A secure and user friendly CAPTCHA method

Akif Oztirk

SHAPECAP

A secure and user friendly CAPTCHA
method

Akif Oztirk

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Wednesday October 16, 2024 at 13:00 CEST.

Student number: 5602173
Project duration: February 12, 2024 — October 16, 2024

Thesis committee: Prof. Mauro Conti Full Professor TU Delft, supervisor
Prof. Georgios Smaragdakis, Full Professor TU Delft
Prof. Fenia Aivaloglu, Assistant Professor TU Delft
Riccardo Spolaor External member Daily supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft

http://repository.tudelft.nl/

Preface

In the name of Allah, the Most Gracious, the Most Merciful.

| want to thank my father for making me the man | am today and always pushing me to
the end, even at times when | was about to give up. | want to thank my mother for always
supporting me and taking care of me till this age. Furthermore, | want to thank the rest of
my family and close friends for entertaining me and making this journey fun. It would not
have been possible without you.

| want to thank my supervisors Mauro Conti and Riccardo Spolaor for giving me the
chance to work on this thesis project. Even though Mauro was not always physically
present in Delft, he provided amazing insights on my research through online video calls.
An even greater thank you to Riccardo, who joined the meetings with an 8-hour timezone
difference and always had time to schedule an extra meeting when | needed his opinion
or insights. Finally, | want to thank the remaining members of my thesis committee for
providing feedback on my report and joining me for my upcoming thesis defence.

My inspiration for this thesis started during a lecture given by professor Conti. In this
lecture, he briefly mentioned one of his own works: CAPTCHASTAR. It was a novel
CAPTCHA method that used a dissorted image of stars, and | found it quite interesting.
Later in the course, we received an assignment to contribute to any scientific article. |
chose the CAPTCHASTAR paper and identified an attacking method that could poten-
tially outperform the one described in it. Professor Conti confirmed my method, revealing
that a previous paper had successfully defeated the CAPTCHASTAR challenge using
a similar attacking method. Since then, I've realised how easily most CAPTCHAs can
be broken and started thinking of new methods that could provide more security. How-
ever, every time | thought of a new method, a powerful attack was present. One day, |
started thinking completely out of the box and had an idea that totally turned around the
CAPTCHA challenge. We should make the challenge so hard for the user that it has to
fail it in order to pass it. Let humans show their weakness in the challenge and use the
fact that attackers complete the challenges “perfectly” without errors.

Akif Oztiirk
Delft, October 2024

Abstract

CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans
Apart) have been in use for a long time on the web to block bots from accessing services.
Many Different types of CAPTCHASs exist in various shapes and forms. As traditional
CAPTCHAs became increasingly susceptible to attacks, mainly with the rise of artificial
intelligence, there were efforts to enhance their complexity. As a side effect, this also
increased the difficulty for legitimate users. Then attackers improved their methods, and
the CAPTCHAs were broken once again, while the regular user keeps getting harder
challenges. Over the years, this cycle has continued, leading to today’'s CAPTCHAs,
which are not only insecure but also difficult to solve for regular users, defeating the
purpose of having a CAPTCHA in the first place. What makes Al attacks so successful
in CAPTHCA systems is their ability to perform the given task with high accuracy. Al bots
are now faster and more successful in solving CAPTCHAs than humans.

In this paper, we propose SHAPECAP (Shape Analysis and Precision Exploiting CAPTCHA),
a novel interactive CAPTCHA system that aims for a user-friendly solution that is also se-
cure against Al-backed attackers. The design of our solution involves a canvas on which
shapes are moving randomly. The user can choose a specific shape at the start of the
challenge and use the mouse pointer to follow it. There will be small variations of the
chosen shape in order to confuse the user. If the user follows the correct shape, they
will complete the challenge faster, while following the variation shapes will take longer.
Based on the mouse movement data collected throughout the challenge, we can confirm
whether the user is a human or a bot. Our aim is to find a pattern that shows humans
are more likely to follow irregular shapes. We exploit the precision of machines and use
it against them while capitalising on the natural tendency of humans to make errors.

11

contents

Preface i
Summary ii
1 Introduction 1
1.1 Background e 1
1.2 Problemstatement 2
1.3 Objective e 3
14 Structure e 4

2 Literature Review 5
2.1 Evolution of CAPTCHA typesand attacks 5
211 Text-based CAPTCHAs 5

21.2 Image-based CAPTCHAs 6

2.1.3 Behaviour-based CAPTCHAs 6

2.2 Geometric Shape Regularity and Human Singularity 6

3 ShapeCAP overview 8
3.1 DesignConcept 8
3.1.1 Shape Selection 8

3.1.2 Shape Variation o 9

3.1.3 ObjectShape 9

3.1.4 MovementandTracking 10

3.1.5 ScoringSystem 11

3.2 Securityparameters 11

4 Implementation 13
4.1 TechnicalDetails 13
4.2 Deployment e 14
4.3 DataCollection 14

5 Data Analysis and Feature Extraction 16
5.1 Preprocessing 16
5.2 Feature Extraction 17

6 Machine Learning Models 18
6.1 Model Selection 18
6.2 TrainingandTesting 19
6.3 Results 19
6.3.1 Terminology 19

6.3.2 DecisionTree e 22

6.3.3 NeuralNetwork 24

6.3.4 One-ClassSVM e 26

7 Discussion 29
7.1 |InterpretationofResults 29
7.2 Strengths and Limitations 29
7.3 FutureWork 30

8 Conclusion 31
References 32
A Appendix A 34

11

Introduction

1.1. Background

CAPTCHAs, or “Completely Automated Public Turing tests to tell Computers and Humans
Apart,” play a crucial role in modern cybersecurity. By distinguishing between human
users and automated bots, they safeguard online services from various forms of malicious
activity.

The most important value of CAPTCHAs is their ability to prevent automated attacks.
Malicious actors often use bots to perform various types of attacks, such as spamming,
data theft, scraping sensitive information, and launching Distributed Denial of Service
(DDoS) attacks. Online services can significantly reduce the risk of automated attacks by
requiring users to complete a CAPTCHA before proceeding.

CAPTCHAs are useful for spam protection. Automated bots can flood comment sections,
forums, and live chats with unwanted content, worsening the user experience and dam-
aging the reputation of a website. CAPTCHAs act as a barrier, allowing only verified
humans to submit content.

In addition to spam protection, CAPTCHAs are also useful in protecting user accounts and
personal information. Many online communication services, such as email providers and
social media platforms, require a personal account to function properly. CAPTCHAs are
used in the registration process to prevent bots from creating fake accounts. Malicious
actors can use these fake accounts to spread misinformation, carry out phishing attacks,
and send spam emails.

Furthermore, CAPTCHAs are essential for securing online transactions. E-commerce
websites and online banking services use CAPTCHAs to verify that transactions are initi-
ated by humans. This helps prevent fraudulent activities, such as automated ticket scalp-
ing and unauthorised access to financial accounts.

Furthermore, CAPTCHAs improve web application security by preventing brute force at-
tacks. An attacker uses automated scripts in a brute force attack to repeatedly guess
login credentials until they find the correct combination. By implementing CAPTCHAs
into the login process, websites can block these automated attempts and provide a se-
cure authentication system for their regular users.

Although CAPTCHASs enhance online security, they must be designed with user experi-
ence in mind. Poorly designed CAPTCHASs can frustrate users and result in a negative
impression of the website. Therefore, it is essential to find a balance between security
and usability for the user. To establish this, modern CAPTCHAs are developed in differ-
ent ways, such as image-based, video-based, math-based, interaction-based, and many
more. All these techniques aim to improve security while maintaining user friendliness.

1.2. Problem statement 2

1.2. Problem statement

Despite their widespread use and importance in cybersecurity, current CAPTCHA meth-
ods are not secure against most types of attacks, especially when confronted with modern
machine learning (ML) attacks. Traditional CAPTCHAs were initially designed to create
challenges that were hard to solve for machines but easy for humans. However, advance-
ments in ML have increased in such a way that challenges can be solved by machines
as well. Consequently, it became increasingly difficult for CAPTCHAs to effectively dis-
tinguish between human users and automated bots. This created a need to increase
the challenge complexity, resulting in CAPTCHAs that are now difficult to solve for hu-
mans. Meanwhile, technology keeps advancing, enabling machines to solve even the
newly complex CAPTCHAs.

Text-based CAPTCHAs, for example, use distorted text that humans could easily read but
computers struggled to interpret. Figure 1.1 shows an example of a text-based captcha
called GIMPY. At the time, the distorted text used in these CAPTCHAs was considered
unrecognisable by Optical Character Readers (OCR), making it an effective method for
distinguishing between human users and automated bots. Modern OCR systems are able
to recognise and decode distorted text with high precision. Many text-based CAPTCHAs
are no longer effective, as bots can now solve these challenges with a success rate com-
parable to that of human users. Once again, the need to create more complex distortions
to counteract OCR advancements often results in CAPTCHAs that are difficult for humans
to solve, leading to a negative user experience.

o - - 1-|-— ‘,.‘-..
%.= ’

_— W 5
ity =
=737 A% ngﬂﬁ po—

Figure 1.1: Gimpy, a text-based CAPTCHA

Image-based CAPTCHASs, such as those used in Google’s reCAPTCHA v2, also face
important challenges. These CAPTCHASs require users to identify objects within images.
Figure 1.2 shows an example of Google’s image-based CAPTCHA challenge. Advance-
ments in computer vision and object detection algorithms have made it possible for bots to
solve these challenges with high accuracy, threatening the security of these CAPTCHAs.
Once again, increasing the complexity of these CAPTCHASs can frustrate users, leading
to a negative user experience.

1.3. Objective 3

Select all images with

stairs

Figure 1.2: Google ReCAPTCHA v2, an image-based CAPTCHA

The rapid advancements in ML and deep learning have exposed significant limitations in
traditional CAPTCHA methods. Most CAPTCHAs methods are increasingly vulnerable to
sophisticated ML attacks, which can solve these challenges with high accuracy. Addition-
ally, the need to enhance security often leads to more complex CAPTCHAS, negatively
impacting the user experience. Therefore, there is a need for innovative CAPTCHA de-
signs that can effectively balance complexity and usability for human users.

1.3. Objective

Artificial intelligence (Al) has impacted many fields by providing unmatched levels of accu-
racy, consistency, and speed. ML models, when trained properly, can easily identify pat-
terns and make decisions with surprising accuracy, often outperforming humans. These
properties allow for Al and ML to be highly effective in solving complex problems and au-
tomating tasks. However, this presents a challenge for modern CAPTCHA systems, as
modern Al and ML attacks can easily bypass many of the challenges designed to prevent
automated attacks.

In contrast, especially when faced with a complex task, humans are prone to make errors.
Unlike machines, humans are not precise and may struggle with tasks that require pro-
longed attention and accuracy. While these errors can be seen as a limitation, they also
provide a unique chance to distinguish between human users and automated bots. Under-
standing and using humans’ natural mistake tendencies allows us to develop CAPTCHA
systems that are more secure against Al and ML attacks.

Building on these insights, the goal of this research is to explore the development of new
CAPTCHA methods that capitalise on the precision of Al and use the natural tendency
of humans to make errors in complex tasks. However, a new challenge that arises with
this approach is to prevent Al from intentionally "worsening” its performance in order to
mimic human behaviour. We must consider this when designing new challenges. We
must clearly distinguish between genuine human errors and artificial errors caused by Al.

1.4. Structure 4

1.4. Structure

This paper has the following structure: In Section 2, we provide a comprehensive review
of relevant previous research on CAPTCHA methods, focussing on their evolution, types,
and attacks against them. In Section 3, we present a detailed description of our proposed
CAPTCHA method, including its design principles, implementation details, and the secu-
rity parameters that can be adjusted to optimise performance. A technical overview of the
implementation, deployment and data collection of the CAPTCHA system is given in 4.
The data analysis and feature extraction processes are elaborated in Section 5, followed
by the development, evaluation, and results of our machine learning models in Section 6.
In Section 7, we interpret the findings, discuss the strengths and limitations of our method,
and suggest areas for future research. Finally, in Section 8, we summarise the research,
highlighting the broader implications of our work.

[i1terature Review

In this section, we discuss relevant previous research on the topic. Concretely, we will
look at the various state-of-the-art CAPTCHAs to date, as well as the various attacks on
these CAPTCHAs. Finally, we introduce the idea of geometric shape regularity, which
are the building blocks of our CAPTCHA challenge.

2.1. Evolution of CAPTCHA types and attacks

Traditional CAPTCHAs started simple in a text-based format. The invention of various at-
tacks, such as machine learning attacks, segmentation attacks, and human solver relay
attacks, has resulted in many types of CAPTCHAs trying to mitigate these attacks. Many
of these types can be solved by bots with a high percentage of success [13]. The ad-
vancement of machine learning is the cause of this high percentage. Attackers make use
of deep learning, neural networks, and support vector machines to break the CAPTCHA
challenge [17].

2.1.1. Text-based CAPTCHASs

Text-based CAPTCHAs were the first CAPTCHASs created. ReCAPTCHA (2008) [1] is the
most known 2D text-based CAPTCHA. Figure 2.1 shows an example of the ReCAPTCHA
challenge. It consists of an image of a word that is distorted and has a contrasting back-
ground. Text-based CAPTCHAs have been compromised through various methods [7,
18, 4]. One of them by Goodfellow et al. [8] breaks reCAPTCHA with an accuracy of
99.8% on their hardest category using deep convolutional neural networks. Attempts to
improve text-based CAPTCHAS through 3D images (e.g., Imsamai and Phimoltares[15])
or animation have not resisted being broken either.

Type the two words:
il ‘ re CAPTCHA

Figure 2.1: ReCAPTCHA (2008)

2.2. Geometric Shape Regularity and Human Singularity 6

2.1.2. Image-based CAPTCHAs

Image-based CAPTCHAs exist in many shapes and forms, such as clickable images (e.g.,
Implicit CAPTCHA (2005) [3]), sliding images (e.g., What's Up CAPTCHA? (2009) [11]),
selecting images (e.g., Google’s No CAPTCHA reCAPTCHA (2014) [9]), and interactive
image-based CAPTCHAs (e.g., CAPTCHaStar (2015) [5]). Figure 2.2 shows an example
of the CAPTCHaStar challenge. This variety in types has not stopped many of these
CAPTCHAs from being broken as well through various means, from random guessing
and relay attacks to machine learning techniques [19, 12, 14].

Figure 2.2: CAPTCHaStar Challenge

2.1.3. Behaviour-based CAPTCHASs

In recent years, behaviour-based CAPTCHAs have gained increased interest. Behaviour-
based CAPTCHASs make use of the behaviour of the user, such as mouse clicks and meta-
data on the user, to determine to a certain degree the validity of the traffic. Notable men-
tions of behaviour-based CAPTCHAs are Google’s No CAPTCHA reCAPTCHA (2014) [9]
and Invisible reCAPTCHA (2017) [10]. Figure 2.3 shows an example of the No CAPTCHA
reCAPTCHA challenge, which just seems like a simple clickable box. According to Guerar
et al. [13], this increased interest is the consequence of conventional CAPTCHAs being
broken. Behaviour-based CAPTCHAs have not been resistant to attacks either. Simula-
tions of human behaviour have been successful [19] in breaking several currently used
CAPTCHAs from Tencent, Facebook, and Google. Akrout et al. broke No CAPTCHA
reCAPTCHA using machine learning techniques [2]. Invisible reCAPTCHA is not broken
yet but is feared to be vulnerable with the newest generation of bots being able to simu-
late traffic [13, 17]. There are many more types of CAPTCHAs available, but we wanted
to highlight the most important ones.

™

reCAPTCHA
Privacy - Terms

I'm not a robot

Figure 2.3: No CAPTCHA reCAPTCHA Challenge

2.2. Geometric Shape Reqgularity and Human Singularity

The paper “Sensitivity to geometric shape regularity in humans and baboons” by Sablé-
Meyer et al.[16] presents important findings that could contribute to the design of new
CAPTCHA methods. The study demonstrates that all human groups, regardless of age,
culture, or education, show an intuition of geometric regularity, like right angles, paral-
lelism, and symmetry. Machine learning models have not been able to replicate this
geometric intuition of humans, while the models were able to successfully replicate the
behaviour of the baboons on the same experiment. This suggests that automated bots
that do not have this sensitivity to geometric regularities may struggle with tasks designed
around these principles. The fact that this intuition is present in varying human groups
regardless of age, culture, or education makes the CAPTCHA more user-friendly and
accessible to everyone. Using these findings, our aim is to develop a user-friendly and

2.2. Geometric Shape Regularity and Human Singularity

secure CAPTCHA method.

ShapeCAP overview

3.1. Design Concept
3.1.1. Shape Selection

At the start of the challenge, the user is presented with three quadrilateral shapes to
choose from. This selection is randomised, and there are a total of nine different shapes
available. A quadrilateral shape is any polygon with four sides and four corners, where the
interior angles of a quadrilateral add up to 360 degrees. Common examples of quadrilat-
erals include squares, rectangles, trapezoids, and parallelograms. The ”perfect” regular
quadrilateral is a square because it holds all properties of parallelism, equal sides, equal
angles, and right angles. Each property that a shape loses makes it less regular. Figure
3.1 shows an example of all shapes ordered from regular to irregular. According to the
geometric regularity effect, humans detect variations easier on more regular shapes [16].
The user selects one of these shapes, from now on referred to as the "chosen shape,” to
proceed to the next stage. The decision to offer the user a choice instead of just giving
the user shape is made so that we can already get a first indication of the humanness
of the user. At this stage, we expect human users to select more regular shapes, but a
machine can be programmed to take this into consideration as well. So the shape choice
is considered an initial indication rather than a definitive decision. Figure 3.2 displays a
shapshot of the shape-choise stage.

Rectangl

Right Kite Iso-Trapezoid

Square C Rhombus Parallelogram

W W

\J

: - Irregular S~
B <D
\¥ %4

Figure 3.1: Quadrilateral shapes ordered according to geometrical regularies [16]

Hinge

]

3.1. Design Concept 9

Pick a shape to follow

Figure 3.2: Shape choise stage

3.1.2. Shape Variation

In the next stage, the actual challenge will start so the remaining necessary shapes are
created. First, a certain number of variation shapes are generated from the chosen shape.
A variation is defined as a shape in which three points coincide with the chosen shape,
but the fourth point is slightly offset, resulting in a slight variation of the original shape. In
Figure 3.3, we can see the difference between the chosen shape and a variation shape.
The bottom left corner of the variation is slightly moved to the right, resulting in an inclined
left edge. The degree of offset is determined by the radius of a circle drawn with its
centroid at the fourth point of the chosen shape. Then, a random point on this circle is
chosen as the new fourth point. The radius, and therefore the degree of offset, can be
tuned to make variations easier or harder to detect in the challenge.

Figure 3.3: Normal shape and a possible variation where the bottom left corner is slightly pulled to the right

3.1.3. Object Shape

Finally, an obstacle shape is created. The obstacle shape is larger than the other shapes,
has a fixed position, and is coloured black. The obstacle shape hides any shapes passing
through it, making the shapes invisible to the user. This adds another element of com-
plexity to the challenge. The main goal of the obstacle is to lure the human users to make
more errors. Even if the user is following the right chosen shape from the start, once it
passes through the obstacle and becomes invisible, the user must re-assess the situation
and choose the right shape once it comes out of the obstacle. An even greater confusion
is created when multiple shapes enter and leave the obstacle at the same time.

3.1. Design Concept 10

3.1.4. Movement and Tracking

A snapshot of the start of this stage with all shapes (chosen, variation, obstacle) drawn
is shown in Figure 3.4. For demonstration purposes, we coloured the variation shapes
with a slightly lighter green colour than the chosen shape in order to identify the chosen
shape. In the actual challenge, all shapes will have the same colour as can be seen in a
snapshot of this stage from the user perspective in Figure 3.5.

Once all shapes are created, the original shape and its variations start moving across the
canvas. We use Simplex noise to calculate the movement path of each shape. Simplex
noise is a method for constructing an n-dimensional noise function. The reason we use
Simplex noise is due to its characteristic of producing “fixed” randomness [REF]. Truly ran-
dom movements can create unexpected paths where shapes move unpredictably, which
can be disorienting and frustrating for the user. Simplex noise, on the other hand, gen-
erates a well-defined and continuous gradient across the canvas. This results in more
natural, smooth movements of the shapes, improving the user experience while maintain-
ing the challenge’s complexity. By using Simplex noise, we ensure that the movement
of the shapes is unpredictable enough to pose a challenge but also consistent enough to
be trackable, finding a balance between difficulty and user-friendliness. To better under-
stand the concept of simplex noise, the trajectories of the shapes are illustrated in Figure
3.4. For demonstration purposes, we opted for a smaller number of points (n = 8) to keep
the canvas clean and provide a basic understanding of simplex noise. In the actual chal-
lenge, we set this number to n = 100, which means each shape traverses through 100
points in the canvas. Once a shape reaches the final point, it will continue from the first
point, creating a loop. The number of points is considered a security parameter and can
be tuned accordingly in order to extend or shorten the movement paths of the shapes.
This will be covered in more detail in 3.2.

Figure 3.4: Challenge with hints

3.2. Security parameters 1

3.1.5. Scoring System

The user’s task is to follow the chosen shape with their cursor or finger (if on a mobile de-
vice). The reward for following the chosen shape is that the user completes the challenge
faster by collecting more points per second. Conversely, if the user follows a variation
shape, they are penalised by collecting fewer points per second and completing the chal-
lenge slower. The user passes the challenge once they reach a threshold score. It is
important to note that the user can still pass the challenge by following a variation or by
switching between different shapes during the challenge, albeit at a slower pace.

The server receives the user’s mouse movement data and the challenge seed upon com-
pletion of the challenge. Using the seed, the server can reconstruct the entire challenge
scenario, including all shapes, their variations, obstacles, and moving patterns. This
data, together with the mouse movement data, serves as the input for a machine-learning
model. The model processes this input and generates an output that classifies the user
as either a human or a bot. After this stage, the challenge is completed. Users that are
classified as humans can continue with their process, while users classified as bots are
denied access or allowed to repeat the challenge.

3.2. Security parameters

In order to design a good CAPTCHA, there should be randomness and a uniform distri-
bution in all parameters of the challenge[6]. For some parameters, we did not achieve
this and instead left them at a fixed value. For others, we have established randomness
within a range of values. We set a minimum and maximum value, then randomly gener-
ate a value within this range. These values determine the uniqueness of each challenge.
For certain parameters, a higher value can make the challenge more difficult or easy.
Therefore, we can tune the range of values to find an optimal balance between challenge
difficulty and user friendliness. The following is an explanation of the parameters and
their impact on the challenges.

* NShapes: The number of initial shapes to choose from.

* NVariations: The challenge displays a certain number of variations. More varia-
tions will make the challenge more difficult, while fewer variations will make it easier.
The number of variations must be at least one.

VariationRadius: When creating a variation, the radius corresponds to the 4th point.
A larger radius means that the 4th point has a larger offset, making the variations
easier to detect. A smaller radius will make variations harder to detect.

» Speed: Determines the speed at which the shapes move from one point to the other.
Larger speeds will make the challenge harder to complete while slower speeds can
give the user more time to detect and follow the right shapes.

» ShapeSize: Sets the sizes of the shapes. Larger shapes can be easier to follow,
while also giving a higher margin for error. Smaller shapes will be harder to follow
precisely. This also applies to the object shape, where a larger object can make the
challenge harder and a smaller object will make the challenge easier.

» Path points: This determines the amount of points that are present in the path of the
shape. If the amount of points is less than the shape will enter a loop faster, making
the movements more predictable. We aim to pick a high nhumber such that the
challenge is completed before the shapes enter a loop so that the movement cannot
be predicted from previous knowledge. However, observing the user behaviour
when the shapes are looping could be another interesting topic.

* MaxScore The maximum value needed to be reached in order to complete the
challenge. A higher max score will result in longer challenges, while a lower max
score can create faster challenges.

IncrementScore The score gained by following the chosen/variation shapes. Fol-
lowing the chosen shape should reward users and result in more score progression

3.2. Security parameters 12

compared to following variations. Incrementing the score by larger amounts will
result in completing the challenge faster, while retrieving lower scores will result in
slower challenges.

Figure 3.5: Complete Challenge from the user’s perspective

Implementation

4.1. Technical Detalils

The CAPTCHA challenge is designed using a technology stack including React, Tailwind
CSS, and TypeScript. The main logic of the CAPTCHA is coded using the HTML5 canvas.
This is where all the shapes are drawn and animated. A seeded pseudorandom number
generator (PRNG) is used to generate a unique challenge for each user. The numbers
generated with the PRNG determine the sizes, speed, quantity, positions, and paths of
the shapes. The use of a seeded PRNG ensures that each challenge can be accurately
recreated on the server side using the same number generator. We will provide a general
overview of the most important functions, but a full source code is publicly available on
github. .

One of the most important classes is the quadrilateral shape class. The quadrilateral
class contains all the properties and methods to create, move, and draw a shape on the
canvas. All shape classes extend from this class to create their own specific quadrilateral
shape. In the main class for the app logic, these shape classes are then used to create
new shapes, variations, and obstacles accordingly. Each shape moves simultaneously
to its next point in the path, which is also contained in the shape class. The score is
tracked by comparing the position of the mouse pointer and the position of the shapes
on the canvas. Points are added based on what type of shape is followed. There is a
single score counter that is incremented, and when it reaches the threshold value, the
challenge is completed. The user is presented with a final screen where it can see the
time of completion and an option to restart the challenge.

When the challenge is completed, the mouse movements, challenge seed, and some
client-side data are sent to the server. The server is able to recreate the challenge from
the seed and extract the necessary data to use for the model. This data includes the
used device (mobile/desktop), completion time, shape difficulty level, and shape data.
The shape data is created by comparing the mouse movement to the movement of the
shapes. This leads to the determination of a fixed number of data points, such as n = 100.
Then we divide the max score to complete the challenge by this number, so for example,
if the max score is 5000 and n is 100, we get an interval of 50. At every 50th point,
we collect information about the mouse position. The information contains which kind
of shape the user is following and the absolute distance from the centroid of the closest
shape. A distinction is made between the following shape being behind the obstacle or
not. There is also the possibility of following nothing behind the object. This creates for
the following options: chosenShape, variationShape, chosenObiject, variationObject, and
Object. Note that following nothing outside the object, so on the canvas, is not considered
as this option does not gain any points. As there are no points gained, the user cannot

"https://github.com/akifozturk61/shape-captcha

13

4.2. Deployment 14

pass the interval score and will not reach the measurement point. Finally, all 100 data
points are put in an array and stored in the database, so it looks as follows: [[typeO,
distance0],..., [type99, distance99]].

4.2. Deployment

To prevent unexpected attacking methods on the CAPTHCA, we try to minimise the infor-
mation that is sent between the client and server applications and include only essential
information.When the challenge is completed, only the mouse movements, challenge
seed, and client-side data such as completion time, device type, and shape difficulty are
sent to the server. The server is able to recreate the challenge from the seed and extract
the necessary movement data to use for the model. However, during the development
stage, there were some troubles with the PRNG we use from Alea. The same PRNG on
different programming languages was giving different random numbers using the same
seed. For this reason, the server side was not able to recreate the same challenge using
the seed. Because this was only a prototype implementation, we neglected the server
side completely and calculated all the necessary data on the client side, sending it straight
to our database. It has to be noted that during actual development of the CAPTCHA sys-
tem, if the PRNG’s are implemented correctly, there would be no problem in sending only
the seed between the client and server, and the resulting dataset would be the same. So
we decided to not waste more time and resources on this matter.

In order to collect the human data from friends and family, we needed the CAPTCHA ap-
plication to be available online. We used Vercel ? to deploy a web server that was directly
connected with the github project. Every time new code is pushed, Vercel automatically
triggers a new deployment with a unique url. As of writing this, the CAPTCHA challenge
is still up and running 3. This URL was shared with friends and family to access and
perform the CAPTCHA challenge. After completion of the challenge, the necessary data
was sent to the database.

The database is deployed on Supabase 4. Supabase is an open-source platform that pro-
vides tools and services for building web and mobile applications. We used the Postgres
database in order to store and retrieve our data.

4.3. Data Collection

Given the uniqueness of the challenge, there was no pre-existing human or bot data
available to train our model. Due to this, we had to gather our own data. Sharing the
challenge with family and friends was successful in achieving this for the human data.
Each participant was allowed to complete the challenge multiple times, thereby expanding
our database. The challenge was shared with approximately 50 individuals, resulting in
649 data entries. No compensation was provided to the participants. Before starting the
challenge, participants are shown an informed consent page where the task, data privacy,
risk, and participation of the experiment are explained in detail. The user has to agree
with this form in order to proceed to the challenge.

To store the user data, an application was made to the TuDelft Human Research Ethics
(HREC). The application contained the informed consent page, a dataplan, and a detailed
checklist for human research. The application was approved, and the challenge was
shared with participants to collect the human data.

To simulate the bot data, we considered different strategies an attacker might employ to
complete the challenge. It has to be noted that this process does include some bias, as
the model will contain only data in the way we designed the bot. An attacker who has
different perspectives and methods of designing the bot might create situations that are

2https://vercel.com
Shttps://shape-captcha.vercel.app/
“https://supabase.com

4.3. Data Collection 15

not recognised by the model. We assumed the attacker would try to solve the challenge
in the most efficient ways possible and created our bots accordingly.

The first strategy that we used was a "perfect” bot. Thatis a bot that distinguishes the right
shape right from the beginning and keeps following it until the end. During the challenge,
the shape is followed perfectly, keeping the pointer at the centroid of the shape. Our
assumption is that this "perfect” bot is remarkably also the easiest method for the model
to detect that the user is a bot. Thatis because a human user will most likely never be able
to follow the right shape with that kind of accuracy. Following this assumption, we created
another bot that still keeps track of the right shape. However, this time we introduced
some jitter with the mouse movements, such that the pointer is not always at the centroid
but will move around a bit while following the right shape. This is already a better attack, as
it is mimicking human behaviour more accurately. Then, we also considered that following
the right shape for the whole duration of the challenge might not always represent human
behaviour. So we designed new bots that will occasionally follow wrong shapes, switch
between wrong and right shapes, or only follow wrong shapes. Here, we also used both
"perfect” and jittered following methods. The bot resulted in 585 data entries, bringing the
total database up to 649 + 585 = 1234 total entries.

Data Analysis and Feature
Extraction

5.1. Preprocessing

We explain the preprocessing steps taken on the collected dataset to use for training and
testing the ML models. The same steps are applied when the model receives data from
future challenges in order to classify the user as a human or bot. An example of the
original database with the column names and values is shown in Table 5.1.

The first step is to convert the shapeData column into a time series so that we can use
the tsfresh library and extract relevant features from it. For each challenge, there are
exactly 100 timeframes on which information about the mouse movement is stored. At
each timeframe, two values are measured: type and distance. The type value represents
the type of shape that the mouse pointer was following at that timeframe. There are a
total of 5 possible types.

» chosenShape: The user is following the chosen shape.

» chosenObstacle: The user is following the chosen shape, which happens to be
inside the obstacle.

+ variationShape: The user is following a variation shape.

« variationObstacle: The user is following a variation shape, which happens to be
inside of the obstacle.

» Obstacle: The user is inside the obstacle, but not following any shape.

The distance value represents the absolute distance from the mouse pointer to the near-
est shape’s centroid. In order to convert these values to a time series, we split the in-
formation in each element to a separate row and gave it a timestamp: t0, t1,..., 199. An
example of the splitting data for challenge (id=1) is given in Table 5.2. The seed column
is removed as it is not necessary any more.

Finally, we apply label encoding to the categorical data columns, such as device, type,
and label. We use the standard LabelEncoder from the sklearn library. After all pre-
processing steps, an example of the final dataset is given in Table 5.3.

16

5.2. Feature Extraction 17

id | seed device shapeData time shapeDifficulty label

[(’chosenShape”, 55),
1 | 279143102 desktop ..., 2455 4 human
("variationShape”, 45)]

[("chosenShape”, 0),
2 | 455625862 desktop ..., 1132 9 bot
("chosenShape”, 0)]

[("variationShape”, 23),
3 | 975294772 mobile ..., 2510 1 human
("variationObstacle”, 21)]

Table 5.1: Example of the original dataset

id \ t device time shapeDifficulty type distance label
1 | t0 deskiop 2455 4 chosenShape 55 human
1 | t.. desktop 2455 4 human
1 | 199 desktop 25.55 4 variationShape 45 human
Table 5.2: Example dataset after converting to time series

id |t device time shapeDifficulty type distance label

1]t0 O 2455 4 0 55 0

1]t.. O 2455 4 0

1]t99 O 2555 4 2 45 0

2 (10 O 2510 1 0 0 1

Table 5.3: Example dataset after preprocessing

5.2. Feature Extraction

Feature extraction is an important step in the machine learning process. Selecting the
right features can have a significant effect on the accuracy of the model. By transforming
the raw data into meaningful features, we allow the model to focus on the most relevant
parts of the data. This speeds up the training process and results in more reliable models.

We use tsfresh to obtain a set of features from the mouse movement data collected during
the challenge. More specifically, these are the type and distance columns we prepared
in the previous step. Tsfresh is a Python package that automates the feature extraction
process on time series data. It extracts a large number of features, such as statistical,
time, and frequency features. There are several modes in which the feature extraction
can be performed. The first option, full features, generates all possible features from
the time series, resulting in 1567 features for our dataset. However, these features also
contain NaN values, and some of them are irrelevant. To refine this, we used the impute
method from the tsfresh library to replace all NaN values with the median value. Then we
used the select features() method from the tsfresh library, which checks the relevance
of all features and returns a reduced feature set containing only relevant features. With
this step, we managed to reduce our feature set to 804 features, which is still a lot. The
second option was using the efficient settings to extract the features, but this was resulting
in 1558 features, which was almost as much as using the full set, so we did not proceed
with this method. For the last option, we used the minimal option, which produced a
feature set of only 20 features. Considering our limited data size, we expect the minimal
option to be the most effective feature set. Additionally, we included the shape difficulty,
time, and device type as features, bringing the total feature set to 24 features plus the
label in our dataset.

Machine Learning Models

All of the models in this chapter are implemented using Sklearn. Sklearn is an open source
machine learning library for Python. It provides simple and efficient tools for machine
learning and predictive data analysis. Built on top of NumPy, SciPy, and Matplotlib, it
is designed to be easy to use. All operations of training, testing, and fitting the models
are done on a MacBook Pro (13-inch, M1, 2020) with an 8-core GPU, a 16-core neural
engine, and 16GB of memory.

6.1. Model Selection

The task of the machine learning model is to classify that the given data is generated
by a human user or an automated bot. Finding the right model that fits the dataset and
achieves high accuracy is a complex task. Different models provide different insights and
advantages over others. We have chosen to implement three different models that focus
on a different aspect of the dataset. The decision tree provides interpretability, the neural
network captures complex patterns, and the one-class SVM excels in anomaly detection.
A more detailed overview of the models is given below.

* Decision Tree: A decision tree model uses a tree-like structure to make decisions
based on the input data. Each node in the tree acts as a decision point, where one
of the features of the dataset is evaluated. The branches of the node represent the
possible outcomes of the decision and lead to other nodes or to a final decision rep-
resented by the leaf node. Decision trees are intuitive and simple to visualise, which
makes them useful for understanding which features are more important when mak-
ing a decision.

* Neural Network: Neural networks are inspired by the human brain. A network
model is built consisting of interconnected layers of nodes, comparable with neu-
rones in the human brain. Each node processes the data that it gets as an input
and passes the result as an output to the next layer. This process is determined
by a weight value that is present between the nodes across different layers. The
weights control how much influence the input data has on the output of that node. A
network typically starts with one input layer, then comes one or more hidden layers,
and finally it has an output layer. Neural networks are powerful tools for recognising
complex patterns in large datasets.

* One-Class SVM: A one-class SVM model is a type of SVM model used for anomaly
detection. Itis used to train the model with only a single class containing the normal
data and then aims to identify whether new data belongs to the same class or are
anomalies. One-class SVMs are an effective tool for anomaly detection or when
the dataset only has data available from a single class for training.

18

6.2. Training and Testing 19

6.2. Training and Testing

Training and testing data are an essential component of the machine learning process.
The complete dataset is split, usually in an 80/20 ratio, into a training and testing set,
respectively. The primary goal of the training phase is to learn patterns and relationships
in the dataset that separate the human users data from the automated bots data. During
the training phase, the model receives a labelled training set on which it can adjust its
model parameters to minimise the error between predictions and actual labels. Each
model has a different method to achieve this. For example, the decision tree is trained
by recursively splitting the dataset on feature values, creating a tree-like structure. The
neural network is trained by a process called forward and backward propagations, during
which the weights of each connection between nodes are adjusted to find the optimal
setting. The one-class SVM is unique in a way that it only trains on one-class data. It
learns to find a boundary that includes most of the human class and excludes the outliers.
This boundary can then be used to identify anomalies in the dataset. If the boundary is
too low, human data can be seen as anomalies. Picking the boundary too high can result
in anomalies being classified as human users. It is important to find the right balance in
order to create an accurate classifier. It is of utmost importance for all models that during
the training phase the model can never receive any form of the testing data.

The testing phase is then used to evaluate the performance of the model on unseen data.
The model makes predictions on the testing set, and the results are compared against the
actual labels in the testing set. Various metrics can be computed to evaluate the results
of the model. These metrics provide an insight into the strengths and weaknesses of the
model. More detailed information on these metrics will be given in Section 6.3.

Finally, it has to be noted that we had to remove the "device type” feature for the training
of the Decision Tree and Neural Network models because we were not able to perform
and collect data from bot attacks on mobile devices. This means that during training, the
models would never learn about bots on mobile devices, and therefore, when predicting
future data, if it contained mobile data, it would always be classified as human. In the case
of the one-class SVM model, this is not relevant because only the human class is trained.
Everything else is considered not-human, which can be anything, including mobile bots.

6.3. Results
6.3.1. Terminology

Firstly, there are some common terms that we need to understand in order to evaluate
machine learning models.

» True Positive (TP): This occurs when the model predicts the class as positive and
it is actually positive. For example, predict a human, and it is a human.

 False Positive (FP): This occurs when the model predicts the class as positive but
it is actually negative. For example, predict a human, but it is a bot.

* True Negative (TN): This occurs when the model predicts the class as negative
and it is actually negative. For example, predict a bot, and it is a bot.

» False Negative (FN): This occurs when the model predicts the class as negative
but it is actually positive. For example, predicta bot, but it is a human.

To evaluate the performance of machine learning models, there are several metrics that
use these terms. A detailed explanation of each metric is given below.

» Confusion Matrix: This is just a representation of each of the terms explained
above in a matrix format. An example confusion matrix is given in Figure 6.1

6.3. Results

20

Actual

Positive

Negative

Predicted
1

Positive

Negative

-

True
positive

~

4

False
negative

~

(U
[

False
positive

_J
\

o
Vs

True
negative

_
N

- - AN J

Figure 6.1: Example Confusion Matrix

» Accuracy: Accuracy is the ratio of all true instances to the total number of instances.
It is the most commonly used metric and is used to indicate the overall effectiveness
of the model. However, it can be a misleading metric in imbalanced datasets. Say
we have data of 100 users, and only 5 of them are automated bots. Predicting all
users as humans would give an accuracy of 95%, which can be seen as a high ac-
curacy, but the model did nothing else than predicting a single class for everything.

TP+TN
TP+FP+TN+ FN

Accuracy =

Precision: Precision is the ratio of true positives to the total number of positives. It
indicates how many times the model is actually right when it claims it is right. High
precision means fewer false positives.

TP

Precision = TP+ FP
Recall Recall is the ratio of true positives to the total actual positives. The actual
positives are when a human is classified as a human, or a bot as a bot. It indicates
how many times the model makes the right classification. High recall means fewer
false negatives.

TP

Recall = — -
A= TP FN

F1 Score The F1 score is the harmonic mean of precision and recall. Both values
contribute to the final F1 score, so a higher score for both results in a higher F1
score. However, due to the product in the denominator, if one of the two is a low
value, the final F1 score goes down significantly.

F1 Score = 2 x precision x recall

precision + recall

Classification report A classification report includes the precision, recall, and f1-
score for each class in the dataset. It also includes a "support” column, which is just

6.3. Results 21

the number of occurrences of the class in the dataset. Furthermore, it includes a
macro and a weighted average. The macro average is the unweighted mean across
all classes. It treats all classes equally, regardless of their frequency. The weighted
average is the mean across all classes, weighted by the number of instances in
each class. This method accounts for class inbalance by giving more weight to the
classes that contain more instances.

ROC Curve and AUC Receiver Operating Characteristic (ROC) is a graph plot of
the model’s performance across various threshold values. It plots the true positive
rate (TPR) against the false positive rate (FPR). The Area Under the Curve (AUC)
is just the area under the curve. A higher AUC means better performance. An
example ROC plot is shown in Figure 6.2. We aim to find the threshold value that
leads us closer to the top left corner.

TP
TPR=Recall== ————
TP+ FN
FP
FPR== —————
FP+TN
ROC Space
1 T T T T T T T ' ' T
----- Random guess
o Pefect Classification /’
/
’
’
’
0.8 7/ —
* R
c // B
07 e —
’
7/
® e
£ 06 A)4 =
Z ’
= //
c /
%05 s —
o] /’
E Better P
~ 04— ’ m
’
/
7/
\ /
03 P —
/
I
021 4 C _
/ Worse
7/
’
I'd
0.1 e —
I'd
7/
,/
ole | | | | I I I | |
0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1

FPR or (1 - specificity)

Figure 6.2: Example ROC Plot

6.3. Results 22

6.3.2. Decision Tree
For the decision tree, we use the DecisionTreeClassifier from sklearn. A full list of the
parameter values used is provided in Table 6.1.

Parameter Value
random_state 42
max_depth 5

min_samples_split | 10
min_samples_leaf | 5

Table 6.1: Parameters for DecisionTreeClassifier

The model is then fit with the training data and training labels, after which we can use it
to predict new data. The new predictions are done with the testing data, and we retrieve
the predicted labels. Combined with the actual labels, we can then evaluate the perfor-
mance using the confusion matrix, classification report, feature importance values, and a
visualisation of the decision tree. Because the visualisation of the tree was too large to fit
on one page, we have separated the tree into 3 parts. All parts of the decision tree can
be found in Appendix A. The first part is the root of the decision tree, which can be seen
in Figure A.1. Then we can see the left-hand side of the decision tree in Figure A.2 and
the right-hand side in Figure A.3.

Confusion matrix

The confusion matrix for the decision tree model is shown in Figure 6.3. From the 138
actual human instances, the model has correctly classified 123, while 15 instances were
wrongly classified as bots. On the other hand, out of the 109 actual bot instances, the
model has correctly classified 88, with 21 wrongly classified as humans. We can see
a satisfactory performance of classification in both classes with a small number of false
negatives for both classes.

Confusion Matrix DT

120

100
human

80

True label

- 60

bot 4 L 40

- 20

human bot
Predicted label

Figure 6.3: Decision Tree Confusion Matrix

6.3. Results 23

Classification report

The classification report for the decision tree model is shown in Table 6.2. The overall
accuracy of the model is 0.85, so 85% of the total instances are classified correctly. We
observe an equal precision score and small differences in the recall and f1 scores. This
results in both the macro and weighted averages being consistent at 0.85, showing us an

equal performance between the two classes without any bias to one or another.

precision recall f1-score support
human 0.85 0.89 0.87 138
bot 0.85 0.81 0.83 109
accuracy 0.85 247
macro avg 0.85 0.85 0.85 247
weighted avg | 0.85 0.85 0.85 247

Table 6.2: Classification Report Decision Tree

ROC Curve

The ROC curve for the decision tree model is shown in Figure 6.4. The shape of the curve
rises towards the top left corner, indicating an increase in TPR with a higher FPR. Together
with the high AUC value of 0.92, it indicates that the model has good performance in
classifying the data. The model provides a high level of accuracy and reliability for our
CAPTCHA system.

ROC Curve Decision Tree

1.0 1 7]
”
s
-~
’
”
s
-~
”
N e
0.8 L
e
e
) IR
T ”’
@ 0.6 e
2 e
= e
%]
g -
o -
s
Z 0.4 ’
= 0. ’/
s
-
’
-
s
-
s
u ”
0.2 -
’
-
-
PR
e ROC curve (area = 0.92)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 6.4: Decision Tree ROC Plot

Feature Importance

The feature importance table for the decision tree model is shown in Table 6.3. We
can see a clear winner in terms of importance in the distance__median value. This is
the median value computed by tsfresh on the distance feature. Following up are the

6.3. Results 24

type__variance, time, and type__median values. Type__variance is the variance value
computed by tsfresh on the type feature; likewise, likewise type___median is the computed
median value. The time feature is the completion time of the challenge. Other features
in the table are low-importance, and those with 0.0 importance are not shown. One thing
to note is the low importance of the shapeDifficulty feature. We think this is because we
only stored the chosen feature’s difficulty rating when calculating this feature. With this
method, some information is lost about the user’s choice. Instead, we should have stored
the difficulty of the other shape options as well. Then it would be possible to compare the
difficulty of the chosen shape to the other available shapes to get a better insight into the
user preference for shape types. This could have resulted in a higher importance value
for the shapeDifficulty feature.

Feature Importance
distance___median 0.572825
type__variance 0.152930
time 0.117984
type__mean 0.116901
distance__standard_deviation | 0.014987
distance___sum_values 0.010002
distance__variance 0.007468
distance__mean 0.003414
shapeDifficulty 0.002392
type__standard_deviation 0.001097

Table 6.3: Feature Importance Decision Tree

6.3.3. Neural Network
For the neural network, we use the MLPClassifier from sklearn. A full list of the parameter
values used is provided in Table 6.4

Parameter Value
hidden_layer_sizes | (64, 32)
activation relu’
solver ‘adam’
alpha 0.0001
batch_size ‘auto’
learning_rate ‘constant’
learning_rate_init 0.001
max_iter 200
shuffle True
random_state 42

tol 0.0001
early_stopping True
validation_fraction 0.2

Table 6.4: Parameters for Neural Network

Confusion matrix

The confusion matrix for the neural network model is shown in Figure 6.5. From the 130
actual human instances, the model has correctly classified 117, while 13 instances were
wrongly classified as bots. On the other hand, out of the 117 actual bot instances, the
model has correctly classified 99, with 18 wrongly classified as humans. We can see
a satisfactory performance of classification in both classes with a small number of false
negatives for both classes. In comparison with the decision tree, both models are equal
in performance based on the confusion matrix.

6.3. Results 25

Confusion Matrix NN

100
human
80
]
=]
L
@
= - 60
',_
bot - - 40
20

human bot
Predicted label

Figure 6.5: Neural Network Confusion Matrix

Classification report

The classification report for the neural network model is shown in Table 6.5. The overall
accuracy of the model is 0.87, so 87% of the total instances are classified correctly. We
again observe an almost equal precision score and small differences in the recall and f1
scores. This results in both the macro and weighted averages being consistent at 0.87,
showing us an equal performance between the two classes without any bias to one or
another. Just like the confusion matrix, the classification reports of both the decision tree
and neural network are similar in performance.

precision recall f1-score support
human 0.87 090 0.88 130
bot 0.88 0.85 0.86 117
accuracy 0.87 247
macro avg 0.88 0.87 0.87 247
weighted avg | 0.87 0.87 0.87 247

Table 6.5: Classification Report Neural Network

ROC Curve

The ROC curve for the neural network model is shown in Figure 6.6. The shape of the
curve rises towards the top left corner, indicating an increase in TPR with a higher FPR.
Together with the high AUC value of 0.95, it indicates that the model has good perfor-
mance in classifying the data. Compared with the ROC plot for the decision tree, we can
see the neural network reaches the top left corner much faster, and it also comes closer
to the 1.0 value. This is also represented in the higher AUC value of 0.95 for the neural
network. We can conclude that the neural network provides a high level of accuracy and
reliability for our CAPTCHA system.

6.3. Results 26

ROC Curve Neural Network

1.0 1 7]
”
s
-
s
”
s
-~
”
i PR
0.8 ”
JRe
R
] e
K ’
€ 0.6 - R
2 e
f= PR
%]
£ g
o ,
s
g 0.4 .
= 0. ’/
s
,
s
-,
s
-,
s
| ”
0.2 ”
P
’
-
PR
R4 ROC curve (area = 0.95)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 6.6: Neural Network ROC Plot

6.3.4. One-Class SVM
For the One-Class classifier, we use the OneClassSVM from sklearn. A list of the param-
eter value used is provided in Table 6.6

Parameter | Value
gamma ‘auto’

Table 6.6: Parameters for One-Class SVM

Confusion matrix

The confusion matrix for the one-class SVM model is shown in Figure 6.7. From the 585
actual human instances, the model has correctly classified 489, while 96 instances were
wrongly classified as bots. On the other hand, out of the 130 actual not-human instances,
the model has correctly classified 72, with 58 wrongly classified as humans. We can see
a clear difference in performance compared to the decision tree and neural network con-
fusion matrices. Firstly, the one-class SVM has access to much more training instances
than the other two models. This is because the model only trains on the human class,
neglecting any bot data. This results in a much higher true positive rate for the human
class. But the false negative and false positive rates have also increased compared to
the other models. The true negative is the only value that has remained similar.

6.3. Results 27

Confusion Matrix OCSVM

450

400

human 96

350

300

True label

250
- 200
not-human - 58 72
F 150

- 100

T T
human not-human
Predicted label

Figure 6.7: One-Class SVM Confusion Matrix

Classification report

The classification report for the one-class SVM model is shown in Table 6.7. The over-
all accuracy of the model is 0.78, so 78% of the total instances are classified correctly.
However, this time we notice a substantial difference between the performances of both
classes. While the human class performs similar in terms of performance to the decision
tree and neural network models, the not-human class performs really badly. Precision
score is decreased by almost 50%, recall by 35% and f1-score by 44%. We also notice
a great difference in support numbers, indicating an imbalance in the dataset. This is fur-
ther confirmed by the higher weighted average scores compared to the macro average.
The macro average treats both classes equally, while the weighted average takes into
account the high number of instances in the human class.

precision recall f1-score support
human 0.89 0.84 0.86 585
not-human 0.43 0.55 048 130
accuracy 0.78 715
macro avg 0.66 0.69 0.67 715
weighted avg | 0.81 0.78 0.79 715

Table 6.7: Classification Report One-Class SVM

ROC Curve

The ROC curve for the one-class SVM model is shown in Figure 6.8. The curve is still
above the diagonal line representing random performance, so the model is effective to
some extent but not highly reliable. The performance is moderate, which is also confirmed
by the moderate value of the AUC = 0.69. There is room for improvement, and the model
could benefit from more training data to provide better performance. Compared to the

6.3. Results

28

decision tree and neural network models, the one-class SVM is not as reliable and does
not provide a satisfactory accuracy.

ROC Curve One-Class SVM

1.0 1 -
7’
s
”
s
”
s
-~
”
4 /’
0.8 ”
JRe
R
] e
w ”’
€ 0.6 - R
2 e
f= PR
%]
g -
o ,
s
g 0.4 .
= 0. ’/
s
’
s
-,
s
-,
s
4 /’
0.2 P
P ROC curve (area = 0.69)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 6.8: One-Class SVM ROC Plot

Discussion

7.1. Interpretation of Results

Comparing the performance of the three machine learning models, we can clearly see that
the decision tree and neural network models perform much better than the one-class SVM
model. Both models provide high accuracy and effectively distinguish between human
and bot data. The decision tree provides high interpretability by giving an overview of the
feature importance in the decision-making process. The neural network shines with its
ability to capture the complex patterns in the dataset.

However, it is important to notice that while these models show promising results, the
dataset used for the training and testing of the models is not fully representative of real-
world scenarios. The bot data only includes data from attacks that we performed our-
selves. In the real world, attackers can use different attacking methods, generating data
that the model has not seen before. This limitation of both models to classify new, unseen
attacks is a serious concern.

Despite its relatively lower performance, the one-class SVM model offers a unique advan-
tage in addressing this issue. Because this model is trained exclusively on human data,
the model considers any outliers as not-human. If the outlier boundary is chosen with
enough precision, this can include future attacker data that the model has not seen be-
fore. This characteristic of the one-class SVM model provides a layer of security against
novel attack methods that the other two models do not provide.

7.2. Strengths and Limitations

Strengths

The main strength of our CAPTCHA system is the positive user experience. While adding
complexity to traditional CAPTCHAs can have a negative effect on the user experience,
our method benefits from the added complexity. Increased complexity leads to more
human errors, which are rewarded in our CAPTCHA design. This makes the challenge
more engaging and less frustrating for the regular users. The task of the CAPTCHA
is relatively simple, and the user is not expected to change its behaviour, even if the
challenge becomes more complex.

Another significant strength of the CAPTCHA comes from the one-class SVM model.
While the performance might not have been the most optimal, it provides a future proof
classification method that, once trained optimally, can identify future attacker data that it
has not seen before.

29

7.3. Future Work 30

Weaknesses

The main weakness of the CAPTCHA system lies in its dataset. The current dataset
used for training and testing is not a fully representation of real-world scenarios. The bot
data only includes data from attacking methods that we implemented ourselves, which
does not cover all possible attacker scenarios out there. There is a need for more data
collection and refinement of our machine learning models.

Another weakness is the introduction of new attacking methods. While our CAPTCHA
system provides novel security measures against modern Al attacks, it also opens up
new attacking methods. Attackers can deliberately weaken their methods or introduce
computation errors to mimic human behaviour. This creates a new challenge in recognis-
ing real human errors from machine-generated errors.

7.3. Future Work

Because of the resource and time limitations of the thesis project, we were unable to re-
search a number of points that we put here as future work. First, we provided the main
building blocks of a novel CAPTCHA system that uses machine precision and human er-
rors to make an accurate classification. However, we have only explored one implementa-
tion of this idea. The building blocks can be used to produce many more implementations
that exploit this idea in a more effective way.

Next, we did not have enough time to do a full user experience study. Because the
complete CAPTCHA system needs working classifiers to deploy it to real users, we had
to first collect our own dataset and train our models. Together with a full implementation
of the CAPTCHA system itself, we had no time left to do a user study. While in theory the
user experience should be satisfactory with an accurate classifier model, we do not have
scientific evidence to prove this.

Lastly, for both the security parameters in the challenge and the machine learning models
in the classification, a limited amount of testing is performed to find optimal parameters.
Some values have been chosen that "feel” well and provide pleasing results, but further
research needs to be done to find the optimal parameters that find the balance between
optimal security and user experience.

Conclusion

In this thesis, we explored novel methods to design secure CAPTCHA systems. We
focused on providing a user-friendly experience by returning the simplicity of traditional
CAPTCHAs. The core of the challenge involves moving shapes, which is something
recognised by all sorts of human types. Furthermore, the user is rewarded for making er-
rors, proving their humanness. While increasing the complexity of traditional CAPTCHAs
was having a negative effect on the user experience, our CAPTCHA system becomes
more user-friendly when the complexity is increased. However, all of this has introduced
a new attacking method: worsening the attacker side to also make mistakes. The chal-
lenge then becomes to identify real human mistakes from machine-generated ones.

We successfully implemented a fully operational prototype on the client side. The decision-
making process is reliant on the machine learning classifiers. However, due to the limited
amount of training data available, these classifiers are not ready to use yet. Further re-
search, data collection, model refinement, and attacking methods need to be explored in
order to achieve a final working end product.

With technology evolving rapidly, modern CAPTCHAs are faced with difficult challenges
in maintaining both security and user-friendliness. With the rise of Al and technology that
keeps improving, traditional CAPTCHAs are more vulnerable to new attacking methods.
CAPTCHAs that are secure today might not hold up against the threats of tomorrow. This
dynamic environment shows the difficulty in designing CAPTCHAs that are secure against
attacks while still providing a seamless user experience.

Our work introduces a unique perspective in CAPTCHA development that leverages the
precision of machines and the natural tendency of humans to make errors. This approach
improves the security of CAPTCHA systems while providing a user-friendly experience
that is more engaging and less frustrating. By exploring this perspective, we open the
door for future advancements in this field.

31

(1]

(2]
(3]

[4]

[3]

[6]

[7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

References

Luis von Ahn et al. “reCAPTCHA: Human-Based Character Recognition via Web
Security Measures”. In: Science 321.5895 (2008), pp. 1465-1468. DOI: 10.1126/
science.1160379. eprint: https://www.science.org/doi/pdf/10.1126/science.
1160379. URL: https://www.science.org/doi/abs/10.1126/science.1160379.

Ismail Akrout, Amal Feriani, and Mohamed Akrout. “Hacking google recaptcha v3
using reinforcement learning”. In: arXiv preprint arXiv:1903.01003 (2019).

Henry Baird and Jon Bentley. Implicit CAPTCHAs. 2005. DOI: 10.1117/12.590944.

Jun Chen et al. “A Survey on Breaking Technique of Text-Based CAPTCHA”. In:
Security and Communication Networks 2017 (2017), pp. 1-15. DOI: 10.1155/2017/
6898617.

Mauro Conti, Claudio Guarisco, and Riccardo Spolaor. “CAPTCHaStar! A Novel
CAPTCHA Based on Interactive Shape Discovery”. In: Applied Cryptography and
Network Security. Ed. by Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schnei-
der. Cham: Springer International Publishing, 2016, pp. 611-628. ISBN: 978-3-319-
39555-5.

Nghia Trong Dinh and Vinh Truong Hoang. “Recent advances of Captcha security
analysis: a short literature review”. In: Procedia Computer Science 218 (2023). Inter-
national Conference on Machine Learning and Data Engineering, pp. 2550-2562.
ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2023.01.229. URL:
https://www.sciencedirect.com/science/article/pii/S1877050923002296.

Haichang Gao et al. “A Simple Generic Attack on Text Captchas”. In: Network and
Distributed System Security Symposium. 2016. URL: https://api.semanticscho
lar.org/CorpusID:12024381.

lan J. Goodfellow et al. Multi-digit Number Recognition from Street View Imagery
using Deep Convolutional Neural Networks. 2014. arXiv: 1312.6082 [cs.CV].

Google. Are you a robot? Introducing “No CAPTCHA reCAPTCHA”. 2014. URL:
https://developers . google . com/search/blog/2014/12/are-you-robot-
introducing-no-captcha (visited on 01/03/2024).

Google. Invisible reCAPTCHA”. 2017. URL: https://developers . google.com/
recaptcha/docs/invisible (visited on 01/03/2024).

Rich Gossweiler, Maryam Kamvar, and Shumeet Baluja. “What’s up CAPTCHA?
A CAPTCHA Based on Image Orientation”. In: Proceedings of the 18th Interna-
tional Conference on World Wide Web. WWW ’09. Madrid, Spain: Association for
Computing Machinery, 2009, pp. 841-850. ISBN: 9781605584874. DOI: 10.1145/
1526709.1526822. URL: https://doi.org/10.1145/1526709.1526822.

Thomas Gougeon and Patrick Lacharme. “A Simple Attack on CaptchaStar”. In:
International Conference on Information Systems Security and Privacy. 2018. URL:
https://api.semanticscholar.org/CorpusID: 198365671.

Meriem Guerar et al. “Gotta CAPTCHA 'Em All: A Survey of 20 Years of the Human-
or-Computer Dilemma”. In: ACM Comput. Surv. 54.9 (2021). ISSN: 0360-0300. DOI:
10.1145/3477142. URL: https://doi.org/10.1145/3477142.

Carlos Javier Hernandez-Castro, David F. Barrero, and Maria Dolores R-Moreno.

“Breaking CaptchaStar Using the BASECASS Methodology”. In: ACM Transactions

on Internet Technology 23 (2022), pp. 1-12. URL: https://api.semanticscholar.
org/CorpusID:251980517.

32

https://doi.org/10.1126/science.1160379
https://doi.org/10.1126/science.1160379
https://www.science.org/doi/pdf/10.1126/science.1160379
https://www.science.org/doi/pdf/10.1126/science.1160379
https://www.science.org/doi/abs/10.1126/science.1160379
https://doi.org/10.1117/12.590944
https://doi.org/10.1155/2017/6898617
https://doi.org/10.1155/2017/6898617
https://doi.org/https://doi.org/10.1016/j.procs.2023.01.229
https://www.sciencedirect.com/science/article/pii/S1877050923002296
https://api.semanticscholar.org/CorpusID:12024381
https://api.semanticscholar.org/CorpusID:12024381
https://arxiv.org/abs/1312.6082
https://developers.google.com/search/blog/2014/12/are-you-robot-introducing-no-captcha
https://developers.google.com/search/blog/2014/12/are-you-robot-introducing-no-captcha
https://developers.google.com/recaptcha/docs/invisible
https://developers.google.com/recaptcha/docs/invisible
https://doi.org/10.1145/1526709.1526822
https://doi.org/10.1145/1526709.1526822
https://doi.org/10.1145/1526709.1526822
https://api.semanticscholar.org/CorpusID:198365671
https://doi.org/10.1145/3477142
https://doi.org/10.1145/3477142
https://api.semanticscholar.org/CorpusID:251980517
https://api.semanticscholar.org/CorpusID:251980517

References 33

[15]

[16]

[17]

[18]

[19]

Montree Imsamai and Suphakant Phimoltares. “3D CAPTCHA: A Next Generation
of the CAPTCHA”. In: 2010 International Conference on Information Science and
Applications. 2010, pp. 1-8. DOI: 10.1109/ICISA.2010.5480258.

Mathias Sablé-Meyer et al. “Sensitivity to geometric shape regularity in humans and
baboons: A putative signature of human singularity”. In: Proceedings of the National
Academy of Sciences 118 (2021), e2023123118. DOI: 10.1073/pnas.2023123118.

N. Tariq et al. CAPTCHA Types and Breaking Techniques: Design Issues, Chal-
lenges, and Future Research Directions. 2023. arXiv: 2307.10239 [cs.CR].

Guixin Ye et al. “Yet Another Text Captcha Solver: A Generative Adversarial Net-
work Based Approach”. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’18. Toronto, Canada: Associ-
ation for Computing Machinery, 2018, pp. 332-348. ISBN: 9781450356930. DOI:
10.1145/3243734.3243754. URL: https://doi.org/10.1145/3243734.3243754.

Binbin Zhao et al. “Towards Evaluating the Security of Real-World Deployed Image
CAPTCHAS”. In: Proceedings of the 11th ACM Workshop on Atrtificial Intelligence
and Security. AlSec '18. Toronto, Canada: Association for Computing Machinery,
2018, pp. 85-96. ISBN: 9781450360043. DOI: 10.1145/3270101.3270104. URL:
https://doi.org/10.1145/3270101.3270104.

https://doi.org/10.1109/ICISA.2010.5480258
https://doi.org/10.1073/pnas.2023123118
https://arxiv.org/abs/2307.10239
https://doi.org/10.1145/3243734.3243754
https://doi.org/10.1145/3243734.3243754
https://doi.org/10.1145/3270101.3270104
https://doi.org/10.1145/3270101.3270104

Appendix A

Decision Tree

Gistance_median <= 19.25
i = 0,49
camples = 687
value = [476.0, 511.0]
class = human

Tiue False
variance <= 1.048 Type_mean <= 1925
gini = 0.379
samples = 5 sa 1
value = [422, 144] value = [54.0, 367.0]
class = bot class = human

Figure A.1: Root of the decision tree.

34

35

Figure A.2: Left-hand side of the decision tree.

36

Figure A.3: Right-hand side of the decision tree.

	Preface
	Summary
	Introduction
	Background
	Problem statement
	Objective
	Structure

	Literature Review
	Evolution of CAPTCHA types and attacks
	Text-based CAPTCHAs
	Image-based CAPTCHAs
	Behaviour-based CAPTCHAs

	Geometric Shape Regularity and Human Singularity

	ShapeCAP overview
	Design Concept
	Shape Selection
	Shape Variation
	Object Shape
	Movement and Tracking
	Scoring System

	Security parameters

	Implementation
	Technical Details
	Deployment
	Data Collection

	Data Analysis and Feature Extraction
	Preprocessing
	Feature Extraction

	Machine Learning Models
	Model Selection
	Training and Testing
	Results
	Terminology
	Decision Tree
	Neural Network
	One-Class SVM

	Discussion
	Interpretation of Results
	Strengths and Limitations
	Future Work

	Conclusion
	References
	Appendix A

