conditions perched subsurface flow conditions prevail. Also for the
latter case the rise of the water table controls the soil saturation and thus
runoff generation by saturation overland flow. This phenomenon is
commonly referred to as the ‘saturation excess mechanism’ or ‘saturation
overland flow mechanism’. Some researchers (e.g. Bras, 1990 and
O’Connell, 1991) characterise the saturation process by stating that
‘saturation from below rather than from above’ causes the runoff generation.
Saturation overland flow is due to water that exfiltrates the subsurface
and due to rainfall falling on these fully saturated, exfiltration zones.
Saturation overland flow often is identified as an important runoff
process in densely vegetated land surfaces in mountainous areas where
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hillsides are concave in combination with shallow water tables and thin
top soil layers (Dunne, 1978).

A major difference between both mechanisms is that by infiltration
excess the subsoil becomes saturated by infiltrated water from the land
surface while by saturation excess the subsoil becomes saturated due to a
(rapid) rise of the perennial or perched water table. Soil moisture
distributions in the subsurface for both runoff mechanisms are different
as they evolve over time during a rainfall event. Although shortly after
the onset of a rainfall event similar infiltration fronts develop over time,
this front will change after a certain period. In case of infiltration excess
the soil becomes saturated by infiltration water and cause the wetting
front to move in downward direction while in case of saturation excess a
saturation front develops due to a water table rise. Such saturation front
is caused by lateral subsurface flow contributions of perched subsurface
or groundwater flow. The phenomenon of soil saturation mostly is
encountered at the bottom of a hill slope and cause that saturation
overland flow is generated near the channels.

The saturation of the subsurface for both infiltration and saturation
excess mechanisms is illustrated in figure 3.2 where soil moisture
distributions during a rainfall event are presented. Figure 3.3 is after
Dunne [1978] and shows schematics of overland flow generation for
both mechanisms. Horton overland flow is generated at the ponding time
at instant t, (fig. 3.3a), while saturation overland flow is generated when
the water table rises to the land surface at time instant ts (fig. 3.3b).

For the infiltration excess mechanism, runoff is generated due to (very)
high rainfall intensities that often only are of short duration. Based on
the saturation excess mechanism, runoff is generated by long duration
rainfall events that often are of low intensity. Particularly when the
subsurface is shallow saturation overland flow is easily generated by the
small subsurface storage capacity.

Field evidence learns that variations in runoff contributions are due to
the changing size of the areas from which the runoff is generated. These
areas are termed the ‘runoff contributing areas’ or ‘runoff source areas’
(Betson, 1964; Dunne and Black, 1970a; Dunne, 1978). The expansion
and contraction of the overland flow source areas is a highly dynamic and
non-linear phenomenon (Kirkby, 1988; O’Connell, 1991) that is a
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Figure 3.2: Soil moisture contents versus depth profiles for a) Infiltration excess
mechanism b) Saturation excess mechanism (Dunne, 1978).
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Figure 3.3: Overland flow generation for a) Infiltration excess
mechanism b) Saturation excess mechanism (Dunne, 1978).

function of the spatial distribution of rainfall, rainfall intensity and (sub)
surface flow conditions. In sub-section 3.2.3 this is further described.

Subsurface storm flow mechanism

Subsurface storm flow processes are perched subsurface flow, macro pore
flow and rapid and delayed groundwater flow. The complexity of the
runoff mechanism that governs the runoff generation by these processes
was not fully understood by the early researchers who developed the
theories of the overland flow runoff mechanisms. Nowadays subsurface
storm flow is regarded as an aggregated flow process with flow
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contributions from various processes that, in general, cannot be observed
separately due to strong process interactions.

An example herewith is the differentiation between rapid and delayed
groundwater flow. Such differentiation in fact is rather artificial and
arbitrary since both processes are continuous processes in space and time.
Both processes often arc governed by the same hydraulic gradients in the
soil matrix and groundwater runoff by ‘rapid’ and ‘delayed’ groundwater
flow is generated simultaneously by the displacement of water in the
shallow and more deeper groundwater system. Groundwater discharges
also change along a hillslope since hydraulic heads change along a hill
slope and since hillslope depths gencrally are smaller at lower parts. Also
at lower parts the water table generally is much closer to the land surface
compared to the upper part. Hence, at the lower part the time delay of
infiltrated water to percolate to the groundwater system will be short and
cause the quick generation of groundwater runoff. Based on this
reasoning, at the upper part of the hill slope runoff response times are
much larger. The terms ‘rapid’ and ‘delayed’ actually much more reflect a
time and space integrated response function of infiltrated water to
become catchment runoff.

Subsurface storm flow also is generated by perched subsurface flow that
is generated when the infiltration of water in a soil layer is obstructed by
its low infiltration capacity. Burt [1986] states,

“as the ratio between the hydraulic conductivity of the upper and lower
layers increases, more perched subsurface storm flow is generated and
the flow direction becomes more nearly parallel to the slope”.

In the same article it also is describes that the rainfall intensity greatly
must exceed the hydraulic conductivity of the obstructing layer. Perched
subsurface flow basically is a groundwater flow process with similar flow
characteristics and also is governed by Darcian flow conditions. In case
the ratio of the hydraulic conductivity of two layers becomes smaller or
when obstructing layers are discontinuous in space, perched subsurface
flow does not contribute significantly to catchment runoff. Under such
conditions some infiltration water maybe discharge as perched subsurface
flow while also the water table may be recharged. Runoff contributions
from perched subsurface flow and groundwater flow then cumulate in
the channel where runoff volumes are uncertain. The groundwater water
table as well as a perched water table also can be recharged by macro pore
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flow. Macro pore flow easily bypasses the entire unsaturated soil profile
by the presence of cracks, voids and pipes and so can cause that the
groundwater system becomes recharged shortly after the onset of a
rainfall event. By the same mechanism macro pore flow also contributes
significantly to the generation of perched subsurface flow. Up till the
work of Mosley [1979], Pilgrim et al. [1979] and Beven and Germann
[1981, 1982], the significance of macro pore flow on catchment runoff
generation was often underestimated, ignored or even not understood.
Germann [1990] describes the field conditions for generation of macro
pore flow:

“macro pore flow will be generated when the infiltration rate into a top
soil matrix is less than the water input to the entire soil surface”.

Macro pore flow is generated in any predefined area with discontinuous
macro porous top soils in case the rainfall rate exceeds the infiltration
rate of the soil matrix that intersects the land surface. The infiltration
excess water moves as overland flow over the land surface to the macro
pores were macro pore infiltration takes place at atmospheric pressure. In
macro porous top-soils overland flow distances are neglectable small.

By the description of the mechanisms that control the generation of
subsurface storm flow it is clear that the soil physiography of the
catchment plays a dominant role. The flow conditions for subsurface
storm flow generation are closely related to hydraulic characteristics of
the subsurface and to subsurface storage capacities. Although the
mechanisms to generate subsurface storm flow are well understood, the
quantification of the relevant flow processes during a rainfall event is still
very difficult due to many aspects involved.

3.2.3 Runoff source areas

Rainfall-runoff modelling deals with the simulation of the hydrologic
response of a system due to rainfall where the objective mostly is to
simulate the channel flow hydrograph at the catchment outlet. Rainfall-
runoff modelling in a distributed manner is closely related to the
simulation of the runoff generation mechanisms as described in sub-
section 3.2.2 and to the simulation of the source areas where runoff is
generated by the various flow processes. A number of researchers (e.g.
Betson, 1964; Troendle, 1985; O’Loughlin, 1987; Freeze, 1970, 1981;
Dunne, 1978, 1983; Kirkby, 1978, 1988) report about the theory of the
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runoff contributing areas. Reviews about the subject are presented by
Dunne [1978, 1983]. Based on the Horton overland flow mechanism the
so called ‘partial area concept’ is developed by Betson [1964]. In this
concept it is assumed that only a part of the catchment area is
contributing to generate runoff by Horton overland flow. The theory of
the partial area concept evolved from observations that runoff estimates,
that were calculated based on the summation of rainfall minus
evaporation and infiltration produced ‘linear errors’ to observed runoff
(see Kirkby and Chorley, 1967; TVA, 1968). For 14 catchments with
different physiographic conditions Betson [1964] identified that only a
portion (5 to 36%) of a catchment area produced quick catchment runoff
due to rainfall. Observed runoff volumes could not realistically be
reproduced when infiltration rates as measured in the field were applied
to the entire catchment. The cause of the mismatch was not explained by
the input of wrong infiltration rates but by the too large size of the area
these infiltration rates were applied to. At the time it was understood that
only the rainfall on a small and fairly constant part of a catchment area
was able to contribute to the runoff during the hydrograph peak.
Although the highly dynamic and non-linear character of catchment
response was not fully understood, a better insight in the appearance of
runoff processes was achieved.

In sub-sections 3.2.1 and 3.2.2 it is described that various surface and
subsurface storm flow processes contribute to catchment runoff. Hewlett
and Hibbert [1967] and Ragan [1968] presented an early theoretical
assessment about catchment runoff production due to runoff
contributions from multiple flow processes. These researchers introduce
the term ‘variable source concept’ since it was understood that areas where
saturation overland flow, Horton overland flow and subsurface storm
flow is generated vary temporally and spatially in size. In Figure 3.4 an
example of the dynamic behaviour of runoff source areas by the
saturation excess mechanism is presented

Hewlett and Hibbert [1967] stress the importance of:

“a belt of saturation, lying along stream channels, and varying in
width in response to rainfall, as the critical zone from which subsurface
water and groundwater emerge to form a flood peak”.

Based on field evidence, Hewlett and Hibbert [1967] concluded that the
size of the saturation overland flow source areas changes during rain
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t,

Figure 3.4: Dynamic behaviour of the saturation overland flow
source area during a storm event (Hewlett and Hibbert, 1967).

events and inter-storm periods. In the theory about the variable source
concept it was understood that the size of the runoff contributing area
must be related to the size of the area where runoff is generated.

Saturation of the subsurface is caused by percolation of rainwater and by
lateral subsurface flow from upslope areas. In lower sections of a hill
slope the transmissivity of the upper soil layers in general decreases
since, by the lowering of the surface elevation, the thickness of the upper
soil layers decreases. In case of saturation of the downslope soils the
capacity of a soil to transmit water laterally is easily exceeded. When the
downslope soils are saturated, subsurface water will exfiltrate and so
becomes overland flow. Saturation overland flow is due to the combined
effect of exfiltration and rainfall on the saturated soil (see sub-section
3.2.2). In case of deep permeable soils, the runoff contributions due to
saturation overland flow become less pronounced since catchment runoff
is mainly due to subsurface storm flow. The theory of runoff generation
by the variable source concept is generally applicable to areas of local
scale (1 km? - 10 km?). For areas of spatial scales larger than 10000 km’
effects of runoff generation as described in the variable source concept
have less effects on the peak runoff rate at the catchment outlet. This
since the routing of water in the channel network system cause
dampening and attenuation and effects of runoff generation processes
become mitigated.
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Figure 3.5: Diagram of the occurrence of various overland flow and
subsurface storm flow processes in relation to their major controls

(Dunne, 1978).

A diagram (fig. 3.5) of the various runoff processes of Horton overland
flow, saturation overland flow and aggregated subsurface storm flow
processes in relation to their major controls is presented by Dunne

[1978; 1983]. The term ‘return flow’ as applied in the diagram refers to
the generation of saturation overland flow by a perched groundwater
table. The diagram illustrates that the occurrence of various runoff
processes can be related to common catchment characteristics in terms of
topography and soils and to climate, vegetation and land use.

In the diagram only processes are considered that can be characterised by
relatively short response times. The arrows between the runoff groups
imply a range of storm frequencies as well as catchment characteristics.

Although the scheme relates the occurrence of specific runoff processes
to common climatic and catchment characteristics, in the real world most
processes can occur at any hilly catchment although the extent and
significance of each process for runoff generation differs. The catchment
response due to rainfall is caused by contributions of multiple and
aggregated flow processes while the relevance and magnitude of each
process contributing to catchment runoff is subject to the physiographic,
geologic and meteorological catchment properties.
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In modern research, the accurate mapping of the runoff source areas is
still identified as one of the key problems in PBRR-modelling for flow
simulation and forecasting.

3.2.4 Characteristics of flow processes and scales issues

Runoff processes can be characterised by lag time that express the time
period after which rainfall is transformed into runoff as observed at the
catchment outlet. Lag times can be interpreted as an average residence or
travel time and is subject to the spatial scale of a catchment. Generally,
lag times of surface flow processes are smallest since travel path at the
surface are short and since storage volumes to temporally store water are
small. Lag times of groundwater flow processes are longest since flow
velocities generally are small and since subsurface storage volumes are
large. For aggregated subsurface storm flow processes lag times are in
between. The lag time for macro pore flow is smallest while for perched
subsurface flow the lag time is relatively long.

In figure 3.6 diagrams (after Anderson and Burt, 1990) are presented for
the lag times of Horton and saturation overland flow and the aggregated
subsurface storm flow processes and for the magnitude of the peak
runoff rates both as function of the catchment scale. The diagram is
based on extensive analyses of the runoff behaviour from various
catchments (see Dunne, 1978) and supports the description of catchment
runoff behaviour as presented in the variable source concept. From both
overland flow processes Horton overland flow has smallest lag times
while a slightly longer lag time is ascribed to saturation overland flow.
Horton overland flow mostly is observed in arid climatic zones and is
generated by high intensity rainfall events of relatively short duration. In
the diagram lag times for Horton overland flow generation at catchment
with sizes < 10000 m” are not indicated since lag times (< 0.1 hour) are
too small to be presented. Saturation overland flow mostly is observed in
humid climatic zones particularly when catchments are characterised by
shallow and highly permeable subsurface.

In the diagram the lag time for aggregated subsurface flow is largest since
subsurface storm flow by macro pore flow, perched subsurface flow and
rapid groundwater runoff is characterised by relatively long residence
times. In the diagram it is assumed that the magnitude of specific peak
runoff rates is highest for Horton overland flow and lowest for the
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Figure 3.6: Catchment responses by of Horton and saturation overland flow and
aggregated subsurface storm flow processes in terms of a) lag times b) specific peak
runoff rates (modified after Kirkby, 1985).

aggregated subsurface storm flow processes. Slightly lower peak runoff
rates are generated by saturation overland flow.

The diagram suggests that catchment runoff behaviour is dominated by
only one of the runoff processes and that noticeable differences exist in
the behaviour of the runoff processes. Such differences relate to the lag
time to generate runoff and the magnitude of the peak runoff rates.
Although such differences exist in the real world, it is questionable
whether such differences are as clearly observable as presented in the
figure. As described in section 2.3, any runoff hydrograph must be
interpreted as an integrated response function of all upstream flow
processes and channel flow runoff at the catchment outlet. Quantifying
runoff contributions separately is very difficult and cannot be based on
the simple classification as presented in figure 3.6. The diagram primarily
serves as a illustration to compare the different lag times and runoff
intensities of various processes in relation to the catchment size.
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By an understanding of the dynamic character of the catchment runoff
behaviour and rainfall-runoff processes it has become clear that each
flow process can be characterised by a spatial and a temporal process
scale. In table 3.1 (Rientjes, 1999a) the rainfall process and flow
processes are characterised by spatial and temporal process scales. The
process scale is defined as the scale at which natural phenomenon are
observable through measurements.

In the table it is shown that ranges of spatial and temporal process scales
overlap and that ranges of temporal process scales for the surface and
subsurface flow processes are much larger than spatial scales. By this it is
concluded that spatial process scales have a more dominant effect on the
runoff behaviour. This is explained by the fact that any catchments can
be interpreted as a large storage or filter volume that dampens effects of
temporal process scales and, to a smaller extent, the effects of spatial
scales.

Table 3.1: Spatial and temporal process scales of the rainfall-runoff
processes

Process

100 m — 100.000 m 1 min. —days

10 m 100 m 1 min - 15 min.

10 m 1.000 m S min - hours

10 m 100 m 1 min - hours

1m 100 m 10 min. - days

10 m 1.000 m 10 min, - 1 day

1m 100 m 1 min. - 1 hour |
4 100 m - 100.000 m 1 day - ‘ i
| 100m - 10.000m [ 10 min -

As pointed out in section 3.1, Beven [1989] emphasises the role of scale
and variability in PBRR modelling:

“particularly for distributed physically-based models a central issue to
deal with is the problem of scale and spatial variability”.

When simulating rainfall-runoff processes using distributed
deterministic models, in theory the modeller has to know all spatially and
temporally distributed catchment properties that govern rainfall-runoff
processes. In practise generally much too little real world data is available
to fully describe such properties at appropriate scales. For that reason
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many simplifying assumptions are introduced in distributed PBRR
modelling. A major model simplification is the discretisation of a
catchment into uniform or non-uniform grid elements that make up a
model grid layer. At grid elements time invariant catchment properties
and characteristics are represented by model paramcters for which some
value must be defined. Parameter values are required by the model
algorithms and serve to parameterise the model. Since observations of
processes, parameters or variables mostly is achieved by sampling at a
limited number of locations, the representativeness of such observations
may be questioned particularly when they arc applied to much larger
spatial and temporal scales. For any process the observation scale should
ideally be equal to the process scale and should also match the scales to
which model equations are applied. In PBRR models always a large gap
exists between scales of observation and model scales in terms of grid
element size and calculation time step. Scale issues seriously hinder
successful PBRR modelling and to large extent cause that model
performance is low.

3.3 Research efforts in physically-based rainfall-runoff
modelling

During the past decades a relatively large number of distributed rainfall-
runoff model approaches are developed that are termed ‘physically-based’
by the fact that real world physiographic and meteorological catchment
data are used as model input data. Most of these approaches apply grid
layers with rectangular elements and mostly only are able to simulate
(flow) processes that are observed at the land surface. The main objective
for model design and development was to improve our ability to simulate
environmental impacts that are due to rainfall. Examples are soil erosion,
sediment and solute transport and runoff production. Some model
approaches apply conservation equations of mass and momentum to
simulate overland and channel flow processes but combine these sub-
models with conceptual and/or empirically based sub-models that
simulate subsurface flow processes. Other approaches simulate
subsurface flow behaviour by use of simple mass balance equation but
apply simple travel time procedures to simulate overland and channel
flow. By a dctailed description of the catchment topography in terms of
elevation, slope gradient, slope aspect, local drain direction, land use,
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etc., it is believed that the relation between rainfall and runoff can be
modelled. The use of such model approaches in runoff hydrology is
questionable since real world runoff generation mechanisms and flow
processes are not simulated. In literature these approaches often are
termed and classified as physically based since real world physiographic
catchment characteristics such as elevation and land slope served as
model input. By the classification of deterministic models approaches in
section 2.1, such classification is incorrect and approaches must be
classified as distributed conceptual. Examples herewith are TOPMODEL
from Topography based hydrologic MODEL (Beven and Kirkby, 1979);
KINEROS from KINematic runoff and EROSion, (Woolhiser et al.,
1990); ANSWERS from Areal Non-Point Source Watershed
Environment Response Simulation, (Beasley et al., 1980, 1982); WEPP
from Water Erosion Prediction Project, (Lane et al., 1988); AGNPS from
AGricultural Non-Point Source pollution, (Young et al., 1987, 89) and
CREAMS from Chemicals, Runoff, and Erosion from Agricultural
Management Systems, (United States Department of Agriculture, 1980;
Knisel, 1982).

The number of model approaches that only have physically-based flow
equations at the core of at their mathematical models is very small. Such
approaches primarily are developed in the late eighties and a small group
of researchers present in a range of articles their research objectives,
developments and achievements. The main objective of research was to
see whether the runoff production mechanisms could be simulated by
distributed PBRR model approaches. Hydrologic catchment response had
to be simulated by an integrated model approach in which the most
dominant runoff processes are simulated. In literature the design and
development a small number of PBRR computer codes is reported. The
designed model concepts underlying the codes however differ
significantly and establishing the most appropriate concept became a
general research topic.

Model concepts differed by the:

¢ simulated flow processes,

e schematisations of the flow processes,

¢ applied catchment partitioning theory and,

¢ applied flow equations (Rientjes et al., 1999a).
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In this thesis four model approaches are reviewed, analysed and
evaluated. Within each approach, runoff processes at the land surface, the
unsaturated zone and the saturated zone are distinguished. Computer
codes are developed based on the approaches and are applied to specific
study sites.

Distributed PBRR approaches reviewed are Systéme Hydrologique
Européen (SHE) (sub-section 3.3.1), THALES (sub-section 3.3.2),
Institute of Hydrology Distributed Model (IHDM) (sub-section 3.3.3)
and Distributed Basin SIMulator (DBSIM) (sub-section 3.3.4).

For each model approach, model assumptions, applied process
schematisations and flow equations are described. Process
schematisations and model equations are described for flow processes at
the land surface, unsaturated zone and saturated zone. Also simple
descriptions on modelling rainfall, evapotranspiration and interception
are given. For each of the approaches simulation results are shown and
evaluated.

3.3.1 Systéme Hydrologique Européen (SHE)

In a number of articles Abbott et al., [1986a,b] introduce SHE that from
1976 onwards is developed by combined efforts of the Danish Hydraulic
Institute (DHI), Institute of Hydrology in the United Kingdom and the
French consulting company SOGREAH.

Introduction

SHE is a hydrologic model approach in which precipitation, snow melt,
canopy interception, evapotranspiration, infiltration, exfiltration,
overland flow, channel flow, unsaturated subsurface flow and
groundwater flow are simulated. The approach is very advanced since all
flow processes as well as mass exchanges and model interactions are
simulated by conservation equations of mass and momentum. Runoff
may be due to rainfall and/or snow melt. Overland flow, channel flow,
unsaturated subsurface flow and groundwater flow are simulated by
finite difference approximations of the partial differential equations.

For representing a catchment in a distributed manner, a partitioning
theory is applied where a three-dimensional matrix of rectangular grid
elements is constructed. In horizontal perspective all grid elements of all
model layers are of equal size while in vertical perspective all layers are
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Figure 3.7: Schematic of the SHE (Abbott et al, 1986a,b).

of equal thickness. On the applied model domain Abbott et al., [1986a]
state:

“the spatial distribution of the catchment parameters, the precipitation
input and the catchment response is achieved in the horizontal through
representation of the catchment by a rectangular raster network and in
the vertical by a column of horizontal layers at each grid square”.

All model input variables like precipitation intensities and soil hydraulic
conductivities may vary over the model domain but are lumped at the
scale of a grid element and are assumed to represent an averaged value
for the grid element area.

Flow schematisation

Land surface

Surface runoft is described by Horton and saturation overland flow and
channel flow. Overland and channel flow are simulated by separate flow
equations but mass exchanges are simulated when a grid elements of the
overland flow and channel flow models coincide. For each calculation
time step overland flow discharges are entered into the channel flow
model. Model algorithms for overland and channel flow apply different
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time steps to match the temporal process scales. For the simulation of
overland flow a Digital Elevation Model (DEM) is used for defining
slope gradients and slope aspects of the grid elements. In SHE overland
flow is simulated as sheet flow. For the simulation of channel flow a
DEM is used for defining bottom slope gradients. The applied governing
equation for overland flow simulation reads:

My Ry Ay g [3.1]
ot ox oy
where
Aor = cross-sectional flow area overland flow [L%]
Q.r = overland flow discharge [L°T]
t = time [T]
X,y = horizontal space co-ordinates [L]
Ss¢ = sink/source term surface layer [L2 T‘l].

When vy and vy are flow velocities in x and y-direction respectively and h,
a local water depth at the land surface then Eq.[3.1] for a unit width of
flow yields:

Lovhy) ov,hy) _
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with the sink/source term, S, expressed per unit area, [L' T']. The
relation between the change of the water depth, hg, over the land surface
in x and y direction, dh / 0x and dh, / Jy respectively, is simulated by the
diffusion wave theory.'

%:sox ~S,, and for 5;; =S,, ~Ss, [3.3]
where
Soxs Soy = ground slopes in the x and y direction [-]
S, Sty = friction slopes in the x and y direction [-]

In this theory the friction force is proportional to the friction slopes.
When applying the Strickler-Manning law to simulate the relations of
Eq.[3.3] and when the flow is expressed per unit width in x and y
direction, the relation between the flow velocities and the overland flow
depth becomes:

v.h, =k, i%h’ andfor vh =k, i’*h% [3.4]

mxx myy
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where
Km,x, kmy = Strickler roughness coefficients in x - y direction ~ [L*’ T™]
iy, 1y = water surface gradient in x - y direction [-1-

Equation [3.4] is at the core of the model algorithms applied for
simulation of the overland flow discharges in Eq.[3.1]. The conservation
equations of mass Eq.[3.2] and momentum Eq.[3.4] make up the
diffusion wave equations that are simplified expressions of the
hydrodynamic Saint Venant equations (Saint Venant, 1871) for
simulation of water flow in open channels.

For the simulation of overland flow a two-dimensional finite difference
scheme is applied. Abbott et al, [1986b] report that this scheme is solved
by an explicit numerical calculation method as described by Preismann
and Zaoui [1979]. In 1993 the DHI reports that the explicit scheme is
replaced by an implicit calculation scheme as described by Thomas
[1973].

Channel flow is simulated by basically the same diffusion wave equations
where flow equations are now solved in one direction only. Model input
now are channel characteristics. The set of equations is solved by an
implicit finite difference scheme.

Unsaturated zone

In the unsaturated zone water flow is simulated in upward or downward
direction only. The zone is bounded by the land surface and the phreatic
water table and varies in thickness over the model domain by fluctuations
of the water table. Water flow in the unsaturated zone is simulated by
‘Richards equation’ (Richards, 1931) that is solved in one dimension.
Processes that are simulated in SHE by Richards equation [Eq.3.5] are
unsaturated flow, infiltration, capillary rise and percolation.

cv =2(k(e) ﬁ"’_)+%_su [3.5]
ot oz oz 0z
where
C = 00/ 0¥ = specific water capacity [L]
6 = soil water content [-]
¥ = soil pressure head [L]
z = vertical space co-ordinate [L]
k) = hydraulic conductivity subject to 8 [LTY]
Suz = sink/source term for unsaturated subsurface [T].
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Eq.[3.5] Is solved by making use of the soil characteristic relations
between the soil water content, 8, and the unsaturated hydraulic
conductivity, k), and the soil water content, 8, and the soil water
tension as expressed by the soil pressure head, ¥ (after Abbott et
al.,1986b). The relation between the soil water content and the pressure
head is known as the soil water retention curve and often called the ‘pF-
curve’. For solving the finite difference equations a one-dimensional
implicit calculation scheme is applied.

The accurate modelling of the unsaturated zone is very important since
overland flow generation is closely related to the infiltration
characteristics and water storage capacity of this zone.

Saturated zone

Abbott et al. [1986a,b] describe that groundwater flow is simulated in a
single model layer by a two dimensional non-linear Boussinesq-type flow
equation:

ch k) oh F) 6h
Sy—"=~(ka—5’—J+——(kyH—1J+Rsz [3.6]
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where
Sy = specific yield (-]
hp, = hydraulic head of phreatic water table [L]
kx = saturated hydraulic conductivity in x direction [LT"]
ky = saturated hydraulic conductivity in y direction [L T
H = saturated thickness [L]
R, = recharge of saturated zone [LT'].

In the approach changes of the phreatic water table are simulated that are
due to percolation from and capillary rise to the unsaturated zone model
layers. Exfiltration is simulated in case the column of grid cells of the
initially unsaturated zone becomes over-saturated. Detailed descriptions
of calculation procedures to simulate exfiltration are not presented in
literature.

DHI [1993] has reported the development of a three-dimensional multi
layer model approach that allows the simulation of equifers and aquitards
in deeper groundwater systems. This approach is not further discussed
since it is of little relevance in rainfall-runoff modelling.
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Atmospheric water and interception
In SHE rainfall, evapotranspiration and interception are simulated.

Model algorithms to simulate these processes are not discussed since this
is out of scope. Here it is only mentioned that spatial distributions of
rainfall are simulated by Thiessen polygons, that evapotranspiration is
calculated Penman-Monteith equation (Monteith, 1965) and that the
‘Rutter accounting procedure’ (Rutter et al., 1971) is applied to simulate
interception losses.

Results

Bathurst et al. [1986a,b] report after the very first simulations with SHE
on calibration and validation tests for a case study of the upland Wye
catchment (10.55 km?®) in mid-Wales. In the numeric simulations, grid
elements of model layers had size 250 m.x 250 m. In total 169 grid
elements are defined and each element covers an area of 0.59% of the
total catchment area. Grid elements outside the topographic catchment
divide are ignored in model simulations. For the Wye catchment, all
processes of rainfall, interception, evapotranspiration, overland flow,
channel flow, unsaturated subsurface flow and groundwater flow are
simulated. For the calibration and validation of the catchment model,
five rainfall events are selected to represent a variety of climatic and
hydrologic conditions. The first event is used for model calibration while
the four other events are used for model validation. Model input data is
derived from field measurements or from published data.

Model calibration is achieved by changing a small number of model input
data for which the model is expected to be sensitive. For the unsaturated
zone model, the saturated hydraulic conductivity in vertical direction,
initial soil water content and shape of soil water tension curve are
changed. For the saturated zone the saturated hydraulic conductivity and
the initial phreatic surface water level are changed while for the land
surface flow roughness coefficients for overland flow and channel flow
are changed. Calibration by modifying parameter values focused on
‘physical reasoning’ (Bathurst, 1986a). During calibration it turned out
that the initial phreatic water level and the saturated hydraulic
conductivity of the saturated model zone had major effect on simulated
catchment runoff. In the catchment model the saturated hydraulic
conductivity was spatially distributed as function of the soil type
distribution. In the validation tests calibrated parameter sets were
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applied. The initial groundwater level was set to an expected depth based
on physical reasoning (measured depths were not available). The main
conclusion for the validation tests was that for nearly all four events the
observed and simulated hydrographs matched reasonably well.

Model sensitivity analyses towards runoff generation are presented by
Bathurst [1986b]. Sensitivity analyses of the Wye catchment model
focused on;

1. applied spatial rainfall distributions,

2. applied grid resolution and calculation time steps,
3. defining the most sensitive model parameters and,
4

. uniqueness of parameter sets; it was researched if equally satisfactory
calibration results can be obtained by different parameter sets.

ad 1) effects of simulating spatially distributed rainfall by Thiessen
polygons as compared to uniform rainfall were only minor. Conclusions
why effects are only minor were not presented. A possible, but most
likely, cause of the minor sensitivity is that rainfall for the simulation
period input is rather homogenously distributed.

ad 2) A change of the model resolution by changing the element spacing
from 250 m* to 500 m” only had significant effects on runoff generation
when catchment conditions were dry. In case of relatively wet initial
conditions effects were only minor. An explanation for this model
behaviour is that is the spatial resolution of the model does not effect the
exfiltration process that is simulated by the saturated flow model, An
increase of the model simulation time step from 0.1 hour to 0.5 hour for
the unsaturated flow, overland flow and channel flow models caused
delayed catchment response. The overall runoff volumes did not change
significantly.

ad 3) Parameter sensitivity tests are executed for a number of sub-
models. For the overland flow model a change of the Manning roughness
coefficient showed significant effects. Vegetation related parameters that
effect interception and evapotranspiration only showed minor effects but
this could be due to the short time base of the events. In the unsaturated
zone model, the initial soil water content and the vertical saturated
hydraulic conductivity show significant effects on runoff generation.
Sensitivity analyses of saturated hydraulic conductivities indicated
significant effects on the base flow.
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ad 4) Bathurst [1986a,b] states that extensive parameter sets can produce
equally satisfactory model calibrations. It is argued that changes in
parameter values of multiple parameters may counter balance single
effects and as such a similar model output could be generated. For model
calibration Bathurst [1986b] proposes that several rainfall events must be
used for model calibration to obtain an optimum parameter set. Such set
represents averaged catchment properties (see also Klemes, 1986) and
produces the best calibration results.

Although calibration, validation and sensitivity results only were briefly
discussed in Bathurst, [1986a,b] they stated that the model simulations
were encouraging. Differences between measured and predicted runoff
discharges range from 5 to 25% of the observed discharges. Additional
validation tests have been carried out on gauged and ungauged
watersheds with catchment sizes ranging from 0.3 to 600 km” in a variety
of climatic settings.

Remarks

Some remarks on the model approach are:

o The procedure to create the DEM is not discussed although it is
known that DEM’s can be very inaccurate in representing catchment
elevations. It is surprising that this aspect of modelling is not
addressed in the early reports on SHE.

e Bathurst et al., [1986b] state that changes of grid spacing and changes
of model parameter values may have a comparable effect on simulation
results. Research after such effects has not been reported although it
was understood that these effects could have implications towards
model calibration.

o By the complexity of the model approach a large amount of catchment
data is required for model parameterisation. The fact that the large
amount of input data could potentially cause problems in defining
most optimum parameter set was not regarded a real setback in PBRR
modelling although it was understood that multiple parameter sets
could be defined that all could give satisfactory simulation results.

e In the reports on SHE, little attention is paid to scale issues that relate
to the spatial resolution of the model. Dimensions of the model grid
elements and cells are just fixed and implications of such procedure
are not addressed.
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3.3.2 THALES

Moore and Foster [1990], Moore and Grayson [1991] and Grayson et al.,
[1992a] present the THALES model approach that is named after ‘Thales
of Miletos’, a Greek philosopher who revealed the role of topography in
runoff generation.

Introduction

In the approach a DEM is created by a catchment partitioning theory that
is called ‘contour based terrain analysis method’ (Moore et al., 1988;
Moore and Grayson, 1991). This method is based on the ‘stream path
analogy’ as introduced by Onstad and Brakensiek [1968]. In the ‘stream
path analogy’, contour lines of the catchment elevation are assumed to be
equipotential lines while stream lines are simulated orthogonal to these
contour lines. Two adjacent stream lines make up a ‘stream tube’ or
‘stream path’ while interconnected stream path make up a flow net of
non-uniform elements. Onstad and Brakensiek [1968] state;

“a flow net consists of a collection of flow lines intersecting a collection
of equipotential lines. The slope between equipotential lines is
maximum when flow lines intersect orthogonally, and it is along this
gradient that surface water is assumed to flow”.

In figure 3.8 an example of a DEM is presented that is partitioned by the
stream tube analogy. This DEM is constructed by interconnected stream
tubes that are discretised in non-uniform grid elements that are bounded
by elevation contour lines. A relatively large number of papers have
appeared on catchment partitioning by stream tubes (see Onstad and
Brakensiek, 1968; Kozak, 1968; Onstad, 1973; Tisdale et al., 1986; Moore
and Grayson., 1992a, among others). The topic of catchment partitioning
to create discretised model domains is still a subject of ongoing scientific
research and is of major importance in distributed runoff modelling.

Moore and Grayson [1991] motivate the usage of the stream tube
approach by stating;

“For hydrologic modelling, the physics of the process in question should
make up the model concept and so define the model demands” and
“Analysis in complex terrain needs a partitioning theory different from
the theory of the commonly used rectangular grid systems applied in
raster DEM’s”.
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Figure 3.8: Hypothetical catchment showing elements shaped by
intersections of adjacent streamlines and elevation lines

(Brakensiek, 1968).

Another statement is;

“For overland flow the hydraulics of fluid flow in the landscape make
up the data structure” and “The non-uniform elements constitute a
vector based DEM. Such a DEM is capable of providing a topographic
structure which is based on the physics of water movement on the land
surface where a priori knowledge of the terrain is not required”.

In the algorithm for catchment partitioning, for each grid element the
following attributes are defined; element area, total upslope contributing
area, element numbering of upslope and downslope connected elements,
X,¥,2, co-ordinates of element centroids, x,y,z, co-ordinates of midpoints
at downslope boundary of an element, average element slope, width of
upslope and downslope element boundaries, length of the element,
aspect or azimuth of the element and plan curvature. The algorithm for
catchment partitioning is described in Moore and Grayson [1991]. The
DEM discretisation is used to simulate distributions of model input
parameters, model variables and flow discharges.

For simulation of runoff, 2 combined kinematic surface-subsurface flow
model approach (after Moore and Grayson, 1991) is applied. Surface
runoff is simulated by channel flow and overland flow that is simulated
as sheet flow, and runoff from the subsurface is simulated in shallow
saturated flow conditions only. By the description of flow processes in
sub-section 3.2.1, shallow subsurface runoff basically can be interpreted
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as rapid groundwater flow. In the THALES approach it is assumed that
rapid groundwater flow is generated by a groundwater table rise as caused
by lateral groundwater flow and percolation. The kinematic surface-
subsurface flow model is developed by Takasao and Shiibi [1988] and is
based on the one dimensional mass balance equation:

oA R LA,

[3.7]
ax & As,

where

A¢= cross-sectional flow arca [L?]

Q. = discharge from grid element [L* T
in = net rainfall intensity [LT"
A.= plan area of grid element [L?]

se = flow distance along a streamline in a grid element [L]

t = time instant [T]

s = location along a stream line [L].

During model simulations the cross-sectional flow area, A, is defined for
the runoff processes of Horton overland flow, saturation overland flow
and rapid groundwater flow.

Nodal points in the network correspond to the midpoints on the upslope
and downslope contour lines bounding each element. Momentum
equations are solved in one-dimensional perspective at each nodal point
in the network. For the momentum equations, the resistance equations
of Darcy and Manning are applied for respectively the rapid groundwater
flow and overland flow model approaches. Water flow in a catchment
model is represented by a series of one-dimensional momentum
equations. Coupling of equations is realised through a finite difference
form of the continuity of mass equation that is applied to the catchment
grid elements. The flow equation to simulate surface and subsurface
runoff across a stream tube was originally developed by Brakensiek
[1967]. By simulated infiltration and exfiltration processes, water
exchanges between the overland flow and the groundwater flow models
is possible.

The THALES model concept was designed and developed to prove the
usefulness of the described catchment partitioning theory in distributed
PBRR modelling. In this respect Moore and Grayson [1991] refer to a
statement of Beven [1989] who, in an article about scale considerations
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in hydrologic modelling, criticised distributed rainfall-runoff modelling
efforts:

“Computer models must take account of the need for a theory of the
lumping of sub-grid scale processes; for a closer correspondence in scale
between model predictions and measurements; and for closer
correspondence between equations and field processes”.

By the applied spatial discretisation and selected model algorithms, the
THALES model approach was expected to meet these demands.

Flow schematisation

Land surface :

At the land surface channel flow and overland flow are simulated by a
combined conservation equations of mass and momentum. In the
mathematical model, the momentum equation is described by the
Manning equation that is expressed by:

Q; =aAf (3-8]
where
Q¢ = flow discharge [L*T]
Ag= cross-sectional flow area (L3
m = coefficient [-]
o = coefficient [-].

The dimension of « is subject to the process modelled. The overland
flow discharge is calculated by:

Q. =n"'.0”. tan” BA™ [3.9]
where
Qo = overland flow discharge [L* T
N = Manning resistance coefficient [T L'
® = width of grid element orthogonal to the streamline [L]
B = local slope of land surface (-]
Aot = cross-sectional flow area overland flow [L?]
m = coefficient with value 5/3 [-]-

Channel flow is simulated by basically the same equation. Only model
input data is slightly modified: 1) the value coefficient m is set to 4/3, 2)
the cross sectional flow area ise defined for the channel, Ay, 3) the
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element width, o, is replaced by a coefficient, v, that describes the relation
between hydraulic radius, Ry, and cross-sectional flow area: Ry, = V.Ac”
(Moore and Burch, 1986; Moore and Foster, 1990).

For routing of overland flow and channel flow a numerical solution of
the conservation equation of mass as developed by Brakensiek [1967] is
applied. For simulation of overland flow this one-dimensional equation
has the form:

Aga + 2Quf4£ =An—AntAnt 2Qof2ﬂ + 2inAc£ [3.10]
As, ) As, .

where
A,r = cross-sectional overland flow area [L?]
Qo = overland flow discharge of a grid element [L> T
Ase = increase of flow distance along a streamline [L]
in = net rainfall intensity [L T
A. = plan area of the element [LY]
At = time increment [T].

The subscripts 1-4 refer to the time-space domain of the applied
equations; the subscripts 1 and 3 refer to time t at positions s and s+As,,
respectively, and subscripts 2 and 4 refer to time t+At at the same
positions. The terms on the left hand side of Eq.[3.10] are solved during
model calculations where A, is related to Qs by a non-linear relation.
Applying a method of Newton and Raphson (Moore and Foster, 1990;
Moore and Grayson, 1991) Eq.[3.10] is solved for Qo or Aqss following
the description of Eq.[3.8]. Although not described in Grayson [1992], it
is assumed that for simulation of channel flow by Eq.[ 3.10], the
overland flow discharge, Qo is replaced by a channel flow discharge, Qch.
Also the cross sectional overland flow area, Ay, is replaced by the cross
sectional channel flow area, Ag.

In the THALES model approach it is assumed that Horton overland flow
is generated when the land surface becomes ponded by rainfall while the
subsurface remains unsaturated. The time to ponding, t,, is defined by:
K,.(6,-6,
tp= ‘s,r(. S l)I-IC [3.11]
i, -K

S,
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where
K, = re-saturated hydraulic conductivity of the Green
and Ampt infiltration formula (Green and Ampt, 1913) [L T'']

0s = saturated soil water content [-1
0; = initial soil water content [-]
H. = effective capillary drive [L]
in = net rainfall intensity [L T

(Mein and Larson, 1973; Morel-Seytoux, 1988a, after Moore and
Grayson, 1991).

The infiltration rate and the infiltration volume are calculated for each
element to define the rainfall excess rate.

Unsaturated zone / saturated zone

Infiltration is calculated either by a Horton type infiltration equation
Eq.[3.11] or by an infiltration equation as described by Smith and
Parlange [1978] Eq.[3.12] (see Grayson et al., 1992a):

f=K,, + L(ip—Ku Xe“'-l)e‘“(“'v) [3.12]
KAt
where
f = infiltration rate (L T']
= constant [T
At = time increment [T]
ip = rainfall intensity that induced ponding [LTY
t = time instant [T].

Morel-Seytoux [1988a,b] demonstrate that a constant k can be defined as
function of K, , 6, 6, and H. as applied in the Green and Ampt
infiltration model (Green and Ampt, 1913):

8str
K= /ﬁes—ei)ﬂc] [3.13]

The re-saturated hydraulic conductivity, K, usually is smaller than the
saturated hydraulic conductivity, K. In practice k generally is a fitted
parameter (Moore and Grayson, 1991).

The infiltration equation of Smith and Parlange [1978] has the form
(Grayson et al., 1992a):
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f e

=K,—— [3.14]
e%3 -1

where

f = the infiltration rate [L T

K; = saturated hydraulic conductivity [LT']

F = the volume of water infiltrated per area unit [L]

B = H: (6;-6) [L].

A clear description on the implementation and effectiveness of both
infiltration theories is not presented in the articles by Moore and Foster
[1990], Moore and Grayson [1991] or Grayson et al., [1992a].

For rain periods ty where the rainfall intensity i, falls below the
infiltration capacity, the unsaturated hydraulic conductivity, K, is
calculated. Morel-Seytoux (1988a) presents equations for calculating the
unsaturated hydraulic conductivity when t > tq in case i, = 0 and in case 0
<ip <K

For t > tq and when i, = 0:

F,K
- aos [3.15]
Fdﬂlee.d(t ~t,)
for t > tg and when 0 < i, <Kg
. [ Ko, }Min(“‘d_)/;
i o /Fm
Ky, —i
K, = K""’ — [3.16]
nin(t-tg
( e,d' ]e A‘“—l
Koa—1a
where
F4¢ = infiltration volume for an unit area at time t, [L]
F, = the mean infiltration volume for an unit area
between any time instant t and tq [L]
K¢ = hydraulic conductivity as function of 0 [LT']
Ko,g = hydraulic conductivity as function of 0 at time t, [LT"
p =342/ (-1
A = pore size index [-]

(Morel-Seytoux, 1988a; Moore and Foster, 1990 and Grayson et al.,
1992a).
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The initial soil water content, 6;, is calculated by the Brooks Corey
equation (Brooks and Corey, 1964) Eq.[3.17]. In this equation the
unsaturated hydraulic conductivity, K, is calculated by:

6-6, )"

K, = K{ES—_O,) [3.17]
where
K; = saturated hydraulic conductivity [LT"]
6, = saturated soil water content -]
6; = residual soil water content -]
p =3+ 2/A [-]
A = pore size index (-]

When replacing soil water content, 8, by initial soil water content, 6; and
when replacing unsaturated hydraulic conductivity, K, by unsaturated
hydraulic conductivity Kg 4 at time ty (Eq’s. [3.15]; [3.16]) then, when
solving Eq.[3.17] for 6,, the initial soil water content at a grid element is

calculated by:
1 1
0, = (.I;'_d]" - (%91)"-1 , [3.18]

Moore and Grayson [1991] describe that at inter-storm periods the
distribution of the soil water content over the catchment is calculated by
Eq.[3.18].

The recharge rate to the saturated zone is given by the hydraulic
conductivity as calculated by the Brooks-Corey relation (Brooks-Corey,
1964) Eq.[3.17]. The soil water content of the unsaturated grid elements
is calculated by a soil water accounting procedure where infiltration
water is added to the grid element and percolation water is subtracted
from the grid element. During a model simulation for all time steps the
soil water content and the thickness of the saturated zone are updated for
all grid elements. Saturation overland flow generation is calculated in
combination with groundwater flow (see fig. 3.9).
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Figure 3.9: Schematic representation of the flow system
being simulated by the saturation overland flow -
groundwater flow model(Moore and Grayson, 1991).

In the THALES approach it is assumed that saturation overland flow is
generated in case the capacity of the subsoil to transmit water in lateral

direction is exceeded. Groundwater flow is calculated by Darcy’s

applied equation has the form:

A
Q, =KsTg‘sinﬁ = oHK, for 0<A, <ayD

where
Q, = rapid groundwater flow discharge of a grid element

saturated hydraulic conductivity
¢ = cross-sectional flow area groundwater flow
effective porosity

the local slope of the land surface

width of the element orthogonal to the streamline
depth of flow above the impermeable layer
= thickness of hydrologic active soil profile

One™==p»FR
I

(Eq’s. 3.9 and 3.19) is expressed by:
Q=wDKssinf + aAy for A;2wyD

surface-subsurface flow equation.

equation and is assumed to flow laterally above an impervious layer. The

[3.19]

[L* T
[L T
(L4

(-]

[-]

(L]

[L]

[L].

The combined saturation overland flow - groundwater flow equation

(3.20]

Moore and Grayson [1991] refer to this equation as the kinematic
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Atmospheric water
Rainfall is simulated by spatially uniform distributions. In model

simulations, rainfall intensities may vary over the simulation period. In
the approach, processes of evapotranspiration and interception are
ignored.

Results

In the first application of the THALES model approach, the performance
is tested at laboratory scale and few real world catchments. An extensive
article about the performance of hydrologic models of the Wagga Wagga
and the Lucky Hills catchments is presented by Grayson et al., [1992a].
In the Wagga Wagga catchment in south-eastern Australia runoff mainly
is due to saturation overland flow and groundwater flow while runoff
generation in the Lucky Hills catchment is dominated by Horton
overland flow.

The Wagga Wagga catchment has a size of 7.03 ha. and, in the
simulations, is partitioned into 1854 elements with an average size of
approximately 37,9 m? (1 element covers about 0.055% of the catchment
area). The land surface slope gradients vary from 5% to 20% and the
predominantly loamy soils are categorised into 4 zones with different
ranges of surface soil saturated hydraulic conductivities. Soil parameter
values of hydraulic conductivity, water content at field capacity and soil
porosity are obtained from field measurements. In table 3.2 the number
of measurements, the mean and the standard deviation of the saturated
hydraulic conductivities for the 4 zones are presented.

Soil depth measurements were obtained from irregularly spaced locations
and have been interpolated over the catchment model domain. Grayson
et al [1992a] describe that for the Wagga Wagga catchment the antecedent
subsurface water contents over the grid elements are simulated by a
topographic index, In(A/b tan B), that is applied to all grid elements. The
specific catchment area, A/b, is calculated by dividing the upslope area of
a grid element in a stream tube, A, by the width of the grid element, b,
while the local slope gradient B is obtained from a DEM. The use of this
index for the simulation of antecedent soil water contents is described by
Beven and Kirkby [1979] who introduced the index into the
TOPMODEL model concept. For simulating the hydraulic resistance at
the land surface the Manning resistance coefficient is applied as a
constant over the model domain. Rainfall data is obtained from a gauging
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station 500 m. outside the catchment. Data is observed at a temporal
gauging resolution of minimum 100 minutes while the spatial variability
in model simulation is ignored since information on this variability was
not available.

Table 3.2: Soil hydraulic conductivity at the Wagga Wagga Catchment

Figure 3.10 presents the simulation results of a storm event comprising
three rainfall periods.

In their comments on the modelling results Grayson et al., [1992a] state;

“the maximum runoff rates for the first two peaks are in close
agreement with the measured data but the third peak is substantially
underestimated and of a different shape”.

Grayson et al., [1992a] state that the mismatch is due to the low temporal
rainfall resolution. In an additional simulation the third rainfall peak is
simulated by a high intense rainfall event with an equal rainfall volume
but simulated with duration of only 5 minutes. The simulation produced
a significant better result for the peak discharge and shape of the
hydrograph indicating high model sensitivity to rainfall input. The
simulation of the base flow discharges however remained very poor.
Simulation with increased saturated hydraulic conductivities to 1000 mm
per hour caused a good fit between measured and simulated runoff (fig.
3.11). The mismatch of the peak discharge of the third event remains
however.
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Figure 3.10: Comparison of simulated and observed discharge for
measured rainfall (Grayson et al., 1992a).

In their article Grayson et al., [1992a] are not conclusive about a possible
cause of this mismatch;

“a wrong model concept, erroneous measurements at the measuring
flume or ‘ineffective’ soil surface hydraulic conductivities are possible
causes”.

Ineffective means that, although the conductivity values are obtained by
measurement, in model calculations such values do not produce
satisfactory simulation results. Sensitivity tests towards the simulation of
spatially distributed saturated hydraulic conductivities versus spatially
uniformly applied saturated hydraulic conductivities indicate only little

improvement.

On the Lucky Hills catchment in the state of Arizona, USA, a second test
is performed. In this catchment Horton overland flow is known as the
dominant runoff flow process. This catchment, subdivided into 3
subcatchments, has a size of 4.4 ha. and is partitioned into 2928 elements
with an average size of approximately 15 m® (1 element = 0.034 % of the
catchment area). Hill slopes vary from 1% to 100% but generally are less
than 30%. The dominant soil type is sandy loam that, at shallow depth, is
underlain by bedrock. The catchment is located in an arid climatic zone
where the average annual rainfall depth is 303 mm over the period 1965-
1981.
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Figure 3.11: Comparison of simulated and observed discharge
using Ks=1000 mm h™' (Grayson et al., 1992a).

In model simulations, saturated hydraulic conductivities and soil physical
parameters as total porosity, residual soil water content, soil water
content at saturation, soil water content at field capacity and wilting
point of the soils, as required by the infiltration formulas, are estimated
from soil textural information. The saturated hydraulic conductivity is
corrected for rock content, vegetation cover, erosion pavement and
crusting and is optimised by calculations with the ‘KINEROS’ computer
programme (Goodrich, 1990) to obtain ‘effective’ conductivity values.
The Manning’s resistance coefficient is set to 0.066 [sec/mm'*] for
overland flow processes and 0.044 [sec/mm'?] for channel flow
processes. The antecedent soil water content is uniformly distributed
over the catchment. This content is calculated by the computer
programme ‘CREAMS’ (Knisel, 1982) by calculating the soil water deficit
as a fraction of the saturated water content. Whether the calculated value
of the soil hydraulic parameters as function of water content is effective
is questionable since, in real world field situations, these values are
closely related to the soil texture. Sharma et al., [1980] and Loague and
Gander [1990], however, indicate that soil texture properties and
hydraulic parameters can be unrelated and Grayson et al., [1992a] justify
the use of the procedure. The spatial distributions of the soil parameters
over the grid elements are simulated by use of Thiessen polygons based
on the soil type distribution. The DEM grid discretisation is overlain by
the Thiesen polygons and soil hydraulic values are assigned to the grid
elements. Rainfall is gauged at a minimum resolution of 2 minutes
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although the exact temporal gauging and simulation distributions are not
presented by Grayson et al., [1992a]. Spatially variable rainfall
distributions are not simulated since data from only one rainfall station is
available. For all 3 sub-catchments observed runoff data is available.
Simulation runs are executed for all three sub-catchments. The overall
conclusion on simulation results in the Lucky Hill catchment is that
results are very poor. In describing the results, Grayson et al., [1992a]
identify the inaccurate simulation of the temporal rainfall resolution as a
possible cause of poor model performance. Other identified sources of
error are the inaccurate simulation of interception and depression storage
at the land surface, the inaccurate simulation of the recovery of the
infiltration rate between events, a wrong model concept and uncertainty
associated with soil parameter values (Grayson et al., 1992a). Tests with
applying spatially distributed soil parameter values compared to
uniformly distributed (i.e. catchment averaged) values over the model
domain produced only a slight increase in peak discharges.

Sensitivity tests towards the use of an enlarged channel network indicate
significant changes in peak runoff and runoff volume. Model simulations
with decreased Manning resistance coefficients for overland flow and
channel flow cause an increase in runoff peak and runoff volume.

Remarks

Some remarks on the modelling can be made:

o The theory of catchment partitioning by ‘stream tubes’ and the applied
model concept is very sound. Applications of this theory in THALES
model simulations are disappointing since observed channel flow
hydrographs are reproduced satisfactorily. It is not clear, however,
whether the low model performance is due to the applied catchment
partitioning, the selected model algorithms or wrong DEM model
input data.

¢ Hydrologic models by the THALES model approach have been
developed and tested on relatively small sized (< 7 ha) catchments.
The applicability at larger sized catchments with, possibly, combined
Horton overland flow, saturation overland flow and subsurface storm
flow processes is not studied.

e Model simulations appear to be (very) sensitive to the applied
temporal and spatial rainfall distribution and to the saturated soil
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hydraulic conductivity. By the simulation results it is concluded that
rainfall and infiltration must be simulated more accurately.

® An important source of error for the mismatch between observed and
simulated hydrographs is the poor simulation of base flow related
runoff processes. Modecl results prove that effective soil hydraulic
parameter data should be used. A physical basis for transforming
observed field data into model ‘effective’ parameter value is not
presented.

o It appears that the size of the channel network has a significantly effect
on the simulation results. When defining a channel network system in
a catchment model by use of a DEM, objective criteria must be
defined that help to define the most appropriate channel network
system in terms of shape and size.

3.3.3 Institute of Hydrology Distributed Model (IHDM)

ITHDM is developed during the period 1977 - 1992 by the Institute of
Hydrology (UK) by:

“the desire to make flood forecasts on ungauged catchments and by the
desire to predict the hydrologic effects of land use changes™ (Beven et
al., 1987).

Reports on the earliest applications of IHDM are known for few
experimental catchments in Wales. In the selected catchments the runoff
mechanisms of saturation overland flow and subsurface flow dominated
the catchment runoff behaviour. These catchments are characterised by a
relatively high altitude, their undulating hill slope topography and
shallow subsurface. It was expected that both overland flow runoff
mechanisms could be simulated by the IHDM model concept. After the
first applications of IHDM only a (very) small number of model studies
are reported in literature.

Introduction

In IHDM model approach runoff is generated by Horton overland flow,
saturation overland flow, perched subsurface flow and groundwater flow
while runoff is due to rainfall or snow melt. For simulation of these
processes in a distributed manner, catchment topography is partitioned in
so called ‘hill slope planes’ (Beven et al., 1987). Such planes are a series
of grid elements that make up flow paths with varying grid elements
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Figure 3.12: Schematic of the model input zones (Beven et al., 1987).

width. Flow paths are bounded by hill slope plane lines that are projected
orthogonal to elevation contour lines and that follow the greatest hill
slope gradients. By this methodology a grid layer is created that forms a
DEM consisting of non-uniform grid elements of various size. Beven et
al., [1987] motivate the methodology of hill slope plane partitioning by
stating:

“hill slope planes can simulate the essential effects of topographic
convergence and slope variations without the number of solution nodes
required in a fully three-dimensional representation”.

For modelling the spatially distributed model input data, a number of
model input zones are applied. These zones must represent variations of
the hill slope characteristics such as land use, topography, vegetation etc.
In figure 3.12 an example is presented where a zonation is applied as
based on land use and topographic characteristics.

For any hill slope plane a zonation of input data is applied. Zones of
model input data are bounded by the hill slope plane lines that are
arbitrarily chosen elevation contour lines. The elevation contour lines are
chosen by the modeller and reflect the significant changes of catchment
characteristics. By this procedure the size and the shape of a model input
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Figure 3.13: Hill slope partitioning as applied in IHDM (Beven et al., 1987).

zone varies to simulate specific catchment characteristics. Beven et al,,
[1987] state:

“each input zone can differ in meteorological inputs, elevation range,
slope angle, slope aspect and vegetation type”.

The hill slope planes as overlain by the hill slope zones of model input
data are partitioned into a finite element scheme for flow calculations.
Figure 3.13 presents an example of the hill slope plane partitioning as
applied in IHDM.

About the methodology of catchment partitioning Calver [1988] states:

“A model is set up in a cascading modular structure of hill slope
sections and channel sections comprising the whole catchment”.

It is apparent that some resemblance exists with the ‘stream tube’
partitioning theory as applied in the THALES model concept (Moore and
Grayson, 1991). Partitioning in vertical direction is achieved by applying
a number of model layers. The land surface is represented by a DEM
while the subsurface is represented by a number of subsurface model
layers. Subsurface model layers are characterised by soil hydraulic
properties.

Flow processes in IHDM are simulated by flow equations that are based
on conservation equations of mass and momentum. In IHDM single flow
processes are simulated with a simulation time step that should represent
the dynamics of the real world processes and so four simulation time step
levels are defined. Time step levels are defined for the time dependant
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input data, for simulating overland flow discharges, for simulating
subsurface flow and channel flow processes, and for the conversion of
overland flow discharges in channel flow discharges. In IHDM
evaporation is also simulated by conservation equations of mass and
momentum. Interception is simulated by a water accounting procedure.

Flow schematisation

Land surface

The flow of water at the land surface is represented by overland flow and
channel flow. By the design of the IHDM model concept, surface runoff
is generated by the mechanisms of Horton overland flow and saturation
overland flow and by snow melt. Overland flow is generated when the
topsoil becomes saturated. Such saturation takes place when the rainfall
intensity exceeds the infiltration capacity of the surface soil (i.e. Horton
overland flow) or when the water table rises to the land surface (i.e.
saturation overland flow). |

Overland flow is simulated by the governing equation Eq.[3.21] that
describes the flow of water in one dimension (after Beven et al.,1987).

w&ck%—mchkw [3.21]
ot al,

where

Q. = overland flow discharge [L* T"]
@w = variable slope width [L]

q,, = lateral inflow rate per unit down slope length [L*TY)
l; = downslope distance [L]

¢, = kinematic wave velocity [LT").

The applied momentum equation for simulation of overland flow reads:

Qe =Cys* A% [3.22]
where
Qor = Overland flow discharge [L’T]
C, = Chézy overland flow roughness coefficient [L* T
s = local slope [-]
A, = cross sectional flow area overland flow [L%]

b = a constant with value 5/4 [-].
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When substituting the momentum equation Eq.[3.22] for Qorin
Eq.[3.21], the governing equation for simulating overland flow is
obtained.

The overland flow depth is defined by dividing the cross sectional flow
area, A,g, by the locally varying slope width, @. Flow routing is achieved
by solving the sct of equations of Eq.[3.21] over the computational nodes
of the surface grid layer by a numerical solution scheme. This scheme is
a four-point implicit finite difference scheme and is adapted from Li et
al., [1975]. In the scheme, overland flow at the hill slope sections is
simulated in the sequence of hill slope planes following the downslope
flow path. In IHDM an option is available to densify the surface grid
layer by additional computational nodes as compared to the subsurface
nodal density. The surface grid layer applies a higher nodal density than
the subsurface grid layers.

Channel flow is calculated by an adapted form of the conservation of
mass equation Eq.[3.21]. In the adapted equation, overland flow
discharge, Qor, is replaced by a channel flow discharge, Qcn. The channel
flow discharge is calculated by a momentum equation similar to
Eq.[3.22] were the cross sectional overland flow area, Ay, is replaced by
the cross sectional channel flow area, A¢p. The channel network system is
simulated by a sequential calculation of flows following the channel
segments in downstream direction.

Unsaturated zone/saturated zone

Subsurface flow in IHDM is only simulated in Darcian flow conditions
where water flow in two dimensions (x, z) is simulated. By such an
approach, flow processes of unsaturated subsurface flow, perched
subsurface flow and rapid groundwater flow are simulated. Although for
all three flow processes the same model algorithm is applied each process
is simulated in the approach. The simulation of the processes has close
relation to the applied parameterisation of the subsurface model layers
and the prevailing flow conditions. The flow of water in saturated and
unsaturated flow conditions is simulated by a two-dimensional form of
Richards equation, (Richards, 1931). Richards equation is applied in
vertical (z4) and downslope (x4) direction and is adapted to the flow
conditions in the subsurface model domain. The applied two-
dimensional governing equation in IHDM has the form (Beven ct al,,
1987):
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m@———a——(uﬂ(x(e) —le]———a——(sz(e) ﬂ} =8, [3.23]
ot ox, ox, | 0z, 0z,

where

@w = variable slope width [L]

6 = soil water content [-]

t = time [T}

X4 = horizontal downslope distance [L]

zg = vertical distance from arbitrary stratum [L]
Kz = hydraulic conductivity in x direction subject to 6 [L T
Kz = hydraulic conductivity in z direction subject to 6 [L T
¢ = hydraulic head potential L]

Sss = sink/source term subsurface [LT].

Richards [1931] solved Eq.[3.23] for unsaturated subsurface flow
conditions by introducing the specific water capacity, C(y) = d0 /dy that
describes the unique relation between the soil water content, 0, and the
capillary soil potential, y. In model studies with IHDM, the relation of
C(y) must be defined for all soil types. For modelling the relation
between the soil water content, 6, and the unsaturated hydraulic
conductivity Ky, as function of the capillary soil potential, some
modified relationships as originally developed by Campbell [1974] are
applied. When p is defined as a relative potential, y /yq, where yy is the
air entry potential, then 0/6; = p® where 05 is the porosity of the soil
under saturated conditions and o a constant. For any relative potential, p,
the specific water capacity, C(y), is defined by (Beven et al.,1987):

95 apa—l
Yo

C

w = [3.24]
This equation is applicable to saturated soil conditions when the
hydraulic head potentials, ¢, become greater than zero and applicable to
unsaturated subsurface flow conditions when the specific water capacity

C(y) is defined for relative potentials that range between the value of p
and 0 (Beven et al., 1987).

The unsaturated hydraulic conductivity Ky is defined by:

K, =K, p™? [3.25]
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Introducing Cyy,) in Eq.[3.23] gives the flow equation for modelling water
flow Eq.[3.26] in the unsaturated and the saturated zone. In unsaturated

flow conditions, the unsaturated hydraulic conductivity can be expressed

for any y by Ky or Ky

0 0 oo 0 oo
Cy———|oK, —|-— oK, —[=S 3.26
BC () ot axd (GI x(y) &d] aZd (m z(y) aZd) % [ ]

For simulating subsurface flow, the partitioning of the catchment hill
slope is adapted in a finite element calculation scheme. For all grid
clements of the subsurface domain Eq. [3.26] is solved for the dependent
variable ¢. In the mathematical model of the finite element scheme, basis
functions Ni(x;,z;) are used at the n nodal points:

0= 2N, (x,7, Jy [3.27]

fori=j Nj(xj,z)is 1, foriz j Nj(xj, z) is 0. The solution is known as
the ‘Galerkin method’ and is widely used in the field of subsurface
hydrology. The time domain of Eq. [3.23] is solved by a backward finite
difference scheme. For an extensive description on the mathematical
model, reference is made to Beven et al., [1987].

No-flow boundary conditions in the numerical approach are defined at
the topographic water divide, the bottom of the model, and at calculation
nodes beneath the mid-point of a channel segment. Flux boundaries are
defined for unsaturated flow conditions at the top layer representing the
land surface (see fig 3.14). Fluxes at the land surface are simulated by the
evapotranspiration module or are due to infiltration that is simulated by
the unsaturated flow equation of Richards.

At the saturation overland flow source area, the flux boundary is changed
in a head boundary. In case of Horton overland flow or when a saturated
infiltration front develops, the soil water potential of the computational
nodes at the surface layer is set to atmospheric pressure. By this approach
a constant infiltration flux is created. The change of the boundary
conditions might occur locally on the grid slope and is subject to the soil
surface saturation. Exfiltration at the land surface is simulated under the
condition that the total soil profile becomes over-saturated. Infiltration
fluxes at the land surface are simulated for all calculation time steps of
subsurface flow model.
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Figure 3.14: Cross-sectional presentation of hill slope finite
element mesh with applied boundary conditions.

Atmospheric water and interception

Interception is simulated by a modified form of ‘the Rutter’ interception
model approach (Rutter et al., 1975) and takes account of the size of the
area covered by vegetation and a leaf area index. The output of the
interception module is an effective precipitation depth that is used as a
surface layer input flux. For periods of overland flow, evaporation is
simulated at a potential rate and is subtracted from the overland flow
water depth. For simulation periods without overland flow, the actual
evaporation rate is modelled by a linear function of the ratio of actual and
potential evaporation and the soil water potential (fig.3.15). In this figure
Vv is the capillary soil potential at wilting point, y;_is the capillary soil
potential at which evaporation is maximum, ys, is the an-aerobiosis point
at which evaporation falls to zero. Potential evaporation is calculated by
the Penman-Monteith equation (1975). The method is described by
Feddes et al., [1976]. The evaporation fluxes from a grid element are
calculated by regarding the size of the vegetative cover and a root density
function.

Results

The performance of IHDM is tested on few, small sized, upland
catchments in mid-Wales. The most comprehensive study is reported by
Calver [1988] and deals with the calibration, sensitivity and validation of
the Tanllwyth catchment model. This catchment has a size of 0.92 km?
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Soil moisture potential
Figure 3.15: Dependency of actual evaporation, Ea,
on potential evaporation,Ep, and capillary soil
potentia, v, (Feddes et al., 1976).

and has a predominantly coniferous forest land cover. Performance tests
on models created by IHDM are realised for four individual rainstorm
events. One event was used for model calibration, the other events were
used for model validation. The catchment was partitioned in two hill
slope sections and one channel section. Required model input data are, a
topographic description of the catchment, effective precipitation depth,
roughness coefficients for overland and channel flow, channel width and
slope, and for the hill slope sections soil hydraulic properties of porosity,
saturated hydraulic conductivity in vertical and horizontal directions, the
relation of the saturated hydraulic conductivity, K, and the soil water
content, 6, and the relation of the soil capillary potential, y, and 6
(Calver, 1988). The procedure of catchment initialisation for vy is not
described although sensitivity tests towards a change of initial soil water
content indicated only minor effects on runoff generation when
modelling comparable antecedent winter conditions.

The sizes of the grid elements as applied in the finite difference scheme
for the surface layer and also the finite element scheme for the
subsurface layer is not described by Calver [1988]. An accurate
description on the applied spatial and temporal distributions of the

model input parameters and variables also is not presented by Calver
[1988]. From the sensitivity analysis and considering the small size of the
catchment it is assumed that most catchment parameters and variables are
spatially uniformly distributed except for the topographic parameters.

For any soil layer, the soil physical properties also are assumed to be
uniformly distributed. Model parameters and variables are obtained by
observation or by physical reasoning based on comparable modelling
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Figure 3.16: Best fit simulations for the storm event of 19 Nov. 1977
on Tanllwyth catchment (Calver, 1988).

efforts. This resulted in a data set where a best-fit simulation run could
be produced. In figure 3.16 the simulated and measured hydrographs and
lateral flow and headwater contributions to catchment outflow are
presented. Calver [1988] stated that runoff is primarily due to saturation
overland flow as caused by exfiltration. About 15% of the runoff volume
is due to base flow contributions as caused by groundwater flow while
the remaining 85% of the runoff volume is due to overland flow.

Sensitivity tests focus on describing the effect

“key physical variables of hydraulic conductivity, porosity, initial water
content and surface roughness” (Calver, 1988) have on runoff
generation”.

In the tests it appeared that IHDM is very sensitive towards a change of
the saturated hydraulic conductivity. Higher conductivities result in
lower peak discharges while lower conductivities produce higher peak
discharges. By an understanding of the saturation excess mechanism, this
model behaviour is surprising and is in contradiction with real world
physics. A change of the porosity yielded only observable effects in the
initial stages of simulation due to a change of the storage capacity. When
the porosity decreases the runoff peaks appear to be higher and at an
earlier stage in the simulation while the inverse holds for an increase of
the porosity.

The sensitivity towards a change of the surface roughness coefficients
indicated a major effect. The peak discharge as well as the time to peak
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Figure 3.17: Sensitivity of model output to a) initial water potential (y,),

b) saturated hydraulic conductivity (Ks), ¢) porosity (Po), and
d) overland flow roughness coefficients (C,) (Calver, 1988).

appeared to be sensitive to the roughness coefficients. The high
sensitivity is explained by the high overland flow contributions to
catchment runoff. Figure 3.17 presents an overview of the sensitivity
tests. In an article about the application of IHDM to the Wye catchment
in mid-Wales, Beven et al., [1985] also report a high sensitivity towards
the saturated hydraulic conductivity and the Chézy roughness
coefficient. Calver [1988] validated the Tanllwyth catchment model for 3
additional rain storm events with similar meteorological and
physiographic catchment conditions. In the simulations calibrated
parameter values were used in the validation runs. For all three rain

storm events it was concluded that measured and simulated hydrographs
fitted fairly well.

Remarks
Some remarks about IHDM can be made:

e The performance of IHDM to small-scale experimental catchments in
general is satisfying. The overall simulation results are promising
although the sensitivity test toward the saturated hydraulic
conductivity showed some unexplainable model behaviour. It is
concluded that the model concept of IHDM is very suitable for
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simulating the runoff generation mechanisms of saturation and
Horton overland flow and rapid groundwater flow.

e IHDM performance on larger scale catchments with spatially variable
physiographic and climatic characteristics and (multi layer) geological
conditions is not studied and is uncertain.

o Although the simulation results are satisfying the usefulness of the
selected spatial discretisation of the DEM in terms of ‘hill slope
planes’ compared to rectangular grid elements is not proven. It is also
questionable whether the topographic discretisation should make up
the applied spatial discretisation of the subsurface in plane perspective.

¢ The kinematic wave approximation for surface water flow as combined
with Richards equation for simulation of subsurface flow appears to be
well suited for simulation of rainfall-runoff processes in sloping areas.
In the articles about IHDM it is clear that, when applying these
equations, effective values for model parameters must be applied.

® Model sensitivities to applied temporal and spatial rainfall
distributions are not described by Rogers et al., [1985], Beven et al.,
[1987] or Calver [1988].

e Changes of land use can be simulated based on physical reasoning and
must be quantified in terms of changed porosity, saturated hydraulic
conductivity and possibly overland flow roughness coefficients.

3.3.4 Distributed Basin Simulator (DBSIM)

Cabral et al., [1990] and Garrote and Bras [1995a] report about the
development of the DBSIM at the Massachusetts Institute of Technology
(MIT). They characterise DBSIM as;

“a distributed physically-based, rainfall-runoff model incorporating
topography for real-time flood forecasting at catchment scale”.

Introduction

In the model concept of DBSIM, runoff is generated by saturation
overland flow, perched subsurface flow and groundwater flow. Garrote
and Bras [1995a], state that the model concept consists of two major
components that are the runoff generation module and the flow routing
module. Spatial distributions of topography, rainfall and soil hydraulic
parameters in a catchment model are represented by a grid system
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applying rectangular grid elements of equal size. A DEM is used to
simulate terrain slopes and the channel network system. Terrain slopes of
the surface layer grid elements are characterised by a slope gradient and
slope aspect, the channel network segments are indexed through a
Strahler order scheme. The channel network is automatically generated
by an upstrcam element calculation procedure. Based on a user defined
threshold value of upstream grid elements that drain to a channel grid
element, grid elements are characterised as a channel element. Overland
flow and channel flow routing are simulated by a travel timc procedure.
Such procedure basically is a conceptual routing procedure and is not
based on conservation equations of mass and momentum. For this reason
the DBSIM concept cannot be classified as a PBRR code as been done by
Cabral et al., [1990] and Garrote and Bras [1995a]. In this thesis the code
is selected for cvaluation since the subsurface flow processes are
simulated based on partial differential equations of mass en momentum
conscrvation and since the model concept differs significantly from the
other concepts.

For simulation of spatial rainfall distributions over a catchment Thiessen
polygons are applied where rainfall depths are simulated at each model
grid element. Subsurface flow in saturated and unsaturated conditions is
simulated by kinematic approximations of conservation equations of
mass and momentum. The kinematic approximation implies that the
hydraulic gradients are due to gravitational forces only.

Soil hydraulic parameters are distributed over the model grid layer based
on a soil type classification. Parameter values of the catchment models
are obtained through field observation or from literature. Infiltration and
unsaturated subsurface flow are simulated within a grid element by soil
water accounting procedures. For the simulation of infiltration and
unsaturated subsurface flow, analytical solutions of combined continuity
equations of momentum and mass are applied in one-dimensional,
vertical perspective. Infiltration at the land surface is simulated for
saturated (i.e. ponded surface) and for unsaturated conditions. For
simulation of perched subsurface flow, groundwater flow equations are
applied to computational nodes of the subsurface grid elements that
make up the saturated model domain.
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Flow schematisation

Land surface

In DBSIM overland flow runoff is assumed to be a stream flow process
rather than a sheet flow process. Cabral et al., [1990] report that overland
flow and channel flow routing are simulated by travel time procedures.
Model parameters required to define the travel time are the length of the
flow path and the flow velocity value. The routing of overland flow
across the DEM grid elements is simulated from upslope elements to
elements that represent the channel network system through the flow
path with highest gradients. In Cabral et al., [1990] the velocity value for
overland flow and channel flow are assumed to be time-invariant and are
spatially uniformly distributed over the catchment grid elements and the
channel network elements respectively. ‘Effective’ velocity values are
obtained through calibration by fitting the simulated hydrographs to the
observed (Garrote and Bras, 1995a). A modification towards the routing
module is reported by Garrote and Bras [1995a] and dealt about
introducing the power law relation of Eq.[3.28] By this approach the
relation between catchment discharge and the hill slope flow velocities
are described. The hill slope flow velocity becomes a time variant
property that is subject to catchment runoff as simulated at the grid
elements. The average hill slope velocity value, vuy), is calculated by:

Vi =6 [Q.. (D)) [3.28]

Calibration parameter r controls the degree of catchment non-linearity
while by coefficient c, the unique relation between catchment discharge
at the catchment outlet, Q. o(), and the average hill slope flow velocity is
simulated. In DBSIM channel flow velocities also become time variant
since these are calculated by a factor, &, expressing the ratio of average
hill slope flow velocity, Vi), and the average channel flow velocity, ve).

In the travel time procedure the loss of channel water due to infiltration
is ignored. Garrote and Bras [1995a] present the convolution equation
[3-29] for simulating surface runoff at the catchment outlet by all runoff
contributions at the saturation overland flow source area:

Act

QAc(t) = IIRv(x.y,t)h(x,y‘!—r)deAc [329]
00
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where

Qacy = calculated surface runoff of the catchment [L*T']
Ryx.yxy = function describing the rate of runoff generation [L T
h,,.r = instantaneous response function of a grid element [TY

t, T = time instants [T]

A, = size of catchment area [L7].

For cvery time instant 1, the instantaneous response function of a grid
element, he (xy.n, 1s simulated by a Dirac delta function of travel times:
I, 1

fie (3.30]
vh(r) Ve

h =3

T(x.y.t)

where 1; and 1. are the length of the hill slope flow path and channel flow
path respectively. By the travel time procedure no distinction is possible
if overland flow is in the form of sheet flow and/or stream flow.

Unsaturated zone

Infiltration is simulated through a wetting zone that at top and the
bottom is bounded by a saturated front. The depths of both fronts are
dynamic properties and are subject to the simulated unsaturated and/or
saturated flow conditions (see fig.3.18). Soil hydraulic parameters
required are the saturated and unsaturated hydraulic conductivity, the
saturated and residual soil water content and a pore size distribution
index. Infiltration rates are simulated by a kinematic flow equation as
based on conservation equations of mass and momentum.

The governing equation is applied in a one-dimensional, vertical
perspective and is solved for unsaturated and saturated flow conditions.
In unsaturated flow conditions the soil water distribution at the
infiltration front forms a sharp interface. The one-dimensional
discretised form of the continuity equation reads:

40, 940 _, [3.31]
dt dz
where
g8y = specific discharge at depth z and subject to 6 [LT
6 = volumetric soil water content [-1
t = time [T]
z = depth below surface [L].
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Figure 3.18: Soil water profile in a grid cell (Garrote and Bras, 1995a).

The infiltration model is based on the kinematic assumption that
imposes that hydraulic pressure gradients are due to gravitational forces
only. The general Darcy equation for simulating subsurface flow in
unsaturated flow conditions has the form:

oY,
=Ko 5+ 3.32
0] (e){ pw [ ]
where
K@ = hydraulic conductivity at water content 6 [LT"]
Y@ = soil pressure head [L].

By the kinematic flow assumption ) becomes equal to the hydraulic
conductivity as subject to the volumetric soil water content, 6. When z is
defined positive in downward direction gz = Ke).

In the infiltration model the unsaturated hydraulic conductivity, K,z),
for any depth z, is defined by the Brooks Corey equation (Brooks Corey,
1964):

A
0-6,
Ko, = km[m) [3.33]
where
Kszy = saturated hydraulic conductivity at depth z [LT]
6 = volumetric soil water content [-]

0 = saturated water content [-]
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For the saturated hydraulic conductivity the assumption is made that the
conductivity decreases exponentially with depth. Field evidence to
support this assumption is presented by Beven [1982, 1984].

Ks(z) =K0 Xe_fz [334]
where
K., = the saturated hydraulic conductivity at depth z (LT
K, = the saturated hydraulic conductivity at the land surface [L T™]
f = a parameter (L.

The general description of the distribution of the hydraulic conductivity
over depth, K z), is obtained by substituting the expression of K
Eq.[3.34] in Eq.[3.33]:
A

Ko = koe"f’(%) [3.35]
Cabral et al., [1990] introduce in the DBSIM approach a ‘critical’ depth,
z' ), that is defined as the depth the actual rainfall rate, R, is assumed to
be equal to the saturated hydraulic conductivity, K. By substitution of
z' ) for z in Eq.[3.34] and when solving this cquation for z'(ry, an
expression is obtained for calculating the depth of the infiltration front as
subject to the rainfall rate:
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Z'w = ln% [3.36]

| —

Flow conditions at the infiltration front are unsaturated for z < z’y) and
saturated for z > z'(R).

For simulating the soil water content in the subsurface, the actual rainfall
rate, R, is substituted for Kz in Eq.[3.35] and solved for the water
content. By this procedure, the water content at certain depth becomes a
function of the rainfall rate and is expressed by O(&,z). The water content,
O(r.2), is calculated by the Brooks Corey equation Eq.[3.33] when this
equation is rewritten for O z):

1
2 fz
e(“){%j e+ (6,-6,)+8, 13.37]
0

By Eq.[3.37] the exponential decrease of the subsurface water content
above the infiltration front is simulated. Figure 3.19 presents soil water
profiles that are functions of the rainfall rate and are simulated by
Eq.[3.37].

The change of the hydrologic state of a grid element is defined by the

continuity equation Eq.[3.31] where both equation terms are integrated
over depth:

]edz+ qu(e) dz=0 [3.38]

The second term of Eq.[3.38] is defined by substitution of the actual
rainfall rate, R, for the flow discharge q) at the land surface (i.e. depth
z1) and by substitution of the catchment recharge rate, R;, for gz() at the
water table depth (i.e. depth z5):

% |6dz+R-R, =0 [3.39]

The catchment recharge rate, R;, is calculated by Qpase / Ac where Qpase is
the observed base flow in [L*> T-'] and A. the catchment area [L?].

The first term of Eq.[3.39] expresses the change of the total soil water
content between the land surface and the water table over time. By
Eq.[3.37] the soil water distribution over depth, 84, is defined as
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function of the rainfall rate, R, and the initial soil water distribution,
0 ni..y» a8 subject to the catchment recharge rate, Ri.

The total water content of a grid element is simulated through
integration of the soil water distribution between the land surface at
depth z, and the infiltration front at depth, z, and through integration of
the distribution between the infiltration front and the water table at
depth z,:

zje.dz=zi9(k_Z).dz+Z]9(Ri_z).dz [3.40]

When replacing 8, ,, and 8y, ,, with simulated water distributions as
expressed by Eq.[3.37) this yields:

1
x faf  fal
Ie.dzz(%y(es —9,{%}((3 r_gh ]+€)r(zf —-z,)+
7 0

L f.z2 f.zf

A Lz Ll

(%J (es—er(%)[e * —€ * J+er(22 —Zf)
0

The first term of Eq.[3.39] is obtained by differentiating Eq.[3.40] with
respect to time:

(3.41]

= Jodz=Z{0) -0, .0 [3.42)

or, when regarding Eq.[3.41]:

1
9 Jodz=22t (LJX(GS—O,)e v ve |-
|k,

[3.43]

1
x tar
Sl Sl 0. -0)e > +o,
dt | (K,

By substitution of Eq.[3.42] in Eq.[3.39] the expression for simulating
the change of the depth of the wetting front in time, dz;/ dt, for
unsaturated flow conditions is given:
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G R-R, 44
dt O, ~ O,z

Infiltration under saturated flow conditions is simulated by basically the

same flow equations were they are adapted to the saturated flow

conditions. The saturation of the subsurface occurs when the infiltration

front has passed the critical depth z" 4.

When z; > 2" g,, a perched zone develops where the depth of the
saturated infiltration front, z;, and the depth of the top, z,, of the perched
zone must be calculated.

The change of the depth of the saturated infiltrated front over time is
simulated by:

dz, _K,e '™ -R,

[3.45]
dt 95 hd G(Ri ,z,-)

When comparing Eq.[3.45] to Eq.[3.44], the differences between both
equations are due to the substitution of K, for R and 8, for O .. K; is
expressed in the form of Eq.[3.34]. The bottom of the perched zone
moves downward when Kz .¢) > R.

The change of the top of the perched zone, z, over time is simulated by:

dz, _K,e" -R

[3.46]
dt  6,-0g,,

When comparing Eq.[3.44] to Eq.[3.43] the differences between both
equations are due to the replacements of R for R; and 8 2 for Oi.zn).
The top of the perched zone moves upward in case K; < R.

The infiltration equations Eq’s.[3.42], {3.43] and [3.44] is solved for
heterogeneous soils and for spatially variable rainfall rates. An extensive
description of the infiltration model and the vertical subsurface flow
model is presented in the work of Cabral et al., [1990].

For simulating mass conservation within a model grid element, the total
water depth above the wetting front, M,, is introduced as a third state
variable. The total water depth, M;, of a model grid element can change
due to infiltration that is expressed by infiltration rate Minr k), due to a
change of the wetting front depth, or due to subsurface inflow, Qss,in,
and/or subsurface outflow, Qs our :
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dM, _ dz,

Q i —Q t
__9 + 8,in $8,0U
dt  dat &

A

¢

Mirk,) + [3.47]
where A, is the size of an grid element. Exfiltration is simulated when M;
exceeds the water storage capacity of the column of subsoil above the
wetting front.

Perched subsurface runoff, Qg from a grid element is simulated for
saturated flow conditions only. The applied flow equation has the form:

Q. =W [q,,dz [3.48]
where W is the width of flow and qsn(z) is the specific horizontal
subsurface flow at depth z that is calculated by (Bras et al., 1990):

tan(a). tan(at),

— - Ke ™" 3.49
tan(a) + tan(a)d o [ ]

Quz) =
(o) And ()4 are the hill slope gradient and lateral deflection angle
respectively of the infiltration front with respect to the vertical direction.
The lateral deflection angle expresses the angle of deflection of infiltrated
water due to the exponential decrease of the saturated hydraulic
conductivity over depth, K, # Kq», this as expressed by factor f. The
saturated conductivity above the wetting front is higher than at the
wetting front thus flow is constraint by continuity. This causes a lateral
deflection of flow above the wetting front at an angle o, with respect to
the vertical direction.

The governing equation for perched subsurface flow reads:

{—;—.(e_fz‘ —-e‘fz’)—(zr —z,)jl [3.50]

Cabral et al., [1990] prove that this equation is equal to Eq.[3.48].

—f.zy

Q,, = WK,.cos(a)sin(a)e *

The routing of perched subsurface flow across the catchment grid is
simulated by an ‘element coupling’ procedure (Cabral et al., 1990). The
coupling procedure basically is a water accounting procedure where
outflow from a grid element is the inflow to the neighbouring grid
element that is characterised by the highest down slope gradient. The
total flow into an element will be equal to the summation of the outflows
of the surrounding upslope elements. The hydrologic state of an element
is updated by the inflow and outflow after which, by the new hydrologic
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state, the lateral subsurface discharge is calculated. Interactions between
groundwater flow and channel flow is simulated in the channel network
grid elements.

Saturated zone

In DBSIM, groundwater flow equations are applied to simulate
groundwater flow and to initialise the catchment model in terms of the
depth of the water table across the grid elements. This depth is simulated
by Eq.[3.51] that combines Eq.[3.46] and Eq.[3.48] where the subsurface
inflow and outflow equations are substituted. The depth of the water
table, zy,, is simulated by:

Qin _Qout _R

2z, ___A [3.51]
a  6,-9

s (Riszu)

The subsurface outflow equation Eq.[3.48], as applied to the
groundwater flow domain reads:

Tx o= A0
Qo = Wz‘IKo.e .Edz [3.52]
where
Qou= groundwater discharge out of grid element [L*T)
W = width of flow perpendicular to the direction of flow L]
¢ = hydraulic head L]
Zimp = depth of impervious base [L].

In case of a relatively deep single aquifer this equation changes to:

Q=W tan(a)—M&e‘f‘“ [3.53]
L f

where (a) is the hill slope gradient and where Zy; j) are the depths of
the water table for the elements i and j with j situated downstream from
element i. For simulation of the groundwater flow across the grid
elements an approach similar to the element coupling scheme for
simulating subsurface runoff is applied. The order of computation starts
at the catchment boundary where Qo of grid element i is substituted for
Qin of the downstream grid element j.

The groundwater flow system is assumed to have one aquifer only that is
recharged at the constant recharge rate, R,, throughout the catchment.
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Figure 3.20: Sensitivity of basin response to surface
Sflow routing parameters (Garrote and Bras, 1995a).

Results

Cabral et al., [1990] and Garrote and Bras [1995a] report on model
validation tests on the ungauged Sicve catchment in the Tuscany region
in Italy. The Sieve catchment has a size of 840 km® and has moderate to
steep hill slopes. The average elevation is 470 m. above mean sea level
with a highest point at 1657 m. The catchment is partitioned in a grid
layer with squared grid element of 400 m. (one element equals
approximately 0.019% of the total catchment area). Cabral et al., [1990]
state;

“the resolution of 400 m. seems to be lower than the desirable element
scale for the appropriate representation of the catchment relief. The
DEM resolution disables the detailed modelling of the catchment
drainage system”.

In the catchment model of the river Sieve, a channel flow grid element is
generated in case a grid element of the DEM has more than 8 cumulative
upslope grid elements.
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In the Sieve catchment model 17 different soil types are distinguished.
For the different soil types the soil hydraulic parameters Ko, 05, 6-and A
are determined either by observation at similar soils in other catchments
or from data in literature. Subsurface model parameter values are
obtained by averaging the available data. Parameter values are simulated
as function of the soil type and are lumped at the spatial scale of the grid
elements. Cabral et al., [1990] report that the spatial rainfall distribution
over the catchment grid is simulated by Thiessen polygons where data
from four measuring stations is used. Due to the distribution of the
stations only one station is situated in the catchment causing this station
to cover 75 % of the catchment area. Since orographic effects have a
significant effect on the spatial rainfall distribution (Cabral et al., 1990),
it is questionable whether the applied rainfall distributions are
appropriate for accurate rainfall-runoff modelling. The temporal
resolution is simulated by time intervals of 20 minutes. For some rainfall
events, rainfall data of 6 stations are available with a gauging resolution
of one hour. Garrote and Bras [1995b] report in an article about DBSIM
the option of applying radar recorded rainfall distributions in DBSIM.
Simulation results however are not reported.

Cabral et al., [1990] report the use of 12 rain storm events for model
testing and model calibration. Spatially uniform flow velocity values for
overland flow and channel flow have been obtained by calibration.
Calibrated flow velocities are 0.11 m/s for overland flow and 1.66 m/s for
channel flow. Garrote and Bras [1995a] apply the travel time procedure
according to Eq.[3.26] and Eq.[3.27]. It appears that the model is very
sensitive to travel time parameters K,, c,, and r as shown in figure 3.20.

The magnitude of the peak runoff rate, the shape of the hydrograph and
the lag time of the peak runoff are very sensitive to the model
parameters.

For model simulation, the Sieve catchment is initialised for ‘typical wet’,
‘averaged’ and ‘dry’ antecedent catchment conditions. Such initialisation
is based on the monthly base flow discharges that have probabilities of
exceedance of 10%, 50% and 90% respectively. Such percentages are
defined by long term base flow observations and represent statistical
probabilities of exceedance of averaged monthly minimum flow
discharges
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Figure 3.21: Catchment response decomposed for different runoff
contributions, antecedent catchment conditions with 0, 50 and
90% probability of exceedance (Garrote and Bras, 1995a).

The base flow discharge relates to the catchment recharge rate and so to
the depth of the water table as simulated by Eq.[3.47] and to the initial
soil water distribution through 8 4, ., analogues to Eq.[3.35].

The selected catchment conditions are simulated by Cabral et al., [1990]
for all 12 rainstorms to study the effect of the initial state of the
catchment on the accuracy of a simulation. Garrote and Bras [1995a]
reported that the etfect of the catchment initial condition was significant
(see fig. 3.21) and can increase even more in case different combination
of parameter values is used. Recharge rates in BDSIM also are defined by
use of observed base flow observations.

During model testing it appeared that the catchment model was sensitive
to parameter f expressing the exponential decrease of the saturated
hydraulic conductivity with depth. By an understanding of the runoff
generation mechanisms of perched subsurface flow and saturation
overland flow, the sensitivity of the catchment model to parameter f can
be explained. During model calibration f is defined at 5.10 mm™ for the
Sieve catchment model and is simulated as a constant for the entire
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Figure 3.22: Observed and predicted hydrographs for two storm events by

considering effects of the initial state of the catchment (Garrote and Bras, 1995a).

catchment area. Cabral et al., [1990] conclude that the saturated
hydraulic conductivity is the most sensitive parameter in DBSIM for
runoff generation.

Out of a wide range of model simulations a best fit simulation for a
storm event of December 1968 is presented by Garrote and Bras [1995a].
Figure 3.22a presents these results as obtained by applying calibrated
values for travel time parameters and subsurface flow parameters. For the
simulation, the catchment is initialised for wet, average and dry
conditions. Figure 3.22b presents simulation results for a rain storm in
November 1991. These results are obtained by applying validated model
parameters to a rainfall-runoff event that is gauged by 30 rainfall stations
and a continuous channel flow gauge. The results appear to be accurate
in terms of timing of the peak discharge volume and the shape of the
hydrograph. The effect of the temporal rainfall gauging distribution is
not described although Garrote and Bras [1995b] suggest that radar
generated rainfall data could produce better simulation results.

Remarks
Some general remarks can be made about the modelling efforts.

e Model simulations rely on a conceptual travel time procedure for
simulating surface runoff across the DEM. By such a procedure,
runoff only is predicted at the location of the stream gauge and effects
of wave propagation through the channel network are ignored. Also
the effects the (distributed) inflow of overland along a channel reach
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as well as groundwater inflow is ignored. A major advantage of this
procedure is the parsimonious model parameterisation.

e The applicability of the model concept has to be tested on smaller size
catchments too since it is expected that scale effects of model input
paramcters and variables become more pronounced in catchment
models of smaller size.

e The simulation of the overland flow source areas through the
presented infiltration procedure and the catchment initialisation
procedure appears to be suitable in rainfall- runoff modelling. Both
procedures depend only on the catchment recharge rate and the
exponential decrease of saturated hydraulic conductivity with depth.
Such an approach is very beneficial with regard to the limited number
of subsurface model parameters that are required.

e Simulation runs are expected to improve significantly when the
saturated hydraulic conductivity at the land surface and the factor f are
simulated more accurate.

e For simulating catchment runoff a limited number of model
parameters is required. This is the most advantageous aspect of the
DBSIM model concept since catchment parameterisation becomes less
uncertain.

3.4 Conclusions

In the literature review of section 3.2 it is concluded that the hydrologic
catchment behaviour that causes the generation of catchment runoff is
well understood. The behaviour of single flow processes as well as
aggregated flow processes and the runoff production mechanisms are
well described in literature and descriptions are based on and supported
by field evidence.

For simulating the runoff generation mechanisms and flow processes, a
small number of PBRR computer codes are developed. Such codes
primarily are developed during the late eighties and carly nineties by the
desire to describe the rainfall-runoff relation in a physically consistent
and distributed manner. At the time it was believed that by such
modelling approach the effects of land use changes in particular could be
simulated and that simulation results could be analysed based on physical
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reasoning. Designed model concepts of PBRR modelling approaches
were fundamentally different from common conceptual model
approaches like the lumped Sacramento or distributed Topmodel
approaches.

Research in the field of PBRR modelling focused on designing valid
model concepts and developing mathematical models for the simulation
of the runoff generation mechanisms. Models must be able to describe
and to simulate the highly dynamic, non-linear real world runoff
behaviour at the catchment scale. By reviewing the research
developments and by evaluating PBRR model concepts presented in
literature it is concluded that, although simulation results in general are
satisfying, PBRR modelling is still in a phase of research. Objective
conclusions to the ‘best suitable’ or ‘most optimal’ model concept cannot
be drawn since comparative studies are not executed. For each of the
models described in the sections 3.3.1 - 3.3.4 a number of remarks are
made in this thesis and conclusions only can be drawn by comparison of
the designed model concepts, data requirements and by analysis of the
simulation results.

3.4.1 Model concepts

By an analysis and comparison of the model concepts of SHE, IHDM,
THALES and DBSIM, as described in the sub-sections 3.3.1 - 3.3.4
respectively, it is concluded that significant differences exist. Differences
primarily are due to a small number, but fundamental and elementary,
modelling considerations and assumptions. In the IHDM and THALES
model concepts for example, much emphasis is laid upon the accurate
representation of topography by use of raster DEM with non-rectangular
and a-symmetrically spaced grid elements while in the SHE and DBSIM
model concepts rectangular and symmetrically spaced elements of equal size
are applied. The simulation of geometric catchment parameters such as
elevation, channel network layout and also subsurface geometry depend on
the chosen partitioning theory the land surface is simulated with.
Differences in model concepts also are due to the number of flow processes
simulated and selected process schematisations. As a consequence, model
equations, model algorithms and data requirements differ. The last factor
that causes differences is the number and approach the meteorological
processes are simulated.
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Evaluation of cach of these differences with respect to the simulation
results is difficult since comparative modelling studies on selected
catchments are not reported in literature. Model concepts have different
degrees of complexity and are applied to catchments of local and regional
scale in different climatic zones while catchments are characterised by
different physiographic subsurface properties. For this reason it is
concluded that each of the four modcl concepts has some deficiency in
representing the real world runoff behaviour. A common catchment
characteristic that is dealt with in any of the catchment models is the
simulation of the undulating hill slope topography.

Conclusions on suitability (of parts) of model concepts must be based on
an inventory of the simulated flow processes, the applied model
algorithms and specific aspect of the model concept like applied spatial
discretisations in three-dimensional model space.

In table 3.3 meteorological and hydrologic processes are shown that are
simulated in the approaches. Numbers in the table correspond to the
flow processes considered in the lower table. In table 3.4 some
characteristics of the model concepts are presented that relate to for
example the applied catchment partitioning theory in terms of the
applied DEM, the number of subsurface model layers and the size of grid
elements. Characteristics of applications relate to the catchment scale size
and the time domain.

By these tables and the descriptions in sub-sections 3.3.1-3.3.4,a
number of conclusions are drawn.

1. In the design of the four model concepts the generation of saturation
overland flow and rapid subsurface storm flow is allowed for. All
concepts are valid to simulate the rainfall-runoff relation although
simulation results of THALES are very poor.

2. The effectiveness of the use of non-rectangular grid elements of
variable size for simulating overland flow and channel flow compared
to the use of rectangular grid clements has not been proven to be
favourable. Although in real world systems the shape of the land
surface has a (major) effect on the rainfall-runoff relation, it is
concluded that the shape of the land surface also is reasonable well
described by DEM’s with rectangular grid elements. The size of the
rectangular elements should be relatively small while, as applied in
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SHE, the overland flow algorithm must be solved in two flow
directions over the grid.

. The effect of the adaptation of the land surface discretisation to the
subsurface is uncertain with regard to the performance of catchment
models. By the fact that runoff generation by saturation overland flow
is a result of the groundwater behaviour it is surprising that such
procedure is not questioned and hardly discussed in literature. In
research much emphasis is laid on representing the topography in a
model as accurate as possible but this emphasis is lacking when
representing the subsurface geometry and heterogeneity.

. The simulation of evaporation and interception is a necessary model
requirement when runoff has to be simulated on a continuous time
base. For event based modelling this simulation is less restrictive since
both processes only have a minor effect on runoff volumes especially
when runoff is due to rainfall events of relatively long duration.

. Spatially uniform or non-uniform distributions are applied for the
simulation of the rainfall input. Spatially uniform distributions are
applied to small catchments (Grayson et al, 1992 and Beven et al.
1987) while semi-distributions (i.e. Thiessen polygons) are applied to
larger scale catchments (e.g. Bathurst et al., 1986a,b and Cabral et al.,
1990). The accurate simulation of temporal rainfall distributions is
hardly addressed in literature in the field of PBRR modelling. This is
surprising since each model concept particularly is developed to show
how well the runoff production mechanisms are simulated in the
model approaches. The accurate simulation of temporal and spatial
rainfall distributions is a pre-requisite in PBRR modelling.

. The simulation results showed that results are (very) sensitive to the
combined effects of the simulated rainfall intensity and the saturated
hydraulic conductivity. It is expected that much better simulation
results can be obtained if the temporal and spatial rainfall distributions
are simulated more accurately and when saturated and unsaturated
hydraulic conductivity values are estimated more accurately.

. For the simulation of overland and channel flow a DEM is required.
The flow path at the land surface and the drainage network layout are
derived from the DEM that can be based on rectangular grid elements
of equal size or non-rectangular grid elements of variable size.
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8. Water flow at the land surface is simulated by a diffusive wave or
kinematic wave model or by a travel time procedure. Although travel
time procedures in general are computationally and parametrically
very efficient, its application should be rejected in PBRR modelling
since such procedures generally are based on convolution integral
procedures. In such procedures the effects of channel flow routing are
ignored and cannot be quantified. In the research it is not described
what criteria are applied to select either the diffusive wave or
kinematic wave equations for simulating channel flow and overland
flow.

9. Macro pore flow is not considered explicitly in any of the designed
model concepts. Macro pore is simulated as an aggregated flow process
in the selected unsaturated zone flow algorithms. Water movement in
the unsaturated zone is best simulated by Richards equation. By such
approach, the processes of infiltration, unsaturated subsurface flow
and exfiltration can be simulated when appropriate boundary
conditions at the land surface are implemented. The most important
advantage of the use of Richards equation is that the soil saturation in
the vicinity of the channel network system is simulated in a
distributed manner. In case a soil column becomes over-saturated,
exfiltration will occur and saturation overland flow will be generated.
Such simulation requires that a) the unsaturated zone model is
interactively linked to the groundwater flow model and b) that the
subsurface is discretised in a column of grid elements.

10. For simulating groundwater flow the Darcy flow equation is applied.
Groundwater flow is simulated in shallow and perched flow
conditions were phreatic conditions prevail. Groundwater flow models
must be interpreted as rapid groundwater flow models. The thickness
of the saturated zone is variable and is simulated in one model layer
only. For simulating perched subsurface flow it is a pre-requisite that
the unsaturated zone flow algorithm automatically adapts to saturated
flow conditions and that lateral flow is simulated as well. The vertical,
unsaturated flow algorithm must be able to discharge subsurface water
laterally when the vertical drainage capacity is exceeded by the
infiltration fluxes.
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Table 3.3: Review of hydrologic processes simulated. (Rientjes, 1999a)

t Model concept -

Processes

Aspects of processes considered

' 1= rainfall 2 =snow melt 3 = uniform 4 = Thiessen

? 1= canopy 2 = no interception 3 =evaporation | 4 = no evaporation
interception

¥ 1= diffusive wave 2 = kinematic wave 3 =travel time

% 1= diffusive wave 2 = kinematic wave 3 =travel time

> 1=Richards 2 = Horton 3 =Smith 4 = other

51 = Richards 2 =Darcy 3 = other

’ 1 = Darcy 2 = no perched flow

¥1 = Darcy 2=no Eroundwater flow

Table 3.4: Model concept characteristics (Rientjes, 1999a)

Hodel concepts -

Clraracteristic

Aspects of characteristics

"=size <l km’ | 2 =size<10 km® 3= size<100km’ | 4= size>100 km’
% | = raster 2 = vector

7 1=rectangular | 2 = non-rectangular

11=<0.15% 2=<1% 3 = unknown

*1=1 layer 2 =<5 layers 3=>10

®}=cventbased | 2 = continuous

’ ] = mainframe 2 = work station 3=PC. 4 = unknown
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By these conclusions some recommendations are made for defining a
most effective an appropriate model concept.

¢ Rainfall must be simulated accurately in terms of spatial and temporal
distributions by usc of multiple, spatially distributed rainfall maps and
by appropriate temporal distributions. Spatial rainfall distributions can
easily be simulated by use of interpolation schemes that, over a raster
grid, interpolate rainfall observations at gauging stations. Proposed
local and global interpolation schemes are the inverse distance
weighing scheme and the Kriging estimation scheme respectively.
Temporal distributions must be simulated by use of distribution
functions that are based on analysis of time series. Time scales in
general, however, can become larger with increasing catchment size
since the effects of small-scale temporal rainfall variability will be
dampened by storage effects in the subsurface.

e For the simulation of evaporation a simple approach as proposed by
Feddes et al. [1976] can be applied. In their approach evaporation is
simulated by a loss function since evaporation is interpreted as a loss
term in a catchment water balance. Such loss functions have proven to
be appropriate descriptors of the evaporation process in runoff
modelling and are computationally simple. For event based runoff
models the simulation of evaporation is not a necessity since
evaporation losses during rainfall events are small. A disadvantage of
ignoring the evaporation process is that, prior to the modelling, the
initial hydrologic model state (e.g. soil moisture distribution) has to be
defined by a procedure that simulates the effect of evaporation.
Evaporation acts as an atmospheric loss function and depletes the
subsurface. Simulating evaporation is a way of keeping track of the soil
moisture storage and distribution in the unsaturated zone for defining
the (initial) model state prior to a rainfall event.

e In runoff hydrology it is common knowledge that interception can be
relatively large for short duration rainfall events and relatively small
for long duration rainfall events. For PBRR modelling interception
can be simulated by simple loss functions that arc a function of land
use.

¢ For simulating overland flow and channel flow a raster DEM with
symmetrically spaced and rectangular grid elements of equal size is
appropriate. The size of the grid elements, however, should be
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relatively small compared to the size of the catchment model and the
DEM should reflect the main topographic catchment features. The use
of such a DEM requires that the overland flow algorithm is solved in
at least two flow directions (i.e. x, y).

For simulating overland and channel flow in undulating and hilly
catchments the use of the diffusion wave equation is appropriate. This
since topographic gradients are relatively high and any change in
momentum by changes in the flow velocity over time and along a hill
slope plane and channel can be neglected.

Overland flow must be simulated by the Strickler-Manning equation
as a sheet flow process rather than a stream flow process to limit the
complexity of the model approach. Compared to the sheet flow
approximation, stream flow can be simulated by introducing a
dimensionless scale factor to the Strickler-Manning equation. The
factor is equal to the ratio of the grid element width to the average
width of the real world stream flow paths within the grid element.
Such scale factor can be defined through observation or through
model calibration.

The use and integration of a (Hydro-)GIS in the modelling efforts is
not described in any of the studies. Topographic attributes like
elevation, hill slope gradient, hill slope aspect and catchment
topographic divides can easily be simulated by a GIS. A GIS also is
very useful for simulating rainfall maps, spatial distributions of soil
data and initial model conditions. Spatial model output such as
groundwater table positions and overland flow depth can also easily be
visualised. In PBRR modelling a GIS must be used for pre- and post
processing.

The most important conclusion of the literature review is that it is
uncertain what the effects of differences in the applied catchment
partitioning theory, the model equations, the applied process
schematisations etc. are on runoff generation. For gaining a better
insight in the performance of PBRR models and designed model
concepts, it is recommended to carry out comparative studies at
selected catchments for selected periods of time.
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3.4.2 Data requirements and model performance

For the modelling of the real world hydrologic runoff behaviour large
quantities of data are required. Meteorological data are required to
simulate rainfall, evaporation and interception while topographic and
subsurface data are required to simulate surface flow and subsurface flow
processes respectively. Model input data are meteorological input data,
initial model conditions and model parameters that represent catchment
attributes such as elevation and porosity. For each of the four model
concepts a set of parameters is defined to represent the ‘real world’
characteristics. By the review in section 3.3 it appeared that sets are
dissimilar and subject to the applied catchment partitioning theory and
the applied model equations. Model equations also require input from
non-observable (numerical) parameters such as the grid size dimensions
and number of model layers. For each of the four concepts an overview
for the required model parameters is presented in table 3.5. Although
large numbers of parameters are added to the table, most likely it is
incomplete since model algorithms and required model input data of
some codes are not well described in literature. By this table it is clear
that enormous amounts of parameter values are required for each grid
element and parameter demand ranges from 16 to 30. When disregarding
the evaporation and interception the number of parameters still range
from 15 till 20. The parameter demand is highest for multi layer models
such as SHE and IHDM since the subsurface is described in a three-
dimensional perspective. The high parameter demand is a consequence
of the complexity of the mathematical model where multiple flow
processes are simulated from which some interact through calculated
state variables.

Model complexity increases even more when the effect of time varying
input data must be simulated. Such complexity causes that the
performance is far from optimal. Relations between model complexity,
data requirements and model performance are represented in figure 3.23.
Prior to describing these relations it is stated that each of the relations is
not based on extensive quantitative analyses but much more on logical
‘reasoning’ and on ‘insight’ of the various simulation aspects. It is stated
that additional analyses of the four model concepts with further
applications to real world systems will support the relations.
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Table 3.5: Required model parameters (Rientjes, 1999a).

Computer code

Model input data
Interception
- canopy drainage parameters
- canopy storage capacity
- interception capacity coefficient
- leaf area index
- ground cover indices
- throughfall coefficients
Evaporation
- canopy resistance to water transport
- vegetation acrodynamic resistance
- ground cover indices .
- ratio actual / potential evaporation
- maximum root zone storage
- root distribution with depf

SHE

* ¥ * X % ¥

L R B R R

THALES  THDM

* ¥ * X ¥ %

]
L B B N B

DBSIMV

* % % x 5 =
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A causal relation encountered in most rainfall-runoff models is that an
increase of applied temporal resolution of model input data as well as the
model time step results in an increase of required spatial model
resolution. The reasoning is that the simulation of high temporal
resolutions only is functional when runoff dynamics can be simulated at
appropriate spatial scales as well. The relation betwecen the temporal
resolution and the spatial resolution is expressed as a, fairly arbitrary,
linear relation. With an increase of the temporal resolution also the
required spatial resolution will increase that must be associated with an
uncertainty band in which a specific temporal resolution is associated
with a small, suitable range of spatial model resolutions. This range
increases with increasing temporal resolutions and thus can be
interpreted as a ‘band of model uncertainty’.

For distributed runoff modelling the inverse of the relation also holds: an
increase of spatial model resolution mostly requires an increase of the
temporal resolution as well. An important consequence of such causality
is that data requirements increase significantly with increasing model
resolutions. As described, for each grid element a number of parameter
values have to be defined subject to the applied mathematical model. For
complex detailed models with high spatial and temporal resolutions, it is
most likely that data requirements increase exponentially. This causality
also must be is associated with uncertainty since a small range of model
complexities can be defined that all require data sets of similar size.

The third relation in figure 3.23 is the relation between model
complexity and model performance. In this relation it s assumed that an
optimum model performance can be defined as subject to the model
complexity. Very simple and very complex models suffer from poor
performance while a trade off can be identified between model
complexity and model performance. By analysis of the four codes, it is
concluded that PBRR models are very complex models that do not show
an optimal performance although the performances of the SHE, IHDM
and DBSIM in general were satisfactory. It is concluded that the model
complexity and subsequently the high parameter demand hamper the
performance of the models. It is also concluded that model concepts
must be kept simple resulting in a significant decreasc of the parameter
demand.
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Spatial resolution
Data requirements
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Temporal resolution Model complexity Model complexity
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Figure 3.23: Data requirements, model performance and model complexity
relations (Rientjes and Hassanizadeh, 1999).

Options to gain parameter reduction, however, are limited by the a-priori
designed and defined model concepts. The common philosophy here is
to keep model equations simple, to apply parameter zones and to use
model parameters by which aggregated flow processes are simulated.
Simple examples of parameter zoning are the simulation of spatial
distributions of soils and land use by similar parameter values. Model
parameters like porosity, hydraulic conductivity and Strickler-Manning
coefficients are simulated over large numbers of grid elements covering
the same soil type and land use. This approach is common to PBRR
models and must not be rejected in future model applications. The use of
‘aggregated’ parameters also is common practice. Macro pore flow, rapid
and delayed groundwater flow and perched subsurface flow are not
simulated explicitly but only a single ‘aggregated ’flow equation is
applied. Such aggregated flow equation is parameterised through
aggregated model parameters for which grid effective values must be
defined. In addition sheet flow, rill flow and stream flow are not
simulated explicitly but processes are aggregated and simulated by a
single overland flow equation. In the model descriptions in sub-section
3.3.1 through 3.3.4, for any grid element continuum assumptions are
made with respects to system characteristics and variables. Catchment
characteristics, initial model conditions and meteorological model input
are averaged and lumped at the spatial scale of the grid elements although
field observations of these variables mostly are taken at the much smaller
point scale. The spatial variability at very small scales is ignored and
aggregated and averaged values are assigned to the grid element. This
procedure also is common practice in PBRR modelling and must be
maintained in future model applications.
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For improving the performance of PBRR models, the overall conclusion
is that research must focus on improving the procedure to estimate and
optimise model parameter values. Model performance must not only be
judged by visual interpretation of the modelling results but also by
quantitative data that help to define and to identify the best parameter
values.

3.5 Model parameterisation and model calibration

Procedurcs of aggregation and lumping limit detailed simulations of
runoff behaviour since real world process scales (see table 3.1) and small-
scale variability are ignored. In this respect Beven [1989] declared that
future developments in PBRR modeclling

“must take account of the need for a theory of the lumping of sub grid
scale processes; for closer correspondence in scale between model
predictions and measurements; (and) for closer correspondence between
model equations and field processes”.

The development of such theory as based on field observations, however,
is questionable due to the many scale issues involved. Such lumping
theory would require that the micro scale variability is simulated as based
on field observations and that multiple processes can be aggregated into a
single flow process. As a last step also effective model parameter values
must be defined. The development of such lumping procedure is very
complex and probably not feasible due to the large demand towards real
world data. The procedure also would lack universal applicability since
each catchment is characterised by different property distributions.

A different procedure to define lumped model parameters is to improve
model calibration procedures. In parameter estimation through model
calibration, scale issues relating to the process scale, observation scale and
equation scale come together when parameter values have to be defined
for grid elements (i.e. the model parameterisation). After making prior
estimations of the parameter values, fine-tuning and optimisation of
parameter values is achieved by modifying parameter values based on a
model performance criterion. In such a procedure the objective is to
define grid effective values that are interpreted as lumped and averaged
parameter values. Such procedure is very suitable for estimating
aggregated model parameters and implementing such procedures is
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common practice in hydrologic modelling. A number of researchers (e.g.
Refsgaard et al., 1996) reject the implementation of calibration
procedures in PBRR modelling since they believed that parameter
estimations based on field observations do not require optimisation. The
procedure of parameter estimation by model calibration, however,
becomes complicated when large amounts of parameter values have to be
defined such as in PBRR modelling. In model calibration model
parameters are modified in such as manner that the state variable of
interest is simulated as close as possible to its observed counter part. In
catchment scale runoff modelling the channel discharge is the state
variable of interest where the runoff hydrograph must be interpreted as
integral response functions of all upstream processes. Multiple flow and
runoff processes of different behaviour, extent and magnitude contribute
to runoff production at a hill slope and cause that parameterisation
becomes a difficult task. As shown in table 3.5, large numbers of
parameters and parameter values have to be quantified and, by the
estimation procedure, a large number of parameter sets can be generated
that all will yield satisfactorily simulation results. In research this
phenomenon often is mentioned as a major cause of poor model
performance and various expressions such as ‘non-uniqueness’, ‘equivalency’
and ‘over-parameterisation’ exist to refer to this phenomenon. Although
each expression follows a slightly different definition, all three
expressions basically imply that multiple parameter sets can be defined
that all produce a model output that is ‘satisfactory’ to the modeller.
Over-parameterisation actually means that the effects single parameters
have on the calculated model output cannot be defined exclusively as
caused by unknown dependency relations between parameters. Such
dependencies often are present when large numbers of model parameters
are required. Dependencies often are expressed by (spatial) correlations
where parameters may be positively or negatively correlated. As a result,
effects certain parameters have on the model output become less
pronounced and models may appear to be insensitive to certain
parameters even though the model in fact is sensitive to the parameters.
Non-uniqueness means that within a parameter set many different
combinations of parameter values can be defined that all give satisfactory
simulation results. Although parameter values are optimised and
uniquely defined, many different but yet optimised parameter values can
be defined. Parameter values as such have a non-unique character and
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correctness of optimiscd values is uncertain. Equivalency refers to single
parameter sets that are equivalent to each other in such a manner that
each parameter set gives a satisfactory model output. Equivalency may
occur as a result of model over-parameterisation and/or non-uniqueness.

In order to overcome the effects of parameter set equivalence, non-
uniqueness and over-parameterisation, the procedures to estimate and
optimise parameter values must be improved. In modelling such
optimisation mostly is achieved by model calibration that is referred to as
the fine-tuning of a model. In this respect, the use of automated
calibration procedures in the field of PBRR modelling is advocated since
parameter optimisation by manual procedures do not overcome the
problems relating to non-uniqueness, equivalency and over-
parameterisation. Such procedures are very appealing with regard to a
number of modelling aspects. Two main advantages are a) multiple
parameters can be optimised simultaneously and b) parameter estimation
is achieved for the model domain as a whole. In order to reduce the
complexity of the parameter estimation process a selection of model
sensitive parameter must be made prior to the model calibration. In this
methodology, parameters used for calibration purposes are termed
optimisation parameters while the other parameters are termed fixed
parameters. For model calibration only a relatively small number of
parameters must be selected for optimisation while the values of the
secondary parameters remain fixed at a certain value.

Recently developed automated model calibration procedures are
described in Chapter 5 and conclusions on applicability and
implementation are drawn. Procedures are known as inverse calibration
procedures and are reviewed and analysed on suitability in PBRR
modelling. For each of the procedures, estimated and optimised model
parameter values must be interpreted as grid effective parameter values.
By the review a selection is made for a procedure that yield specific
information on parameter dependencies and parameter identifiability.
The selected procedure is applied to the Troy case study as described in
Chapter 6.
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4.1 Introduction

Flowsim stands for FLOW SIMulation and denotes the name of a model
concept as well as computer code that is designed and developed for the
simulation of real world runoff behaviour in natural, hilly catchments. In
the approach, runoff mechanisms of Horton and saturation overland
flow are simulated in a distributed manner and model algorithms of
relevant flow processes are based on conservation equations of mass and
momentum. Guidelines for the design of the model concept as well as
selected model algorithms are based on conclusions in section 3.4. The
computer code is newly developed for this thesis and has required (very)
extensive coding efforts.

Flowsim is classified as a distributed PBRR model approach by the
applied model algorithms. In Flowsim, sub-models are developed for
simulating rainfall, evaporation, overland flow, channel flow,
unsaturated subsurface flow and saturated subsurface flow. Other
processes of the hydrological cycle that are simulated are infiltration,
percolation, capillary rise, exfiltration and channel seepage. Diagrams of
the designed runoff and rainfall model concepts are presented in figure
4.1 and figure 4.2 respectively.

In Flowsim, overland flow runoff is generated when the rainfall intensity
exceeds the infiltration capacity (i.e. Horton overland) or when a column
of grid cells of the subsurface flow model becomes over-saturated (i.c.
saturation overland flow). Catchment runoff is also generated by mass
exchanges between the channel and groundwater flow models.
Subsurface storm flow processes of macro pore flow, perched subsurface
flow and rapid groundwater flow are not simulated explicitly. In the
subsurface flow models it is assumed that Darcian flow conditions
prevail.

In the model concept multiple grid layers are required to simulate the
various catchment characteristics. To all grid layers the discretisation of
the DEM is applied and thus all grid elements of all sub-models in
horizontal plane are squared and equally sized. For the subsurface
elements a third space dimension is added that represents the thickness
of the cell. This thickness may change from element to element and so
any soil layer of varying thickness is simulated. By this approach is soil
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1-D Channel flow
- Strahler ordering
- diffusion wave

2-D Overland flow
- Horton overland flow
- Saturation overland flow
- diffusion wave

1-D unsaturated flow
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- exfiltration

- percolation

- Richards Eq.

2-D saturated flow
- freatic flow conditions
- Darey Eq.

Figure 4.1: Schematic of runoff model concept.

layer geometry simulated by a fully distributed three-dimensional model
domain. Grid layers also serve to simulate spatial distributions of soil
characteristics as porosity, hydraulic conductivity and soil thickness. By
use of multiple model layers, soil parameter distributions are simulated
in three-dimensional model space.

In the remaining of this thesis three-dimensional grid elements are
termed grid cells. Cell volumes of grid cells are defined by multiplying
the area of DEM grid elements by the thickness of the grid cells. For
simulating rainfall, evaporation, overland flow and channel flow, model
layers with grid elements are applied. For simulating unsaturated and
saturated flow grid cells are applied. In the approach any local
densification of grid elements or grid cells is not allowed.

In the Flowsim model approach, elevation heights of grid cells are
defined by subtracting the cumulated cell depths from the elevation
height of the DEM grid elements. In this procedure the subsurface
model is coupled to the DEM that serves as an clevation reference for
model calculations. The DEM is also required in the overland and
channel flow models and hence is of great importance.
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Figure 4.2: Schematic of rainfall model concept.

In table 4.1 hydrological and meteorological processes that are simulated
are presented where also the number of required model layers is added.
Model input of the sub-models is processed by use of the GIS
“ARCVIEW?” that serves as a pre-processor.

Table 4.1: Sub-models in Flowsim and number of model layers required.
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Precipitation and evaporation also are simulated as a spatially variable
input variable by use of multiple grid layers. Each of the sub-models is
discussed briefly in the following sections. More detailed descriptions of
the mathematics involved in each of the sub-models are presented in

Appendix A.

4.2 Rainfall

By the literature review, it is concluded that the inaccurate simulation of
rainfall is an important cause of error in model simulations. It is also
concluded that rainfall must be simulated by a methodology in which the
dynamics of the real world rainfall processes in terms of temporally and
spatially variability is represented. For this reason, in the rainfall model
multiple grid layers are used to represent the temporal variability while
the spatial variability is represented within a grid layer. In figure 4.2 a
diagram of the rainfall model concept is presented in which the temporal
and spatial variable rainfall distributions are simulated.

For rainfall simulation, rainfall maps in terms of grid layers are
generated for sequential time instants. Spatial rainfall distributions are
obtained through interpolation of rainfall depths that are observed at a
small number of observation points. For modelling rainfall a GIS is
necessary as pre-processor that is used for storing the locations of the
rain gauges, for storing the observed rainfall data and for interpolation
and generation of rainfall maps.

4.2.1. Spatial rainfall distribution

The spatial distribution of rainfall is simulated within a grid layer by
calculating a rainfall depth at any grid element. Rainfall often is observed
by only a small number of gauging stations and observations must be
processed to create spatially distributed rainfall maps. Rainfall maps
mostly are generated by interpolation techniques where point
observations are processed to create spatial continuous rainfall maps.
The information on spatial and temporal rainfall variability often is
incomplete since only information from a finite set of point observations
is available. Conclusions on rainfall variability and distributions are
subject to the applied spatial and temporal gauging resolutions and as
such model input distributions only are simple approximations of the
real world rainfall variability.
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Figure 4.3: Simulation of temporal rainfall distribution.

To describe the spatial variability at larger spatial scales (e.g. regional
scale), the rainfall process is described by a semi-variogram in which the
spatial variability of the rainfall is expressed by a semi-variance as
function of distance. Spatial interpolation is realised by use of local
estimation techniques such as Inverse Distance Weighing schemes or by
global estimation schemes such as Simple and/or Ordinary Kriging. For
the latter approach the theory of random functions is adopted. By this
theory, the rainfall process is treated as a random process in real space.
The mathematics of the interpolation techniques is described in detail in
Appendix A; section ‘I Rainfall’. For the Troy case study that is
described in Chapter 6, spatial interpolation is not implemented due to
the very small size of the basin. Rainfall is simulated by homogeneous
spatial distributions.

4.2.2 Temporal rainfall distribution

A common problem in the field of rainfall modelling is the simulation of
temporal rainfall distributions. Rainfall depths mostly are gauged by
collectors that gauge rainfall at regular time intervals such as every hour,
day or decade. Ideally this observation interval is in correspondence with
the spatial interval in terms of the network density. For the simulation of
the rainfall-runoff relation at catchments of local scale as compared to
regional scale, a higher temporal gauging resolution is preferred for the
smaller scale catchment. This by the fact that runoff dynamics and
runoff generation at smaller spatial scales is more pronounced than
runoff generation at larger scales. If spatial and temporal gauging
resolutions are not in accordance, rainfall observations must be re-scaled
in such a manner that a physically realistic and consistent model

approach is developed.
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In the Flowsim model approach multiple grid layers are used to simulate
the temporal rainfall distribution. Each grid layer represents a rainfall
map with accumulated rain depths that are representative for a specific
rainfall period. In the model approach, for each rainfall map a temporal
rainfall distribution (see fig. 4.3) is defined and applied to all grid
elements of the rainfall map. Common scaling and/or aggregation
procedures to re-scale rainfall distributions in time are not addressed in
this thesis. In this study only observed time series of rainfall
mcasurement arc used and temporal distributions that are applied to the
simulation are defined by simple calculus. An observed rainfall depth,
hobserved, 1s multiplied by a distribution function that describes the %
fraction of hopserved that is fallen within a specified time window. Each
window is bounded by a begin time, t,, and end time, t., and is used to

calculate a rainfall input, hyiy, for any model time step At:

At ‘fraction
t.—t, 100

€

hAl =h

rain observed *

[4.1)

Fractions sum up to 1 and the number of fractions is equal to the
number of time windows. In this approach it is clear that an identical
temporal distribution function is applied to all elements and that any
rainfall depth over the spatial model domain is transformed in a similar
manner. Temporal rainfall distributions hence are simulated by multiple
rainfall maps and a temporal distribution function that is defined and
applied to each map.

4.3 Evaporation

Evaporation is simulated by cxactly the same procedure as applied in the
rainfall model approach. Model input consists of a number of
evaporation maps where evaporation depths are added to the grid
elements. Such evaporation depth are re-distributed in time by use of a
temporal distribution function and evaporation depths are, as subject to
the flow conditions, subtracted from either the overland flow water
depth or subtracted from the soil moisture storage in the subsurface grid
cells. In case the overland flow depth drops to zero also some water is
subtracted from the top cell of a column of grid cells of the subsurface
model. In case top cells are unsaturated, water is subtracted from the top
cell or, in case a top cell has fallen dry, the highest not entirely dry cell is
selected.
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Actual evaporation fluxes from the unsaturated cells are calculated by:

Voo =E&‘[9___&] [4.2]
1000 \ -6,

where

Ev,,. = actual evaporation flux in meter [L T']
Ev,, = potential evaporation flux in meter [L T"]
) = soil water content grid cell [-]

o, = residual soil water content (-]

n = porosity [-1

Numerically, evaporation is simulated by a sink term in the overland
flow and unsaturated subsurface flow models where the magnitude of
the sink term reflects the actual evaporation.

4.4 Overland flow

In Flowsim, overland flow is generated by the infiltration and saturation
excess mechanism as described in subsection 3.2.2. Flow processes and
mass exchange terms simulated by the model approach are a) water
transport at the land surface b) mass exchange between the overland flow
and channel flow model ¢) mass exchange between overland flow model
and the (un)saturated zone model to allow for infiltration and
exfiltration and d) atmospheric stresses by rainfall and evaporation.

For the simulation of overland flow a raster DEM with rectangular
elements of equal size is used. The use of such a DEM is advantageous
since the DEM easily can be adapted in the numerical scheme that
requires the use of a spatially discretised model domain. Also the
catchment boundaries and slope gradients of the surface layer are easily
defined by such DEM. A limitation of the applied partitioning is that
much information on topographic variability at the element scale is lost.
Aspects relating to spatial partitioning and the use of DEM’s in overland
flow simulation are described in Chapter 3 and are not repeated. The
appropriateness of using rectangular grid elements of equal size in the
model approach hence is not discussed further.

In Chapter 3 it is concluded that overland flow can be simulation by the
diffusion wave approximation that combines the momentum equation of
Strickler-Manning and conservation equation of mass. The diffusion
wave equation is a simplified form of the momentum equation of Saint
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Venant [Barre de Saint Venant, 1874]. When neglecting the wind shear
stress and the eddy losses, the momentum equation of Saint Venant in
conservation form in one-dimension gives:

1 aQ Q? oh

T A&x[ J+g&—g(s -S,)=0 [4.3]
where
A = cross sectional flow area [L*]
Q = discharge [L?]
t = time [T]
x = horizontal Cartesian co-ordinate [L]
g = acceleration of gravity (L T2
h = water depth [L]
S, = bed slope [-1
S¢ = friction force slope [-1-

By neglecting the local and convective acceleration terms, that are the
first two terms of Eq.[4.3] respectively, water transport is due to
pressure and gravitational forces only:

——¢g(S ~-8.)= 4.4
g2 ax g(S,-S,)=0 [4.4]
By such approach, the hydrodynamic effects of upstream water transport
on downstream water levels and discharges are ignored. In a real world
system such effects only are observable when slope gradients are small
(i.e. < 0.001 m/m).

In Eq.[4.4], the gravity as driving force is set to be equal to the soil
friction force. The gravity force so is proportional to the bed slope, S,,
and the change of the river stage, h, over distance x while the friction
force is proportional to the friction slope, S¢. (Chow et al., 1988). This
approximation is commonly known as the diffusion wave approximation
that also is applied to the Flowsim code. Discharges by this
approximation are simulated by the Strickler-Manning hydraulic
resistance equation Eq. [4.5].

In the overland flow model discharges are calculated by:

Qu =knbofin, hF [4.5]
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where

Q.c = specific discharge overland flow [L*T']
k. = reciproke of the Manning coefficient [L* T
b = width of grid element [L]

igx = hydraulic gradient x-direction (-]

hy = overland flow water depth [L].

In the overland flow model, the water layer at an element is assumed to
be of uniform depth and so sheet flow is simulated.

In the mathematical model of Flowsim the bed slope is set to be equal to
the hydraulic gradient that is defined by summing the grid elevations of
the DEM and the calculated river stages. By use of a DEM with
rectangular grid elements, a two-dimensional model algorithm is
developed that allows the simulation and redistribution of overland flow
in two flow directions. Such approach, as compared to a one-
dimensional flow approximation, is in more correspondence with real
world runoff behaviour since real world topographic variability at the
spatial scale of an element also causes the redistribution of overland flow
in multiple flow directions. A disadvantage of the approach is that
discharges are calculated over too long travel distances (see fig. 4.4) as
compared to one-dimensional flow approaches as well as the length of
the one-dimensional real world flow paths. This since water transport is
calculated in between the calculation nodes of the DEM and results in
significantly longer travel distances and travel times. Travel distances
now always are equal to two times the length of the grid element.

The applied conservation equation of mass has the form:

ahof + aQof,x + aczof,y

b ot ax dy Su [46]

where

h, = overland flow depth [L]

t = time [T]

b = width of flow [L]

Q.ix = discharge overland flow in x direction [L*T"]
Q.:, = discharge overland flow in y direction [L* T
X,y = horizontal Cartesian co-ordinates [L]

S.e = sink/source term overland flow model [L*T'].
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Figure 4.4: Comparison of flow paths as simulated in the 2D overland
flow model and real world flow paths.

The sink/source term is an exchange term of water volumes between the
various sub-models. By this term rainfall input, evaporation loss and
infiltration to the unsaturated subsurface are simulated as well as the
exchange of mass between the overland flow and channel flow model.
The value of S, is positive when water is added to the overland flow
model and negative when water is subtracted.

By the applied conservation equation of mass, a two-dimensional
numerical scheme is developed. This scheme is according to the diagram
of figure 4.5. By Eq.[4.6], the water depth at a grid element is to be
defined by the runoff discharges of the four orthogonal connected grid
elements. When discretising Eq.[4.6] and when rewriting this equation
for the overland flow water depth at time instant t+1 this gives:

+ At At
h:)f],j.i =h:}f,j,i + (Qof.j—l/z,i - Qof,j+l/2,i + Qof,j,i~—l/2 - Qof,j,i+l/2 F +S¢ X (4.7]

A
where
Quej2i = overland flow discharge at j-1/2,i [L* T!
Qujuyai = overland flow discharge at j+1/2,i [L* T
Qutjiy2 = overland flow discharge at j,i-1/2 [L3 T-1]
Qg jy2 = overland flow discharge at j,i+1/2 [L*T]
At = time increment [T]
A = surface area of grid element [L%]

Set = sink/source term overland flow model [L*T").
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Figure 4.5: Schematic of the finite difference scheme of the overland flow algorithm.

For the simulation of the overland flow discharges Qi1 Qje112,is Qjicvizs
and Qj;:12, the Strickler-Manning equation Eq.[4.5] is substituted.
Eq.[4.7] makes up the governing equation of the overland flow model in
which overland flow discharges are simulated by a mixed numerical
scheme. In such scheme the overland flow water depths at time instants t
and t+1 of the orthogonal connected grid element are used for defining
hog;,i at time instant t+1. Numerical aspects of the model algorithm are
described in detail in Appendix A; section ‘II Overland flow model’.

The use of the Strickler-Manning equation Eq.[4.5] requires a value of
the Manning coefficient. In literature a number of tables are presented in
which values of this coefficient are defined. In most tables, the values
relate to the type of land use and to topographic characteristics. Tables,
however, present different values for similar land use and/or topography
and cause that values are non-unique. The most commonly applied table
is the table of Engman [1986] that also is selected for this thesis.

Model parameters for each grid element are the elevation height, the
dimensions (i.e. length and width) of an element, the Manning
coefficient while time dependent inputs are the rainfall and evaporation
depth and the infiltration and exfiltration depth as simulated by the
coupled sub-models.
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4.5 Unsaturated subsurface flow

In sections 3.2.1, Flow processes of the hydrologic cycle at the scale of a
catchment, and 3.2.2, Mechanisms of runoff generation, it is described that the
generation of saturation overland flow is closely related to the water
storage and groundwater table dynamics in the ncar vicinity of the
channel network system. In case a soil column in the subsurface becomes
fully saturated, exfiltration and subsequently saturation overland flow is
developed. Changes in water storage in the (un)saturated subsurface are
due to evaporation, infiltration, percolation, capillary rise and saturated
flow that cause the groundwater table depth to change. By the objectives
of this thesis a mathematical subsurface flow model is developed that
allows the simulation of this behaviour.

Specific flow processes and mass exchanges simulated by the unsaturated
zone model are the flow of water across a column of grid cells of the
unsaturated model domain, infiltration at the top cells and recharge to
the saturated flow model. For the saturated flow model simulated
processes are the rise of the water table due to saturated flow, recharge
and exfiltration at the land surface in case a column of grid cells becomes
over-saturated. By the model approach only Darcian flow systems are
simulated and so macro-pore flow is not simulated explicitly. In the
approach the simulation of perched subsurface flow is ignored.

The flow of water within a column of subsurface cells is simulated by a
one-dimensional conservation equation of mass as combined with
Richards momentum equation (Richards, 1931). The applied
conservation equation of mass reads:

@+6qﬂ+ssf=o [4.8]
ot oz
where
0 = soil water content [-]
t = time instant [T]
gst. = specific discharge unsaturated flow in z direction (LT
z = elevation height [L]
S, = sink/source term subsurface flow model [T7]
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while the momentum equation reads:

Qg, = —k(e){M + IJ [4.9]
’ 0z
where
Qs = specific discharge unsaturated flow in z direction [LT"]
h(8) = pressure head subject to 6 [L]
k(®) = hydraulic conductivity subject to 8 [L T}
z = elevation head [L].

The (negative) pressure head, that arises from micro scale interactions
between the soil moisture and soil particles, as well as the unsaturated
hydraulic conductivity both are functions of the soil water content. Both
relations are described by the soil characteristic curves k(8) - 8 and

h(8) - 6 that are functions of the soil texture and structure. For the
simulation of the soil characteristic curves, the Van Genuchten relations
(Van Genuchten, 1980) are implemented. The relation between the
pressure head, h(0), and the effective soil water content is expressed by:

1
0, =|——F 4.10
s .
where
o = constant [L]
m = constant [-]
n = constant [-1.

A second and common expression for the effective water content is given
by Eq.[4.11] and implies that only a part of the water content contributes
to the flow processes:

ee=e‘er [4.11]
n-6
where
N = porosity [-]
0, = residual water content (-1

When rewriting Eq.[4.10] for h(8) and after substitution of Eq.[4.11] for
6, the following expression for defining the pressure head is obtained:
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1

n

h(9)=~1— —1+(9‘9f]; [4.12]
a n_er

The hydraulic conductivity also is a function of the soil water content
and is described by:

1"“

k(e)=ks.(e_9f)z~ 1- 1—[9_&); [4.13]

n-6, n-6,
where
k(8) = hydraulic conductivity subject to 0 [LT"]
k., = hydraulic conductivity in saturated conditions [LT].

The governing equation is obtained by substitution of the momentum
equation for q,, in the conservation equation of mass equation Eq.[4.8].
After discretisation of the resulting equation, for all simulation time
steps his equation is updated for the soil water content, the soil pressure
head and the hydraulic conductivity. The resulting equation is solved for
the soil water content that is the dependent state variable Eq.[4.14]. The
pressure head and the hydraulic conductivity, that both are functions of
the soil water content, are updated at the beginning of a simulation time
step.

The discretised conservation equation of mass for simulation of the soil
water content at time instant t+1 reads:

At
t+1 _ nt t _ At
R Y [4.14]
n+lf2 n-1/2

where
8" = soil water content at point n at time instant t+1 [-]
8! = soil water content at point n at time instant t -1
q;.y» = specific discharge at point n+1/2 and time instant t [L T}
q,y, = specific discharge at point n-1/2and time instant t [L T
z,.y, = layer elevation at point n+1/2 [L]
z,, = layer elevation at point n-1/2 [L]

At = time increment [T].
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Figure 4.6: Schematic of the model concept for the unsaturated zone.

After substitution of discretised expressions for the momentum
equations q,,,,and q,,,, the governing flow equation of the unsaturated

zone model is obtained by which the soil moisture contents of each cell
are defined.

A point n represents a space index at the centre of a grid cell at which the
soil moisture content is defined while n+1/2 represents a space index at
the interface between two cells at which the flux is defined. The layer
elevations in the model approach are referenced to the datum of the
DEM. Elevations of grid cells are defined by subtracting the cumulated
depths from the elevation height of the DEM. The momentum equation
Eq. [4.9] is solved in upward direction and fluxes are simulated subject
to the hydraulic gradient of the interfacing grid elements. In figure 4.6 a
diagram of the unsaturated zone model is presented.

For simulation of the rainfall-runoff relation, the accurate simulation of
the infiltration process is most important. The infiltration process on the
land surface acts as a separation mechanism for rainwater to infiltrate at
the land surface or to be discharged across the land surface. In Flowsim,
infiltration and exfiltration processes at the land surface are simulated by
Quop that, mathematically, is interpreted as a flow-boundary condition
commonly known as Neuman boundary condition. For each simulation
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time step q,,, is updated with respect to the water depth at the land
surface and the hydraulic head of the top grid cell. Flow though the
bottom of a model is allowed for by use of a head-dependant boundary
flow condition, Gpotom, that is known as the Cauchy boundary condition.
The model bottom is simulated as either impervious or pervious that as
such must be defined by the modeller.

The rise or lowering of the water table due to percolation and capillary
rise respectively is simulated over all simulation time steps in the
unsaturated flow model. At the end of each time step the cffect of
saturated flow on the water table is simulated. Saturated flow may cause
a rise of the water table during a rainfall event or a lowering of the water
table depth during inter-storm periods. Subsurface depletion also is
caused by evaporation. The rise or lowering of the water table requires
that the soil water contents in an unsaturated soil column is updated and
redistributed over the unsaturated cells. For simulation of unsaturated
flow and for the redistribution of soil water due to saturated flow a
‘predictor-corrector’ methodology is implemented that is solved by an
explicit calculation scheme.

Numerical aspects of the unsaturated flow model are further described
in Appendix A; section ‘III Unsaturated subsurface flow model’.

4.6 Saturated subsurface flow

For simulation of saturated subsurface flow, a concept similar as to the
overland flow model is applied. Saturated subsurface flow is simulated in
a two-dimensional perspective by a model algorithm that is based on
conservation equation of mass as combined with Darcy’s equation.
Saturated flow is simulated within a single grid layer where the applied
discretisation of the DEM is adapted to the saturated flow domain. In
vertical perspective saturated cells of a soil column are aggregated into
one cell. The depth of such cells is equal to the depth of the saturated
zone that is bounded by the simulated hydraulic head and the bottom of
the model. This depth hence varies over the grid layer by the spatially
distributed hydraulic head and the distributed model bottom. In the
model approach only saturated flow under phreatic flow conditions is
possible and thus (rapid) groundwater runoff in shallow systems is
simulated.
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The conservation equation of mass that is applied reads:

S ahh.w! + aqgf,x + aqgf.y

=8 4.15
ot ox oy * [4.15]
where:
S = storage coefficient [-]
hyw = hydraulic head of groundwater table [L]
Qerxy = specific discharge groundwater flow in x-y direction ~ [L*T™]
See = sink/source term groundwater flow [L T.
Darcy’s momentum equation reads:
dh,

qgf =_kshs¢al—_—dl_Wt [4‘16]
where
g« = specific discharge groundwater flow [L2 T
k, = saturated hydraulic conductivity [LT']
hsat = thickness of saturated layer [L]
1 = distance in direction of flow {L].

The thickness of the saturated layer is spatially variable and is updated
for each simulation time step by the simulated hydraulic head. In the
saturated flow model this head is the dependent state variable and is
defined according to Eq. [4.17]. In the numerical approach the hydraulic
head at each grid cell now is obtained after substitution of all four
groundwater flow discharges into the conservation of mass equation
Eq.[4.15]. After discretisation of the resulting expression the following
Boussinesq-type equation is obtained that resides at the core of the
model algorithm for saturated flow:

(i) —

hil =hig, + [q:;f(j—w,i) ~ Qatrzi) + Gyctii-v2) ~ DarGivr2) + sz] % [4.17]

Ax Ay
where
b = hydraulic head at grid cell j,i and at time t+1 (L]
;(j‘i) = hydraulic head at grid cell j,i and at time t [L]
Qye(io2) = Specific discharge groundwater flow at j+172,i [L2T"]

Que(yaiy) = specific discharge groundwater flow at j-172 [L*T]
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Figure 4.7: Schematic of the finite difference scheme for the saturated
subsurface.

Qge(ivyz) = specific discharge groundwater flow at j,i+1/2 [L> T
Queiyz) = specific discharge groundwater flow at j,i-172 [L* T
Sy = sink/source term groundwater flow [LT
S = storage coefficient [-]

Ax = space increment in x direction [L]

Ay = space increment in y direction [L].

The discretised Darcy equation of Eq. [4.16] follows the general
expression:

ks(j,i) ) h:\(j‘i) + ks(j+l,i) ) h;'n(j+1.i) h;n(j+l,i) _ h;\(jvi) [4.18]

t
Qes(ierri) = > -

X (ivi) ™ X (4)
In the numerical model also the expressions of qge(;_y2:) Qge(jisyz) 20D

Que(jiy2) are discretised and substituted in Eq.[4.17]. By this expression

the resulting equation is solved for the dependent variable h;f(;‘i). The

hydraulic head at time instant t+1 is a function of the hydraulic head at
time instant t and all four inflow and outflow discharges that also are
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Figure 4.8: Schematic of the model concept to simulate mass exchange between
the channel-subsurface flow models.

simulated by means of hydraulics heads at time instant t. Hence the
mathematical model so is solved by an explicit calculation scheme. A
diagram of the numerical scheme is presented in figure 4.7.

The use of aggregated cells for the simulation of groundwater flow
requires that averaged parameter values are defined for parameterisation
of Eq.[4.17]. Model parameters are the saturated hydraulic conductivity
and the storage coefficient while the saturated depth of the flow profile
acts as a cell geometry parameter. In the model the first and last
parameters are combined to yield transmissivity values and these values
are defined for each aggregated cell. Since groundwater fluxes are
simulated at the boundaries of two connected cells, the transmissivity
values are averaged over the cells and applied to Eq [4.18]. In the model
approach the storage coefficient of Eq.[4.18] is simulated per grid cell in
the soil column and is not averaged. Such averaging is inappropriate
since changes of the groundwater table have an effect on the water
storage of the partially saturated cell at which the groundwater table is
simulated.

The sink/source term S, in Eq.[4.16] is used to simulate any interaction
between the subsurface models and channel flow model. Mass exchange
is simulated by means of the Cauchy boundary condition that follows the
expression:

hc jii -h ji
qch.gws=—"(")c i) [4.19]
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where

Jeh,gws = Channel seepage discharge [LTH
Beniy = hydraulic head of channel flow model at element j,i [L]
hyg.iy = hydraulic head at aggregated cell j,i [L]

C = hydraulic resistance at channel bottom [T].

Processes simulated by Eq. [4.19] arc groundwater drainage to the
channel and infiltration from the channel. Such infiltration is simulated
in either saturated and unsaturated flow conditions and exchange fluxes
are added or subtracted from the grid cell in which the channel bottom is
simulated. Fluxes are simulated per grid cell by the multiplication of
qcn.gws by the cross sectional flow area of the channel bottom. In figure
4.8 a diagram is presented of the channel - groundwater exchange model.

Mathematics involved in the groundwater flow and channel -
groundwater exchange models are described in more detail in Appendix
A; section ‘IV Saturated subsurface flow model’.

4.7 Channel flow

For simulating water transport in the channel network a one-
dimensional flow model is developed. The mathematical model is
applied to the channel grid elements that make up the channel network.
This network is partitioned in a2 number of channel segments of variable
length where each segment has an inflow element and an outflow
element. Segments are connected through these elements and channel
flow is simulated from upstream segments to the connected downstream
segments to end up at the outlet element of the catchment model.
Segments are made up by a number of connected grid elements that are
geo-referenced by the DEM. Each segment follows either a column or a
row of the DEM grid layer and results in a network system of orthogonal
connected segments. In figure 4.9 a diagram is presented on the
projection of a channel network system. In the same figure a Strahler
order scheme is adapted that will be discussed later.
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Figure 4.9: Schematic of Strahler ordering scheme.

For the simulation of water flow a one-dimensional flow model is
developed that is based on conservation equation of mass combined with
the Strickler-Manning hydraulic resistance equation. The conservation
of mass equation reads:

%"*%LS& =0 [4.20]
where
h, = thickness of water layer in channel segment L]
qa = specific channel flow discharge [L*T]
Sa = sink/source term channel flow model [LT']
1 = spatial co-ordinate in flow direction (L]

while the Strickler-Manning equation reads:

Q, =k, A, R%i% [4.21]
where
Q. = discharge [L* T
ks = reciprocal of Manning coefficient [L" T?]
A, = wetted cross sectional area L3
R = hydraulic radius {L]
i = energy gradient line -1

After discretisation of Eq.[4.20] in time and space and after rewriting for
the water depth at grid element j and time instant t+1 this gives:
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where

hg! = channel flow water depth at grid element j and time t+1 [L]

h,; = channel flow water depth at grid element j and time t  [L}
q;u2 = specific channel flow discharge at j-12 [L*T]
g» = specific channel flow discharge at j+1/2 [L> T]
At = time increment [T]

S.. = sink/source term channel flow model [L T}

The Strickler -Manning Eq.{4.21] also requires discretisation in time
and space and is solved at the boundary of two connected grid elements.
At the outflow boundary of a cell with space index j the following
discretised equation is applied:

%
: b Chizi +(2-Oh™
Qiuz = Kmjuyabafiju - 2b = 2 —|[4.23]
y J . E—
Chi., + (2= C)h;

where
Q;12 = Channel flow discharge at element boundary j+1/2 [L* T']
k. = reciprocal of Manning coefficient [L T2
b = width of cross sectional flow area (L]
h = water depth [L]
& = upwind weighing factor [-1.
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A similar expression for the channel flow discharge is developed at the
inflow boundary of cell j. When both expressions for Qj+1,2 and Q.12 are
divided by the cross sectional flow area and when multiplied by the grid
size then the resulting expressions can be substituted for gj+1/2 and gj.12
respectively. In the expression of Eq.[4.21] the cross-sectional flow area,
A, is simulated by a rectangular flow profile and is calculated by
multiplication of the width of the channel section, b, by the thickness
of the water layer h.,. The hydraulic radius, R, in Eq.[4.21] so becomes
equal to by, / (2 + by/h) and, in discretised form, is applied to Eq. {4.21].

A diagram of the numerical scheme is presented in figure 4.10. The
water depths are defined at the calculation nodes of the channel elements
while discharges are defined at the element boundaries. The channel
flow discharge in Eq.[4.23] is simulated by water depths at time instants
t and t+1. The procedure hence is characterised as a mixed scheme with
an explicit component and an implicit component. The calculation
scheme is solved by an iteration procedure that is based on a double
sweep procedure that also is applied to the overland flow model. The
scheme is solved by a three-point approach where the water depths of
two connected elements are weighted by a factor. This factor is
uniformly applied to all elements and weights the effects each water
depth must have on the simulated discharge.

By the sink/source term, Sc, runoff contributions from overland flow
and from channel drainage are simulated. The volume of these runoff
contributions are defined over a simulation time step, At, and are divided
by the surface area of the channel elements. The resulting water depth is
added to the water depth at the element prior to simulation of water
transport.

In the channel flow model a Strahler ordering scheme is adapted that is
used to classify each channel segments for its geometrical aspects. For
each Strahler order a rectangular cross sectional channel flow area and a
Manning coefficient are defined (see figure 4.9). Segments of equal
Strahler order are all supplied with uniform parameter values for size
and shape of the cross-sectional flow area and channel bottom
roughness. In this manner a significant parameter reduction is achieved
and makes the model less complex and reduces parameter demand. By
such ordering approach the simulation of the channel network and the
parameterisation of the flow equations are based on a channel
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segmentation procedure. By this procedure a gross simplification
towards representing the real world channel network is introduced.

The ordering of the channel segments, the design of the network layout
and the extent of the network are defined by the modeller. With respect
to each of these aspects, objective guidelines that help to design a
channel network system are not available in literature. Channel network
designs always must be based on observation of the real world channel
system.

Mathematics involved in the numerical scheme are further described in
Appendix 1; ‘V Channel flow model’.
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5.1 Introduction

Society only benefits from modelling studies when models have a
sufficiently high level of performance and when models are reliable and
trustworthy as well. Model performance in hydrology in general is
evaluated by a comparison of observed and model simulated state
variables such as channel flow discharges, soil water contents and/or
groundwater table depths. In rainfall-runoff modelling, usually the
channel flow discharge is the state variable of interest and observed
discharges are compared to model simulated discharges. Conclusions on
model performance are based on such comparisons and performance is
assumed high when models simulate the observed discharges accurately.

To evaluate the performance of a model, the channel flow discharge
appears to be an attractive variable since discharges easily are observed in
a catchment and since, with respect to runoff simulation, it usually is the
only state variable of interest. Channel flow discharges, however, have
important characteristics that are not attractive for model evaluation.
Discharges for example continuously change over time and different
hydrographs are observed at different locations within the channel
network. Discharges also may change from peak flow to base flow over
relatively short time periods where any discharge observation is a
function of the upstream, highly dynamic and non-linear runoff
catchment behaviour. As described in section 3.2, any discharge
observation must be interpreted as an integral response function of all
upstream flow processes.

Comparisons between observed and simulated channel discharges in
general are made over a range of meteorological and hydrologic
conditions. By these conditions, discharges range from base flow to peak
flow and are reflected by the shape of the hydrograph. In runoff
modelling time series of observations and model simulated counterparts
are compared where the objective is to simulate the observed hydrograph
as good as possible. Differences between observed and simulated
discharges change over time as subject to the meteorological influences
and the catchment runoff behaviour. Differences may be small for some
time instants and large for other instants and as such differences are not
homogeneously distributed over the simulation period. In modelling,
differences between observations and model calculated counterparts are
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termed residual errors that are generated due to various causes. Residual
errors are interpreted as cumulative errors that arise from:

¢ insufficiencies in the model concept,
e incorrcctness of parameter values,

e erroneous simulation of meteorological and hydrologic influences
such as rainfall, evaporation and (possibly) boundary conditions and

e observation errors with respect to applied state information.

Errors generated by each of these causes are of a different magnitude,
they change over time and are subject to the effectiveness of the model
approach. For example, specific runoff models may be effective in
estimating base flow discharges but may be less effective in estimating
peak flow discharges. The residual error due to insufficiencies in the
model concept for simulation of base flow then most likely is small
while the opposite is true for peak flow simulations. Also correctness of
parameter values may change over time as the range of simulated model
response modes also changes over time. Uncertainties involved in
quantifying the magnitude and the behaviour of each of these errors
makes runoff modelling a science that is associated with great
uncertainty, difficulty and complexity. In modelling practice it is
common to interpret the residual error as a cumulative error that must
be minimised. The residual error also often is termed the model error.

By evaluating the performance of a model over a time series of
obscrvations, models are tuned to improve model simulations. Such
tuning is termed ‘model calibration’ or just ‘calibration’ and may be
accomplished by improving the model concept, optimising parameter
values or by improving the manner meteorological model inputs and
hydrologic influences are simulated. In literature, such approach
generally is referred to as inverse modelling and means that observations
of state variables are used for calibration of a model (see e.g. Valstar,
2001; te Stroet, 1995; among others).

The development and application of new calibration procedures in
PBRR modelling has gained very little attention' in research over the
past decades while the opposite is true in CRR modelling. Since early
applications of CRR models (see Burnash et al., 1973; Ibbitt, 1972; and

' An exception forms the development of the GLUE procedure,
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Crawford and Linsley, 1966) it was understood that models needed to be
calibrated to improve model simulations. By pioneering work of e.g.
Johnson and Pilgrim [1976] and Pickup [1977], it has become clear that
the success of any model application very much depends on how well a
model is calibrated. Research on model calibration was directed by this
understanding and generic aspects of model calibration were
investigated. For many researchers, model calibration has become a
subject of great interest that involved many aspects. As such, model
calibration (still) is an important research topic and a number of
researchers (Beven, 1989a, 1993b; Kleme3, 1986b; Gupta et al., 1994;
Refsgaard, 1997; among others) present their thoughts and contribute to
ongoing philosophical and fundamental discussions on model
simulation, model calibration, thrustworthiness and reliability of
calibrated models.

Although most researchers and modellers agree to the paradigm that
“models should work for the right reasons”,

a number of model calibration approaches and strategies are developed
and discussed. Discussions by Sorooshian and Gupta [1985], Klemes,
[1986b], Beven [1989a], Beven and Binley [1992], Jakeman and
Hornberger [1993], Ambroise et al., [1995], Spear [1995], Kuczera and
Mroczkowski [1998], Gupta et al., [1998], among others, focus on
procedures that help to analyse the performance and thrustworthiness of
a model. Such analyses are not limited to visual and/or numerical
comparison of observed and model simulated time series, scatter plots
and/or double mass curve analysis but also focus on the issue or model
uncertainty.

During the time, discussions focused on and contributed to an improved
understanding of our modelling approaches and have led to an increased
insight in the complexity of model simulations and (still) are of great
significance to the modelling society. Modelling advanced to the use of
automated calibration procedures and, for the past two decades, research
on model calibration basically focussed on the following aspects
(modified after Sorooshian et al., 1998):

e Development of techniques accounting for data errors; calibration was
placed in a maximum likelihood estimation framework and effects of
data errors on model performance were tested. Also, simulated
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channel flow hydrographs must be associated with a heteroscedastic
error variance.

e Determination of the information content and appropriate quantity of
observation data; the information content of specific data is far more
important than the quantity in terms of the length of a time series.

e Development of global parameter estimation techniques led to the use
of population cvolution based search strategies.

* Quantification the effect of parameter uncertainty in model responses.

For each of these aspects numerous publications (see e.g. Sorooshian and
Dracup, 1980; Sorooshian, 1981; Kucszera, 1983a,b; Kuczera, 1982;
Spear and Hornberger, 1980; Kuczera, 1988; Gupta and Sorooshian

1985) are written and a fundamental understanding of the calibration
procedure has been gained. Research helped to define difficulties and
limitations of model calibration procedures and helped to gain insight in
generic aspects of model calibration. Such aspects among others relate to,
a) quantifying the effect the length of the calibration period has on the
identifiability of parameter values, b) defining the information content
of selected time series, ¢) defining the appropriateness of selected
objective functions and d) assessing the usefulness of model performance
criteria for various model response modes.

In section 5.2 the ‘Trial and Error’ calibration procedure is discussed
while in sections 5.3 through 5.5 automated procedures and approaches
are reviewed and discussed. In this review the focus is not on describing
all mathematical aspects and constrains in great detail, but much more
on principal assumptions underlying the approaches and on usefulness of
the approaches. Such usefulness particularly focuses on reliable and
trustworthiness of models. In theory each automated procedure has
universal applicability that can be applied to PBRR models as well
although procedures mostly are applied to distributed and lumped CRR
models only. Applications of automated procedures in PBRR modelling
are very sparse and only gained little attention. Model calibration in
PBRR modelling primarily focused on Trial and Error procedures by
optimising parameter values thus ignoring other sources of mismatch.
(see e.g. Grayson, 1992a, Refsgaard, 1996, Bronstert, 1999).

A relatively new trend in the calibration of runoff models is the
application of generic algorithms such as Artificial Neural Networks
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(ANNs). In section 5.6 the characteristics and applicability of this
procedure will be discussed. In section 5.7 conclusions are drawn on
suitability and applicability of automated calibration procedures to PBRR
modelling. Also a procedure is selected that is used for the case study
described in Chapter 6.

Model Calibration

As stated, the performance of a runoff model is evaluated by a
comparison of observed and model simulated state variables.
Comparisons of variables are made over a time series of observations and
comparisons mostly are made for runoff hydrographs. In runoff
modelling occasionally also piezometer heads are used as state variables
for model calibration. The use of soil moisture contents as a second state
variable of interest in runoff modelling is very uncommon.

Model calibration in the field of runoff simulation commonly is achieved
through parameter optimisation only. In such manner model calibration
ignores a number of causes that potentially cause an unsatisfactory model
performance and thus the complexity of model calibration is reduced
significantly. In most rainfall-runoff simulation studies this approach is
adopted and an a-priori defined model concept is selected and maintained
throughout the simulation and model calibration so becomes
synonymous to parameter optimisation. It often is assumed that models
are reliable in their simulation when the residual error is minimised.
With respect to the reliability issue of calibrated models, Gupta et al.,
[1998] state:

“Hydrologic models can only be as reliable as model assumptions,
inputs, and parameter estimates”.

According to this statement, model calibration must focus on validating
model assumptions, on improving parameter estimations and the manner
meteorological and hydrologic model inputs are simulated. Especially
with regard to model assumptions it is obvious that these are of great
significance for the performance of a model. Such assumptions relate to
applied process schematisations, selected model equations, applied model
discretisations and the manner the model inputs are simulated. It is clear
that model assumptions to some extent are reflected in the design of the
model concept but also, by changing the assumptions the model concept
will change. Also it is clear that model calibration by parameter
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Figure 5.1: Model calibration based on parameter estimation

optimisation only is partial and that parameter values that are optimised
also are a function of the applied model concept.

Parameter optimisation is achieved through various approaches and
procedures. Fundamental assumptions underlying each calibration
procedure differ significantly and each procedure follows a different
parameter optimisation strategy. Figure 5.1 presents a flow chart on
model calibration by parameter optimisation. By use of a model
performance criterion that is based on residual error analysis, parameter
values are estimated ‘as good as possible’. In the chart a model is
‘calibrated’ when the residual error has reached an acceptable (low) level.
Initial parameter values are obtained from information sources like
maps, data-bases and, possibly, field measurements and serve as start
values for the optimisation procedure.

In runoff simulation comparisons between observed and calculated state
variables are made qualitatively and quantitatively. Qualitative
comparisons are made by the modeller and are based on visual
interpretation of the simulation results. An example is the use of scatter
plots in which the simulated channel flow discharge is plotted against the
measured discharge. Scatter plots may, among other runoff hydrograph
characteristics, presented for runoff discharges and water levels. This
practice in model performance evaluation is still common but relies on
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the judgement of the modeller. Such judgement is arbitrary, subjective
and basically is a reflection of the modellers understanding of the
behaviour of a system and effectiveness of the model approach. In
general these judgements serve as a ‘soft’ calibration tool and are used to
redirect the calibration efforts (Anderson and Woessner, 1992).

Quantitative model comparisons are based on residual error calculations
that reside at the core of model performance criteria. Two commonly
applied calibration criteria in runoff hydrology are Root Mean Square
Error (RMSE) and Nash-Sutcliffe efficiency (Nash and Surcliffe, 1970).
The RMSE is the standard deviation of the residual error over a selected
calibration period and is the average of squared differences between
observed and calculated variables:

RMSE = [M] [5.1]

Q. = observed channel flow

Q. = calculated channel flow
t = index for time interval
T = number of time intervals.

In model calibration the objective is to minimise the RMSE that
traditionally is calculated as a single value over selected time series. The
RMSE must be interpreted as a time integrated performance criterion
over various model response modes. The use of RMSE over a range of
response modes weakens the general interpretation of model
performance. This since the RMSE does not provide distinct information
on model performance with regard to actual response modes of the
model and the system under study. Residual errors are aggregated over
the selected calibration period and information on model performance
over various response modes is lost. This aspect is investigated by Boyle
et al., [2000] and Wagener et al., {2001] who applied the RMSE criterion
over a moving time window. In their approaches specific information on
model performance is obtained for selected time windows that
continuously move forward with the progression of the model
calculations. Applications of such approaches, however, still are in a

development stage and require more testing before procedures can be
applied to PBRR models.
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A second performance criterion often used in runoff modelling is the
Nash-Sutcliffe efficiency, R?, is maximised. For this criterion also the
runoff discharge mostly is selected as the (only) state variable of interest.
The Nash-Sutcliffe efficiency is applied to a time serics of observations
and is expresscd by:

2 F -
R === l::l—i [5.2]
FK) FO
where

F=Y0le.-Qf

F=Y [0.-Q.]

where
Qo
Q,
Q. = calculated channel flow discharge
t
T

observed channel flow discharge

average of observed channel flow discharge

index for time interval

number of time intervals.

F, is the sum of the squared difference of observed discharge and average
discharge over the calibration period and is indicative for the statistical
variance of the discharge with respect to, average, long-term runoff
discharge. High values of F, indicate relatively high fluctuations of
observed discharges and thus relate to rapidly changing response modes
of the catchment. F is the sum of the squared difference of observed and
calculated discharge, both over the sclected calibration period.

The Nash-Sutcliffe efficiency coefficient quantifies performance of a
model by the ratio of mean squared error of average runoff and mean
squared residual error. A negative value of the coefficient represents a
lack of agreement that is worse than if simulated flows where replaced by
observed channel flow discharges. The value of the efficiency coefficient
depends upon the variance of the observed flow record with respect to
average long-term runoff discharge and makes that comparisons of
model performances between basins by R* become subjective. In rainfall-
runoff modelling it is often stated that a value of 0.9 for R? indicates a
very good model performance, that a value in the range of 0.8-0.9
indicates a good model performance while R? in the range of 0.6-0.8
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indicates a satisfactory model performance (Kachroo, 1986, among
others).

Both RMSE and R? criteria are frequently applied in runoff modelling
and sometimes both criteria are used to judge the performance of a
model. On the applicability of both criteria, in runoff modelling
different statements are made in literature. Research by Duan et al.,
[1992] on the applicability of both performance criteria to various model
response modes in CRR models indicate that for base flow response
modes RMSE is better suitable while R is a better performance criterion
for peak flow response modes. Sajikumar and Thandaveswara [1999]
state that R? is a better model performance indicator as compared to
RMSE when model performance is tested over calibration periods of
different length. This since, in the calculation of F, averaged values of
observed discharges are used over the calibration period. R? is
interpreted as a transformed and normalised measure with respect to
variance of observed hydrograph of the overall RMSE. It is obvious that
in case RMSE reduces to zero R? becomes 1. It often is observed that a
high correlation between RMSE and R? exist. Conclusions on suitability,
however, cannot be generalised.

Parameter optimisation is achieve by the so-called Trial and Error
procedure or by automated parameter optimisation algorithms. In the
first approach parameter values are optimised by manual adjustment. In
automated approaches such optimisation is achieved by automated
routines that require the use of objective function that is either
minimised or maximised. An objective function is interpreted as a model
calibration criterion and often is refereed to as a ‘cost function’.

5.2 Trial and Error procedure

In PBRR-modelling the most commonly applied calibration procedure is
the ‘Trial and Error’ procedure. In the procedure, parameter values are
modified manually to minimise the residual error between observed and
simulated channel flow discharges. A selection of parameters for
optimisation is made based on model sensitivity analyses. Model
sensitive parameters are selected for optimisation while insensitive
parameters are fixed as based on available information. For all four
models presented in Chapter 3 the Trial and Error procedure is applied.
Also in more recent research (see e.g. Refsgaard, 1996; Bronstert, 1999)
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the procedure is applied despite the fact that the procedure has major
weaknesses.

In the Trial and Error procedure it is assumed that a single best set of
parameter values is defined when model performance criteria such as
RMSE and R? are minimised or maximised respectively. It is assumed
that a best possible fit between observed and calculated hydrograph can
be achieved over entire time series of observations and that optimised
parameter values may be fixed to certain values that, as such, have a
unique character. It is clear that optimised parameter values reflect a
high degree of arbitrariness since values are modified based on
Jjudgements of the modeller. As stated before, such judgements are
subjective and different modellers will define different ‘optimal’
parameter sets. In such approach parameter values are not well identified
although the model is sensitive to changes of selected parameter values.
It is evident that this procedure of parameter estimation is very
questionable and that uniqueness of single parameter values cannot be
guaranteed.

A second and major shortcoming relates to problems of over-
parameterisation and equivalence of parameter sets as described and
discussed in section 3.5. At the core of these problems the issue resides
of how well parameter values can be identified. A low parameter
identifiability causes that models might not be reliable and trustworthy
although model performance criteria such as RMSE or R* may indicate a
satisfactory performance (see Bronstert, 1999). It is clear that the Trial
and Error procedure for model calibration does not fulfil adequate
requirements for model calibration. Examples of some simple
restrictions of the procedure are (Cooley and Naff, 1990):

¢ No methodology exists to guarantee that simulations will proceed in a
direction that could lead to a best parameter set.

e Determination when that best set has been reached is difficult.

o No way exists to quantitatively assess predictive reliability of the
model.

¢ Deciding whether or not additional parameters or a more refined
model concept would significantly improve the model is difficult.

Other restrictions of the procedure are that an insight is not gained in,
for example, any temporal and spatial parameter dependency, in
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uniqueness of single parameter values, in uniqueness of an entire
parameter set and how well single parameter values are identified. It also
is uncertain how well optimised model parameters represent the real
world catchment characteristic of interest. Many researchers as for
example Sorooshian and Gupta [1983] claim that by Trial and Error
calibration a single best and unique parameter set cannot be defined. By
these important weaknesses, a calibrated model cannot be termed reliable
or trustworthy and it is concluded that Trial and Error procedures must
be rejected in PBRR modelling.

5.3 Automated model calibration by the Generalised Likelyhood
Uncertainty Estimation (GLUE) procedure

The GLUE procedure for model calibration is presented by Beven
[1989] and is further described by Binley and Beven [1991] and Beven
and Binley [1992]. The procedure is an extension to the ‘Generalised
Sensitivity Analysis’ as presented by Spear and Hornberger [1980] and,
at that time, was regarded a breakthrough in model calibration. The
procedure is developed to describe uncertainty of the model response
due to uncertainties that need to be associated with non-uniqueness of
parameter sets and model concepts. In the procedure the first objective is
to identify ranges of model parameter values that all yield satisfactory
simulation results. The second objective is to simulate predictive
uncertainty of model response by simulation of model output for all
parameter value combinations that fall within identified parameter value
ranges. For each simulation time step, model calculated values of state
variable of interest are aggregated into a distribution function and
statistical properties as mean value and 5% and 95% percentiles are
defined that are interpreted as ‘uncertainty bands’ with respect to model
output.

An underlying assumption in the procedure is that equally satisfactory
simulation results can be obtained by use of multiple parameter sets and
possibly even model concepts. Beven and Binley [1993b] refers to this
phenomenon by the term ‘equifinality’ and states:

“an acceptable model prediction might be achieved in different ways,
i.e. different model concepts or parameter sets”.
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In most simulation studies with the GLUE procedure an a-priori defined
model concept is selected. The model concept hence is interpreted as a
correct descriptor of the catchment that does not require optimisation.

Beven and Binley [1992] describe that the GLUE procedure is developed
on the premise that for any a-priori defined model concept a single best
and optimal parameter set cannot be defined. The objective therefore is
to identify suitable parameter ranges (see Beven and Binley, [1992];
Aronica et al.[1998], Uhlenbrook et al.[1999]; among others) and thus
large numbers of parameter sets must be evaluated within the entire
paramcter space. For all selected parameters, parameter value ranges
must be identified that, when combined in a parameter set, may yield
equally satisfactory model performances. A principle assumption is that,
prior to model simulation, each set of parameter values is interpreted as
an equally likely simulator of a catchment system.

In the GLUE procedure parameter sets are generated by a Monte Carlo
parameter sampling procedure. For selected model parameters, a prior
distribution function is defined within a relatively wide range of
parameter values. Distribution functions may be Gaussian or uniform
and are termed ‘prior likelihood distribution functions’ (Beven and
Binley, 1992). For defining parameter sets for model simulation, for each
model parameter a value is randomly drawn from the likelihood
distribution functions by Monte Carlo sampling. A critical note on such
procedure is that objective criteria for selecting parameter value ranges
with an upper and lower bound are not presented in research. Sources
that help to define appropriate ranges in general are field measurements
and available maps. Large numbers of parameter sets arc generated in
this manner and by simulations model performance is evaluated for each
parameter set by means of a performance criterion. In the GLUE
procedure this performance criterion is termed the ‘likelihood measure’
or ‘likelihood weight’ and is interpreted as a measure of goodness of fit
between observed and calculated state variables. It is obvious that
‘likelihood’ modelling in this manner is dissimilar from statistical
likelihood modelling and also has a different interpretation. Likelihood
measures may follow different expressions but mostly are based on
common performance criteria such as for example R%. Objective criteria
to select an appropriate likelihood measure are not presented in research.
Examples of likelihood measures applied in GLUE simulation studies are
the following:
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o<1

2) £=(c?)™ (Binley and Beven, 1991) [5.3]
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] (Franks et al., 1996)
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where

¢ = likelihood weight

o. = variance of residuals

0, = variance of observations

N = likelihood shape factor (mostly set to 1)
w = weight.

The calculated likelihood measure serves as an indicator whether the
selected parameter set is an appropriate simulator of the catchment.
Subject to the likelihood measure, an inappropriate parameter set yields a
low likelihood weight and thus must be interpreted as a bad simulator of
the catchment. Such parameter sets are rejected for further analysis and
are termed ‘non-behavioural’ while the remaining parameter sets are
termed ‘behavioural’ that serve for further analysis. A rejection threshold
value of the likelihood weights is required to distinguish between
behavioural and non-behavioural parameter sets. This threshold value is
of great significance since further analyses are based on this selection.
Objective guidelines to define threshold value and likelihood measure
are not presented in research. Such selections mostly are based on
subjective grounds and depend on assessment and judgement of
simulation results by the modeller. In Lamb et al., [1996], Binley and
Beven [1991] and Franks et al., [1996] only the best 10% of all
likelihood weights, £, are retained for further analyses. In literature also
examples are presented where the best 50 % of the likelihood weights are
retained.

A complicating factor in defining an appropriate threshold value is that
different likelihood measures require a different rejection threshold
value for the GLUE procedure to be successful. Especially when
multiple model outputs are used in the analysis this problem becomes
evident (see e.g. Lamb et al., 1998). Model evaluation based on single or
multiple output variables such as channel flow discharge and
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Cumulative likelihood weight

Parameter values

Figure 5.2: Marginal likelihood distribution functions

groundwater table data will yield different marginal likelihood
distribution functions for selected model parameters. The arbitrarily
chosen best 10% of all likelihood weights Eq.[5.3] may constrain further
analysis especially when a model is insensitive to certain parameters.
Lamb et al.[1996] and Franks et al.[1996] document this problem and
state that threshold values might differ subject to the likelihood measure
in case multiple state variables such as channel flow discharge,
piezometric heads and observations of saturated areas are used in the
likelihood function.

GLUE Analysis

After rejection of non-behavioural parameter sets, likelihood weights of
remaining sets are re-scaled in such a manner that a cumulative
likelihood distribution is prepared in which likelihood weights are
summed to 1. Marginal likelihood distribution functions for each
parameter are defined with re-scaled cumulative likelihood weight on
the ordinate and parameter values on the abscissa. By re-scaled marginal
likelihood distribution functions, model sensitivity to changes of
selected parameter values is expressed. A steep distribution function
indicates a high sensitivity and a parameter is assumed to be well
identified (sec fig. 5.2).

Inter-relations between parameters are expressed by mapping likelihood
values for each combination of two parameters. Contour lines of equal
likelihood values indicate the likelihood that parameters are interrelated
(see fig. 5.3) although inter-relations are not quantified explicitly based
on statistics such as a parameter correlation matrix.



146 5 Model calibration
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Figure 5.3: Contour lines of equal likelihood values
for two parameters n and k (Werner, 2001)

By use of likelihood distributions of behavioural parameter sets a range
of values of state variable of interest is calculated. For each parameter set
a model run is executed and calculated state variables are aggregated and
make up a new distribution function. By this procedure likelihood
weights of behavioural parameter sets are transformed into a distribution
function of simulated state variables and statistical quantities such as
mean value, median, standard deviation or percentiles can be defined.
Since distributions of state variables such as a channel flow hydrograph
are skewed and heteroscedastic, the 5% and 95% percentiles of the
distribution are calculated and interpreted as a lower and upper
uncertainty bound (see e.g. Franks et al., 1996).

In this manner model calibration is placed in a framework of calculating
prediction uncertainty due to uncertainty that needs to be associated
with non-uniqueness of parameter sets. A unique and optimal parameter
set is not defined but effects of parameter values as described by the
likelihood distribution functions are simulated. With the GLUE
procedure, the structure of a parameter set in terms of a parameter inter-
dependencies such as parameter correlation are not simulated, but
parameter inter-dependencies are implicitly expressed in the marginal
likelihood distributions of the parameters.

An appealing aspect of the GLUE procedure is that the likelihood weight
of behaviour parameter sets easily are updated when additional time
series of observations becomes available. A model is tested by a split
sample test where a part of the time series is used for model calibration
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and the second part is used for model validation. By such a procedure it
is likely that the gradient of the marginal cumulative distribution
function increases and that identifiability of parameters increases since
additional observation data is used by which parameter values are
updated. Also parameter uncertainty then reduces and the 5 and 95%
percentile uncertainty bound for calculated model output becomes
smaller (see e.g. Lamb et al., 1998). For updating likelihood weights
using additional time series, the probability theory of Bayes is applied.
The conditional postcrior likelihood distribution is calculated by usc of
the product rule of probabilities:

(Y |©,M)(©,,M)

(0,1 Y.M)= 5.4
(O 2 (Y10, M)(0, M) 54
all i
where
M = expression for the applied model concept
£(®;M) = prior likelihood of parameter set i

£(©;]Y,M) = posterior likelihood of parameter set i
£(Y|0;,M) = likelihood calculated by use of additional time series Y.

The summation term in the numerator serves as a normalisation or
scaling factor.

Additional observation data may also be available in the form of a time
series of a second state variable of interest. The likelihood measure then
is calculated by the sum rule of probabilities and likelihood measures of
each state variable are combined, weighted and summed. Lamb et al.,
[1998] apply the following likelihood measure when groundwater table
data of two piezometers and channel flow data are used:

2 n_2
0,1 0,2 o,n

2 2 2 N
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C is a normalisation factor and Y,,...,Y, are observations of multiple state
variables that condition the likelihood measure. Lamb et al., [1998],
applied the Topmodel approach and used channel flow and groundwater
table data for model calibration. After analysis of the simulation results it
was concluded that the use of multiple state variables in the likelihood
measure of Eq. [5.5] does not improve model performance significantly
although parameter uncertainty decreased. Franks et al., [1996] also
applied the Topmodel approach and used runoff data and observations of
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saturated areas but also came to similar conclusions. Simulation results
from both studies indicate that the selected model concept of Topmodel
is insufficient and that the model concept must be interpreted as an
incorrect descriptor of the catchment.

Some concluding remarks on the GLUE procedure are made. Although
the procedure generally is accepted as a useful calibration tool some
critical notes are made. The procedure shows important weaknesses with
regard to the selection of a) the rejection threshold value, b) an
appropriate likelihood measure and c) prior distribution functions.
Objective guidelines to make these selections are not presented in
literature although each of these aspects has an impact on the overall
calibration results. In this respect the author shares the opinion of
Clarke [1994] and Gupta et al., [1998] who regard the procedure as

...... bold attempt to introduce some much-needed new thinking into
a field that is in grave danger of becoming intellectually sterile”

Moreover, the procedure ignores effects parameter inter-dependencies
have on simulation results. The overall parameter structure in terms of a
parameter correlation or parameter co-variance matrices does not come
available nor does the procedure present quantitative statistical
information on how well parameter values are identified. The procedure
also does not show significant improvements in simulation results when
multiple state variables are used. The latter probably is due to
insufficiencies of the applied model concept, this possibly as caused by
aggregation of a number of flow processes into a single flow process. A
different reason might be that the gauging resolutions of time series are
inappropriate or that observation resolutions are unbalanced. Also the
weights applied to each likelthood measure may be defined on subjective
grounds and so are incorrect. In the work of Lamb et al., [1998] for
example, equal values are selected for all weights.

5.4 Automated model calibration by evolutionary methods

The use of automated model calibration by evolutionary methods is
researched and advocated by Gupta and Sorooshian [1994], Duan [1991]
and Yapo [1996] Gupta, et al., [1998], among others. A principle
assumption underlying the procedure is that a single best and unique
parameter set can be defined through the minimisation of the residual
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error. Such minimisation is achieved through optimisation of parameters
only and calibration criteria such as RMSE and R? are selected and
termed objective functions. Parameter sets are optimised by repeated
evolutions of model performance that results in defining most optimal
parameter set. Such optimisation requires that a model is sensitive to
selected parameters and that the evolutionary search algorithm is able to
find the most optimal parameter set out of a pre-defined parameter
space. Prior to evolutions, a large number of prior parameter sets are
generated by a Monte Carlo parameter sampling procedure. Parameter
values of prior sets are sampled from uniform probability distribution
functions where ranges of parameter values arc bounded by upper and
lower values. Hence this approach to define prior parameter sets is
similar to the procedure as applied in the GLUE procedure. The
objective of evolutionary methods, however, is different from the
objective of the GLUE procedure. In the search procedure the large
number of prior paramecter sets is reduced to yield only one optimised
and unique parameter set. Parameter set reduction is achieved by
monitoring those parameter sets that produce a decrease of the objective
function value. Such ‘good’ sets are maintained and used for further
evolutions. The philosophy behind the evolutions is that good sets have
good parameter values and that such values must be combined into new,
improved, parameter sets. In these new sets, the initially defined
parameter value ranges are reduced to a much smaller range and after
repeated evolutions optimum values are defined. Mathematical aspects of
evolutionary search procedures are explained in more detail in the
following paragraphs.

Duan et al., [1992] and Yapo et al., {1996]; among others, conclude that
parameter estimation by evolutionary methods must be placed in a global
optimisation calculation framework. Duan et al., [1992] conclude that an
objective function response surface of many local search algorithms
contain numerous local optima. In this context the ‘Simplex method’
(Nelder and Mead, 1965),‘Rosenbrocks method’ (1960), ‘Pattern search
method’ (Hooke and Jeeves, 1961) and the ‘Newton-Raphsons method’
are mentioned. A local optimum could be obtained due to artefacts
relating to non-convergence of the search algorithm or due to
initialisation effects of the search algorithm where different initial
parameter values yield different estimation optima. Evolutionary
procedures therefore only are successful if, after convergence, always the
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same optimised parameter set is generated. The Monte Carlo sampling
procedure to define prior parameter sets thus has no effect on the
optimised parameter set. In this manner a unique and most optimal
parameter set is defined based on the available calibration data. Duan
[1992] researched the applicability of local search methods in detail and
developed a global search algorithm called the ‘Shuffled Complex
Evolution-University of Arizona’ (SCE-UA) algorithm. The
development of this algorithm is regarded a breakthrough in the field of
automated model calibration since the algorithm is able to find the global
optimum of the objective function response surface. Prior to this
development, a large number of attempts have been reported to develop
such global search algorithms but attempts were not successful.

The SCE-UA algorithm is a population evolution method and requires
multiple steps to define the global optimum of the objective function
response surface. In the following paragraphs, single-objective and
multi-objective model calibration by evolution algorithms is presented
and discussed.

Single-Objective Complex Evolution

As a first step of the SCE-UA algorithm, a relatively small population of
parameter sets is generated within the feasible parameter space. By a
random sampling procedure, parameter values are drawn from uniform
prior parameter distributions and are combined to generate a large
number of parameter sets that all contain different parameter values. In
the evolutionary procedure each parameter set is interpreted as a ‘point’
for which a model calculation is executed. For each point, model
performance is judged by a model performance criterion that serves as an
objective function. For each point a different objective function value is
calculated and so allows ranking of values in order of increasing
magnitude. The first point in rank has the smallest objective function
value and can be interpreted as the parameter set that yields best model
result while the last point has the highest objective function value and
thus can be interpreted as the worst parameter set.

In the following a short description after Duan et al., [1994] is given on
the SCE-UA-algorithm. In the algorithm a parameter sample population,
S, is partitioned into p complexes that all contain m points. For m the
number of points are > n+1 where n is the dimension of the estimation
problem and is equal to the number of parameters to be estimated.
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Complex partitioning is achieved in such manner that the first complex
contains every p(k-1)+1 ranked point, the second complex contains every
p(k-1)+2 ranked points and so on with k =1, 2, 3,...m. Each complex
now is evolved in parameter space according to the “Competitive
Complex Evolution” (CCE) algorithm that is based on the Simplex
downhill search scheme of Nelder and Mead [1965]. In this multi-step
evolution procedure, sub-complexes of q randomly selected points are
constructed from each complex according to a trapezoidal probability
distribution. This distribution is specified such that the best point has
the highest change of being chosen to form the sub-complex while the
worst point has the lowest change. In the procedure the objective now is
to reduce the parameter space by generating new points that have lower
objective function values than selected points in the sub-complex. In the
evolution proccdure the selected points are called ‘parents’ and are
disregarded from further analysis in case new points, that is called
‘offspring’, can be generated. For every evolution step, in each sub-
complex the centroid of a sub-complex with q points is defined after
rejecting the worst point in the sub-complex. Based on the location of
this centroid in parameter space, an offspring point is defined by a
reflection step or a contraction step. Offspring generated by a reflection
step implies that the offspring point coincides with the centroid point
that lies in the feasible parameter space while by the contraction step the
offspring point is located half way between the centroid and the worst
point in the sub-complex. In this manner each offspring point represents
a parameter set with values that yield a lower objective function value
than for the worst point in the sub-complex. In figure 5.4a-f an
illustration of the evolution process by the CCE algorithm is presented
where each e represents a parent point within the sub-complex and
where a * represents an offspring point. Contour lines in the figure are
lines of equal objective function value and serve to guide the parameter
optimisation procedure. For each sub-complex the centroid is defined
after rejecting the worst point of the distribution. A reflection step for
the worst point through this centroid now is performed and such new
point is analysed whether it falls within the feasible parameter space. If
this new point is better than the worst point than this point is replaced
by the offspring point (see fig. 5.4a,b,d) that, after repeated evolutions,
narrows down the parameter space. If the new point is worse, than a
contraction step is attempted by computing a point halfway between the
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Figure 5.4: Illustration of the evolution steps
in each complex (Duan et al., 1994)

centroid and the worst point (fig. 5.4c). If this offspring point is better
than the worst point in the sub-complex then a replacement takes place
while otherwise the worst point is replaced by a randomly generated
point (fig. 5.4e). In this approach, each point of a complex is a potential
parent with the ability to participate in the process of producing
offspring. It is clear that the objective of the CCE evolution procedure is
to generate offspring that is better than a parent point and that parameter
space is narrowed down in each evolution step.

The following step in the SCE-UA algorithm is to combine or ‘shuffle’
the points of the evolved complexes and to create a new sample. From
this sample new complexes are generated by the previously described
random search procedure. The number of complexes however decreases
by the repeated rejection of the worst points in the CCE algorithm since
only points are maintained in the evolution with lowest objective
function values. By re-shuffling of the sample population at periodic
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Figure 5.5: Hllustration of the SCE-UA
algorithm (Duan et al. 1994)

stages, parameter sets (i.e. point) are re-assigned to complexes and share
information of the, so far, optimised parameter sets. By the repetitive
evolution-shuffling procedure the entire population tends to converge
towards the neighbourhood of the global optimum provided that the
initial population size is sufficient large. The procedure stops if pre-
defined convergence criteria of the algorithm are satisfied and the global
optimum for all evolutions is reached. At the global minimum the single
best and unique parameter set is generated.

In figure 5.5a-d an illustration of the SCE-UA algorithm is presented. In
this figure two complexes are generated from the initial sample
population s and points within a complex are represented by  and *.
Similar to figure 5.4, contour lines in the figure are lines of equal
objective function value and serve to guide the parameter optimisation
procedure. For each complex 5 parent points are selected for evolution
by the CCE algorithm that, after repeated evolution, are replaced by
offspring points with a lower objective function value (fig. 5.5b). In
figure 5.5b offspring points in the two complexes converge towards a
local and global objective function minimum. In order to converge
towards the global minimum, new complexes are created by re-shuffling
offspring points (fig. 5.5¢) and a second optimisation cycle is started. For
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these new complexes the CCE algorithm will generate offspring points
and by repeated evaluations, offspring points converge toward the global
minimum (fig. 5.5d).

Duan et al., [1992] state that the SCE-UA algorithm combines the
strength of the simplex procedure of Nelder and Mead [1965] with the
concepts of controlled random search (Price, 1987), competitive
evolution (Holland, 1975) and the, at that time, newly developed concept
of complex shuftling. The search procedure is very successful in finding
global optima of the objective function response surface (see Duan et al.,
1993; 1994; Yapo et al., 1996). By the procedure the initial parameter
space is narrowed down to yield only most optimal values for the
parameter set as a whole as for each single parameter. For detailed
descriptions on the mathematical aspects of the evolution algorithm
reference is made to Duan et al., [1992], [1994] and Yapo et al., [1996].

The algorithm is regarded ‘effective and efficient’ in the sense that for
large number of prior parameter sets single best parameter set are
estimated successfully and that limited function evaluations are required
to define the optimum parameter values (Duan et al., 1992). Duan et al.,
[1994] applied the algorithm in CRR modelling to the Sacramento Soil
Moisture Accounting (SAC-SMA) model (Burnash, 1973). They
calculated single best parameter values by the Single Least Squares (SLS)
and Heteroscedastic Maximum Likelihood Estimation (HMLE) objective
functions (see table 5.1) for a two and six parameter estimation problem.
Yapo et al., [1996] also used the SAC-SMA model and selected HMLE
and Daily Root Mean Squared Error (DRMS) objective functions and
applied the SCE-UA algorithm to a 13 parameter estimation problem.
The model performance was evaluated by use of Percent Bias (PBIAS)
and Nash-Sutcliffe model performance criteria (see table 5.1). During
simulations it emerged that dissimilar optimal parameter values were
obtained for HMLS and DRMS objective functions. It also emerged that
model performance expressed by NS or BIAS criterion is subject to the
a) sclected objective function and b) response mode of the catchment
that is expressed by the various runoff stages in the runoff hydrograph.
In further analysis, time series of observations were divided in two
samples with observations that are ‘below mean’ and ‘above mean’. Thus
each sample characterised a specific catchment response mode and by
simulations it appeared that for both samples model performance also is
subject to the selected objective function. By Duan et al., [1992] it is
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established that for different model response modes different objective
functions must be selected and that each objective function will yield
different parameter sets when estimated by the SCE-UA algorithm. The
overall conclusion on the evolutionary procedure by the SCE-UA
algorithm is that model calibration basically is a multi-objective
parameter estimation problem that requires parameter optimisation
routines that are able to optimise a parameter set when multiple
objective functions are minimised simultaneously. Such an algorithm
was proposed and described by Gupta et al,, [1998], Yapo et al., [1998]
and Sorooshian et al., [1998] and is termed the ‘Multi-Objective
COMplex Evolution-University of Arizona’ (MOCOM-UA) algorithm.
This algorithm is an extension of the SCE-UA algorithm and follows a
similar evolution search strategy.

Multi-Objective Complex Evolution

In runoff hydrology a large number of objective functions are developed
for model calibration. A selection of commonly applied functions is
presented in table 5.1. Each of the functions also can be used in
automated model calibration while a number of functions are developed
to describe specific characteristics of the runoff hydrograph. In the
multi-objective complex evolution procedure a number of objective
functions are selected and combined to make up an aggregated objective
function. The objective now becomes to minimise such function by
minimising all selected objective functions simultaneously. In such
approach the complexity of minimisation of the aggregated function
reduces to an, in essence, single-objective optimisation problem.

Mathematically, the aggregated objective function, F(@), is minimised as
function of parameter set © that is applied to each of the selected
objective functions:

F(©)=min{f,(®),---,,(©)} [5.6]

Each objective function fi, . is minimised with respect to the residual
error for a time series of observations 1,-,n. For each parameter seta
residual error, e(®),, is defined over the calibration period for the
aggregated function:

E(@)=if[sc<e)-(so>]={a(@).,---,e«a)n} [5.7]
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where

E(®) = residual vector of calculated and observed state variables
€(®)1.n = residual error over time step 1...n

f = function for linear or non-linear transformation (e.g. min, max)
Sc(®) = vector of calculated state information subject to set ®

So = vector of observed state information.

Table 5.1: Selection of objective functions used by the National Weather Service
Sforcalibrating the SAC-SMA model (modified afterBasil et al., 1981).

Daily Root Mean | Mimimise 1 R
~3'(d. -
Squared Error w.r.t. © n g( t o'(g))

nmonth nday(i)
Total Mean | \pirnimise | "5 —1 '3 (d, ~o,(6)F

Montly Volume wrt® | & nday(i)
Squared Error
Mean Absolute | Mimimise ‘l‘il d —o (G)]
error w.rt. © gt
Maximum Mimimise max| d, —o, (91

Absolute Error w.r.t. ®

e -o0)

Nash-Sutcliffe Mimimise

1-2=
Measure w.r.t. ® 1 =
—>d -d
L 2(,-df
1 n
Heteroscedastic C ;Zwt(qt,obs _ql.calc)z
. Mimimise | gMLE = 2=
Maximum Wit © - T
Likelihood e [HWT
Estimation 1=t
Bias (mean daily | Mimimise 1$
=>(d, —o,©®
error) w.r.t. @ nlzﬂ:( :~0.(0))

Similar to single-objective model calibration, also for the aggregated
objective function, F(®), a parameter set is selected and optimised by a

global optimisation algorithm.
As stated above, all selected objective functions are minimised

simultaneously while this minimisation is achieved through various
combinations of functions fi,...,f,. Optimised parameter set are defined
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for each combination of objective functions. By such approach, a
number of optimised parameter sets are generated that are dissimilar
from any other set. It is obvious that by moving from one such
combination to another combination, a large range of parameter sets are
tested and trade-off functions of single parameters can be defined with
respect to F(®). Such trade-off functions are defined for any
combination of objective functions and express the effect each parameter
has on the aggregated objective function value. While selected parameter
values applied to some functions may cause a significant optimisation
improvement, the same paramecter value applied to other functions may
cause deterioration.

In multi-objective model calibration the philosophy now is that a large
number of parameter sets can be simulated that all will yield an equally
low objective function value for F(®). By an understanding of the
complexity of such calibration procedure, it is obvious that parameter
values are dissimilar and that multiple combinations of parameter values
can be found that all will yield an equally low objective function value.
In the procedure the initial parameter space is narrowed down to a much
smaller parameter space in which any combination of selected parameter
values perform equally well. When these parameter sets are combined
they make up a new parameter space. In multi-objective model
calibration this optimised parameter space is termed the ‘Pareto space’ or
‘Pareto set’ P(®). Through the optimisation procedure the initial or prior
parameter space is subdivided in two parameter spaces; a small space
with optimised parameter values and a remaining much larger parameter
space that is rejected for further application. Gupta et al., [1998] state
that every parameter set or member @ of the Pareto set will match some
characteristic of the hydrograph better than every other member of the
Pareto set, but the trade-off will be that some other characteristics of the
hydrograph will not be as well-matched. In the theory on multi-
objective model calibration, the parameter sets defined within the Pareto
space are termed ‘good’ solutions or ‘Pareto’ solutions while all other
parameter sets are termed ‘bad’ solutions or ‘non-Pareto’ solutions. The
definition of the Pareto set is such that any member @, has the following
properties (after Sorooshian et al., 1998):
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® = Member of Pareto set

Pareto set

U'(®) = uncertainty of the parameter space
(i.e. Pareto space)

prior uncertainty of parameter space
0,, = parameters

=
e
I

S
©
|

Figure 5.6: Reduction of the prior parameter space to Pareto space
(Sorooshian et al., 1998).

1. for all non-members ®4 of the Pareto set there exist at least one
member @, such that F(@y) is strictly less than F(®g4). This
implements that the parameter space can be partitioned in good and
bad solutions.

2. it is not possible to find ®; within the Pareto set such that F(®,) is
strictly less than F(®,). This implements that, in the absence of
additional information, it is not possible to distinguish between any of
the good Pareto solutions to be objectively better than any of the
other good solutions.

‘Strictly less than’ means that fi(®4) < fk(®,) for allk = 1,--,m

In the procedure it is important to select objective functions fj, -, f, that
are ‘relatively unrelated’ (Gupta et al., 1998) and ‘non-commensurable’
(Yapo et al., 1998) to preserve the data content of the observation time
series. Selected objective functions must measure different aspects of the
difference between observed and model calculated state information and
this information must be transformed into parameter estimates. The size
and shape of the Pareto set is defined by this transformation and the
Pareto set forms an aggregated parameter set with members that all are
subject of the aggregated objective function F(®). An inefficient
aggregated objective function F(®) so will yield an inefficient Pareto set
while an efficient function will yield an efficient Pareto set. Objective
criteria for the selection of F(®) are not presented although it is obvious
that selected objective functions must be relatively unrelated and non-
commensurable.
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Figure 5.7: Illustration of parameter and hydrograph estimates obtained using the
multi objective calibration approach. Q= observed chansel flow, U‘(Q) = model
output uncertainty for Pareto set, U°(Q)= model output uncertainty for prior

parameter space (Sorooshian et al., 1998).

The identification of a Pareto set has some appealing features. Each
member of the Pareto set can be interpreted as a single best parameter
set. Each set, however, is associated with uncertainty that is bounded by
the size and shape of the Pareto space. In this manner the inherent
multi-equivalence character of parameter sets is accommodated for and
model performance can be tested over a range of equally satisfactory
parameter sets. Sorooshian et al., [1998] describe model simulations for
each member of the Pareto set and hydrograph model output is
aggregated into one distribution function that is bounded by an
uncertainty band. In this manner, parameter uncertainty as expressed by
the size and shape of the Pareto set is transformed into a hydrograph
uncertainty band (see fig. 5.7). By an understanding of the meaning of
such uncertainty band it is clear that a large band indicates that the
model is (very) sensitive to the selected parameter sets while a small
band indicates low model insensitivity. Although the range of parameter
values is calculated within the Pareto set, the effect each parameter has
on the simulated hydrograph over a range of model response modes is
uncertain. Some parameters could be very sensitive when simulating
base flow discharges while they could be insensitive when peak flow
discharges are simulated. Based on this reasoning, parameter valucs
change over time with the change of the model response modes. This
aspect of model calibration is not rescarched in multi-objective model
calibration.
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A second feature of the Pareto set is that insufficiencies in the design of
the model concept may become apparent in the simulation results. In
figure 5.7 a hydrograph uncertainty band is simulated by use of all
possible parameter sets that are drawn from the Pareto space.
Theoretically, the Pareto parameter space represents the feasible
parameter space for which the model performance is optimal. The Pareto
space as generated by the multi-objective modelling approach is
applicable to the entire range of catchment response modes. With respect
to the information content of available time-series that are selected for
model calibration, this information content is utilised in the most
optimal manner. When, by use of the entire Pareto set, the hydrograph
uncertainty band does not cover the observed hydrograph, it is
concluded that the designed model concept is insufficient. In figure 5.7,
it is observed that the base flow discharge for large time windows is
under or over-estimated and indicates that runoff production from the
groundwater domain of the selected SAC-SMA model approach is
insufficiently simulated during inter-storm periods.

An efficient tool to calculate the Pareto set is the MOCOM-UA
algorithm that is an extension of the SCE-UA algorithm. Similar to the
SCE-UA algorithm, a population of points (i.e. parameter sets) is drawn
randomly by a uniform sampling distribution from the initial or prior
parameter space. For each point the aggregated objective function value
F(®) is computed and the population is ranked and sorted by applying a
Pareto-ranking procedure that is suggested by Goldberg [1989]. In this
procedure simplexes of s+1 points are selected from the population
according to a robust rank-based selection method (Whitley, 1989). In
the MOCOM-UA algorithm, a newly developed multi-objective
extension of the downhill simplex method is used to evolve each simplex
in a multi-objective improvement direction. In this method the entire
population of points will converge toward the Pareto optimum by
iterative application of ranking and evolution procedures where
iterations terminate when all points of the continuously reduced
population fall within the Pareto space. While in the SCE-UA algorithm
only one optimised parameter set is defined, in the MOCOM-UA
algorithm the Pareto parameter space is defined. In the MOCOM-UA
algorithm, the concepts of controlled random search (Price, 1987) and
the competitive evolution (Holland, 1975) also are implemented.
Differences are due to the implementation of the multi-objective
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extension of the downhill simplex method and the exclusion of the
complex shuffling strategy. The mathematical aspects of this tool are
described in detail by Sorooshian et al., [1998] and are not repeated.

Some concluding remarks on automated model calibration by
evolutionary methods can be made. Evolutionary methods are applicable
to single objective model calibration as well as to multi-objective model
calibration. In the first case the objective is to find a most optimal
parameter set that is interpreted as ‘single best’ and ‘unique’ in a manner
that further improvement cannot be gained by further parameter
optimisation. Parameters are identified based on the sclected objective
function and are subject to the information content of the time scries of
observations of the calibration period. Single-objective model calibration
by evolutionary methods is a traditional model calibration procedure in a
sense that a single best and unique parameter set is defined. Compared
to the manual Trial and Error calibration procedure, the use automated
evolutionary method is very advantageous since the most optimal
parameter values as well as parameter set is defined. Further efforts in
improving the optimised parameter set will not result in improved model
performance and many of the limitations of Trial and Error procedures
is circumvented for. Limitations of the automated procedure are that
parameter optimisation is achieved for one objective function only and
that information on parameter inter-relations and dependencies is not
provided.

In multi-objective model calibration, a number of objective functions are
aggregated into one objective function and model calibration is achieved
by simultaneous optimisation of the selected single-objective functions.
Such procedure is very advantageous since multiple optimal parameter
sets are defined that are subject to the selection of objective functions.
By the procedure, for each parameter a range of values is defined for
which the model performance is optimal. The entire parameter space is
termed the Pareto parameter space and any selected parameter set within
this space performs equally well. The Pareto space represents the
optimised parameter space for which model performance is optimal and,
for each parameter, this space is interpreted as a parameter uncertainty
space. This uncertainty is transformed into a hydrograph uncertainty
band when for each parameter set a model calculation is executed. In
such manner insufficiencies of the model concept become apparent
when the observed runoff hydrograph for the various model response
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modes falls outside the uncertainty band. A weakness of the procedure is
that any dependency between single parameters is not described. A
parameter correlation matrix is not generated and information on how
well parameters are identified relies on the model sensitivity. Statistical
information on such parameter identifiability is not provided.
Conclusions on parameter identifiability for the various model response
modes are vague due to the inherent multi-objective character of the
parameter optimisation procedure. The procedure, however, has a (very)
high potential for runoff modelling and the procedure is very suitable to
be applied to PBRR modelling.

5.5 Automated model calibration by Maximum Likelihood
Estimation (MLE)

Introduction

Automated model calibration by MLE mostly is achieved by optimising
parameters only. In the procedure of model calibration an a-priori
defined model concept is selected that does not require improvement or
optimisation and, similar to the calibration approaches described in
sections 5.2-5.4, model calibration is reduced to a procedure of
parameter optimisation. In MLE such optimisation is accomplished by
minimising a single objective function by least squares estimation. State
variables of interest can be any of the state variables applied in the
objective functions of table 5.1. Also in automated model calibration by
MLE, a model is calibrated in case the objective function value is
minimised as a result of parameter optimisation.

In MLE statistical properties of the calibration process guide the
parameter optimisation and therefore is fundamentally different from
other approaches described in this thesis. Carrera and Neumann [1986]
advocated inverse modelling by means MLE on the premise that

“for any given measured head and flow field only one set of the optimal
parameters exists” (i.e. ‘uniqueness’) and “a unique set of parameter
values yields a unique head and flow field” (i.e. ‘identifiability’).

‘Uniqueness’ and ‘identifiability’ are inversely related and this principle
resides at the core of the calibration methodology. Since the early
applications of MLE by Carrera and Neumann [1986], inverse modelling
by MLE is widely applied in groundwater modelling while applications
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in PBRR modelling have not gained (much) attention. Reviews of MLE
calibration procedures as well as new developments and applications of
such procedures in numerical groundwater modelling are presented by
Te Stroet, [1995]; Hill, [1998], Olsthoorn, [1998]; Valstar, [2001],
among others. Such review is not repeated here but only a brief
description on basic aspects of parameter estimation by MLE is presented
instead.

In numerical hydrologic modelling, calculated state variables commonly
are expressed by a linear system of equations:

ho, =X, + X35+ X,y
hy, =Xy +XpPy +- X5, Py
h; =%X3p, +X3;,p, +--X5,P, [5.8]

hscm = xmlpl + Xm2p2 +"'anpn

The entire set of calculated state variables, hs1. m, Over a spatially
discretised model domain are calculated by a set of parameters p;.q, and a
set of operators Xj;. mn. Rewriting Eq.[5.8] in matrix notation yield
Eq.[5.9] and encompass a one-dimensional matrix vector of calculated
state variables of size m, a 1-dimensional vector of model parameters of
size n and a two-dimensional matrix vector of size mxn of system
operators. In modelling terms, such operators stand for the model
approach that is expressed in terms of the model concept, simulated
meteorological influences and applied boundary and initial conditions.

h,, o | [x, Xy,
= .|| - . [5.9]
b | el % X
or, when expressed in vector notation this yields:
h, =Xp [5.10]

When rewriting Eq.[5.10] for parameter vector P, the inverse cxpression
for state vector hy is obtained that is at the core of automated model
calibration by MLE.
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Maximum likelihood estimation

MLE is based on weighted least squares estimation in which the goal is
to minimise the weighted squared residual error between observed and
model calculated state variables. The weighted least squares estimation
expression reads:

8=Zvvi(hso_hsc)2 [511]
i=1
where
8 = objective function value
w; = weight for measurement number i
hso = observed state variable

hy, = calculated state variable

m number of observations.

In weighted least squares estimation the residual error is interpreted as a
cumulated error that arises from various error sources such as
incompleteness of the model concept, uncertainties associated with
estimates of parameter values and observation of state variables. Each of
these error sources contributes to the cumulated residual error and any
observed state variable can be expressed as follows:

h,=h_+e,+e, +e, [5.12]

where
em = residual error due to incompleteness of the model concept

p
e, = residual error due to inaccurate observations.

residual error due to parameter uncertainty

Prior to the model calibration, in theory error functions must be defined
for each of these error sources. Following the expression of Eq.[5.12],
error functions are defined for ey, ep and e, and effects of each function
on the parameter estimation can be simulated. In the practice of
hydrological modelling, however, it is common to apply simplifying
assumptions to each of these error functions. From a statistical point of
view for example, residual errors of em, €, and e, often are assumed to
have a random character and errors are interpreted as random variables
that follow a specific probability distribution function. Such functions
generally are considered to follow a Gaussian distribution with zero
mean and a known variance and thus errors are evenly distributed
throughout a model simulation. Since model calibration is achieved
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through parameter optimisation only, residual errors associated with ep,
and e, are ignored. Mostly an a-priori defined model concept and time
series of observations are selected that are not associated with
uncertainty and randomness. Although this assumption must be
questioned its implementation is very advantageous since the residual
error ey then reduces to zero. Ignoring residual errors that are due to
observation inaccuracies also is questionable since, in general, the
temporal and spatial observation scales hardly coincide with model scales
in terms of the simulation time step and the grid element scale. Also
with regard to the parameters that need to be optimised a number of
simplifying assumptions can be made. It could for example be assumed
that a probability distribution function of the parameters is known prior
to the parameter estimation or, contrary, it may be assumed that such
function itself is unknown although parameter values follow a
probability distribution function. It also could for example be assumed
that parameter values are uniformly distributed instead of the commonly
assumed Gaussian distribution.

Many different calibration approaches are known by these assumptions
and the use of prior knowledge on em, €, and €,. Reviewing these
approaches is out of scope of this thesis and one is referred to Te Stroet
[1995]; Olsthoorn, [1998] and Valstar, [2001] where various aspects are
discussed. Here only common simplifications that are at the core of the
parameter optimisation algorithm that is applied to the Troy case study
of Chapter 6 are addressed.

The first assumption is the use of an a-priori defined model concept that
causes that the residual error ey, is ignored. A second assumption is that
parameter values are completely unknown and that a probability
distribution function also is unknown. The only assumption is that the
probability density function is Gaussian distributed and that its
covariance is known. For the state observations, the assumption is made
that a probability distribution function of observation errors, €,, can be
ignored although each state observation is associated with an observation
variance. By these assumptions, the procedure of parameter estimation is
placed in a framework of MLE. Kendall and Stuart, [1997] describe that
in MLE parameter values are estimated for which the conditional
probability density function, p(ho|p), is maximum and thus, estimates of
parameter values are interpreted as statistical true values.
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Expressing the weighted least squares estimation equation [5.12] in a
MLE framework yields:

9=(,, -h,.) W, -h,))=e"We [5.13]

where W is a block matrix with dimension m x m of observation weights
and where ..T indicates a transpose operation. In the equation hy, and hy,
represent vector matrices of selected observed and model calculated state
variables respectively while e represents the state vector of residual
errors. In the objective function Eq.[5.13] the variances of the residuals
are weighted by the elements of the matrix W that are either uniformly
or non-uniformly distributed over the observations. In the former the
minimisation of Eq.[5.13] is reduced to become a simple least squares
estimation problem while in the latter the relative importance of each
observation is weighted. Weighing is particularly useful when state
observations of a different kind and possibly different magnitude are
applied in the calibration. In multi-output models such as PBRR models
where channel outflow data and groundwater table data can be used
simultaneous as state variables of interest, this aspect of model
calibration by MLE is very attractive. By weighing also the effect of
clustered observations can be accommodated for.

The weight matrix is defined by various techniques. Weights most
commonly are defined in such a manner that the weight reflects the
accuracy of the measurements (see Carrera and Neuman, 1986; Hill,
1998). Other techniques that are known but not commonly applied are
Kalman filtering (te Stroet 1995), Kriging (Isaaks & Srivastava, 1989) and
stratification based on the sizes of homogeneous units (Zaadnoordijk and
Stein, 1997). The weight matrix W with dimension m x m can be
reduced to become a block diagonal matrix when it is assumed that
observations are mutually independent. This implies that the mean of
measurement errors is zero and that observations have no underlying
spatial or temporal structure. By this principle assumption, the
covariance of each observation may serve as the weight in matrix W and
such matrix becomes a covariance matrix of observation weights. By
MLE, the calculated state vector is obtained when the inverse of the
covariance observation vector, C, is substituted for W in Eq.[5.13]:
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Lo 0 o
C,
0 Ci 0 0
W=C'= : [5.14]
o o L o
C,
1
0 0 0 —
L C4_

In such approach the squared head residuals are weighted by the inverse
of the observation covariance matrix. For non-correlated measurements
the covariance matrix has diagonal elements only and weighting factors
are equal to the reciprocals of the measurement errors. As a result, the
objective function value of Eq.[5.13] becomes dimensionless and makes
that different state variables can be processed simultaneously. This
aspect of MLE by weighted least squares estimation make applications in
PBRR modelling very appealing.

Maximum likelihood estimates are obtained by minimising Eq. [5.15] in
which the inverse of the covariance matrix of the observation errors C is
substituted for the weight matrix W and where the calculated state vector
h,. is replaced by the expression of Eq. [5.10]:

9=(n,, -xp)"C"(n,, - Xp) [5.15]

Minimising the objective function of Eq. [5.15] with respect to the
parameter estimations, a column matrix of parameter set p is calculated
by the calculated vector matrix of state variables:

9=((n,, -Xp)" C"'(n,, - Xp))

[5.16]
=hIC'h, ~h C'Xp-X"p'C'h,, +X"p'C"'Xp
Minimisation is achieved by taking the derivative
B _Hx"C'X)p-2XTC™h,,
op
where parameter vector p is expressed by:
p=(X"C'xJ"-X"C"'h,, [5.17]

Eq. [5.17] often is referred to as the ‘normal equation’ and provides a
unique solution in case the number of observations is larger than or
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equal to the number of parameters. Under such conditions the column
matrix p is singular that easily is calculated. The estimator of Eq. [5.17]
is interpreted as the ‘Best Linear Unbiased Estimator’ (BLUE) of the set
of true system parameters Perue. Isaaks and Srivastava [1989] state that
this estimator is linear because estimates are weighted linear
combinations of the available data; it is unbiased since it tries to have the
mean residual error equal to zero and it is best because it aims at
minimising the variance of the residual error. In BLUE it is assumed that
the expected values of the calculated parameters are equal to the
statistically ‘true’ value of the parameter it is trying to estimate. The
expression of p in Eq.[5.17] now is interpreted as a minimum variance
estimator. When hg in Eq.[5.10] is rewritten for Xp¢rue, when e is a head
residual error and when the observed state vector h;, is expressed by

h, = Xp,. +e [5.18]
then the estimated parameter set is equal to
p=(X"C'X)" . X"C(Xp,u +€)
= (X"CX)" . X"Cp,., +(X"C'X)'XTC" e [5.19]
= P +(XTCX) ' XTC e

The estimated parameter set p equals pyrae when the expectation of the
residual error E[e] equals zero. By Eq. [5.19] the spatial dependency of
parameters is calculated in terms of a covariance matrix Cep:

C:p = El.(p_ptmexp—plrue)-r]

= EF((XTC" X)'x"C* ) eeT . ((xTc-' xJ'x7c )T]

- E:((XTC‘lX)_I X'c ) Elee™] ((XTC“X)" X'c” )T]

or

. Er((XTC_lX)—IXTC—I )‘Ce . ((XTC"X)_‘ XTC! )T]

-gl(xcx)'x7c) o1 (xTC %) x e )T] [5.20]

c,, = -(X"Cc'xJ"
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where

C. = covariance matrix of residuals

o’ = reference variance of the head residuals
I = unit matrix

The covariance matrix represents the statistical covariance of each
parameter combination. For the off-diagonal elements the covariances
are calculated while the parameter variances are calculated for the
diagonal elements. The variancc of the head residuals is interpreted as a
‘reference variance’ in case weights arc not evenly distributed and is
calculated by

2 S

o’ = [5.21]
m-—n

where m is the number of observations and n is he number of parameters
while m-n is the degree of freedom in the estimation process.

For simulation of non-linear relations such as in rainfall-runoff
modelling, Eq’s. [5.15], [5.17] and [5.20] are not valid since Xp (Eq.
5.10) represents a linear operator. For simulating non-linear relations,
linearization between parameters and calculated state variables, hg, is
required and are calculated by:

b, =h: +J{p' —p') (5.22]

where
i = iteration index for non-linear optimisation
J = Jacobian matrix.

For non-linear parameter estimation, Eq. [5.22] is substituted for h. in
the objective function of Eq. [5.15]:

8=, -0t + 36" —p" ) ' b, -0 + 3" ~p™)) [5.23]

The jacobian matrix has dimensions mx n with m rows of state
observations and n columns of parameters. The Jacobian is calculated by
iteration either by an adjoint-state approach or by a perturbation

method. By the perturbation method parameter optimisation is achieved
by repeated optimisation runs where parameters are updated by use of a
parameter upgrade vector Eq.[5.25]. Such method is computationally
much more intensive than adjoint-state approaches but has the advantage
that it can be applied separately and independently from any model.
Hence, parameter optimisation algorithms based on pertubation methods
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is seen as a numerical post-processor to any model. By the non-updated
parameter set, for each combination of parameter-variable, a model run
is executed. These derivative are expressed by the Jacobian matrix that
serves to (slightly) update the parameter set. Elements of the Jacobian
matrix are the partial derivatives of each observation with respect to each
parameter and hence such matrix is interpreted as a model sensitivity
matrix:

oh,
_o(n,.h,) |
ETN
op,

For non-linear optimisation, the parameter values p are defined by
iterative procedures where the parameter values are upgraded by use of a

J [5.24]

parameter upgrade vector:

[5.25]
P -P =(1"Cc ) I C (b, —h,)

By the upgrade vector, parameter estimations are improved subject to the
minimisation of the objective function value 9 Eq.[5.22]. The iteration
procedure to optimise the parameter set stops when the objective
function value is minimised. A principal assumption in this procedure is
that for the selected time series of state variables the global minimum of
the objective function can be defined. At such global minimum the
estimation of the parameter set as a whole cannot be improved any
further. In case local minima in the response surface are present,
parameter estimation might be trapped in such minimum. Since the best
parameter set only is defined at the global minimum, parameter
optimisation is still improved. At any local minimum, additional
parameter sets within the remaining parameter space are defined that
perform equally well. In figure 5.8 the iterative improvement of initial
parameter values towards the global minimum of the objective function
response surface for a two parameter (pl, p2) estimation problem is
presented. At the global minimum the set of single best and unique
parameters is calculated. Contour lines in the figure are lines of equal
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>

Py
Figure 5.8: Iterative improvement of initial parameter values
towards the global objective function minimum for a two
parameter (p1, p2) estimation problem (Watermark, 1994).

objective function value and thus at any line equally weighted-variances
of the head residuals are expressed.

For non-linear parameter estimation the operator X in Eq’s. [5.15],
[5.19] and [5.20] is replaced by the Jacobian matrix. For non-linear
parameter estimation the parameter vector is calculated by Eq.[5.26]

P =P +(37C3)"I7C ' (h,, —h,) [5.26]
and the covariance matrix is calculated by:
Y B o
c, =c*(17ca) [5.27)

By use of the parameter covariance matrix of Eq. [5.20], a parameter
correlation matrix C,, is calculated that is interpreted as the paramcter
structure. In such structure the spatial dependencies between parameters
is expressed and is calculated by:

C
C,= — [5.28]
0,0,
where 6, 6 are the standard deviations of parameters i and j that are
obtained from the covariance matrix Eq. [5.27].

The parameter correlation structure is very useful to help analyse the
reliability and trustworthiness of the model. When analysing simulation
results, the cffect each single parameter has on the calculated output
must be quantified. Simulation, however, become unreliable and not
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trustworthy when parameters are (highly) correlated. Such correlation
expresses how parameters in model space are dependent and causes that
model sensitivity to single parameters is uncertain and undefined. While
some parameters, may be positively correlated, others may be negatively
related. Hence it is difficult to identify the effect single parameters have
on the model output and parameter are not well identified. Although the
mutual effect such parameters have on the simulation result is defined,
single parameter values are not defined in a unique manner and
optimised values must be interpreted as non-unique.

A second matrix that gives quantitative information on how well
parameter values are identified is the matrix of the normalised eigen-
vectors of the parameter covariance matrix. This symmetric matrix has
dimension n x n with eigen-vectors and eigen-values. For each parameter
set an eigen-value or characteristic value of the estimation problem is
calculated that represents the variance of the parameter combination
specified by the eigen-vector. In an n dimensional parameter estimation
problem r eigen-values and n eigen-vectors are calculated where each
eigen-vector comprises n elements. Mathematically, eigen-values A and
eigen-vectors Z are defined by

C,Z=)\Z [5.29]
or, when rewritten by use of unit matrix I:
(c, -z =0 [5.30]

The eigen-values and eigen-vectors are calculated by the characteristic
determinant D(A) and the characteristic equation:

Py — A P2 - Pia
P2 P.-A . . Pa
D(A)=det(C, —AI)=| . . . . |=0 [5.31]
pnl an * M pnn - x

The following description on the eigen-values and eigen-vectors analysis
is given by Olsthoorn [1998]:
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“Eigen-values and vectors are a result of rotating the covariance matrix
in parameter space such that only diagonal values remain (the eigen-
values). The axes of this new parameter space point in the direction of
the eigen-vectors. Each eigen vector, all of which have a length 1,
represents a parameter combination that is independent of the
parameter combinations specified by all other eigen-vectors. In this new
parameter space all mutual correlations are eliminated”.

Eigen-values and eigen-vectors give specific statistical information on
identifiability of parameters. The parameter set with the lowest eigen-
value is interpreted as the best parameter set while a relatively high
eigen-value indicates a bad parameter set. By analysis of the eigen-vector,
quantitative statistical information on parameter identifiability becomes
available. Analysis must focus whether each eigen-vector is dominated by
one parameter. In such case the identifiability of each of these single
parameters is termed high since the optimised parameter value is
associated with a low variance. In case multiple parameters dominate an
eigen-vector it is concluded that parameter identifiability is low.

A well-known algorithm to perform MLE by weighted least squares
estimation is the Gauss Marquardt Levenberg algorithm. The
optimisation algorithm searches by automated procedures for the global
optima of the objective function response surface. The Gauss Marquardt
Levenberg algorithm also is at the core of parameter estimation software
such as PEST2000 (Watermark Computing, 2000) and UCODE (Hill,
1998). For this study the PEST2000 software is selected.

Some concluding remarks on MLE by weighted least squares estimation
can be made. The procedure is developed to define single best and
unique parameter sets by minimising a single-objective function. In this
function multiple state variables can be selected and weighted in the
estimation process by use of an observation covariance matrix. This
makes the procedure very suitable for application to multi-output
models such as PBRR models. Parameter values are inversely defined
and optimised by MLE. Parameter estimates are optimised when the
global optimum of the objective function response surface is found. A
global search algorithm for MLE is provided by the Gauss Marquardt
Levenberg algorithm. In the procedure it is not (yet) possible to quantify
the effects of parameter uncertainty on model output. This is considered
a major restriction of the procedure.
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A major advantage of the procedure is that quantitative statistical
information on spatial dependencies of parameters becomes available
through a parameter correlation matrix. Information on parameter
identifiability becomes available through eigen vector- eigen value
matrixes.

Approaches of MLE in the field of PBRR modelling must focus on
analysing its potential in such modelling. An interesting question for
example is whether different parameter sets are defined when a model is
calibrated for various catchment response modes. By physical reasoning,
different parts of the catchment contribute to the runoff production and
thus different optimal parameter values can be defined as well.
Parameter sets must for example be defined separately for base flow and
peak flow discharges to see whether a new parameter space can be
defined. A second question deals about the use of multiple state variables
for model calibration where it is uncertain whether model performance
improves or deteriorates by such use. Research, for example, by the
GLUE-procedure on the use of multiple output variables has not been
successful while calibration approaches on evolutionary methods mostly
are applied to lumped CRR models in which the channel flow discharges
is the only state variable of interest.

5.6 Automated calibration by Artificial Neural Networks
(ANN)

A relatively new approach towards the simulation of rainfall-runoff
relation deals with the application of ANNSs or shortly NN. In runoff
hydrology NN applications have been pioneered by Hornik et al.,
[1989], Karunanithi et al., [1994] and French et al., [1992], among
others. Hornik et al., [1989] applied NNs to simulate catchment scale
runoff relations, Karunanithi et al., [1994] explored applications for
runoff forecasting and French et al., [1992] forecasted rainfall
distributions in time and space. During the time, applications were
regarded promising while nowadays many applications in rainfall-runoff
hydrology are known. During the nineties a general knowledge on
ANNs applications towards rainfall-runoff modelling has been
developed. More recent applications in the field of rainfall-runoff
modelling primarily are in the field of rainfall forecasting (see e.g. Toth
et al., 2000) and runoff forecasting (see e.g. Hsu et al., 1993, 1997,




5.6 ANN methods 175

Shamseldin, 1997; Minns and Hall, 1996). Recent applications also are
known in the field of surface water management, operational water
management, groundwater modelling and water quality modelling (e.g.
Maier and Dandy, 1996). Such applications are not elaborated on here
and are out of scope.

5.6.1 ANN model concept

Model concepts of ANNs are based on the premise that any complex
linear or non-linear relation can be described by a weighted sum of
model inputs and interacting model components. Hornik et al., [1989]
consider an ANN as a ‘gencral non-linear approximator’ while Fausett
[1994] characterises an ANN as

“a computational or mathematical technique that is powerful for
modelling systems where the explicit form of the relationship between
the variables is unknown”.

Some types of ANNSs often are termed and interpreted as function
approximators that are suitable to recognise a certain pattern that exists
between input and output signals of a system. Generally such ANNs are
categorised as black box models (section 2.3) although ANNs apply a
model concept different from any of the model concepts as described in
section 2.3. A diagram of a widely applied type of NN is presented in
figure 5.9 and is termed a Feed Forward Neural Network (FFNN).

The model concept of a FFNN encompasses a model input layer, hidden
layers, a model output layer and an optimisation algorithm. The input
layer is build up by input elements” that pass input signals into the NN
while hidden layers and the output layer are build up by computational
elements that are termed neurons. At each neuron specific ‘activities’
take place such as receiving the input data, weighting and transforming
the input data or just the passing of data to other neurons. Input signals
may be of a different type and magnitude such as snow depth,
precipitation depth, temperature or runoff discharge (see e.g. Tokar and
Johnson, 1999). From a computational point of view input signals
generally are sealed in the model. In a classical FENN, at the neurons of
a hidden layer the input signals are combined, weighted and transformed
to calculate an output signal at that particular neuron. In general, output

* Although the input layer solely consists of units that just pass inputs into the
network, in literature these units often are termed neurons as well.
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Figure 5.9: Diagram of a FFNN

signals have no physical meaning but only serve as an input signal to
further connected neurons. Subject to the NN model architecture
signals can be forwarded or backwarded to other neurons, even to
neurons within the same layer.

In hydrology, however, mostly so called FFNNs are applied (see e.g.
Imrie et al., 2000, Zealand et al., 1999; Toth et al., 2000) that briefly are
described in the following. In FFNN e.g. information is only passed
from neurons in one layer to neurons of a succeeding layer as shown in
the diagram in figure 5.9 where the arrows indicate the forward
directions. Information is passed from input elements to neurons of the
hidden layer and from neurons of the hidden layer to neurons of the
output layer. The connectivity structure as well as the number of input
elements, neurons and hidden layers, are defined by the modeller and
have an important effect on the performance of the network. The output
layer generally only consists of one neuron at which the state variable of
interest is calculated. Subject to the system to be modelled and the
availability of field data, observation time series for example may be
entered into the ANN with a time-lag factor. Also simulated model
errors may be entered back into the network.

During the early stages of ANN developments, Lippmann [1987]
formulated a general guideline to quantify on the necessary number of
neurons in the hidden layer. He stated that the number of hidden
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neurons should be large enough to form a model structure that is as
complex as is required by a given problem. Hence for any problem,
simple as well as complex ones, an optimum model structure can be
defined. Generally speaking, the more complex a problem is the more
complex the structure of an ANN becomes and thus the larger the
decision region in terms of the required number of neurons becomes. In
ANN modelling, as such the number of hidden neurons generally is not
fixed a-priori but is optimised based on the performance of the ANN.
The number of hidden layers also has to be defined by the modeller
although in most hydrologic applications the use of one hidden layer
gives an optimal model performance. This since any continues non-
linear function can be approximated by a ANN with one hidden layer
with specific transfer functions applied to neurons of the hidden layer
and output layer.

In-appropriate ANN model concepts are developed when too few
neurons are applied resulting in a too parsimonious network or, on the
other hand, when too many neurons are applied which may lead to over-
fitting (Masters, 1993). In the latter case it means that noise in the
calibration data set is fitted that will not yield any improvement in the
performance. Hammerstom [1993] states that an appropriate number of
neurons can be found by calibrating the network and evaluating its
performance over a range of increasing neurons of the hidden layer. By
experiment, the goal is to find near optimum performance with as few
neurons as necessary. One could say that the optimal structure of a NN
must be ‘sensibly parsimonious’ in the number of neurons required.

Input signals to a NN generally are observations of meteorological and
hydrologic state variables and often are of different type and magnitude.
In multi-layer NN e.g. input elements receive e.g. observations of
rainfall while at other elements snowfall, hydraulic heads, runoff
discharges, temperatures or any time-independent characteristic of a
catchment can be entered. Such characteristics e.g. can be the surface
area, the drainage density and land use. At the neurons of the hidden
layers and output layer a net input signal is defined in which inputs from
connected neurons and input elements are weighted, combined and
transformed.

This procedure to calculate the net input is often referred to as the
propagation rule and follows the mathematical description of Eq. [5.31].
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Yj =ijixi [5.31]
i=0

where

Y; = netinput to neuron j

wji = weight of each input i to neuron j
Xi
n = number of inputs

input from neuron i

In addition to the inputs, each neuron receives an input term that is
commonly called ‘bias’ and is expressed as xo. The bias signal is equal

to 1 while the weight wj; has to be defined by the model algorithm. The
expression of Eq. [5.31] is applied to all neurons except for the elements
from the input layer.

The output signal of a neuron now is defined after implementing the
activation rule in which the net input is transformed into an output
signal by means of a transformation function. Such functions often are
called ‘transfer functions’ or ‘activation functions’ and follow a non-
linear mathematical description. Hsu et al., [1995] state that the most
commonly applied function is the steadily increasing S-shaped curve
called a ‘sigmoidal’ function. A large number of sigmoidal functions can
be defined but Blum [1992] and Hsu et al., [1995] state that the most
often applied function is the logistic function (see e.g. Imrie et al., 2000;
Shamseldin, 1997; Toth et al., 2000). Commonly applied sigmoidal
functions in ANNs are presented in figure 5.10. Mathematically these
functions follow the general description:

1
Yo, =£(¥;)= 7 [5.32]
where Yoy is the output or the transformed net input of neuron j. The
logistic function acts as a re-scaling function to the input signal and as
such re-scales the net input Yj to lie in between 0 and 1. This function
basically serves as a non-linear transformation function and is applied to
net input signals of neurons of the hidden and output layer.

The output signal at a neuron represents the newly calculated state of
that neuron and must be interpreted as an optimised and transformed
output variable from all input signals according to the connectivity
structure.
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Figure 5.10: Sigmoidal function for re-scaling the net input

During the so called ‘training’ of the ANN, weights, wj;, are optimised
for each input signal of the input elements and connected neurons.
Training in this respect is the tuning of the ANN through the mapping
of model input on output signals by means of weight optimisation.
Weights are defined by use of an automated global optimisation
algorithm that minimises the residual error between observed and
calculated state values. For quantifying the residual error the Mean
Squared Error (MSE) objective function is frequently used that, by use
of the training data set, is calculated for any time instant by:

1 on (o .
MSE, =3, (v: -y} [5.33]
where
n = number of time instants
Y, = observed state variable at time t
Y, = calculated state variable at the neuron of the output layer at time t.

Other performance criteria such as RMSE or R?, also are applied.

For defining weights in FFNN applications, Rummelhart et al., [1986]
state that a back propagation algorithm is most appropriately used. The
optimisation equation reads:

t

wil = wi +Aw;] +pAw;, [5.34]
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where

w;' = optimised weight for input signal i at element j at time t+1
w;; = weight at element j for input signal i at time t

Aw'}! = weight increment

n = momentum parameter.

The weight increment is calculated by use of a gradient decent search
algorithm that resides at the core of the optimisation algorithm:

Aw =n—a%SE [5.35]
where 7 is the learning rate that governs the size of the weight
adjustment. Changes to the weights are made in the direction of the
steepest decent of the objective function response surface. The goal of
the optimisation routine is to find the global minimum of the response
surface of Eq. [5.33]. to prevent the entrapment of the algorithm at a
local response surface minimum the momentum parameter is
introduced. This term adds inertia to the training procedure that
effectively increases the learning rate when the gradient of the steepest
decent becomes smaller. At the end of the training process the weights
are defined in an optimal manner that can be applied to the ANN for
model simulation.

In literature, many different ANN model concepts and different
optimisation algorithms are described. Muttiah et al.,[1997] for example
apply a cascade correlation architecture while Toth et al.,[2000] train the
network by use of the Levenberg-Marquardt algorithm that is known to
be very quick and efficient optimisation algorithm. Most optimisation
algorithms follow a mathematical description that minimises an objective
function by use of gradient based search methods. Describing the
mathematical aspects of these algorithms is out of scope of this thesis. An

overview on such aspects as well as optimisation algorithms is presented
in ASCE [2000] and de Vos [2003].

5.6.2 Real world physics and ANN model concepts

On the applications of ANN in PBRR modelling little research has been
reported. For such applications, ANNs must be combined with
physically-based hydrodynamic flow models such as described in
Chapter 3 and ANNs now must serve to improve the parameter
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estimation. A literature survey on this subject learned that such use in
runoff modelling, generally speaking, has not gained much attention. In
the field of hydraulic modelling, an example of any such coupling is
reported by Schleider [2000,] who coupled an ANN to a 2-dimensional
hydraulic flow model to improve model performance by improved
parameter estimation. ANN approaches to solve differential equations,
that also are at the core of PBRR models, are presented in Aarts and Van
der Veer, [2001,a,b]. In subsection 5.5.3 these approaches are briefly
discussed. First however, some ANN simulation approaches are
discussed to circumvent for the lack of an explicit ‘model history’ that is
inherent to the applied model concept of ANNs.

Model history

In PBRR modelling an initial hydrologic condition over the entire model
domain is required at the start of a simulation. Initial model conditions
are expressed in terms of state variables such as groundwater depth,
channel flow water depth and soil moisture contents and should
represent the real world hydrologic state in a model prior to actual
model simulation. During model simulation meteorological influences
such as precipitation and evaporation are simulated and entered into the
runoff model. During model simulation the effect such influence has are
defined by the applied equations of mass conservation and momentum.
In this manner any calculated state variable becomes, among other
factors, a function of the initial model conditions and entered
meteorological influences. As the model simulation progresses over time,
newly calculated hydrologic states thus become a function of all
previously entered meteorological input signals and all previously
calculated states. In physically-based modelling this phenomenon is
referred to as the ‘model history’ and plays an important role in the
performance of a model and the acceptance of simulation results. In
ANNs such model history is not simulated explicitly but effects of time
dependant model input can be circumvented for by modifying the
connectivity structure of the ANN and/or through adding extra input
signals as described below.
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Figure 5.11: Diagram of recurrent ANN

As described in subsection 5.1.1, at each input element an input signal is
entered to the ANN where input signals may be of a different kind and
be dissimilar. In this manner it is possible to enter observations of
precipitation and/or discharges into the ANN for a number of time
instants. Especially in real time runoff forecasting this procedure is
beneficial since only the short-term history of a model is important for
Bractical applications. For model input, time series of spatially
distributed rainfall observations or discharge measurements can be used
while combinations of both data types also are possible (see e.g. Zealand
et al,, 1999). During the training of the network, emphasis then is laid
on simulating the time dependency of input signals that are most
relevant for the performance of the network. An example of such
approach is given by Hsu et al., [1995]. Hence, the long-term model
history is not simulated explicitly but effects of such history are
expressed in the weights that are updated during the training.

An ANN approach in which effects of the internal model behaviour is
accounted for in the model output is provided by recurrent ANNSs. In
such networks, feed-backward connections are simulated in addition to
the feed-forward connections (see figure 5.11). Calculated model output
and also calculated internal model states are entered back into the
network by a feed backward connection.

In the model concept such feed-backward connections can be defined for
any combination of neurons over the various model layers and/or
neurons also may be connected within one layer. Neurons of the output
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layer, however, often are connected to elements of the input layer and
the effect model output has on the succeeding simulation time step is
defined in such manner (see e.g. Toth et al., 2000). The net input as
defined by Eq.[5.31] also receives an input signal from the neuron of the
output layer. In Sajikumar and Thandaveswara [1999], model output
from the output neuron is backward connected to neurons and input
elements of the hidden layer and input layer respectively. In the same
approach also neurons within the hidden layer are backward connected.
In recurrent ANNs, neurons in any layer may receive an input signal
from neurons from the preceding and succeeding layer and the layer
itself. In such procedure, the weight values as defined during the
training period also become a function of model output from previous
time steps and, possibly, internal calculated states. Also time delays to
certain input signals in feed backward connections maybe introduced
that make applications more flexible. ASCE [2000] states that recurrent
networks operate in a dynamic mode and that networks become
inherently dynamic by nature by the feed backward procedure. Within
the class of recurrent networks a number of different sophisticated
approaches are known (see Islam and Kothari, 2000).

A third approach to circumvent for the lack of model history in ANNSs is
to define clusters of input data with similar characteristics. By the
clustering of observations, a pre-selection of input data is made for the
training of the network. Through the clusters, specific (hydrologic)
states of the system to be simulated are sealed into the NN and
overcome the problem that other input signals dominate the NN
simulation. By the clustering, the information content of the selected
time series of observations increases as compared to time series of non-
clustered data. Clustering is very practical, simple and convenient
particularly when the information content of the observations must be
increased. In such approach the extra information content of the
clustered data is added to the network and weights are defined for more
unique cause-effect relationships. Weights defined during the training
process thus, implicitly, carry information on the model history. This,
however, is restricted to runoff events that lie inside the range of
clustered data values that are used for training. It is obvious that for each
of the data clusters a gross generalisation is made with respect to the
runoff behaviour. For clustered data, implicitly it is assumed that
observations are comparable in a sense that all observations are subject to
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a unique cause-effect relation. Whether such assumption is true in
runoff hydrology is questionable due to the large number of factors that
effect runoff production by rainfall. In runoff hydrology data clusters
can be defined for e.g. peak flow discharge, total runoff volume, mean
runoff volume and time to peak.

Model uncertainty

An important limitation of ANN deals about quantifying the uncertainty
that must be associated with the model approach. Model output as
mostly defined as a time series is uniquely calculated by means of the
optimised weights, the model concept and the selected model input.
Calculated model output from ANN’s is not associated with any
uncertainty such as calculated by the GLUE procedure in section 5.3 and
the multi-objective model calibration of subsection 5.4. Effects of
parameter uncertainty are not quantified and also information on
parameter dependencies and identifiability as described in section 5.5
does not become available. ANN model performance generally is judged
by visual interpretation of the simulation results and quantitatively by
use of calibration criteria such as MSE, RMSE and R? (see e.g. Imrie et
al.,, 2000; Toth et al., 2000; Shamseldin, 1997; Zealand et al., 1999;
Sajikumar and Thandaveswara, 1999; among others). In the review study
on ANN:s, it has become apparent that aspects relating to model
uncertainty only have gained little attention.

5.6.3 Improved Physically-based Modelling by use of ANNs

While ANNGs are very well suitable to recognise certain patterns between
a systems input and output signals, it is still under research how ANNs
can be applied to describe real world physics that underlie the simulated
pattern. One of the limiting factors for easy combination is that neurons
as well as hidden layers have no physical significance but are purely
artificial model features. Also, and contradictory to ANNS, physically-
based models obey to the conservation of mass and momentum
principles that causes that simulated hydrologic states are a function of
all previously entered hydrologic influences and calculated hydrologic
states.

Recently research is started after applications of ANNs to models that
apply differential equations. Examples of such research are presented by
Schleider [2000] who estimated parameter values for a hydrodynamic
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flow model by use of an NN and by Aarts and Van der Veer [2001,a,b]
who applied ANNSs to solve differential equations. Both these

approaches will briefly be discussed and serve as an illustration how
ANNs possibly can be used in PBRR-modelling.

First the approach of Schleider [2000] will be discussed who applied a
two-dimensional hydrodynamic flow model for coastal zone wave
simulation and combined this model with a procedure that updates
parameter estimates during each model simulation time step. In the
approach, the shallow water flow equations are solved over a model grid
domain and a state vector was updated for each simulation time step.
The state variable of interest was the wave height while the bottom
friction coefficient was the parameter of interest.

In the model approach the goal was to improve the model performance
by optimising the bottom friction coefficient for each simulation time
step, this by minimising the residual error between measured and
simulated wave heights. During the model simulation the bottom
friction parameter could be changed over time where its value was a
function of simulated turbulence and characteristics of the bottom
surface. Parameter estimation was achieved by a ‘re-enforcement
learning parameter adaptation approach’ (Schleider, 2000). By this
approach parameter values are modified based on learning rules that
need to be defined and updated for each simulation time step. By the
learning rules a value function for parameter modification is defined and
this function is applied to optimise the parameter values. Appropriate
learning rules are defined by a calculation procedure, that also is based
on neural network applications, in which the magnitude and direction
(i-e. + or - sign) of the parameter change are defined. Parameter values
as such become a dynamic property and thus also depend on the
calculated states of the numeric simulation model. Schleider [2000]
described a calculation scheme termed ‘unified adaptation system state
model’ that links the input and output of the flow model and the ANN
models to update the parameter values and to evaluate the simulated
states. In the approach a calculated water level of a reference point of the
model grid layer is compared to a measured water level at the same
location in the real world. This residual error is minimised during the
model calibration and serves to guide the parameter estimation. An
extensive description about the calculation procedure is given in

Schleider [2000].
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This procedure is different from the calibration procedures described in
sections 5.2 through 5.5 in a sense that parameter values are updated in
real time for each simulation time step. Parameter values as such become
a dynamic property and serve to improve the model performance for the
succeeding time step. With respect to PBRR modelling it is questionable
whether similar procedures can be applied efficiently. This particularly
since model concepts of PBRR models are far more complex as
compared to the model approach of Schleider [2000]. A major problem
deals about the number of parameters used by PBRR models. Schleider
[2000] only modifies the friction bottom coefficient while PBRR models
have a large number of parameter that effect model performance. The
key issue now becomes to select an appropriate set of parameters that
require optimisation and to select the appropriate set of learning rules to
modify parameter values during consecutive simulation time steps.

A second example to combine ANN with physically-based model
equations is presented by Aarts and Van der Veer [2001a,b] who solve
differential equations through ANN applications. The type of
differential equations to be solved may be partial (Aarts and Van der
Veer, 2001a) and first order linear (Aarts and Van der Veer, 2001b).
Although in all these approaches differential equations are solved
through a series of connected NNs, approaches also show some
differences. In the scope of this thesis these differences will not be
discussed here but instead a general description is given here how
differential equations are solved by means of NN approaches. The
approaches are based on the fact that a multiple input, single output,
single hidden layer FFNN with multiple input elements and a linear
output layer with no bias are capable to arbitrarily well approximate
many functions and its derivatives. While such approaches are common,
the main idea now is that knowledge on the physical processes must be
added to the differential equations, its boundary and initial conditions.
Hence, such knowledge is incorporated into the structure and training
set of the NN and therefore NN structures are specific to the processes
and system to be simulated and thus also to the selected differential
equations. For training of the connected networks an evolutionary
method is applied to (sub-)population(s) while the connected NN are
solved simultaneously. The procedure aims at finding the solution of the
differential equation and its initial and, possibly, boundary condition.
Example applications of the method are the simulation of the one-
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dimensional non-steady groundwater flow equation with initial and
boundary condition or the simulation of forced vibration without
damping.

5.7 Conclusions

In the model calibration procedures described in this Chapter the focus
is on optimising parameter values using an a-priori defined model
concept. Model calibration is achieved by optimising parameter only
thus ignoring any other aspect of the model approach that could have an
effect on model performance.

Parameter optimisation can be achieved by simple manual Trial and
Error procedures or by automated procedures that can be based on
Monte Carlo simulations (i.e. GLUE), evolutionary procedures (i.e.
single and multi-objective estimation) or MLE. For each of these
proccdures a number of applications are reported in literature although
applications in PBRR modelling only have gained little attention. In
PBRR modelling it is still common practice to apply the Trial and Error
procedure and conclusions on the performance and trustworthiness of
such models are based on visual interpretation of calibration results and
the use of a calibration criterion (see e.g. Refsgaard, 1996; Bronstert,
1999). Such applications are questionable since the procedure has major
weaknesses that relate to parameter estimation issues such as parameter
uniqueness and identifiability. For any Trial and Error calibration it is
uncertain whether the most optimum parameter set is found and
whether the calibration can be improved further. For numerous reasons
as described in section 5.1 it is concluded that the procedure should be
rejected in runoff modelling.

The GLUE procedure is an automated calibration procedure in which
model output is simulated for a range of parameter sets. The procedure
is based on a Monte Carlo simulation method where a large numbers of
prior parameter sets are randomly generated by prior parameter
distribution functions. The generated parameter sets are tested for their
performance by a predefined model performance criterion that is termed
the likelihood measure for which its value is termed the likelihood
weight. By introducing a cut-off value for the likelihood weight a
selection of good parameter sets is made. Mostly only the best 10% of
the parameter sets are maintained for further analysis and marginal
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cumulative distribution functions are constructed. The shape of these
functions serves as a tool to quantify parameter identifiability. The
ranges of values in the functions express parameter uncertainty and
model output uncertainty is expressed for each time instant by
calculating the outflow for each parameter set. The procedure is
appealing by the fact that parameter uncertainty as well as model output
uncertainty is simulated. The procedure can simply be applied to multi-
output models although simulation results from Franks et al., [1996] and
Lamb et al.,, [1998] did not show any significant increase in model
performance when multiple state variables are applied to the procedure.
Weaknesses of the procedure are that it is uncertain how large the cut-off
value should be, how the performance measure should be selected and
how prior distributions functions should be selected. The procedure also
is not able to identify possible insufficiencies in the model concept and
cannot calculate any inter-dependency of parameters in terms of, for
example, a correlation matrix. By these weaknesses the application of the
GLUE procedure in PBRR modelling is not advocated.

A second procedure for automated parameter optimisation is provided by
single-objective and multi-objective evolutionary methods. These
methods reduce the initial parameter space to a much smaller, optimised,
parameter space. Minimisation of the objective function is achieved by
global optimisation routines. In multi-objective model calibration, a
number of unrelated objective functions are aggregated into an
aggregated but single objective function that is minimised. Selected
objective functions must be unrelated and are minimised simultaneously.
Between selected objective functions, a trade-off can be defined with
respect to model performance since for each objective function a most
optimum parameter set can be defined. In multi-objective model
calibration by evolutionary methods such parameter sets are combined
and a new feasible parameter space called the Pareto space or Pareto set
is defined. For all parameter sets within the Pareto space an equally low
objective function value is obtained and thus it is assumed that model
performance is equally satisfactory. By the size and shape of the Pareto
set, parameter values are not unique but are uncertain and as such a
range of parameter values is defined. For each parameter set 2 model
simulation is executed and the range of model outputs is expressed and
interpreted as an uncertainty band. This aspect of defining the Pareto set
is very appealing since insufficiencies of the model concepts become
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apparent when the model output does not match observed catchment
response in terms of, for example, peak flow or base flow discharges over
certain periods of time. A limitation of the procedure is that spatial
dependencies of parameters are not simulated explicitly but
dependencies are expressed implicitly by the size a shape of the Parecto
set. Multi-objective model calibration mostly is applied to CRR models
where applications are very successful (see Sorooshian, 1998, among
others). In PBRR modelling such applications are (still) unknown
although the procedure has a high potential.

A third automated model calibration procedure deals about MLE by
weighted least squares estimation. In the procedure, parameter values are
inversely optimised by statistical analysis of the residual error. An initial
parameter set is updated through an iterative procedure where for each
calculation time step parameter optimisation is inferred from calculated
state information. In such approach, many different procedures are
available although it is common to minimise single-objective functions
only. Objective functions mostly follow a weighted least squares
estimation expression and minimisation often is placed in the framework
of MLE. Application of such estimation procedure is very appealing to
multi-output models such as PBRR models since the procedure allows
model calibration for multiple state variables simultaneously. Multiple
state variables may be of a different kind and order and weighted in the
objective function by a covariance observation matrix. By the procedure
a parameter correlation matrix is defined that gives specific information
on the spatial dependencies of single parameters. The procedure also
yields eigen vector-eigen value matrixes that give specific information on
the parameter identifiability and uniqueness.

In PBRR modelling, hydrologic state information that can be used for
model calibration are piezometer observations or channel flow stages
although combinations of both also can be selected. In this manner a
number of single best and unique parameter sets are defined that, when
combined, yield a range of parameter values suitable for the model. By
the parameter value ranges a new and optimised parameter space is
created. Such space however is not comparable to the Pareto space since
optimised parameter sets in MLE do not perform equally well. By the
procedure it is questionable whether insufficiencies of the model
concept can be identified. Only in case unrealistic parameter values are
estimated this is indicative that the model approach is inadequate.
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Applications of MLE in PBRR modelling have not gained much attention
in research although numerous applications are reported in groundwater
and hydraulic modelling studies. At this stage of research the
applicability of MLE must be tested and its potential for PBRR
modelling must be researched. Model calibration must focus on whether
the use of multiple output variables will improve model performance
and whether a new parameter space can be constructed.

A fourth automated calibration procedure that is reviewed deals about
the application of generic algorithms such as ANNs. ANNs are
interpreted as BB-models that are particularly suitable to recognise
patterns between system input and output signals. In runoff hydrology
the most commonly applied ANNs are feed forward networks although
for specific applications other network configurations are known. As
described in section 5.6, an ANN is constructed by and input layer with
input elements, an output layer and hidden layers with a certain number
of neurons. Also the connectivity structure between neurons, the
selected input signals and applied transfer functions at the neurons are
defined during the design of an ANN. During the training process of the
ANN, the model structure is optimised and further defined.

Applications of ANNS to rainfall-runoff hydrology are numerous
especially in real-time runoff forecasting while applications in parameter
optimisation and physically-based modelling are very sparse. Recently a
study is reported in the field of parameter optimisation for
hydrodynamic flow models. The objective of the application was to
improve model performance by optimising model parameters through
minimisation of the residual error. In the approach, parameter values of
the flow model are updated for each simulation time step in such a
manner that values become subject to the response mode of the model.
Model calibration so becomes a dynamic procedure where for each
simulation time step the most optimal parameter set is defined.
Limitations with respect to more complex applications relate to the
complexity of the flow model and the number of parameters that can be
updated. The potential of ANNS as a calibration tool in PBRR modelling
is uncertain although at the current state of research such applications
are not yet feasible due to the large number of parameters that need to be
estimated. For these reasons its use is not advocated here, first much
more experience and knowledge on applicability and limitations of white
box ANNSs as model calibration tool must be gained.
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In review of this Chapter it is concluded that research after model
calibration should focus on automated calibration. In this thesis it is
chosen to place such simulations in a framework of MLE were parameter
estimation is achieved by weighted least squares estimation. In the field
of PBRR modelling such applications have not gained much attention
although in theory the procedure has a high potential. A commonly
applied global parameter estimation algorithm based on MLE is the
Gauss Marquardt Levenberg algorithm for which many applications in
groundwater hydrology are known. Attractive aspects of the procedure
are that a model can be calibrated simultaneously for multiple state
variables that are weighted by a covariance matrix of state observations.
The procedure yields a parameter correlation matrix and eigen vector-
eigen value matrixes that give specific information on parameter
identifiability and uniqueness. Analyses on model performance require
such information that allows much more objective judgements on model
performance.

Analysis must also focus on defining effects different types of state
variables have on model performance. It also must be analysed what
effects the use of multiple state variables have on optimised parameter
estimates. For a predefined number of simulation cases, parameter values
must be optimised and parameter ranges must be defined.
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Figure 6.1: Location of the Troy-basin in Idaho, USA.

6.1 Introduction

The study site selected for this thesis is the Troy catchment that is
situated near the town of Troy, Idaho, USA (see figure 6.1). For this
catchment a vast amount of detailed data is collected by the University of
Idaho and is made available for this thesis. Available data relate to
topography, subsurface, meteorology and to hydrological state
observations of groundwater piezometer heads and channel flow
discharges. A brief description of the catchment is presented here that is
followed by more extensive descriptions in section 6.2.

The small-scale Troy catchment has a size of about 1.6 hat and an average
elevation of 838 m. above Mean Sea Level. The catchment has an
undulating topography and is part of the ‘Palouse ranges’ that,
climatically, are characterised by its dry, hot summers and wet, cold
winters. In these mountain ranges the mean precipitation ranges from
500 mm/a in the west to over 830 mm/a in the east while more than 60%
of the annual precipitation occurs from November to April with low
intensity rainfall or snowmelt.

The Troy catchment is underlain by a fragipan at shallow depth that
severely obstructs groundwater flow in vertical direction. Recharge rates
to the deeper subsurface are very small and may be ignored when
compared to recharge rates to the shallow subsurface. With respect to the
shallow subsurface, Boll et al., [1998] report that soils are moderately
well-drained and have a moderately deep profile extending to the
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fragipan. The soil profile has three specific horizons (i.e. A, B, E) that
vary in depth throughout the catchment.

The Troy catchment serves as a site for hydrological research at the
University of Idaho (UI). Over the years, researchers of UI have
performed detailed surveys on topography and spatial distributions and
depths of the soil horizons and fragipan. Surveys are performed in a
systematic manner by following a raster with rectangular elements of
5 meter spacing. For the soil horizons, the hydraulic conductivity,
porosity and some values of the soil characteristic curves are defined
through laboratory tests.

In the Troy area a piezometer network was installed in 1995 to observe
water table fluctuations during the wet winter season. In 1997 this
network was extended and nowadays 135 piezometers are in operation
from which 102 are within the boundary of the Troy catchment.

A measuring flume (Thomson-weir) at the catchment channel outlet is
installed to measure catchment outflow. Observations are made at
irregular time-spacings but observation time series express the general
runoff behaviour of the catchment. With regard to meteorological
variables such as precipitation, evaporation and temperature, these are
gauged at the Troy weather station in the catchment and also at the
Helmer and Moscow weather stations that are located 15 miles east and
10 miles west of the Troy catchment respectively. Precipitation during
winter and spring seasons mostly is observed as rainfall with low
intensity or as snowfall where, depending on the air temperature, snow
may remain on the land surface for several weeks.

From 2 hydrological point of view the Troy catchment is characterised as
a shallow perched groundwater flow system where matrix flow conditions
prevail. Macro-pores are not observed in the soil samples taken by
researchers at Ul although it is expected that such pores are present since
the area once was covered by forest. For the past decades the land cover is
undisturbed grassland. By these characteristics it is assumed that overland
flow generation generally is caused by the saturation overland flow
mechanism in case precipitation is in the form of rainfall. Runoff
generation by snowmelt, however, also is common. Discharges from the
seasonal stream vary from zero during the summer season to peak flow
discharges of up to about 7 - 8 I/s during the winter and spring season.
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Figure 6.2: DEM of the surveyed area with elevation contour lines added.

6.2 Data collected at the Troy catchment

6.2.1 Topography.

In 1995 researchers of UI carried out a detailed survey of the elevation of
an area that covers the catchment area. A rectangular area of size 85 x190
m’ was surveyed and elevation measurements have been carried out at a

5 x 5 m® raster grid. After finalising the survey, all measurements have
been referenced to the lowest point in the area that, for digital
processing, served as the datum. With these elevation measurements a
DEM is created to establish a 3-dimensional representation of the
catchment topography. Figure 6.2 presents a DEM of the surveyed area.
Local depressions in the land surface are not removed and elevation
contour lines are added.

For delineating the catchment boundary, the topographic analysis
software TARDEM (Tarboton, 1997) is applied. Figure 6.3 shows the
DEM of the Troy catchment where local depressions are removed and
where the elevation contour lines are added. The maximum elevation
difference of the catchment is 21.1 m.
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Dem Troy catchment
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Figure 6.3: DEM of the Troy catchment, local depressions are removed and
elevation contour lines are added.

By further processing with TARDEM, also a slope gradient map (see fig
6.4) and slope aspect map (Fig. 6.5) are generated.

Dem SLope Gradient

/\/ Contours 0.25
Dem_gradient [m/m]
[ ]0.02-0.08

Figure 6.4: Hill slope gradient map.
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]
Figure 6.5: Hill slope aspect indicating the flow direction of each element.

The map shows that gradients are lowest along the catchment boundary
and at the centre of the catchment. At the middle sections of the hill
slopes, gradients are highest and hill slopes form a converging system
towards the catchment outlet. Figure 6.6 shows a runoff contributing area
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Figure 6.6: Runoff contributing area map indicating the total up-slope area that
drains though an element and serves to delineate the channel drainage system.
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map in which the total up-slope area is indicated that drains through a
grid element. By this analysis the channel drainage system is delineated.

In runoff hydrology it generally is assumed that topographic boundaries
co-inside with groundwater divides in the subsurface. It is clear that by
implementing such assumption, groundwater flow across the boundary is
zero and that, with respect to water balances, the only input and output
terms are evaporation, precipitation and channel outflow. Whether this
assumption is applicable to the Troy basin is questionable by the low
topographic gradients towards the catchment outlet. Also by analysis of
the elevation contour lines as added in figure 6.2 it can be stated that at
lower elevations the delincation of the catchment boundary is doubtful
due to the diverting contour lines. The assumption that groundwater
flow across the topographic boundary is not present therefore is doubtful.

6.2.2 Shallow Subsurface
Soils

With a tractor-mounted hydraulic core sampler of 8.9 cm. diameter, soil
samples up to the fragipan have been taken for each element in the DEM.
The samples are used to identify the genetic horizons and to define the
layer thickness. With this information, for each DEM element a soil
profile is reproduced with specific thicknesses for each of the three
horizons. Also a number of soil samples have been taken for analysis in
the laboratory were the following soil properties were determined for
each horizon: saturated hydraulic conductivity, porosity, field capacity,
and wilting point. Researchers of Ul have executed the survey and tests.
The hydraulic conductivity of the Fragipan is derived from a Soil Survey
report after Barker [1981]. Table 6.1 lists a summary of the soil
properties of the horizons A, B, and E.

Table 6.1: Soil physical properties of the Troy catchment (Boll, et al., 1998).

21.8 26.2 24.6
160 50 20

0.51 043 0.38
0.38 0.28 0.27
0.11 0.08 0.08
0.08 0.08 0.08
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Figure 6.7: Soil depths of the Troy catchment for soil horizons A,B and E
and total depth.

A description on the shallow soils is given by Boll et al., [1998] and is
repeated here. The soils in the catchment are classified as the Santa
Series, which consist of moderately well drained soils with a profile
extending to the shallow fragipan.

Soils are formed in deep loess with small amounts of volcanic ash. The
taxonomic class is coarse-silty, mixed, frigid Ochreptic Fragixeralfs. The
profile contains three genetic horizons, A, Bw and E which at the bottom
are restricted by a fragipan. This fragipan layer is also known as a Btxb
horizon. For ease of use of abbreviations, Bw is replaced by B in the
remainder of the text. The A-horizon is yellowish brown silt loam that
colours dark brown when moist and has a sub-angular blocky structure
that is 0 to 38 cm. deep. The B-horizon is a brown silt loam with a
prismatic structure and is 38 to 68 cm deep. The E horizon is a pale
brown silt loam with a massive structure that is slightly hard and is 68 to
86 cm deep.
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Figure 6.8: Map of piezometers in the catchment area.
Column and row numbers are added and serve as ID.

The Btxb horizon, or fragipan, is a yellowish brown silt loam and silty
clay loam soil with a coarse prismatic and medium angular blocky
structure that is very hard, firm, and brittle and ranges from 86 to 165
cm. deep. The fragipan with a saturated hydraulic conductivity of 0.01
cm/day forms the hydrological base of the shallow system. Figure 6.7
shows soil depths for each of the layers.

Water table observations

To observe water table fluctuations in the catchment, a piezometer
network is in operation since 1995. The network comprises 135
piezometers from which 63 are installed since 1995. From these
piezometers 43 are situated within the catchment and cover the western
part of the catchment. In order to achieve a full coverage of the
catchment, in 1997 the piezometer network was expanded with 72
piezometers in the eastern part. Piezometers were installed at the fragipan
height and water table measurements represent the water table height of
the perched water table above the fragipan. In figure 6.8 the locations of
piezometers within the catchment area are shown. Each piezometer is
indexed by a unique Identification Number (ID) that is according to the
columns and row number as added in figure. 6.8. Each piezometer has a
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Figure 6.9: Groundwater table hydrographs of piezometers selected
for model calibration.

sensor and is equipped with an automated data logger that stores the
measurements of the water table depth at 12 A.M. and 12 P.M.

In the period 1998 — 1999, for all piezometers three sensor measurements
were compared to three manual measurements and the absolute average
error for each sensor was calculated. It was observed that five sensors did
not function at all, and that 89 sensors had an error less than 5 cm of
which 33 less than 2 cm. With the obtained information the UI has
corrected the observation time series from which a small number are
shown in figure 6.9.

The groundwater hydrographs of piezometers that are presented in this
figure are a sample of the hydrographs that are used in MLE model
calibration by PEST software. The selection is made after extensive
analysis of (ensembles of) time series and the performance analysis of the
network in general. Analyses focussed on the period January 1999 till
June 1999 and are based on visual interpretation of the groundwater
hydrographs. It appeared that many piezometers were unreliable in the
sense that groundwater hydrographs show water depths that cannot be
explained by physical reasoning. Piezometers 5.5, 4.4 and 2.4 for example
show for some time periods water table heights of up to 1 meter above
the land surface and piezometers 3.9, 4.5 and 6.7 show water table
heights that, for some time periods, are unrealistic small. In Appendix B
piezometer graphs are shown for all piezometers. A second interpretation
dealt with the analysis of the rainfall-piezometer response relation.
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Figure 6.10: Temperature-precipitation relation for the month
Februarv/March 1999.

Piezometer observations series must show a clear response to rainfall
events and must support the theory of the saturation overland flow
mechanism that particularly is applicable to small-scale, shallow
catchments with undulating topography. As such, especially when peak
discharges are observed in the channel, at the lower catchment elevations
with comparatively low hill slope gradients the water table must rise to
the land surface. The extent of the water table rise often is not observed
at higher elevations with possibly steeper hill slopes. In the up-slope
areas water table rises due to recharge only and thus runoff production
through groundwater exfiltration generally is not generated.

During the analyses it is revealed that the network is very unreliable with
respect to representing the groundwater system dynamics that underlies
the theory of the saturation overland flow mechanisms. The main cause
for this uncertainty is the manner the network is installed. During
installation the fragipan depth was measured at each piezometer location
and this depth served as the elevation reference for the observation time
series of the individual piezometers. As such, piezometer levels are
gauged with respect to the bottom of the piezometer and thus the time
series of observations are referenced to the fragipan depth. During the
analysis, significant unexpected differences of the fragipan depth are
observed at relatively short distances. Hence, this makes that also the
quality of each time series to represent groundwater flow dynamics must
be questioned. The performance of the network is discussed in more
detail in Annex B where also selections arc made for time series that are
used in automated model calibration.
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Figure 6.11: Temperature graphs for the Troy catchment. Ta(max) and
Ta(min) are maximum and minimum day temperature respectively.
Tsoil is soil temperature at specified depth.

6.2.3 Rainfall-Runoff relation

Rainfall measurements

At September 26, 1996, the Troy weather station started hourly
recordings for air temperature, relative humidity, wind speed, direct
short wave radiation and precipitation. Also measured is the soil
temperature at a depth of 10, 20 and 50 cm. Precipitation measurements
are made by use of a tipping bucket gage that, at the Troy weather station,
is not supplied with a windscreen. Rainfall measurements therefore are
considered not to be very accurate. Also the measurements of snowfall
are considered not to be accurate since snow easily blows over the gage.
Also since the tipping bucket device is non-heated the snowfall
measurements become uncertain. A failure of the devise may for example
occur when freezing conditions prevail as a result of low temperatures. In
figure 6.10 the temperature-precipitation relation for the months of
February and March is given. Air temperature is measured at an hourly
base and in the graphs the day and night temperature range is shown.
Obviously the night temperature often drops below zero while the day
temperature mostly is above zero. In the Troy catchment the soil
temperature is measured to analyse whether infiltration is obstructed by
frozen soil conditions. In figure 6.11 the maximum and minimum air
temperature distributions and soil temperature distributions at 10 cm., 20
cm. and 50 cm. depth are shown for the months of February and March
1999. Soil temperatures are measured twice daily at 12.00 A.M. and 12.00
PM. In the figure it is shown that infiltration is not obstructed
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Figure 6.12: Channel flow hydrograph with precipitation
depth and air temperature added.

significantly due to low soil temperatures. At a soil depth of 10 cm, the
soil temperature is hardly affected by the air temperature and soil
freezing at such depth does not occur. Hence it is assumed that any
rainfall will infiltrate without a time delay and the stored groundwater
volume will increase by infiltrated water. It is also assumed that
snowmelt water most likely infiltrates without a significant delay. In case
the soil crust freezes over night, the higher day air temperature cause de-
freezing and snowmelt water will infiltrate.

Runoff measurements

The channel flow discharge at the catchment outlet is gauged by a
circular flume (Thomson weir). The flume was installed at the end of
1998 and recordings started on January 13, 1999. The flume is supplied
with an automated data logger that should make a runoff reading every 15
minutes. By analyses of the 1999 time series it appeared that large gaps
existed in the time series. During the summer and autumn of 1999 data
gaps of 150 and 60 days have occurred since runoff was not observed due
to dry seasonal conditions. During the summer periods the perched water
table drops to the fragipan and runoff generation by groundwater channel
drainage does not occur. The water table then drops below the bottom of
the channel and any interaction between the channel and groundwater
system ceases. During the winter season observations are distorted when
the air temperature drops below zero. Water in the channel and flume
freezes and the sensor is unable to do reliable discharge readings. In
figure 6.12 graphs of channel flow discharge, precipitation depth as well
as air temperature are shown for the month of March. By the fact that
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Figure 6.13: Precipitation -runoff-temperature relation for March 1999.
Precipitation depths are added for time intervals of 15 minutes.

data was collected at non-synchronised time moments, data series had to
be completed for this thesis. Such completion is achieved through
manual interpretation. The observation interval for discharges and
temperature was 15 minutes while for precipitation hourly readings were
available. Time series of discharge, however, were very incomplete
although the general catchment runoff behaviour is expressed in the
observations. During the selection of a time series of channel discharge
that possibly could serve for model calibration, it became apparent that,
for numerous reasons, a distinctive precipitation-runoff relation could
not be defined. In figure 6.12 for example it is shown that in between
March 17 till 20, three runoff peaks are observed although these peaks
cannot be explained by any rain or snow fall event that occurred prior to
the runoff peaks. Moreover, also for the runoff peaks at March 14 only
little precipitation is observed. The fact that runoff events are shown in
the time series becomes even more surprising when realising that
researches of UT in 1999 concluded that, after comparing automated
readings to manual readings, differences between readings were very
small. After extensive analysis of the data set, for this thesis a rainfall-
runoff event is selected for the period February 27 till March 3. The
observed rainfall-runoff relation is presented in figure 6.13 and analyses
on this event are described in Annex B.
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6.3 Model calibration

Model setup

For simulation of the rainfall-runoff relation for the selected storm

period I a catchment model of the Troy is constructed. With respect to the
simulation of geometrical aspects of the model, the DEM of figure 6.3 is
adopted and serves for discretising the model domain in two dimensions.
As described in section 4.2 the raster grid is made up of rectangular
elements that all are of equal size (5 x 5 m®) and also serves for the
discretizing the soil layers of the subsurface model domain. In the model
sct-up it is assumed that each soil horizon can be simulated by a single
model layer and hence the subsurface model comprised threec model layers.
The depths of the soil horizons as presented in figure 6.7 are applied to
simulate the depth dimension of the subsurface flow models. The applied
discretisation of the subsurface model also serves to simulate soil
physiographic parameters. By the small size of the Troy basin it is assumed
that subsurface heterogeneity can be ignored and that parameter values are
homogeneously distributed over the grid cells of the grid layers.
Parameters are simulated by constant and grid cell averaged values. Prior
to automated parameter optimisation, parameter values as shown in Table
6.1 are entered.

For the model layer representing soil horizon A, B and E, horizontal
saturated hydraulic conductivities of 1.6 m/day, 0.5 m/day and 0.2 m/day
are applied respectively. Porosity values for the three layers are fixed at
0.51, 0.43 and 0.38 respectively. Since field or laboratory values for the
vertical saturated hydraulic conductivity are not available, in the model
approach it is arbitrary assumed that the vertical conductivity value always
is half the value for the horizontal saturated hydraulic conductivity. As
such, for the three model layers, vertical hydraulic conductivities are set to
0.8 m/day, 0.25 m/day and 0.1 m/day respectively. For the parameterisation
of the unsaturated flow model the soil characteristic relations are required.
In section 4.4 it is described that the Van Genuchten relations are applied
in Flowsim. The soil characteristic relation between the pressure head and
the soil moisture content for the Troy basin is shown in figure 6.14 and is
based on laboratory experiments at UL In these experiments soil moisture
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Figure 6.14 Soil water retention curves for the three soil types of the Troy
catchment. Curves are based on the Van Genuchten relation (Pilot, 2002).

contents are measured at four pressure head values and are indicated by a
black dot. Soil moisture contents are defined at soil saturation, field
capacity, wilting point and for the residual content. For the
parameterisation of these relations, Pilot [2002] selected the parameter
values of table 6.2.

Table 6.2: Van Genuchten parameter sets for the three soil types of the Troy
catchment. §

At the lateral boundary of the model and at the bottom of the model a
no-flow boundary condition is implemented. Any loss of water from the
model is due to channel discharge at the catchment outlet and evaporation.
Land use at the Troy is described by Ul as undisturbed grassland. For the
simulation of the land cover in the Troy model a Strickler-Manning
coefficient of 25 [L"” T"'] is selected and applied throughout the
catchment grid layer. Rainfall input is simulated by use of temporal and
spatial distributions. The applied temporal distribution is presented in
figure 6.15, spatially is rainfall homogeneously distributed. By of Eq. [4.1]
the rainfall depth is defined for each calculation time step.

An important input variable for event-based rainfall-runoff models is the
initial model condition. By the FlowSim modelling approach, initial
conditions need to be defined for the channel flow model and for the
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Figure 6.15 Temporal rainfall distribution

subsurface flow models. For the grid elements of the channel flow model
an arbitrary initial water depth of 0.1 m. is defined. For simulating the
initial condition of the subsurface the Initial Soil Moisture Content
(ISMC) model is developed for this thesis by Pilot [2002], this in close co-
operation with the author. The approach is extensively described in Pilot
{2002] and in Appendix C only a brief description is presented. In this
Chapter simulation results from the ISMC model are shown in figure
6.16a, b that serve as initial soil moisture content for the sub-surface
model domain of FlowSim.

For any simulation, water balances are calculated for the entire model as
well as for each sub-model. During model testing it proved that the model
as well as each sub-models were mass conservative.

Calibration data

For this thesis one of the objectives is to apply multi-objective model
calibration. Such calibration must be achieved by a calibration data set that
includes channel flow and piezometer observations that express the
dynamic behaviour of the groundwater table. For automated model
calibration by PEST-software, 8 simulation cases are defined according to
Table 6.3. In this table calibration data sets are defined for multi-objective
and single objective calibration. For multi-objective calibration
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Soil moisture Content Layer 3 Water table depth

Figure 6.16a: Soil moisture distribution Case 1.

Soll moisture content Layer 1 Soll moisture content Layer 2

Content {-)

Soil moisture content Layer 3 Water table depth

Figure 6.16b: Soil moisture distribution Case 2.
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channel flow and piezometer data are selected. For single objective
calibration either channel flow data or piezometer data are applied. The
latter cases are defined for model comparison purposes as well as to
observe whether the channel flow hydrograph can be simulated in case
only piczometer data is used for model calibration. Such calibration serves
to analyse the information content of piezometer data in PBRR modelling.

Table 6.3: Automated model calibration cases; number and type of state observations selected.

15

15
Case 1 5 10
Case 2 5 10
Case 1 0 15
Case 2 0 15
Case 1 0 15
Case 2 0 15

For each simulation case, parameters are optimised that are the saturated
hydraulic conductivity in horizontal and vertical direction and the porosity
for each of the three horizons. All other parameters are fixed and are not
optimised during the model calibration. The parameter selection is based
on early work from Calver [1988 ] and Grayson et al., [1992a,b]. State
variables used for model calibration are piezometer data for selected
piezometers and some channel flow observations from channel flow
hydrograph shown in figure 6.17. Selected piezometer observations are
shown in table 6.4a, b that are taken at 24.00 hours at February 27" and
28" and march 2"

These piezometer observations are selected since observations, to some
extent, reflect the dynamic groundwater system behaviour that is
characteristic for the saturation overland flow mechanism. Clear
exfiltration periods, however, are not observed in the time series and thus
the saturation overland flow mechanism is not well represented in the
observations. For the three time instants, channel flow observations are
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Figure 6.17: Selected piezometers for model calibration are indicated by black.

taken from figure 6.13 and represent discharges for the rising limb, the
hydrograph peak and the base flow.

Automated model calibration is executed for 8 different cases as presented
in table 6.3. Cases differ with respect to the applied hydrological state
information and the selected initial soil moisture conditions Case 1 and
Case 2 that are shown in figure 6.16a,b. For single objective calibration
cases Ch_1 and Ch_2, 15 channel flow discharges are selected that are
shown in table 6.5.

Table 6.4a: Case a: Observation data for piezometers 1.4; -1.4; -3.6; 0.9; 4.8

Date Time Piezometer number
1.4 -14 -3.6 0.9 4.8
27/2 24.00 . ’
28/2 24.00
2/3 24.00

Table 6.4b: Case b: Observation data for piezometers 1.4; -1.6; -2.4; -5.10; 4.9

Date Time Piezometer number

14 -1.6 -2.4 -5.10 4.9
27/2 24.00
28/2 24.00

2/3 24.00




6.3 Model calibration 213

Values are obtained from the channel flow hydrograph of figure 6.13 and
observations are selected for the rising limb, peak flow, falling limb and
the recession curve and cover all characteristics of the hydrograph. For the
single-objective cases Gws_1a, Gws_1b, Gws_2a and Gws_2b piezometer
data as shown in table 6.4a,b is selected. For multi-objective calibration,
the cases ChGws_1 and ChGws_2 are defined and apply piezometer
observations of table 6.4b that are combined with 5 channel flow
discharges of table 6.5. The black hatched cells indicate the latter
observations

Table 6.5: Selected channel flow discharges

Date Time Q [m’® /sec]
27/2 20.00 0.00082
27/2 24.00

28/2 9.00 0.00360
28/2 14.00 0.00436

28/2 17.00

28/2 21.00 '0.00388
28/2 24.00 | 0.00303

1/3 3.00

1/3 7.00 0.00207

1/3 11.00 | 0.00150

1/3 15.00

1/3 22.00 | 0.00119

2/3 10.00 _0.00105
2/3 22.00
2/3 9.00 ©.0.00061 .

Simulation results

Parameter optimisation is achieved for the horizontal and vertical saturated
hydraulic conductivity and for the porosity values of the subsurface. For
all simulations the vertical conductivity is arbitrarily set to half the value
of the horizontal conductivity. Also during parameter optimisation the

vertical conductivity remains fixed to the horizontal conductivity and thus
any change in the horizontal conductivity is proportionally applied to the
vertical conductivity. It is obvious that this assumption has an effect on the
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simulation results, this aspect is not further researched since this is outside
the scope. Secondly such research requires a detailed description on the
spatial distribution of conductivity values that is not available at the Troy
basin.

Optimised model parameter values for the defined cases are shown in table
6.6. In the table it is shown that for all cases optimisation is achieved and
that parameter values generally fall within a small range. For some cases,
however, significant differences exist.

Table 6.6: Optimised model parameters

By these results it is concluded that selected initial model conditions that
are shown in figure 6.16a,b. have a dominant effect on the optimised
values. It also is shown that values depend on the data set of state variables
used for calibration. In figure 6.18a, observed and simulated channel flow
hydrographs are shown for the non-calibrated cases Case_1 and Case_2.
For these cases the horizontal hydraulic conductivity and porosity values
of table 6.1 are applied. For the non-calibrated cases quick responses to
rainfall are shown where for Case_2 the magnitude of the peak flow
discharge is reasonably well matched while for Case 1 this discharge is not
within range. The latter, presumably, is caused by the simulated initial
condition that represents a much wetter catchment as compared to Case 1.
For both non-calibrated cases the recession periods are distinctive and
represent clearly the depletion of the model shortly after the rainfall
ceased. The time to peak is a second hydrograph characteristic and is
reasonably well matched for both non-calibrated cases. The simulation




6.3 Model calibration 215

Figure 6.18a: Calculated and observed hydrographs for the
non-calibrated cases Case_1 and Case_2.

results also show that the simulated hydrograph of Case_1 has a similar
shape compared to Case_2 although the magnitude of the peak flow rate is
much higher.

A visual comparison between the observed and simulated hydrographs of
the optimisation cases is shown in figures 6.18b and 6.18c. By these figures
it is shown that simulated peak flow discharges do not match well with
observed ones and also that the shape of the recession curve shows a much
more gradual subsurface depletion. This particularly when model
calibration is achieved by groundwater table data only.

It appears that model performance is not high although this conclusion is
preliminary since it is uncertain what modelling feature or aspect has
dominated the results. Examples of some simple and obvious aspects that
must be associated with non-quantifiable effects and that may cause
unsatisfactory simulation results are:

o the observed model calibration data is in-adequate and does not
represent accurately the various catchment response modes,

o the model concept of Flowsim is inappropriate to simulate the
catchment runoff behaviour at the correct time and/or spatial scales,

¢ the model input data is incorrect or,

e he simulated initial condition is in-adequate and does not match real
world initial conditions that should be applied at the onset of the
simulation. Particularly in event based modelling the accurate
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simulation of such condition is of great importance and to a large extent
dominates the quality of the model simulations since any specific initial
condition will result in a specific and associated, but possibly wrong,
model output.

\—I—Olser\ed ——Ch_1] ——Ch2 ——ChGws_l = ChGws_ 2|

Figure 6.18b: Calculated and observed hydrographs for the cases
where channel flow data and channe;lflow data combined with piezometer
data is used for automated calibration.

Figure 6.18¢: Calculated and observed hydrographs for the cases
where piezometer data is used for automated model calibration.
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Consistent and clear conclusions on each of these causes are difficult to
define but model performance in general is hampered by each of these
causes. With respect to these causes some comments are made.

Analysis of the simulation results in which groundwater data are used for
model calibration shows that such simulations do not show clear peak
discharges and subsequently recession periods. In these cases, model
responses towards rainfall input is not clearly observed and thus runoff
production through saturation overland flow only has a small effect on the
results. Given the pre-defined initial condition (figure 6.16a,b) it is
obvious that to some extent overland flow occurs. By the initial condition,
some subsurface model columns are fully saturated and hence exfiltration
is likely to occur immediately after a model simulation is started. As
described in Chapter 4, by the Flowsim model approach saturation
overland flow only is simulated if all characteristics of the saturation
overland flow mechanism are properly simulated. By the simulation
results, it is concluded that exfiltration fluxes are small and remain fairly
constant throughout the simulation period and that overland flow runoff
contributions are small. It is concluded that, in the model simulation, a
significant amount of rainfall is stored in the unsaturated zone model
layers and only a small amount reaches the groundwater. The changes of
the groundwater table depths are too small to generate additional
exfiltration and saturation overland flow but primarily only cause the
groundwater flow pattern to change slightly. Quantitatively, also
groundwater - river interactions contribute to the river discharge but such
interactions are simulated at a fairly constant and small rate. The shape of
the simulated hydrograph thus is explained by small and fairly constant
overland flow discharges and the small mass exchanges by groundwater -
river interactions.

Also selected groundwater hydrographs (fig. 6.9) that are used for model
calibration hardly show saturation overland flow zones to develop over
time support the simulation results. By automated model calibration the
model is tuned in such manner that the residual error is minimised and
thus groundwater flow behaviour is simulated that matches the behaviour
expressed in the time series. As such, in model simulation, exfiltration
fluxes only are simulated as a result of the pre-defined initial soil moisture
distribution. Following this reasoning, the initial soil moisture condition
also becomes a model input figure that requires optimisation. Any
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different initial condition yields a unique simulated groundwater flow
behaviour and thus residual error.

Regarding the simulated hydrographs of the non-calibrated Case_1 and
Case_2 it is concluded that the model concept of Flowsim is very well able
to simulate the various catchment response modes. The various response
modes are reasonably well represented in space and time based on the fact
time lags to peak discharges are relatively close to observed time lags. The
pre-defined initial condition, however, causes the magnitude of the peak
flow discharges to be directly related to the initial condition.

The main objective of the cases GWS1a through GWS2b is to research
whether groundwater piezometer observations may be of help to improve
the model parameterisation and model performance in general. Regarding
the previous comments, sound conclusions on suitability of MLE to
improve PBRR modelling cannot be drawn since the model calibration
data is too inadequate to simulate the saturation overland flow mechanism.
Large exfiltration volumes and extensive runoff source areas are not
simulated in the model but runoff generation through groundwater-river
interaction is well simulated given the shape of the channel flow
hydrographs shown in figure 6.18c.

Also when channel flow discharge data is combined with piezometer data
in the calibration process hardly any improvement is observed in the
simulation results. In the model calibration procedure, observations of
channel flow discharges and piezometer data are equally weighted and thus
channel flow discharges only have a small effect on the optimised values.
This also is due to the fact that observation values of channel flow
discharges are of a different order compared to piezometer observation
values. Moreover, only 5 channel flow observations are used as compared
to 15 observations from piezometers. Table 6.6 also shows that parameter
values ranges become much larger when model calibration is based on the
use of channel flow observations only.

With respect to the cases Ch_1 and Ch_2 in figure 6.18b, it is concluded
that various response modes of the catchment are simulated by the
Flowsim model approach. The magnitude of the peak discharge and shape
of the recession curve, however, are subject for improvement. Although
the rising limb of the hydrograph is well simulated, the simulated peak
flow discharge has a too low value and the falling limp of the hydrograph
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shows a depletion period that is too long where discharges show a too
gradual decrease. A quick rise of the discharge to the peak flow discharge
gencrally is due to a rapid increase of the saturation overland flow source
area while a quick drop of discharge expresscd in the falling limp is due to
a rapid decrease of the size of the source area. Since for both cases such
behaviour is observed in the simulated channel flow hydrographs, it is
concluded that runoff process are not adequately represented. Model

response is too gradual and, particularly, runoff production in space
through the saturation overland flow mechanism could be improved,
despite the fact that selected parameters are optimised. Specific causes to
explain the obscrved model behaviour are, for example, wrong model
input data and an in-adequate initial condition.

With respect to the first cause, DEM model input is very important since
in the model approach for the generation of the exfiltration any simulated
groundwater table depth is related to the DEM height. A wrongly entered
representation of the catchment topography in terms of the DEM will
results in an in-accurate simulation of the saturation overland flow
mechanism. This since the elevation height of any simulated hydraulic
head then is wrongly defined and since the observation time series are
referenced to the real world catchment elevations.

The simulated initial condition also is identified as a possible cause of
simulation in-adequacy. By the simulated initial condition, the depth of
the water table and the soil moisture content across the model is defined
and to a large extent defines the groundwater flow behaviour in the model.
Also here, an incorrect initial condition results in incorrectly simulated
groundwater flow behaviour and saturated model domain. Hence,
simulation periods where exfiltration is generated may become too large or
too small. Clearly by these two simple examplcs, simulation results always
must be analysed critically and must be exercised with care.

Analysis of the graphical output from the PEST-software is shown in
Appendix D. Such output includes 1) graphs of the parameter value
evolution over the number of optimisation steps, 2) graphs of residual vs.
observed Values, 3) matrices of the parameter co-variances, correlations
and eigen-vectors and 4) histograms such as the Jacobian and eigen-values.
For each of the eight automated calibration cases this information is
gencrated additionally to the optimised paramcter values and as such it is
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concluded that MLE is very well applicable to PBRR modelling. For the
eight cases however different optimised values are defined and also
graphical output shows some differences. An example is that in the
parameter correlation matrices for all eight cases different correlation
structures are found. Also information on parameter identifiability
through the eigen-vector - eigen-values matrices is not uniform. The
dominance of single parameters in the eigen-vectors with lowest eigen-
values changes over the various cases and causes that model results become
specific to the selected cases.

Obviously, the fact that observations of a different kind and order are used
and combined yields an inherent but unknown effect on the simulation
results. Also the fact that two different initial conditions are applied causes
model outcome to differ. Based on the physical reasoning described
before, a different initial condition will yield a different groundwater flow
pattern and thus different model behaviour. In the theory of the saturation
overland flow mechanism, the size and shape of the saturation overland
flow area are both functions of the dynamic character of the groundwater
behaviour and thus such simulated behaviour has a dominant effect on the
simulated channel flow hydrograph.

To become more conclusive on the reliability of the simulation results of
each of the cases, an extensive mathematical analysis should be performed
on the Gauss Marquardt Levenberg optimisation algorithm. Also after
finalising the model simulations, it is revealed that the quality of the data
set was too poor. The observed groundwater hydrograph from any
piezometer must be questioned for its reliability and it is clear that
selected observations most likely do not represent true observation values.
Also the representation of catchment topography in terms of the DEM
must be questioned. Relatively small elevation errors that are in the order
of 10 cm have significant effect on the simulation results. To be more
conclusive on the usefulness of MLE in PBRR-modelling, more model
simulations must be executed and modelling studies must be performed at
different catchments.

A critical note on the latter statement however is that it is questionable
whether catchment data sets exist that have a high enough information
content and that are reliable as well to allow successful multi-objective
model calibration by MLE. Prior to the research in this thesis a number of
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prominent rainfall-runoff researchers have personally been consulted and
asked for whether they had access to a data set as required by the thesis
objectives. It proved that many data sets exists but that much data sets had
no detailed information on either topography, geometry of subsurface
layers, physiography soil type distributions, and piezometer, channel flow
and meteorological observations. Particularly time series of observation
data with sufficiently high temporal and spatial resolution is not
commonly available.

An alternative approach to the Troy model is to select catchments of much
larger scale such as the (sub)regional scalc. For such approaches, required
model input and calibration data can, generally speaking, be of a lower
temporal and spatial resolution. At larger scales, much more ‘smoothed’ of
‘filtered’ responses in space and time are simulated and model
performance becomes much less a function of the resolution of the
selected input and calibration data.

Applications of MLE in rainfall-runoff modelling also should be tested in
combination with lumped CRR model approaches. Major advantages of
such approaches are that much less input data is required which makes the
stmulation much less complex and also simulations are much less
computational demanding. In this respect, the averaged simulation time
for the eight cases in this thesis were in the order of 7-8 days with a
longest period of 20 days and a shortest period of 3 days on a 1.8 G.hz
personal computer with 512 RAM.

In Appendix D graphical output from the PEST-software is shown in
which also a more extensive description about the simulation results is
presented.
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Based on an extensive literature study it is concluded that research in the
field of PBRR modelling has gained little attention. Ever since the work
of Freeze and Harlan [1969], who outlined a blueprint for a physically
based digitally hydrological simulation model, relatively little progress is
made in runoff simulation by such approaches. Based on theoretical
descriptions of runoff production mechanisms that are developed during
the late sixties, a small number of PBRR computer codes is developed to
simulate runoff generation through Horton and saturation overland
flow. Fundamental descriptions about both mechanisms as well as the
subsurface storm flow mechanism are presented by Dunne [1978] and
are repeated in section 3.2 of this thesis. By fieldwork of Hewlett and
Hibbert [1967], it has become evident that runoff production through
the saturation overland flow mechanism is triggered in the subsurface
when soil columns become fully saturated by a rising groundwater table.
Under such conditions, runoff production through exfiltration of
subsurface water easily is generated at the land surface where
subsequently saturation overland flow is generated.

In section 3.3 it is described that during the late eighties and early
nineties the main objective for computer code development was to
simulate runoff production in a distributed fashion as based on both
overland flow mechanisms. Model simulations mostly were performed at
catchments of local scale and focussed on the simulation of the runoff
flow processes in the subsurface as well as at the land surface.
Particularly the simulation of the highly dynamic and non-linear
catchment runoff behaviour in the shallow subsurface gained attention
in the distributed model approaches. The main objective was to simulate
the changing size and dynamic character of the runoff source areas over
the simulation period.

PBRR model approaches

For this thesis the model approaches of SHE, Thales, IHDM and
DBSIM are extensively reviewed and short descriptions about these
approaches are presented in section 3.3. Reviews particularly focussed on
a comparison of the designed model concepts that underlie the
approaches. In the same section also some simulation results are
described and discussed. By the review it has become evident that model
concepts differ significantly with respect to a number of generic aspects.
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Major differences relate to three aspects that are a) the applied catchment
partitioning theory in order to create a distributed and discretised model
domain, b) the flow processes simulated and c) the applied flow
equations. Approaches described for the creation of the DEM are based
on the use of rectangular grid elements of equal size or on the use of
non-rectangular elements of various sizes. In the four model approaches
the applied DEM discretisation is adapted to the subsurface model
layer(s). Also the approach for the discretisation of the subsurface
through the use of model layers differs for each approach. Based on
physical reasoning and considering that runoff production takes place in
the shallow subsurface, it is questionable whether applied DEM
discretisations should be adapted to the subsurface model layers. This
since the geometry of the subsurface layers significantly differs from the
topographic geometry. This aspect of transforming the real world into an
appropriate model approach becomes even more apparent when
considering the fact that, with respect to size and scale of the subsurface
grid cells, model parameter values are applied to these grid cells. Any
system heterogeneity within the scale of a grid cell is ignored and
parameter values as well as calculated state variables are lumped to
represent averaged values. Unambiguous conclusions on the
effectiveness of the applied discretisations are not drawn in this thesis
since effects of the applied discretisations are not clearly quantified. Also
literature on model comparisons of PBRR models is very scarce since
such comparisons only have gained very little attention.

With respect to the spatial discretisation approaches and considering all
aspects that subsequently follows from such discretisation, it is in
subsection 3.4.2 concluded that the use of rectangular elements of equal
size is an appropriate approach. This since any parameter value within a
grid cell must be interpreted as a grid effective value that requires
optimisation through model calibration. The size and shape of an
element as such becomes less relevant. The size of grid elements
however must be relatively small compared to the size of the catchment
and must represent the catchment characteristic of interest. Clearly,
catchment heterogeneity at smaller scales causes that model parameter
values cannot be extracted directly from field observations. Guidelines to
make a selection on the size of a grid element are not presented here but,
based on physical reasoning, it is recommended to apply DEM elements
that are smaller than 1% of the catchment model size. Also for model
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discretisation in vertical perspective clear guidelines are not available in
literature. Such discretisation mostly is achieved through a discretisation
in which all cells are of equal or varying thickness. In the latter case cells
thicknesses often increase with depth where top cells are of small
thickness while bottom cells are of, relatively, large thickness. Examples
of both approaches are known for the model approaches that are
described in section 3.3.

With respect to the applied flow equations and the mathematical models
a number of conclusions are drawn. For the simulation of overland flow
a two-dimensional model approach must be selected that requires the
use of a raster DEM with squared elements. Such DEM serves to geo-
reference the grid elements in the numerical model and to simulate the
hill slope gradients. With respect to the complexity of the numerical
model to simulate saturation overland flow adequately, it is concluded
that the diffusion wave approximation is appropriate. This since
topographic gradients in (small) upland catchments are relatively high.
In literature it is widely acknowledged that for such conditions any
change in momentum by changes in the flow velocity over time and
along a channel can be ignored. For the simulation of flow discharges it
is appropriate to select the Strickler-Manning equation that, in the
numerical flow model, must be combined with the conservation
equation. Channel flow may be simulated in a similar approach, the
numerical model however must be solved in one flow direction only. In
the approach the exchange of mass from the overland flow model to the
channel flow model must be allowed for.

With respect to the simulation of the subsurface flow processes it is
concluded that a relatively simple model approximation must be selected
as compared to the real world subsurface runoff behaviour of a
catchment. An extensive, theoretical, description about this behaviour is
presented in section 3.2. In distributed PBRR model approaches only
saturated and unsaturated subsurface flow as indicated in figure 3.1 are
simulated thus ignoring flow processes of, for example, macro pore flow
and perched subsurface flow. Hence, and with respect to the
mathematical model, subsurface flows are simulated in matrix flow
conditions only. In the model approaches saturated flow is simulated in
one or two lateral flow directions across cells of a grid layer while
unsaturated flow is simulated in vertical direction only. In case multiple
model layers are defined such flow is across a column of grid cells. For
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the simulation of saturated subsurface flow a Boussinesq-type flow
equation is appropriate. By such approximation it is assumed that
saturated flow takes place in phreatic flow conditions only and thus it is
particularly suitable for simulation of shallow subsurface systems. For
the simulation of unsaturated flow it is concluded that a one-
dimensional Richards type flow model is appropriate. Such model
approximation requires the use of the soil characteristic curves such as
developed by van Genuchten [1980]. Additional requirements for the
subsurface model approximation are that, besides water flow across the
distributed model domain, the model must be able to simulate
infiltration and exfiltration at the land surface and evaporation from the
subsurface. Also the exchange of mass through interactions with the
channel flow model must be simulated. The simulation of these
processes makes that PBRR models become very complex and that
simulations are seriously hampered as described in section 3.3.

Flowsim model concept

For this thesis the computer code Flowsim is developed as one of the
objectives of this thesis work. The designed model concept is based on
the presented conclusions in section 3.4. Aspects relating to the
catchment geometry are simulated in a fully distributed three-
dimensional model domain. For the flow processes a number of sub-
models are developed. Meteorological influences such as rainfall and
evaporation are simulated by spatially and temporally distributions. A
two-dimensional overland flow model that is based on the diffusion
wave theory simulates Hortonian and saturated overland flow.
Unsaturated subsurface flow is simulated in vertical direction only by a
multi layer flow model that is based on Richards equation. Saturated
subsurface flow is simulated by a two-dimensional flow model based on
a Boussinesq-type flow equation. Mass exchanges between the various
sub-models such as infiltration, exfiltration, evaporation and river-
groundwater system interaction are allowed for. In the approach these
sub-models are combined and linked and make up the mathematical
model that allows for the simulation of the highly dynamic and non-
linear catchment runoff behaviour. A brief description on the approach
and computer code is given in Chapter 4 while detailed descriptions on
the mathematical sub-models, the mass exchange and coupling
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procedures between sub-models and the model approximations are given
in Appendix A.

Scale problems

Simulations by Flowsim as well as by the computer codes that are
described in section 3.3 are hampered by a number of causes that
primarily relate to complexity of the model approaches. In sections 3.4
and 3.5 it is concluded that particularly scale issues hamper simulations.
Generally speaking, scale problems to a large extent are due to the fact
that the various processes are simulated in a discretised and thus
distributed model domain that, in plane perspective, is based on the
adapted DEM discretisation. While specific processes require specific
spatial model scales at which these processes must be simulated, this
aspect of model simulation generally is ignored. Scale problems also
come into play when time series of piezometer observations must be
selected and applied to the model calibration procedure. Observations
are taken at the point scale at specific time instants but in the model
approach they are simulated at the scale of the grid cells and the
simulation time step. In case observations of various state variables are
used, each state variables is taken at a specific point scale while model
simulated counterparts must be interpreted as averaged values for the
size of the selected spatial calculation units. For the overland flow and
channel flow models these calculation units are the grid elements of the
DEM while for the subsurface flow models these units are the grid cells.
The large amount of field data that is required for setting-up a
catchment model also is a common problem. Models require extensive
data input on, for example, soil type distributions, the channel network
and topography. Such field data and catchment information must be
obtained through extensive field surveys. Data therefore generally is not
available and much information that is added to a model must be
interpreted as synthetic data. In section 3.4 it is shown that large
quantities of model parameters and parameter values are required to
parameterise any model. By these large quantities, models easily become
over-parameterised and the effect each parameter has on the model
output becomes uncertain. As a consequence, PBRR model approaches
must be associated with a great deal of uncertainty. Also insufficiencies
in the commonly applied trial and error calibration procedure makes that
any model parameterisation cannot be associated with uniqueness.
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Figure 7.1: Data requirements, model performance and model complexity
relations (Rientjes and Hassanizadeh, 1999).

With respect to the data requirements, the performance of PBRR model
approaches and their model complexity, the relations in figure 7.1 are
presented where the latter one is developed for this thesis. These
relations as well as descriptions on these relations are presented in
subsection 3.4.2. By philosophical and physical reasoning, the relation
between the model complexity and model performance brings forward
that model performance is a function of the model complexity and, more
important, that an optimum model performance can be defined. Based
on this relation, it is concluded that PBRR model concepts must be kept
relatively simple in order to reduce the parameter demand and
consequently model complexity. In this thesis it is propagated to use
rectangular grid elements of equal size as compared to non-uniform grid
elements of various sizes. Also the use of a one-dimensional Richards
type flow equation for unsaturated zone simulation is propagated as
compared to the use of multi-dimensional equations.

Model calibration

For model calibration in PBRR modelling it is common to apply the
Trial and Error procedure in which parameter values are optimised
manually over repeated simulation runs. In each simulation some
parameter values are modified and model performance is analysed by
visual interpretation of simulation results or a pre-selected calibration
criterion. In section 5.2, it is described that such calibration must be
rejected since the procedure has major weaknesses. Despite the fact that
visual interpretations of simulation results are satisfactory, conclusions
to be draw by such interpretation must be exercised with care. Examples
of fundamental weaknesses of visual interpretations are that it remains
uncertain whether the most optimal parameter values are defined,
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whether parameters have some statistical dependency, whether parameter
values are well identified and whether parameter sets may be equivalent.
These aspects, among others are discussed in detail in section 5.2. In this
thesis it is concluded that for model calibration automated procedures
must be applied that, at least partially, overcome some of these
weaknesses.

In Chapter 5 an extensive review after the development and application
of automated procedures in runoff simulation showed that only few
approaches are known. Approaches are developed during the nineties and
are subject of ongoing philosophical discussions and debate. In this
thesis the approaches reviewed are the Bayesian procedure GLUE, the
single and multi-objective evolutionary procedure MOCOM-UA, the
geo-statistically based MLE procedure and a novel procedure based on
the use of ANNSs. In each of the approaches the focus is on optimising
model parameter values only and thus ignoring all other causes that
possibly cause poor model performances. Hence it is assumed that for
any simulation an a-priori defined model concept can be applied that
does not require improvement or optimisation. Also it is ignored that
meteorological stresses could be simulated in-adequately or that
calibration time series of state variables are inadequate because of e.g. a
too small observation resolution.

The theoretical bases of each of the approaches are described and
examples of applications are analysed. By the review it has become
apparent that approaches differ significantly with respect to the
fundamental assumptions that underlie the applied parameter
optimisation strategy. Although each procedure aims to optimise model
parameter values, the outcome of the procedures in terms of
supplementary calibration information differs. Specific requirements
with respect to this information are debated in literature and have a
focus on, for example, how well single parameters are identified and
whether insight is gained on parameter inter-dependencies. By such
information the weaknesses of the manual Trial and Error calibration
procedure must be overcome. Automated calibration procedures mostly
are applied to CRR model simulations while applications to PBRR are
very scarce. The review therefore also focussed on the issue whether
such calibration procedures could be applied to PBRR models and
whether calibration could be achieved when multiple state variables are
selected for calibration. In the literature such applications are propagated
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and often are referred to as multi-objective model calibration. For this
thesis it is decided that an automated calibration technique should be
applied that allows multi-objective model calibration though the use of
multiple state variables. Further specific requirements are that specific
information on parameter dependencies and parameter identifiability
must become available.

Maximum likelihood estimation

After reviewing the approaches it is decided to select the geo-statistical
based MLE procedure. Applications of the MLE procedure allows for
mode! calibration by use of multiple hydrological state variables that are
of a different kind and order and that all can be combined in a single
objective function. The geo-statistical approach yields specific
information on a) parameter sensitivity through a sensitivity matrix
called the Jacobian matrix, b) parameter inter-dependencies through
parameter covariance and correlation matrices and c) how well
parameters are identified through eigen-value and eigen-vector matrices.
Although in literature procedures are advocated that yield such
information, such applications in the field of PBRR modelling are very
limited. A limitation of the procedure is that it aims at finding the most
optimal and single best parameter set thus ignoring any uncertainty that
must be associated with the optimised parameter values.

Case study of theTroy basin

For this thesis software based on the MLE procedure is provided
through PEST that is combined with the Flowsim model approach. A
catchment model is developed for the Troy basin of 1.6 ha that is
situated in the state of Idaho, USA. This basin is selected after an
extensive search for a catchment that allows for the application of multi-
objective model calibration by use of channel flow observations and
groundwater piezometer observations. Other specific requirements are
that information on the subsurface and land surface had to be available
for the three-dimensional modelling of topography and subsurface. For
the Troy basin detailed field studies already were executed by researchers
of Ul and detailed descriptions of topography, land use and soil type and
layer distributions already were available. Also time series on
precipitation, evaporation, temperature, groundwater piezometers and
channel flow discharges were available, this for the winter period of



232 Summary and Conclusions

1999. Researchers of UI made the database of the Troy basin available
for this thesis.

With respect to the short observation period of the time series, it was not
possible to make simulations covering extensive periods but instead
single events had to be selected. This selection has taken considerable
time since it proved to be difficult to find a time period where non-
freezing conditions prevailed and were snowmelt did not effect the
channel flow hydrograph. Also, and partly due to freezing conditions,
time series of channel flow observation often were incomplete and
unfortunately recordings were not taken continuously in time. Selected
time series of channel flow were incomplete and observation gabs existed
that have manually been filled. With respect to the groundwater system,
102 piezometers are installed in the catchment and observations are
taken twice a day. Analysis of these time series learned that only a
relatively small number of piezometers could be identified that, to some
extent, express the dynamic groundwater flow behaviour that underlies
the theory of the saturation overland flow mechanism. For a number of
piezometers it was concluded that they mal-functioned while a number
of piezometer did not show clear responses to rainfall. The final
selection of piezometers to be used for model calibration is made on the
criterion that, when assembled to represent a cross section along a hill
slope, they, to some extent characterise the dynamic groundwater
behaviour that underlies the theory of the saturation overland flow
mechanism. In the piezometer hydrographs, however, clear exfiltration
periods could not be identified.

By the fact that only single events could be simulated, an additional
problem came into play that dealt about the simulation of initial model
conditions. While in runoff modelling normally a warm-up period is
selected to simulate initial model conditions, now a different procedure
had to be applied. A subsurface model initialisation procedure based on
the Topmodel approach is developed that allows the simulation of the
water table depth for the saturated subsurface and the simulation of a 3
dimensional soil moisture distribution over the cells of the unsaturated
zone model. For this thesis the ISMC-model is developed that is
described in Appendix C. For simulations by the ISMC-model approach,
the entire piezometer network is used where only piezometers are
ignored that mal-functioned.
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Simulation cases

For this thesis 10 simulations are executed of which 2 are non-calibrated
simulations and 8 are simulations with automated model calibration by
MLE. Simulations are executed for two models of the Troy catchment
where only the initial soil moisture condition differed and thus any other
input data figure such as rainfall and model parameters remained similar.
Model calibration is performed for the two models where for each model
four calibration sets with state information are defined. For single
objective model calibration, two sets are defined that only have
piezometer observations while one sct only has channel discharge
observations. For multi-objective model calibration one set is defined
that has piezometer observations as well as channel discharge
observations. To each of the two models these four sets are applied.
Optimised model parameters for all eight cases are the saturated
hydraulic conductivity and the porosity for the three model layers.
Although for all eight cases single best and optimised parameter values
are estimated, all sets are different and for some parameters significant
differences exist. Also the simulated channel flow hydrograph for each
case differs and thus for each case a slightly different catchment runoff
behaviour is simulated. Hydrographs mainly differed with respect to the
simulated peak discharge as well as the shape of the recession limb.
Simulation results in general are not satisfying, particularly for multi-
objective model calibration. Sound conclusions on the applicability of
the MLE are not formulated since too many factors that have significant
effect on the results are not properly defined. Such factors are for
example the reliability of the selected data set and the appropriateness of
the designed model concept of Flowsim. Also effect of the initial model
condition on the simulation results is not clear although it appeared that
selected initial conditions have a major effect on the simulation results.

By comparison of the parameter correlation matrices it has become
apparent that parameter dependencies change subject to a) the selected
set of hydrological state observations used for model calibration and b)
the simulated initial condition. While the degree of the correlations
changes, also the plus or minus sign change for some parameter
correlations. By comparison of the eigen-vectors matrices, it also has
become apparent that dominance’s of single parameters in the eigen-
vectors change. Such changes imply that different parameter
combinations dominate the model calibration for the various cases and
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thus it is concluded that the simulated catchment response mode, as
expressed by model calculated counterparts of the selected state
variables, has a major effect on these simulation results. Clearly, such
response modes change over time and over the model domain during
and, as well as, for the different simulation cases. A pre-requisite for the
use of time series of observations for model calibration is that time series
are accurate and reliable. After extensive analysis of the large database of
the Troy basin it is concluded that available time series must be
exercised with care. Particularly for the automated model calibration
cases where only piezometer observations are used this has become
apparent. For these cases significant deviations exist between simulated
and observed channel flow hydrographs and thus the real world
catchment response through the use of groundwater piezometers is not
well represented. This implies that either the model structure of
Flowsim has major weaknesses or that selected time series are inaccurate
and unreliable.

Event based modelling

After reviewing all the simulation results it is concluded that event based
rainfall-runoff simulation by a PBRR model approach is too complex to
be successful. By such approach too many generic modelling issues and
aspects come into play that easily cause model performance to become
unsatisfactory. First of all, runoff production simulation requires a
computer code that is able to simulate the dominating flow and
meteorological processes of the hydrological cycle. Computer codes thus
are very complex in terms of the number of flow algorithms and the
simulation of mass exchanges between the various algorithms.
Algorithms must be developed for many flow processes such as
infiltration, percolation, saturated subsurface flow, overland flow while
mass exchanges between algorithms also must be allowed for. Each flow
equation must be parameterised that results in a parameterised
catchment model that must be interpreted as a gross simplification of the
real world system. Such models allow for the simulation of the
catchment runoff behaviour, albeit it is still in a simplistic manner as
compared to the complexity of the real world catchment runoff
behaviour. In any model, processes are simulated at either much larger
or smaller spatial and temporal scales than the process scales. Although
any real world model simplification results in a reduction of required




Summary and Conclusions 235

model input data, such reduction by far is not significant enough to
reduce the input data-requirements to a level that data can be made
available through measurements at required spatial and temporal model
scales. Therefore, for any model always a trade-off can be defined
between the (too) limited data availability and the exactness and
correctness of the model input data.

Input data requirements

Input data values always represent averaged values that are integrated
over the scales of the model calculation units. Examples of required data
types are geometrical data to represent the land surface and sub-surface,
physiographic and topographic data to parameterise all model equations
and meteorological data to simulate meteorological stresses at the
boundaries of the catchment model. Moreover, meteorological stresses
that must be interpreted as a surface boundary fluxes only are observed
at specific time moments and at specific locations. Representative data
also is required to simulate flow boundary conditions of the groundwater
system although groundwater flow across topographic divides and to the
deeper groundwater water system is very difficult to observe. The
accurate simulation of each of these features becomes even more
significant when runoff behaviour must be simulated for only a very
short period of time such as is the case in event based model simulations.
Generally speaking, the smaller the time and space scales such processes
must be simulated, the more a model must be able to simulate the highly
dynamic and non-linear flow behaviour by which runoff is generated. It
is evident that the ‘data requirement - data availability’ paradox becomes
apparent here.

The biggest problem in PBRR modelling, however, deals with the
simulation of the initial model condition. For each sub-model such
condition must be defined and thus at the onset of the model simulation,
for each sub-model hydrological states across the model domains must
be defined. Particularly in event-based modelling this feature is of great
importance since a ‘warm-up’ period, as commonly applied in
continuous stream flow simulation models, is not defined. Over the
length of the warm-up period, meteorological stresses are entered into
the model to tune the model in such manner that all hydrological states
are simulated correctly at the onset of the actual simulation. The length
of such a period cannot be defined a-priori but is subject to the system to
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be modelled but generally ranges between 0.5 and 5 years. Defining such
warm-up period in event based modelling is not possible and therefore
other procedures must be selected and developed to simulate such
condition. In this thesis the ISMC-model is developed to deal with this
problem and by this approach the initial condition of the saturated and
unsaturated sub-surface models are simulated. For model simulations
with the ISMC-model approach, also model parameters and time series
of state observations are required to simulate the initial conditions.
Clearly, also here all modelling features come into play and any
simulation result must be questioned how accurate simulations are in
representing the real world behaviour. With respect to the event based
Flowsim simulations, any applied initial condition will yield a different
model result since a unique hydrological state distribution across the
model domains yields a unique flow pattern in terms of discharges and
flow directions. Understanding all these issues causes that event based
PBRR modelling at this stage of research still is too complex. The
reviews as well as the MLE simulation results generated for this thesis
support this conclusion. Although parameter optimisation has not failed
for any of the eight cases, the simulation results from the non-calibrated
cases can be improved as well as all cases were automated calibration is
applied.

Recommendations

A first recommendation with respect to this thesis work is to repeat MLE
simulations on a different catchment for which a reliable data set is
available. In the selection of a catchment, more emphasis must be laid
upon the availability of reliable time series as compared to the data on
subsurface catchment characteristics. This since model performance is
evaluated by means of an objective function in which observed and
simulated hydrological states are compared and residual errors are
calculated.

A second recommendation is that MLE also must be tested in CRR
modelling. In CRR approaches, calibration issues like parameter
identifiability and parameter dependencies also are apparent as shown in
automated calibration by the MOCOM-UA algorithm while the model
approaches generally are far less complex then PBRR model approaches.
By use of CRR model approaches the ‘added value’ of MLE to runoff
modelling may become more pronounced.
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A third recommendation is that for automated calibration procedures
comparative research must be performed. For such research, few runoff
codes with increasing complexity must be selected for which selected
automated calibration procedures are applied. By such research it must
become clear which approaches are the most advantageous and
promising and also what approaches must be rejected. For such
judgement objective guidelines must be set.
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Appendix A

Mathematics of Flowsim

1-D Channel flow
- Strahler ordering
- diffusion wave

2-D Overland flow
- Horton overland flow
- Saturation overland flow
- diffusion wave

g 1-D unsaturated flow
i - infiltration
L - exfiltration
degplafeseomiota ke ! - percolation

. Pl - Richards Eq.
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2-D saturated flow
- freatic flow conditions
- Darcy Eq.




240 Appendix A; Mathematical model

I Rainfall and Evaporation model

In the modelling approach of Flowsim, spatial interpolation techniques
are used to simulate the spatial distribution of rainfall and evaporation
over a grid layer. By interpolation, an estimate of such depth at any grid
element is generated by field data that is observed by gauging stations of
a measuring network. Techniques used for estimations are called
‘interpolation’ schemes’. In the following theoretical and mathematical
aspects of such techniques are presented.

A large variety of schemes is available for interpolating randomly
scattered point observations in an area. With respect to spatial
interpolation, all interpolation techniques make assumptions with regard
to the possible behaviour of the process to be simulated. Froma
hydrological point of view, caution must be exercised about the likely accuracy of
any interpolation scheme since the validity of a scheme has to be seen against the
(extreme) variability caused by non-linearity of the processes under study.
Temporal and spatial processes of rainfall generally are much smatler than the
process scales of evaporation and as such interpolation of rainfall observation
compared to evaporation observations becomes less complicated. For estimation of
point observations, ‘local’ and ‘global’ techniques are available. By local
estimation techniques, the value at an unknown point is estimated based
on the known values within the small neighbourhood of this point.
Global techniques try to find a model that incorporates all the
measurements and principally take into account the large scale spatial
variability. This as contrasted to local techniques that mainly use local
information to make estimates at non-measured locations. Most
techniques consider the distance from the sample to the point being
estimated as a weighing factor in their estimation. By doing so, the
underlying assumption is that data measured near the point of
interpolation are likely to be in more correspondence with the value to
be estimated. In science a range of techniques are developed to decide
on:

e the method the ‘weight’ has to be defined, and

¢ the effect each weight should have in the interpolation scheme.

! Interpolation is the process of transferring information from measuring points into space.
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A rational framework dealing with spatial variability and uncertainty on
the behaviour of phenomena is provided by the theory of random
functions.

1.1 Random function theory

By a random function, the structured and random character of a
‘REgegionalized Variable’ (REV?) is expressed simultaneously. In the
rainfall model, a REV represents the rainfall depth at a pre-defined
location for a certain period of time. A rainfall depth is gauged at, or
estimated for any unknown location. In the random function theory,
mathematical tools for the estimation of a REV are available. Although a
random function model does not describe the full spatial behaviour of
the rainfall, the model is able to represent the spatial distribution of the
rainfall depth. Restrictions to reliability mainly are due to the number of
measurements in relation to the, often, complex behaviour of the
phenomenon.

For characterising a rainfall field, in this study the first two statistical
moments are used. The first moment of a random field is expressed by
the mean while the variance, the covariance or the semi-variance
expresses the second moment. Subject to the stationarity of the rainfall
field, the second moment is defined.

The mean or the expected value of the random field z(x) is defined as:
Efz(x)]=m(x) [A1]

For characterising the dispersion around the expected value of the
random variable z, three-second order moments are available in
geostatistics:

e the variance:
Var[z(x)] E[ m(x ] [A.2]

) the covariance:

C(x1 ,Xz)z E[{Z(xl)*m(xl)}_ {Z(Xz)"m(xz)}] [A.3]

e the semi-variance:

¥(x,,x ———E[{z(x %) ] [A4]

2 AREV is described by a function, which gives at any point x the unique value of the property z
being studied; z(x). Applying a set of point measurements, a spatially distributed random
function modcl can be made.
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Stationarity of a random field

For characterising the spatial variability of a rainfall/evaporation field the
stationarity of the process is defined first. A process is assumed strictly
stationary if a random function describing this process is invariant under
translation. Weaker forms of stationarity are the first-order stationarity,
the second-order stationarity and the intrinsic stationarity.

First-order stationarity

If the random field is characterised by a constant mean value over the
spatial domain, the average value of z(x;) - z(x;) is zero. By first-order
stationarity an expression of the first moment, the mean, is defined
which expected value is constant and independent of x.

Efz(x)-z(x +h)]=0 [A.5]

Second-order stationarity v
When z fluctuates in space around a given mean m, without a definite
trend in any direction, the mean and the variance are the same
everywhere. The covariance C(h) between the process at points x; and x;
is independent of the individual locations x; and x; but only dependent
on the lag vector h where h = x; - x;.

E[{z(x)- m}{z(x + h)- m}] = C(n) [A.6]

The stationarity of the covariance presumes the existence of variance that
is finite and independent of x. If h tends to zero then the covariance,
C(0), approaches the variance of the random variable z:

E[{z(x)— m}z] = Var[z(x)] = C(O) [A.7]
The semi-variance has to be stationary:
1
vix,x+b) = 1(n) = > Blfz(x)- 2l + )Y [A.8]
The semi-variance is a measure of the similarity, on average, between

points a given distance, h, apart.

Under second-order stationary conditions the relation between the
variance, covariance and semi-variance makes one of the parameters
superfluous.




I Rainfall and Evaporation 243

The semi-variance is rewritten as:

y(h)=%E[{z(x)—m—z()ﬂ-h)—m}z] [A.9]

y(h)= % {E[{z(x)— m}’ ]+ [z(x +h)-m] —2E[{z(x)-m}{z(x + h)- m}]} [A.10]

y(h) = %{Var[{z(x)}]+ Var[z(x + h)]— 2Cov[z(x), z(x + h)]} [A.11]

Table A.1: Statistical parameters as subject to the process stationarity.

m m m(h)

: E[{z(x)-m}*] Efz(x)-m}*]
i Elfz(x)- m}z(x + h)-m}] i

- %E[{z(x)— z(x+ h)}Z] —;—E[{z(x) -z(x + h)}Z]

Intrinsic stationarity

When the rainfall field is assumed to be intrinsic stationary, the mean m
of the rainfall field is unknown. The intrinsic hypothesis (Matheron,
1989) requires stationarity for the increments of z(x) only. While the
expected value of the difference z(x)-z(x+h) may be zero, the expected
value of the square of this difference is not necessarily zero. By the
intrinsic hypothesis, a consistent set of assumptions can be made weaker
than second-order stationarity.

A random process z(x) satisfies the intrinsic hypothesis if the first-order
differences z(x;) - z(x;) are stationary in the mean and the variance:

E[z(x)-z(x + h)]= m(h) [A.12]

E[{z(x)- z(x +h)}] = Var[z(x)~ z(x + h)]= 2y(h) [A.13]
In the second-order stationary case, C(0) is bounded, constant, and
independent of x, so y(h) is finite and dependent on h. Second-order

stationarity automatically implies intrinsic properties. Under intrinsic
stationarity only the first-order differences of z(x) have finite variances.
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The variance of z(x) itself may well be infinite, in which case the
phenomena would not be stationary to the second order.

Var[z(x)]# Var[z(x +h))] [A.14]

When considering intrinsic stationarity, only a semi-variance can be
defined:

y(h)=%E[{z(x)—z(x+h)}2] [A.15]

Semi-variance

Matheron [1989] defines the function ¥ as a semi-variogram in which
one-half of the spatial variance Var[z(x)-z(x+h)] is presented as function
of distance. An estimation of the semi-variance with the existing data can
be made. From n measurements z;, it is possible to build n(n-1)/2
combinations of measurements, with locations x; and x;. Each pair is
associated with a distance vector h = x;-x;. The pairs are grouped in a
number of distance classes in order to have a significant number of pairs
in each class. The mean value of the semi-variance of all pairs in a
distance class, h;, is estimated by half the spatial variance var[z(x)-z(x+h)]
divided by the n; possible pairs of observations in that class.

The spatial variability of a rainfall field can be viewed when the mean
semi-variance of the different distance lag classes, y(h;), is plotted against
the mean distance of that class. The non-parametric estimator is:

y(h)jgm-)"iﬁf{z(xi)—z(xﬁh)}z (A16]

where:
v(h) = estimated semi-variance for the distance classes h
z(xi) = measured values at x;

z(xjth) = measured values within a distance class h
n(h)

amount of pairs in the distance class h.

The experimental semi-variance shows the expected difference in value
of two points against its distance. Kitanidis [1993] gives some guidelines
to obtain a reasonable semi-variance:
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e use three to six intervals,
e make sure you have at least ten pairs in each interval,

¢ include more points at distances where the differences between
calculated semi-variances are larger. Especially for large values of h
there may be significant differences between semi-variances calculated
from different subsets of data.

The idealised curves are defined as simple mathematical functions that
relate y to h. Generally the semi-variance is an increasing function of the
distance. In a stationary medium, however, the rate of increase minimises
to zero. The distance at which the maximum semi-variance, also called
the ‘sill’, C, is reached is called the ‘range’, a, of the phenomenon. The
range characterises the zone of spatial dependency of the data.

1.2 Stationary semi variogram models

In hydrology very often the spherical fit is used, its equation is given by:

3
y(h)=C,+C 3.3-1(3) for0<h<a [A17]]
2 a 2\a
y(h)=C,+C forh>a [A.18]]
Where:

Co = the nugget variance
C = the range of variance.

The nugget effect is a spatial un-correlated noise term caused by random
measurement errors and small-scale variability (variability over a distance
smaller than the distance between neighbouring observation points).

The nugget variance consists of the variance caused by measurement

errors, Gag, and the variance of the micro-scale process, Gy :
C, =0l +02 [A.19]]
0 ME MS .

The least square method very often is used to estimate the parameters of
the semi-variance from the experimental semi-variance. The problem
consists in estimating the parameters of the semi-variance when adjusting
a model of the semi-variance to an experimental semi-variance.
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1.3 Estimation techniques

Estimation by Distance Weighing

The values at the unmeasured points are estimated by a weighted mean
based on measured values of different sample points within a certain
area. The weights assigned to the measured data points depend on a
distance function. Delfiner and Delhomme [1973] make the following
comment with regard to distance weighting schemes:

‘Clearly, no general rule can be derived from experiment on particular
data and point configurations. Consequently, the choice of a distance
weighting function is more or less a matter of personal belief, of
tradition or of confidence in the device of influential authorities’.

Distance weighting schemes suffer from arbitrariness in the selection of
interpolation parameters, also they do not cope well with clustered data.
In hydrology, mostly the Inverse Distance method is used in which the
estimation weights are inversely proportional to the distances. The
weights in the distance function may be raised to a higher power to
increase the effect of the distance weighting function. Inverse distance
squared, however, is most commonly used:

Z'(xy)= 30 x Z{x,) [A.20]

i=1

/4>
xi_—__;_/ily_ fori=1,2,...,n.
2Va
[=
where dj; is the distance between the sample point x; and the point to be
estimated x;.

A characteristic of this equation is that the higher the distance weighting
power, the more swift the decline in weight becomes; sample points
further away will have less effect on the estimation value. For a higher
distance weighting power (>3), an estimate will become in more
correspondence with the value of the nearest sample point. For
simulating rainfall distributions, in general, it can be said that the higher
the spatial variability the higher the power must be in the distance
function. Convective rainfall events must be simulated by a distance
function to the power 2 or 3 while depression events must be simulated
by a distance function with the power 1 or 2. It also is recommended to
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apply higher power distance functions when temporal distributions have
to be simulated with high gauging resolutions. Annual rainfall and
evaporation distributions mostly are simulated by linear distance
functions. Interpolations by the inverse distance method give the best
simulation results when the sampling points are spatially distributed in a
homogeneous manner although the method does not cope well with
clustered data. In general, clustered data have a significant negative effect
on simulation results. By usage of Distance Weighing functions, no
assumption is made with regard to the type of stationarity of the process
that underlies the estimation.

Estimation by Kriging

By the Kriging technique a class of interpolators is denoted based on a
stochastic approach. The general formulation of the theory is provided by
Matheron [1969, 1970], and is named after D.R. Krige. A unique
advantage of the Kriging interpolation method is its ability to quantify the
reliability of prediction, to provide an estimate plus a confidence interval.

The objective of Kriging is to find the best linear unbiased estimate of a
linear function of field z(u). We will emphasise the estimate P, of the
true mean area precipitation P,. The qualifiers of the estimate are defined
as (after Bras and Iturbe, 1984)

Linearity: The estimator Pe is formed from a linear combination of the
observed values

n
P, =) %.z(u;) [A.21]
i=l
where A;, i = 1,....,n are a set of weights to be optimised according to
the criterion for “best” estimator.

Unbiasedness. This condition requires that the expected value of the
estimator P is equal to the expected value of the true mean area
precipitation Py

E[P.]=E[P ] [A.22]

Best criterion: The estimator is considered ‘best’ if it gives the smallest
estimation variance. The estimation variance, also called the mean square
error is defined as

ol = E[(P( -P, )2] = var|P, -P, ] [A.23]
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Very important for Kriging is the extent of stationarity of the process.
Today many different Kriging’ algorithms are developed depending on
the scope of work.

Central in these algorithms is that the variable ‘z’ is decomposed into
three continuous parts: a structural component, a purely random effect
and locally dependent errors. By Kriging techniques, the estimate, the
estimation error and the error variance in the estimation process are
calculated.

Estimate

If x denotes a point in space and z, is a function of x which is known in
the n observation points Xy, X2,..,Xn, then an estimate z*o) of Z(xo) at any
location can be made by:

Zio)= Zl: Ay x Zy, [A.24]
This estimate is obtained by a linear combination of the observed values,
multiplied by a weight A, for each of the observation points.

Estimation error

The difference between the estimate value Z‘(xo) and the true value Z,
for any set of weights is called the estimation error g If e.g. the weight
on the closest observation is one, and all other weights are zero, then the
value of the closest observation Zi would be used as the estimator Z" 4
of Zx0). The estimation error becomes:

£ex = Z'(x0) = Z(xo) = Zixi) - Zixo) [A.25]

If there is no trend (i.e. the stationary hypothesis holds) then Z’ () is an unbiased
estimate of Zq), the expected value of the difference between the estimated and
true value will be zero:

E[Z (o) Z(ooy |= 0= E[Z o) J= E[ Z )] [A.26]

3 Simple Kriging (Matheron, 1963) Ordinary Kriging (Matheron, 1971);Universal Kriging
(Matheron, 1969); Random Kriging (Serra and Marechal, 1970); Disjunctive Kriging
(Matheron, 1973); Co-Kriging (David, 1977);Factorial Kriging (Matheron, 1982); Dual Kriging
(Galli et al., 1984); Positive Kriging (Barnes and Johnson, 1984); Detrending Kriging (Chua and
Bras, 1980).
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Error variance

The error variance, also called the estimation variance, of this difference,
€est, 1S NOt zero: it is the mean of the squared difference. In the general
case with the estimated point being a linear combination of values
1,2,..,n, Eq.[A.24], the error variance is as follows:

o el 2] na
o = E[(Z xizmj[z A jz(xj)ﬂ ~ 2B\ Z 0 Zo )+ ElZi ) [A.28]
i=l =1

n n n
o’ = Zznh A E[Z(xi)Z(Xj)]' ZZ}HE[Z(M)Z(;«))]+ E[Z(zxo)] [A.29]
o i

Each observation contributes a different proportion to the total
estimation variance of Zg). There are an infinite number of ways in
which the weights are allocated, and each will produce a different
estimation variance. Among these, at least one combination of weights
must produce a minimum estimation variance. It is this combination that
Kriging seeks to find. If the covariance function; the semi-variance or the
covariance is known, the weights A; can be calculated. In case spatial
distributed rainfall and evaporation maps are required for catchments of
regional or larger scale, the ordinary Kriging is applied to perform the
spatial interpolation.

Ordinary Kriging

In ordinary Kriging the variable to be estimated has a constant but
unknown mean where all variation is statistical by second-order
stationarity or intrinsic stationarity and where the covariance function
can be defined without any underlying trend. Ordinary Kriging refers to
the following model assumption:

Z(x) =m+0t(x) [A30]

where m denotes the unknown stationary mean. The expected value of
the error at any particular location often is referred to as the bias.
Implementing the unbiasedness condition yields:

E[Z )= E[ Z(xo)] [A31]
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When substituting Eq.[A.2.3] we can write:
E[Z A z(xi)} E[Z))=m [A32]
ur
with the first constraint:
S =1 [A33]
i=l

Unbiasedness is guaranteed because the coefficients sum to 1.

The second constraint is that the error variance is minimal. The weights
A; have to be solved with the constraint that the error variance is
minimal:

E[Z'(xO)] = E[ Z(xﬂ)] = 2 il Aikj E[Z(xi)z(xj)]‘ 22 kiE[Z(xi)Z(xO)]'* E[Z(sz)] [A.34]
i=l j= i=]

This equation can be rewritten where the first term of Eq.[A.34] is the
covariance between z(xi) and z(xj):

E[ZZ ] =Cran [A.35]
the second term of Eq.[A.34] is the covariance between z(xi) and z(x0)
E[Z(XI)Z(XO)] =C(xi,x0) [A36]

the third term of Eq.[A.34] is the covariance of z(x0) with itself and is
equal to the variance of z(g). Assuming that all the random variables have

the same variance, the third term can be expressed as 62 or Cyy).

Combining these three terms again the following expression holds for
the error variance:

o’ =ZZM }"Jc(xi,Xj) - 22 )"iC(xi,xO) +03 [A.37]
=l = i=l

To find the set of weights that will give the minimum mean square error,
Eq.[A.37] is minimised subject to constraint Eq.[A.33]. This is
accomplished through the technique of Lagrangian multipliers that

minimises L y:

L) =%E[(Z(.x0) - Z(xO))Z]_ H[Z A —IJ [A.38]




I Rainfall and Evaporation 251

where:

u = the Lagrangian multiplier.

The optimal parameters satisfy:

D> A Clin) — 1 =Clroni =12,.0om [A.39]
=]

D=1

i=l

where:

Ci.xjy = the covariance of Z between the sampling points,

Cxo.xiy = the covariance between the sampling points x; and the
estimated point Xp.

In this method the weights are selected on the basis of the spatial
structure of the phenomenon.

The same solutions in terms of semi-variances give:

n

DAY i) — B = Vsl = Li2sewvenn [A.40]
=
Z A =1
i=1
where:

Yxixj) = the semi-variance of Z between the sampling points,
Yxo.xiy = the semi-variance between the sampling points x; and the
estimated point Xg.

These formulas can be shown in a matrix:

[Youw)  Yoarn2) ¥ (x1,xn) 1 M Yo |
Yoza)  Yixzx2) ¥ x203) 1 Aol | Yox2)
x| .. l=l . [A.41]
Ynx)  Y(xnx2) Y (xn,xn) 1 A, Y (x0,xn)
L 1 1 1 o | lu] | 1|
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With the solutions of the weights the error variance is found on the
reliability of the interpolation:

olzﬁ(x()) = E[(ZZxO) - Z(xo))z]= Z}“j‘Y(xO.xj) + p’ [A42]
=1
or, in case the chosen model is second-order stationary:
2o =ElZie - Zo F = Gy = 2 A43
See0) = EZixo) - Zisoy) |= Coy = 2 M ¥ (x0g) + 1 [A.43]
=

The estimation error variance, ci, can be viewed as depending
exclusively on the number and the locations of the rain gauges.
Therefore o} is an efficient tool for solving network optimisation
problems such as the optimal choice of measurement locations. It must
be emphasised thato? is not the variance of the actual real spatial
estimation error but a simulation error that represents a theoretical
measure of the relative accuracy of the various estimates. For estimating
the value of the non-visited point Eq.[A.24] is applicable.

Remarks

When n is large, it is a formidable task to get the results of an
interpolation. But since A; decreases as the distance between x¢ and x;
increases most points far from xo can be omitted from the calculation
without serious consequences. Another reason for limiting the area is
that the variogram is best known for small values of h and becomes less
accurate as h increases. In this case one speaks of 2 moving
neighbourhood. When using the Kriging interpolation method, it is very
important to make an accurate semi-variogram since the accuracy of
Kriged estimates depend mostly on the goodness of the computed semi-
variogram, which is the most critical part of the Kriging technique.

The calculations made with Kriging are mostly done with software-
packages among such as GEO-EAS, GEOSTAT and Surfer.

II Overland flow model

A DEM of the catchment is required for simulation of overland flow in a
distributed manner. Figure A.1 presents the spatial discretisation of a
catchment surface by a raster grid where grid elements are indexed by a




1I Overland flow model 253

on———» !
N
f i-1
N 3 i
..... D
v i i+1
- \
v
Figure A.1: Simulation of the catchment Figure A.2: 5-Point calculation
shape by a raster grid. scheme.

j»1 grid co-ordinate system. All grid elements of the DEM are rectangular,
uniform and thus of equal size. In order to simulate the catchment shape
and size, a catchment boundary file overlies the DEM to differentiate
‘active’ elements form ‘in-active’ elements. Active elements make up the
catchment while inactive elements are ignored in any model simulation.

For the simulation of overland flow a 2 dimensional calculation scheme
is developed. The overland flow model requires the use of a DEM and a
grid layer indicating the boundary grid elements at the catchment divide.
At these elements a no-flow boundary condition is implement. For any
active element and for all calculation time steps, the conservation
equation of mass is solved that has the general form:

Wahof +aQof,x +aQof,y _

S;=0 [A.44]
ot ox oy

where

w = width of flow [L]

hos = thickness of water layer at land surface [L]
Qorx = overland flow discharge in x direction [L*T)
Qofy = overland flow discharge in y direction [L* T
t = time [T

Ser = sink/source term overland flow model [L* T
X,y = horizontal Cartesian co-ordinates [L].

For solving Eq.[A.44] the 5-point calculation scheme of figure A.2 is
applied. For all grid elements the water depth is simulated by considering
the water flows from the orthogonal connected grid elements and the
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sink/source term, S,¢. Rewriting Eq.[A.44] in finite difference form

yields:

t+1 t
of ,j,i _hof.j.i _ anJ—I/Z.i —Qof,)'+l/2.i

h Qi — Qi
w + of j,i-1/2 of j,i+l/2 _ Sof
At Xz ~ Xjoyai Yiinz " Yji-p2

[A.45]

In x direction the width b becomes equal to yji+1/2 - ¥j,i-12 (i.e.Ay) while

in y direction b becomes equal to Xji+1/2 - Xj,i-1/2. (i-e. Ax). Rewriting

Eq.[A.45] for hyr at location i,j for time instant t+1 and with

consideration of the previous statement, the following expression is

developed:

h:;tj,i =h:)f,j‘i + (Qof,j-l/Z.i _Qol‘,j+l/2,i +Qof,j,i—l/2 _Qof,j‘iH/Z )%"’ Sue % [A.46]
where
Qof, j-1124 = overland flow discharge at from left grid element  [L’ T']
Qof, j+112,i = overland flow discharge from right grid element  [L*> T}
Qot, j,i-112 = overland flow discharge from upper grid element  [L* T™]
Qof, j,i+12 = overland flow discharge from lower grid element  [L* T™']
At = time increment [T]
A = surface area grid element (i.e. Ax.Ay) [LY]
Sot = sink/source term overland flow model [L*T).

This equation constitutes the governing equation by which the overland
flow water depth at any grid element is simulated. For the simulation of
the overland flow discharges Qj.1/2,i, Qj+1/2,i, Qji-172, and Qji+1/2, the
Strickler-Manning hydraulic resistance equation [A.47] is used:

Q=k, biR”h [A.47]
where
Q = discharge [L’T]
b = width of grid element [L]
1 = energy gradient line [-]
R = hydraulic radius [L]
h = water depth [L]
km = reciproke of the Manning resistance coefficient [L”T).

In the overland flow model only sheet flow is considered. By
approximation the hydraulic radius, R, so becomes equal to the overland
flow water depth, hos:
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Qof,x = km'b‘\/i;'hiéhof [A48]

For the overland flow model a mixed calculation scheme?* is developed.

In this scheme the linear part of the overland flow water depth, hey, in

Eq.[A.48] is solved by implicit calculation while the non-linear part, b’}

of »
is solved by explicit calculation. The reciproke of the Manning
coefficient, km the slope gradient of the DEM in x-direction, i, are
model parameters that remain constant over time. For the overland flow
dischargcs Qof,j+l/2.i’ Qof,j,uz,i, Qof,j‘iﬂ/g and ng‘j,i-l/z, the set of equations
[A.49] is developed.

For the reciproke of the Manning resistance coefficient, knm, the average is
taken for two connected grid elements in the direction of flow. The slope
gradient in x and y direction is defined by the hydraulic gradient of
connected elements. For the water depths a factor is assigned to the water
depths of two neighbouring grid elements to weigh water depths for
discharge calculations.

s,
Q _ kj+1,i +kj,i b hj+l,i tZ; +hj,i +Z,; (1)/3,
28T e 151 -
2 X ~ X5 2

((2 - C)hjﬂ,i + Chj,i )% ((2 - C)hjn,a + C.!hj,i )

5
Q. = Kiw K b. btz +hy HZi | 1 A.
=124 2 x " 5

LT M

((2 -C}lj—l,i + Chj,i )% ((2 - C)hj—l.i + Chj,i )

5
Qs = K +kj.i b. b+ Zjin +hj; +z;; (1]/3
e 2 Yiiet ~Yii 2

((2 - C)h jin TCh ji )% ((2 - C)h sin TChy; )

5
Q.. = ki, +k; b hj,\ +z,,+h, +z,, (1)/3
by 2 Yii T Yii 2

((2 - C)hj,ivl + Chj‘i )%((2 - c)hjj—l + th,i)

[A.49]

*+ During the coding, preliminary simulation results showed that a forward in time calculation
scheme was not suitable due to reasons of numerical instability.
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In any simulation, the water depth of the upstream grid element gets
assigned the value (2-§) while the water depth of the downstream grid
element gets assigned the value {. In the descriptions of Eq.[A.49], it is
assumed that the grid element with indexes i,j always is the lower of the
two connected elements. Therefore, in the formulations of Eq.[A.49],
the weighing factor £.is assigned to the grid element with index i,j. In
any calculation, the computer code is able to define the appropriate
weighing factor by analysing the DEM slope gradients of connected grid
elements. By substitution of the Stickler-Manning equations Eq.[A.49]
for the flow discharges in Eq.[A.46] and by calculating the sink/source
term due to rainfall, infiltration and/or exfiltration, a general expression
is obtained for simulation of the water depth h at time instant t+1. In the
numerical model the effects of rainfall, evaporation, infiltration and
exfiltration on the overland flow water depth are defined preceding the
overland flow simulation in the subsequently the rainfall, evaporation
and groundwater flow models.

For reasons of convenience in the formulation of the numerical model

" and also for programme coding it is assumed that the grid element with
indexes i,j is the lowest grid element. So for calculating the thickness of
the water layer at the land surface, all four overland flow discharges Q;.
12,is Qj+172,is Qj,i-12, and Qji+1/2, contribute to the new water level. The
water depths h;; at time instant t+1 are calculated by

he =hy, + (e, (2 - b+ ht )+ b, (2-oni, +cnt )+

[A.50]
(@:l2-om + )+ eyil2-mig + i)
where
% (k, A+k..)
1 jHla 1 31 At
bj.i=(5) . 2 ‘/lj_l((z C)hﬁln Ch )}/
Ak +k.. y
es=(3) R A O o
lj,i
A (k.» k. )
1 jin K At
df[ij Huattu) «/T«z Oy + 015
_ [A.51)

(e-omram P2

2 ‘/;_
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When rewriting Eq.[I1.7] this gives a coefficient equation:

aht + (o, (- O )+ (- Oni, )+

[A.52]
(4, (@-one )+ ey (@-nit )+ £, =0
where
a; = (_ 1+ ij,i +C.:Cj,i + C.sdj,i + er.i)
fii= hj,

Eq.[A.52] presents the general flow equation in case the grid element
(i,j) has the lowest elevation for the 4 orthogonal connected grid
elements. As stated, the weighing factors between the connecting
elements will change subject to the direction of flow.

In the programme code of Flowsim, the ADI method (Peaceman and
Rachford, 1955) is selected to solve the set of equations for the overland
flow model. By the ADI method, differential equations for simulation of '
overland flow are partly solved in an implicit manner. The ADI method
is applied to single grid elements and follows the general description:

T+, HBCP = ([ VIO + o f [A.53]
(T+0, VIO = (-0 HRO 1o f [A.54]

where

I = unit matrix

h = vector variable

op = iteration constant

p = the number of the iteration step

H = horizontal part of coefficient matrix

V = vertical part of coefficient matrix

f = vector variable

In matrix notation Eq.[A.52] is expressed by:
AR +£=0 [A.55]

By dividing the coefficient matrix in a vertical and a horizontal part, the
variable h**! is solved implicitly. By Eq.[A.55] the main diagonal of
unknown coefficient matrix A has positive values where A is divided in a
horizontal part, Ha, and a vertical part, Va.

H,h* +V,h" +f=0 [A.56]
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Also coefficient aj; of Eq.[A.52] is divided in a coefficient for the
horizontal part, aH;;, and a coefficient for the vertical part, avj;.

a;; =_%+(ij.i +ch,i) [A.57]
avj; = _% + (qdj.i + Cej.i) [A.58]

Rewriting Eq.[A.52] in matrix notation of the form of Eq.[A.56] and by
substitution of Eq.[A.57] and Eq.[A.58] for Ha and V, respectively, the
general matrix equation for calculating overland flow becomes:

by b
[aHj.i(2 - C)bj,i (2 - C)cj,i h;::,i + [avj,i (2 - C)dj,i (2 - C)ej,i h:t:»l + fj,i =0 [A-59]
ht«ﬂ ht<+l

J-ld -1

Implementing the Peachman Rachford procedure
Rewriting Eq.[A.59] by implementing the Peaceman-Rachford
Eq’s.[A.53] and [A.54] gives respectively:

2p+l
h.i.i

h?}” ' -a, [aHj_i(Z - Q)bjj(2 = C)cj,i h;’,’;‘
h2p+l
i

[A.60]
hff’
hi? +a, [an,i (2 - C!)ij,i (2 = ij,i hi‘i’u +1;
hi?,

and

[y, 2p+27]
h?

hili”z -Q, [an,i (2 - C)d 3 (2 - C)e j.i} hf,?ff
L

[A.61]

[h2et]
3
hi]i”' ta, [aHj.i(z - C)b,'.i(z - ijlj h?&fil +1;

2p+l
_hj'l’i i
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To solve Equations [A.60] and [A.61] a double sweep procedure is
applied. In this procedure a horizontal forward sweep, a horizontal
backward sweep, a vertical forward sweep and a vertical backward sweep
are defined. By the horizontal forward sweep the explicit coefficients in
horizontal perspective are defined by considering the water depths of the
previous time step. In the horizontal backward sweep the new water
depths are calculated. By the vertical forward sweep the vertical
coefficients are calculated by considering the water depth of the
horizontal backward sweep while by the vertical backward sweep the
watcr depth for time instant t = t+1 are calculated. The final water depth
for time instant t = t+1 is defined through iteration. In the following the
coefficients are defined for the orthogonal connected elements.

These coefficients reduce to zero when grid elements become dry or
when a grid boundary element is simulated. For both flow conditions a
no-flow boundary condition is introduced into the calculation scheme.

Horizontal forward sweep

By the right hand side of Eq.[A.60], the equation parameters of
Eq.[A.48] and the water depth, hj;, hjj+1, hji1, at time instant t =t are
defined:

h??
x, =h? +a | [aV, (2=, 2~ Q| h2%, |+, [A.62]
h?®

Ji-1
By substitution of x;, of Eq.[A.62] for the right hand side of Eq.[A.60]
the following expression is obtained:

h2p+l

hi‘im -a, [aHj,i (2 - C)bj,i (2 - C)Cj,l hf—r‘"’} =X, [A.63]
b

Rewriting Eq.[A.63] for x;,i/ -a, gives

2p+l
Jil

SN = [(aHj,i - L](Z - C.»)bj.i (2 - Q)c“} hfml [A-64]
a, a,
hj2p1+ll
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For solving Eq.[A.64] the water depth h;;, is expressed by the double
sweep equation:

=ah,, +B, [A.65]

JAT L

For the forward horizontal sweep, the coefficients a;; and B;,; are

defined when Eq.[A.65] is expressed for hj. ;:
hj .i= j-Li )1+B1—l1 [A66]

and when Eq.[A.66] is substituted in Eq.[A.64]:

X 1 +] +
- =[aHj,i _a_]hi? : +(2_C) ]1hjzfnl
P

a, [A.67]
(Z_C)cj,i(aj—n ]1+ﬂ,-11)2p+l
When rewriting Eq.[A.67] forh}!* gives:
R = (2_C)bji h;r;-jl _
[aH ~—J+(2 gkm j—ll
ap
X [A.68]
(2 ‘C)cj,iﬁj.n,i "'a_i
[ J+(2 Ck}) 1—11
where
== @G, [A.69]
[ ) (2 Ckn _I—ll
(2 ck] |BJ~11
By =~ [A.70]

[aH ] (2- c)c,.

For j = 2.to.n-1 all values for a;; and B;; are defined by Eq.[A.69] and
Eq.[A.70] respectively. At the watershed boundary with j = 1 or j = n, the
coefficients a;; and B;; are defined by the boundary condition.
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Horizontal backward sweep
By Eq.[A.68] the overland flow depth, hi}" is calculated by the

* g
2P+1

horizontal backward sweep. hi;" Now is calculated by the subsequent

2P+1
JHLi

substitution of the water depth hi!'at grid element with index j+1,i. By

implementing the no-flow boundary condition at element j = n, the
overland flow water depths are defined. Based on Eq.[A.68] all overland
flow water depth for j = n to 1 are calculated by:

hff” = aj_ihip:il + Bj,i [A.71]

Vertical forward sweep
By considering the water levels of Eq.[A.71], the right hand side of
Eq.[A.61] is calculated:

h?PH
_|,l

v, =0 vo | [aH (2 Q)b (2~ e, | 3 |+, [A.72]
llgp+1

i

when rewriting Eq.[A.72] for yj,i/ -0, this yields

h2P+?
y . 1 ]
=M= [an,i— (2-0);; (2~ Ceys | h32Y [A73]
ap @p h2pt

i1

2P+2
ji

For solving Eq.[A.73] by a double sweep is the water depth h
expressed by:

h,?,:uz = (X'j.ihir:lz +Bji [A.74]

Analogous to the procedure of calculating the coefficients o and Bj,i by
the horizontal forward sweep, the coefficients a;; and B;,; of Eq.[A.74] is
calculated by Eq’s.[A.75] and [A.76]:

(2 - C)dj,i

@, =- [A.75]

(avj.i - L] + (2 - g)ej,i(xj,m
Oy
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(2 Ck]lB]l—l +—
By =~ 2 [A76]

[av ——] Lo Chya,

For i = 2 to m-1 all values for a;; and B;; can be defined by Eq.[A.75] and
Eq.[A.76] respectively. At the watershed boundary a;; and B;; must be
defined by the boundary condition. For i = 2 to m-1 all values for a;; and
Bj.i are defined when a;; and B;; for i = 1 and i = m are defined. This by
implementing a no-flow boundary condition. The overland flow depths

as defined by the horizontal backward sweep are substituted in
Eq.[A.72].

Vertical backward sweep

By the calculated ay; and Bj,i the corresponding values of hj;**are

calculated by the backward sweep of Eq.[A.74]:

hif™ = ahil + By,
Calculation of the coefficients oy, and B,; for boundary elements
By analysis of the DEM, all grid elements are labelled by use of a GIS to
indicate whether grid elements are active or inactive during model
simulations. Grid elements outside the catchment boundary are in-active
and labelled ‘0’ while all other grid elements are active and labelled by a
value ranging from 1 to 17. The labelling of a grid element is according
to the scheme of figure A.3. The code represents a type of flow element
and is required by the numerical code. Boundary elements are active grid
elements that are neighboured by any element with code ‘0’. For the
boundary elements the coefficients a;; and B;; reduce subject to the
connected elements with a no-flow boundary flow condition. In the
numerical scheme, a no-flow boundary condition is also simulated in
case the overland flow water depth reduces to zero. For such elements
the flow of water out of an element is not possible and thus,
mathematically, should be treated as a boundary element.

For grid elements in j direction three types of no-flow conditions are
defined. For each flow condition the values of a;; and Bj; are defined for
the double sweep equation Eq. [A.65]:

hy; =ohy,, +B;,

F R il 13 K]
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Figure A.3: Labelling of grid elements.
No-flow type I: ¢;; = 0
_ (z_g)bj.i A7
code=0 code#0 code=0 %=~ 1 [A.77]
[aHj'i —_J
ap
X;;
Bii . [A.78]
o,
;=0 [A.79]
X
(Z_C)Cj,iﬁj—l,i + "(;J”’
Bii=-— 2 [A.80]
o 1
[aHj,i - _j + (2 - C)Cj,iaj—\;.
[ ap
No-flow type III: bji =0, ¢;; =0
e ;=0 [A.81]
code=0 code#0 code=0 ! X
Xji
o
[A.82]

For grid elements in i direction also three types of no-flow conditions are
defined. For each type the values of a;; and B;; are defined for the double

sweep equation Eq. [A.65]:
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by =o,h,, +B,

3ol G el
No-flow type IV: ¢ji=0

‘ 2-¢\d..
! gl | ey = _ ooy [A.83]
code# 0 . ' 1
i an.i -—
| a‘p
code#0 ‘
| Yy
Lo | a
| i+ m—— P
code=0 ) 7 i Bi; 1 [A.84]
‘ av,;, - —
S P
No-flow type V: dj;=0
| [A.85]
code=0 )
y..
(2 - C)ej,iﬂj,i-l + =
| code# 0 % [A.86]
i 1
| (avj.i - a_] +(2- C)ej.i“ji-n
| code=0 P
|
No-flow type VI: dj;= 0, &;;=0
——— 4,0 [A.87]
il
code=0 ¢ ! Yii
! o
By =—— [A.88]
1
code = 0 [a i _)
ap
code=0 | J’!ﬂ
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Figure A.4: Simulating overland flow runoff into the channel.

Mass exchange Overland flow - Channel flow models

During model simulations, overland flow runoff into the channel model
is simulated when a channel element is present in an element of the
overland flow model (see figure A.4). In the overland flow model mass
exchange is simulated through a sink term while in the channel flow
model a source term is simulated. For each overland flow-channel flow
element such sink/source term is simulated. The effect of the sink term
of the overland flow model is calculated within the implicit calculation
scheme. The magnitude of the sink term is defined by a 1-dimensional
Strickler-Manning flow Eq.[A.94] and is simulated at the scale of an

overland flow element.

Water transport towards the river is simulated by:

» * %
. Zjyait h RTEa T hj.i h"+1,i + hl‘.i *
Q 2 = k i -hJ : = : '(h j.i)

X ~ X 2
y [A.89]
s Zj; +h.‘,i ~Zjyi _h"—l.i h!'Al.i +h".i Y.
where
Qi = Overland inflow from cell fraction (j+1/2,1) [L*1"

Qi = Overland inflow from cell fraction (j-1/2,1) [L*T]
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Equations are solved for the intermediate iteration steps t* and require
the use of the updated overland flow water depth of the preceding
horizontal or vertical backward iteration step h". The magnitude of the

sink term S}'i of the overland flow model is defined by:

- s $ At
Sj,i = (Q i T Q /2, )_K [A.90]
where
S;‘i = Opverland flow sink term at grid element (j,i) [L]
At = time increment [T]
A = surface area grid element (i.e. Ax.Ay) [L?]

During model simulation, for the first horizontal forward iteration step,

h;; .is used in Eq.[A.62]. In the succeeding backward step a new overland

flow depth h;i is calculated through:

h = Mﬁ [A.91]
Bt S'i
1+
h;;

and is used in the succeeding vertical forward step of Eq.[A.72]. In the

following vertical backward step a new water depth h}}'is calculated by

use of the updated h:.,i and the sink term S;,ﬁ

pot = i [A.92]
St Sj,i

1+
h;‘i

The effect of the source term of the channel flow model on the channel
flow water depth is defined in an explicit manner in a sense that prior to
channel flow routing the water depths are increased by the source term.
In case of a flood condition (i.e. the hydraulic heads of overland flow and
channel flow models are higher then the DEM-elevation) the simulated
sink/ source term are reduced in such a manner that hydraulic heads of
the overland flow model and channel flow model become equally high.
As such the hydraulic head of the channel flow model cannot become
higher than the hydraulic head of the overland flow model and flooding
of the overland-channel flow element is simulated
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III Unsaturated subsurface flow model

For simulation of unsaturated flow, the spatial discretisation of the DEM
is adapted. Spatial discretisation in vertical direction is achieved by usage
of multiple model layers. To each grid ccll of a subsurface model layer a
variable depth is assigned that, when multiplied, by the size of the
element gives a cell volume. By the applied discretisation, the subsurface
is described in a full three-dimensional perspective. Water storage per
cell is simulated by the model algorithm of the unsaturated subsurface
flow model. Water flow in the unsaturated subsurface is simulated by a
1-dimensional model approach.

The applied conservation equation of mass reads:

§9+%+sz =0 [A.93]
ot oz
where
0 = soil water content [-1
t = time instant [T]
qst,z = specific discharge unsaturated flow in z direction (LT
z = elevation head (L]
Ssf = sink/source term subsurface flow model [T"].

While the momentum equation rcads:

As, =—k(9).(w+ 1) [A.94]
) 0z
where
Qstz = specific discharge subsurface flow in z direction (L T"]
h(8) = pressure head subject to 6 (L]
k(8) = hydraulic conductivity subject to 6 [LT"]
z = elevation head [L].

Both the pressure head and the hydraulic conductivity are functions of
the soil water content. In the model approach, the reference level is
chosen at the bottom of the model domain while the momentum
Eq.[A.94] is solved in upward direction.

The flow equation of the unsaturated flow model is obtained through
substitution of the momentum equation [A.94] in the continuity of mass
Eq.[A.93].
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{ o[ 220 |
% + z +8,=0

ot 0z

[A.95]

In describing the flow of water, the use of the pressure head has the
advantage that the pressure head remains continuous at the boundaries
between the layers. The use of Eq.[A.95] has the advantage that for the
entire flow region both the saturated flow and partially saturated flow is
described. (Feddes et al., 1988).

By substitution of the momentum Eq.[A.94] for qs in the continuity
Eq.[A.93] and when rewriting 80/6t for 6h(8)/ot, Richards flow equation
(Richards, 1931) is obtained for describing water flow in unsaturated
flow conditions:

ohe) 1 a{k(h(e){él_l(i)ﬂ)},i [A.96]

ot C(h(0)) oz oz C(h(e))
where
C(h(0)) = soil water capacity (i.c. 60 / dh) [L]
Set = sink/source term unsaturated subsurface [T].

In Eq.[A.96] the pressure head h(0) is the dependent state variable. In
rainfall-runoff modelling the soil water content is the dependent state
variable since the generation of the saturation overland flow is closely
related to the soil water storage condition. Changes in water storage in
the unsaturated subsurface are due to infiltration, percolation, capillary
rise and saturated flow. When groundwater table depths change over time
in a simulation, the volume of soil water in the unsaturated zone changes
and a redistribution of soil water storage is simulated. This redistribution
is calculated by the unsaturated flow Eq. [A.95].

In the mathematical model, the continuity equation [A.93] is discretised
in the vertical flow direction. An index n is added to the horizontal
indexes 1,j in order to geo-reference the cell in the column of subsurface
cells. The index n, ranges from 1 to N and represents the centre of a grid
cell at which the nodal points are placed (see Figure A.5).

When the sink/source term, Sy, is set to zero then Eq.[A.93] in
discretised form reads:
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Figure A.5: Schematised representation of the unsaturated flow model.
0, -6, Qop Do | _ 0 (A97]
At Zn+l/2 - Zn—l/2
where
8" = soil water content at nodal point n at time instant t+1  [-]
8. = soil water content at nodal point n at time instant t -]
Q. = specific discharge at point n+1/2 and time instant t [LT]
q,.y, = specific discharge at point n-1/2 and time instant t [LTM
Z,., = layer elevation at point n+1/2 [L]
z,y, = layer elevation at point n-1/2 [L]
At = time increment [T].
For the soil water content at time instant t+1 this gives
At
+1
0, =6, + (qn—l/2 ks PY) )Z [A.98]

n+l/2 T Zn~1/2

The momentum Eq.[A.94] in discretised form for qa+1/2 is expressed by:
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q“+1/2 — kn+l (9); kn(e).(hnﬂ (9)— hn (9) + 1) [A99]
Zn+1 _Zn
while for qq.1/2 this equation changes to:
Quyz =— kn (e)+ kn-l (e)(hn (9)-1‘1"_] (e) + 1} [A. 100]
2 Z,—Z,,
where
zZn = layer elevation at nodal point n [L]
zn+1 = layer elevation at nodal point n+1 [L]
Zp-1 = layer elevation at nodal point n-1 [L].

By substitution of Eq.’s [A.99] and [A.100] for qn+1/2 and gn.1/2 of
Eq.[A.98], the following expression is obtained:

- kn(e)+kn_l(e)_(hn(e>—hn_l(e)+ln_

2 Zn_zn—l
' =0 + At (A0

n (_k.m(9)+kn(9){h,,+l(e)—hn(9)+l)) Zou2 = Zoyp2

2 Zn+1 +Zn

The soil water content 6" becomes the dependent state variable, where

the index t+1 indicates the time instant. In figure A.6 a schematic of the
model approach is presented.

Equation [A.101] makes up the flow equation of the subsurface flow
algorithm. This equation is solved by an explicit calculation scheme. By
Eq.[A.101] the processes of infiltration, percolation and capillary rise are
simulated. By qiop and Quowom the water inflow and outflow of the
unsaturated zone is calculated that act as boundary flow conditions for
the sub-model.

Boundary conditions and model interactions.

By the inflow discharge quop the process of infiltration at the overland
flow model is simulated while, if activated, by Qpottom 2 head dependent
flow boundary is simulated. Mostly, however, Qpotiom is set to zero and
thus a no-flow boundary is implemented. The rise and drop of the
groundwater table and possible exfiltration as caused by saturated
groundwater flow are simulated through updating the total soil water
storage in the column of grid cell. Changes in water table depths are
simulated subject to the change in the water volume stored in the
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subsurface column. If all cells of a subsurface column become saturated,
groundwater starts to exfiltrate since the hydraulic head of the water
exceeds the DEM-elevation height.

For simulation of qqop, the potential infiltration rate qjnr is defined first.
In the model approach it is assumed that the pressure head becomes zero
in case a thin water layer is present at the land surface due to rainfall or a
saturated exfiltration front. By such assumption the momentum
Eq.[A.99] then reduces to:

Qs = —ks{ By +1] [A.102]
Z— Iy
where
ks = hydraulic conductivity in saturated conditions [L T}
hy = the pressure head of the subsurface top layer [L]
z)s = elevation of the land surface [L]
zn = layer elevation of nodal point N [L].

If by rainfall a water layer develops at the land surface, this water layer
will partly or completely infiltrate as subject to the infiltration capacity.
If the potential infiltration capacity qins X At is larger than or equal to the
thickness of the water layer hof, then qp is set to become equal to the
actual infiltration rate and is defined by:

h
Qup = Aotf [A.103]

The actual infiltration depth over At is equal to her. It is obvious that qeop
reduces to zero in case the depth of the water layer becomes zero. In case
the thickness of the water layer hr is larger than the actual infiltration
Qinf X At, then the infiltration is equal to the potential infiltration (i.e.
Qinf = Quop) 2nd a new water layer at the land surface is defined by:

h2e =h2 - (q,,, xAt) [A.104]

For all elements of the top layer (i.e. n=N) the soil water content is
defined by:

+ ) At
e;ql =0y +(QN-;;2 +q(op)A_Z [A.105]
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For simulation of Qpotom the following equation is applied:

Gponon =—(k"(9)+ks ){hn(e)‘h“ +1) [A.106)
2 Z,—Z,
where
ks = hydraulic conductivity in saturated conditions [LT"]
kn(8) = hydraulic conductivity in highest unsaturated cell [L T
hy(0) = pressure head in highest unsaturated cell of soil column [L]
hyt = pressure head at groundwater water table [L]
Zwt = elevation height of the groundwater table [L]
z, = elevation height of highest unsaturated cell [L].

Since the pressure head at the groundwater table is equal to zero,
Eq.[A.106] changes to

qm.,m=—(k“(e)+ksj{ h, (0) +1j _ [A.107]

2 Z,~Z,,

For all elements of the bottom layer (n=1) the soil water content is
updated by:

+ At
e:l = 9:1 + (qu - Qnﬂ/z)z‘; [A’IOS]

Soil water content, pressure head and hydraulic conductivity

The use of the hydraulic conductivity and pressure head as function of
water content, requires information on the soil characteristic curves

k(8) - 6 and hyy(8) - 6. For simulation of these curves the Van Genuchten
relations [1980] are implemented that define the hydraulic conductivity
and the pressure head as a function of the effective soil water content.
Effective means that only a part of the water contents contributes to the
flow processes. The effective water content, 8., is expressed by

0, = 8-, [A.109]
n-6,
where
0 = soil water content [-]
0, = residual soil water content (-1
n = porosity [-]
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The relation between the effective soil water content and the hydraulic
head, h(8), is expressed by (Van Genuchten, 1980):

m

0, :{W(IGW} [A.110]

When rewriting Eq.[A.110] for h(8) and after substitution of Eq.[A.109]
for 6. this gives:

h =1 —1+(9_9']m [A.111]
o n-6,
where
o = constant [L"
m = constant [-]
n = constant [-1.

The constant o is comparable to the so-called bubbling pressure head .
at which air starts to escape form the soil matrix by wetting of the soil.
The values of y, may be obtained through for example the use of pedo-
transfer functions. The values of yy, generally range from 0 to -50 cm and
are subject to the soil type.

The relation between the saturated and unsaturated hydraulic
conductivity has the form (Van Genuchten, 1980):

@{9-9,)2 1- 1—(9‘9']m [A.112]

ks n—er n—er
where
0 = soil water content [-]
O = residual soil water content (-]
k(8) = hydraulic conductivity as function of 0 [LT")
ks = hydraulic conductivity in saturated conditions LT
hm(0) = pressure head as function of the soil water content [L]-
The constants m and n are defined as follows:
A
n=A+1 and m=—0 [A.113]

A+l
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The value of A can either be defined through laboratory experiments or
model calibration or can be defined based on the use of pedo-transfer
functions such as developed by e.g. Rawls and Brakensiek [1985]:

—0.7842831+0.0177544.5-1.062498 n—0.00005304.5* -

0.00273493.C%+1.11134946.m —0.03088295 S.n+
A =exp [A.114]
0.00026587.8* n*-0.00610522.C* 1*—0.00000235.8>.C +

0.00798746.C* —0.00674491.1>.C

where

S = percentage sand

C = percentage clay

N = porosity of the soil

By the flow equation [A.101] the soil water content is updated per
calculation time step and per grid element of the unsaturated zone
model. In case this content exceeds the available storage volume, an
element is saturated. In the computer code an element is saturated in case
the calculated soil water content 8, becomes larger than the phreatic
storage coefficient. Since only phreatic flow conditions are considered,
the storage coefficient is equal to the porosity n,. For any grid cell, the
water volume that exceeds the storage volume is added to the unsaturated
grid cell that overlays the saturated cell. Water will remain at the land
surface in case the infiltration depth exceeds the storage depth of the
unsaturated top cell.

IV Saturated subsurface flow model

For simulation of saturated subsurface flow, a model approach similar to
the overland flow model is applied. Water flow is simulated in two-
dimensional perspective by use of a conservation equations of mass and
momentum. Saturated flow is simulated in a single grid layer where the
applied discretisation of the DEM is adapted. In vertical perspective the
saturated thickness is lumped into one aggregated cell. In the model
approach only saturated flow in phreatic flow conditions is simulated
and, as such, in terms of runoff contributions, only rapid groundwater
flow in shallow systems is simulated.
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The conservation equation of mass reads:

ahh.wt +aqsf.x +aq5f.y

S o x 2y =S [A.115]
where:
S = storage coefficient [-1
hpwt = hydraulic head of groundwater table L]
t = time instant [T]
qstx = specific discharge saturated flow in x direction [L*T™)
qrsy = specific discharge saturated flow in y direction [L*TY
S« = sink/source term saturated flow [L T
X,y = Cartesian space co-ordinates [L].

while the Darcy flow equation of motion is used for quantifying the
specific discharges:

dh
=-k.h, —* A.116

qsf s sat dl [ ]
where
gst = specific discharge saturated flow [L* T
ks = saturated hydraulic conductivity [LTY
he: = thickness of saturated zone [L]
hy = hydraulic head [L]
1 = distance in direction of flow [L].
Hydraulic head

For any simulation time step and preceding the simulation of saturated
subsurface flow, the hydraulic head as driving force for saturated flow is
calculated. Such force is defined by use of a saturated subsurface layer
thickness that is simulated in the column of cells in the combined
unsaturated-saturated subsurface model approach. The saturated
thickness is defined by summing the thicknesses of saturated cells and an
equivalent unsaturated zone water thickness in which the effect of the
saturation degree on saturated flow is considered. By extensive model
test, such approach proved to be effective in order to accommodate for
the effects partially saturated cells must have on saturated groundwater
flow. For any unsaturated cell a threshold value for the soil moisture
content is defined above which the soil moisture content contributes to
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the calculation of the ‘effective’ saturated zone thickness. The threshold
moisture content is defined according to;

lim0 =0, +coeff(n—0,) (A.117]

where

lim0® = threshold value for moisture content
0, = residual moisture content

coeff = threshold coefficient 0 <coeff < 1
n = porosity.

In case the actual moisture content exceeds the threshold value lim0, the
saturated zone thickness and thus the ‘effective’ water table height
increases according to

Awtb =(0-6,)Az, [A.118]

The water table height is defined by adding this height to the water table
of the fully saturated cells. The hydraulic head as driving force in the
saturated flow model now is set by adding the total water table height to
the elevation height of the model bottom. This bottom height on its turn
is simulated by subtracting the total soil layer depth from the DEM
element heights.

Saturated subsurface flow is simulated by an explicit numerical
calculation scheme based on Eq.[A.117].

Numerical approach

The flow equation is obtained by substitution of the expression of qgr
and Qgry in [A.115]. For quantification of the saturated flow discharges
of Qgex and qgry, the expression of Eq.[A.116] is followed. The flow
equation [A.115] is solved in two directions and, after discretisation, the
inflow and outflow discharges to each grid cell are calculated. This
conservation of mass equation in discretised form reads:

+1 t t
S :.(j.i) - hh(,-,i) + [ q;f(jﬂ/z,i) - q;i(j—l/z,i) ] + [qgf(j.i+l/2) - q:;f(j,i—l/z) ] =S, [A.119]
=S, .
At X(jsy/20) = X (-12,) Yiisy2) ~ Y(i-y2)

that, after rewriting for the dependant variable h'! | yields:
g P b(jd)> Y

Bt pto 4 [QLrU_l/u)*q;r(,-u/z,s)J +[q;r(j.i-1/z)‘q;r(j.m/z)] +S ]At [A.120]
h(ji) h(ji) _ ef S
X (jey2i) = X (j-y2i) Yiiiry2) = YGi-y2)




1V Saturated subsurface flow 277
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Figure A.6: Schematic representation of the finite difference scheme
of the saturated flow algorithm.

where
hyy = hydraulic head at cell j,i and at time instant t+1 [L]

b = hydraulic head at cell j,i and at time instant t [L]
q;f(j_l/zyi) = specific discharge saturated flow at j-1/2,i [L*T]
Qie(yai) = specific discharge saturated flow at j+1/2,i [L> T
Qye(in) = specific discharge saturated flow at j,i+1/2 [L* T]
Qge(iyz) = specific discharge saturated flow at j,i-1/2 [L*T]
Sef = sink/source term saturated flow [LT"]
S = storage coefficient (-1

A schematic of the finite difference scheme of the numerical flow model
is presented in figure A.6.

In the subsurface flow model the hydraulic head hyjj, is defined by
means of Eq.[A.116] that makes use of the hydraulic head hy;and the

specific discharges of the orthogonal connected grid cells for time
instant t. This scheme thus is characterised as fully explicit.
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The specific flow discharges qgrj+1/2.is Qgfj-1/2.is Qgfji+1/2 and Qggji1/2 are
defined over the effective saturated zone thickness of the flow model
while the spatial subsurface discretisation of the soil column of grid cells
is disregarded. In this approach, the saturated subsurface flow is
simulated over an aggregated column of saturated cells while calculation
nodes in a column are replaced by a single calculation node. For the
aggregated cells, averaged values of the model parameters are required.
The transmissivity over an effective saturated column is defined over the
cells that are entirely saturated and the top cells that is partly saturated:

_— Nsat

Kiba) = st(j,i.n)'Az(j.i.n) [A.121]
where
K ;ihugs = average transmissivity for aggregated cell j,i [L T
ks(j,i,n) = saturated hydraulic conductivity at cell j,i,n [LT]
Az i n) = layer thickness of cell j,i,n [L]
Dgat = lowest unsaturated cell in column -1

The depth of the saturated flow profile is bounded by the bottom of the
model and the calculated hydraulic head in each column of grid cells.

The Darcy flow equation [A.116] is discretised as follows:

rgorasy = ki) i + Ky “Bhgas) | B =P
JHl/2, *
2 Xei) =X i)

v _[ K nga) + K -ht,(,«_l,i)] By) = i)
Qe (r24) = -

2 X ()~ X (14)
. _ | R Mag) T Ko By | Phgaen ~Paga A122]
Qt(jistr2) = 2 - ~ [A.
X (i) T X(i)

‘ _ _[ Ky By +Kogion “Pigioy J By~ Magion
Qt(ji-r2) = .

2 X5~ X(ji)

In figure A.7 a schematic for the simulation of saturated flow is
presented. Saturated cells of a column are aggregated into one cell and
inflow and outflow from the cell is simulated at the interface between
connected aggregated cells. Although the schematic suggests that the top
and bottom of the model domain are flat, in the mathematical model the
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Figure A.7: Schematic of aggregated grid cells and saturated flow simulation.

grid cell elevations differ. The top layer represents the elevation heights
of the DEM and the bottom represents the hydrological base of the
model.

The saturated flow in the model effects the soil water storage in the
unsaturated zone by updating the saturated flow volume over the
aggregated cells. At the end of a calculation time step also the soil water
storage of the unsaturated zone cells is updated and water must be added
to, or subtracted from the total volume of stored water. A soil water re-
distribution procedure is developed and is termed the corrector
procedure. In this procedure the change of the water volume is
redistributed over the grid cells of the unsaturated soil cells. In case
saturated flow causes a decrease of the water stored in any column, water
is subtracted from any unsaturated cell where the decrease of soil
moisture is proportional to the saturation degree. When the filling of a
cell is simulated, all water is added to the lowest unsaturated cell in the
column of subsurface cells. By such approach, an updated soil moisture
distribution is simulated when compared to the soil water distribution as
calculated prior to the saturated flow. The updated distribution is used in
the succeeding simulation time step of the unsaturated zone model. In
case over-saturation of the top cell takes place, subsurface water will
exfiltrate at the land surface. By this exfiltration the overland flow water
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Figure A.8: Schematic of mass exchange in the saturated subsurface by channel-
groundwater system interaction.
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Figure A.9: Schematic of mass exchange in the unsaturated subsurface by channel-
groundwater system interaction.

depth is updated at the end of the simulation time step and is used in
Eq’s [A.46] and [A.49] at the beginning of the succeeding time step.

Interactions between the groundwater flow and channel flow models are
simulated by a head dependent boundary condition commonly known as
the Cauchy boundary condition. Exchange fluxes are simulated for every
time step and are subject to the hydraulic head of the groundwater flow
model and the hydraulic head of the channel flow model. In figure’s A.8
and A.9 schematics are presented for the simulation of mass exchange
between the subsurface and channel flow models for draining and
infiltrating channels. Mass exchanges in the model approach is
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obstructed by use of an hydraulic resistance value, C, that represents the
combined effect of the entry resistance of water to flow through the
channel bottom and the radial flow resistance that, in real world systems,
is observed near the channel bottom. The hydraulic resistance value is
calculated by the quotient of the thickness of channel bottom and the
vertical hydraulic conductivity of the channel bottom.

Mass exchange between the channel flow - saturated subsurface flow
model is simulated by:

t 1+]
t+1 hch(j.i) _hgws(j.i)

Qg == [A.123]
where
Qaews = exchange flux channel - saturated flow model [L T]
hyisy = hydraulic head of channel flow model at element j,i [L]
h;;ls(j,i) = hydraulic head of saturated flow model at cell j,i [L]
C = hydraulic resistance at channel bottom [T].

Exchange volumes are quantified by multiplication of qch,gws With the
cross sectional flow area of the channel bottom. The exchange volumes
are added or subtracted from the aggregated saturated subsurface cell via
the sink/source term Sg¢. In case over-saturation of the top cell occurs,
water will exfiltrate at the land surface. The Cauchy type boundary
condition Eq.[A.123] also is applied to flow situations where the channel
flow model is disconnected from the saturated subsurface due to the
presence of an unsaturated grid cell underneath the channel cell. A
schematic of the channel flow infiltration model in unsaturated flow
conditions is presented in figure A.9.

In both infiltration situations the hydraulic head of the groundwater
system is fixed at the elevation height of the channel bottom in order to
prevent the simulation of unrealistic high seepage fluxes. The exchange
volume is added to the specific subsurface element at which the channel
bottom is simulated.

V Channel flow model

For the routing of runoff water in the channel network a one-
dimensional flow model is developed. In the model approach, the DEM
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is adapted and serves for the geometrical projection of the channel
network layout in a model grid layer. By such approach an exact
simulation of the real world network layout is not possible since channel
flow grid elements are geo-referenced by the resolution of the DEM.
Also, the numerical model is solved in orthogonal connected grid
elements only and the accurate geometric simulation of the channel
layout is restricted further. The channel network system is subdivided in
channel segments and channel flow grid elements that, when combined,
make up a segment. Segments may be connected to multiple upstream
and/or downstream segments and the structure of the connected
segments make up the entire channel network. Figure A.10 presents an
example of a channel layout network system as simulated by the flow
model.

Channel flow routing within the entire channel network system is
achieved through the simulation of water movement from head-water
elements downstream to the catchment outlet element. Within each
segment water is routed from the inflow (or headwater element) to the
outflow element while each outflow element is connected to an inflow
element of the down-stream segment. One inflow element thus may be
connected to two outflow elements when channel segments merge and
both segments contribute to the downstream flow discharge.

The groundwater flow model, the unsaturated zone model and the
overland flow model are linked through the DEM. The DEM is used for
spatial discretisation and for geo-referencing the calculation nodes of
each of the model sub-domains.

For the simulation of water transport the conservation equation of mass
and the Strickler-Manning hydraulic resistance equation are applied. The
one-dimensional conservation of mass equation reads:

My, %Ba g g [A.124]
ot 17)
where
hep = water depth channel flow [L]
t = time (T]
qen = specific discharge channel flow [L*T]
Sch = sink/source term channel flow model [LT']

1 = spatial co-ordinate in direction of flow [L].
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Figure A.10: Geometric representation of channel network layout.

‘ while the channel flow discharges are calculated by the Strickler-
Manning equation:

Q, =k_.A, R [A.125]
where
Qcn = discharge [L*T7]
km = reciprocal of Manning resistance coefficient [LY? T?]
Acn = wetted cross sectional area (L7
R = hydraulic radius [L]
i = energy gradient line [-]1.

In the numerical approach, both equations are discretised in time and
space over the model domain. The conscrvation equation of mass is
discretised and solved for each grid element and specific discharges are
simulated at the boundary of the upstream and downstream clements.
Discretisation of Eq.[A.126] over a channel flow grid element gives the
following expression:

hl+l t

i " Benj | Dz ~Yjwp2
At Xj2~ X

+S,, [A.126]

or, when rewriting for water depth, hy';, this gives:

Bt Q2 ~Dje2

Gl=hl+ At+S, At [A.127]

X2~ X2
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v

Figure A.11: 3-Point calculation scheme

where
qj-1/2 = specific channel flow discharge from upstream element [L> T"']

gj+1/2 = specific channel flow discharge to downstream element [L? T']
At = time increment [T]
Sca = sink/source term channel flow model [LT].

By the sink/source term, Sc, runoff contributions from overland flow
and groundwater flow are simulated and channel flow water depths are
updated. These depths are used in the channel flow routing algorithm
and are used to update the channel flow water depth at the end of the
simulation time step t+At.

For quantification of the specific channel flow discharges of Eq. [A.127],
discharges are defined by the Strickler-Manning equation [A.125] and
are divided by the cross sectional flow area of the channel elements. Eq.
[A.127] now becomes:

hl+l =h! +[Qj‘1/2 _Qjﬂ/z.]ﬁ.'.schAt [A128]

ch,j ch,j
X2 X ch

For solving this equation a three-point calculation scheme is developed.
For all grid elements the water depths are simulated by considering the
inflow and outflow from the upstream and downstream grid elements
respectively, and the runoff contributions as simulated by the sink/source
term. In figure A.11, a schematic about this calculation scheme is
presented.
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In Flowsim only rectangular cross-sectional flow areas are considered
where cross sectional flow areas are quantified by multiplication of the
width of the channel section, by, by the water layer depth hep. In this
approach the hydraulic radius, R, is equal to bep/(2+bcn/h).

For Qj+1/2 and Qj.1/2, the following expressions of the Strickler-Manning
equation [A.125] are developed:

%
, b chin +(2-¢)h!"
Q w2 = kmju/z-b-\/ L2 b > [A.129]
24— —
Chi, +(2-C)h;
%
. b (2-¢h" +¢h
Qj =K jya D2 | 2b 12] — |[A.130]
24—
(2-C)hi, +Ch;

where the gradients ij+1/2 and jj.1/2 represent hydraulic gradients. By
substitution of Qj+1/2 and Qj.1;2 from Eq.[A.129] and Eq.[A.130] in
Eq.[A.128] and when ignoring the sink/source terms S, this yields:

i = + (e (2~ hit + 47 )= (o, n + (2~ Ons) [A131]

where

%

_ ij+l/2 b A l
bj —km,j+|/2-b-‘/ili~ 2b A ) 2
| 2T ¢
Ch,, +(2-C)h
[A.132]
%

1y b

A
Vipe |24 20 A

(2-C)hj, +h;

and where ij is the hydraulic slope gradient.

¢; =k, ;b

N |-

After rewriting Eq.[A.131] this gives
ahj" ~bChiil +¢;(2-C)hjT +d; =0 [A.133]
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where
a;=(-1-(2-C)p; +¢c)) [A.134]
d; =h; [A.135]

For solving Eq.[A.133] a double sweep algorithm similar as to the
overland flow model is introduced.

Implementing the double sweep algorithm
The general double sweep equation reads:

b = o hlt + B, [A.136]

i
while in the notation for h;, this gives:

t+l
hij=a,

h +B,, [A.137]

After substitution of the expression of h{] from Eq.[A.137] in

Eq.[A.133] and when rewriting this equation for h}"the general form of

the double sweep equation [A.136] is obtained where a; and B; are
defined by Eq.[A.139] and Eq.[A.140]:

Y e )
hj N (2 —g)“j(lj_, +a, l'lj+1 +[ (2 ”_.C)quj—I vy [A138]
B ‘;bj A.139
BT Ok va [A.139]
__(2oCkpy+d; o

ﬁj a (2—C,)cu +a;

i

It is obvious that both the inflow and outflow are simulated. When
elements ‘fall dry’ during a model calculation time step, the coefficients
are reduced subject to the flow condition. Specific flow conditions relate
to the inflow and outflow discharges of an elements and conditions
defined are; Qj+1/2 = 0 and Qj.12> 0 ; Qj+12> 0 and Q.12 =0 ; Qj+12=10
and Qj.;2 = 0. In the following the appropriate expressions for the double

sweep coefficients o and B; are given.
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Calculation of the double sweep coefficients a; and B; for zero flow
conditions

Boundary grid elements are marked by the code number ‘0’ and
correspond to the code as applied in the overland flow model. In figure
1.2 the use of code numbers is explained.

No-flow type I: Qj.12 =0 = ¢j=0

" code=0 code#0 code=0 b,
: a; =1 [A.141]
it 1 i
L - d
Bj :—;J— [A.142]

No-flow type II: Qj+12 =0 = bj=0

code#0 code#0 code=0 a;=0 [A.143]

_ (Z_C)ch'-l +dj
Bj = ——————(2_C)Cja‘j_l ta, [A.144]

No-flow type III: Qj.;2 =0 and Qj+12=0 = b;=0,¢;=0

 code=0 code#0 code=0 ;=0 [A.145]

By =h; [A.146]

Segment connectivity by inflow and outflow elements

Segments are connected by the inflow and outflow elements. In a
segment such elements are defined when the spatial orientation of a
segment changes direction within the two-dimensional grid or when two
segments come together at a confluence element to form a single
segment. Since the mathematical model only is able to simulated channel
flow in one direction (i.e. either j-direction or i-direction), a separate
procedure is developed to transfer channel discharges from one (or two)



288 Appendix A; Mathematical model

j1 j jHb o jr2
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meew

Q"”2=Qb°“ld Q,nrz +Q,~||/: =Qhonud
Il inflow element
I} Outflow element

Figure A.12: Schematic of perpendicular  Figure A.13: Schematic of segment
connected seoments. connectivity at confluences.

segments into the downstream segment. In the figures A.12 and A.13 two
schematics are presented for flow situations of perpendicular connected
segments and confluences of two segments.

Inflow element

At the inflow elements the channel flow depth is simulated by the inflow
from the upstream segment(s). Each inflow element so makes up the first
clement of a segment and water flow out of the element is simulated by
the procedure described above. The inflow to these elements is simulated
by use of a sink/source term approximation. Calculated discharges at the
boundary between the outflow and inflow elements are converted to a
channel flow water depth and added to the water depth of the inflow
elements as defined at time instant t. This procedure is applied to
perpendicular connected segments and to confluence elements. Such
inflow is termed the boundary inflow, Qpeund that, as shown in figure
A.12 ,is equal to Qj+1/2 while boundary inflow that is shown in figure
A.13 is equal to Qj+1/2 + Qj+11/2. The change of the water depth at the
inflow element due to Qpeung NOW is updated through simple calculus;
Qbouna is divided by chaea that is defined by multiplying be, with the grid
size.

By the sink/source term of an inflow element also the overland flow and
groundwater inflow are simulated. The procedure to simulate the change
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of the water depth at an inflow element prior to the simulation of the
outflow now becomes:

Ah; =hi e %—hqA:ammd [A.147]
Outflow element

The outflow discharge at the outflow elements also is simulated by a
double sweep procedure that is based on the same procedure as applied
to the normal clements of a segment. The procedure requires a small
modification since the outflow element becomes the end element of the
upstream segment and so this makes that the inflow element is part of
the downstream segment. For simulation of the outflow discharge, hence
the hydraulic gradient at the outflow boundary is not known. Therefore
for each outflow element an imaginary grid element is added to the
segment and the bottom slope gradient at the outflow boundary is set to
be equal to the gradient at the inflow boundary. For the calculation of
the outflow discharge the water depths of the last two elements are used
and so a water depth at the imaginary element is not required. For the
outflow and normal elements various inflow and outflow situations are
defined. The double sweep coefficients are defined in the following
manner.

The continuity equation for an outflow element with index J reads:

A

hrl = h} + (Q;-lfz - Q;n/z)A
ch

[A.148]

After substitution of Eq.[A.130] for Q] ,,in Eq.[A.148] and after

rewriting this gives

a,hy" -k, Qyz + ¢, (2-¢h;+d, =0 [A.149]
where
a, =(-1+¢c}) [A.150]
k, = & [A.151]
ch
d, =h; [A.152]

where ¢; follows the expression from Eq.[A.132]. For any end point,
Q). s defined by:
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%

- b "
Q.‘l+l/2 = kmb 1j—1/2 b h; ' [A.153]
2+ -
hJ
The coefficients a; and B; in the double sweep equation [A.138] are now
defined. The double sweep equation for j = J reads

h}*' = a,h;:: +B, [A.154]
while for
h;tll = a]—lh;ﬂ +By, [A.155]

After substitutions of this equation for h}} in Eq. [A.26] and A.[153] for

Q).y,in Eq.[26] the following expression for hj" is obtained:

) ~(2-C)e,p,,—d
B = ( g)c,p,%l : [A.156]
Ky kbl -

b
YA + (2 - C)clal-l +a,
+ A,
]

Both inflow and outflow are simulated. When implementing the flow
conditions I to III Eq.[A.156] changes to

No-flow type I: Qj.i2=0 = ¢j=0

]
ofife=0; code # 0 d #0 hiY = -d, > [A.157]
3
-k, k,b,/i b +a
J m J-/2 +yt 1
o - J
No-flow type II: Qj+1/2 =0
code;tO code # 0 kcodex”’=ko e =ﬂM [A.158]

(2 - C)CJQJ—I +a,
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Figure A.14: Channel shape and geometry by the
Strahler order network approximation.

No-flow type III: Qj.;2 = 0 and Qj+;2=0 = ¢;=0

code=0 code#0 code=0  p _-4 [A.159
a]

Channel network geometry

For the simulation of the channel network layout a Strahler-ordering
scheme is adapted. Segments of the channel network system are indexed
by a Strahler-order number and segments are indexed by the modeller.
For each Strahler-order, similar channel shape geometries and Strickler-
Manning roughness coefficients are defined. The hydraulic resistance
value, C, (Eq. [A.121]) for the simulation of channel flow - groundwater
flow interactions are defined per grid elements and so vary may over a
channel segment. In the model only prismatic channel shapes are
considered. By such approach, it is obvious that gross simplifications are
introduced into the model. For parameterisation of the channel flow
model, such simplifications cause a significant reduction of the parameter
demand although it must be kept in mind that such simplification may
have pronounced effects on the routing of runoff volumes in the channel
flow model. In figure A.14 a schematic on the implementation of the
Strahler ordering scheme is presented.
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I Groundwater

For model calibration, time series of observed water table depth are
selected from the data set that has been made available for this thesis by
UL For the subsurface, the data set comprised time series of
observations for 144 piezometers from which 102 are located within the
catchment (figure B.1) Analyses focussed on the winter period of 1999
since piezometers and sensors of the network had been checked by the
Ul in 1998.

For each piezometer researchers at Ul have compared manual
observations of the water table depth with sensor observations of
automated data loggers. By this comparison a number of piezometers
could be rejected for further analysis due to malfunction and observation
inconsistencies and are indicated by a red label in figure B.3. It also was
revealed that a number of piezometers had been installed at a depth
above the fragipan instead of at the fragipan. Such piezometers also are
considered as inappropriate for further use and are indicated by a purple
label.

The objective of further analyses it to identify a number of piezometers
that can be used for model calibration. Piezometers must have
trustworthy time series and reliable readings in a sense that the depth of
the groundwater table clearly must respond to rainfall events and
groundwater flow across the catchment. An ensemble data set of
observation time series must be selected in which the observed
groundwater behaviour clearly supports the theory of the saturation
overland flow mechanism.

The first analysis dealt with visual interpretation of the observation time
series. For each piezometer a groundwater hydrograph is produced and
analysed. In figure B.2 groundwater hydrographs for each piezometer are
shown and represent the depth of the groundwater table below the land
surface. A positive value for the water table depth indicates a water layer
at the land surface. It is observed that 2 number of piezometers have
readings with water layers at the land surface of 10 cm. or more.
Although researchers of UI have observed water at the land surface,
water depths were only shallow. Therefore, in the analyses, piezometers
with readings of water layers at the land surface of 10 cm. or more are




1 Groundwater 295

Figure B.1: Piezometer network of the Troy area.

rejected and classified as unreliable. As such piezometers 7.6, 7.7, 6.9,
5.5, 4.4, 4.5, 3.5, 3.8, 3.10 and 0.2 are disregarded for further analyses.

The second analyses focussed on whether characteristics of the
groundwater flow behavior that underlies the saturation overland flow
mechanism could be identified in an ensemble of piezometer time series.
For such analyses a number of piezometers are combined in a sub-data
set by making cross sections along the catchment. In total seven cross
sections are constructed that are indicated in figure B.3.

For each cross section the water table distribution along the hill slopes is
created for 5 consecutive days, from February 27 till March 3, at 12.00
A.M. This time period follows a short period with extreme rainfall as
indicated in figure B.11. On February 28 and March 1%, 17 mm. and 16
mm. of rainfall is recorded respectively, while on February 27 and on
March 2nd and 3rd no rainfall was recorded. The hydrological state of
the catchment therefore is characterised as very wet were saturation
overland flow most likely is generated.
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Figure B.2: Ground water table hydrographs for each grid column of piezometers.

For the time series to be selected for model calibration it is a pre-
requisite that the groundwater fluctuations that cause exfiltration and
generation of saturation overland flow is reflected in the time series of
selected piezometers along the cross sections. In the following, each of
the cross sections is discussed and a selection is made for piezometers to
be used in the model calibration.

For each cross section three graphs are made and are presented in the
figures B.4 through B.11. In these figures, the first graph represents the
hill slope elevation and the water table depth with respect to the datum
of the catchment (i.e. the lowest point of the Troy area). This graph
gives specific information of the shape of the hill slope and the location
of each piezometer on the hill slope. In the second graph, water tables
are drawn for the 5 consecutive time steps. For each piezometer the
water table level below the land surface and the water tables across the
hill slope are drawn. These graphs give specific information on whether
exfiltration and saturation overland is generated during and shortly after
the rainfall events of February 28 and March 1. Such observations also
should be consistent with water table depths as observed in the upper
sections of the hill slopes. In these figures the depth of the fragipan is
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. Sensor does not . Sensor installed . Sensor outside
function properly at unknown level catchment
above fragipan
. Sensor indicates . Sensor with ‘zlz Sensor number
a water table above no errors reported

the land surface

Figure B.3: Selected cross sections of piezometers along the catchment.

added in order to evaluate the water table depth with respect to the
fragipan. The third graph presents the response of the water table to
precipitation. Graphs are constructed for the month of February and
March and give specific information on the groundwater fluctuations as
observed in each piezometer. In the graphs it can be observed whether a)
exfiltration will occur, b) the groundwater depth along the cross section
is decpest at catchment boundary and shallowest at the channel with a
gradual decrease of depth and c) the theory of saturation overland flow
generation in the catchment is supported by the field data.

During the analyses it was revealed hat the observation network is of
(very) poor quality and (very) unreliable. The cause of this is due to the
manner the network is installed. During installation of the piezometers,
the fragipan depth is measured at each piezometer location and this
depth serves as the elevation reference for the observation time series of
the individual piezometers. As such, piezometer levels are gauged with
respect to the bottom of the piezometer and thus the time series of
observations are referenced to the fragipan depth. During the analyses it
proved that the fragipan depth was poorly defined. Within the cross
sections relatively large differences in the fragipan height are observed
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and are not in correspondence with fluvial and geomorphologic hill
slope considerations. In the second set of graphs it is observed that the
shape of the fragipan dominates the water table distribution along a cross
section. In the third set of graphs this phenomenon shows up when
piezometer hydrographs are compared. Observations of the time series
often are separated by a constant water depth. A ‘deep’ fragipan shows
‘deep’ water table levels while a ‘shallow’ fragipan shows ‘shallow’ water
table levels below the land surface. A clear example of this phenomenon
is given by comparison of piezometers 0.5 and -2.7 in section 5. For
obtaining a more reliable network, each piezometer must be re-surveyed
were the top of the piezometer is defined with respect to the datum.
Observations then must be made with respect to the top of the
piezometer.

Cross section 1

In cross section 1, piezometer with ID 7.10, 5.8, 3.6 and 1.4 are analysed
that are located at 0, 36, 72 and 106 m. respectively in the cross section.
For the very wet period February 23 and March 1, piezometer 1.4 shows
the smallest water table fluctuation, 7.10 shows the largest fluctuations
while 5.8 shows fluctuations in between. It is surprising that at the end
of February all piezometers have water table depths close to, or even at,
the land surface. This, however, only is expected for 1.4. It also is
observed that, after rainfall ceased, the up-slope area rapidly depletes
while at the lower section the drainage volumes from the up-slope area
cause a much slower depletion. Time series of 3.6 and 5.8 are classified
as unreliable since water levels are out of a realistic observation range.
For 3.6, levels generally are to low while for 5.8 levels are too high. The
cause of the errors most likely is that the depth of the fragipan, and so
the depth of the piezometer, is wrongly defined.

Cross section 2

In cross section 2, piezometers 4.6 and 4.7 are ignored from analyses
since they are classified as unreliable by researchers of UL In the
analyses for this thesis, 4.5 and 4.6 are ignored since sensors failed
during the wet periods. As such only 4.8, 4.9 and 4.10 are used that are
located at 0, 15 and 30 m. in the cross section. Piezometer 4.8 shows the
smallest water table fluctuation with water tables up to the land surface.
Time series from 4.9 and 4.10 show rapid responses to rainfall while at
inter-storm periods a rapid depletion of the (up-slope) groundwater
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Figure B.5: Graphs of cross section 2.

system is observed. A groundwater rise to the land surface is not shown
in the figure for the heavy rain event in the second half of February.
When comparing piezometers 4.9 and 4.10 to 7.10 and 5.8 in cross
section 1, it is uncertain which readings are reliable. Although a
groundwater table rise up to the land surface is clearly observed in 7.10
and in 5.8, this is not observed in 4.9 and 4.10. For 4.8 it is surprising
that only very little depletion takes place in between rainfall events. The
same behaviour, however, also is shown in 5.8 in cross section 1. It is
preliminary concluded that 4.9 and 4.10 are suitable for model
calibration. Further comparisons to other piezometers, however, are
required to be more conclusive.
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Figure B.6:

Cross section 3

In cross section 3, 0.2 and 0.3 are classified as unreliable by the
conclusions of previous analyses. At first, 0.6 is rejected since

Graphs of cross section 3.
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Figure B.7 Graphs of cross section 4.

fluctuations are not in range with the other piezometers. Regarding the
position of 0.7 on the hill slope, this also shows uncertain water table
levels. Water level fluctuations are to small and, generally, water levels
are too high. Fluctuations in 0.10 and 0.9 have great similarity with those
of 4.9 and 4.10 in cross section 2. The rapid response to rainfall and the
rapid depletion is observed in all four piezometers and also the water
table depth below the surface shows similarities. 0.8 Shows water table
depths that are smallest for the whole cross section and as such are not
realistic. 0.5 On the contrary shows deepest water table depths that,
considering its location on the hill slope, also must be questioned. It is
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concluded that 0.4, 0.9 and 0.10 are the most reliable in cross section 3
and possibly suitable for use in model calibration.

Cross section 4

Piezometers -3.10, -3.9 and -3.5 show great similarity in water level
fluctuations that are considered relatively small. -3.9 Shows water levels
that generally are 20 cm lower than piezometers -3.10 and -3.5.

Piezometers -3.4, -3.6 and -3.8 show much larger fluctuations and more
rapid responses to rainfall. Hydrographs from -3.4 and -3.8 show great
similarity although graphs, approximately, differ some 35-40 cm. in
depth. Piezometer -3.4 is positioned near the catchment boundary while
-3.8 is positioned at the middle section of the hill slope.

Conclusions on reliability of time series are difficult to make. When
assuming that -3.8 is correct than it is unexpected that -3.6 has lower
peak levels since the up-slope area from -3.6 is much larger than-3.8. For
the same reason it also is expected that -3.10 must have deeper water
levels than -3.9. It is surprising that, in an explanatory sense, -3.10 and
-3.9 do not match with time series of up-slope piezometers of other
cross sections. For -3.5 it is unexpected that fluctuations are smaller than
-3.4. The overall conclusion is that all piezometers of this cross section
must be exercised with care. Based on physical reasoning, the two most
reliable piezometers likely are -3.4 and -3.6.

Cross section 5

Groundwater levels in 0.5 are unrealistically low as compared to 1.4 and
-1.6. Piezometer 1.4 is located near by the channel and, as such, shows
very shallow groundwater levels while -1.6 is located at the middle hill
slope and shows rapid response to rainfall and a gradual depletion of the
subsurface. By physical reasoning, such depletion is expected at -1.6 and
also groundwater levels are at, relatively, shallow depth. -5.10 Shows
rapid responses to rainfall and also rapid depletions of the subsurface.
Compared to -4.9, piezometer -5.10 shows much smaller water table
fluctuations for, in particular, periods of heavy precipitation. -2.7 and
-3.8 shows great similarity for groundwater level fluctuations as well as
for the water table depth. Both piezometers show hydrographs that very
well could be explained by physical reasoning. The theory underlying the
mechanism of saturation overland flow generation is observed in
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Figure B.8: Graphs of cross section 5. Figure B.9: Graphs of cross section 6a.

this cross section. It is concluded that 1.4, -1.6, -3.8, -2.7 and -5.10 are
the most reliable and are suitable for use in model calibration.

Cross section 6a

In this cross section 2.8 and 3.8 already are rejected by previous analyses.
High groundwater table levels in 8.8, 5.8 and 4.8 should, potentially,
generate overland flow. Such overland flow generation, however, is not
realistic for 8.8, 7.8, 5.8 and 4.8. This since 8.8 is at the up-slope
catchment boundary and since the up-slope areas for 7.8, 5.8 and 4.8 are
relatively small. In the theory of the saturation overland flow mechanism
such water table rise can only be explained in the vicinity of the channel
where the up-slope groundwater flow system is largest.
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All four piezometers therefore are rejected. Piezometers 0.8 and 6.8
show similar groundwater table behaviour although 0.8 shows more
rapid groundwater depletion. Regarding the locations of 6.8 and 0.8 on
the hill slope cross section this is unexpected. To be conclusive on the
reliability of 0.8 or 6.8 for use in model calibration is difficult.

Cross section 6b

Piezometer -1.8 is rejected since high water table levels are not observed
but readings are probably caused by a failure of the sensor. All other
piezometers show rapid responses to rainfall and also rapid depletions of
the subsurface. Hydrographs also show great similarity and only
differences are shown with respect to observed water table levels.
Regarding the upslope piezomecters -5.8, -6.8 and -7.8, it is surprising
that -7.8 records higher water levels than -6.8 while this piezometer has
higher water levels than -5.8. Based on physical reasoning the opposite
behavior should be observed in the series. Comparing -3.8 to -2.8 at the
middle hill slope section, it is observed that water levels in -2.8 are
gradually higher than in -3.8.

The same behavior is observed by comparing -2.8 to 0.8. All three
piezometers show similar responses to rainfall and also subsurface
depletion occurs rapidly without any storage delays. Considering the size
of the up-slope area the rapid depletion is expected and 0.8, -2.8 and -3.8
therefore show time series that are suitable for use in model calibration.
Regarding the analyses in cross section 6a, piezometer 0.8 is the most
uncertain.

Cross section 7

In this cross section the piezometers -4.4, 3.4 and 2.4 are rejected by
previous analyses. All piezometers show rapid responses to rainfall with
highest water levels in piezometer at the bottom section of the hill slope.
Piezometer 1.4 is situated near the channel and shows high water levels
for the entire period. Regarding the series of 5 piezometers, only the
time series of 0.4 shows unexpected groundwater behavior. Piezometer
-3.4 at the catchment boundary shows the deepest water levels and the
least fluctuation compared to -2.4 and -1.4. Hydrographs from these
piezometers have higher water table levels while the water table itself
generally is at shallower depth. Also the depletion of the subsurface
shows an increasing delay when moving from the upslope piezometer
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Figure B.10: Graphs of cross section 6b. Figure B.11: Graphs of cross section 7.

-3.4 to the downslope piezometer -1.4. It is concluded that the
groundwater behavior shown in this cross section supports the theory of
the saturation overland flow mechanism. Observed water table
fluctuations, the depth of the water table along the hill slope cross
section and observed time delays in the subsurface depletion process
support the theory. It is therefore concluded that 1.4, -1,4 -2,4 and-3.4
are suitable for model calibration.

The final and overall conclusion is that piezometers 4.8, 4.9, 4.10, 1.4,
0.9, 0.10, -1.4, -1.6, -2.4, -2.7, -2.8, -3.4, -3.6, -3.8 and -5.10 could be
used for model calibration although clear saturation overland flow
periods cannot be identified. Most piezometers are selected since, when
combined, they show consistent dynamic groundwater flow behaviour of
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Runoff measurements Troy catchment January-May 1999
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Figure B.12: Runoff records Troy catchment for the period January-May 1999.

the rapid risc of the water table towards the channel reaches.
Unfortunately such rise up to the land surface is only observed by few
piezometers.

II Rainfall-runoff

For analyses of the precipitation-runoff records the period January-May
1999 is selected. Runoff measurements in the Troy basin started at
January 13, 1999 by a Thomson weir equipped with an automated data
logger. Runoff recordings are available at regular time intervals of 15
min for the month of January till May 1999 and the observed hydrograph
is presented in figure B.12. Peak flow discharges up to 7 I/sec are
observed at the end of February and the second half of March while base
flow discharges are at the order of 0.1 I/sec. At the end of May, base flow
is not observed any more as there is no groundwater drainage into the
channel. In the figure automated measurements are indicated by purple
dots while manual measurements are indicated by red dots. These
measurements serve for calibration purposes of the flume.

The observation records clearly show that the catchment rapidly
responds to rainfall and aiso that depletion of the shallow subsurface
rapidly takes place. By the recession curves that follow the peak flows, it
is shown that within a few days after rainfall ceases flow discharges
reduce to less than 0.5 I/sec.
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Figure B.13: Temperature-precipitation relation for the month
February/March 1999.

By analyses of the time series it appeared that many observation gabs
existed. In general, for low flow discharges only few readings were made
while for periods of peak flow small gabs exist. Larger gabs even existed
in recession curve recordings that, to a large extent, are due to the
freezing of water in the flume as caused by the low air temperatures.
Analyses of the air temperature records showed that for the entire period
January-May 1999 significant periods of freezing conditions existed in
the catchment. For some periods it is observed that air temperatures are
above zero during day-time while temperatures drop below zero during
night-time. During freezing conditions, the data recorder has made
discharge recordings at a constant value or, in some cases, recordings fail
and a discharge value of zero is recorded.

For the month of February and March 1999, temperature-precipitation
records are presented in figure B.13. Both temperature and precipitation
are observed at hourly base that, when combined, clearly show whether
precipitation is as rainfall or snowfall. For analyses of the rainfall-runoff
relation it is necessary to identify the meteorological circumstances that
caused the runoff. For the runoff peaks shown in figure B.12 it appears
that the runoff peak at the end of February primarily is caused by
rainfall. Although during the night air-temperature measurements are
below zero, it most likely is that any snow depth will melt immediately
at the land surface. Soil temperature readings in the catchment at 10, 20
and 50 cm. depth in the subsurface have indicated that any freezing of
the subsurface did not occur and that infiltration of rainfall and /or wet
snow as such was not hampered.
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Figure B.14: Precipitation -runoff-temperature relation for the
month of February and March 1999. Precipitation depths are
added for time intervals of 15 minutes.

For the second peak flow at early March it is not clear what has caused
the high discharges. While the peak flow discharge is even higher than
the peak flow discharge of the first storm period, a significant long
period with precipitation prior to the peak flow is not recorded. For both
month the precipitation-runoff-temperature relation is graphically
presented in figure B.14. It is observed that at February 21 a storm
period starts that causes the development of a peak flow discharge at
February 23. Analyses whether precipitation is as rainfall or snowfall are
not conclusive. For the period prior to the event, it is observed that
runoff observations are at a constant level without any response to the
precipitation.

Precipitation therefore most likely is in the form of snowfall that
remains at the land surface due to the low air temperature. At February
21 the air temperature starts to rise above zero and runoff is generated by
rainfall as well as by snowmelt. At February 27 a new, but smaller peak
flow discharge are observed that is due to rainfall only. For this storm
period (i.e. period I) as well as a second storm period (i.e. period II) in
March, the precipitation-runoff-temperature relations are given in
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Figure B.15: Precipitation-runoff-temperature relation for the
two isolated storm periods.

Figure B.15. Prior to period I, a constant channel flow discharge is
observed. This constant discharge is due to the freezing of the weir and
water discharge is not observed as such. At the first rainfall event the
temperature has risen again above zero and a small part of the recession
is observed. The heavy rainfall period at February 21 rapidly generates
runoff. By the piezometer network analysis it is concluded that most
likely saturation overland flow will be generated. The runoff volume
thus is due to groundwater-river interaction and saturation overland
flow. The peak discharge is reached shortly after rainfall ceases. The
rapid depletion is observed at similar time span as the rainfall period and
is followed by two recession periods with constant depletion rates. For
storm period II the rainfall-runoff relation is less clearly defined. In this
period two major runoff event are observed at March 13-14 and smaller
runoff events at March 19-22. For the latter event, precipitation records
show that precipitation is not observed prior to the peak flows. All 4
runoff pcaks however follow periods of high day temperatures assuming
that runoff is due to snowmelt. For the first two observed runoff peaks
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the precipitation-runoff relation also is questionable. Compared to the
runoff peaks as observed in the first period, peak runoff rates are much
higher although the rainfall period is much smaller and the total rainfall
depth is much smaller. The two runoff pcaks however follow periods of
rainfall. The precipitation-runoff-temperature relation as presented in
figure B.14 shows that extensive precipitation periods did not occur
between March 1 and 13 although the temperature record show day-time
temperatures above zero. It therefore is concluded that the precipitation-
runoff records are unrcliable and that a unique rainfall-runoff relation
cannot be defined. This conclusion is especially valid for the storm
period IT as shown in figure B.15 although, clearly, also the rcliability of
the data records underlying the rainfall-runoff relation as observed for
the first period is uncertain.

To select a time series of channel flow discharges for the model
calibration, the runoff event of the event of storm period I in figure B.15
is selected. For this event a clear catchment response to the rainfall input
is observed in the channel flow record as well as in the piezometer
records.
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Figure C.1: Schematic of the ISMC model approach (Pilot, 2002)

For the simulation of the initial soil moisture contents in Flowsim, a
pre-processing tool termed the Initial Soil Moisture Content (ISMC)
model is developed by Pilot [2002] in close co-operation with the
author. In this Appendix only a general description about the approach is
presented, for an extensive description reference is made to Pilot [2002].

The ISMC-model approach is partly based on the Topmodel approach as
introduced by Beven and Kirkby [1979]. Ever since its introduction this
approach is widely applied in rainfall-runoff simulation and descriptions
are presented by Sivapalan et al. [1987], [Quinn et al., 1991], Troch et
al. [1993a and b], Rowan et al. [1994], Ambroise et al. [1996], Moore &
Thompson [1996], Seibert et al. [1997], Lamb et al. {1997], among
others. Such description will not be repeated here but only the
subsurface model approach of the Topmodel approach will be elaborated
on since this is adopted in the work of Pilot {2002]. In the Topmodel
approach, soil moisture deficits are simulated for single storage cells that
represent an entire soil column underlying a DEM element. At the core
of the ISMC model this storage deficit is redistributed over the grid cells
of the Flowsim model layers. A schematic of the calculation procedure is
shown in figure C.1 and is further discussed here.
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Subsurface storage concept

In the Topmodel approach, groundwater storage is simulated by non-
linear water storages Si across the spatially distributed model domain. For
each soil column underlying a DEM grid element such store is defined
from which groundwater is added and discharged trough a 1-
dimensional groundwater flow cquation. The simplest form to describe
water depletion from the non-linear store is expressed by an exponential
depletion function:

4y =qq exp(S; /A) [C.1]
where
qo = discharge when store is fully saturated [ms!]
qp» = discharge [ms™]
Si = local store depth [m]
A = scale factor. [m].

It is noted that positive values of S; represent a soil moisture surplus in
store i while negative values represent a deficit as compared to average
soil column saturation. In the following description each store in the

Topmodel is referred to as a grid cell of the distributed model domain.

Subsurface flow

In the approach is only saturated groundwater flow considered. Such
flow across the grid cells is describe by a Darcy type model
approximation where it is assumed that, volumetrically, groundwater
flow is a function of the up-slope contributing area and the area average
recharge rate R:

q;=a,R [C.2]
where
q; = groundwater flow through grid cell i [L*T)
a, = up-slope area per unit elevation contour length [L]
R = catchment average and spatially uniform recharge rate [LT'].

To describe groundwater flow through grid cell i, phreatic flow
conditions are assumed and a Darcy type flow equation is applied:

dh
=T —b C3
ql 1 l [ ]
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where

T; = transmissivity in grid cell i [L*T
hy = hydraulic head of groundwater table [L]

x = distance in flow direction [L].

For the hydraulic gradient it is assumed that steady state conditions
prevail and that the hydraulic gradient of the groundwater table in grid
cell i can be approximated by the local land surface slope gradient,
tanp,,of the DEM

dh,

= tanp, [C4]
dx
where
tanf; = local land surface slope gradient -1-

The transmissivity is equal to the product of the saturated hydraulic
conductivity and the dept of the saturated flow profile. In the Topmodel
approach the transmissivity is maximum when the storage deficit has
reduced to zero and becomes smaller when the soil moisture deficit
increases. Consequently the transmissivity T; is described by the product
of the maximum transmissivity T,; of grid cell i and a scaling function
that is subject to the soil moisture deficit.

T, =T,; -x(S;) [C.5]
where
Ti = actual transmissivity at grid cell i [L*T']
To,i = maximum transmissivity of grid cell i (L*T)
X(Si) = scaling factor subject to S; [-1-

For describing the transmissivity distribution in a soil column various
approaches are known. Beven [1982] states that the transmissivity in the
subsurface can be described by an exponential transmissivity profile
while Ambroise et al. [1996] also consider parabolic and linear profiles.
In these profiles (see Figure C.2) the distribution of the saturated
hydraulic conductivity in a soil column is described by exponential,
parabolic and linear approximations. In the approximation of the
exponential and parabolic profiles it is assumed that the decrease is due
to soil compaction.
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Distribution of saturated hydraulic conductivity K over depth
(expressed by soil moisture deficit s.)
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Figure C.2: Schematic showing the saturated hydraulic conductivity and the
transmissivity as function of the storage deficit (Ambroise et al., 1996).

For describing the distribution of the saturated hydraulic conductivity
and the transmissivity over depth the following expressions are
developed (Ambroise et al., 1996):

Exponential ‘ parabolic Linear
S, | -
S K. (2)=K .(1- z ) K, (@) =K, for
K.. =K . . s\ o
s.d (Z) 0.1 CXP[ mi ] Sm.i 0 < Sz < Sm’i [C6]

i

Ti<si)=Tu,iexp[—i—‘] Ti(si)=T(,,{—:—i] Ti(si)=To,i[ —SS—] [C.7]

i m,i m,i

where:

K;.i(z) = saturated hydraulic conductivity as function of s [LT"]
Koi = saturated hydraulic conductivity when S; = 0 [LT")
S, = depth z expressed by the soil moisture storage deficit [L]
m; = rate of exponential decrease of K with S [L]
Smi = maximum local soil moisture storage deficit [L].
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For defining the saturated hydraulic conductivity for a grid cell, the soil
moisture deficit is used as depth indicator in stead of using a metric
depth scale. A large deficit is indicative for a relatively deep water table
and thus, in case of an exponential or parabolic distribution, a small K
value. In the expressions of the transmissivity it is assumed that K ; is
integrated over the thickness of the saturated subsurface. A schematic of
Eq’s [C.6] and [C.7] is shown in figure C.1. Extensive descriptions
about the approaches are presented in Sivapalan et al. [1987], Wolock
[1995b], Ambroise et al., [1996], Moore & Thompson [1996], Beven
[1997] and Pilot [2002].

To simulate groundwater flow at any grid cell the following expressions
are developed by combining Eq’s {C.7], [C.3] and [C.4]:

?xﬁéhential pa}éb‘olic‘ ‘ 7 7__L‘i‘near '
: 2 S.
S. S. =T .[1--—"_ [tanB.
qi=<r.,,ie’“{‘;']‘anﬂi qT( s, ] np, ( sm,iJ =% (e

After introducing the relative local soil moisture deficit §; this gives

Exponential parabolic , linear N
q =T, exP(“ 6i)ta-“Bi q; =T°,i(1—5i)2 tan 3, | i =To.i(l_8i)tanﬁi [C.9]

where

exponential | parabolic | linear

3, =8,/m, ! 5 = Si/sm,i si = Si/sm,i

Combining Eq’s [C.1] and [C.10] and when rewriting for S; an
expression is obtained in which the local soil moisture deficit becomes a
function of the topographic index, ai/tanf;, the selected transmissivity
profile, To, the local maximum soil moisture storage deficit, Sy, and
the recharge rate, R:

Exponential parabolic | Linear

a.R aR aR
'S;=m. —-Inf——] S. =S |1- ,———;— S =S_|1-——r- .
i . I{To.i tan ; ] ' m’l[ T, tanp; J ' m'l[ T,; tanBi) [C-10]

In the approach it is assumed that for the recharge rate, R, the catchment
average recharge rate must be substituted that is obtained when
Eq.[C.10] is rewritten for R:
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Exponential parabolic Linear

-ln(R)=6,+ln[ il ] JE=(1__S__] T, tanf; R = (I_S ]T_Eir_li

TD.I tanﬂi S a. S

m.i m.i ai

In resemblance to the expressions of Eq.[C10] the catchment average
soil moisture store deficits can be defined. Such values are obtained
through space integration of Eq.[C10]:

g, < _ 1 4,
exponential: S, = A L{— llli[ln[m]+ ln(R))}dA

L[sm—s T tanB J—J [C.12]

linear: = I‘( mi "“T?—iBR)dA
an

Substitution of integrated values for m; and Sy, in Eq.[C12] yields:

ooz 1 a, — 1
exponential: S, = L—mi ln[-——-————]dA +m; A L— In(R)dA

parabolic: S_l =

»> |-

Tu,i tarlBl
parabolic: S, = L mi dA —'[\\/—_dA [C.13]
linear: S, = ! Lsmi——a—i—dAlLRdA
™A " T,; tan B, A

By substitution of the catchment average topographic index and the
catchment average recharge rate of Eq. [C.11] this results in:

a.
- m, In| ——
- a )= S, (Toitanﬁij
S, =—m, In| —— [+m,| —+ ——————=

exponential: ;
: T, tanB;

parabolic: 8, =S, -S,; |———(S,,-S,)——== [C.14]

[C.11)




et

318 Appendix C: Initial Soil Moisture Content

linear: S_I =S_,,,i—(smi#](smi ‘Si)_l—
S T, ,

In the Topmodel approach it is assumed that the base flow can be
calculated by an exponential subsurface depletion function:

exponential parabolic linear

orond-E) arof ] acofo)
m, S S

i mi m,i

where Q, is the channel flow discharge when the relative catchment
averaged soil moisture store deficit = 0. Qo follows the expressions:

 exponential Parabolic Linear

a.
(n| —1— S, 5
ml n(To_i tanﬁi J Qo =A —‘)Z ; Sm,i

Q,=Aexp| - ——=22——7 { J’Tv]z Q mA—res
m, S| | s &
: T,; tanp, ‘ [ ™ T,, tanp,

1

i
i

i

!
|
|
|

The expression of the local soil moisture storage deficit now is obtained
by combining Eq’s [C.14] and [C.15] and by rearranging:

miln(#j m, ln(;r——:‘*j
o tanf; _ o tan B, _ln[&]

exponential: S, =m, ==
m, m,

o

Sy
™ AT tanp. ,
S = Sm,i —Sm,i = Bl % [C16]

parabolic: ;
s | H
m T, tan;
g &
_ m,i T . tan B.
linear: S. =S #__Q_b

i m,i m,i Smi a QD
' To,i tan Bi
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As can be concluded from Eq.[C.16] the local soil moisture deficit is a
function of the base flow discharge, the topographic index , the local and
catchment averaged maximum storage deficit and the selected
transmissivity profile. In the ISMC approach, Eq.[C.16] is at the core of
the mathematical model and is used to simulate the local soil moisture
deficit at grid cells across the DEM grid layer. By applying spatially
variant values for the sclected soil moisture profile and topographic
indexes the approach of [Pilot 2002] differs from previous approaches by
c.g. Sivapalan ct al. [1987], [Quinn ct al., 1991], Wolock [1995b],
Ambroisc et al., [1996], Moorc & Thompson [1996], Seibert et al.
[1997], Lamb et al. [1997].

Redistribution of S, and calculation of 6

Since the local soil moisture deficit represents a lumped value for the
water store underlying a DEM grid element, such deficit must be
redistributed across the cells that make up a column of grid cells of the
subsurface flow model of Flowsim. In such manner the outcome of
ISMC forms the initial soil moisture condition for the 3-dimensional
subsurface model domain of Flowsim.

In the redistribution scheme the local soil moisture deficit S; is
converted into a water table depth, d;, for any column of grid cells.
Given the fixed value of S;, and based on mass conservation
considerations, the calculated water table depth is subject to the soil
moisture distribution in the subsurface. In Flowsim the Van Genuchten
relations are selected to simulate the soil characteristic curves and thus
these relations also are selected in the ISMC approach to describe the
soil moisture distribution across a column of grid cells. By an iteration
procedure the value of S; is matched to a soil moisture deficit value for a
column as defined by the Van Genuchten relation, S;vg. In this
procedure the calculated water table depth is updated until a satisfactory
match is obtained and thus the soil water storage deficit volumes Sivg =
Si. In the following this proccdure will be explained.

Through the Van Genuchten relation any soil moisture content 0 is
uniquely related to a given pressure head. With respect to the pressure
head distribution over depth it is assumed that the entire soil profile is at
field capacity. Combining the assumed distribution of the pressure head
over depth and the soil characteristic relation h - 8, it is possible to
estitmate a soil moisture profile for any given d;.
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Figure C.3: Schematic of the calculation of S, ¢ in a subsurface column. In this
example the model exists of three subsurface model layers, each with different
characteristics. The water table is at depth d; below the land surface. In each
point is @ calculated and across these points the deficit is integrated. The grid cell
of the third layer is situated below the water table and the soil moisture content is
equal to the saturated soil moisture content. (Pilot, 2002)

For the simulation of the subsurface geometry, the discretisation method
of Flowsim is adapted where for each DEM grid element a column of
grid cells of varying depth is simulated. In the ISMC approach, however,
every unsaturated element is once more subdivided by a number of
calculation points. These points are located at the top and bottom of the
grid cells and at places equally distributed in between these points. In the
element at which the water table is situated are calculation points not
equally distributed but distributed between the water table elevation and
the top of the element. By this approach the lowest calculation point
always corresponds to the water table elevation. Figure C.3 shows a
diagram with three model layers.

The soil moisture deficit is defined as the saturated soil moisture content
minus the actual soil moisture content, 8, — 0. In the code the calculation
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procedure is implemented in several steps. The code starts with the
calculation of the value of h of the highest calculation point in the
highest element, after which the actual soil moisture content 8 is defined
through the Van Genuchten relation. Then these two calculation steps
are repeated for the calculation point below the previous one. Next step
is the calculation of the deficit over the interval between these two
points. In figure C.3 also the principle of the deficit calculation between
the points 2-3 in the top layer is shown. Between both points 05 — 0 is
integrated over depth by applying a linear interpolation function for the
actual soil moisture content. The calculated deficit is added to the total
deficit of the column. These steps are repeated for the calculation point
within a grid cell after which the procedure is repeated for the following
grid cell. The calculation procedure terminates when the water table is
reached. The soil moisture deficit over the entire column, S;vg, then is
summed and compared to S; as simulated by the Topmodel approach.
The accuracy of the match thus also depends on the number of
calculation points that, in the ISMC computer code, can be pre-selected.

Three specific cases that do not require the calculation of S vg are the
following:

1. If Qy, = 0 m’/s and the modeller has chosen to apply the exponential
transmissivity profile then In(0) and thus S; cannot be defined. For
such cases the depth to the water table d; is equal to its maximum
dmax.i that is the total depth of the subsurface model layers.

2. If S; < 0 m. the grid cell is saturated and thus di = 0 m.
3. If Si = Sm.i,ve the code assigns the value of dpax,i to d;.

The iteration procedure is based on minimisation of the objective
function value by least root square estimation:

e A new value for d; is defined based on :

S.
d;; =d;, : [C.17]
Siveo
Start values for the iteration are: di ¢ = dmax.i 2nd Siveo = Sm.i.ve.
e The previous step results in di; = dio when Sivg,0 = Si. Therefore the

code exits the iteration procedure when

(d;, —d,, ] <0.0000001 [C.18]
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Based on this simple iteration procedure the ISMC computer code
quickly calculates the value of d; for which the soil moisture deficit
under field capacity conditions is equal to S;. The soil moisture content
0 1ayer of every Flowsim subsurface grid cell can now be defined by
summing the soil moisture contents within the calculation points of a
grid cell. For a grid cell that is situated below the water table 0; jayer =

0 sat layer becomes valid. For cells of unsaturated soil profile the total
moisture content 6; zyer is defined by:

1
. 1 1
ei,layer_n_l(iel+92+ et +en—l"-‘z_en) [C19]
where
Bilayer = average soil moisture content of subsurface element [-]
0; = soil moisture content in calculation point i -1
n = number of calculation points in one element.

The calculation points 1 and n are located at the top and bottom
boundary of the element and are %2 the height of the other calculation
points in a grid cell. For the grid element in which the water table is
situated equation, C.20 also is applied where the saturated soil moisture
contents are applied to point that fall within the saturated cell domain.

The ISMC model is extensively tested for various combinations of
parameter input data that are the selected transmissivity profile, the
values for Sy, or m and T, and the base flow discharge value. Also a
selection can be made whether the spatially distributed parameter are
variant or invariant. Simulation results and a model sensitivity analyses
are described by Pilot [2002]. For this thesis only two model simulations
are considered that serve as the initial soil moisture condition for
Flowsim. The output of these two simulations are also shown in section
6.3 and represent a relatively ‘dry’ and ‘wet’ initial soil moisture
condition. Case I is obtained by Mc=9b with Sm=0.34, To=0.52 and
Qb=042 while Case II is calculated by Mc=8b applying the following
parameters values. Mc= 8b, Sm=0.5, To=5, Qb=0,65.
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Ficure C.4a: Soil moisture distribution Case 1.
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Figure C.4b: Soil moisture distribution Case 2.
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In this appendix the simulation results of MLE are presented. For the
eight cases graphical output from the PEST-software is shown and
discussed. Graphical output deals about output graphs such as the
parameter value evolution over the number of optimisation step, the
residual vs. observed Values, matrices of the parameter co-variances,
correlations and eigen-vectors and about histograms such as the Jacobian
and eigen-values. Detailed mathematical analysis of these output data for
all eight cases are not presented here but instead the analysis are much
more focussed on a comparison of the model result for the eight cases.

With respect to the output data a number of conclusions are drawn. The
most important conclusion is that the application of the MLE by PEST-
software is able to optimise parameter values for each of the selected
cases. Optimised parameter values for the eight cases however show a,
relatively, wide value range as shown in table 6.6. Optimised values are
subject to the selected state variables that are used for calibration (see
tables 6.4a,b; 6.5) and also are subject to the selected initial soil moisture
condition as shown in figures 6.16a,b. In figure 6.18a the observed
channel flow hydrograph is compared to the simulated hydrograph of the
two cases were parameter values are not optimised. In figure 6.18b the
observed channel flow hydrograph is compared to the simulated
hydrograph of the eight parameter-optimisation cases. By this figure it is
clear that for none of the optimisation cases the hydrographs match well
with the observed hydrograph. Such matching is best for the cases Ch_1
and Ch_2 in which only observations of the channel discharges are
applied to the calibration. For both cases the peak runoff rate is under
estimated while the recession limb of the hydrograph is over estimated.
Case Ch_1 represents the ‘wet’ initial soil moisture condition and shows
that the size of the saturation overland flow area as simulated prior to the
Flowsim simulation has a much more pronounced effect on the
simulated hydrograph as compared to case Ch_2. Also, the recession
period is much longer as compared to the field observation. This
suggests that observations of the peak flow discharge have a more
pronounced effect on the parameter optimisation as compared to
observations of the recession limb and base flow. Compared to the non-
optimised cases Case_1 and Case_2 it proves that the simulated recession
limb is significantly effected by the observations of the channel flow
discharges that are applied to the calibration. Recession in both non-
optimised cases is rapid and in more correspondence with the field
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observations. With respect to the optimised values of the hydraulic
conductivity for the eight cases, these are highest for Case Ch_1 and
second highest for Case Ch_2. These comparatively high values cause
that groundwater flow from the up-slope areas to the down-slope area is
relatively rapid and that soil saturation near the channel advances over a
relatively short period of time.

With respect to PEST output, significant differences are observed.
Through the Jacobian matrix it is concluded that parameter sensitivity
with respect to the observed channel discharges differs. For case Ch_2 it
is observed that the model is sensitive to all 9 parameters. For both cases
it is shown that the model sensitivity towards the porosity dominates the
optimisation and also that, generally speaking, observations of the rising
limp have a more pronounced effect on the parameter optimisation.
Analysis of the residuals show that calculated counterparts for observed
channel flow discharges for most observations are lower. This also is
shown in figure 6.17. With respect to the covariance, the correlation
coefficient and the eigen-vector - eigen-values matrices, also here
differences are observed. Through the covariance and correlation
matrices it is shown that the spatial dependencies between parameters
change, particularly for the porosity of all three layers. In case Ch_1, the
parameters por2 and por3 (i.e.porosity of layer 2 and 3) are positively
correlated while in case Ch_2 these are negatively correlated. Also,
parameters porl and por3 in case Ch_1 are negatively correlated while
the opposite is observed for case Ch_2. By the size of the symbols the
magnitude of the correlation coefficients is expressed. By comparison of
both cases it becomes apparent that the correlation coefficients change
significantly.

With respect to the eigen-vector and eigen-value analysis also a
significantly different output is shown. Besides the fact that eigen-
vectors are dominated by different model parameters also eigen-vectors
are differently composed. Since only the initial soil moisture condition
was changed for both cases, any of the described difference must be
attributed to this condition as entered to the model. By the change of the
initial condition, a dissimilar saturated zone groundwater flow behavior
is simulated resulting in a change of the available storage volume of the
subsurface layers and the size of the saturation overland flow source
area. By this reasoning, it is concluded that different parameter
combinations dominate the automated calibration procedure as subject
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to the initial condition. Hence, general conclusions on parameter inter-
dependencies and parameter identifiability are difficult to formulate.

Also for the cases ChGws_1 and ChGws_2 in which channel discharge
observations are combined with piezometer observations, only
conclusions with respect to the specific cases can be drawn. An
important conclusion based on the Jacobian matrices is that for both
cases the piezometer observations dominate the parameter optimisation
and that observations of the channel flow discharges hardly have an
effect on the optimised parameter values. This dominance could possibly
be explained by the fact that all observations are equally weighted in the
optimisation although the magnitude of discharge values is much smaller
compared to the piezometer observation values. The Jacobian matrices of
both cases shown small differences compared to the Jacobian matrices
for the cases Gws_1b and Gws_2b respectively. In the latter cases the
same piezometer observations are used for model calibration while
observations of the channel flow discharges are excluded. The optimised
parameter values for the cases ChGws_1 and Gws_1b and the cases
ChGws_1 and Gws_1b only show very small differences while the
calculated channel flow hydrographs for these respective cases mostly

overlap. As such similar conclusions can be drawn for the cases
ChGws_1 and Gws_1b and cases ChGws_2 and Gws_2b.

With respect to the cases Gws_1b and Gws_2b only the initial soil
moisture content differs and any change in model outcome must be
related to the entered initial condition. In table 6.6 significant
differences are observed in the optimised parameter values. Saturated
hydraulic conductivity values as well as porosity values differ although
optimised values lie within the same order of magnitude. The jacobian
matrix shows similar model sensitivities towards the same parameters.
Also the graphs of Calculated vs. Observed values show a similar pattern.
Differences in model results, however, are observed in the covariance -
correlation matrices and the eigen-value eigen-vector matrices. The
parameter structure by means of the correlation matrix shows significant
differences. In case Gws_1b the saturated hydraulic conductivity shows
significant correlation to other hydraulic conductivities while such
dependency towards the porosity is much smaller. Also the mutual
correlations are much smaller while correlation coefficients for case
Gws_2b generally are much smaller compared to case Gws_1b. It is
surprising that the plus and minus signs (i.e. red circle and blue diamond
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respectively) of some parameter correlations change between cases.
Compared to the real world catchment characteristics such result is
unexpected. With respect to the eigen-value and eigen-vector matrices
also some differences occur. In the eigen-vector matrix the dominance of
single parameters changes and thus parameters arc not consistently
identified but are subject to the initial soil moisture condition. Clearly
this condition has a large effect on the groundwater table depth within
columns of subsurface cells. By this depth the groundwater flow
behaviour is effected and thus the change of the water table depth
throughout the simulation. Following this rcasoning it is obvious that
different parameter combinations come in effect during a simulation and
as such different optimised parameter values are calculated.
Contradictory to this reasoning, the fact remains that large differences in
the residual errors are not observed.

When comparing the results of cases Gws_1a and Gws_2a it is observed
that also for these cases differences occur. With respect to the residuals,
in case Gws_2a few outliers are observed. A comparison of both Jacobian
matrices also shows some differences. In case Gws_2a model sensitivity
towards parameters is much more pronounced. With respect to the
previously mentioned outliers, such outliers in the Jacobian matrix are
not observed at the end of the simulation. Observations with respect to
the correlation and covariance matrices are similar to those made for the
cases Gws_1b and Gws_2b. Besides the fact that the magnitude of the
parameter dependency in terms of correlations change for both cases,
also the plus and minus sign change for some parameters. Correlations
for case Gws_1a generally are lower as compared to case Gws_2a and are
not in correspondence with the observations for the cases Gws_1b and
Gws_2b. Also the eigen-value and eigen-vector matrices show some
differences. In the normalized eigen-vector matrices, parameters are not
equally identified. Particular for the eigen-vectors with the lowest eigen-
values differences show up while such difference are not shown for
vectors 4, 5 and 6. For these vectors, however, the sigh changes for some
parameters. By a comparison of model results of all four cases in which
only piezometer observations are used for model calibration it becomes
evident that model result are diverse. General conclusions on parameter
dependencies through the calculation of parameter correlation matrices
are difficult to formulate. Such conclusion(s) on parameter identifiability
as based on the eigen-value and eigen-vector matrices also are difficult to
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make. It is however concluded that porosity values dominate the eigen-
vectors and thus porosity values are better identified than hydraulic
conductivity values. Also, porosity values of the deeper and thus fully
saturated subsurface layers (i.e. por2 and por3) are better identified
compared to the porosity of the top layer.
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Case Gws_1b
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Inverse modelling of the rainfall-runoff relation. A mult
objective model calibration approach.

Summary

Introduction

The objective of rainfall-runoff modelling generally is to simulate,
predict or forecast the hydrograph at the catchment outlet. For such
simulation many model approaches are developed that range in
complexity from very simple to very complex. Model design and
development has been an important research topic for many decades
although only during the past decade the development of a small number
of distributed physically-based model approaches is reported. The
development was initiated by expectations and presumptions that runoff
production mechanisms could be simulated in a consistent and detailed
manner by model algorithms that are based on conservation equations of
mass and momentum. For a number of reasons that are described in the
literature review of Chapter 3 such approaches have great difficulties to
meet the performance expectations. It proved that simulation of the
complex real world runoff behaviour at desired temporal and spatial
scales is very problematic. Model approaches require very extensive
model input data and are difficult to calibrate in a reliable and
trustworthy manner. Moreover, model performance often is not
satisfactory and modelling must be associated with uncertainty. For these
reasons approaches often are rejected. To increase the model
performance less complex and more parsimonious model approaches are
required and model calibration procedures must be improved that help
to overcome the issue of the high performance uncertainty (Chapter 5).

The main research topic of this thesis is to improve physically-based
distributed modelling of the hydrologic catchment behaviour under
meteorological conditions that cause the generation of saturation
overland flow. To achieve this objective, extensive literature reviews are
completed on the runoff production mechanisms, physically-based
runoff modelling approaches and automated model calibration
procedures. Also a theoretical description of the Flowsim model
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approach that is designed, developed and coded for this thesis is
presented (Chapter 4). A case study on automated model calibration by
Maximum Likelihood Estimation is presented in Chapter 6.

Runoff hydrology

Based on extensive field research during the seventies, an understanding
based on physical reasoning is gained on hydrologic catchment behaviour
that causes extreme runoff discharges. An important runoff mechanism
described by Dunne [1978] is the Saturation overland flow mechanism.
In this mechanism, overland flow is generated in response to rainfall in
case a soil column becomes fully saturated due to a (rapid) groundwater
table rise. As the groundwater table intersects the land surface
exfiltration and consequently saturation overland flow is observed. The
rise of the groundwater table is due to a number of subsurface flow
processes that are observed in Darcian and non-Darcian flow conditions.
The dominant flow process that causes the rapid water table rise is lateral
groundwater flow from upslope areas (Dunne, 1978). In Chapter 3 it is
described that soil saturation mostly is observed near channel areas at
lower elevations in the catchment where saturated areas vary in width in
response to rainfall. The expansion and contraction of the overland flow
source areas is characterised as a highly dynamic and a non-linear
phenomenon (Kirkby, 1988) that is a function of physiographic, geologic
and meteorological catchment conditions. In distributed PBRR
modelling such behaviour is simulated by some a priori defined model
approach.

Physically-based model approaches

For simulating the saturation overland flow mechanism in a physically
realistic and consistent manner, distributed model approaches must be
applied that have conservation equations of mass and momentum at the
core of the model algorithms. Such algorithms are developed for flow
processes at the land surface, the saturated and unsaturated subsurface
and the channel system. Additionally, spatial and temporal
meteorological forcing is simulated.

In Chapter 3 four physically-based distributed model approaches are
reviewed and compared. It proved that model approaches differ
significantly with respect to the selected model concept, mathematical
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model and model input requirements. Based on conclusion from the
review, the model concept of Flowsim is designed and is presented in
Chapter 4 and further described in Appendix A. In the model concept, a
catchment is partitioned in multiple grid layers while the discretisation
of the Digital Elevation Model (DEM) is adapted to each of the grid
layers. All DEM grid elements in horizontal plane (i.e. x-y perspective)
are squared and of equal size while for the subsurface grid cells the third
space dimension (i.e. depth) is added. For each grid cell a specific
thickness is defined and hence a three-dimensional subsurface model
domain is constructed.

For simulating overland flow a two-dimensional sheet flow model as
based on the diffusion wave is selected. Subsurface flow processes are
described for Darcian (matrix) flow conditions only. For the unsaturated
subsurface a one-dimensional multi-layer flow model based on Richards
equation (Richards, 1931) is developed. For simulating saturated
subsurface flow a two-dimensional groundwater flow model as based on
Boussinesq equation is developed. For channel flow a one-dimensional
flow model is developed based on the diffusion wave equation. In the
approach interactions and mass exchanges between model algorithms are
simulated as well.

In Chapter 3 it is described that model performance of the reviewed
model approaches generally is not satisfactory. Specific explanations for
this poor performance have to do with complexity of the approaches and
the issue of model uncertainty. In any model approach uncertainty is
introduced due to incompleteness of the selected model concept and the
lack of adequate catchment data to represent real world characteristics at
appropriate spatial scales. Such data relate to topography, subsurface,
meteorology but also to hydrologic state variables that must be
simulated. Data collection and simulation at appropriate scales often is
not possible and also in this thesis it is concluded that scale issues
hamper model simulations. To overcome some of these issues
simplifying assumptions are introduced in the model approaches.

All catchment characteristics, initial model conditions and
meteorological model input for example are averaged and lumped at the
spatial scale of the grid elements although field observations of these
data types mostly are taken at the much smaller point scale. Also within
the spatial scales of model grid elements and grid cells multiple processes



342 Summary

are observed in the real world. These processes cannot be simulated
realistically at appropriate process scales and its detailed simulation is
ignored. Only dominant processes are simulated and model algorithms
are parameterised accordingly. In this procedure any spatial variability at
small scales is ignored and averaged and grid effective parameter values
are defined. These parameter values cannot be defined prior to a model
simulation but are optimised through model calibration that is described
in Chapter 5.

Model calibration

Each of the reviewed PBRR model approaches in Chapter 3 is calibrated
by the Trial and Error procedure. This procedure however has major
limitations and is rejected from further application (Chapter 5). A very
important limitation for example is that it is difficult to determine when
the best parameter set has been reached. This aspect and aspects relating
to parameter uniqueness, parameter identifiability and parameter
dependencies is accommodated for in automated optimisation
procedures. These procedures are propagated in this thesis. Procedures
reviewed in Chapter 5 are the Bayesian procedure GLUE, the single and
multi-objective evolutionary procedure MOCOM-UA, the geo-
statistically based MLE procedure and a novel procedure based on the
use of ANNSs. In distributed PBRR modelling (very) little attention has
been paid towards the use of any of these procedures. Procedures
primarily are applied to conceptual rainfall-runoff model approaches.

For the case study in Chapter 6, the MLE procedure is selected that has
the Gauss Marquardt Levenberg algorithm at the core of the
optimisation algorithm. The procedure is selected since quantitative
statistical information on spatial dependencies of parameters becomes
available through a parameter correlation matrix while information on
parameter identifiability by means of eigen vector- eigen value matrixes
becomes available. Such information does not come available in any of
the other procedures. A second important advantage is that models can
be calibrated for multiple state variables such as piezometer and channel
flow data that are of a different kind and order. A major restriction of the
procedure is that, based on the applied software, it not (yet) possible is to
quantify the effects of parameter uncertainty on model output.
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The MLE procedure is coupled to the Flowsim model approach and is
applied to the Troy catchment in Idaho (USA). This research basin of
size 1.6 ha. is selected since a large data base was made available for this
thesis by the university of Idaho. In Chapter 6 it is described that eight
calibration cases are defined and that these cascs are compared to two
non-calibrated cases. Selected cases differ with respect to the initial
model condition and the model calibration data set. For simulations, two
initial subsurface model conditions are defined that are used as model
input. Conditions are defined by the ISMC model approach that is
developed for this thesis by Pilot [2002] and that is described in
Appendix C. Two cases are calibrated on channel flow discharges, four
are calibrated on piezometer observations and two are calibrated on
channel flow and piezometer observations. During the rescarch it proved
that calibration cases based on piezometer observations were poorest
while those with channel flow observations were best. The reason for the
poor performance of the piezometer cases to a large extent is due to the
poor quality of the piezometer time series. Clear and extensive periods
where saturation overland flow is generated could not be identified
although, based on the observed channel flow hydrograph, such period
should be observable. Models thus are calibrated in such manner that
global optimum of the objective function response surface is found for
to low piezometer levels. Another cause of poor performance may be that
the model concept of Flowsim is inadequate although this cannot be
concluded directly from the simulation results. After analysis of the
channel flow hydrographs it appeared that simulations are significantly
influenced by the entered initial condition in the subsurface models.
While automated calibration is achieved by similar state variable sets,
output by the selected initial conditions differed significantly. The effect
of the initial conditions is most pronounced for the two non-calibrated
cases.

After automated model calibration by MLE all optimised parameter
values represent realistic values that are not out of range as compared to
field obtained values that are available. Also the parameter correlation
matrices, the Jacobian matrix and the eigen value-eigen vector matrices
are defined. For each case different optimised parameter values as well as
matrices are found. Based on physical reasoning this is not surprising.
For each case, (slightly) different but unique hydrologic state
distributions across the model domain and over the simulation period is
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simulated. Flow pattern in terms of discharges and flow directions differ
accordingly during the simulations. Hence the Jacobian matrix that is
interpreted as a model sensitivity matrix changes and consequently all
additional MLE model output changes.

Conclusions

In this thesis it is concluded that event based rainfall-runoff simulation
by distributed PBRR model approaches is too complex to be successful.
This since many generic modelling issues come into play that easily
cause that model performance becomes unsatisfactory. Clear conclusions
on usefulness of the MLE in PBRR modelling are not formulated
although for each case the parameter optimisation is achieved (Chapter
6). Its use in multi-objective model calibration, however, remains very
attractive. The fact that parameter uncertainty is not expressed in the
model outcome is regarded a limitation (Chapter 5). To be more
conclusive, simulation cases must be repeated when more reliable time
series of observations are available. Sensitivity test after weighting single
observations in the objective function also must be performed. This
aspect of calibration is ignored in this thesis. The MLE procedure also
should be coupled to other, more parsimonious, model approaches and
be applied to other catchments.
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Inverse modellering van de regen-afvoer relatie. Een multi
objectieve modelkalibratie benadering.

Samenvatting

Introductie

De doelstelling van regen-afvoer modellering is in het algemeen het
simuleren en voorspellen van de afvoerhydrograaf op het uitstroompunt
van een stroomgebied. Voor een dergelijke simulatie zijn meerdere
modelbenaderingen ontwikkeld die in complexiteit verschillen van
simpel tot complex. Modelontwerp en ontwikkeling zijn gedurende vele
decades belangrijke onderwerpen van wetenschappelijke onderzoek
geweest maar pas gedurende de afgelopen decade is de ontwikkeling van
een beperk aantal complexe, gedistribueerde, fysisch gebaseerde
modelbenaderingen gerapporteerd. Deze ontwikkeling is op gang
gekomen door hoge verwachtingen en veronderstellingen dat
afvoerproductie-mechanismen gesimuleerd konden worden op een
consistente en gedetailleerde wijze met modelalgoritmen die gebaseerd
zijn op behoudswetten van massa en beweging. Om een aantal redenen
die beschreven staan in de literatuurstudie van Hoofdstuk 3, zijn er met
deze benaderingen grote problemen om te voldoen aan de hoge
verwachtingen. Het is gebleken dat het simuleren van het complexe
regen-afvoer gedrag in een stroomgebied op gewenste tijd- en
ruimteschalen problematisch is. Bij model-benaderingen bestaat een
grote behoefte aan modelinvoergegevens en zijn moeilijk te kalibreren.
Modelgedrag is vaak niet naar tevredenheid en modellen moeten
geassocieerd worden met onzekerheid. Om deze redenen worden deze
modelbenaderingen vaak afgewezen. Om het modelgedrag te verbeteren
zijn minder complexe modelbenaderingen benodigd met een relatief lage
behoefte aan modelinvoergegevens. Ook moet de methode van
modelkalibratie verbeterd worden om modelonzekerheid te kunnen
verlagen. (Hoofdstuk 5).

Het hoofddoel van onderzoek van deze thesis is het verbeteren van
fysisch gebaseerde, gedistribuecerde modellering van het
stroomgebiedafvoergedrag onder meteorologische condities die het
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ontstaan van verzadigde overland stroming veroorzaken. Om deze
doelstelling te bereiken zijn uitvoerige literatuurstudies uitgevoerd naar
~ mechanismen van afvoerproductie, naar fysisch gebaseerde
afvoerbenaderingen en naar methoden van automatisch modelkalibratie.
Ook is de Flowsim modelbenadering ontworpen, ontwikkeld en
gecodeerd voor deze thesis en is een theoretische beschrijving hiervan
opgenomen in Hoofdstuk 4. Een casestudie van automatische
modelkalibratie op basis van “Maximum Likelyhood Estimation” is
beschreven in Hoofdstuk 6.

Afvoerhydrologie

Gebaseerd op uitvoerig veldonderzoek gedurende de zeventiger jaren is
op basis van fysisch begrip inzicht ontstaan in hydrologisch
stroomgebiedgedrag waardoor extreme afvoeren ontstaan. Een belangrijk
afvoermechanisme dat beschreven is door Dunne [1978] is het
verzadigde overland mechanisme. In dit mechanisme wordt overland
stroming ontwikkeld in een stroomgebied indien een bodemkolom
volledig verzadigd raakt door een (snelle) stijging van de
grondwaterspiegel. Als de grondwaterspiegel het maaiveld raakt zal
exfiltratie en vervolgens verzadigde overland stroming ontstaan. De
stijging van de grondwaterspiegel is het gevolg van een aantal
ondergrondse stroomprocessen die waargenomen worden in “Darcian”
en “non-Darcian” stroomcondities. Het dominerende stroomproces
waardoor de snelle grondwaterspiegelstijging wordt veroorzaakt is
laterale grondwaterstroming van bovenstroomse gebieden (Dunne,
1978). In Hoofdstuk 3 is beschreven dat bodemverzadiging vaak
waargenomen wordt langs kanaaltjes in de lagere delen van een
stroomgebied waarbij verzadigde zones in breedte variéren. De groei en
samentrekking van deze brongebieden van verzadigde overland stroming
is een hoog dynamisch en niet-lineair fenomeen (Kirkby, 1988) en is een
functie van fysiografische, geologische, en meteorologische
stroomgebiedcondities. In gedistribueerde fysische gebaseerd regen-
afvoer modellering is dit gedrag gesimuleerd bij een a priori vastgelegde
modelbenadering.
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Fysisch gebaseerde modelbenaderingen

Voor simulatie van het verzadigde overland mechanisme op een fysisch
realistische en consistente manier, moeten gedistribueerde
modelbenaderingen toegepast worden met modclalgoritmen die
gebaseerd zijn op behoudswetten van massa en momenten. Algoritmen
moeten toegepast worden voor overland stroomprocessen aan het
landoppervlak, voor processen in de verzadigde en onverzadigde
ondergrond en watertransport in het riviersysteem. Aanvullend moeten
regen en verdamping gesimuleerd worden als een ruimtelijk en
tijdsafhankelijk fenomenen.

In Hoofdstuk 3 zijn vier fysisch gebascerde, gedistribueerde
modeclbenaderingen bestudeerd en vergeleken. Hieruit is voortgekomen
dat modelbenaderingen duidelijk anders zijn ten aanzien van het
ontwikkelde modelconcept, het mathematisch model en modelinvoer.
Gebaseerd op de conclusics van de modelvergelijking is het
modelconcept van Flowsim ontworpen zoals gepresenteerd in Hoofdstuk
4 en beschreven in Appendix A. In het modelconcept is een
stroomgebied opgesplitst in meerdere gridlagen waarbij de discretisatie
van het digitale hoogtemodel is overgenomen in elke gridlaag. Alle
gridelementen van het digitale hoogtemodel in het horizontale vlak (x-y
perspectief) zijn vierkant en van gelijke grootte waarbij voor de
ondergrondse gridcellen de derde ruimtedimensie (i.e. diepte) is
toegevoegd. Voor elke gridcel is een specifieke dikte bepaald en een
volledig drie-dimensionaal modeldomein is op deze wijze geconstrueerd.

Voor simulatie van overland stroming is een twee-dimensionaal
stroommodel ontwikkeld gebaseerd op de diffusiegolfvergelijking.
Hierbij is verondersteld dat waterstroming plaatsvindt als een dunne,
vlakdekkende waterlaag over het landoppervlak. Ondergrondse
stroomprocessen zijn beschreven voor “Darcy” stroomcondities. Voor de
onverzadigde ondergrond is een één- dimensionaal meerlagen
stroommodel ontwikkeld dat gebaseerd is op de Richards vergelijking
(Richards, 1931).Voor simulatie van verzadigde ondergrondse stroming
is een twee-dimensionaal grondwaterstroommode! ontwikkeld gebaseerd
op de Boussinesq vergelijking. Voor kanaalstroming is een één-
dimensionaal stroommodel ontwikkeld gebaseerd op de
diffusiegolfvergelijking. In de benadering zijn ook modelinteracties en
massa-uitwisselingen tussen submodellen gesimuleerd.
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In Hoofdstuk 3 is beschreven dat het modelgedrag van de onderzochte
modelbenaderingen over het algemeen niet bevredigend is. Specifieke
verklaringen voor dit onbevredigende gedrag zijn de complexiteit van de
benaderingen en modelonzekerheid. In elke modelbenadering is
onzekerheid geintroduceerd doordat modelconcepten onvolledig zijn en
door het tekort aan adequate data om stroomgebiedkarakteristieken op
juiste ruimtelijke schalen in het model weer te geven. Data hebben
betrekking op topografie, op de ondergrond, op meteorologie maar ook
op hydrologische toestandvariabelen die gesimuleerd moeten worden.
Dataverzameling en simulatie op juiste schalen is vaak niet mogelijk en
ook in deze thesis is geconcludeerd dat schaalproblemen modelsimulaties
beperken. Om over een aantal van deze beperkingen heen te stappen zijn
simplificerende aannames geintroduceerd in de modelbenaderingen.

Alle stroomgebiedkarakteristieken, initiéle modelcondities en
meteorologische modelinvoer worden bijvoorbeeld gemiddeld over de
schaal van de gridelementen alhoewel veldwaarnemingen van deze data
typen meestal op een veel kleinere puntschaal worden genomen. Ook
binnen de ruimtelijke schalen van gridelementen en gridcellen worden
in de echte wereld meerdere processen waargenomen. Deze processen
kunnen niet op realistische wijze op de meest toege€igende ruimteschaal
gesimuleerd worden en gedetailleerde simulatie wordt daarom veelal
genegeerd. Alleen dominante processen worden gesimuleerd en
modelalgoritmen worden geparameteriseerd om deze processen te
simuleren In deze procedure is elke ruimtelijke variabiliteit op kleine
schaal genegeerd en gemiddelde en grid-effectieve parameterwaarden
worden bepaald. Deze parameterwaarden kunnen niet op voorhand
bepaald worden maar moeten geoptimaliseerd worden door
modelkalibratie zoals beschreven in Hoofdstuk 5.

Modelkalibratie

Elk van de besproken fysisch gebaseerde neerslag-afvoer modellen in
Hoofdstuk 3 is gekalibreerd met de “Trial and Error” procedure.Deze

procedure heeft grote beperkingen en wordt afgewezen voor verdere
toepassing (Hoofdstuk 5). Een belangrijke beperking bijvoorbeeld is dat
het moeilijk te bepalen is of, gedurende de modelkalibratie, de beste
parameterset bepaald is. In dit aspect en aspecten die gerelateerd zijn aan
parameter-uniciteit, parameter-identificeerbaarheid en parameter-
afhankelijkheid wordt in voorzien door automatische parameter
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optimalisatie procedures. Deze procedures worden aanbevolen in deze
thesis. Procedures gereviewd in Hoofdstuk 5 zijn de “Bayesian”
procedure GLUE, de enkele en multi-objectieve evolutionaire procedure
MOCOM-UA, de geostatistisch gebaseerde MLE procedure en een
vernicuwende procedure gebaseerd op het gebruik van ANNs. In
gedistribueerde fysische gebaseerde regen-afvoer modellering is (erg)
weinig aandacht besteed aan het gebruik van deze procedures.
Procedures zijn hoofdzakelijk toegepast in conceptuele regen-afvoer
model benaderingen.

Voor de case studic in Hoofdstuk 6 is de MLE procedure geselecteerd die
het Gauss Marquardt Levenberg algoritme hanteert als optimalisatie
algoritme. De procedure is geselecteerd omdat kwantitatieve statistische
informatie verkregen wordt over ruimtelijke afhankelijkheid van
parameters door een parameter correlatie matrix terwijl ook informatie
over parameter identificeerbaarheid door middel van “eigen vector-
eigen value” matrices verkregen wordt. Deze informatie wordt niet
verkregen in elk van de andere procedures. Een tweede belangrijk
voordeel is dat modellen gekalibreerd kunnen worden op meerdere
toestandvariabelen als grondwaterstijghoogten en rivierafvoer data die
van een andere samenstelling en omvang zijn.Een grote beperking van de
procedure is dat, op basis van de gehanteerde software voor deze thesis,
het nog niet mogelijk is om effecten van parameter onzekerheid te
kwantificeren op modeluitvoer.

De MLE procedure is gekoppeld aan de Flowsim modelbenadering en is
toegepast op het Troy stroomgebied in Idaho (USA). Dit research
stroomgebied met een grootte van 1.6 ha. is geselecteerd omdat voor de
thesis een grote database beschikbaar kon worden gemaakt door de
University van Idaho. In Hoofdstuk 6 is beschreven dat acht kalibratie
cases gedefinieerd zijn en dat deze cases vergeleken worden met twee
niet-gekalibreerde cases. Geselecteerde cases verschillen wat betreft de
initiéle modelconditie en modelkalibratie dataset. Voor simulaties zijn
twee initiéle bodemvochtcondities bepaald en gebruikt als modelinvoer.
Condities zijn berekend met de ISMC modelbenadering die voor deze
thesis ontwikkeld is en die beschreven is in Appendix C. Twee cases zijn
gekalibreerd op rivierafvoeren, vier zijn gekalibreerd op
grondwaterstijghoogten en twee zijn gekalibreerd op waarnemingen van
rivierafvoeren en grondwaterstijghoogten. Gedurende het onderzock is
gebleken dat kalibratie cases met grondwaterstijghoogten het minst
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nauwkeurig zijn terwijl die met kanaalafvoeren waarnemingen het meest
nauwkeurig zijn. De reden voor de matige resultaten voor, met name, de
grondwaterstijghoogten cases wordt voor een belangrijk deel
toegeschreven aan de matige kwaliteit van tijdseries van de
grondwaterstijghoogten. Duidelijk en langdurige periode met verzadigde
overland stroming konden niet geidentificeerd worden
alhoewel,gebaseerd op analyse van de rivierafvoer-hydrograaf, zulke
perioden wel waarneembaar zouden moeten zijn. Modellen zijn
gekalibreerd op een dusdanige wijze dat het globale optimum van de
doelfunctie response oppervlak gevonden is voor feitelijk te lage
grondwaterstijghoogten. Een andere reden voor het matige resultaten
kan zijn dat het modelconcept niet adequaat is alhoewel dit niet direct
geconcludeerd kan worden uit de simulatieresultaten. Na analyse van de
afvoerhydrograaf is gebreken dat simulaties significant beinvloed zijn
door de ingevoerde initiéle bodemvochtconditie. Terwijl automatische
kalibratie bereikt is met gelijke sets van toestandvariabelen, is
modeluitvoer voor de geselecteerde initiéle condities significant anders.
Effecten van initiéle condities zijn het duidelijkste waarneembaar voor
de twee niet gekalibreerde cases.

Na kalibratie met MLE, hebben alle geoptimaliseerde parameters
realistische waarden die in overeenstemming zijn met waarden van
beschikbare veldwaarnemingen. Ook de parameter correlatie matrices, de
Jacobian matrix en de “eigen value-eigen vector” matrices zijn bepaald.
Voor elke case zijn verschillen in geoptimaliseerde parameterwaarden
alsmede matrices gevonden. Gebaseerd op fysisch inzicht is dit niet
verrassend. Voor elke case is een iets andere ruimtelijke verdelingen van
toestandvariabelen gesimuleerd. Stroompatronen in termen van debieten
en stroomrichtingen verschillen daarom ook gedurende de simulaties.
Als gevolg daarvan verandert de Jacobian matrix, die geinterpreteerd is
als een model gevoeligheidsmatrix en, en alle daarvan afgeleide MLE
model uitvoer.

Conclusies

In deze thesis is geconcludeerd dat event gebaseerde regen-afvoer
simulatie met gedistribueerde PBRR modelbenaderingen te complex is
om succesvol te zijn. Dit omdat te veel generieke modelleeraspecten een
rol spelen die gemakkelijk veroorzaken dat modelgedrag onbevredigend
is. Eenduidige conclusies over toepasbaarheid van MLE in PBRR
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modellering zijn niet geformuleerd alhoewel parameter optimalisatie wel
is bereikt voor elke optimalisatie case (Hoofdstuk 6). De toepasbaarheid
in multi-objectieve modelkalibratie blijft echter aantrekkelijk. Het feit
dat parameteronzekerheid niet tot uitdrukking komt in modeluitvoer
wordt gezien als een beperking. (Hoofdstuk 5). Om meer eenduidige
conclusies te kunnen trekken moeten simulaties cases herhaald worden
met meer betrouwbare tijdseries van waarnemingen. Gevoeligheidstesten
naar het toepassen van wegingsfactoren voor individuele waarnemingen
in de doelfuncties moeten ook uitgevoerd worden. Dit aspect van
kalibratie heeft geen aandacht gehad in deze thesis. De MLE procedure
moet ook gekoppeld worden aan meer spaarzame model benadering en
moet toegepast worden in meerdere stroomgebieden.
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