
Simulating and Analyzing Two Protocols

for the Concentration of Entanglement

Niv Bharos

to obtain the degree of Bachelor of Science in
Applied Physics at Delft University of

Technology

Simulating and Analyzing Two Protocols
for the Concentration of Entanglement

by

Niv Bharos

Student number: 4437233
Date of defense: May 17th at 15:30h
Thesis committee: Dr. D. Elkouss Coronas (supervisor), TU Delft

Prof.dr.ir. Ronald Hanson, TU Delft

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

Abstract v

1 Introduction 1

2 Background Information 3
2.1 Quantum States . 3

2.1.1 Single Qubit . 3
2.1.2 Multiple Qubits . 4

2.2 Quantum Gates. 5
2.2.1 Single qubit gates . 5
2.2.2 Multiple qubit gates . 6

2.3 Entanglement . 7
2.4 Von Neumann’s protocol . 9

2.4.1 Extracting Randomness . 9
2.4.2 Entanglement Concentration 11

2.5 Elias’s Protocol . 13
2.5.1 Extracting Randomness . 13
2.5.2 Entanglement Concentration 15

3 Methods 21
3.1 Von Neumann’s Protocol . 21

3.1.1 Simulation. 21
3.1.2 Executing on a Quantum Computer 24

3.2 Elias’s Protocol . 27
3.2.1 Measuring the Hamming Weight. 27
3.2.2 Executing with Two Initial Pairs 30

4 Results 33
4.1 Von Neumann’s Protocol . 33

4.1.1 One run . 33
4.1.2 Iterating . 35
4.1.3 Executing on a Quantum Computer 36

4.2 Elias’s Protocol . 39

5 Discussion 43

6 Conclusion 45

References 46
References. 46

A Appendix 47

iii

Abstract

Many applications of quantum communication require a high amount of entangle-
ment between the states of two separated parties, for example quantum telepor-
tation or superdense coding. However, when states are locally entangled and then
separated, errors arise during transportation of the qubits. This results in a lower
amount of entanglement between the states. Thus, we need protocols that apply
local operations on the qubits of the two separate parties to achieve higher entan-
glement. This is called entanglement concentration. We analyze two protocols that
classically can be used for the extraction of randomness and apply it to the con-
centration of entanglement: Von Neumann’s protocol and Elias’s protocol. These
protocols are well-described in the literature. We analyze the performance of the
protocols on quantum computers with varying error rates.

We find that Von Neumann’s protocol extracts entanglement similar to the the-
ory on the best 5-qubit processor (Athens): there is an average percentage change
in the concurrence when the protocol succeeds of 49.0%, which is close to the
theoretical value of 52.5%. Elias’s protocol requires many more qubits than Von
Neumann’s protocol. The only quantum computer large enough to run the protocol
(Melbourne) has high error rates. Also, Elias’s protocol requires more operations.
This results in higher errors when we execute the protocol on Melbourne. We ex-
ecute the protocol with 2 initial states and find an average percentage decrease of
the concurrence when the protocol succeeds of 72.6%. Thus, we find that Elias’s
protocol is not suited to use in practice and the Von Neumann protocol can be used
to extract entanglement with the best quantum processors used in this work.

v

1
Introduction

Quantum physics is well-known for its spooky algorithms that can do things we
classically deem hard or even impossible, like quantum teleportation or superdense
coding. An underlying condition for these algorithms is strongly entangled states
shared by two parties that are separated from each other. Entangled states are cre-
ated by applying operations to both qubits involved, so they need to be together.
The algorithms mentioned before require that the states are spatially separated.
Therefore after the states are entangled, the qubits are transported via quantum
communication channels. However, this transportation induces a lot of noise to the
states, which end up not maximally entangled. Since the algorithms require a high
amount of entanglement, we need protocols that apply local operations to extract
entanglement. This is called entanglement concentration.

We take a closer look at two protocols for entanglement concentration: Von Neu-
mann’s protocol and Elias’s protocol. These protocols are described extensively in
the literature, for example by Blume-Kohout et all [1] and Kaye and Mosca [2].
However, current quantum computers have limitations in size (number of qubits)
and induce large errors. In this work we test these protocols on quantum comput-
ers to see how well they perform. Thus the main question that we want to answer is:

How do the Von Neumann protocol and Elias’s protocol perform in terms of en-
tanglement extraction on real quantum devices, in comparison to the theory?

We start by explaining the necessary fundamental concepts of quantum information
in Chapter 2, the Background Information. Here we also explain how the proto-
cols work in theory. In Chapter 3, Methods, we discuss how these protocols are
implemented on available simulators and quantum computers of IBM. In Chapter
4 we present the results of running the protocols on simulators and on quantum
computers. We compare the results of executing on the perfect simulators and the
real quantum devices. We will discuss and conclude this work in Chapters 5 and 6.

1

2
Background Information

In this chapter we first introduce a few fundamental concepts of quantum informa-
tion. We discuss quantum states, single and multiple qubit gates and entanglement.
This discussion is based on the book by Nielsen and Chuang [3]. We continue to
discuss two protocols for the extraction of randomness and how these protocols
can be applied to our problem of entanglement concentration.

2.1. Quantum States
2.1.1. Single Qubit
The quantum version of the classical bit is called a quantum bit or qubit. A qubit is a
system that can be the Boolean states 0 and 1, though in quantum mechanics these
states are represented as |0⟩ and |1⟩. The notation |⟩ is called the Dirac notation.
We can also represent these states in vector notation:

|0⟩ = [10] , |1⟩ = [
0
1] (2.1)

A difference between the classical bit and the qubit is that the latter can be in a
superposition or linear combination of states. We consider a qubit in the general
state |𝜓⟩.

|𝜓⟩ = 𝛼ኺ |0⟩ + 𝛼ኻ |1⟩ (2.2)

Here 𝛼ኺ and 𝛼ኻ are complex numbers. |𝜓⟩ is a valid quantum state as long as the
state is normalized. When we measure the qubit in the computational basis, the
state collapses to either |0⟩ with a probability of |𝛼ኺ|ኼ or to |1⟩ with a probability of
|𝛼ኻ|ኼ. Since the qubit must be in either of these two states, |𝜓⟩ is a valid quantum
state only when the normalization condition is satisfied: |𝛼ኺ|ኼ + |𝛼ኻ|ኼ = 1.

3

2

4 2. Background Information

We can visualize single qubit state with the Bloch sphere. This requires yet an-
other representation of the state |𝜓⟩:

|𝜓⟩ = 𝑒።᎑ (cos(𝛽/2) |0⟩ + 𝑒።Ꭻ sin(𝛽/2) |1⟩) (2.3)

Here 𝛿, 𝛽 and 𝜙 are real numbers. We see that this representation also satisfies the
normalization condition: cosኼ(𝛽/2)+sinኼ(𝛽/2) = 1. We ignore the first exponent,
since it has no observable effects. We see the Bloch sphere in Figure 2.1. Here,
𝜙 ∈ [0, 2𝜋] is the azimuthal angle and 𝛽 ∈ [0, 𝜋] is the polar angle. In other works
the polar angle is often called 𝜃, but we don’t follow this convention since we use
𝜃 for another angle (see Figure 3.2). We can only visualize the state of one qubit
on the Bloch sphere. Every state that resides on the Bloch sphere is called a pure
state. The interior points are called mixed states, which represent a probabilistic
mixture of pure states.

y

x

z

Figure 2.1: Bloch sphere

We see that the pure states on the 𝑧 - axis are the computational basis states.
Thus, the 𝑧 - basis is commonly referred to as the standard basis. All other states
on the Bloch sphere are superpositions. We see that the pure states on the 𝑦 - axis
are |+𝑖⟩ = ኻ

√ኼ
(|0⟩ + 𝑖 |1⟩) and |−𝑖⟩ = ኻ

√ኼ
(|0⟩ − 𝑖 |1⟩). For clarity we didn’t show the

pure state on the 𝑥 - axis, but it is worth mentioning: on the positive axis the state
|+⟩ = ኻ

√ኼ
(|0⟩ + |1⟩) resides and on the negative axis |−⟩ = ኻ

√ኼ
(|0⟩ − |1⟩).

2.1.2. Multiple Qubits
When we have two qubits, they can be in each of the four computational basis states
|00⟩, |01⟩, |10⟩ and |11⟩, or in a superposition of these states. Every computational
basis state represents a tensor product of the two states inside the ket:

2.2. Quantum Gates

2

5

|00⟩ = |0⟩ ⊗ |0⟩ = [10] ⊗ [10] =
⎡
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎦

(2.4)

In general, we can write the state vector |𝜓⟩ of a 2-qubit system as:

|𝜓⟩ = 𝛼ኺኺ |00⟩ + 𝛼ኺኻ |01⟩ + 𝛼ኻኺ |10⟩ + 𝛼ኻኻ |11⟩ =
⎡
⎢
⎢
⎣

𝛼ኺኺ
𝛼ኺኻ
𝛼ኻኺ
𝛼ኻኻ

⎤
⎥
⎥
⎦

(2.5)

The coefficients 𝛼 ∈ {0, 1}ኼ are complex and satisfy the normalization condition.

2.2. Quantum Gates
2.2.1. Single qubit gates
If we want to change the state of a qubit to another state, we can do so by applying
a gate to the qubit. All quantum gates can be expressed in matrices, with the only
constraint that they need to be unitary. A unitary matrix 𝑈 satisfies:

𝑈𝑈ጷ = 𝐼 (2.6)

Here 𝑈ጷ is the transpose and complex conjugate of 𝑈. All 1-qubit gates can be
visualized as a rotation on the Bloch sphere. The Pauli gates allow us to rotate 180
degrees around an axis:

𝑋 = [0 1
1 0] , 𝑌 = [

0 −𝑖
𝑖 0] , 𝑍 = [

1 0
0 −1] (2.7)

Note that the Pauli X-gate acts similarly on the computational basis states as the
classical NOT gate that flips a bit. The Pauli Z-gate can also be seen as a phase flip
since it adds 180∘ to the phase 𝜙. The Pauli gates are special cases of the rotation
operators, which allow you to rotate about the 𝑥, 𝑦 or 𝑧 - axis with an angle 𝜃. We
will come across the 𝑅፲ - gate later on:

𝑅፲(𝜃) = [
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)] (2.8)

Another important gate is the Hadamard gate. This gate represents a rotation
around the ኻ

√ኼ(�̂� + �̂�) axis. A useful property is that it transforms the state |0⟩ to
|+⟩ and |1⟩ to |−⟩, as we see below.

2

6 2. Background Information

𝐻 |0⟩ = 1
√2

[1 1
1 −1] [

1
0] =

1
√2

[11] = |+⟩

𝐻 |1⟩ = 1
√2

[1 1
1 −1] [

0
1] =

1
√2

[1−1] = |−⟩
(2.9)

2.2.2. Multiple qubit gates
We discuss three relevant quantum logic gates that act on multiple qubits: the
CNOT gate, the SWAP gate and the Toffoli gate. The CNOT gate (controlled NOT
gate) acts on two qubits. One of the qubits is the control qubit 𝑞ኺ and the other
the target qubit 𝑞ኻ. The gate stores the XOR 𝑞ኺ⊕𝑞ኻ in the target qubit. In other
words, the NOT operation on the target qubit is only executed when the control
qubit is |1⟩. We find the circuit representation and the corresponding matrix in the
basis |00⟩, |01⟩, |10⟩ and |11⟩ in Figures 2.2 and 2.3.

q0

q1

Figure 2.2: Circuit representation of the CNOT
gate

⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎦

Figure 2.3: Matrix
of the CNOT gate

Then, two qubits can be swapped by the SWAP gate. The circuit representation
of this gate and the corresponding matrix are shown in Figures 2.4 and 2.5.

Figure 2.4: Circuit representation of the SWAP
gate

⎡
⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎦

Figure 2.5: Matrix
of the SWAP gate

We see that we can represent the SWAP gate by applying 3 CNOT gates by

writing the states as |𝑞ኺ⟩ = [
𝑎
𝑏] and |𝑞ኻ⟩ = [

𝑐
𝑑]. Their joint state is given by:

|𝑞ኺ𝑞ኻ⟩ = [
𝑎
𝑏] ⊗ [𝑐𝑑] = 𝑎𝑐 |00⟩ + 𝑎𝑑 |01⟩ + 𝑏𝑐 |10⟩ + 𝑏𝑑 |11⟩ (2.10)

We consider the joint state after each CNOT gate:

2.3. Entanglement

2

7

CNOT 1: 𝑎𝑐 |00⟩ + 𝑎𝑑 |11⟩ + 𝑏𝑐 |10⟩ + 𝑏𝑑 |01⟩
CNOT 2: 𝑎𝑐 |00⟩ + 𝑎𝑑 |10⟩ + 𝑏𝑐 |11⟩ + 𝑏𝑑 |01⟩

CNOT 3: 𝑎𝑐 |00⟩ + 𝑎𝑑 |10⟩ + 𝑏𝑐 |01⟩ + 𝑏𝑑 |11⟩ = [𝑐𝑑] ⊗ [𝑎𝑏]
(2.11)

Thus, we see that the states are indeed swapped after the last CNOT gate.

The Toffoli gate is an extension of the CNOT gate and is called the CCNOT gate
(controlled-controlled NOT gate). It needs three input qubits: two control qubits,
𝑞ኺ and 𝑞ኻ, and one target qubit 𝑞ኼ. The Toffoli gate stores 𝑞ኼ⊕𝑞ኺ𝑞ኻ in the target
qubit. We find the circuit representation and corresponding matrix in Figures 2.6
and 2.7.

q0

q1

q2

Figure 2.6: Circuit representation of the Toffoli
gate

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ኻ ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኺ
ኺ ኻ ኺ ኺ ኺ ኺ ኺ ኺ ኺ
ኺ ኺ ኻ ኺ ኺ ኺ ኺ ኺ ኺ
ኺ ኺ ኺ ኻ ኺ ኺ ኺ ኺ ኺ
ኺ ኺ ኺ ኺ ኻ ኺ ኺ ኺ ኺ
ኺ ኺ ኺ ኺ ኺ ኻ ኺ ኺ ኺ
ኺ ኺ ኺ ኺ ኺ ኺ ኻ ኺ ኺ
ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኻ
ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኻ ኺ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Figure 2.7: Matrix of the Toffoli gate

An important property of gates is that we can construct any unitary operation
on any arbitrary number of qubits by using a finite set of qubit gates. We say that
this set of gates is universal. There are multiple universal sets, one example are all
single qubit gates and the CNOT gate.

2.3. Entanglement
A physicist who played a key role in our understanding of quantum entanglement to-
day, was John Stewart Bell. He demonstrated, in response to the paper of Einstein,
Podolsky and Rosen [4], that quantum theory predicts violations of the classical
limit of correlations [5]. Nowadays, quantum entanglement is essential for many
quantum algorithms, such as superdense coding or quantum teleportation. Two or
more qubits are said to be entangled when the state of each individual qubit cannot
be described independently of the quantum state of the other qubits. In this work
we focus on the entanglement of two qubits. Let’s assume Alice has one qubit in
the state |𝜓⟩ and Bob has another qubit in the state |𝜙⟩. We can write their joint
state |Ψ⟩ as the tensor product of the individual qubit states, as shown below:

|Ψ⟩ = |𝜓⟩ ⊗ |𝜙⟩ (2.12)

If the joint state can be written like eq. 2.12, we say that the joint state is separable.

2

8 2. Background Information

However, the states of Alice and Bob can also be correlated and then the joint state
is said to be entangled. Four states that are maximally entangled are the Bell states
or EPR pairs.

|Φዄ⟩ = 1
√2

(|0⟩ፀ |0⟩ፁ + |1⟩ፀ |1ፁ⟩)

|Φዅ⟩ = 1
√2

(|0⟩ፀ |0⟩ፁ − |1⟩ፀ |1ፁ⟩)

|Ψዄ⟩ = 1
√2

(|0⟩ፀ |1⟩ፁ + |0⟩ፀ |1ፁ⟩)

|Ψዅ⟩ = 1
√2

(|0⟩ፀ |1⟩ፁ − |0⟩ፀ |1ፁ⟩)

(2.13)

We see that whenever Alice’s qubit is measured and collapsed to state |0⟩ or |1⟩, the
state of Bob is fully determined too. In other words, the measurement outcomes
are perfectly correlated. We use a quantity called the concurrence 𝐶 to quantify the
amount of entanglement. For the general state of eq. 2.5, the concurrence looks
like [6]:

𝐶(|𝜓⟩) = 2|𝛼ኺኺ𝛼ኻኻ − 𝛼ኺኻ𝛼ኻኺ| (2.14)

The states of two qubits are entangled if the concurrence is nonzero and maximally
entangled when 𝐶 = 1. We see that the Bell states indeed are maximally entan-
gled since 2 ⋅ |ኻኼ | = 1. For a concurrence between 0 and 1, the state is said to be
entangled (not maximally entangled).

We can create the first Bell state from eq. 2.13 with the circuit in Figure 2.8a.
The qubits in this circuit start in the state |0⟩. After the Hadamard gate, the joint
states of the qubits is:

1
√2
(|00⟩ + |10⟩) (2.15)

After the CNOT gate, the qubits are in the Bell state |Φዄ⟩:

|Φዄ⟩ = 1
√2
(|00⟩ + |11⟩) (2.16)

By applying a Pauli-𝑋 and / or Pauli-𝑍 gate to 𝑞ኻ afterwards, we can initialize the
other Bell states. For example, we see the circuit to create |Ψዅ⟩ in Figure 2.8b.

2.4. Von Neumann’s protocol

2

9

Hq0

q1

(a) Circuit to create |ጓᎼ⟩

H

Z X

q0

q1

(b) Circuit to create |ጕᎽ⟩

Figure 2.8

2.4. Von Neumann’s protocol
In computer science, a lot of research has been conducted to randomness. Ran-
domness plays an important role in many algorithms, for example in cryptogra-
phy to choose random secret keys [7]. We consider two randomness extractors:
Von Neumann’s protocol and Elias’s protocol. A randomness extractor is a protocol
that extracts a sequence of perfect independent random bits from a weak random
source, which is a source of a sequence of bits that may contain biases or corre-
lations. In the case of Von Neumann’s and Elias’s protocol the input is a stream
of biased, independent bits. We will see that these protocols can also be used to
generate perfect EPR pairs in theory.

2.4.1. Extracting Randomness
We start by considering a classical source of biased and independent binary infor-
mation. In a sequence of bits, ’biased’ means that the distribution of zeroes and
ones is not uniform. When bits are independent, there is no correlation between
two consecutive bits. We sample two bits at a time and call the probability of draw-
ing a zero 𝑝ኺ and the probability of one 𝑝ኻ.

We see that the probability of the sequence ’01’ is the same as the probability
of the sequence ’10’: 𝑝ኺ𝑝ኻ. Von Neumann’s protocol uses this property. If we draw
a pair with odd parity the first bit is reported. If however ’00’ or ’11’ is drawn, we
discard the bits and draw again. We find an overview of the protocol in Figure 2.9.
We see that there is no bias in the output bits anymore: the output sequence is
independent and uncorrelated.

Figure 2.9: An overview of the Von Neumann protocol

2

10 2. Background Information

The probability of succeeding once in ፧
ኼ executions of the protocol is a geometric

distribution. Here 𝑛 is the number of input bits. Since we need two input bits for
one execution of the protocol, this is used in the exponent.

𝑃𝑟(𝑛) = 2𝑝ኺ𝑝ኻ(1 − 2𝑝ኺ𝑝ኻ)
ᑟ
Ꮄዅኻ (2.17)

We can now calculate the expected waiting time: the expected amount of input
bits for one random output bit.

⟨𝑛⟩ = 2 ⋅
ጼ

∑
፧዆ኺ

𝑛
2 ⋅ 𝑃𝑟(𝑛) =

ጼ

∑
፧዆ኺ

𝑛 ⋅ 2𝑝ኺ𝑝ኻ(1 − 2𝑝ኺ𝑝ኻ)
ᑟ
Ꮄዅኻ

=
ጼ

∑
፧዆ኺ

𝑛
2 ⋅ 4𝑝ኺ𝑝ኻ(1 − 2𝑝ኺ𝑝ኻ)

ᑟ
Ꮄዅኻ

(2.18)

We substitute the following geometric series.

ጼ

∑
፧዆ኻ

𝑛𝑥፧ዅኻ = 1
(1 − 𝑥)ኼ

→ ⟨𝑛⟩ = 4𝑝ኺ𝑝ኻ
4𝑝ኼኺ𝑝ኼኻ

= 1
𝑝ኺ𝑝ኻ

(2.19)

We write the probability of getting one random bit per input bit as the inverse of
Eq. 2.19 amount of random bits generated per input bit as 𝑅:

𝑅 = 𝑑𝑁፫፛።፭፬
𝑑𝑛 = 𝑝ኺ𝑝ኻ (2.20)

In classical information theory the Shannon entropy is often used to quantify the
information stored in a variable 𝑋 [3]. The Shannon entropy is defined as:

𝐻(𝑋) = 𝐻(𝑝ኻ, ..., 𝑝፧) = −
፧

∑
፱዆ኻ

𝑝፱ logኼ 𝑝፱ (2.21)

Now we calculate the Shannon entropy of the input bits 𝑛 and output bits 𝑁 and see
how much information is lost. When the protocol succeeds, the probability of ’0’
and ’1’ is the same: 0.5. We can substitute these values to calculate the Shannon
entropy of the output bits. However, the probability of getting one random bit per
input bit is 𝑝ኺ𝑝ኻ, as we saw in Equation 2.20. We need to multiply with 𝑝ኺ𝑝ኻ, as we
see below.

𝐻(𝑛) = 𝐻(𝑝ኺ, 𝑝ኻ) = −(𝑝ኺ logኼ(𝑝ኺ) + 𝑝ኻ logኼ(𝑝ኻ))
𝐻(𝑁) = 𝐻(𝑝ኺ) = −𝑝ኺ𝑝ኻ (0.5 ⋅ logኼ(0.5) + 0.5 ⋅ logኼ(0.5)) = 𝑝ኺ𝑝ኻ

(2.22)

2.4. Von Neumann’s protocol

2

11

Figure 2.10: Left: the entropy of the input bit and output bit vs ፩Ꮂ. Right: the percentage wasted
entropy.

In Figure 2.10 we find a plot of Eq. 2.22 for 0 < 𝑝ኺ < 1 and 𝑝ኻ = 1 − 𝑝ኺ. We
see that the Shannon entropy of the input bit is always larger than the entropy we
extract: at minimum, the protocol wastes 75% of the initial entropy.

2.4.2. Entanglement Concentration
We apply a similar protocol for the concentration of entanglement. We assume that
Alice and Bob share multiple copies of the entangled state:

|𝜓⟩ = √𝑝ኺ |0ፀ0ፁ⟩ + √𝑝ኻ |1ፀ1ፁ⟩ (2.23)

We use eq. 2.14 to see that the concurrence of this state is 𝐶(|𝜓⟩) = 2√𝑝ኺ𝑝ኻ. Alice
and Bob now each run the following algorithm:

1. Draw two qubits 𝑞ኻ and 𝑞ኼ from the input.

2. Perform a CNOT operation with 𝑞ኻ as the control qubit and 𝑞ኼ as the target
qubit.

3. If the second qubits of both Alice and Bob are equal to ’1’, they both swap 𝑞ኻ
with the output register and halt. Otherwise they repeat the protocol.

Suppose we run the algorithm with two copies of the initial state (so the protocol
is executed once). We look at the states after each part of the algorithm, starting
with the initial state:

1: |𝜓⟩⨂ኼ = 𝑝ኺ |00ፀ⟩ |00ፁ⟩ + 𝑝ኻ |11ፀ⟩ |11ፁ⟩ + √𝑝ኺ𝑝ኻ(|01ፀ⟩ |01ፁ⟩ + |10ፀ⟩ |10ፁ⟩)

2

12 2. Background Information

Now we store the parity 𝑞ኻ⨁𝑞ኼ in 𝑞ኼ and reorder the qubits.

2: |𝜓⟩⨂ኼ = (𝑝ኺ |0ፀ0ፁ⟩+𝑝ኻ |1ፀ1ፁ⟩) |0ፀ0ፁ⟩+√2𝑝ኺ𝑝ኻ(
1
√2

|0ፀ0ፁ⟩+
1
√2

|1ፀ1ፁ⟩) |1ፀ1ፁ⟩
(2.24)

If the second qubits are measured, the protocol can either fail or succeed. The joint
states of Alice and Bob for each case are:

3: |𝜓⟩፟ፚ።፥ =
𝑝ኺ

√1 − 2𝑝ኺ𝑝ኻ
|0ፀ0ፁ⟩ +

𝑝ኻ
√1 − 2𝑝ኺ𝑝ኻ

|1ፀ1ፁ⟩

|𝜓⟩፬፮፜ =
1
√2
(|0ፀ0ፁ⟩ + |1ፀ1ፁ⟩)

(2.25)

When the protocol succeeds the concurrence of the state is 𝐶፬፮፜ = 1. We see that
the probability of retrieving a maximally entangled state |Φዄ⟩ is given by 2𝑝ኺ𝑝ኻ.
The probability distribution of the number of iterations ፧

ኼ required to get one EPR
pair is a geometric distribution. Here, 𝑛 is the number of input entangled states.

𝑃𝑟(𝑁) = 2𝑝ኺ𝑝ኻ(1 − 2𝑝ኺ𝑝ኻ)
ᑟ
Ꮄዅኻ (2.26)

In the same way as with the classical case, we see that the expected number of
input states is ⟨𝑛⟩ = ኻ

፩Ꮂ፩Ꮃ
. The rate at which we extract maximally entangled states

from the input states is the inverse, 𝑝ኺ𝑝ኻ. Thus, we calculate the final concurrence
via:

𝐶፟።፧ፚ፥ = 𝑝ኺ𝑝ኻ ⋅ 𝐶፬፮፜ = 𝑝ኺ𝑝ኻ (2.27)

Here, we don’t take into account the concurrence of the state when the protocol
fails. In that case, we throw away the state so the concurrence is zero.

When we start with a maximally entangled state, 𝑝ኺ = 𝑝ኻ =
ኻ
ኼ and the con-

currence of the initial state is 1. Now, the least amount of entropy is wasted:
𝐶፟።፧ፚ፥ = 𝑝ኺ𝑝ኻ = 0.25. This agrees with the classical analogue, since at least 75%
of the total entanglement is wasted.

On-demand mode
By running the protocol multiple times, we can increase the probability of retrieving
one EPR pair. This is called the on-demand mode. If we run the algorithm on 2𝑁
copies of |𝜓⟩ we get after part 2 of the algorithm:

|𝜓𝜓⟩⊗ፍ →√2𝑝ኺ𝑝ኻ |Φዄ⟩ (
ፍዅኻ

∑
፤዆ኺ
(1 − 2𝑝ኺ𝑝ኻ)፤/ኼ(|0ፀ0ፁ⟩ |𝜓⟩፟ፚ።፥)⊗፤ |1ፀ1ፁ⟩ |𝜓𝜓⟩

⊗(ፍዅ፤ዅኻ))

+ (1 − 2𝑝ኺ𝑝ኻ)ፍ/ኼ(|𝜓⟩፟ፚ።፥ |0ፀ0ፁ⟩)⊗ፍ
(2.28)

2.5. Elias’s Protocol

2

13

For 𝑁 = 2, this yields:

|𝜓𝜓⟩⊗ኼ →√2𝑝ኺ𝑝ኻ |Φዄ⟩ |1ፀ1ፁ⟩ |𝜓𝜓⟩⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
ኻ

+√2𝑝ኺ𝑝ኻ |Φዄ⟩ √1 − 2𝑝ኺ𝑝ኻ |0ፀ0ፁ⟩ |𝜓⟩፟ፚ።፥ |1ፀ1ፁ⟩⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
ኼ

+ (1 − 2𝑝ኺ𝑝ኻ)(|𝜓⟩፟ፚ።፥ |0ፀ0ፁ⟩)⊗ኼ⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
ኽ

(2.29)

Part 1 describes the possibility to get an EPR pair on the first try. Since the algorithm
halts after succeeding, we have two initial states |𝜓𝜓⟩ that are not changed. Part
2 describes the possibility to fail the first time, but succeed the second time. The
last part, 3, gives the probability to fail both times. This same principle applies to
eq. 2.28: every 𝑘th term of the summation represents the possibility to fail 𝑘 times
and to succeed once and retrieve an EPR pair. Thus, we see that we have 𝑁−𝑘−1
initial states |𝜓𝜓⟩. The last term tells us when the protocol fails for all copies.

Streaming mode
In the streaming mode, we don’t halt in part 3 of the algorithm. We execute the
protocol 𝑁 times and every time the protocol succeeds, Alice and Bob place their
entangled qubit in an output register. If there already are entangled qubits saved
in the output register, we shift all qubits by one qubit. From eq. 2.24 we know
that the probability of success of one run is 𝑝 = 2𝑝ኺ𝑝ኻ. Since the iterations are
independent, the number of successes 𝑗 follows a binomial distribution with the
following probability distribution:

𝑃𝑟(𝑗) = (𝑁𝑗)𝑝
፣(1 − 𝑝)ፍዅ፣ (2.30)

2.5. Elias’s Protocol
2.5.1. Extracting Randomness
The second protocol that we consider for randomness extraction is Elias’s protocol
[8]. Similarly to Von Neumann’s protocol, we assume the input to be a sequence
of biased, independent bits. Again, the probability of ’0’ is 𝑝ኺ and the probability
of ’1’ is 𝑝ኻ. From this sequence we draw a string of 𝑁 bits. Every string of length
𝑁 with 𝑇 ’1’ bits (thus 𝑁 − 𝑇 ’0’ bits) has (ፍፓ) permutations. Because the input bits
are independent, all permutations have the same probability:

𝑃𝑟(𝑁, 𝑇) = 𝑝ፍዅፓኺ 𝑝ፓኻ (2.31)

We assign to all possible permutations of a (ፍፓ) string an index 𝛼 ∈ [0, 1, ... , (ፍፓ)−1].
We see that if (ፍፓ) = 2ፋ, the index can be written in binary and we immediately
have 𝐿 random bits.

2

14 2. Background Information

For example, if we draw a string of length 4 that contains three ’1’ bits, there
are (ኾኽ) = 4 = 2

ኼ permutations. According to Elias’s protocol, we should have 𝐿 = 2
random bits. We see this by writing out all possible permutations and assigning an
index that we write in binary.

0111 → 0 → 00
1011 → 1 → 01
1101 → 2 → 10
1110 → 3 → 11

(2.32)

Since these permutations all occur with the same probability, the binary index of
the particular string that we draw immediately yields two random bits.

When (ፍፓ) ≠ 2
ፋ we write the binomial coefficient in its binary representation:

(𝑁𝑇) = 2
ፋᎳ + 2ፋᎴ + ... + 2ፋᑟ (2.33)

Here 𝐿፧ = ⌊ log (ፍፓ) ⌋. Now the indices are divided into bins 𝛼:

𝛼ፋᎳ = [0, 1, . . . , 2ፋᎳ − 1]
𝛼ፋᎴ = [2ፋᎳ , 2ፋᎳ + 1, . . . , 2ፋᎳ + 2ፋᎴ − 1]
. . .

𝛼ፋᑜ = [
፤ዅኻ

∑
፣዆ኻ

2ፋᑛ , . . . ,
፤ዅኻ

∑
፣዆ኻ

2ፋᑛ + 2ፋᑜ − 1]

. . .

(2.34)

When we draw a particular string with an index 𝛼 in bin 𝛼ፋᑜ we output the binary
sequence 𝛼 − ∑፤ዅኻ፣዆ኻ 2ፋᑛ and we have generated 𝐿፤ random bits.

We illustrate this with another example. We draw a string of four bits from the
input and see that there are two ’1’ bits. There are (ኾኼ) = 6 = 2ኼ + 2ኻ possible
strings with the same probability. According to eq. 2.33, 𝐿ኻ = 1 and 𝐿ኼ = 2.
We assign indices to the permutations, analogous to what we did in the previous
example. We also divide the indices into bins, according to eq. 2.34.

0011 → 0
0101 → 1 }𝛼ኻ

0110 → 2
1001 → 3
1010 → 4
1100 → 5

⎫

⎬
⎭
𝛼ኼ (2.35)

2.5. Elias’s Protocol

2

15

When our particular string is in bin 𝛼ኻ, we output either 0 or 1 with equal probabil-
ity: we have one random bit. When the string is in bin 𝛼ኼ the output is 𝛼 − 2ኻ, so
either 00, 01, 10 or 11 with equal probability. In that case we have generated two
random bits.

Blume-Kohout et al [1] show that the protocol extracts at least 𝑁𝐻(𝑝) − logኼ(𝑁 +
1) − 2 bits of entropy from 𝑁 input bits. We see that when 𝑁 → ∞, the entropy
approaches 𝑁𝐻(𝑝). This is the theoretical upper bound, since we cannot extract
more entropy than the entropy of the input bits.

2.5.2. Entanglement Concentration
We can use Elias’s protocol as an entanglement concentration protocol. Let’s as-
sume that Alice and Bob share 𝑁 copies of a partially entangled state |𝜓⟩. Reorder-
ing this state gives:

|𝜓⟩⊗ፍ = (√𝑝ኺ |0ፀ0ፁ⟩ + √𝑝ኻ |1ፀ1ፁ⟩)
⊗ፍ

= √𝑝ኺ
ፍ |0ፀ0ፁ⟩⊗ፍ + √𝑝ኺ

ፍዅኻ
√𝑝ኻ (∑

ፇ(፱)዆ኻ
|𝑥ፀ𝑥ፁ⟩)

+ √𝑝ኺ
ፍዅኼ

√𝑝ኻ
ኼ (∑

ፇ(፱)዆ኼ
|𝑥ፀ𝑥ፁ⟩) + . . .

+ √𝑝ኺ√𝑝ኻ
ፍዅኻ (∑

ፇ(፱)዆ፍዅኻ
|𝑥ፀ𝑥ፁ⟩) + √𝑝ኻ

ፍ |1ፀ1ፁ⟩⊗ፍ

=
ፍ

∑
ፓ዆ኺ

√𝑝ኺ
ፍዅፓ

√𝑝ኻ
ፓ ∑
ፇ(፱)዆ፓ

|𝑥ፀ𝑥ፁ⟩

(2.36)

Here 𝑥 is a string of length 𝑁 and 𝐻(𝑥) the Hamming weight of this string. We see
that for a given Hamming weight 𝑇, the state is a uniform superposition of the (ፍፓ)
possible permutations of 𝑥. Now Alice and Bob both measure the Hamming weight
of their qubits. The normalized state after this measurement is:

|𝜓⟩ፓ =
1

√(ፍፓ)
∑

ፇ(፱)዆ፓ
|𝑥ፀ𝑥ፁ⟩ (2.37)

We now need to define a function 𝑓 that assigns a binary index from 0 to (ፍፓ) − 1
to each permutation in the following way:

2

16 2. Background Information

𝑓(00 . . . 00 11 . . . 11⏝⎵⎵⏟⎵⎵⏝
ፓ

) = 00 . . . 00

𝑓(00 . . . 10 11 . . . 11⏝⎵⎵⏟⎵⎵⏝
ፓዅኻ

) = 00 . . . 01

.

.

.

𝑓(11 . . . 11⏝⎵⎵⏟⎵⎵⏝
ፓ

00 . . . 00) = (𝑁𝑇) − 1 = 𝑚 = 00 . . . 00⏝⎵⎵⏟⎵⎵⏝
ፍዅፋ

𝑚⏟
ፋ

(2.38)

Here, 𝐿 = ⌈log (ፍፓ)⌉ Similarly to the classical case, when (ፍፓ) is equal to 2ፋ, we
have 𝐿 EPR pairs when Alice and Bob both throw away their first 𝑁−𝐿 qubits. Kaye
and Mosca [2] describe a way to implement the function 𝑓. Their implementation
requires a quantum binary subtractor, which we won’t discuss in this work.

Example with 2 shared pairs
We consider the case for 𝑁 = 2, so Alice and Bob start with the state:

|𝜓⟩⊗ኼ = (√𝑝ኺ |0ፀ0ፁ⟩ + √𝑝ኻ |1ፀ1ፁ⟩)
⊗ኼ

= 𝑝ኺ |00⟩ፀ |00⟩ፁ + √𝑝ኺ𝑝ኻ (∑
ፓ዆ኻ

|𝑥ፀ𝑥ፁ⟩) + 𝑝ኻ |11⟩ፀ |11⟩ፁ

= 𝑝ኺ |00⟩ፀ |00⟩ፁ +√2𝑝ኺ𝑝ኻ (
1
√2

|01⟩ፀ |01⟩ፁ +
1
√2

|10⟩ፀ |10⟩ፁ) + 𝑝ኻ |11⟩ፀ |11⟩ፁ
(2.39)

In eq. 2.39 the string 𝑥 ∈ {0, 1}ኼ. Now Alice and Bob both measure the Hamming
weight. There are three possible measurement outcomes: 𝑇 = 0, 𝑇 = 2 and 𝑇 = 1.
In the first two cases the binomial coefficient (ኼኺ) = (

ኼ
ኼ) = 1 = 2

ኺ, giving 0 EPR pairs
according to Elias’s protocol. Thus, we consider the case where 𝑇 = 1, because for
the binomial coefficient we have (ፍፓ) = 2 = 2ኻ. Measuring this Hamming weight
should result in 1 EPR pair. The state after the measurement and Hamming weight
1 is:

|𝜓⟩ፇ(፱)዆ኻ =
1
√2

(|01⟩ፀ |01⟩ፁ + |10⟩ፀ |10⟩ፁ)

→ 1
√2

(|1ፀ1ፁ⟩ + |0ፀ0ፁ⟩)
(2.40)

2.5. Elias’s Protocol

2

17

Note that in this case, we don’t need to index the permutations. We already have
one EPR pair if Alice and Bob both throw away their first qubit. Since we use less
operations than applying the function, this method is also less prone to errors. We
can see the final state in the last line of eq. 2.40.

For completeness, we also follow Elias’s protocol: we assign a lexicographic index
to the permutations.

01 → 00 , 10 → 01 (2.41)

Now Alice and Bob share the following state:

1
√2

(|00⟩ፀ |00⟩ፁ + |01⟩ፀ |01⟩ፁ) (2.42)

When they both throw away their first qubit, they share a Bell state |Φ⟩ዄ. The
probability of measuring a Hamming weight 𝑇 = 1 is 2𝑝ኺ𝑝ኻ, as we see in eq. 2.39.
The final concurrence is the same as when we apply the Von Neumann protocol
and succeed: 𝐶፟።፧ፚ፥ = 𝑝ኺ𝑝ኻ.

For this specific case of two shared pairs of entangled states, the two protocols
might appear to be similar but the approach is quite different: Von Neumann’s
protocol requires a CNOT gate while in Elias’s protocol we measure the Hamming
weight.

Dividing the indices in bins

However, when (ፍፓ) is not a power of 2 we need to divide the indices in bins, similar
to eq. 2.34. We use the notation |𝑦⟩ for the index of a permutation (a permutation
after the function 𝑓 is applied). Now we rewrite the binomial coefficient in the same
way as eq. 2.33 but with a slightly different notation: (ፍፓ) = 𝛽፧2፧ + 𝛽፧ዅኻ2፧ዅኻ +
. . . + 𝛽ኺ2ኺ. We divide the indices into bins 𝛼 as follows:

2

18 2. Background Information

1

√(ፍፓ)

(ᑅᑋ)ᎽᎳ
∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ =
1

√(ፍፓ)

ᎏᑟ⋅ኼᑟዅኻ

∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

ᎎᑟ

+ 1

√(ፍፓ)

ᎏᑟ⋅ኼᑟዄᎏᑟᎽᎳ⋅ኼᑟᎽᎳዅኻ

∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

ᎎᑟᎽᎳ

+ . . .

+ 1

√(ፍፓ)

ᎏᑟ⋅ኼᑟዄᎏᑟᎽᎳ⋅ኼᑟᎽᎳዄ...ዄᎏᎲ⋅ኼᎲዅኻ

∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

ᎎᎲ

(2.43)

To see why this binning works, we look at an example. Let’s assume that 0 ≤ (ፍፓ) ≤
7, so we can write (ፍፓ) = 𝛽ኼ ⋅ 2

ኼ + 𝛽ኻ ⋅ 2ኻ + 𝛽ኺ ⋅ 2ኺ. We use the binning from eq.
2.43:

1

√(ፍፓ)

(ᑅᑋ)ዅኻ
∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ =
1

√(ፍፓ)

ᎏᎴ⋅ኼᎴዅኻ

∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

ᎎᎴ

+ 1

√(ፍፓ)

ᎏᎴ⋅ኼᎴዄᎏᎳ⋅ኼᎳዅኻ

∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

ᎎᎳ

+ 1

√(ፍፓ)

ᎏᎴ⋅ኼᎴዄᎏᎳ⋅ኼᎳዄᎏᎲ⋅ኼᎲዅኻ

∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

ᎎᎲ

(2.44)

If 𝛽ኼ = 1, 𝛼ኼ includes |000⟩ , |001⟩ , |010⟩ , |011⟩, otherwise this bin is empty. If
𝛽ኻ = 1, 𝛼ኻ contains 𝛽ኼ00 and 𝛽ኼ01 and if 𝛽ኺ = 1 the bin 𝛼ኺ contains 𝛽ኼ𝛽ኻ0. In
other words, every bin where 𝛽፣ = 1 contains 2፣ strings. Thus, we rewrite eq. 2.44
to:

2.5. Elias’s Protocol

2

19

(ᑅᑋ)ዅኻ
∑
፲዆ኺ

|𝑦⟩ፀ |𝑦⟩ፁ = 𝛽ኼ
ኺኻኻ

∑
፲዆ኺኺኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

ᎎᎴ

+ 𝛽ኻ
ᎏᎴኺኻ

∑
፲዆ᎏᎴኺኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

ᎎᎳ

+ 𝛽ኺ
ᎏᎴᎏᎳኺ

∑
፲዆ᎏᎴᎏᎳኺ

|𝑦⟩ፀ |𝑦⟩ፁ
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

ᎎᎲ
(2.45)

Since we measure the Hamming weight 𝑇 and the length of the string 𝑁 is known,
we know the values of 𝛽፣. Now, Alice and Bob both measure their leftmost qubit,
𝑦ኼ (they will both obtain the same result). There are three possible cases.

1. 𝑦ኼ = 0 and 𝛽ኼ = 1. We know from eq. 2.45 that we are in bin 𝛼ኼ, so the state
is an equal superposition of the following strings 𝑦:

1
2 (|000⟩ፀ |000⟩ፁ + |001⟩ፀ |001⟩ፁ + |010⟩ፀ |010⟩ፁ + |011⟩ፀ |011⟩ፁ) (2.46)

If we throw away 𝑦ኼ, Alice and Bob are left with 2 EPR pairs:

1
2 (|00⟩ፀ |00⟩ፁ + |01⟩ፀ |01⟩ፁ + |10⟩ፀ |10⟩ፁ + |11⟩ፀ |11⟩ፁ)

= 1
2 (|0ፀ0ፁ⟩ |0ፀ0ፁ⟩ + |0ፀ0ፁ⟩ |1ፀ1ፁ⟩ + |1ፀ1ፁ⟩ |0ፀ0ፁ⟩ + |1ፀ1ፁ⟩ |1ፀ1ፁ⟩)

= 1
√2

|0ፀ0ፁ⟩ (
1
√2
(|0ፀ0ፁ⟩ + |1ፀ1ፁ⟩)) +

1
√2

|1ፀ1ፁ⟩ (
1
√2
(|0ፀ0ፁ⟩ + |1ፀ1ፁ⟩))

= (1
√2

|0ፀ0ፁ⟩ +
1
√2

|1ፀ1ፁ⟩) ⋅ (
1
√2

|0ፀ0ፁ⟩ +
1
√2

|1ፀ1ፁ⟩)
(2.47)

2. 𝑦ኼ = 0 and 𝛽ኼ = 0. We know that bin 𝛼ኼ is empty. If 𝛽ኻ = 1, 𝛼ኻ contains
|000⟩ and |001⟩ and if 𝛽ኺ = 1, 𝛼ኺ contains |0𝛽ኻ0⟩. The only option for 𝑦ኼ is
zero. After normalizing, the state is:

1
√3

(𝛽ኻ |000⟩ፀ |000⟩ፁ + 𝛽ኻ |001⟩ፀ |001⟩ፁ + 𝛽ኺ |0𝛽ኻ0⟩ፀ |0𝛽ኻ0⟩ፁ) (2.48)

3. If 𝑦ኼ = 1, 𝛽ኼ has to be one, otherwise these permutations would not occur.
We can be in either 𝛼ኻ, that now contains the states |100⟩ and |101⟩ if 𝛽ኻ = 1
or in 𝛼ኺ that contains |1𝛽ኻ0⟩ if 𝛽ኺ = 1. Thus, the normalized state is:

1
√3

(𝛽ኻ |100⟩ፀ |100⟩ፁ + 𝛽ኻ |101⟩ፀ |101⟩ፁ + 𝛽ኺ |1𝛽ኻ0⟩ፀ |1𝛽ኻ0⟩ፁ) (2.49)

After discarding 𝑦ኼ, the state in case 2 and 3 looks like:

2

20 2. Background Information

1
√3

(𝛽ኻ |00⟩ፀ |00⟩ፁ + 𝛽ኻ |01⟩ፀ |01⟩ፁ + 𝛽ኺ |𝛽ኻ0⟩ፀ |𝛽ኻ0⟩ፁ) (2.50)

We don’t know how many EPR pairs we have extracted, if any at all. We need to
measure the leftmost qubit again, 𝑦ኻ. Now we need to consider the same three
cases. In case 1, Alice and Bob are in the state

1
√2

(|00⟩ፀ |00⟩ፁ + |01⟩ፀ |01⟩ፁ) (2.51)

After Alice and Bob both throw away their first qubit, they share one EPR pair.
In the second case, the only possible state is |00⟩ and in the third case |10⟩. These
cases don’t yield any EPR pairs.

We can generalize this to a simple algorithm that extracts EPR pairs from an in-
dexed state with 𝑘 qubits: Alice (or Bob) measures the leftmost qubit 𝑦፤. If 𝑦፤ = 0
and 𝛽፤ = 1, they discard the 𝑦፤ and are left with 𝑘 − 1 EPR pairs. If this is not
the case, they repeat the process 𝑙 times, until the leftmost qubit is zero and the
corresponding bit in the binary expression of (ፍፓ) is one. The number of EPR pairs
extracted is 𝑘 − 𝑙. Note that only Alice or Bob needs to check how many EPR pairs
are extracted, since they can communicate classically.

One the available quantum computers, a classical if-statement is not possible. In
this procedure we would need to measure qubits and conditionally on the outcome,
perform other quantum operations. To avoid this, Kaye and Mosca [2] designed
a quantum network in their paper, which we won’t discuss since it is beyond the
extent of this work.

3
Methods

We want to know how the protocols perform in practice. To this end, we implement
the protocols using Qiskit1[9]. We describe the circuits of all experiments in this
chapter.

3.1. Von Neumann’s Protocol
Von Neumann’s protocol is a sequential protocol, so it consecutively applies an
algorithm to two entangled states. We start by explaining how we run the protocol
once. Next, we discuss ways to repeat the protocol and what modifications the
circuits need to run on quantum processors.

3.1.1. Simulation
The protocol starts with multiple copies of the entangled state of eq. 2.23. To apply
the protocol once, we need four qubits: two for Alice and two for Bob. We create a
quantum register of six qubits and a classical register of two bits. The necessity of
the two extra qubits and two classical bits will become clear later. By default, the
initial state of every qubit is |0⟩. We apply a Hadamard gate to the qubits of Alice.
Each qubit of Alice will be in the superposition state:

𝑞ፀ = 𝐻 |0⟩ =
1
√2

[1 1
1 −1] [

1
0] =

|0⟩ + |1⟩
√2

= |+⟩ (3.1)

The starting point of this protocol is an entangled state, so we have to rotate Alice’s
qubits over the 𝑦 - axis through an angle 𝜃:

𝑞ፀ = [
cos(᎕ኼ) − sin(᎕ኼ)
sin(᎕ኼ) cos(᎕ኼ)

] [1/√21/√2] = [
cos(᎕ኼ)/√2 − sin(᎕ኼ)/√2
sin(᎕ኼ)/√2 + cos(᎕ኼ)/√2

]

= √𝑝ኺ |0⟩ + √𝑝ኻ |1⟩
(3.2)

1All code is available via https://github.com/nivbharos/thesis.

21

https://github.com/nivbharos/thesis.

3

22 3. Methods

Figure 3.1: Qubits ኺ and ኼ are in the state: ፑᑪ(᎝/ኾ)ፇ |ኺ⟩, qubits ኻ and ኽ are in the default state |ኺ⟩

with

√𝑝ኺ =
cos𝜃/2 − sin𝜃/2

√2

√𝑝ኻ =
cos𝜃/2 + sin𝜃/2

√2

(3.3)

In Figure 3.1 we see an example of Alice’s qubits (qubits 0 and 2) in the initial state
with an angle 𝜃 = ᎝

ኾ rad. We have not performed any operations on Bob’s qubits,
1 and 3, so these are in the default state |0⟩.

We see that the initial state is uniquely defined by 𝜃. We will often encounter
𝜃 in this work, so visualize it with a two-dimensional representation of the Bloch
sphere in Figure 3.2.

x

z

Figure 3.2: A two-dimensional representation of the Bloch sphere visualizing ᎕.

Now we can entangle the qubits of Alice and Bob by performing a CNOT oper-
ation from the qubits of Alice on the qubits of Bob, which stores 𝑞ፀ⊕𝑞ፁ in 𝑞ፁ.

|𝜓⟩ = √𝑝ኺ |0ፀ0ፁ⟩ + √𝑝ኻ |1ፀ1ፁ⟩ (3.4)

This is the initial state and we execute Von Neumann’s protocol as described in
Section 2.4.2. We find the circuit in Figure 3.3. The operations before the barrier
create the initial state 3.4. Here, 𝑞0ኺ and 𝑞0ኼ are the qubits of Alice, 𝑞0ኻ and 𝑞0ኽ

3.1. Von Neumann’s Protocol

3

23

Figure 3.3: Circuit that executes the Von Neumann protocol once for ᎕ ዆ ᒕ
Ꮆ rad.

the qubits of Bob, 𝑞0ኾ and 𝑞0኿ the output register qubits. After the barrier, the
protocol is applied and the second qubits of Alice and Bob are measured. For this
measurement, we need the two extra classical bits to save the results. Then, the
output register swaps with the first qubits if the measured states of the second
qubits are ’1’. Thus the two extra qubits are used to store the entanglement if the
protocol succeeds.

If the second qubits are not equal to one, the protocol fails but the output reg-
ister is still measured. This is why we apply an 𝑋-gate to one qubit of the output
register: if the protocol fails, we will measure |01⟩ in the output register. If we
didn’t apply the 𝑋-gate, we would measure the default state |00⟩. Since this is also
a state we measure when the protocol succeeds and the output register contains
an EPR pair, we need the 𝑋-gate to see the difference between success and failure
of the protocol in the results. At last, we measure the output register to check if it
contains an entangled pair.

Iterating Von Neumann’s protocol
Streaming mode
Another way of iterating is the fully streaming mode as described in Section 2.4.2.
We find the circuit for three runs of the protocol in the appendix in Figure A.1. In
this circuit, we create new initial states for every iteration and two extra qubits to
save the entangled state in case of success. This implementation does require a
lot of memory. By creating one quantum register that contains 𝑛 qubits needed
for the protocol, the classical computer we use to simulate this has to work with
at most 2(2፧ − 1) coefficients. To save a float we need four bytes, so we would
need approximately 2፧ዄኽ bytes. In this implementation, we would need 6 qubits
per iteration of the protocol (4 qubits to run the protocol and 2 qubits to save the
entangled state), so it would be hard to execute many times. We use another

3

24 3. Methods

method to execute the protocol 𝑁 times:

1. Create the circuit shown in Figure 3.3 for fixed 𝜃

2. Ask the simulator to execute the circuit 𝑁 times

3. Check how often the protocol succeeded and store this value in an array

4. Repeat this process as often as preferred

By repeating steps 1 to 3 we will be able to plot the distribution of the number of
successes in a histogram. The memory necessary for this process is much lower:
Repeating this process once only requires 5 qubits, so we need at most 2ዂ bytes
to store the coefficients. If we repeat the process 𝑛 times, we would need at most
𝑛 ⋅ 2ዂ bytes, which grows linearly. This is significantly more efficient than 2፧ዄኽ. We
also apply this method to the on-demand mode.

On-demand mode
In practice, it’s often useful to iterate the protocol to either retrieve one perfect EPR
pair with higher probability. In Section 2.4.2 we have seen that the probability of
producing at least one perfect EPR pair increases if the number of qubits increases
and / or if 2𝑝ኺ𝑝ኻ increases. Also, we see that 2𝑝ኺ𝑝ኻ increases if 𝜃 approaches 0 rad.
We use the method from the previous section but now we only check if the protocol
has succeeded at least once in step 3 for varying 𝜃 and number of iterations 𝑁.

3.1.2. Executing on a Quantum Computer
At the time of writing, there are four quantum computers publicly available on IBM
Quantum Experience: three 5-qubit processors and one 15-qubit processor. We
will execute the circuit as shown in Figure 3.4a on the following 5-qubit processors:
Athens [10], Santiago [11] and Yorktown [12]. We need to adjust the circuit in
order to run on these processors, so we use four qubits instead of six in Figure
3.3. Instead of swapping the entangled qubits with the output qubits, it suffices to
measure all qubits and to check afterwards which runs have succeeded.

When we execute a circuit on a quantum processor, not all qubits can interact
with each other. In other words, not all qubits are connected. When we need to
apply operations on qubits that are not connected, we need SWAP operations to
facilitate this. The connectivity of our circuit must be compatible with the connec-
tivities of the quantum computers that we will use. In Figure 3.5 we see that the
connectivity of the quantum computers is different from our circuit, hence we need
to modify our circuit. When we execute a circuit, it gets automatically adapted to be
able to run on the quantum computer, taking into account the connectivity and the
available gates. Also, the three 5-qubit processors can only execute the following
basis gates: CX, ID, RZ, SX and X.

In Figure 3.4b we see the adapted circuit for Athens and Santiago. The order of
the qubits is different: 𝑞ኺ and 𝑞ኼ are now the first and second qubits of Alice and
𝑞ኻ and 𝑞ኽ are now the first and second qubits of Bob, respectively. This minimizes

3.1. Von Neumann’s Protocol

3

25

H

H

RY
/4

RY
/4

0 1 2 3

q0

q1

q2

q3

4c

(a) Von Neumann circuit

RZ

RZ

X

X

RZ
7 /4

RZ
7 /4

X

X

RZ

RZ

0 1 2 3

q0

q1

q2

q3

q4

4c

(b) Athens and Santiago

RZ

RZ

X

X

RZ
7 /4

RZ
7 /4

X

X

RZ

RZ

0 1 2 3

q0

q1

q2

q3

q4

4c

(c) Yorktown

Figure 3.4: Von Neumann circuit (a) and the adapted circuits for Athens and Santiago (b) and
Yorktown (c) for ᎕ ዆ ᒕ

Ꮆ rad

3

26 3. Methods

0

31

2

(a) Von Neumann
circuit

0
0 431 2

(b) Athens and Santiago

0

4

3

1

2

(c) Yorktown

Figure 3.5: Topology diagrams of the Von Neumann circuit and the 5-qubit processors

Athens Santiago Yorktown

Error rates [10ᎽᎵ] Min Max Avg Min Max Avg Min Max Avg

CNOT 7.34 9.40 8.43 7.21 13.8 10.3 15.6 23.0 19.3

SX 0.221 0.288 0.259 0.210 0.605 0.338 0.458 1.28 0.820

Read out 8.30 21.8 15.5 10.0 40.5 19.5 25.9 88.8 46.5

Table 3.1: The minimum, maximum and average error rates of the 5-qubit processors Athens,
Santiago and Yorktown in units of [ኻኺᎽᎵ]

the number of SWAP operations we need and thus minimize the error rates: if we
would use the order of the original circuit, two SWAP operations would be neces-
sary. From the topology diagram we see that before the third and fourth CNOT
operations can be executed on Athens and Santiago, the compiler needs to swap
qubit 2 and 3. One SWAP operation is implemented by using three CNOT gates.
Also, the compiler uses equivalent RZ and SX gates to apply to Hadamard and 𝑅፲
- gate.

For Yorktown the compiler uses all five qubits and at least two SWAP operations
are needed due to different connectivities, as shown in 3.4c.

The 5-qubit processors have different error rates, which we find in Table 3.1. On
average, Athens has the lowest error rates and Yorktown the highest.

Concurrence
We want to know if the qubits are more or less entangled after the Von Neumann
protocol has succeeded and how much entanglement has been wasted. When we
execute circuits on quantum computers, errors arise and there is a possibility that
we end up with mixed states. In order to uniquely define the measured state, we
need to apply quantum tomography. This is beyond the scope of this work, so
we make the important assumption that after the protocol has been executed on

3.2. Elias’s Protocol

3

27

a quantum processor, the states that we measure are pure. This will simplify our
calculations, though our results might deviate from the results when we do apply
quantum tomography.

This assumption allows us to calculate the concurrence as described in Section 2.3.
We create our initial state by using a Hadamard gate and a rotation around the
𝑦-axis, so the concurrence before we execute the protocol needs to be calculated
after these gates have run on the appropriate simulator or quantum computer. Just
using the theoretical value would be an overestimation of the initial entanglement
because errors may arise. For completeness we can find the circuit that we use to
calculate the initial concurrence in Figure 3.6.

H RY
/4

0 1

q0

q1

2c

Figure 3.6: The circuit we will use to calculate the initial concurrence for different quantum processors
with for example ᎕ ዆ ᒕ

Ꮆ rad.

3.2. Elias’s Protocol
As we saw in Section 2.5.2, Elias’s protocol requires measuring the Hamming weight.
We start by explaining the implementation with half adders. Next, we discuss how
we implement Elias’s protocol for two initial states on the simulator and on a quan-
tum computer.

3.2.1. Measuring the Hamming Weight
We need to build a circuit that stores the Hamming weight of 𝑁 qubits into log(𝑁)
ancilla qubits. To this end, we use half adders. A half adder adds two bits, 𝑎ኺ and
𝑏ኺ and returns the sum 𝑎ኺ⊕𝑏ኺ and carry 𝑎ኺ𝑏ኺ. The circuit is shown in Figure 3.7.
Note that the RESET operation is usually implemented by measuring the qubit in
the 𝑍 basis and applying an 𝑋 gate if the measurement result is |1⟩. Since this
would cause qubit 𝑎ኺ to collapse as well, we need another method to reset the
’zero’ qubit. We use extra qubits that are with certainty in the state |0⟩. Every time
we need a RESET operation, we perform a SWAP operation from the ’zero’ qubit
to a qubit in the state |0⟩. This preserves the input state of qubit 𝑎ኺ, which is also
necessary to keep the half adder unitary.

3

28 3. Methods

carry

sum

Figure 3.7: Implementation of the half-adder.

𝑎ኺ 𝑏ኺ Carry Sum

0 0 0 0

1 0 0 1

0 1 0 1

1 1 1 0

Table 3.2: Truth table of the
half adder shown on the left.

The Toffoli gate stores the carry in the ’zero’ qubit and the controlled NOT gate
stores the sum in 𝑏ኺ. By performing a SWAP operation on 𝑎ኺ and the ’zero’ qubit,
we can efficiently implement the Hamming weight since this allows us to reuse the
input bit 𝑎ኺ as the carry. After the SWAP, we reset the ’zero’ qubit, which allows
us to reuse this qubit as the ’zero’ qubit again in the next half adder. Note that in
Elias’s protocol the two qubits we want to add also are the qubits that will store the
concentrated entanglement. We can’t simply SWAP these qubits with other qubits,
because that would destroy the entanglement. Thus, we perform a CNOT operation
from 𝑎ኺ to one extra qubit. For completeness, we also show the truth table of the
circuit of our half adder in Table 3.2.

Let’s consider that we want to measure the Hamming weight of 15 qubits. We
execute the following algorithm to add the value of each qubit 𝑛 to the ancilla’s:

1. Perform a CNOT operation from qubit 𝑛 to 𝑎ኺ.

2. The half adder takes in 𝑎ኺ and ancilla 1 and returns the sum in the same
ancilla, which we call ’new ancilla 1’. 𝑎ኺ now stores the carry and is the input
of the next half adder on the left. Note that when we add the first qubit,
ancilla 1 is always zero.

3. Repeat step 2with the next ancilla as often as needed. The number of ancilla’s
needed to store the value of the 𝑛፭፡ qubit is at most ⌈logኼ(𝑛 + 1)⌉.

4. Repeat steps 1 to 3 with the next qubit 𝑛 + 1.

The algorithm is visualized in Figure 3.8. Here the rows represent the algorithm
from right to left and the algorithm is executed for all 15 qubits, which requires
⌈logኼ(16)⌉ = 4 ancilla qubits. Eventually, the ancilla qubits store the binary Ham-
ming weight and we can read this out from left to right.

To see that this circuit indeed calculates the Hamming weight, we simulate the
algorithm that returns the Hamming weight of three qubits. The circuit is shown in
Figure 3.9.

3.2. Elias’s Protocol

3

29

qubit 1

ancilla 1

new ancilla 1

ancilla 2

carry

new ancilla 1

new ancilla 1

qubit 2

qubit 3
carry

new ancilla 1new ancilla 4 new ancilla 3 new ancilla 2

qubit 15
carry carry

carry

carry

carry

carry

new ancilla 1new ancilla 4 new ancilla 3 new ancilla 2

carry carry

new ancilla 1

ancilla 3

new ancilla 2

new ancilla 2

qubit 4
carrycarry

Hamming weight

CNOT

CNOT

CNOT

CNOT

CNOT

Figure 3.8: Circuit to calculate the Hamming weight of ኻ኿ qubits. Every blue square represents a half
adder.

3

30 3. Methods

X

X

0 1

q0

q1

q2

carry0

a0

a1

z0

z1

z2

z3

z4

2c

Figure 3.9: Circuit to measure the Hamming weight of three qubits.

Here, every part between two barriers represents a half adder. We apply 5 half
adders, in accordance with the circuit in Figure 3.8 for 3 qubits. The first three
qubits ’𝑞’ are the qubits of which we determine the Hamming weight. The fourth
qubit is used as the ’carry’, the qubits ’𝑎’ are the ancilla’s that eventually store the
Hamming weight and qubits ’𝑧’ are the zeroes that we use to perform the RESET
operation. In the part of the circuit before the first barrier, we assign values to the
qubits. By default the qubits are in the state |0⟩ and by applying an Pauli-𝑋 gate
(or Pauli-𝑌 gate), we can flip the state to |1⟩. In Figure 3.9 we apply a Pauli-𝑋 gate
to the first qubit as an example, so the state of the qubits ’𝑞’ is |𝜓⟩፪ = |011⟩. When
we measure the ancilla’s that store the Hamming weight we indeed measure ’10’,
which indeed corresponds to two qubits in the state |1⟩.

3.2.2. Executing with Two Initial Pairs
We want to simulate Elias’s protocol with two initial states, as described in Section
2.5.2. Executing with more than two initial states is not possible due to limitations
on the amount of qubits we can use. For three initial states, we would need 21
qubits. This includes 6 qubit to create the initial states, 5 qubits to measure the
Hamming weight (1 carry and 4 qubits to store the Hamming weight) and 10 qubits
to apply the function according to Kaye and Mosca [2]. At the time of writing, there
is no publicly available quantum processor of IBM with 21 qubits.

Thus, we only execute Elias’s protocol with two initial states. Alice and Bob both
measure the Hamming weight 𝑇 as described in the section before. If they measure
𝑇 = 0 or 𝑇 = 2, they throw away both bits. When 𝑇 = 1 however, they share one
EPR pair when they throw away their leftmost qubit. Note that it is not necessary
to apply the function 𝑓 in this case, so we only measure the Hamming weight. We
find the circuit that we execute on the simulator in Figure 3.10 below.

The qubits labeled ’q’ are the partially entangled qubits that Alice and Bob start
with (the first qubit is Alice’s, the second qubit Bob’s, and so on). In the part before

3.2. Elias’s Protocol

3

31

H

H

RY
/6

RY
/6

4 5 6 7 0 1 2 3

q0

q1

q2

q3

carry0

a0

a1

b0

b1

z0

z1

z2

z3

z4

z5

8c

q0

q1

q2

q3

carry0

a0

a1

b0

b1

z0

z1

z2

z3

z4

z5

8c

Figure 3.10: Elias’s protocol for two initial partially entangled states with ᎕ ዆ ᒕ
Ꮆ rad.

the first barrier we create the initial state (with 𝜃 = 𝜋/4 rad). Then we store the
Hamming weight of Alice in the qubits ’a’ and Bob’s in the qubits ’b’. After the last
barrier, we measure the qubits 𝑞, 𝑎 and 𝑏. When the protocol is applied in practice,
only the qubits that store the Hamming weight are measured. We measure the
qubits 𝑞 as well, to check if the results of the Hamming weight agree with the num-
ber of ones. We also execute this circuit on a 16-qubit processor called Melbourne
[13]. We use the same circuit. The error rates of Melbourne are shown in the table
below. We see that these error rates are even higher than that of Yorktown (Table
3.1).

Melbourne

Error rates [10ዅኽ] Min Max Avg

CNOT 17.5 62.4 38.8

SX 0.4 2.9 1.4

Read out 24.7 81.2 47.0

Table 3.3: The minimum, maximum and average error rates of the 16-qubit processor Melbourne in
units of ኻኺᎽᎵ

4
Results

In this chapter we present the results of simulating the Von Neumann protocol and
Elias’s protocol and the results of executing experiments on the quantum computers.

4.1. Von Neumann’s Protocol
We start with Von Neumann’s protocol: first we present the results of simulating
the protocol once and compare this to the theoretical values. After that we present
the results of the on-demand and streaming mode. Finally, we execute the protocol
on different quantum processors for varying initial states and compare the entan-
glement extraction expressed in the concurrence to the results of the simulator.

4.1.1. One run
We execute circuit 3.3 and measure the output register to check whether the re-
sults agree with our expectations. In the case where Alice and Bob both have two
qubits, there are two possible outcomes: (1) if the second qubits of Alice and Bob
are equal to one, we have seen in the previous chapter that the first qubits are
perfectly entangled. The state we expect is |Φዄ⟩. Upon measurement, the state
collapses to |00⟩ or |11⟩. (2) If the protocol fails, so the second qubits are not equal
to one, the state will collapse to the default of the output register. We flipped the
first qubit in the output register, so the default state collapses to |10⟩.

We execute the circuit and measure the output register with 2ኻ኿ shots for 𝜃 = 𝜋/4
radians. The histogram of the measured states looks like:

33

4

34 4. Results

Figure 4.1: Histogram of states in the output register for ᎕ ዆ ᎝/ኾ radians and ኼᎳᎷ executions

From Section 3.1.1 we know that the bar of state |01⟩ indicates that the protocol
has failed. Thus, the protocol fails with a probability of 0.754. The bars of states |00⟩
and |11⟩ indicate when the protocol succeeds and they are approximately equal.
In other words, whenever the protocol succeeds, we measure a state very close to
the Bell state. We normalize the state after success |𝜓⟩፬፮፜ and get:

|𝜓⟩፬፮፜ = √0.496 |00⟩ + √0.504 |11⟩ (4.1)

The concurrence when the protocol succeeds is 𝐶(|𝜓⟩፬፮፜) = 2√0.496 ⋅ 0.504 ≈ 1,
as expected. The final concurrence is 𝐶(|𝜓⟩) = 0.123 ⋅ 1 = 0.123.

For 𝜃 = 𝜋/4 radians we calculate the theoretical probability on success and fail-
ure by combining eq. 3.3 and the probability of success from eq. 2.28:

𝑝ኺ = (
cos𝜋/8 − sin𝜋/8

√2
)
ኼ
= 0.146

𝑝ኻ = (
cos𝜋/8 + sin𝜋/8

√2
)
ኼ
= 0.854

𝑝፬፮፜ = 2𝑝ኺ𝑝ኻ = 0.250 → 𝑝፟ፚ።፥ = 0.750

(4.2)

If we compare this to Figure 4.1 we see that the theoretical values are in agreement
with the experimental result. The theoretical final concurrence is 𝐶፟።፧ፚ፥ = 𝑝ኺ𝑝ኻ ⋅1 =
0.125 ⋅ 1 = 0.125, which is close to what we measured.

4.1. Von Neumann’s Protocol

4

35

4.1.2. Iterating
On-demand mode
Now we simulate the on-demand mode, as described in 3.1.1. In the Figure 4.2
we plot the probability of retrieving at least one EPR pair for varying number of
iterations 𝑁 and varying 𝜃.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

p_
su

cc
es

s

N
1
2
3
4
5
6

(a) Simulated distributions

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

p_
su

cc
es

s

N
1
2
3
4
5
6

(b) Theoretical distributions

Figure 4.2: Probabilities of succeeding at least once with Von Neumann’s protocol for varying ፍ and ᎕.

On the left we have plotted the simulated distributions with the 95% confidence
intervals as shadows around the lines. We know from Section 3.1.1 that we can
calculate the probability of success of one execution 𝑝 = 2𝑝ኺ𝑝ኻ from 𝜃. We also saw
in Section 2.4.2 that the theoretical distribution is a binomial distribution Bin(𝑁, 𝑝).
Now we calculate the probability of at least one success by subtracting the proba-
bility of zero successful runs from one:

𝑃𝑟(𝑗 ≥ 1) = 1 − 𝑁(1 − 𝑝)ፍ (4.3)

Here 𝑗 is the number of successful runs. As we expected, the two graphs are very
similar.

Streaming mode
Now we run the protocol in the streaming mode, as described in Section 3.1.1. We
run the Von Neumann protocol 10 and 40 times for 𝜃 = 𝜋/4 rad and we repeat both
experiments 10኿ times. The results of the simulation are shown in the histograms in
Figure 4.3. From Section 4.1.1 we know that the theoretical probability of success
of one run is 𝑝 = 0.250. Since the probability of success of multiple runs 𝑁 is
given by a binomial distribution, we plot the probability distribution of Bin(𝑁, 𝑝) as
well in the bar plot below. We see that the simulations are close to the theoretical
distribution, so for more iterations the probability of no EPR pairs in the output
register becomes smaller.

4

36 4. Results

0 2 4 6 8 10
of succesful runs

0.00

0.05

0.10

0.15

0.20

0.25
pr

ob
ab

ili
ty

simulation
theoretical distribution

(a) 10 iterations

0 2 4 6 8 10 12 14 16
of succesful runs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

pr
ob

ab
ili

ty

simulation
theoretical distribution

(b) 40 iterations

Figure 4.3: Barplot of the number of successes of Von Neumann’s protocol with ᎕ ዆ ᒕ
Ꮆ rad and the

binomial distribution with ፩ ዆ ኺ.ኼ኿ኺ

4.1.3. Executing on a Quantum Computer
To clearly visualize effects of the errors from Table 3.1 we first execute the circuits
in Figure 3.4 on Athens, Santiago and Yorktown with a maximally entangled initial
state, so 𝜃 = 0 rad. As a comparison, the results of the simulation without errors
are shown too in Figure 4.4. Here the two leftmost bits are the measurements of
the second qubits of Alice and Bob (that should be |11⟩ in the case of success) and
the two other bits are the measurements of the first bits that are entangled in case
of success.

00
00

00
11

11
00

11
11

0.00

0.08

0.16

0.24

Pr
ob

ab
ilit

ie
s

0.252 0.249 0.246 0.252

(a) Simulator

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11
0.00

0.06

0.12

0.18

0.24

Pr
ob

ab
ilit

ie
s

0.234

0.008 0.013

0.210

0.010 0.006 0.010 0.010 0.011 0.005 0.010 0.015

0.236

0.010 0.010

0.203

(b) Athens

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.00

0.06

0.12

0.18

0.24

Pr
ob

ab
ilit

ie
s

0.231

0.011 0.010

0.197

0.015
0.006 0.008 0.008 0.015

0.006 0.007
0.015

0.248

0.011 0.012

0.200

(c) Santiago

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

ie
s

0.175
0.189

0.050

0.012

0.046
0.034

0.011
0.005

0.034 0.031

0.009 0.005

0.184

0.141

0.060

0.013

(d) Yorktown

Figure 4.4: Histograms of the measurement probabilities of one iteration of the Von Neumann protocol
executed ዂኻዃኼ times with ᎕ ዆ ኺ rad on the simulator and different quantum processors.

According to Section 2.4.2 the probabilities of failure and success for one run

4.1. Von Neumann’s Protocol

4

37

are 𝑝fail =
ኻ
ኼ = 𝑝suc. We indeed see that the results of the simulator agree with

our expectation. The bars of the states |1100⟩ and |1111⟩ together represent the
probability to succeed: 0.246 + 0.252 = 0.498 ≈ 0.5. The results of the 5-qubit
processor show errors, caused by the error rates of gates or by reading the qubits
out. The errors of Athens and Santiago are very similar. However, the errors of
Yorktown are so significant that it’s hard to draw conclusions from these results.

Now we simulate the protocol with an entangled state. We execute circuit 3.4b
8192 times for 𝜃 = ᎝

ኾ rad. We find the results in the figure below. The probabil-
ities of success (where the two leftmost bits are 1) of all 5-qubit processors differ
from the simulators results. This is due to errors, though we don’t have enough
information to conclude to which degree every error contributes to these deviations.

00
00

00
11

11
00

11
11

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

ie
s

0.022

0.725

0.126 0.127

(a) Simulator

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.00

0.15

0.30

0.45

0.60
Pr

ob
ab

ilit
ie

s

0.026 0.021 0.016

0.599

0.004 0.002 0.017 0.018 0.006 0.014 0.004 0.022

0.116

0.011 0.005

0.119

(b) Athens

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.00

0.15

0.30

0.45

0.60

Pr
ob

ab
ilit

ie
s

0.021
0.054

0.010

0.569

0.007 0.006 0.015 0.027
0.006 0.020 0.003 0.021

0.129

0.019 0.008

0.085

(c) Santiago

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.00

0.15

0.30

0.45

0.60

Pr
ob

ab
ilit

ie
s

0.036

0.534

0.004
0.029 0.043 0.040

0.005 0.003
0.022

0.071

0.002 0.009

0.088 0.089

0.019 0.006

(d) Yorktown

Figure 4.5: Histograms of the measurement probabilities of one try of the Von Neumann protocol
executed ዂኻዃኼ times with ᎕ ዆ ᒕ

Ꮆ rad on the simulator and different quantum processors.

We now take a closer look at the results of Athens. From the data we can
retrieve the probability of success for one try of the protocol: 𝑝ፀ፭፡፞፧፬ = 0.116 +
0.011 + 0.005 + 0.119 = 0.251. This probability is very close to the theoretical
𝑝 = 0.250 we retrieved in Section 4.1.1.

If the protocol succeeds, we read out all states from the histograms in Figure
4.5 with the two leftmost states equal to one. Due to errors, we also measure
the states |1101⟩ and |1110⟩. Thus, when the protocol succeeds the state is not a
perfect Bell state. We normalize the state |𝜓⟩፬፮፜ we find for Athens:

4

38 4. Results

|𝜓⟩፬፮፜፜፞፬፬ =√0.119 ⋅ 𝐴 |00⟩ + √0.116 ⋅ 𝐴 |11⟩ + √0.011 ⋅ 𝐴 |01⟩ + √0.005 ⋅ 𝐴 |10⟩

0.116𝐴ኼ + 0.119𝐴ኼ + 0.011𝐴ኼ + 0, 005𝐴ኼ = 1 → 𝐴 = 1.996

|𝜓⟩፬፮፜ = 0.69 |00⟩ + 0.68 |11⟩ + 0.14 |01⟩ + 0.21 |10⟩
(4.4)

Where 𝐴 is the normalization constant. We see that this state is not maximally
entangled: the concurrence is 𝐶[|𝜓⟩፬፮፜] = 0.877 ≠ 1. We can also calculate the
final concurrence, since the rate at which entanglement is extracted is 𝑝ፀ፭፡፞፧፬/2.

𝐶፟።፧ፚ፥ =
1
2 ⋅ 𝑝ፀ፭፡፞፧፬ ⋅ 𝐶[|𝜓⟩፬፮፜] = 0.123 ⋅ 0.877 = 0.110 (4.5)

This is lower than the final concurrence in theory which we calculated in Section
4.1.1: 0.125. In the same way, we calculate the state when the protocol succeeds
for Santiago and Yorktown and then calculate the concurrence when the protocol
succeeds and the final concurrence. Now we can compare the entanglement be-
fore we executed the protocol to the entanglement when the protocol succeeds for
each quantum processor. Also, we can compare how much entanglement is wasted.

We execute the circuit in Figure 3.6 for each quantum processor to calculate the
initial concurrence. We calculate the concurrence of |𝜓⟩፬፮፜ when the protocol has
succeeded by executing the circuit in Figure 3.4b for different 𝜃 and one iteration.
All circuits are executed with 8192 shots. We find the results in Table 4.1.

𝜃 = ᒕ
Ꮅ 𝜃 = ᒕ

Ꮆ 𝜃 = ᒕ
Ꮈ

Concurrence Initial Success Initial Success Initial Success Avg Change

Simulator 0.500 1 0.706 1 0.863 1 52.5%

Athens 0.451 0.859 0.616 0.877 0.799 0.911 49.0%

Santiago 0.517 0.816 0.738 0.856 0.851 0.900 26.5%

Yorktown 0.436 0.126 0.585 0.145 0.707 0.144 -75.3%

Table 4.1: The concurrence before the Von Neumann protocol is executed once (initial) and after the
protocol has succeeded (success) for different initial states, together with the average percentage

change.

The quantum computer that extracts entanglement best is Athens. Even when
the initial concurrence is high, the protocol increases the concurrence. The quan-
tum computer with the worst performance is Yorktown. Because Yorktown has a

4.2. Elias’s Protocol

4

39

different connectivity than Athens and Santiago, we saw in Figure 3.4 that Yorktown
needs more SWAP operations to execute the circuit on Yorktown. Since more gates
leads to more errors and since Yorktown has high error rates as we saw in Table
3.1, this leads to less entanglement than we started with for all 𝜃.

We find the final concurrences for different 𝜃 in the following table, together with
the final concurrence of the simulator and the average percentage change of the
concurrence:

Avg waste = final concurrence - initial concurrence
initial concurrence

⋅ 100% (4.6)

The final concurrence is always lower than the initial concurrence, so we call the
average percentage change in concurrence the average waste.

𝜃 = ᒕ
Ꮅ 𝜃 = ᒕ

Ꮆ 𝜃 = ᒕ
Ꮈ

Concurrence Final Wasted Final Wasted Final Wasted Avg Waste

Simulator 0.063 87.4% 0.123 82.2% 0.187 78.4% 82.7%

Athens 0.051 88.7% 0.110 82.1% 0.151 81.1% 84.0%

Santiago 0.054 89.6% 0.103 86.0% 0.159 81.3% 85.6%

Yorktown 0.009 97.9% 0.015 97.5% 0.021 97.0% 97.5%

Table 4.2: Final concurrences after Von Neumann protocol is executed once with ዂኻዃኼ shots, together
with the percentage wasted entanglement and average wasted entanglement.

We see that Athens and Santiago are the closest to the theoretical limit that we
calculated with the simulator. Yorktown again performs worse. We also see that a
lot of entanglement is wasted, in all cases more than the theoretical waste, varying
from 1.3% to 14.8% more waste.

4.2. Elias’s Protocol
We execute Elias’s protocol with 2 initial pairs, as described in Section 2.5.2. First,
we execute the circuit of Figure 3.10 on the simulator with 𝜃 = ᎝

ኾ rad. We find
the histogram of measurement probabilities of the simulator (with 2ኻዀ shots) in the
figure below.

4

40 4. Results

00
00

00
00

00
11

01
01

11
00

01
01

11
11

10
10

0.0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
ie

s

0.022

0.124 0.126

0.728

Figure 4.6: Histogram of the measurement probabilities of one try of the Elias’s protocol executed on
the simulator with ᎕ ዆ ᒕ

Ꮆ rad and ኼᎳᎸ shots.

Here the four leftmost bits are the initial states of Alice and Bob: the first and
third numbers represent the states of Alice’s qubits and the second and fourth the
states of Bob’s qubits. The four rightmost bits represent the measurement of the
Hamming weight of Alice and Bob. For example in the fourth bar we see that the
states of Alice and Bob both are |11⟩, and the measured Hamming weight of both
Alice and Bob is 2 in binary: 10.

The probability of measuring a Hamming weight of 𝑇 = 1, the only result that
yields EPR pairs, is 0.124 + 0.126 = 0.250, which is in agreement with the theoret-
ical value from 2.39: 𝑝፬፮፜ = 2𝑝ኺ𝑝ኻ = 0.250.

Next we execute the same circuit on Melbourne with 8192 shots. We find the
histogram of measurement probabilities in Figure 4.7. Here we only kept the states
with Hamming weight 𝑇 = 1 (so with ’0101’ in the rightmost qubits) for clarity. If
we compare this histogram to that of the simulator in Figure 4.6, we see that many
errors arise. From Melbourne’s error rates in Table 3.3, this is what we expected.

00
00

01
01

00
01

01
01

00
10

01
01

00
11

01
01

01
00

01
01

01
01

01
01

01
10

01
01

01
11

01
01

10
00

01
01

10
01

01
01

10
10

01
01

10
11

01
01

11
00

01
01

0.00

0.15

0.30

0.45

0.60

Pr
ob

ab
ilit

ie
s

0.614

0.081 0.084

0.013
0.049

0.003 0.006 0.003

0.097

0.010 0.023
0.003 0.013

Figure 4.7: Histogram of the measurement probabilities of one try of the Elias’s protocol executed on
Melbourne with ᎕ ዆ ᒕ

Ꮆ rad and ዂኻዃኼ shots.

We also execute Elias’s protocol with 2 initial states for different values of 𝜃.
We calculate the concurrence when the protocol succeeds and to compare this

4.2. Elias’s Protocol

4

41

with the initial concurrence, we execute circuit 3.6 on Melbourne as well with 8192
shots. From the histograms of measurement probabilities we retrieve the initial
concurrence. We find the results in the table below.

𝜃 = ᒕ
Ꮅ 𝜃 = ᒕ

Ꮆ 𝜃 = ᒕ
Ꮈ

Concurrence Initial Success Initial Success Initial Success Avg Change

Simulator 0.500 1 0.706 1 0.863 1 52.5%

Melbourne 0.3 0.131 0.465 0.141 0.588 0.048 -72.6%

Table 4.3: The concurrence before Elias’s protocol is executed once (initial) and after the protocol has
succeeded (success) for different initial states.

We see large deviations from the values of the simulator and the final entangle-
ment is way worse than the initial entanglement.

From the measurement results we calculate the rate at which we extract more
entangled states from one initial state. From this, we calculate the final concur-
rences for different 𝜃 in radians can be found in the following table, together with
the final concurrence of the simulator. Since the concurrence of the resulting state
when the protocol succeeds is so low, the final entanglement is low too. We see
that Elias’s protocol wastes almost all initial entanglement. We again calculate the
average waste with eq. 4.6.

𝜃 = ᒕ
Ꮅ 𝜃 = ᒕ

Ꮆ 𝜃 = ᒕ
Ꮈ

Concurrence Final Wasted Final Wasted Final Wasted Avg Waste

Simulator 0.062 87.6% 0.125 82.3% 0.188 78.2% 82.7%

Melbourne 0.001 99.7% 0.002 99.6% 0.021 96.4% 98.6%

Table 4.4: Final concurrences after Elias’s protocol is executed once with ዂኻዃኼ shots, together with the
percentage wasted entanglement and average wasted entanglement.

5
Discussion

For Von Neumann we first ran experiments with one initial state on a simulator and
three 5-qubit processors: Athens, Santiago and Yorktown. As expected the results
of the 5-qubit processors contained errors, with the errors of Yorktown being the
most significant. We compared the extracted entanglement after the protocol suc-
ceeded with the initial entanglement for different initial states. Athens extracted
entanglement the best on average, with an average percentage change in the con-
currence of 49.0%. Also for each experiment, the concurrence of Athens when the
Von Neumann protocol succeeds was the closest to the theoretical concurrence of
1. Santiago also improved the concurrence, on average with 26.5%. The errors
of Yorktown are so bad that the concurrence is lower when the protocol succeeds,
with an average change of −75.3%.

We also iterated Von Neumann’s protocol on the simulator and we see that for
more iterations, the probability on one perfect EPR pair increases. However, the
Von Neumann protocol wastes a lot of entanglement in theory, on average 82.7%.
In practice the waste is even higher, varying from 1.3% to 14.8% more waste than
in theory.

In theory, Elias’s protocol should reach the theoretical bound for many iterations
of the protocol. However, due to limitations on the number of qubits we can use,
we only executed Elias’s protocol for two initial states on the simulator and on the
15-qubit processor Melbourne. We see that the concurrence when the measured
Hamming weight is 1, is always worse than the initial concurrence when we exe-
cute the protocol on Melbourne. Also, a lot of concurrence is wasted , the average
percentage waste is 98.6%. This is probably in part caused by the error rates of
Melbourne, which are higher than error rates of the other quantum processors that
we used.

43

5

44 5. Discussion

Limitations and Recommendations
In Table 4.1 we see that the initial entanglement of Santiago is larger than that
of the simulator. This appears to be counter intuitive, since errors arise on the
quantum processors. Thus we expect that the initial entanglement of the quantum
processors is lower than the initial concurrence of the simulator. We do observe a
this for the other quantum processors.

Also the final concurrence after Elias’s protocol for two initial pairs is very low.
We do expect that the final concurrence is low, since Elias’s protocol requires many
operations and thus is more likely to induce errors to the states. However, the final
concurrence that we calculate may be too low as a result of the assumption we
made in Section 3.1.2: that we measure pure states after the protocols are exe-
cuted on the quantum processors. This may be too simple, since some quantum
processors like Yorktown and Melbourne have large error rates, it is likely that the
measured states contain mixed states as well. The mixed states can be uniquely
identified by performing quantum tomography. This could affect the results of all
experiments with quantum processors, so this it would be an interesting topic for
further research.

An interesting result in Table 4.1 is that the concurrence when the protocol suc-
ceeds appears to be proportional to the initial concurrence. This is probably caused
by the errors of the circuit, though further research would give more insights into
specific responsible errors. One way this research could be performed is by execut-
ing Von Neumann’s protocol multiple times on a simulator by using the Qiskit Aer
Noise module1. This module allows us to run a circuit with different errors: only
read-out errors and perfect gates, only CNOT errors and only SX errors. By compar-
ing these results with the results of running the protocol on a quantum processor,
we could examine which errors are responsible the most for the decrease in final
entanglement.

When we compare the error rates of Melbourne to the 5-qubit processors, we see
that Melbourne has higher error rates. These error rates probably have negative
consequences for the results of Elias’s protocol and we should be careful to compare
the two protocols on the basis of these results. There are IBMQ devices available to
researchers with similar error rates to Athens and Santiago (for example Montreal2).
The Von Neumann’s and Elias’s protocol could also be compared in a fair way by
executing them on the same quantum processor, for example on Melbourne. This
ensures that the protocols are both subjected to the same errors. Also, we only
executed Elias’s protocol for two initial states due to size limitations. For future
research it would be interesting to run experiments on a quantum processor with
more qubits.

1https://qiskit.org/documentation/apidoc/aer_noise.html
2https://quantum-computing.ibm.com/services?skip=0&systems=all&system=ibmq_
montreal.

https://qiskit.org/documentation/apidoc/aer_noise.html
https://quantum-computing.ibm.com/services?skip=0&systems=all&system=ibmq_montreal
https://quantum-computing.ibm.com/services?skip=0&systems=all&system=ibmq_montreal

6
Conclusion

In this work we wanted to study the performance of two protocols, Von Neumann’s
and Elias’s protocol, for entanglement concentration and compare this to their the-
oretical performance.

We found that for the first protocol, Von Neumann, the performance depends on
the error rate of the backend. The backend with the lowest error rates is Athens and
yielded results that were close to the theory. We find that the probability of success
is very close to the theoretical value for an initial state with 𝜃 = ᎝

ኾ : 𝑝፬፮፜ = 0.251
versus 𝑝፭፡፞፨፫፲ = 0.250. The final state when the protocol succeeds is not a perfect
EPR pair, in contrast to the final state of the simulations. Nevertheless Athens can
be used for entanglement concentration, since the concurrence when the protocol
succeeded improved with on average 49%. Santiago could also be used, though it
extracted less concurrence from the initial states on average than Athens: 26.5%.
We conclude that Yorktown cannot be used for entanglement concentration: in ev-
ery experiment the concurrence when the protocol succeeded was less than the
initial concurrence, on average −75.3%.

For Elias’s protocol, there was only one quantum processor with enough qubits
to simulate the protocol for two initial states: the 15-qubit processor Melbourne.
The error rates of Melbourne are larger than the error rates of the 5-qubit proces-
sors. Also, Elias’s protocol requires more operations and qubits than Von Neumann’s
protocol. Since all quantum processors induce errors for every gate and readout,
the performance in terms of entanglement concentration is worse. On average
the concurrence of the state with Hamming weight 𝑇 = 1 was 72.6% lower than
the initial concurrence and almost all initial concurrence was wasted: on average
96.4%.Thus we conclude that Elias’s protocol cannot be used to extract entangle-
ment on Melbourne.

45

46 References

References
[1] R. Blume-Kohout, S. Croke, and D. Gottesman, Streaming universal distortion-

free entanglement concentration, IEEE transactions on information theory 60,
334 (2013).

[2] P. Kaye and M. Mosca, Quantum networks for concentrating entanglement,
Journal of Physics A: Mathematical and General 34, 6939 (2001).

[3] M. A. Nielsen and I. L. Chuang, Quantum information and quantum computa-
tion, Cambridge: Cambridge University Press 2, 23 (2000).

[4] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description
of physical reality be considered complete? Physical review 47, 777 (1935).

[5] J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1,
195 (1964).

[6] W. An-Min, A simplified and obvious expression of concurrence in wootters’
measure of entanglement of a pair of qubits, Chinese physics letters 20, 1907
(2003).

[7] L. Trevisan and S. Vadhan, Extracting randomness from samplable distribu-
tions, in Proceedings 41st Annual Symposium on Foundations of Computer
Science (IEEE, 2000) pp. 32–42.

[8] P. Elias, The efficient construction of an unbiased random sequence, The An-
nals of Mathematical Statistics , 865 (1972).

[9] Qiskit 0.20.0: An open-source framework for quantum computing, Retrieved
from https://qiskit.org/ (2019).

[10] 5-qubit backend: IBM Q team, IBM Q Athens backend specification: V1.3.16,
Retrieved from https://quantum-computing.ibm.com (2021).

[11] 5-qubit backend: IBM Q team, IBM Q Athens backend specification: V1.3.19,
Retrieved from https://quantum-computing.ibm.com (2021).

[12] 5-qubit backend: IBM Q team, IBM Q Athens backend specification: V2.3.5,
Retrieved from https://quantum-computing.ibm.com (2021).

[13] 15-qubit backend: IBM Q team, IBM Q Melbourne backend specification:
V2.3.19, Retrieved from https://quantum-computing.ibm.com (2021).

http://dx.doi.org/10.5281/zenodo.2562110
https://qiskit.org/
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com

A
Appendix

X

X

X

H

H

RY
/4

RY
/4

0 1
0x3 0x3

H

H

RY
/4

RY
/4

0 1
0x3 0x3 0x3 0x3

H

H

RY
/4

RY
/4

0 1
0x3 0x3 0x3 0x3 0x3 0x3

0 1 2 3 4 5

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16

q17

2c
6c2

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16

q17

2c
6c2

Figure A.1: The implementation of the streaming mode of Von Neumann’s protocol.

47

	Abstract
	Introduction
	Background Information
	Quantum States
	Single Qubit
	Multiple Qubits

	Quantum Gates
	Single qubit gates
	Multiple qubit gates

	Entanglement
	Von Neumann's protocol
	Extracting Randomness
	Entanglement Concentration

	Elias's Protocol
	Extracting Randomness
	Entanglement Concentration

	Methods
	Von Neumann's Protocol
	Simulation
	Executing on a Quantum Computer

	Elias's Protocol
	Measuring the Hamming Weight
	Executing with Two Initial Pairs

	Results
	Von Neumann's Protocol
	One run
	Iterating
	Executing on a Quantum Computer

	Elias's Protocol

	Discussion
	Conclusion
	References
	titleReferences

	Appendix

