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Introduction: The vegetation dynamics of the Sahel-Sudan-Guinea region in 
Africa, one of the largest transition zones between arid and humid zones, is 
of great significance for understanding regional ecosystem changes. However, 
a time-unvarying trend based on linear assumption challenges the overall 
understanding of vegetation greenness evolution and of tracking a complex 
ecosystem response to climate in the Sahel-Sudan-Guinea region.

Methods: This study first applied the ensemble empirical mode decomposition 
(EEMD) method to detect the time-varying trends in vegetation greenness based 
on normalized difference vegetation index (NDVI) data in the region during 
2001–2020, and then identified the dominant climatic drivers of NDVI trends by 
employing explainable machine learning framework.

Results: The study revealed an overall vegetation greening but a significant 
nonlinear spatio-temporal evolution characteristic over the region. Trend 
reversals, i.e., browning-to-greening and greening-to-browning, were 
dominant in approximately 60% of the study area. The browning-to-greening 
reversal was primarily observed in the southern Sahel, Congo Basin north of the 
Equator, and East Africa, with a breakpoint around 2008, while the greening-
to-browning reversal was mainly observed in West Africa, with a breakpoint 
around 2011. The sustained greening primarily took place in northern Sahel, 
Central African Republic and South Sudan; while sustained browning clustered 
in central West Africa and Uganda, mainly in agricultural lands. Furthermore, 
the combination of Random Forest (RF) algorithm and the SHapley Additive 
exPlanations (SHAP) method could robustly model and reveal the relationships 
between the observed trends in NDVI and in climatic variables, also detected 
by applying EEMD. The results suggested that air temperature and precipitation 
were the most important climatic drivers controlling the NDVI trends across the 
Sahel-Sudan-Guinea region. The NDVI trends were more likely to have negative 
correlations with solar radiation and vapor pressure deficit in arid areas, while 
they could have positive correlations in humid areas. The study also found 
that large-scale climate changes induced by sea surface temperature (SST) 
anomalies had strong relationships with trend reversals in vegetation greenness 
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at a sub-continental scale. These findings advanced the understanding of the 
impacts of climatic drivers on vegetation greenness evolution in the Sahel-
Sudan-Guinea region.

KEYWORDS

NDVI, Sahel-Sudan-Guinea region, trend reversal, SHAP, climate change, driver 
analysis

1 Introduction

The vegetation dynamics of the Sahel-Sudan-Guinea region in 
Africa, one of the largest transition zones between arid and humid 
zones, is vulnerable to the interference of climatic anomalies and 
human activities (Milas, 1984; Leroux et al., 2017; Fu et al., 2021; Zhou 
et al., 2021a). Spreading desertification/land degradation has risen to 
the top of ecological concerns since the Sahel belt (annual precipitation 
ranging from 100 to 900 mm) experienced severe drought in the 1970s 
and 1980s (Wang'ati, 1996; Fensholt et al., 2017; Kusserow, 2017). 
However, increasing trends in the vegetation greenness and 
productivity of the region, a process known as greening, have been 
indicated by in-situ observations and satellite observations, e.g., 
Normalized Difference Vegetation Index (NDVI), along with 
increasing precipitation since the mid-1980s (Herrmann et al., 2005; 
Fensholt and Rasmussen, 2011; Dardel et al., 2014; Kaptué et al., 2015; 
Fensholt et al., 2017). In contrast to the findings on global greening 
(Zhu et al., 2016; Piao et al., 2020), studies have also documented a 
decrease in vegetation greenness, known as browning, in certain areas 
of the Sahel-Sudan-Guinea region, known as browning, such as the 
lateritic plateaus of southern Niger (Leroux et al., 2017). Although 
there have been numerous studies on vegetation greenness dynamics 
in the region using Earth Observation (EO) data in the first two 
decades of the 21st century (Leroux et al., 2017; D'Adamo et al., 2021; 
Ogutu et al., 2021; Jiang et al., 2022; Zeng et al., 2023), a comprehensive 
understanding of the process of vegetation greening or browning is 
still lacking.

The first consideration is the nonlinearity and evolution of 
vegetation greenness trend analysis. Most vegetation dynamic 
studies at regional and global scales express trend as a straight line, 
such as the ordinary least squares linear regression method and the 
Theil-Sen trend approach, which only estimate a constant greening 
or browning rate throughout the study period (Dardel et al., 2014; 
Leroux et al., 2017; Piao et al., 2020; Jiang et al., 2022). Such linear 
trend analyses are conducted under the assumption of stationarity, 
and potential long-period oscillations may be confounded with the 
vegetation trends (Yin et al., 2017). In fact, vegetation growth time 
series reflect nonlinear and non-stationary underlying processes 
due to their susceptibility to perturbations from factors such as 
climate anomalies and human activities, resulting in a combination 
of seasonal, gradual, and abrupt changes (Verbesselt et al., 2010; de 
Jong et al., 2012). Even annual statistics, such as annual means, 
extracted from vegetation index time series may contain periodic 
signals of several years to decades due to inter-annual and inter-
decadal periodic oscillations, such as El Niño and the Southern 
Oscillation (Hawinkel et al., 2015; Pan et al., 2018). These emphasize 
the importance of accounting for variability in trend. In addition, 

the limitation of trend analysis methods based on linear assumption 
may be  one of the reasons for the discrepancy in vegetation 
greenness trends for a given region (de Jong and de Bruin, 2012; 
Rasmussen et  al., 2016). In the context of increasing global 
environmental change, the linear trends fail to capture the hidden 
features of non-stationarity and to reveal the evolution of 
vegetation, e.g., trend reversals and acceleration or deceleration of 
the change rate.

Second, the climatic drivers of vegetation greenness trends in the 
Sahel-Sudan-Guinea region need to be carefully examined. Although 
a number of studies have evaluated the connection between climate 
and vegetation at various spatial and temporal scales in this region 
(Fensholt and Rasmussen, 2011; Hoscilo et al., 2015; Kaptué et al., 
2015; Zhou et al., 2021a; Jiang et al., 2022), our understanding of the 
underlying mechanisms is incomplete. Precipitation is considered a 
key climatic factor affecting vegetation dynamics in this region, but 
recent studies have shown that its role is weakening (Leroux et al., 
2017; Zeng et al., 2023). Even in water-limited drylands, precipitation 
only explains vegetation greenness trends in less than half of the 
region (Zeng et al., 2023). In addition to precipitation, other climatic 
factors, such as air temperature, solar radiation, and atmospheric 
VPD, which are related to plant biophysical processes, also play a 
significant role in influencing the spatial heterogeneity of vegetation 
dynamics (Piao et al., 2020; Tagesson et al., 2021). For example, several 
studies have clearly documented the negative effects of water stress 
caused by warming and increasing atmospheric vapor pressure deficit 
(VPD) on vegetation greenness and productivity (Epule et al., 2014; 
Abdi et al., 2017; Yuan et al., 2019; Zhang et al., 2022). Furthermore, 
the response of vegetation greenness to such multiple climatic factors 
may be nonlinear, which introduces complexities when explaining the 
relationship between observed vegetation dynamics and specific 
driving factors. However, most studies assume linearity when 
analyzing climate trends and attribution (Herrmann et  al., 2005; 
Hoscilo et  al., 2015; Zeng et  al., 2023). This makes it difficult to 
accurately capture the relationship between trends in vegetation 
greenness and climate.

In summary, consideration of the time-varying trends and 
nonlinear relationship between vegetation greenness trends and 
multiple climatic factors is the key for clarifying a complex ecosystem 
response to climate in the Sahel-Sudan-Guinea region. The Ensemble 
Empirical Mode Decomposition (EEMD) method is an adaptive time 
series analysis approach that does not assume a predetermined 
functional form of the components and decomposes the time series 
into a finite set of oscillatory components with decreasing frequencies 
and a residual trend component (Huang et al., 1998; Wu et al., 2007; 
Wu and Huang, 2009; Ji et  al., 2014). The EEMD method can 
powerfully reveal more biophysical information conveyed by 
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nonlinear and non-stationary time series, especially the response of 
the vegetation evolution to climate change (Hawinkel et al., 2015; Pan 
et al., 2018; Feng et al., 2021; Yang et al., 2021). Additionally, machine 
learning algorithms are widely used for attribution analyses, because 
they can produce reliable prediction results and extract non-linear 
relationships between feature variables and target variable (Devine 
et al., 2017; Leroux et al., 2017; Berdugo et al., 2022). The black-box 
nature of machine learning, however, hinders the transparency and 
physical interpretability of the estimated relationships. To overcome 
this problem, an explainable machine learning framework has been 
proposed to understand the biophysical processes underlying the 
black-box relationships detected by machine learning (Lundberg and 
Lee, 2017), which has tremendous application prospects for 
understanding complex relationships between bio-geophysical 
observables (Li et al., 2022; Ham et al., 2023).

This study aims to better understand the spatial and temporal 
evolution of vegetation greenness using satellite time series in the 
Sahel-Sudan-Guinea region during 2001–2020. The specific objectives 
are: (1) to detect the spatio-temporal characteristics of trend reversals 
and evolution of vegetation greenness dynamics by using the EEMD 
method; (2) to assess the dominant climatic drivers of vegetation 
greenness trends by using the explainable machine learning framework.

2 Study area and data

2.1 Study area

The African Sahel-Sudan-Guinea region (0–25°N, 20°W-53°E) is 
known as a transition zone between arid and humid climates, located 
south of the Sahara Desert and north of the Equator, extending from the 
Atlantic coast in the west to the Red Sea and the Indian Ocean in the east 
(Figure 1A). This region exhibits a significant climate gradient from north 
to south, with average annual precipitation ranging from less than 
100 mm in the northern areas to more than 1,100 mm in the southern 
areas. Climate conditions in the western region are primarily regulated by 
the West African Monsoon, which is characterized by a rainy season 
spanning from June to October (Nicholson, 2009; Nicholson, 2013). 
Conversely, the eastern part has a notable variation in the spatial 
distribution of precipitation, mainly due to the influence of sea surface 
temperature (SST) in the equatorial Pacific and Indian Ocean, as well as 
a complex topography (Nicholson, 2017; Endris et  al., 2019), which 
distinguishes it from West Africa. As a result of these geographic 
variations and climatic gradients, a wide range of biomes occur in close 
succession along the spatial gradient. These biomes include grasslands, 
savannas, shrublands, dry forests, and humid forests (Figure 1B).

2.2 Data

The Moderate Resolution Imagery Spectroradiometer (MODIS) 
8-day composite surface reflectance product (MOD09Q1, Collection 
6.1) at 250-m spatial resolution1 was used to derive the NDVI as a 
proxy for vegetation greenness for the period 2001–2020. An 

1 https://e4ftl01.cr.usgs.gov/MOLT/MOD09Q1.061/

improved Harmonic ANalysis of Time Series (iHANTS) algorithm 
was used to remove the outliers and reconstruct the NDVI time series. 
The iHANTS method is an updated tool that improves the original 
HANTS (Menenti et al., 1993; Verhoef et al., 1996) for time series 
reconstruction, which applies the Fourier transform theory with 
several parameter settings, including inter-annual harmonic 
components, dynamic fitting error tolerance (FET) scheme, and 
dynamic update of weights to remove the outliers and fill the gaps in 
a time series. Global assessments (Zhou et al., 2016, 2021b) and a 
performance test in the Sahel-Sudan-Guinea region (Jiang et al., 2022) 
showed a good performance in the reconstruction of NDVI time 
series. In this study, we averaged the reconstructed 8-day NDVI time-
series data to a spatial resolution of 0.05° and calculated the annual 
mean NDVI for each pixel. To reduce the impacts of non-vegetated or 
sparse vegetation areas, the pixels with multiple-year mean NDVI 
<0.1, permanent bare lands and permanent water bodies were masked 
out (Pan et al., 2018; Feng et al., 2021).

In this study, we selected climatic factors related to water, heat, and 
energy to identify the dominant climatic drivers of vegetation growth, 
captured through greenness trends. These drivers include precipitation 
(Dardel et al., 2014; Zeng et al., 2023), atmospheric vapor pressure 
deficit (Yuan et al., 2019), air temperature and solar radiation (Piao 
et al., 2020; Yang et al., 2021). The total annual precipitation (Pre) data 
at a spatial resolution of 0.05° for the period 2001–2020 were obtained 
from the Climate Hazards Group InfraRed Precipitation with Station 
(CHIRPS, Version 2.0).2 The monthly air temperature (Tem), dew 
point temperature (Td) and solar radiation (Rad) data with a spatial 
resolution of 0.1° were obtained from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 Land 
(ERA5-Land).3 In this study, the air temperature (Tem) and dew point 
temperature (Td) were used to calculate vapor pressure deficit (VPD) 
following the previous study (Yuan et al., 2019). The monthly Tem, Rad 
and VPD data were resampled from the original spatial resolution to 
0.05° using the cubic spline method (Keys, 1981) and then the annual 
averages (Tem and VPD) and annual sum (Rad) were calculated for the 
period 2001–2020.

The land use/land cover (LULC) data at 300-m spatial resolution 
for the period 1992–2020 were obtained from the European Space 
Agency (ESA) Climate Change Initiative (CCI) Land Cover annual 
maps.4 In this study, the 37 original LC classes were reclassified into 
10 classes according to Supplementary Table S1. Then the major “no 
change” LULC types and paired LULC change types during 2001–
2020 were identified following previous studies (Song et al., 2018; 
Zeng et al., 2023) based on the total change of each LULC fraction at 
a spatial resolution of 0.05°. The total change estimated by the linear 
method was replaced by the accumulated variation using the EEMD 
method (see Supplementary A and Supplementary Figure S1). In 
addition, we  used the global Human Modification (HM) dataset 
sourced from the Socioeconomic Data and Applications Center 
(SEDAC) of the National Aeronautics and Space Administration 
(NASA)5 with 1-km spatial resolution to represent human activity 

2 https://data.chc.ucsb.edu/products/CHIRPS-2.0/

3 https://doi.org/10.24381/cds.68d2bb30

4 http://maps.elie.ucl.ac.be/CCI/viewer/download.php

5 https://sedac.ciesin.columbia.edu/data/set/

lulc-human-modification-terrestrial-systems
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intensity. This dataset provides information on five major 
anthropogenic pressure sources around the year 2016: human 
settlements, agriculture, transportation, mining and energy 
production, and electrical power infrastructure (Kennedy et al., 2019, 
2020). In this study, we averaged the global Human Modification 
(HM) dataset to a spatial resolution of 0.05° to match other raster data.

We used the WorldClim historical precipitation dataset (version 
2.1)6 to derive mean annual precipitation isohyets to delineate 
bioclimatic sub-region boundaries following previous studies 
(Weltzien et  al., 2006; Herrmann et  al., 2020). The following 
sub-regions were delineated: Saharan (Pre < 100 mm), Sahel 
(100 mm ≤ Pre < 700 mm), Sudanian (700 mm ≤ Pre < 1,100 mm), and 
Guinean (Pre ≥ 1,100 mm). To distinguish the geographical 
sub-regions of East Africa, we  also defined Wet Highlands, i.e., 

6 https://www.worldclim.org/data/worldclim21.html

Pre ≥ 700 mm and elevation ≥1,000 m in the Ethiopian Highlands, and 
Dry Horn of Africa, i.e., Pre < 700 mm in Horn of Africa (Figure 1) 
based on WorldClim mean annual precipitation and elevation 
obtained by the NASA Shuttle Radar Topographic Mission (SRTM, 
version 4).7 The aridity index (AI) data at 1-km spatial resolution 
provided by the Consultative Group for International Agriculture 
Research-Consortium for Spatial Information (CGIAR-CSI)8 and the 
annual percentage of tree cover at 250-m spatial resolution obtained 
from the MODIS product (MOD44B, Collection 6.1)9 were used for 
ancillary analysis.

7 https://srtm.csi.cgiar.org/

8 https://figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_ 

Evapotranspiration_ET0_Climate_Database_v2/7504448/3

9 https://e4ftl01.cr.usgs.gov/MOLT/MOD44B.061/

FIGURE 1

The study area Sahel-Sudan-Guinea region in Africa: (A) Mean annual NDVI in 2001–2020 and (B) land use/land cover (LULC) map in 2020. The NDVI 
was derived from Moderate Resolution Imagery Spectroradiometer (MODIS) surface reflectance data and the LULC information was extracted from 
ESA CCI-LC maps. The purple lines represent the boundaries of bioclimatic sub-regions.
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3 Methods

To investigate the evolution of NDVI, a proxy for vegetation 
greenness, in the Sahel-Sudan-Guinea region from 2001 to 2020, this 
study involved two main steps (Figure 2):

 1. NDVI trend analysis at regional scale and pixel-wise scale. 
We first used both Theil-Sen method and EEMD method to 
compare the overall trends in NDVI at the regional scale. Then, 
we analyzed the spatio-temporal pattern of evolution and trend 
reversals in NDVI by applying pixel-wise EEMD method.

 2. Analysis of dominant climatic drivers of vegetation greenness 
trends. We first extracted EEMD trends in air temperature, 
precipitation, solar radiation and vapor pressure deficit for the 
same period. Then, we explored the dominant climatic drivers 
of the observed trends in NDVI by applying the explainable 
machine learning framework, i.e., Random Forest (RF) and 
SHapley Additive exPlanations (SHAP). To perform raster 
calculations at different spatial resolutions, all raster data were 
uniformly sampled to a spatial resolution of 0.05° and all the 
data processing and analysis were implemented in the R 
(version 4.3.1) software.

3.1 Theil-Sen trend approach

The Theil-Sen trend approach was used to estimate linear trends 
in this study, which is widely used as a robust linear trend estimator 
to detect long-term trends in the time series of ecological and climatic 
variables (Ahmedou et al., 2008; Chen et al., 2019). The Yue-Pilon 

pre-whitening Mann–Kendall test (Yue et al., 2002) was used to assess 
the significance of NDVI trends, and the trend was considered 
significant if the confidence level was greater than 95% (p < 0.05).

3.2 EEMD method for extraction of 
time-varying trends

The EEMD is an adaptive time series analysis method, and 
decomposes nonlinear and non-stationary time series data into finite 
physically meaningful components with decreasing frequencies, 
called Intrinsic Mode Functions (IMF), and a secular trend (Huang 
et al., 1998; Wu and Huang, 2009). This method does not follow a 
priori shape, but runs through a ‘sifting’ process using only the 
information of local extrema, and has been widely applied to evaluate 
trends in climate and vegetation variables (Wu et al., 2007; Wu and 
Huang, 2009; Ji et al., 2014; Hawinkel et al., 2015; Pan et al., 2018). 
The main steps of EEMD method can be seen in Supplementary B. In 
this study, following Ji et al. (2014), the accumulated variation V(t) 
in a secular trend component (Rn) was defined as the accumulated 
variation in Rn from the starting time (i.e., 2001) to any specific time 
(Eq. 1):

 V t R t Rn n( ) = ( ) − ( )2001  (1)

The instantaneous rate at t of a secular trend was determined as 
the first temporal derivative of the V(t) or the first temporal derivative 
of the Rn(t) (Eq. 2):

 ( ) ( ) ( ) ( ) ( ) ( )EEMD EEMDRate V V 1 OR Rate 1n nt t t t R t R t= − − = − −  (2)

FIGURE 2

Flowchart of the study.
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Here, a positive instantaneous rate in NDVI secular trend 
indicates greening and a negative instantaneous rate indicates 
browning. To facilitate a comparison between a nonlinear trend with 
time-varying rates and a linear trend with a constant rate, the 
accumulated variation of the trend component over a specific time 
interval proves to be a useful measure. It enables us to quantify the 
cumulative change within a specific period of time (e.g., 2001–2020), 
providing a measure of the overall trend magnitude that can 
be compared to a linear trend. We can identify trend types and trend 
reversals based on the occurrence of extrema within a secular trend. 
For a secular trend with no extrema, the trend type is identified as 
monotonically increasing and monotonically decreasing (for NDVI 
monotonic greening and monotonic browning, respectively). A 
secular trend with one extrema is considered to have a trend reversal, 
and the type is identified as increasing-to-decreasing transition and 
decreasing-to-increasing transition (for NDVI greening-to-browning 
transition and browning-to-greening transition, respectively). Also, 
the location of the extrema is identified as the breakpoint (BP).

In this study, the EEMD method was applied by using the R 
package “Rlibeemd” (Luukko et al., 2016). We used the number 
of 100 copies with 0.2 standard deviations of the raw data to 
generate Gaussian white noises (Wu and Huang, 2009). To reduce 
over-sifting signals and ensure that the final results meet the 
requirements of the IMF, we  adopted the S-number stopping 
criterion. This criterion stops the iteration when the number of 
zero crossings and extrema differ by at most one, and these 
numbers remain the same for S consecutive iterations (Huang 
et al., 1999). The S-number was set to 4 according to the optimal 
range of 3 to 8 (Huang et  al., 2003; Luukko et  al., 2016). In 
addition, the Monte Carlo significance test approach developed 
in previous studies (Ji et  al., 2014; Pan et  al., 2018) was 
implemented to test EEMD trend (see Supplementary B).

3.3 Explainable machine learning for 
climatic driver analysis

The RF algorithm is widely used to predict and classify all sorts of 
variables due to its robust accuracy based on the construction of 
multiple mutually independent basic learners through a bootstrap 
aggregation strategy (Breiman, 2001). Moreover, it allows for training 
a nonlinear relationship between the target variable and the predictors 
without any statistical hypothesis and can isolate the relative 
importance of each predictor on the target variable (Breiman, 2001; 
Leroux et al., 2017). The SHAP method has been proposed as a unified 
and powerful tool to explain a relationship constructed by machine 
learning (e.g., RF) by isolating the marginal contributions of each 
predictor on the target variable. It uses the concept of Shapley values, 
rooted in cooperative game theory (Shapley, 1953), to link optimal 
credit allocation with local explanations, providing a comprehensive 
framework for assessing the importance of features and understanding 
the contribution of individual features in the prediction process 
(Lundberg and Lee, 2017). This method directly measures the impact 
of individual features (e.g., Tem, Pre, Rad and VPD) on model loss 
(Lundberg and Lee, 2017; Wang et  al., 2022), i.e., the differences 
between the predicted and expected values of the target variable (e.g., 
NDVI) (Eq. 3):
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where G is the explanation model, φ0 is the average of the prediction, 
zi′ is the coalition vector, M is the number of input features and φi is 
the feature attribution for feature i, i.e., SHAP value.

The SHAP value is a metric of the mean marginal contribution of 
a feature in all possible coalitions of feature inputs (Eq. 4):
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where 𝑆 is a subset of the features used in an alliance F, f(S∪{i}) is the 
prediction for that feature present and f(S) is the prediction for that 
feature withheld. The SHAP value for each individual prediction in a 
given sample is referred to as local interpretability. For a given case, a 
positive SHAP value indicates that a particular feature contributes 
towards increasing the final predicted target value, while a negative 
SHAP value indicates a contribution towards decreasing 
the prediction.

We conducted the climatic driver analysis at the pixel-wise scale 
using the RF algorithm and SHAP method. Before calculating the 
SHAP values, we tuned the hyper-parameter settings of the RF model 
according to the grid search method (Li et  al., 2022) using the R 
package “ranger” (Wright and Ziegler, 2015), including mtry, splitrule 
and min.node.size, to obtain high accuracy predictions. The hyper-
parameter settings of RF model were tuned as follows:

 1. Randomly selected 1,000 vector points in the study area and 
extracted the secular trends in NDVI (target variable) and in 
climatic variables (predictor variables) during 2001–2020 at 
each point by EEMD method.

 2. Implemented a RF model with 5-fold cross-validation and 
ntree = 500 to determine the optimal hyper-parameters 
according to the grid search method and varied hyper-
parameters (Table  1) for each point. The determination 
coefficient (R2) and root mean squared error (RMSE) were 
calculated and the minimum RMSE criterion was used to 
determine the optimal hyper-parameters.

 3. Excluded points with R2 < 0.9 of RF modeling and selected the 
most frequent value of each parameter in the remaining points 
as the best parameter.

After obtaining the best hyper-parameter settings (mtry = 4, 
splitrule = ‘extratrees’ and min.node.size = 1), we implemented a pixel-
wise RF model with 5-fold cross-validation and SHAP method to get 
SHAP relative importance of the climatic variables. At the same time, 
the relative importance of the climatic variables in the RF model was 
estimated using the impurity method (Wright and Ziegler, 2015). For 
a Random Forest Regression, the impurity method measures the 
importance of a particular feature by evaluating the reduction in 
variance of the predicted target variable before and after introducing 
that feature at each node split. A large reduction in variance indicates 
a high level of feature importance.

We conducted further statistical analyses based on the SHAP 
results. The global SHAP feature importance was calculated as the 
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mean absolute value of the SHAP values for each driving factor, and 
the direction of the global SHAP feature importance was defined as 
the sign of the correlation coefficient between the local SHAP values 
for the dependent variable (secular trend in NDVI) and each 
independent variable (secular trend in each climatic variable) (Hasan 
et al., 2021; Green et al., 2022). Furthermore, the driving factor with 
the largest global SHAP feature importance value was selected as the 
dominant driving factor. To test the climatic driver disturbance from 
human footprint, we performed the driver analysis both without and 
after removing the areas with high human activity intensity, 
represented by human modification degree data. Followed Kennedy 
et al. (2019), the high human activity intensity regions were defined as 
pixels where the human modification degree exceeded 0.4.

4 Results

4.1 Overall trends in NDVI at regional scale

The trends in annual mean NDVI for the period 2001–2020 for 
the entire Sahel-Sudan-Guinea region and bioclimatic sub-regions are 
shown in Figure  3. The NDVI in the entire Sahel-Sudan-Guinea 
region showed a significant linear increasing trend (rate of change 
1.06 × 10−3 yr.−1, p < 0.05) and a significant secular increasing trend by 
EEMD (mean rate of change 1.01 × 10−3 yr.−1, p < 0.05) over 2001–2020 
(Figure  3A). In terms of bioclimatic sub-regions, both Theil-Sen 
trends and EEMD trends in NDVI were all increasing, but the EEMD 
trends showed different aspects. The NDVI trends in the Saharan, 
Sahel, Sudanian and Guinean sub-regions were found to 
monotonically increase by EEMD (Figures 3B–D,F). In particular, the 
highest average growth rate was observed in the Sudanian sub-region, 
reaching 1.41 × 10−3 yr.−1. In contrast, both the Wet Highlands and the 
Dry Horn of Africa sub-regions showed a significant browning-to-
greening transition (i.e., decrease to increase in NDVI) with the 
breakpoints around the years 2008 and 2006, respectively 
(Figures  3E,G). Their mean rates of decrease before the reversals 

were − 1.83 × 10−3 yr.−1 and -6.20 × 10−4 yr.−1, respectively, while the 
mean rates of increase after the reversals were 2.98 × 10−3 yr.−1 and 
2.20 × 10−3 yr.−1, respectively. In general, both linear trends and EEMD 
trends showed an overall greening over the Sahel-Sudan-Guinea 
region from 2001 to 2020, but the EEMD method puts more emphasis 
on the detailed evolutionary process, e.g., significant trend reversals 
(browning-to-greening) with time-varying rate of change 
were detected.

4.2 Spatio-temporal patterns of secular 
trends in NDVI

The spatio-temporal patterns of EEMD trends in NDVI in the 
Sahel-Sudan-Guinea region during 2001–2020 are shown in Figure 4. 
Since 2001, there has been an overall positive accumulated variation 
in NDVI, indicating a greener vegetation compared to the year 2001. 
Before 2005, the areas with positive accumulated variation in NDVI 
were little more than half of the total study area (Figure 4A). The 
positive accumulated variations were mainly distributed in West 
Africa, Central African Republic and South Sudan, while the negative 
accumulated variations were clustered in the central Sudanian, Wet 
Highlands and Horn of Africa regions. By 2010, the extent of the 
positive accumulated variation was increasing, with some areas that 
had a negative accumulated variation prior to 2005 shifting to a 
positive one. After 2015, the area with positive accumulated variation 
in NDVI increased and exceeded 70% of the study area. Compared to 
the previous decade, the area with positive accumulated variation 
increased in western Sahel, Central  African  Republic and South 
Sudan, while the area with negative accumulated variation decreased 
in the Wet Highlands and Dry Horn of Africa sub-regions. Notably, 
the spatial pattern of accumulated variation in NDVI from 2001 to 
2020 estimated by EEMD was similar to that obtained by applying the 
Theil-Sen trend (Figure 4D; Supplementary Figure S2).

As for the instantaneous rates of the secular trend, they had 
similar spatio-temporal characteristics as the accumulated variation. 
However, the area of greening rates (i.e., positive instantaneous rates 
in NDVI) experienced a process from growth to decline, although 
greening rates dominated the entire period (Figures  4E–H,J). 
Specifically, the area of greening rates had a noticeable increase before 
2012, reaching a maximum of 79% of the study area (8.54 million 
km2), but this percentage declined in the following 8 years (Figure 4J). 
Such a decline in the extent of greening rate caused a slowdown or 
stagnation of early greening in some places in West Africa, such as 
Mauritania, Senegal, Mali, Burkina Faso and Guinea. We checked the 
significance of the EEMD trends, and found that the phenomenon of 
slowing or stagnation of early greening was also evident 
(Supplementary Figure S3). In addition, Guinean and Sahel 
sub-regions dominated the greening across the region and across the 
temporal range, with or without significance tests.

4.3 Reversals in NDVI evolution

According to the EEMD method, the time-varying trends gave 
the spatial distribution of trend reversals in NDVI during 2001–2020, 
including trend types, timing of the reversal (i.e., the breakpoint), and 
mean instantaneous rates before and after the breakpoint (Figure 5). 

TABLE 1 Hyper-parameter settings for grid search in the RF models.

Hyper-
parameter

Meaning Range Interval Final 
decision

mtry The number 

of randomly 

selected 

features to 

consider for 

splitting at 

each node.

[1, 4] 1 4

splitrule The criterion 

used for node 

splitting.

[‘variance’, 

‘extratrees’, 

‘maxstat’]

— ‘extratrees’

min.node.size The 

minimum 

number of 

samples 

allowed in a 

node.

[1, 8] 1 1
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A monotonic greening trend (i.e., a sustained increase) in NDVI was 
observed in about 34% of the Sahel-Sudan-Guinea region during the 
study period (Figure 5A), mainly in the southern Guinean, the Sahel 
belt and eastern Sudanian sub-regions. In contrast, the extent of 
monotonic browning (sustained decrease) was much smaller, 

covering 6% of the study area. They were clustered in central West 
Africa (Burkina Faso, Benin, Niger, Nigeria, and southern Chad), 
Uganda and Somalia. The trend reversals in NDVI, which varied 
from east to west, were the main feature of the Sahel-Sudan-Guinea 
region over the last 20 years. The browning-to-greening transition 

FIGURE 3

Trends in annual mean NDVI using Theil-Sen method and EEMD method for the period 2001–2020 in different bioclimatic sub-regions: (A) Entire 
study area, (B) Saharan, (C) Sahel, (D) Sudanian, (E) Wet Highlands, (F) Guinean, and (G) Dry Horn of Africa. The BP indicates the timing of the 
breakpoint, and NULL denotes without breakpoint.
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occurred in 40% of the study area and was the most widespread of 
the four trend types. A noticeable browning-to-greening transition 
(70% of the total transition area) appeared before 2009 and was 
particularly clustered in the southern Sahel, East Africa and Congo 
Basin north of the Equator (Figure  5D). Although there was an 
overall greening trend in the Sahel-Sudan-Guinea region, the 
greening-to-browning transition occurred in almost 20% of the study 

area. A majority of greening-to-browning transition (66% of the total 
transition area) appeared after 2011, and were mainly distributed in 
West Africa (Figure  5D). Notably, the greening-to-browning 
transition occurred in some areas of Mauritania, Senegal, Mali, 
Guinea and Nigeria were in early 2007.

Before the breakpoints, widespread browning trends were 
detected by the EEMD throughout the Sahel-Sudan-Guinea region 

FIGURE 4

Spatio-temporal pattern of the accumulated variation and the instantaneous rate of NDVI secular trend during 2001–2020. (A–D) Accumulated 
variations in NDVI secular trend in the periods ending in 2005, 2010, 2015 and 2020, respectively; (E–H) instantaneous rates of the NDVI secular trend 
in 2005, 2010, 2015 and 2020, respectively. (I,J) Variations in the fractional abundance of the area with positive accumulated variation and positive 
instantaneous rate in different bioclimatic sub-regions, respectively. The inserted pie charts show the frequency distribution of the corresponding 
values.
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(Figure 5E), accounting for 40.1% of the study area. In comparison, 
pre-breakpoint greening trends occurred over much smaller areas, 
covering only 19.8% of the study area and were generally weaker. 
However, vegetation greenness trends reversed after the breakpoints. 
Large-scale greening trends continued to expand and intensified form 
west to east, covering 40.5% of the study area, particularly in Ethiopia, 
Somalia and Uganda (Figure 5F). In addition, greening-to-browning 
transition covered 19.5% of the study area and occurred mainly in 
West Africa.

To better capture the main features of the reversals in NDVI 
evolution, we  investigated the temporal variations in the mean 
instantaneous rates and fractional abundance of the browning rate of 
the NDVI trend in each longitude bin, aridity index gradient, 
precipitation gradient and LULC type (Figure 6). Indeed, the trends 
in NDVI of the Sahel-Sudan-Guinea region had a markedly divergent 
evolution from west to east (Figures 6A,E). A greening-to-browning 
transition was observed around 2011 west of 0° longitude in the study 
area. Narrow bands at 3–10°E and 13–20°E were dominated by 
sustained browning and sustained greening, respectively. A browning-
to-greening transition was observed around 2008 east of 20°E. With 
respect to the aridity gradient, a browning-to-greening transition 
occurred in arid, semi-arid and humid regions, while the frequency 
of browning increased in the sub-humid region (Figures  6B,F). 
Similarly, but more clearly related to the aridity gradient, areas with 
precipitation between 100 and 1,000 mm a−1 and greater than 
1,600 mm a−1 experienced a browning-to-greening transition around 
2008. Conversely, areas with precipitation between 1,000 and 
1,300 mm a−1 tended to experience sustained browning (Figures 6C,G). 

In terms of LULC, both the major stable LULC types and the major 
LULC change types experienced a browning-to-greening transition, 
except for cropland gain with shrubland loss, which showed sustained 
browning (Figures  6D,H). In addition, cropland expansion and 
grassland loss at the edge of bare lands were more susceptible to 
browning risk in the early years of the study period.

4.4 Dominant climatic drivers of NDVI 
trends

In this study, the pixel-wide RF algorithm was used to model the 
relationships between the observed secular trends in NDVI and in 
climatic variables. The cross-validation of the RF relationships showed 
that the estimated secular trends in NDVI were in good agreement 
with the observed secular trends in NDVI (Figure 7). The area with a 
R2 value greater than 0.95 and a low RMSE value (RMSE <0.005) 
covered more than 95% of the study area. This suggested that the 
relationships established using the RF model were reliable, and it was 
appropriate to use the SHAP method to interpret the RF models and 
identify the dominant climatic drivers. These considerations may not 
fully apply to areas characterized by intense human activity and 
substantial changes in LULC, as these regions showed relatively low 
R2 values and high RMSE values (Supplementary Figure S1; Figure 7).

Overall, the results based on explainable machine learning 
indicated that temperature and precipitation were the most important 
climatic factors controlling the evolution of NDVI trends and varied 
across the Sahel-Sudan-Guinea region, accounting for 31.7 and 27.3% 

FIGURE 5

Spatial distribution of NDVI trend reversals during 2001–2020. (A) Trend types of NDVI derived by the EEMD. Mon-B: monotonic browning; Mon-G: 
monotonic greening; G-to-B: greening-to-browning transition; B-to-G: browning-to-greening transition. (B) Fractional abundance of the four trend 
types in different bioclimatic sub-regions. (C,D) Timing of the greening-to-browning transition and browning-to-greening transition, respectively. (E,F) 
Mean instantaneous rates before and after the trend reversal, respectively. The pie charts show the frequency distribution of the corresponding values. 
The areas with monotonic browning and monotonic greening were masked out in (C–F).
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FIGURE 6

Evolution of NDVI trends along different geographical gradients. The left column (A–D) shows temporal variations in the mean instantaneous rate of 
NDVI trend in each longitude bin, aridity index gradient, precipitation gradient and LULC type, respectively. The right column (E–H) shows temporal 
variations in the fractional abundance of browning rate in each longitude bin, aridity index gradient, precipitation gradient and LULC type, respectively. 
Aridity conditions can be identified according to AI values: (i) hyper-arid (AI  <  0.03), (ii) arid (0.03 ≤ AI  <  0.2), (iii) semi-arid (0.2 ≤ AI  <  0.5), (iv) dry sub-
humid (0.5 ≤ AI  <  0.65), and (v) humid (AI ≥0.65). Cr, Fo, Gr, Sr. and We denote unchanged LULC types, i.e., Cropland, Forest, Grassland, Shrubland and 
Wetland, respectively. C1 to C10 denote changed LULC types, i.e., Cropland gain with Forest loss (C1), Cropland gain with Grassland loss(C2), Cropland 
gain with Shrubland loss (C3), Forest gain with Cropland loss (C4), Forest gain with Grassland loss (C5), Forest gain with Shrubland loss (C6), Grassland 
gain with Bareland loss (C7), Shrubland gain with Cropland loss (C8), Shrubland gain with Forest loss (C9), and Bareland gain with Grassland loss (C10).
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of the study area, respectively (Figures 8A,B). Rising temperature had 
dominant contributions to the monotonic greening and to the 
browning-to-greening transition in the large Guinean and 
southeastern Sudanian sub-regions (Figures  8A,B; 
Supplementary Figure S4B). Increasing precipitation was the major 
climatic driver of monotonic greening and of the browning-to-
greening transition in the Saharan, Sahel belt, southeastern Sudanian 
and central Dry Horn of Africa sub-regions, while decreasing 
precipitation had dominant contributions to the greening-to-
browning transition in the western Sudanian sub-region (Figure 8A). 
Our results suggest that secular trends in solar radiation explained 
nearly 23% of the NDVI trends. Decreasing solar radiation primarily 
drove monotonic greening and browning-to-greening transition in 
the northern Sahel, eastern Dry Horn of Africa and central Wet 
Highlands, whereas the monotonic greening and the browning-to-
greening transition in some areas of the Congo basin were primarily 
driven by increasing solar radiation. Increasing VPD was a dominant 
driver of the greening-to-browning transition in some areas of West 
Africa, while the decreasing VPD was a dominant driver of the 
browning-to-greening transition in some areas of the Wet Highlands 
and Dry Horn of Africa sub-regions. It should be  noted that the 
dominant climatic drivers identified the SHAP method without 
considering direction had a similar spatial pattern as those detected 
by the impurity relative importance method applied in combination 
with RF (Supplementary Figure S5). We also performed the driver 
analysis after removing the areas with high human activity intensity. 
The results showed that the area percentages of dominant climatic 
drivers for vegetation dynamics after removing the areas with high 
human activity intensity were very close to that of without removing 

the areas with high human activity intensity (Figure  8; 
Supplementary Figure S6).

To demonstrate the relationship between the trend reversals in 
NDVI and climate on the continental side closer to the ocean, 
we investigated the evolution of climatic variables in each longitude 
bin. The results showed that the timing of trend reversals in 
precipitation and in VPD in the western region (west of 0° 
longitude) and eastern region (east of 35°E) were very close to those 
in NDVI (Figures 6A,B, 9). Furthermore, these regions experienced 
strong evolution correlations between precipitation, VPD and 
NDVI before and after the breakpoints. These remarkable spatial 
correlations of trends in climatic variables and in NDVI before and 
after the breakpoints suggest that the trend reversals in vegetation 
greenness at sub-continental scale are largely controlled by 
precipitation and VPD, which may be associated with large-scale 
ocean-induced anomalies. In summary, the evolution of climatic 
variables and pixel-scale explainable machine learning provide 
more direct insights into the underlying drivers of vegetation 
greenness evolution.

5 Discussion

5.1 Evolution of vegetation greenness 
trends

In this study, the ensemble empirical mode decomposition 
(EEMD) method was applied to capture the nonlinear trends in 
NDVI and reveal their evolution in the Sahel-Sudan-Guinea 

FIGURE 7

Spatial distribution of (A) determination coefficient (R2) and (B) root mean squared error (RMSE) of the RF model with 5-fold cross-validation for 
modeling secular trends in NDVI based on secular trends in climatic variables. The inset pie charts show the frequency distribution of the 
corresponding values.
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region during 2001–2020. Although both Theil-Sen and the 
EEMD methods showed overall greening in the region, the 
EEMD is more suitable to characterize non-stationary time series 
with trend reversals by separating oscillatory components with 
decreasing frequencies and a residual trend component (Wu and 
Huang, 2009; Ji et  al., 2014; Yang et  al., 2021). Specifically, a 
considerable portion of the NDVI trends in West Africa were 
shown as greening by the Theil-Sen method, but were described 
as browning in the later years by the EEMD method 
(Supplementary Figure S2; Figure 4). This cannot be captured by 
linear trends, especially the decline in NDVI after 2015, because 
linear trends are only represented as the average state over the 
entire time series based on the stationarity assumption.

Our study also revealed a noticeable spatio-temporal evolution 
in NDVI trends, suggesting divergent trends in the western and 
eastern Sahel-Sudan-Guinea regions. The results showed that the 
main feature of vegetation greenness trends was trend reversals 
(i.e., greening-to-browning transition and browning-to-greening 
transition), accounting approximately 60% of the study area 
(Figures  5, 6). The greening-to-browning transition mainly 
occurred in West Africa, extending from arid areas with low 
precipitation to humid areas with high precipitation. Browning in 
these regions mostly occurred after 2011, which differs from the 
findings of other global or regional greening trend studies for the 
similar period but using linear trend methods (Chen et al., 2019; 
Piao et al., 2020; Jiang et al., 2022; Zeng et al., 2023). Despite an 

overall vegetation greening in the entire Sahel-Sudan-Guinea 
region during 2001–2020, e.g., an overall positive accumulated 
variation and positive instantaneous rate of NDVI during different 
periods (Figures 4A–H), the most noticeable greening trend was 
observed in southern Sahel and East Africa, and was characterized 
by a trend type of browning-to-greening reversal (Figure 5A). The 
timing of the browning-to-greening transition was mainly around 
2008 in the southern Sahel and east of 20°E, covering arid, semi-
arid and humid regions. Both secular trends before 2008 using the 
EEMD and many previous studies using linear trends (Hoscilo 
et al., 2015; Piao et al., 2020; Jiang et al., 2022; Zeng et al., 2023) 
support the browning in some sub-regions of East Africa, but only 
a few studies focused on the browning-to-greening transition after 
2008 in these regions (Barvels and Fensholt, 2021). These results 
clearly indicated that vegetation greenness in the Sahel-Sudan-
Guinea region showed trend reversals during 2001–2020, 
confirming that vegetation dynamics was nonlinear. Our results 
support the fact that sustained greening is occurring in the 
northern Sahel belt, Central African Republic, and South Sudan, 
which is consistent with the trends evaluated in previous studies 
using different datasets and different time periods (Cho et al., 
2015; Hoscilo et al., 2015; Leroux et al., 2017; Chen et al., 2019; 
Piao et al., 2020; Zeng et al., 2023). We also analyzed the dynamics 
of woody vegetation using tree cover data derived from the 
MODIS Vegetation Continuous Fields product, confirming the 
continued encroachment of woody vegetation into mesic savannas 

FIGURE 8

Spatial pattern of dominant climatic drivers of secular trends in NDVI based on the RF and SHAP methods during 2001–2020. (A) Spatial distribution of 
dominant climatic drivers of secular trends in NDVI. A prefix ‘+’ of the climatic drivers indicates an overall increase (decrease) in the climatic variable 
causing an overall increase (decrease) in NDVI, while ‘−’ indicates an overall increase (decrease) in climatic variable trend causing an overall 
decrease(increase) in NDVI. (B) Fractional abundance of trend types associated with dominant climatic drivers across the study area. (C,D) Same as (B), 
but for the Guinean and Sahel sub-regions, respectively.
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and drylands reported in previous studies (Devine et al., 2017; 
Venter et al., 2018). In contrast, sustained browning is clustered 
in central West Africa and Uganda, and generally overlaps with 

agricultural lands. It is likely associated with extensive agricultural 
activities and repeated fires (Leroux et al., 2017; Jiang et al., 2022; 
Zeng et al., 2023).

FIGURE 9

Evolution of climatic variables along longitude gradients. The left column (A–D) shows temporal variations in the mean instantaneous rate of 
temperature (Tem), precipitation (Pre), solar radiation (Rad) and vapor pressure deficit (VPD) in each longitude bin, respectively. The right column (E–H) 
shows temporal variations in the fractional abundance of the decreasing rate of Tem, Pre, Rad and VPD in each longitude bin, respectively.
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5.2 Climatic drivers of vegetation 
greenness trends

In this study, we applied explainable machine learning methods, 
i.e., RF and SHAP, to identify dominant climatic drivers of vegetation 
greenness trends. Generally, these methods provide valuable insights 
into the reasons and causality behind the evolution of vegetation 
greenness, which is highly heterogeneous across the Sahel-Sudan-
Guinea region. Notably, previous studies on the analysis of climatic 
driver of vegetation greenness trends in this region have usually 
focused on a few sites or small areas (Dardel et al., 2014; Rishmawi 
and Prince, 2016; Tian et al., 2016; Leroux et al., 2017). As a result, the 
findings on the relationship between climatic variables and vegetation 
greenness were less general and representative. This limitation would 
be  somewhat mitigated in our study, as a pixel-wise analysis was 
performed throughout the arid and humid areas of the region.

We found that temperature and precipitation were the most 
important climatic drivers among selected potential climatic factors 
controlling the NDVI evolution. Although the regional-scale 
interaction between changes in temperature and vegetation is less well 
understood for Africa, we  observed that increasing temperature 
dominated the greening in the tropical humid areas of central Africa. 
The theory of optimal temperature for ecosystems would provide an 
explanation (Medlyn et al., 2002; Lloyd and Farquhar, 2008; Niu et al., 
2012). The theory suggests that the photosynthetic capacity of 
vegetation increases with temperature up to an optimal temperature, 
but decreases sharply above this optimal temperature. A recent study 
shows that the average maximum temperature during the growing 
season in most land areas is still lower than the optimal temperature 
for vegetation productivity (Huang et  al., 2019), indicating that 
temperature has not yet had a significant inhibitory effect on 
photosynthetic activity. In addition, higher temperature combined with 
elevated CO2 concentration can improve the water use efficiency of 
ecosystems within a certain temperature threshold, thereby stimulating 
vegetation growth (Lu et al., 2016; Devine et al., 2017). Changes in 
precipitation have been proposed as the main driving climatic driver of 
greening in dryland ecosystems, especially in the Sahel, confirming that 
the water availability is a critical constraint on vegetation growth in arid 
regions (Fensholt and Rasmussen, 2011; Fensholt et al., 2017; Kusserow, 
2017). In fact, the observed greening in the Sahel correlates with 
increased precipitation due to the northward shift of the West African 
Monsoon system, as reported by regional climate models and remote 
sensing precipitation data (Ramel et al., 2006; Cook and Vizy, 2019).

Our results also revealed that trends in vegetation greenness with 
different dry/wet conditions respond differently to solar radiation and 
vapor pressure deficit. Solar radiation and vapor pressure deficit are 
more likely to be negatively correlated with vegetation greenness trends 
in arid regions, while they may be positively correlated in humid regions. 
In arid regions, grasslands and low shrubs are the major components of 
vegetation and are highly sensitive to water availability. An increase in 
solar radiation or VPD often leads to an increase in evapotranspiration, 
which can exacerbate vegetation water stress and negatively affect 
vegetation growth (Cheng and Huang, 2016; Berg and Sheffield, 2018; 
Yuan et  al., 2019; Yang et  al., 2023). In addition, increased VPD is 
expected to limit vegetation photosynthesis at the leaf scale by decreasing 
stomatal conductance and increasing non-photochemical quenching 
(Flexas et al., 2002; Yuan et al., 2019; Fu et al., 2022). Understanding 

these key mechanisms will greatly contribute to the protection of 
vulnerable areas with limited water supply under a changing climate. In 
contrast, humid areas dominated by woody vegetation have a more 
abundant water availability. The increased solar radiation and VPD 
could stimulate the enhancement of vegetation photosynthesis by 
increasing light energy supply (Mercado et al., 2009; Wild, 2009) and by 
accelerating the replacement of old leaves (Green et  al., 2020), 
respectively, thereby promoting vegetation growth.

Essentially, trend reversals in vegetation greenness (i.e., greening-
to-browning and browning-to-greening) occurred predominantly 
closer to the continental side adjacent to the ocean. The timing of these 
reversals increased with the distance from the ocean, particularly along 
the North Atlantic coast of West Africa (Figures 5A,C,D). At the same 
time, selected climatic variables, especially precipitation and VPD, 
exhibited distinct trend reversals in West Africa along the Atlantic and 
in East Africa along the Red Sea-Indian Ocean, showing strong 
correlations with vegetation greenness trends before and after the 
breakpoints (Figures  5, 6, 9). These results suggest that large-scale 
ocean-induced climate changes have triggered trend reversals in 
vegetation greenness at a sub-continental scale. Actually, precipitation 
variability in West Africa is regulated by competing mechanisms related 
to sea surface temperature (SST) forcing: equatorial Atlantic SST 
gradients and North Atlantic SST gradients (Nicholson, 2013; 
Rodríguez-Fonseca et al., 2015). Specifically, tropical warming leads to 
drought, while North Atlantic warming promotes an increase in 
precipitation. In comparison, the trend reversals in precipitation 
(decrease-to-increase) and VPD (increase-to-decrease) were likely the 
dominant drivers of this browning-to-greening reversal in the East 
Africa during 2001–2020 based on the results of explainable machine 
learning driver analysis (Figure 8A) and sub-continental evolution of 
climate factors (Figures 9B,D,F,H). This would be linked the Indian 
Ocean Dipole (IOD) and the Madden-Julian Oscillation (MJO), which 
are driven by changes in SST in the Indian Ocean alter regional 
atmospheric circulation and dry-wet transitions in East Africa (Zaitchik, 
2017; Wainwright et al., 2021; Palmer et al., 2023). The IOD consists of 
differences in the SST anomaly between the western (50°E-70°E, 10°S-
10°N) and the eastern (90°E-110°E, 10°S-0°) Indian Ocean, while the 
MJO involves the eastward propagation of enhanced regional convection 
across the tropics. The positive IOD (a SST anomaly difference of at least 
+0.4°C between the warmer west and the cooler east for at least 
3 months) and stronger MJO are linked with a wetter climate, while the 
negative IOD (a sustained negative SST anomaly difference of at least 
0.4°C) and weaker MJO are associated with dryer climate.

In summary, our results provide empirical evidence of the impact 
of climatic drivers on the evolution of vegetation greenness in the 
Sahel-Sudan-Guinea region. It can be  inferred that the terrestrial 
ecosystems are experiencing a pronounced increase in sensitivity to 
climate change and are becoming more heterogeneous and more 
complex in space and time under global warming. In addition, the 
climatic drivers of ecosystems may be more uncertain due to land 
changes associated with direct human activities, including agricultural 
expansion and management, grazing, deforestation, and reforestation. 
The use of RF and the SHAP methods could capture the relationships 
between climatic variables and NDVI, but these relationships may not 
align with physical consistency, requiring cautious interpretation of 
their results. In the future, it is crucial to establish a feasible benchmark 
to evaluate the interpretability of explainable machine learning 
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(Huang et al., 2023). Thus, regular monitoring and rigorous assessment 
related to many other potential human-environment drivers (Piao 
et al., 2020; Abel et al., 2021, 2023; Zeng et al., 2023) at fine spatial and 
temporal scales are still needed to tease out the intricate nuances and 
fully understand the complex dynamics involved.

6 Conclusion

In this study, we first applied the EEMD method to detect the 
evolution of vegetation greenness using EO time series in the Sahel-
Sudan-Guinea region during 2001–2020, and then identified its 
dominant climatic drivers using an explainable machine learning 
framework. Our study revealed an overall vegetation greening but a 
significant nonlinear spatio-temporal evolution characteristic over 
the region. Trend reversals, i.e., browning-to-greening and greening-
to-browning, were dominant in approximately 60% of the study area. 
The browning-to-greening reversal was primarily observed in the 
southern Sahel, Congo Basin north of the Equator, and East Africa, 
with a breakpoint around 2008, while the greening-to-browning 
reversal was mainly observed in West Africa, with a breakpoint 
around 2011. Sustained greening trends mainly occurred in northern 
Sahel, Central African Republic and South Sudan, while sustained 
browning trends clustered in central West Africa and Uganda, mainly 
in agricultural areas. We highlighted the performance of the EEMD 
method in detecting long-term vegetation dynamics, as it has the 
ability to adaptively capture the evolution of time-varying trends and 
potential nonlinear trend reversals, in contrast to linear trend 
methods. Furthermore, an explainable machine learning framework, 
i.e., the combination of RF and the SHAP method, could robustly 
model and reveal the relationships between the observed trends in 
NDVI and in climatic variables, thereby identifying the dominant 
climatic drivers of vegetation greenness dynamics. The results showed 
that air temperature and precipitation were the most important 
climatic drivers controlling the vegetation greenness trends across the 
Sahel-Sudan-Guinea region. Solar radiation and vapor pressure 
deficit were more likely to be negatively correlated with vegetation 
greenness trends in arid areas, while they could be  positively 
correlated in humid regions. We also found that large-scale climate 
changes induced by sea surface temperature (SST) change had strong 
relationships with trend reversals in vegetation greenness at the 
sub-continental scale. These findings advanced our overall 
understanding of vegetation dynamics in response to climate change 
in the Sahel-Sudan-Guinea region.
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