
High-Order
Discretization
of Hyperbolic
Equations
Characterization of an Isogeometric
Discontinuous Galerkin Method

Miquel Herrera

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy





High-Order Discretization
of Hyperbolic Equations
Characterization of an Isogeometric
Discontinuous Galerkin Method

by

Miquel Herrera
to obtain the degree of Master of Science in Aerospace Engineering

at the Delft University of Technology,
to be defended publicly on Thursday, 3 June 2021 at 10:00 a.m.

Student number: 4719441
Project duration: 4 March 2019 – 10 May 2021
Thesis committee: Prof. dr. ir. S. Hickel, TU Delft, LR (supervisor)

Dr. M. Möller, TU Delft, EEMCS (supervisor)
Dr. ir. M. I. Gerritsma, TU Delft, LR
Dr. ir. D. Toshniwal, TU Delft, EEMCS

LR Faculty of Aerospace Engineering
EEMCS Faculty of Electrical Engineering, Mathematics and Computer Science

An electronic version of this document is available at http://repository.tudelft.nl/

http://repository.tudelft.nl/




Abstract
Computational fluid dynamics is nowadays one of the pillars of modern aircraft design, just as impor
tant as experimental wind tunnel testing. Very ambitious goals in regards to performance, efficiency
and sustainability are being asked of the aviation industry, the kind that warrant a virtual exploration
of the edges of the flight envelope. Highorder has come to be regarded as a necessary ingredient to
achieve breakthrough advances in this direction. So much so, in fact, that the major aircraft manufac
turers, governmental aerospace research agencies and top universities worldwide have been acting in
coordination to increase the technology readiness level of these approaches, for the last ten years.

In this work, I study in significant detail the one aspect that makes highorder methods ideal candi
dates for enabling the use of more advanced turbulence models in industry: the costefficiency of their
discretization—they offer minimal amounts of dispersion and dissipation errors, for a given number of
degrees of freedom. I consider three research objects:

• The discontinuous Galerkin spectral method (DGSEM)

• All energystable variants of flux reconstruction (FR), also known as correction procedure via
reconstruction (CPR), that can be parameterized through a single scalar parameter

• A novel Bspline–based discontinuous Galerkin formulation, stabilized via algebraic flux correc
tion (DGIGAAFC)

and characterize their order of accuracy, linear and nonlinear stability characteristics, as well as dis
persion and dissipation errors as a function of wavenumber. Afterwards, I experimentally investigate
their relative suitability towards scaleresolving simulation of compressible and turbulent flows, by solv
ing a number of simple test cases of increasing difficulty (linear advection, inviscid Burgers and Euler
equations; all in 1D) using a purposemade MATLAB implementation.

The proposed isogeometric method (DGIGA) has been found to be at least as viable as the other
two, a priori, for the resolution of highspeed turbulent flows. Moreover, I have found that low dispersion
and dissipation need not always be associated to high order, but to a high number of degrees of freedom
per patch instead; these two coincide in the more conventional schemes, yet not necessarily in DGIGA.
As a nonlinear stabilization mechanism, however, the proposed combination of DGIGA with AFC has
turned out to be inferior to existing limiters.

iii





Preface
This document summarizes all the knowledge and insight I have obtained after understanding, imple
menting, and experimenting with discontinuous Galerkin methods for over two years. The entire project
has been the consequence of the following simple idea: to understand a numerical method, you need
to implement it yourself.

I have had a hard time bringing this project to a reasonably satisfying conclusion, as the time it
has taken me might suggest. Perhaps the topic was too ambitious and/or ambiguous from the start.
That certainly didn’t help. Most of all, I think, this was an instance of me falling prey to my own lack of
control: I should simply have gotten more to the point. I realize now, in hindsight, that the prolonged lack
of bandwidth when communicating with my supervisors and peers due to remote working conditions
forced upon all of us due to the COVID19 health crisis, has probably contributed to this tendency of
mine to “do my own thing”, losing track of time and priorities. I am sure that I could have done better.
All in all, the completion of this project has been a bit less enjoyable that I had hoped. Still, overall, I
am quite content with how my adventure in The Netherlands has turned out to be.

I would like to end by first thanking my supervisors, Stefan and Matthias, for their effort in helping
me see my own work in a more positive light; worse people would simply not have cared. Thank you,
also (even if that led me slightly astray) for giving me the freedom to shape this project as I saw fit, in
every step of the way. Then, finally, I wish to say that I am grateful to my parents for their unconditional
support. I acknowledge that, in addition to not seeing me in person for almost a yearandahalf now,
they have had to live with the angst of not being able to help—in fact, of barely being able to even
understand what I was struggling with—for such a long time.

Miquel Herrera
The Hague, May 2021

v





Contents

List of Figures xiii

List of Tables xvii

Nomenclature xix
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1 Introduction 1
1.1 Motivation: nextgeneration CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Relevance of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Theory 7

2 Hyperbolic Conservation Laws 9
2.1 Conservation laws in one dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Quasilinear form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Integral form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Characteristic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Discontinuous solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Riemann problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Eigendecomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Riemann flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Eigendecomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Riemann flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.3 Equivalent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Inviscid Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.1 Eigendecomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.2 Riemann flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8.1 Eigendecomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.2 Riemann solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Compact Discontinuous HighOrder Discretization 21
3.1 Domain discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Reference element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Solution discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Reference element space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Trial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Flux representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Equation discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Spatial residuals (method of lines) . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Interelement coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.4 Semidiscrete hyperbolic conservation law . . . . . . . . . . . . . . . . . . . . 26

vii



viii Contents

3.4 The loworder case: finite volume discretization . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Initial condition projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Numerical boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Periodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.2 Farfield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.3 Transmissive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.4 Reflective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Discontinuous Galerkin Spectral Element Method (DGSEM) 31
4.1 Spectral basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Legendre polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Lagrange polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 DGSEM semidiscretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Modal representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Nodal representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Collocated quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.4 Semidiscrete DGSEM operators. . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.5 Polynomial aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Flux Reconstruction (FR) or Correction Procedure via Reconstruction (CPR) 41
5.1 FR/CPR semidiscretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Differential formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Flux correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.3 Flux derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.4 Semidiscrete FR/CPR operators. . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Correction functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1 DG correction function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 SG/SD correction function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Huynh’s correction functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.4 Energystable correction functions . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 FR/CPR and the discontinuous Galerkin method . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 FR/CPR and the finite volume method . . . . . . . . . . . . . . . . . . . . . . . 50

6 Isogeometric Analysis (IGA) 53
6.1 Basis splines (Bsplines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Knot vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.3 Bspline curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Related bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.1 Nonuniform rational Bsplines (NURBS) . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 Bernstein polynomials and Bézier curves . . . . . . . . . . . . . . . . . . . . . 56
6.2.3 Classical FEA vs. IGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Discontinous Galerkin isogeometric analysis (DGIGA) . . . . . . . . . . . . . . . . . . . 57
6.3.1 Flux expansion coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.2 Semidiscrete DGIGA operators . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Algebraic flux correction (AFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4.1 A predictorcorrector approach to highresolution . . . . . . . . . . . . . . . . . 66
6.4.2 Mass matrix lumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.3 Artificial viscosities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Time Discretization 69
7.1 The method of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 Courant number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.1.2 Amplification factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents ix

7.2 Strong stability preserving (SSP) time discretization . . . . . . . . . . . . . . . . . . . . 71
7.3 Explicit SSP RungeKutta methods (SSPRK) . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.1 SSPRK1(1) or Euler’s method: 1st order, 1 stage . . . . . . . . . . . . . . . . 72
7.3.2 SSPRK2(2): 2nd order, 2 stages . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.3 SSPRK3(3): 3rd order, 3 stages . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.4 SSPRK4(5): 4th order, 5 stages . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.5 SSPRK4(10): 4th order, 10 stages . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 Alternative time discretization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Nonlinear Stabilization 77
8.1 Total variation stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.1.1 Total variation diminishing (TVD) . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.1.2 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.1.3 Total variation bounded (TVB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.1.4 Other nonlinear stability criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Legendrebased limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3 Discontinuity sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3.1 KXRCF sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.2 APTVD sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4 Generalized slope limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4.1 Modified minmod function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4.2 Local characteristic variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4.3 TVB limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.5 Generalized moment limiting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5.1 BDF limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.5.2 BSB limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.5.3 Krivodonova’s limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.6 Weighted essentially nonoscillatory (WENO) limiting . . . . . . . . . . . . . . . . . . . 87
8.6.1 HWENO limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.7 Flux corrected transport (FCT) limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.7.1 Linearized antidiffusive fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.7.2 Synchronized sequential FCT limiter . . . . . . . . . . . . . . . . . . . . . . . . 89
8.7.3 Constrained initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.7.4 Troubled element detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.8 Failsafe limiting for the Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.8.1 Failsafe slope limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.8.2 Lastresort failsafe limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.8.3 Invalid element criteria for intercell failsafe limiters . . . . . . . . . . . . . . . 94
8.8.4 Subcell FCT failsafe limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

II Experiments 97

9 Methodology 99
9.1 MATLAB implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 Test matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3 List of model problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.3.1 Monochromatic wave (linear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.3.2 Monochromatic wave (nonlinear) . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.3.3 Monochromatic wave (Euler) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.3.4 Gaussian hump (linear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.3.5 Gaussian hump (nonlinear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.3.6 Triangular pulse (linear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.3.7 Triangular pulse (nonlinear). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.3.8 JiangShu problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.3.9 Toro’s transonic shock tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.3.10 The 123 problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.3.11 Blast wave interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



x Contents

9.3.12 Acoustic wave–shock wave interaction . . . . . . . . . . . . . . . . . . . . . . 104

10 Order of Accuracy 105
10.1 Time schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2 DGSEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.3 FR/CPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.4 DGIGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11 Dispersion, Dissipation and Linear Stability 133
11.1 DGSEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11.2 FR/CPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11.3 DGIGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12 Optimal FR/CPR and DGIGA Configurations 175
12.1 Identification of optimal configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

12.1.1 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.1.2 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.1.3 Optimization results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 177

12.2 Combinedmode dispersion and dissipation errors . . . . . . . . . . . . . . . . . . . . . 177
12.3 Balance between dispersion and dissipation . . . . . . . . . . . . . . . . . . . . . . . . 180
12.4 Relative cost at a fixed resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

12.4.1 Number of timesteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
12.4.2 Number of elements or patches . . . . . . . . . . . . . . . . . . . . . . . . . . 183
12.4.3 Cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
12.4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

13 Nonlinear Physics 187
13.1 Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

13.1.1 Verification of combinedmode analysis results . . . . . . . . . . . . . . . . . . 187
13.1.2 Influence of the initial condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
13.1.3 Linear vs. nonlinear advection . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

13.2 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
13.2.1 Modified wavenumber analysis a la Hickel et al.. . . . . . . . . . . . . . . . . . 192
13.2.2 A posteriori vs. combinedmode analyses . . . . . . . . . . . . . . . . . . . . . 199
13.2.3 Spatial schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13.2.4 Riemann solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

14 Nonsmooth Solutions, Sensors and Limiters 203
14.1 Hierarchical limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
14.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
14.3 DGIGAAFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
14.4 IGAAFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
14.5 Final comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.6 DGIGAAFC revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
14.7 Do limiters preserve high order?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

15 Conclusions 231
15.1 Order of accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

15.1.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
15.1.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

15.2 Dispersion, dissipation and linear stability. . . . . . . . . . . . . . . . . . . . . . . . . . 232
15.2.1 Limitations and recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 233

15.3 Optimal FR/CPR and DGIGA configurations . . . . . . . . . . . . . . . . . . . . . . . . 233
15.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
15.3.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

15.4 Nonlinear physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
15.4.1 Limitations and Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . 234

15.5 Discontinuous solutions, limiters and sensors . . . . . . . . . . . . . . . . . . . . . . . 234
15.5.1 Limitations and recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 235



Contents xi

15.6 Is DGIGAAFC wellsuited to LES of highspeed flows? . . . . . . . . . . . . . . . . . . 235
15.7 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A Modified Wavenumber Analysis 237
A.1 Discrete wavenumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
A.2 Wave propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.2.1 Exact dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
A.2.2 Modified wavenumber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
A.2.3 Multiplicity of eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
A.2.4 Dominant eigenmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
A.2.5 Combined mode semidiscrete analysis . . . . . . . . . . . . . . . . . . . . . . 243

A.3 Residual operators in matrix form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
A.3.1 DGSEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
A.3.2 FR/CPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A.3.3 DGIGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A.4 Linear stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
A.4.1 Amplification factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
A.4.2 Fourier footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
A.4.3 Timestep size limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A.5 Quantifying dispersion and dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
A.5.1 Order of accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
A.5.2 Resolving efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
A.5.3 Numerical cutoff wavenumber . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
A.5.4 Dispersion to dissipation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B Time Complexity Estimation 253
B.1 Discontinuous coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B.2 Residual evaluation (spatial schemes) . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

B.2.1 DGSEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.2.2 FR/CPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.2.3 DGIGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

B.3 Solution update (time scheme) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Bibliography 259





List of Figures

1.1 Order of accuracy . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Roofline model . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Schematic representation of a onedimensional mesh . . . . . . . . . . . 22
3.2 Indexing convention for all meshes in this report . . . . . . . . . . . . . 22
3.3 Mapping to/from reference element . . . . . . . . . . . . . . . . . . 22
3.4 Periodic boundary condition . . . . . . . . . . . . . . . . . . . . 28
3.5 Reflective vs. transmissive boundary conditions . . . . . . . . . . . . . 30

4.1 Examples of polynomial bases . . . . . . . . . . . . . . . . . . . 34
4.2 Robustness indicators for various DGSEM nodal distributions. . . . . . . . . 37
4.3 Quadrature point distributions (GaussLobatto vs. GaussLegendre) . . . . . . 38
4.4 Polynomial aliasing in DGSEM . . . . . . . . . . . . . . . . . . . 39

5.1 The flux correction procedure in FR/CPR . . . . . . . . . . . . . . . . 43
5.2 Classical FR/CPR correction functions. . . . . . . . . . . . . . . . . 47
5.3 Examples of VCJHtype correction functions . . . . . . . . . . . . . . 49
5.4 Initial condition projection in FR/CPR . . . . . . . . . . . . . . . . . 50

6.1 Truncated triangular table representation of a Bspline basis . . . . . . . . . 55
6.2 Examples of Bspline bases . . . . . . . . . . . . . . . . . . . . 56
6.3 Bspline curves and control polygons . . . . . . . . . . . . . . . . . 57
6.4 Variation diminishing Bézier interpolants . . . . . . . . . . . . . . . . 58
6.5 Basis functions: CG vs. IGA . . . . . . . . . . . . . . . . . . . . 59
6.6 IGA flux expansion coefficients: modal vs. nodal (solution comparison) . . . . . 61
6.7 DGIGA flux expansion coefficients: modal vs. nodal (solution comparison) . . . 62
6.8 IGA flux expansion coefficients: modal vs. nodal (norm comparison) . . . . . . 63
6.9 DGIGA flux expansion coefficients: modal vs. nodal (norm comparison) . . . . 64
6.10 Condition number of Bspline mass matrices . . . . . . . . . . . . . . 66
6.11 Reciprocal condition number of Bspline patch Vandermonde matrices . . . . . 67
6.12 Resolution of a shock in DGIGA . . . . . . . . . . . . . . . . . . . 68

7.1 Indexing convention for time discretizations . . . . . . . . . . . . . . . 70
7.2 Amplification factor contours of the backward Euler method . . . . . . . . . 71
7.3 Domains of stability of the optimal SSP RungeKutta schemes . . . . . . . . 75

8.1 Overview of shock capturing approaches for finite element methods . . . . . . 78
8.2 Krivodonova’s recommended limiting intensity range . . . . . . . . . . . 87
8.3 Interpatch coupling in FCT . . . . . . . . . . . . . . . . . . . . . 91
8.4 FCT limiter for DGIGA . . . . . . . . . . . . . . . . . . . . . . 92
8.5 Effect of failsafe limiting . . . . . . . . . . . . . . . . . . . . . . 96

10.1 Order of accuracy in time . . . . . . . . . . . . . . . . . . . . . 110
10.2 DGSEM, timestep size independence . . . . . . . . . . . . . . . . 110
10.3 DGSEM, 𝛥𝑥 refinement . . . . . . . . . . . . . . . . . . . . . . 111
10.4 DGSEM, p refinement . . . . . . . . . . . . . . . . . . . . . . 111
10.5 FR/CPR, timestep size independence . . . . . . . . . . . . . . . . 112
10.6 FR/CPR, 𝛥𝑥 refinement . . . . . . . . . . . . . . . . . . . . . . 112

xiii



xiv List of Figures

10.7 FR/CPR, p refinement . . . . . . . . . . . . . . . . . . . . . . 113
10.8 DGIGA’s four refinement directions, timestep size independence . . . . . . . 113
10.9 DGIGA, K ≫ 1, timestep size independence . . . . . . . . . . . . . . 114
10.10 DGIGA, k ≫ 1, timestep size independence . . . . . . . . . . . . . . 114
10.11 DGIGA, p ≫ 1, timestep size independence . . . . . . . . . . . . . . 115
10.12 DGIGA’s four refinement directions . . . . . . . . . . . . . . . . . . 115
10.13 DGIGA, k = 1, 𝛥𝑥 refinement . . . . . . . . . . . . . . . . . . . . 116
10.14 DGIGA, p = 2, 𝛥𝑥 refinement . . . . . . . . . . . . . . . . . . . . 116
10.15 DGIGA, p = 3, 𝛥𝑥 refinement . . . . . . . . . . . . . . . . . . . . 117
10.16 DGIGA, p = 4, 𝛥𝑥 refinement . . . . . . . . . . . . . . . . . . . . 117
10.17 CG, k refinement . . . . . . . . . . . . . . . . . . . . . . . . 118
10.18 IGA, k refinement . . . . . . . . . . . . . . . . . . . . . . . . 118
10.19 DGIGA, p = 2, k refinement . . . . . . . . . . . . . . . . . . . . 119
10.20 DGIGA, p = 3, k refinement . . . . . . . . . . . . . . . . . . . . 119
10.21 DGIGA, p = 4, k refinement . . . . . . . . . . . . . . . . . . . . 120
10.22 DGIGA, p refinement . . . . . . . . . . . . . . . . . . . . . . . 120
10.23 DGIGA, combined p and 𝜘 refinement . . . . . . . . . . . . . . . . 121
10.24 DGSEM, selected 𝛥𝑡 runs . . . . . . . . . . . . . . . . . . . . . 122
10.25 DGSEM, selected 𝛥𝑥 runs . . . . . . . . . . . . . . . . . . . . . 123
10.26 DGSEM, selected p runs . . . . . . . . . . . . . . . . . . . . . 124
10.27 FR/CPR, selected 𝜂 runs . . . . . . . . . . . . . . . . . . . . . 125
10.28 FR/CPR, selected p runs . . . . . . . . . . . . . . . . . . . . . 126
10.29 DGIGA, selected runs at Ndofs = 60 . . . . . . . . . . . . . . . . . 127
10.30 DGIGA, selected p and 𝜘 runs at Ndofs = 100 and Ndofs = 120 . . . . . . . . 128
10.31 DGIGA, selected 𝛥𝑥 runs . . . . . . . . . . . . . . . . . . . . . 129
10.32 DGIGA, selected k runs . . . . . . . . . . . . . . . . . . . . . . 130
10.33 DGIGA, selected p runs . . . . . . . . . . . . . . . . . . . . . . 131
10.34 DGIGA, selected 𝜘 runs . . . . . . . . . . . . . . . . . . . . . . 132

11.1 All eigenmodes; DGSEM, p = 2 . . . . . . . . . . . . . . . . . . . 135
11.2 All eigenmodes; DGSEM, p = 3 . . . . . . . . . . . . . . . . . . . 135
11.3 All eigenmodes; DGSEM, p = 4 . . . . . . . . . . . . . . . . . . . 136
11.4 Physical eigenmode; DGSEM, 0 ≤ p ≤ 5. . . . . . . . . . . . . . . . 137
11.5 Physical eigenmode; DGSEM, 5 ≤ p ≤ 119. . . . . . . . . . . . . . . 138
11.6 All eigenmodes; FR/CPR, p = 2, 𝜂−/2 . . . . . . . . . . . . . . . . . 139
11.7 All eigenmodes; FR/CPR, p = 2, 𝜂DG . . . . . . . . . . . . . . . . . 139
11.8 All eigenmodes; FR/CPR, p = 2, 𝜂Ga . . . . . . . . . . . . . . . . . 140
11.9 All eigenmodes; FR/CPR, p = 2, 𝜂2 . . . . . . . . . . . . . . . . . . 140
11.10 All eigenmodes; FR/CPR, p = 2, 𝜂∞ . . . . . . . . . . . . . . . . . 141
11.11 All eigenmodes; FR/CPR, p = 3, 𝜂−/2 . . . . . . . . . . . . . . . . . 141
11.12 All eigenmodes; FR/CPR, p = 3, 𝜂DG . . . . . . . . . . . . . . . . . 142
11.13 All eigenmodes; FR/CPR, p = 3, 𝜂Ga . . . . . . . . . . . . . . . . . 142
11.14 All eigenmodes; FR/CPR, p = 3, 𝜂2 . . . . . . . . . . . . . . . . . . 143
11.15 All eigenmodes; FR/CPR, p = 3, 𝜂∞ . . . . . . . . . . . . . . . . . 143
11.16 Physical eigenmode; FR/CPR, 2 ≤ p ≤ 5, 𝜂−/2 . . . . . . . . . . . . . . 144
11.17 Physical eigenmode; FR/CPR, 2 ≤ p ≤ 5, 𝜂DG . . . . . . . . . . . . . 145
11.18 Physical eigenmode; FR/CPR, 2 ≤ p ≤ 5, 𝜂Ga . . . . . . . . . . . . . . 146
11.19 Physical eigenmode; FR/CPR, 2 ≤ p ≤ 5, 𝜂2 . . . . . . . . . . . . . . 147
11.20 Physical eigenmode; FR/CPR, 2 ≤ p ≤ 5, 𝜂∞ . . . . . . . . . . . . . . 148
11.21 Physical eigenmode; FR/CPR, 𝜂−/2 ≤ 𝜂 ≤ 𝜂∞, p = 2 . . . . . . . . . . . . 149
11.22 Physical eigenmode; FR/CPR, 𝜂−/2 ≤ 𝜂 ≤ 𝜂∞, p = 3 . . . . . . . . . . . . 150
11.23 Physical eigenmode; FR/CPR, 𝜂−/2 ≤ 𝜂 ≤ 𝜂∞, p = 4 . . . . . . . . . . . . 151
11.24 Physical eigenmode; FR/CPR, 𝜂−/2 ≤ 𝜂 ≤ 𝜂∞, p = 5 . . . . . . . . . . . . 152
11.25 Physical eigenmode; FR/CPR, 𝜂−/2 ≤ 𝜂 ≤ 𝜂∞, p = 119 . . . . . . . . . . . 153
11.26 All eigenmodes; DGIGA, k = 2, p = 7, 𝐶0 . . . . . . . . . . . . . . . . 154
11.27 All eigenmodes; DGIGA, k = 2, p = 8, 𝐶0 . . . . . . . . . . . . . . . . 154



List of Figures xv

11.28 Physical eigenmode; DGIGA, k = 2, 2 ≤ p ≤ 5, 𝐶0 . . . . . . . . . . . . 155
11.29 Physical and “bubble” eigenmodes; DGIGA, k = 4, 2 ≤ p ≤ 5, 𝐶0 . . . . . . . 156
11.30 Physical and “bubble” eigenmodes; DGIGA, k = 8, 2 ≤ p ≤ 5, 𝐶0 . . . . . . . 157
11.31 Physical eigenmode; DGIGA, k = 2, 2 ≤ p ≤ 5, 𝐶p−1 . . . . . . . . . . . 158
11.32 Physical eigenmode; DGIGA, k = 4, 2 ≤ p ≤ 5, 𝐶p−1 . . . . . . . . . . . 159
11.33 Physical eigenmode; DGIGA, k = 8, 2 ≤ p ≤ 5, 𝐶p−1 . . . . . . . . . . . 160
11.34 Physical eigenmode; DGIGA, k = 16, 2 ≤ p ≤ 5, 𝐶p−1 . . . . . . . . . . . 161
11.35 Physical and “bubble” eigenmodes; DGIGA, k = 32, 2 ≤ p ≤ 5, 𝐶p−1 . . . . . 162
11.36 Physical eigenmode; DGIGA, 1 ≤ k ≤ 8, p = 2, 𝐶0 . . . . . . . . . . . . 163
11.37 Physical and “bubble” eigenmodes; DGIGA, 1 ≤ k ≤ 8, p = 3, 𝐶0 . . . . . . . 164
11.38 Physical and “bubble” eigenmodes; DGIGA, 1 ≤ k ≤ 8, p = 4, 𝐶0 . . . . . . . 165
11.39 Physical and “bubble” eigenmodes; DGIGA, 1 ≤ k ≤ 8, p = 5, 𝐶0 . . . . . . . 166
11.40 Physical and “bubble” eigenmodes; DGIGA, 1 ≤ k ≤ 32, p = 2, 𝐶1 . . . . . . 167
11.41 Physical eigenmode; DGIGA, 1 ≤ k ≤ 32, p = 3, 𝐶2 . . . . . . . . . . . . 168
11.42 Physical eigenmode; DGIGA, 1 ≤ k ≤ 32, p = 4, 𝐶3 . . . . . . . . . . . . 169
11.43 Physical eigenmode; DGIGA, 1 ≤ k ≤ 32, p = 5, 𝐶4 . . . . . . . . . . . . 170
11.44 Physical eigenmode; DGIGA, k = 2, p = 4, 𝐶0 to 𝐶3 . . . . . . . . . . . . 171
11.45 Physical eigenmode; DGIGA, k = 4, p = 4, 𝐶0 to 𝐶3 . . . . . . . . . . . . 172
11.46 Physical and “bubble” eigenmodes; DGIGA, k = 8, p = 4, 𝐶0 to 𝐶3 . . . . . . 173
11.47 Physical and “bubble” eigenmodes; DGIGA, J = 22 (several combinations) . . . 174

12.1 Combinedmode errors, optimum vs. baseline (J = 6) . . . . . . . . . . . 180
12.2 Combinedmode errors, optimum vs. baseline (J = 8) . . . . . . . . . . . 181
12.3 Combinedmode errors, optimum vs. baseline (J = 11) . . . . . . . . . . . 181
12.4 Combinedmode errors, optimum vs. baseline (J = 15) . . . . . . . . . . . 181
12.5 Combinedmode errors, optimum vs. baseline (J = 20) . . . . . . . . . . . 182
12.6 Dispersion to dissipation ratios, optima vs. baselines . . . . . . . . . . . 182
12.7 Cost of DGSEM as a function of resolution . . . . . . . . . . . . . . . 185
12.8 Cost of FR as a function of resolution . . . . . . . . . . . . . . . . . 185
12.9 Cost of DGIGA as a function of resolution . . . . . . . . . . . . . . . 186

13.1 Initial conditions in wavenumber domain . . . . . . . . . . . . . . . . 191
13.2 Unexplained nonlinear instability; all DGIGA variants vs. DGSEM . . . . . . . 191
13.3 Shock formation and transit across the domain; DGIGA vs. DGSEM . . . . . . 192
13.4 Solution and error norm for linear advection, J = 3 . . . . . . . . . . . . 193
13.5 Solution and error norm for Burgers’ equation, J = 3 . . . . . . . . . . . . 194
13.6 Solution and error norm for linear advection, J = 6 . . . . . . . . . . . . 195
13.7 Solution and error norm for Burgers’ equation, J = 6 . . . . . . . . . . . . 196
13.8 Solution and error norm for linear advection, J = 20 . . . . . . . . . . . . 197
13.9 Solution and error norm for Burgers’ equation, J = 20 . . . . . . . . . . . 198
13.10 Limitations of a posteriori modified wavenumber analysis . . . . . . . . . . 200
13.11 A posteriori modified wavenumber analysis; spatial discretizations . . . . . . 201
13.12 A posteriori modified wavenumber analysis; Riemann solvers . . . . . . . . 202

14.1 Conditioning issues in modal IGA discretizations . . . . . . . . . . . . . 208
14.2 Intercell limiters, p = 2 DGSEM . . . . . . . . . . . . . . . . . . . 213
14.3 Intercell limiters, p = 5 DGSEM . . . . . . . . . . . . . . . . . . . 214
14.4 Intercell limiters, p = 2 DGSEM . . . . . . . . . . . . . . . . . . . 215
14.5 Intercell limiters, p = 5 DGSEM . . . . . . . . . . . . . . . . . . . 216
14.6 Limiting J = 3 DGIGA . . . . . . . . . . . . . . . . . . . . . . . 217
14.7 Limiting, J = 6 DGIGA . . . . . . . . . . . . . . . . . . . . . . . 218
14.8 FCT limiting for IGAAFC . . . . . . . . . . . . . . . . . . . . . 219
14.9 Final comparison: DGSEM vs. FR/CPR vs. DGIGA; J = 3 . . . . . . . . . 220
14.10 Final comparison: DGSEM vs. FR/CPR vs. DGIGA; J = 6 . . . . . . . . . 221
14.11 Final comparison: DGSEM vs. FR/CPR vs. DGIGA; J = 20 . . . . . . . . . 222
14.12 Effect of the number of patches in FCTlimited DGIGAAFC . . . . . . . . . 223
14.13 Highorder preservation (or lack thereof) of the three main limiters considered . . 224



xvi List of Figures

A.1 Example of resolvable wavenumbers in a discrete setting . . . . . . . . . . 239
A.2 Spectral resolution examples . . . . . . . . . . . . . . . . . . . . 240
A.3 Dispersion, dissipation and Fourier footprint of loworder finite volume schemes . 248
A.4 Dispersion/dissipation Bloch waves of loworder finite volume schemes . . . . 249



List of Tables

2.1 All possible Riemann problems for Burgers’ equation . . . . . . . . . . . 16

4.1 DGSEM reference element mass matrices and their condition numbers. . . . . 36
4.2 Quadrature rules (GaussLegendre vs. GaussLobatto) . . . . . . . . . . 36

5.1 Summary of reported properties of various FR/CPR variants . . . . . . . . . 46
5.2 Correction parameters 𝑐 vs. polynomial degree . . . . . . . . . . . . . 48

7.1 Comparison among optimal explicit SSPRK methods . . . . . . . . . . . 72

8.1 Summary of stability criteria . . . . . . . . . . . . . . . . . . . . 80

9.1 Empty test matrix, for example purposes . . . . . . . . . . . . . . . . 99

10.1 Verifying the order of accuracy of the SSPRK schemes . . . . . . . . . . 106
10.2 Exploring DGSEM’s parameter space . . . . . . . . . . . . . . . . . 106
10.3 Exploring FR/CPR’s parameter space . . . . . . . . . . . . . . . . . 106
10.4 Exploring DGIGA’s parameter space . . . . . . . . . . . . . . . . . 107

12.1 Baseline DGSEM semidiscretizations . . . . . . . . . . . . . . . . . 178
12.2 Optimal FR/CPR semidiscretizations . . . . . . . . . . . . . . . . . 178
12.3 Optimal DGIGA semidiscretizations . . . . . . . . . . . . . . . . . 178
12.4 All DGIGA semidiscretizations with J = 3, 4, 5, 6, 8, 11, 15, 20 . . . . . . . . . 179
12.5 Dispersion to dissipation ratio norms . . . . . . . . . . . . . . . . . 183

13.1 Confirming the advantage of optimized schemes (most favorable conditions) . . . 187
13.2 Testing the advantage of optimized schemes (unfavorable conditions) . . . . . 188
13.3 Exploring the behavior of optimized schemes applied to the Burgers equation . . 189
13.4 Investigating the unexplained nonlinear instability of DGIGA . . . . . . . . . 190

14.1 Comparing intercell limiters used in combination with DGSEM . . . . . . . . 204
14.2 Comparing sensors, against each other and none at all, for DGSEM . . . . . . 205
14.3 Comparing AFC against the best intercell limiter, for DGIGA . . . . . . . . 206
14.4 Attempting IGAAFC, the extreme case of DGIGA with a single patch . . . . . 208
14.5 Comparing optimal vs. baseline DG bases, for J = 3, 6, 20 . . . . . . . . . . 209
14.6 Isolating the effect of the number of patches in FCTlimited DGIGAAFC . . . . 210
14.7 Checking whether the three main limiters considered preserve accuracy . . . . 211
14.8 Intercell limiters, DGSEM . . . . . . . . . . . . . . . . . . . . . 225
14.9 Sensors, DGSEM . . . . . . . . . . . . . . . . . . . . . . . . 226
14.10 Limiters and sensors, DGIGA . . . . . . . . . . . . . . . . . . . . 227
14.11 IGAAFC . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
14.12 Limiters and sensors, DGSEM vs. FR/CPR vs. DGIGA . . . . . . . . . . 229
14.13 Effect of the number of patches in FCTlimited DGIGAAFC . . . . . . . . . 229
14.14 Order of accuracy when limiting smooth local extrema . . . . . . . . . . . 230
14.15 Effect of prefinement (for a fixed number of elements/patches) in practice. . . . 230

xvii





Nomenclature
Scalars are typeset in regular typeface. Vectors use lower case letter symbols and bold typeface; their
default orientation is along columns. Matrices, also in bold, are represented by uppercase letters only.

Symbols
Latin letters

𝑨 Jacobian matrix
𝐴𝑇 spectral order of accuracy
𝐶• differentiability class
𝒸 speed of sound
𝓒 discrete gradient operator matrix
𝑐SSP SSP coefficient
𝓓 Lagrange nodal derivative matrix
𝐸 total energy
𝑒 internal energy
𝑒1 resolving efficiency
𝐸𝑇 spectral error
𝒇 flux vector
𝒇ℎ approximate flux vector
ℱ Fourier transform
�̆� Riemann flux vector
�̂� vector of flux expansion coefficients
�̌� nodal flux vector values
𝙛 raw antidiffusive flux vector
�̃� flux vector in reference coordinates
𝐺 amplification factor
𝑔 correction function
𝒢ℎ set of all ghost elements or patches in a

mesh
𝒉 corrected flux vector
𝐻 enthalpy
�̌� corrected flux vector at nodes
�̃� corrected flux vector in reference coordi

nates
𝑖 equation index
𝑰 identity matrix
I number of equations in a system of PDEs
ℑ (•) imaginary part
i imaginary unit
inf infimum
𝑗 degree of freedom index
J number of basis functions in an element or

patch
𝑘 element or patch index
K number of elements or patches in the mesh
k number of breakpoint spans in a patch
𝑙 Lagrange polynomial
𝓜 mass matrix

m multiplicity (of a knot)
𝑁 Bspline basis function
nnz number of nonzero entries
𝒪 big O notation
p polynomial degree
𝑝 pressure
𝒫 Legendre polynomial
𝒒 state vector
𝒒ℎ approximate state vector
𝓺 vector of characteristic variables
�̆� Riemann state vector
�̂� vector of solution expansion coefficients
�̂� vector of solution expansion coefficients in

characteristic variables
�̌� nodal solution vector values
�̃� state vector in reference coordinates
𝑞 timedependent Fourier coefficient
�̂� timedependent, degree of freedom–wise

Fourier coefficients vector
�̂� timedependent, eigenmodewise Fourier

coefficients vector
̂̂𝑞 Fourier coefficient
̂̂𝒒 degree of freedom–wise Fourier coefficients

vector
̂̂𝓺 eigenmodewise Fourier coefficients vector
𝓻 residual function vector
𝓡 residual matrix (linear operator)
ℜ(•) real part
�̂� vector of residual expansion coefficients
�̃� reference residual function vector
Re Reynolds number
𝑆ℎ space of shape functions
sup supremum
𝒯ℎ set of all elements or patches in a mesh
𝒯∗ set of all troubled elements or patches in a

mesh
𝛥𝑡 timestep size
𝛥𝑇 total simulated time span
𝙏 state to primitive variables transformation

matrix
𝑢 velocity
𝑉 vector space

xix



xx Abbreviations

𝑉ℎ space of test functions
𝑽 eigenvector matrix of the spatial discretiza

tion operator
𝙫 vector of primitive variables

𝓥 Vandermonde matrix

𝙬 Roe state vector

𝛥𝑥 element or patch length

Greek letters

𝛾 ratio of specific heats
𝜅 wavenumber
𝜘 smoothness
𝜅𝑓 highest wellresolved wavenumber
𝜅1% cutoff (1% criterion) wavenumber
𝜅 modified wavenumber
𝜆 eigenvalue
𝛯 Bspline knot vector
𝜉 position in reference coordinates
𝜌 density
𝛴 knot span

𝛴 reference knot span
𝜍 Courant number
𝜙 shape (basis) function
𝜑 test (weighting) function
𝜒 dispersion vs. dissipation ratio
𝒳 affine mapping to reference element
𝛥𝛹 phase shift angle
𝛺 (sub)domain
𝜕𝛺 boundary of a (sub)domain
𝛺 reference subdomain (element or patch)

Others

|•| absolute value
• average
⌈•⌉ ceiling (round up to nearest integer)
•∗ dimensionless
⨁ direct sum
∅ empty set

⊙ Hadamard product
⟨•, •⟩ inner product
[•]•• e.g. : [𝑓]𝑏𝑎 = 𝑓(𝑏) − 𝑓(𝑎)
‖•‖• norm (or normlike operation)
•⊺ transposed

Abbreviations
ADIGMA adaptive higherorder variational methods for aerodynamic applications in industry

AFC algebraic flux correction

AI artificial intelligence

BC boundary condition

BDF BiswasDevineFlaherty (DG limiter)

BSB BurbeauSagautBruneau (DG limiter)

CAD computeraided design

CFD computational fluid dynamics

CFL CourantFriedrichsLewy (stability condition)

CG continuous Galerkin

CPR correction procedure via reconstruction

CPU central processing unit

DG discontinuous Galerkin method

DGIGA discontinuous Galerkin isogeometric analysis

DGIGAAFC discontinuous Galerkin isogeometric analysis stabilized via algebraic flux correction



Abbreviations xxi

DGSEM discontinuous Galerkin spectral element method

DNS direct numerical simulation

ENO essentially nonoscillatory

FCT flux corrected transport

FDM finite difference method

FEA finite element analysis

FEM finite element method

FFT fast Fourier transform

FLOP floating point operation

FR flux reconstruction

FVM finite volume method

HiFiTURB highfidelity LES/DNS data for innovative turbulence models

HLL HartenLaxvan Leer (Riemann solver)

HLLC HartenLaxvan Leercontact (Riemann solver)

HLLE HartenLaxvan LeerEinfeldt (Riemann solver)

HWENO Hermite weighted essentially nonoscillatory

IC initial condition

IDIHOM industrialization of highorder methods

IGA isogeometric analysis

KEP kinetic energy preserving (centered numerical flux)

KXRCF KrivodonovaXinRemacleChevaugeonFlaherty (troubled element indicator)

LED local extremum diminishing

LES large eddy simulation

MATLAB matrix laboratory (programming language and environment)

MWA modified wavenumber analysis

NURBS nonuniform rational basis splines

ODE ordinary differential equation

PDE partial differential equation

RANS Reynoldsaveraged NavierStokes

RK RungeKutta (a numerical integration technique)

RKDG RungeKutta discontinuous Galerkin

SD spectral differences

SEM spectral element method

SG staggered grid



xxii Abbreviations

SM spectral method

SSP strong stability preserving

TILDA towards industrial LES/DNS in aeronautics

TV total variation

TVB total variation bounded

TVBM total variation bounded in the means

TVD total variation diminishing

TVDM total variation diminishing in the means

TVM total variation in the means

VCJH VincentCastonguayJamesonHuynh (class of FR correction functions)

WENO weighted essentially nonoscillatory



1
Introduction

In computational fluid dynamics (CFD), a spatial discretization method is said to be highorder when
its order of accuracy1 is higher than two [129]. High order is not a new concept, and the number of
highorder methods in the literature is considerable; these are reviewed in [126] and references therein.
This work focuses on one particular type of highorder methods: compact, discontinuous, finite element
methods. The epitome of these schemes is the discontinuous Galerkin (DG) method.

10−1 100 101 102 103

10−10

10−8

10−6

10−4

10−2

100

102

104

1
1

1
2

1
3

1/ℎ

|𝑓
′ (0

)−
𝑓′ ℎ(

0)
|

𝒪(ℎ1) (1.1a)
𝒪(ℎ2) (1.1b)
𝒪(ℎ3) (1.1c)

Figure 1.1: Convergence rate of the three finite difference schemes in (1.1).

Highorder methods are potentially more costeffective than their loworder counterparts, provided
that a sufficientlyhigh level of accuracy is required. Allow me to motivate this through an example.
Assume that we wish to use finite differences to approximate 𝑓′(𝑥), the first derivative of 𝑓(𝑥) = e𝑥, on
a uniform grid—every two points separated by a distance ℎ. Its 1st, 2nd and 3rd order (fully backward,

1Order of accuracy of a numerical scheme refers to the rate at which the error in the approximate solution it produces is reduced,
as the discrete problem it solves is refined. A method of order 𝑛 has an error that grows as 𝒪(ℎ𝑛), where ℎ is a representative
grid length. See figure 1.1.

1



2 1. Introduction

uniform) finite difference approximations are, respectively [18]:

𝑓′(𝑥) ≈ 𝑓(𝑥) − 𝑓(𝑥 − ℎ)
ℎ , (1.1a)

𝑓′(𝑥) ≈ 3𝑓(𝑥) − 4𝑓(𝑥 − ℎ) + 𝑓(𝑥 − 2ℎ)
2ℎ , (1.1b)

𝑓′(𝑥) ≈ 11𝑓(𝑥) − 18𝑓(𝑥 − ℎ) + 9𝑓(𝑥 − 2ℎ) − 2𝑓(𝑥 − 3ℎ)
6ℎ . (1.1c)

Let us now plot the error of each of the approximations at 𝑥 = 0, as a function of 1/ℎ, in logarithmic axes;
the result is figure 1.1. To reach an error of 1% at 𝑥 = 0, methods (1.1b) and (1.1a) require roughly
2 and 20 times as many points, respectively, than method (1.1c). At the same time, however, each
evaluation of (1.1c) involves four points; those are 33%more than (1.1b), and twice as many as (1.1a).
This is the core feature of highorder methods: for a fixed accuracy, they reduce the total number of
unknowns in the discrete problem in exchange of using each of them an increased number of times.

1.1. Motivation: nextgeneration CFD
Unstructured, loworder, finite volumebased NavierStokes solvers, despite having been developed in
the 80s and 90s, have remained in predominant use for aerospace applications to this day [61, 63, 123].
Highorder discretizations are now making their way into a new generation of production NavierStokes
solvers [79, 126]. These methods are considered to be necessary for certain cases of commercial
interest where currentgeneration codes fail to provide accurate results, namely [123]:

• To increase precision in boundary layers, needed to predict the onset of turbulent transition

• Simulating vortexdominated flows (e.g. in the wake of an aircraft in highlift configuration)

• To simulate aeroacoustics

• Predicting drag forces

• Simulating turbulence using large eddy simulation (LES)

Highorder methods have been receiving renewed attention since the 2000s, perhaps most notably
through the sequence of European projects ADIGMA [70] (2006–2009), IDIHOM [71] (2010–2014) and
TILDA [51] (2015–2018). Universities, public research institutions and industry have all collaborated in
these projects. Development has been focused on the following pacing items [126]:

• Commercial quality highorder mesh generation tools

• Robust error estimates and hpadaptations

• Scalable, efficient, robust and lowmemory implicit solvers

• Parameter free, accuracy preserving and convergent shock capturing

Broadly speaking, highorder schemes possess two advantages. The first has to do with the balance
between accuracy and cost:

efficiency = accuracy
cost = ( accuracy

unknowns × time steps)⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
Discretization

(unknowns × time steps
cost )

⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
Implementation

. (1.2)

Highorder methods tend to have superior accuracy per unknown; we have seen this through an exam
ple. In order to be efficient, however, discretization efficiency is only half of the picture—implementation
efficiency is just as important. Yet, some highorder schemes (such as DG) are quite good at maximiz
ing that as well.

The throughput (number of unknowns processed at a given cost) of highorder methods can never
be higher than that of loworder ones [73]—in the example, evaluating (1.1c) is more costly (it takes
longer, since it involves additional terms) than (1.1b) or (1.1a). Nevertheless, because they possess a



1.1. Motivation: nextgeneration CFD 3

Ar
ith

m
et
ic
th
ro
ug

hp
ut

(G
FL

O
Ps
/s
)

Arithmetic intensity (FLOPs/B)

Me
mo

ry b
and

wid
th

Machine peakMachine balance

Low
orde

r, m
any

unk
now

ns →
High

orde
r, fe

w unk
now

ns

Figure 1.2: Roofline model [130] representing the arithmetic throughput (number of operations per second,
i.e. performance) of a multicore architecture. The arithmetic intensity—number of floating point operations done
on each byte of information retrieved from memory—of a program (notice that this is hardwareindependent) de
termines if execution will be memorybound (yellowshaded, left) or computebound (orangeshaded, right). For
optimal use of hardware resources, the algorithm should operate at the balance point. Highorder methods may
simultaneously increase the arithmetic intensity and lower the total amount of memory required in CFD solvers,
possibly making a more efficient use of current hardware. Supercomputers are typically being used nowadays at
merely 5% to 20% of their theoretical peak performance [80].

higher degree of data reuse, highorder methods tend to have a higher arithmetic intensity than well
optimized loworder ones [86]: for every byte of information transferred from main memory to cache,
more floating point operations are made. High performance computing technology evolution is currently
experiencing a socalled “memory wall” barrier: there is an exponentially increasing disparity between
compute and memory speeds (the latter is lagging behind). For example [73]:

• Nvidia A100 (108 streaming multiprocessors, 765MHz, released in 2020): 6.20FLOPs/B

• Intel Xeon Platinum 8280 (28 cores, 2.70GHz; released in 2019): 17.20FLOPs/B

• Intel Xeon W5590 (4 cores, 3.33GHz; released in 2009): 1.70FLOPs/B

while Kronbichler and Persson [73] estimate 10FLOPs/B for a finetuned DG implementation. This
means that highorder methods tend to utilize modern hardware more efficiently, compensating (to
some extent) the increase in floating point operations with a higher attained fraction of peak machine
throughput (figure 1.2). In more concise terms: they exploit the “FLOPs are for free” paradigm to
attain a cost per unknown comparable to their loworder counterparts. On a modern supercomputer
architecture, this translates as them having good scaling within a node, i.e.minimizing the overhead
due to slow data transfer rates between main memory and CPU/GPU caches.

Moreover, in compact variants (such as DG), each grid element uses data from a single layer of
points of each of its nearest neighbors only, regardless of order. This means that communication of
data between nodes is not usually a bottleneck, and lends DG an excellent parallel scalability [73]. And,
on top of it all, DG has very good synergy with adaptive refinement: it readily supports unstructured
meshes and nonconforming discretizations, and the finite element formulation it is based on gives it a
strong mathematical foundation on which to build adjointbased error estimators [46].

The second advantage of highorder methods has to do with novel approaches to tackle vortex
dominated and turbulent flows. High order is widely thought to be required for LES and direct numerical
simulation (DNS) [111, 118, 123]. This is because, in relation to loworder finite volumes, higherorder
discretizations significantly reduce dispersion and dissipation errors per unknown. These have a dom
inant contribution on the overall error in high–Reynolds number flows [72], since in that case physical



4 1. Introduction

diffusion of momentum and dissipation of energy due to viscosity is small relative to convection. This
can, in principle, be compensated with more elements using a loworder discretization; the issue then,
however, is that meshes become impractically large.

Even with highorder methods, LES is likely to remain too expensive to replace ReynoldsAveraged
Navier Stokes (RANS) turbulencemodels in the foreseeable future. In fact, the latest trend in turbulence
modeling is to build improved RANS models based on flow data, using machine learning techniques.
This data must come from somewhere; typically, and most conveniently, a numerical simulation. High
order is therefore far from unnecessary in this new AIaccelerated paradigm: it is, in fact, instrumental
to its success. Proof of this is the European project HiFiTURB [35].

It is clear that highorder methods have a crucial role to play in the ongoing initiative to satisfy
the ambitious performance, efficiency and sustainability goals required of the aviation industry in the
upcoming decades.

1.2. Research objectives
In this thesis, I focus on a particular approach of achieving high order, known as discontinuous Galerkin
(DG)—and a very close relative, flux reconstruction (FR). The goal is to study fundamental properties
of three highorder methods:

• Discontinuous Galerkin spectral element method (DGSEM)

• Flux reconstruction (FR)

• Discontinuous Galerkin isogeometric analysis (DGIGA), particularly when coupled with algebraic
flux correction as its limiter (DGIGAAFC)

such that a preliminary assessment can be made on whether the third, DGIGAAFC, is more or less
suitable to LES of compressible flows relative to the first two.

In terms of research questions, this work hopes to answer:

Is the DGIGAAFC method, in comparison to selected alternatives (DGSEM and FR/CPR, with modal
limiters), wellsuited to LES of highspeed flows?

a response, in turn, steered by the following research subquestions:

1. Does DGIGA achieve high order of accuracy, in the same conditions that FR/CPR and DGSEM
do?

2. What are DGIGA’s spectral (dispersion, dissipation) and linear stability characteristics, and how
do they compare to those of DGSEM and FR/CPR?

3. Which FR/CPR and DGIGA settings are most advantageous, in terms of spectral and/or linear
stability features, in relation to DGSEM?

4. Are DGIGA, FR/CPR and DGSEM’s wave propagation characteristics actually representative of
their performance in nonlinear physics cases?

5. Does DGIGA retain any advantage over FR/CPR and DGSEM when used with limiters? Is the
AFC limiter applied to DGIGA (DGIGAAFC) as effective as alternatives?

Which translate, in terms of objectives, to:

1. Confirm the order of accuracy of DGIGA, FR/CPR and DGSEM

2. Obtain, for the three methods (several representative configurations of each) applied to a linear
PDE:

(a) Dispersion relation (dispersive error vs. wavenumber)
(b) Dissipation relation (dissipative error vs. wavenumber)
(c) Linear stability bounds (largest stable timestep size)



1.3. Relevance of this work 5

3. Optimize the configuration of FR/CPR and DGIGA, so that dispersion/dissipation are minimized
(also under linear PDE assumptions)

4. Obtain numerical evidence supporting the linear wave propagation analysis predictions in nonlin
ear PDE cases

5. Test whether DGIGAAFC is a successful limited scheme or not, comparing its performance with
alternatives on several benchmark problems

1.3. Relevance of this work
DGIGAAFC addresses two of the pacing items of highorder methods:

• Highorder mesh generation: indirectly, through the inherent advantages of isogeometric analysis
(I do not actually measure these, since all tests in this thesis are in one spatial dimension)

• Limiting: by directly testing a novel limiterdiscretization combination

This will be, to the best of my knowledge, the first exhaustive exploration of spectral and stability fea
tures of DGIGA in the literature. It will also be the first time that modified wavenumber analysis has
been formulated for and applied to it.

The first two schemes, DGSEM and FR, are relatively mature; their properties have been studied
before. Still, they will serve as baselines (I see them as control and placebo, respectively) with which
to compare the characteristics and effectiveness of the novel DGIGA. Additionally, they are included
in the study for verification purposes. By taking a step back, and focusing on the fundamentals, this
work offers the opportunity to judge the performance and suitability of DGIGA against more mature
alternatives in a controlled manner, i.e. with full knowledge of the conditions in which the comparison is
made. This research should therefore be of most value to researchers and/or university departments
considering an investment of resources in the isogeometric analysis idea.

Lastly, the fact that all formulation is particularized to 1D and selfcontained in this report, and that I
have made an effort to present highorder schemes in an easy to understand way for someone familiar
with FV only (my own situation at the start of this thesis), should make this work adequate as a first
introduction to discontinuous and isogeometric finite element methods.

1.4. Outline
This report is divided in two parts. Part I is theoretical; it offers a succinct overview of all concepts
involved in this thesis, making it essentially selfcontained. Its purpose is to make the results and
methodology as transparent and reproducible as possible, by removing all ambiguity from the formu
lation of the schemes and numerical analysis tools involved. I start by presenting relevant aspects of
hyperbolic partial differential equations (chapter 2), as well as a complete mathematical formulation of
all ingredients necessary for constructing the three spatial discretization methods under consideration
(chapters 3–6). Next, in chapter 7, I give a brief overview of the kind of explicit time integration schemes
I later use in part II. This first part ends with some basic aspects about nonlinear stabilization, including
the formulation of all sensors and limiters in the precise way that I later employ them (chapter 8). That
includes AFC; in particular, my own extension of it to multipatch IGA.

In part II, all actual experimental results obtained in this project are presented and discussed. First,
in chapter 9, I clarify some methodology aspects; these include details about all test problems solved,
and the implementation used. Five chapters of experimental results then follow, 10–14, each address
ing one of the research subquestions and objectives above. Lastly, in chapter 15, the aforementioned
research (sub)questions are answered one by one—recounting the entirety of tasks performed in the
process. It also includes limitations of this thesis, and recommendations for future work.





I
Theory

7





2
Hyperbolic Conservation Laws

The NavierStokes equations are the set of scientific laws which describe the evolution of fluid flows.
They arise from the following conservation argument1: in any given portion of space filled with fluid,
any change in the total amount of mass, momentum or energy over time is only possible if there exists
a net flux of that quantity in (or out) of such domain, and/or there is a source (or sink) of the same within
said domain [50, §1.1]. Each of these three quantities then has a partial differential equation (PDE) that
encodes the previous relationship mathematically. This system of equations happens to be, in general,
of mixed mathematical type; its (unsteady) inviscid counterpart, however, is hyperbolic [50, §2]. This
is the reason why the present work focuses on conservation laws of this particular kind.

The three research objects of this work will be studied for a general hyperbolic conservation law,
which is defined in §2.1. The definition of hyperbolicity for a system of PDEs is given in §2.2. The
fact that (the integral form) of these problems allows discontinuous solutions is addressed §2.3. Sec
tion 2.4 does the same for the Riemann problem, which plays a fundamental role in discontinuous
discretizations of the type considered. Finally, relevant details of a canonical example of each com
bination of types of hyperbolic conservation laws, from simplest (scalar and linear) to most complex
(vector and nonlinear) are presented in §§ 2.52.8. In consonance with the scope of this work, only
the onedimensional version of such equations is addressed and none of them includes source terms
(cf. [82, §§ 1718]).

2.1. Conservation laws in one dimension
The idea of conservation is intuitive for the particular example of fluid flows. Mathematically, however,
it can be extended to a generic quantity, regardless of any eventual physical interpretation. This report
is concerned with systems of PDEs of the following general form:

𝜕𝒒
𝜕𝑡 +

𝜕𝒇
𝜕𝑥 = 0 . (2.1)

In (2.1), 𝑡 ∈ ℝ+ and 𝑥 ∈ 𝛺 are independent variables. The (onedimensional) spatial domain of the
PDEs is 𝛺 ⊆ ℝ. Its boundary can be split into left and right portions, such that 𝜕𝛺 = 𝜕𝛺𝐿 ∪ 𝜕𝛺𝑅; their
coordinates are 𝑥𝐿 and 𝑥𝑅. With no loss of generality, time is assumed to start at 0 (𝑡 ≥ 0) and to have
no upper bound. Dependent ones are grouped into a vector of conserved variables 𝒒(𝑡, 𝑥) ∈ ℝI (or
state vector),

𝒒(𝑡, 𝑥)≔ [𝑞1(𝑡, 𝑥) 𝑞2(𝑡, 𝑥) ⋯ 𝑞I(𝑡, 𝑥)]
⊺
, (2.2)

and 𝒇∶ ℝI → ℝI, the vector of conserved variable fluxes (or flux vector)

𝒇(𝒒)≔ [𝑓1(𝒒) 𝑓2(𝒒) ⋯ 𝑓I(𝒒)]
⊺
, (2.3)

1It can be argued that the NavierStokes equations are not conservation laws in a strict sense, because they include viscous
dissipation terms. Regardless, the definition of conservation given above is broad enough to still apply.

9



10 2. Hyperbolic Conservation Laws

which, for the physical models under consideration, will be some vectorvalued function of the state
vector only2. Thus, 𝒒(𝑡, 𝑥) is the solution of an initialboundary value problem defined by (2.1) together
with some initial condition

𝒒0(𝑥)≔𝒒(0, 𝑥) , (2.4)

and compatible boundary conditions

𝒒𝐿(𝑡)≔𝒒(𝑡, 𝑥𝐿) , (2.5)
𝒒𝑅(𝑡)≔𝒒(𝑡, 𝑥𝑅) . (2.6)

2.1.1. Quasilinear form
Applying the chain rule to (2.1) leads to

𝜕𝒒
𝜕𝑡 + 𝑨

𝜕𝒒
𝜕𝑥 = 0 , (2.7)

which is known as the quasilinear form of the PDEs [82, §2.6]. The socalled Jacobian of this system
is, for a onedimensional domain, a single square matrix 𝑨 ∈ ℝI×I, representing the gradient of the flux
vector in state space, i.e. :

𝑨 (𝒒) = [
𝑎11 (𝒒) ⋯ 𝑎1I (𝒒)
⋮ ⋮

𝑎I1 (𝒒) ⋯ 𝑎II (𝒒)
]≔ 𝜕𝒇

𝜕𝒒 =
⎡
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑞1

⋯ 𝜕𝑓1
𝜕𝑞I

⋮ ⋮
𝜕𝑓I
𝜕𝑞1

⋯ 𝜕𝑓I
𝜕𝑞I

⎤
⎥
⎥
⎦
, (2.8)

with each of its entries being a function of the state vector. In this most general situation, the system
is said to be nonlinear (e.g. Euler equations, §2.8). If the entries of 𝑨 were to dependent on 𝑡 and/or
𝑥 instead, the system would be linear with variable coefficients. This case is not considered in this
work. The simplest scenario corresponds to a linear system of constant coefficients, were 𝑨 is constant
(e.g. wave equations, §2.6). For the particular case that I = 1, (2.1) becomes a scalar conservation
law.

2.1.2. Integral form
Integration of (2.1) over the whole spatial domain leads to

𝜕
𝜕𝑡 (∫𝛺

𝒒 d𝑥) + 𝒇 (𝒒𝑅) − 𝒇 (𝒒𝐿) = 0 . (2.9)

Equations (2.1) and (2.9) are equivalent by the divergence theorem3 provided that the flux function is
differentiable (and under the assumption that 𝛺 itself does not change in time). Should 𝒇 be discon
tinuous in space, (2.1) would break down but (2.9) would not. For this reason, the latter is said to be
a weaker representation of the general conservation law, since it relaxes the smoothness required in
the solution. Equation (2.9) elegantly casts our introductory definition of a conservation law in precise
mathematical terms. It should be noted that (2.9) is but one among several integral representations of
(2.1); others can be found in the literature, e.g. [114, §2.4.1].

2.2. Hyperbolicity
A system of equations is said to be hyperbolic if its Jacobian matrix is diagonalizable with real eigen
values [114, §2.1]. An eigenvalue 𝜆 ∈ ℂ of matrix 𝑨 is defined as a root of its characteristic poly
nomial, i.e. for which det (𝑨 − 𝜆𝑰) = 0. Also, for every eigenvalue there exists a right eigenvector
𝒓 = [𝑟1 ⋯ 𝑟I]

⊺
that satisfies 𝑨𝒓 = 𝜆𝒓, and a left eigenvector 𝒍 = [𝑙1 ⋯ 𝑙I]

⊺
, that solves 𝒍𝑨 = 𝜆𝒍.

2More generally (e.g. in the NavierStokes case), the flux vector may be a function of both state vector and its first spatial derivative
[114, §2.4.2]: 𝒇 = 𝒇 (𝒒, 𝜕𝒒𝜕𝑥 ).

3The divergence theorem reduces to the fundamental theorem of calculus in one dimension.



2.2. Hyperbolicity 11

By definition, for any hyperbolic conservation law there must exist 𝜦,𝑹, 𝑳 ∈ ℝI×I:

𝜦 (𝒒) = [
𝜆1 (𝒒) 0

⋱
0 𝜆I (𝒒)

] , (2.10a)

𝑹(𝒒) = [𝒓1 (𝒒) ⋯ 𝒓I (𝒒)] = [
𝑟11 (𝒒) ⋯ 𝑟1I (𝒒)
⋮ ⋮

𝑟I1 (𝒒) ⋯ 𝑟II (𝒒)
] , (2.10b)

𝑳 (𝒒) = 𝑹−1 (𝒒) = [𝒍1 (𝒒) ⋯ 𝒍I (𝒒)] = [
𝑙11 (𝒒) ⋯ 𝑙1I (𝒒)
⋮ ⋮

𝑙I1 (𝒒) ⋯ 𝑙II (𝒒)
] ; (2.10c)

such that 𝑨 = 𝑹𝜦𝑳 ⟺ 𝜦 = 𝑳𝑨𝑹, where 𝜦 is the (diagonal) matrix of (real) eigenvalues and 𝑨 is the
Jacobian matrix, as in (2.7); if every 𝜆𝑖 is unique, the system is said to be strictly hyperbolic. Each
column 𝒍𝑖 and 𝒓𝑖 of matrices 𝑳 and 𝑹, corresponds to the left and right eigenvectors associated with
eigenvalue 𝜆𝑖, respectively. Without loss of generality, these are assumed to be normalized such that
𝑳𝑹 = 𝑹𝑳 = 𝑰. Note that these eigenvalues and eigenvectors, just like the Jacobian matrix that they
factorize, are generally functions of the state vector.

2.2.1. Characteristic fields
As discussed at the start of this section, any hyperbolic conservation law is guaranteed to have a set
of real eigenvalues {𝜆1 (𝒒) , … , 𝜆I (𝒒)}. This enables a more intuitive interpretation of the concept of
hyperbolicity: each 𝜆𝑖 (𝒒) acts as the propagation speed4 of its associated 𝜆𝑖characteristic field.

In one dimension, each 𝜆field is a curve in spacetime, defined as such by the ordinary differential
equation (ODE):

d𝑥
d𝑡 = 𝜆 (𝑞) . (2.11)

We can focus on the solution along one of such curves, leaving time as the only independent variable,
i.e. 𝑥 = 𝑥(𝑡); in the scalar case, this leads (by virtue of the chain rule) to the following result:

d𝑞
d𝑡 =

𝜕𝑞
𝜕𝑡 +

d𝑥
d𝑡
𝜕𝑞
𝜕𝑥 ⟹ d𝑞

d𝑡 =
𝜕𝑞
𝜕𝑡 + 𝑎 (𝑞)

𝜕𝑞
𝜕𝑥 ⟹ d𝑞

d𝑡 ≡ 0 . (2.12)

Hence, the scalar hyperbolic conservation law reduces to a constraint: the value of the solution remains
invariant along characteristic curves. In the linear case with constant coefficients, substitution of (2.10)
in (2.7) leads to the canonical form of (2.1),

𝜕 (𝑳𝒒)
𝜕𝑡 + 𝜦𝜕

(𝑳𝒒)
𝜕𝑥 = 0 , (2.13)

which shows that, in characteristic space, each equation becomes decoupled from the rest, indicating
that component 𝓆𝑖 ∈ ℝ of the vector of characteristic variables,

𝓺 (𝑡, 𝑥)≔𝑳𝒒 (𝑡, 𝑥) , (2.14)

is the invariant associated with the 𝜆𝑖field. In nonlinear situations, it is useful to define analogous local
characteristic variables, obtained as in (2.14) but using a linearized eigenvector matrix (i.e. evaluated
at some reference state) instead. Also noteworthy are the notions of genuinely nonlinear and linearly
degenerate 𝜆fields, the latter being those for which:

𝜕𝜆𝑖 (𝒒)
𝜕𝒒 ⋅ 𝒓𝑖 (𝒒) = 0, 𝒒 ∈ ℝI . (2.15)

The concepts laid out in this section play a role in shock capturing via solution limiting (§8), in addition
to setting the groundwork for solving the Riemann problem (§2.4), which is, in turn, a fundamental
building block of all discontinuous discretizations considered for review in this part of the report. For
further details, the reader is referred to [50, §3], [114, §2.3.1, §2.4.3] and [82, §11.2, §13.3].
4Dimensional analysis of (2.13) readily reveals that 𝜆𝑖 has dimensions of length over time.



12 2. Hyperbolic Conservation Laws

2.3. Discontinuous solutions
The hyperbolic nature of the systems of equations under consideration allows initially discontinuous5
signals to remain so indefinitely. This is not the case in an elliptic or parabolic problem, where any
discontinuity will be smeared out by the physical diffusion present in the system.

Furthermore, in the general case, even smooth initial conditions can evolve into discontinuous so
lutions over time. The qualitative explanation of this phenomena can be found in the 𝜆field structure
of the solution: assume that two distinct characteristic lines intersect at some particular point of space
time; the solution at that point must still satisfy (2.11), but for two different initial values. The only
possibility (in a genuinely nonlinear context) is for the solution to be multivalued—hence, discontinu
ous. An example of this effect is the socalled Nwave decay that occurs for the the inviscid Burgers
equation [82, §11.15].

The inviscid flow equations possess no mechanism to prevent the presence of arbitrarily large so
lution gradients, hence their solutions can, in principle, be truly discontinuous. When viscosity is taken
into account, evidence6 suggests that dissipative effects eventually become dominant, only allowing
large (but finite) changes in flow quantities (e.g. density, pressure, temperature) across transition layers
of small, but finite, thickness. Admittedly, these are not actual discontinuities; but considering them as
such is often a reasonable approximation [114, p. 71]. Hence the treatment of both viscous and inviscid
flows is typically the same in regards to discontinuity regularization strategies.

In CFD, the presence of (quasi)discontinuous features (e.g. shock waves) is problematic. In a
numerical simulation the number of degrees of freedom available to represent the solution is limited,
making it unfeasible to resolve the flow across very sharp features such as shock waves (in most
cases). Insufficient spatial resolution can lead to the physical dissipation present in the model, if any,
being incompatible in terms of an energy balance with approximately accurate solution values. Unless
there is some numerical (as opposed to physical) dissipative mechanism, the system may stabilize—if
it does at all—at a highly oscillatory, erroneous state. In simpler terms: the adequate equations, solved
with insufficient resolution, result in an entirely inaccurate solution, and may even cause instability.
These nonphysical disturbances in the numerical solution are referred to in the literature as spurious
oscillations or wiggles, and their appearance is known as the Gibbs phenomenon [47, §5.6].

Effectively coping with this issue is crucial for highspeed flow applications. Still, the lack of an
entirely satisfactory approach (particularly so in multiple dimensions) has led some experts to argue
that “we still do not really know how to capture shocks” [105]. Shock capturing consists in a controlled
and localized increase of viscosity in the neighborhood of a shock (or discontinuity in general) so that
the computed solution is smooth enough to be resolved discretely. Chapter 8 details various shock
capturing schemes studied in this work, all of them designed for highorder methods. For a general
overview of alternatives, see [99].

2.4. Riemann problem
Consider an infinite domain, 𝑥 ∈ [−∞,+∞]. When the general hyperbolic conservation law (2.1) is
solved for the following piecewise constant initial condition at 𝑡 = 𝑡0, we obtain a particularly interesting
initialvalue problem known as the Riemann problem:

𝒒0(𝑥) = {
𝒒𝐿 𝑥 ≤ 𝑥0
𝒒𝑅 𝑥 ≥ 𝑥0

. (2.16)

Its solution will involve the transport of the initial data along 𝜆fields. Each of these characteristics
can accommodate a jump discontinuity, thus the solution at some future instant 𝑡1 > 𝑡0 may consist
(if there are no repeated eigenvalues) of a set of I + 1 piecewise constant states: {𝒒1, … , 𝒒I+1}. Alter
natively, a characteristic may split into an expansion fan, joining its two adjacent states smoothly via
an infinite number of intermediate states. Additional details on the Riemann problem for each of the
conservation laws studied in this work are included in the remaining sections of this chapter.

This model problem plays the key role of coupling adjacent elements in compact discontinuous
methods, both in Godunov’s method and other finite volumes, and also in the highorder finite ele
ment schemes considered in this work. All these methods use the solution of the Riemann problem to
5In this report, 𝐶𝑘 is the set of functions with continuous 𝑘th derivative. Discontinuous functions belong to 𝐶−1 by convention.
6In [60], shocks are resolved (and, hence, the Gibbs phenomenon is not allowed to occur) for moderate Reynolds numbers with
a nondissipative 2nd order finite volume scheme.



2.5. Advection 13

evaluate a socalled Riemann flux,
�̆� (𝒒𝐿 , 𝒒𝑅)≔𝒇 (�̆�) (2.17)

(where
�̆�≔𝒒(𝑡1, 𝑥0) (2.18)

is the Riemann state), which is the flux computed from the solution of the Riemann problem at the
location of the interface, some small time after the initial instant (see figure 2.1). In this way, solving
the Riemann problem determines how to compute the flux at element interfaces (see §3).

For coupling purposes, computing the exact solution is not desirable, as it can be a computationally
intensive process for nonlinear conservation laws; moreover, only one of the solution states is of interest
In practice, an approximate Riemann solver can be employed to directly obtain �̆� relatively cheaply.

𝑥𝑥0

𝑡

𝑥0 + 𝜆1(𝑡1 − 𝑡0) 𝑥0 + 𝜆2(𝑡1 − 𝑡0) 𝑥0 + 𝜆3(𝑡1 − 𝑡0)

𝑡0

𝑡1

𝒒1 ≡ 𝒒𝐿

𝒒2 ≡ �̆� 𝒒3

𝒒4 ≡ 𝒒𝑅

Figure 2.1: Solution to the Riemann problem in spacetime. Depicted is a system with 3 distinct and constant
eigenvalues, with 𝒒(𝑡, 𝑥) = 𝒒0(𝑥) for 𝑡 < 𝑡0. In the situation shown: �̆� = 𝒒2.

2.5. Advection
In the remainder of this chapter, four particular examples of hyperbolic conservation laws are given. The
objective is to address in more detail some of the mathematical aspects that play a role in the numerical
methods formulated in subsequent chapters, namely: their eigendecomposition and the solution of their
Riemann problem in terms of a Riemann flux. All results reported in §II correspond to these PDEs.

The simplest hyperbolic conservation law is obtained when I = 1 and 𝑓 (𝑞) = 𝑎𝑞; 𝑎 is a nonzero
constant. Equation (2.1) becomes scalar, linear and of constant coefficients:

𝜕𝑞
𝜕𝑡 + 𝑎

𝜕𝑞
𝜕𝑥 = 0 . (2.19)

This problem is useful to assess the behavior of errors in a linear setting, in particular dispersion,
diffusion and stability (see appendix A).

2.5.1. Eigendecomposition
In this scalar case:

𝜦 ≡ 𝑎 , 𝑹 ≡ 1 , 𝑳 ≡ 1 , 𝓺 ≡ 𝑞 , (2.20)

i.e. eigenvalues and eigenvectors are trivial; characteristic and conserved variables are one and the
same.



14 2. Hyperbolic Conservation Laws

2.5.2. Riemann flux
Given that the PDE is scalar, a single 𝜆field will be present in the solution. The additional restriction of
the Jacobian being constant means that said characteristic curve is a straight line of slope 𝑎; the solu
tion of the Riemann problem will consist on the two initial states, separated by a contact discontinuity
traveling in spacetime at a rate 𝑎, both of which remain unchanged. Consequently, the Riemann flux
is:

̆𝑓 (𝑞𝐿 , 𝑞𝑅) = {𝑎𝑞
𝐿 if 𝑎 > 0

𝑎𝑞𝑅 if 𝑎 < 0 ⟺ ̆𝑓 (𝑞𝐿 , 𝑞𝑅) = 𝑎
2 (𝑞

𝐿 + 𝑞𝑅) +
|𝑎|
2 (𝑞𝐿 − 𝑞𝑅) . (2.21)

Note that this corresponds to selecting the state on the upwind side (i.e. the side opposite to the prop
agation of information, or “from where the wind blows”).

2.6. Wave equation
The wave equation is usually thought of as a scalar secondorder PDE:

𝜕2𝑞
𝜕𝑡2 + 𝒸

2 𝜕2𝑞
𝜕𝑥2 = 0 . (2.22)

Nevertheless, it can be rewritten as the following system of two firstorder PDEs [82, §2.9.1]:

𝜕
𝜕𝑡 [

𝑞1
𝑞2
] + [0 𝒸2

1 0 ]
𝜕
𝜕𝑥 [

𝑞1
𝑞2
] = 0 . (2.23)

This problem will be used to study the generalization of the different methods to vector equations
(i.e. I > 1, in this case I = 2). In it, each equation is still linear and the Jacobian matrix is still constant.

2.6.1. Eigendecomposition
The Jacobian matrix in (2.23) has two real and distinct eigenvalues. Its diagonalization and associated
characteristic variables are not trivial:

𝜦 = [𝒸 0
0 −𝒸] , 𝑹 = [𝒸 −𝒸

1 1 ] , 𝑳 = 1
2𝑐 [

1 𝒸
−1 𝒸] , 𝓺 = 1

2𝑐 [
𝑞1 + 𝒸𝑞2
𝒸𝑞2 − 𝑞1

] . (2.24)

2.6.2. Riemann flux
Once the system 2.23 has been diagonalized, it becomes equivalent to two decoupled advection equa
tions. Thanks to the linear nature of the same, the exact solution to its Riemann problem can then be
conveniently obtained by linear superposition of each of these equations’ solutions. Assuming that the
left and right states are known, the Riemann flux is given by:

̆𝑓 (𝒒𝐿 , 𝒒𝑅) = 1
2 [
|𝒸| 𝒸2
1 |𝒸|] 𝒒

𝐿 + 12 [
− |𝒸| 𝒸2
1 − |𝒸|] 𝒒

𝑅 . (2.25)

2.6.3. Equivalent systems
The Euler equations (§2.8) can be linearized—see [82, §2.7]—to give the following system of 2 PDEs
which models the propagation of weak pressure and velocity fluctuations in a fluid flow:

𝜕
𝜕𝑡 [

𝑝
𝑢] + [

𝑢0 𝐾0
1/𝜌0 𝑢0

] 𝜕
𝜕𝑥 [

𝑝
𝑢] = 0 . (2.26)

Here, 𝑝 and 𝑢 are pressure and velocity perturbations around a reference state 𝑝0, 𝑢0. 𝐾0 is the bulk
modulus of compressibility of the fluid. If we let 𝑢0 = 0, (2.26) becomes a model for the propagation of
sound waves within a fluid at rest. Its dimensionless form turns out to be identical to that of (2.23).

This equivalence holds true also for the equations of solid mechanics, in the elastic regime, for a
onedimensional solid [82, §2.12]:

𝜕
𝜕𝑡 [

𝜎11
𝑢 ] + [

0 − (𝜆 + 2𝜇)
−1/𝜌 0 ] 𝜕

𝜕𝑥 [
𝜎11
𝑢 ] = 0 , (2.27a)



2.7. Inviscid Burgers equation 15

𝜕
𝜕𝑡 [

𝜎12
𝑣 ] + [

0 −𝜇
−1/𝜌 0 ]

𝜕
𝜕𝑥 [

𝜎12
𝑣 ] = 0 , (2.27b)

where 𝞂 ∈ ℝ1×2×1 is the stress tensor and 𝑢, 𝑣 are velocity components normal and tangential to the
length of the solid (respectively); 𝜆 and 𝜇 are, here, the Lamé parameters characterizing the material.

The same applies for Maxwell’s equations in the case of a planar electromagnetic wave [82, §2.14]:

𝜕
𝜕𝑡 [

𝐸2
𝐵3
] + [0

1
𝜀𝜇

1 0
] 𝜕
𝜕𝑥 [

𝐸2
𝐵3
] = 0 , (2.28)

with �⃗�, �⃗� ∈ ℝ3 being the electric and magnetic field intensities, 𝜀 the permittivity of the medium and 𝜇
its magnetic permeability.

All of these systems model essentially the same phenomenon: a wavelike propagation of the solu
tion, at a rate associated with a constant 𝒸 ≡ |𝜆|, be it the speed of sound in a fluid, normal or tangential
wave propagation speeds in a solid, or the speed of light in some medium.

2.7. Inviscid Burgers equation
All PDEs until this point have been examples of linear hyperbolic conservation laws. The simplest
nonlinear case is constructed from (2.19), generalizing its Jacobian to make it a function of the solution.
For convenience, we may choose this dependency to be a onetoone equivalence: 𝑎(𝑢)≔𝑢. Thus
we obtain the (inviscid) Burgers equation, a scalar nonlinear hyperbolic conservation law which models
a convection process in which the advection speed depends on the advected quantity itself:

𝜕𝑢
𝜕𝑡 +

𝜕
𝜕𝑥 (

𝑢2
2 ) = 0 . (2.29)

For this conservation law, neglecting any influence from boundary conditions and assuming 𝑢0(𝑥) ∈
𝐶0, it can be shown that 𝑢(𝑡, 𝑥) becomes discontinuous at an instant 𝑡shock, given by [82, p. 224, exercise
11.1]

𝑡shock = −(min
𝑥
{d𝑢

0

d𝑥 })
−1

, (2.30)

corresponding to the earliest moment in which any two characteristic fields intersect each other—if
𝑡shock < 0, characteristics never cross. Under these conditions, for 𝑡 < 𝑡shock, the exact solution of
(2.29) is:

𝑢(𝑡, 𝑥) = 𝑢0 (𝑥 − 𝑢(𝑡, 𝑥)𝑡) . (2.31)
When necessary in part II of this report, equation (2.31) is evaluated recursively: stopping when the
maximum norm of the absolute error between the result of two successive estimates is <1 × 10−12,
starting from 𝑢(𝑡, 𝑥) = 𝑢0 (𝑥 − 𝑢0(𝑥)𝑡).

2.7.1. Eigendecomposition
Diagonalization of (2.29)’s Jacobian is analogous to (2.20):

𝜦 ≡ 𝑢 , 𝑹 ≡ 1 , 𝑳 ≡ 1 . (2.32)

The only difference in this case being that the single eigenvalue depends on the solution.

2.7.2. Riemann flux
Equation (2.29) having a nonconstant characteristic speed complicates the exact solution of its Rie
mann problem quite substantially. We are interested in a particular state �̆� (see §2.4) such that:

̆𝑓 (𝑢𝐿 , 𝑢𝑅) = 𝑓 (�̆�) = 1
2�̆�

2 . (2.33)

However, it is not trivial to decide which side is the upwind one, in general. It will depend on the specific
combination of sign and magnitude of the eigenvalues seen from each side of 𝑥0. Moreover, there is
one situation in which �̆� is neither 𝑢𝐿 nor 𝑢𝑅. Four cases are possible in total, summarized in table 2.1.
They are explained next.



16 2. Hyperbolic Conservation Laws

Case 𝑢𝐿 𝑢𝑅 �̆�
1 > 0 > 0 𝑢𝐿
2 < 0 < 0 𝑢𝑅
3 > 0 < 0 𝑢𝐿 if 𝑢𝐿 ≥ |𝑢𝑅|, 𝑢𝑅 if 𝑢𝐿 ≤ |𝑢𝑅|
4 < 0 > 0 0

Table 2.1: Summary of initial condition combinations in the Riemann problem for Burgers equation.

Case 1: rightgoing shocks
Both left and right state eigenvalues have the same, positive sign. Their associated 𝜆fields are shock
waves, both traveling in the positive direction of the 𝑥 axis; therefore, the upwind state is the left one:

�̆� ≡ 𝑢𝐿 ⟹ ̆𝑓 (𝑢𝐿 , 𝑢𝑅) = 𝑓(𝑢𝐿) . (2.34)

Case 2: leftgoing shocks
Reciprocal of the previous case, the two characteristics are traveling towards decreasing 𝑥axis values:

�̆� ≡ 𝑢𝑅 ⟹ ̆𝑓 (𝑢𝐿 , 𝑢𝑅) = 𝑓(𝑢𝑅) . (2.35)

Case 3: centered shockshock interaction
In this situation the rightgoing characteristics from the left state are intersecting the leftgoing ones
coming from the right. This will result in a shock wave that, at the instant 𝑡1, moves with speed [82,
§11.8]:

𝑢 = 𝑢𝐿 + 𝑢𝑅
2 . (2.36)

If the rightgoing characteristic dominates, 𝑢 > 0; the shock resulting from the interaction will be moving
to the right. Otherwise, if 𝑢 < 0, the combined show wave travels to the left. A stationary shock can
occur, if |𝑢𝐿| = |𝑢𝑅| ⟺ 𝑢𝐿 = −𝑢𝑅; this case is trivial, since 𝑓(𝑢) ≡ 𝑓(−𝑢). In conclusion:

̆𝑓 (𝑢𝐿 , 𝑢𝑅) = {𝑓(𝑢
𝐿), 𝑢𝐿 + 𝑢𝑅 ≥ 0

𝑓(𝑢𝑅), 𝑢𝐿 + 𝑢𝑅 < 0 . (2.37)

Case 4: centered expansion
Two characteristic fields are adjacent but moving away from each other at (𝑡0, 𝑥0). Let us assume a
linear expansion fan profile for 𝑡1 ≈ 𝑡0. At 𝑡1, the left crest will have moved (to the left) to 𝑥0 + 𝑢𝐿𝛥𝑡,
while the right one will be at 𝑥0 + 𝑢𝑅𝛥𝑡 (right of its initial position). The left and right states, initially
adjacent, are now joined by a straight line, 𝑦(𝑥) = 𝑐1 (𝑥 − 𝑥0) + 𝑐0; therefore:

{𝑢
𝐿 = 𝑐1𝑢𝐿𝛥𝑡 + 𝑐0
𝑢𝑅 = 𝑐1𝑢𝑅𝛥𝑡 + 𝑐0

⟹ 𝑐0
𝑢𝑅 −

𝑐0
𝑢𝐿 = 0 ⟹ 𝑦 (𝑥0) = 0 ⟹ �̆� = 0 .

Which means that the expansion fan will be centered around zero at 𝑡1 regardless of the specific values
of 𝑢𝐿 and 𝑢𝑅, i.e. :

̆𝑓 (𝑢𝐿 , 𝑢𝑅) = 𝑓 (0) = 0 . (2.38)

2.8. Euler equations
The Euler equations model the behavior of a compressible, inviscid fluid. They are the most general
case considered in this work: a system of nonlinear PDEs,

𝜕
𝜕𝑡 [

𝜌
𝜌𝑢
𝜌𝐸
] + 𝜕

𝜕𝑥 [
𝜌𝑢

𝜌𝑢2 + 𝑝
𝑢 (𝜌𝐸 + 𝑝)

] = 0 . (2.39)

The conserved variables are: mass, momentum and total energy (each of them per unit volume), and
each has its own corresponding flux vector component. The flow velocity is 𝑢.



2.8. Euler equations 17

An additional equation of state is needed in order to close (2.39). Under the assumption of a calor
ically perfect gas, such a relation is given by

𝑝
𝛾 − 1 = 𝜌𝑒 = 𝜌𝐸 −

1
2𝜌𝑢

2 , (2.40)

where 𝑝 is the pressure, 𝑒 is the internal energy (per unit mass) and 𝛾 is the diatomic gas constant.
Several additional relations and quantities can be derived from the current set based on thermo

dynamic considerations [114, section 1.2]. Most relevant among these are the total enthalpy (per unit
volume),

𝜌𝐻 = 𝜌𝐸 + 𝑝 , (2.41)
and the speed of sound,

𝒸 = √
𝛾𝑝
𝜌 = √(𝛾 − 1) (𝐻 − 12𝑢

2) . (2.42)

In addition to the vector of conserved variables, it is useful for the Euler equations to define two
additional state vectors, primitive and Roe variables (𝙫 and 𝙬, respectively):

𝙫≔ [𝜌 𝑢 𝑝]
⊺
, 𝙬≔[√𝜌 √𝜌𝑢 √𝜌𝐻]

⊺
. (2.43)

Let the transformation from conserved to primitive variables be designated by the nonlinear operator
𝙏∶ ℝ3 → ℝ3×3, defined such that 𝙫 = 𝙏𝒒:

𝙏 (𝒒)≔[
1 0 0
0 1/𝑞1 0
0 1−𝛾

2
𝑞2
𝑞1

𝛾 − 1
] . (2.44)

And let a socalled Roe average between two vectors of Roe variables be:

�̃� (𝙬𝐿 , 𝙬𝑅)≔ [𝘸𝐿1𝘸𝑅1
𝘸𝐿2+𝘸𝑅2
𝘸𝐿1+𝘸𝑅1

𝘸𝐿3+𝘸𝑅3
𝘸𝐿1+𝘸𝑅1

]
⊺
. (2.45)

2.8.1. Eigendecomposition
In conserved variables, the Jacobian matrix of 2.39 and its eigendecompostion are [82, §14.8]:

𝑨 (𝒒) = [
0 1 0

𝛾−3
2 𝑢

2 (3 − 𝛾) 𝑢 𝛾 − 1
(𝛾−12 𝑢

2 − 𝐻)𝑢 𝐻 − (𝛾 − 1) 𝑢2 𝛾𝑢
] , (2.46a)

𝜦 (𝒒) = [
𝑢 − 𝒸 0 0
0 𝑢 0
0 0 𝑢 + 𝒸

] , (2.46b)

𝑹(𝒒) = [
1 1 1

𝑢 − 𝒸 𝑢 𝑢 + 𝒸
𝐻 − 𝑢𝒸 1

2𝑢
2 𝐻 + 𝑢𝒸

] , (2.46c)

𝑳 (𝒒) = 𝛾 − 1
2𝒸2

⎡
⎢
⎢
⎢
⎣

𝐻 + 𝒸
𝛾−1 (𝑢 − 𝒸) −(𝑢 + 𝒸

𝛾−1) 1
−2𝐻 + 4

𝛾−1𝒸
2 2𝑢 −2

𝐻 + 𝒸
𝛾−1 (𝑢 + 𝒸) −𝑢 + 𝒸

𝛾−1 1

⎤
⎥
⎥
⎥
⎦

. (2.46d)

For primitive variables, however, (2.46a) and (2.46c) are simplified substantially (the eigenvalues, of
course, remain the same) [82, 14.7]:

𝑨 (𝙫) = [
𝑢 𝜌 0
0 𝑢 1/𝜌
0 𝛾𝑝 𝑢

] , 𝑹(𝙫) = [
−𝜌/𝒸 1 𝜌/𝒸
1 0 𝑢 + 𝒸
−𝜌𝒸 0 𝜌𝒸

] . (2.47)



18 2. Hyperbolic Conservation Laws

Recalling (2.15), it turns out that

𝜕𝜆1 (𝙫)
𝜕𝙫 ⋅ 𝒓1 (𝙫) = [

𝒸
2𝜌 1 − 𝒸

2𝜌 ] [
−𝜌/𝒸
1
−𝜌𝒸

] = 𝛾 + 1
2 , (2.48a)

𝜕𝜆2 (𝙫)
𝜕𝙫 ⋅ 𝒓2 (𝙫) = [0 1 0] [

1
0
0
] ≡ 0 , (2.48b)

𝜕𝜆3 (𝙫)
𝜕𝙫 ⋅ 𝒓3 (𝙫) = [−

𝒸
2𝜌 1 𝒸

2𝜌 ] [
𝜌/𝒸
1
𝜌𝒸
] = 𝛾 + 1

2 , (2.48c)

i.e. the 𝜆2field is always linearly degenerate in the Euler equations [82, §14.7]. This is the reason why
a discontinuity associated with it is not referred to as a shock but a contact discontinuity. The other two
characteristics can either be a shock or a rarefaction, both genuinely nonlinear since 𝛾 > 0.

2.8.2. Riemann solvers
In this section some of the many different approaches to solving the Riemann problem for the Euler
equations—those which have been studied and tested during the course of this work—are simply listed;
a thorough description of each can be found in their respective chapters of [114].

Exact Riemann solver
Similarly to the case of Burgers equation, this approach consists on deducing future states at a time
in the very near future based on the characteristic speeds of the system. Toro [114, §4] gives a very
detailed explanation, including a Fortran implementation, of a simple yet effective approach based on
using pressure to determine which of the four possible combinations involving left shock, left rarefaction,
right shock and right rarefaction is taking place. Knowing that, it is possible to deduce the state at the
interface in a similar way as it was shown for the Burger’s case and eventually use it to compute the
Riemann flux.

Single wavespeed estimate
The simplest kind of Riemann solvers use a single estimated wavespeed to compute an approximated
Riemann flux. Note that the diagonalization of (2.46a) revealed that there are in fact 3 distinct eigen
values in the 1D situation; these methods sacrifice accuracy in favour of efficiency, and are the most
diffusive among those reviewed. One of the most popular among these is the Local LaxFriedrichs
or Rusanov solver [114, p. 329].

Two wavespeed estimates
Quite less diffusive are the methods that use two characteristic speed estimates to solve the problem
approximately. Consequently, they are slightly more computationallyintensive than those of the pre
vious class. Most popular in this category is the HLL solver [114, §10.3]. An alternative estimation of
the two wave speeds leads to a variant of it known as HLLE [82, §15.3.7], which is reported to have
positivity preserving properties [33, 34].

Three wavespeed estimates
Adding a third characteristic speedmakes the Riemann solver significantly more accurate. A successful
example of one such schemes is HLLC, which adds an additional characteristic speed estimate to HLL
[114, §10.4]. Numerical tests reported in [114] suggest that this method is as accurate or more than
HLL (particularly at contact discontinuities) while being only slightly more expensive than the methods
using only two wavespeed estimates.

Last, and arguably the most popular of them all, Roe’s Riemann solver [114, §11] also uses three
wavespeeds. Its estimation employs eigendecomposition of the Jacobian matrix, which leads to a
more accurate flux at the price of a more costly scheme. In practice, however, Roe’s solver is known
to be more prone to failure e.g. nearvacuum situations than alternatives. Furthermore, it is the only



2.8. Euler equations 19

one among those considered here that requires an entropy fix to produce a physical solution at sonic
rarefactions [114, §11.4]. In this work only one of such fixes has been studied, that of Harten–Hyman
[114, §11.4.2].





3
Compact Discontinuous HighOrder

Discretization
Discretization, broadly speaking, consists on replacing some continuous system—not amenable to
representation on a digital computer—with some finite number of entities of some kind, eventually
leading to a finite set of degrees of freedom1 the behavior of which is modeled instead.

This chapter is meant as an introduction to the discretization framework targeted by the present the
sis. It describes, in a general setting, all aspects that the three particular methods selected as research
objects share—leaving the specifics of each to its own dedicated chapter (§§ 4–6). The derivation is
within the framework of the method of lines; details about the treatment of the time operator are post
poned until §7. The relationship that exists between compact discontinuous highorder methods and
the final volume method is explored in §3.4. Sections 3.5 and 3.6, specifically address the enforce
ment of initial and boundary conditions in a unified manner for all the methods considered. There is a
large amount of literature covering these topics; some suggestions are: Blazek [14], Brenner and Scott
[16], Hartmann and Leicht [46], Hesthaven and Warburton [47], Hirsch [50], Kopriva [66].

3.1. Domain discretization
The result of spatial discretization is a mesh, 𝒯ℎ≔{𝛺𝑘}K𝑘=1. It is obtained by dividing 𝛺 into K non
overlapping subdomains, called elements (also cells or patches, depending on the context), such that:

𝛺 =
K

⋃
𝑘=1

𝛺𝑘 ,
K

⋂
𝑘=1

𝛺𝑘 = ∅ , K ≥ 1 . (3.1)

In the most general case, each 𝛺𝑘 is a 3D shape (not necessarily a polyhedron) composed of faces,
edges and vertices. For the onedimensional case within scope, the situation is greatly simplified: each
element is a line segment, with two endpoints that are the equivalent of vertices, edges and faces—all
collapsed into a single entity (see figure 3.1). Consequently, only one type of connectivity exists: every
line is delimited by points, and every one of such points is connected to two adjacent line segments
(which share it). In short, to generate a mesh in 1D we simply need to specify 𝑥1 < 𝑥2 < … < 𝑥K+1, a
partitioning of 𝑥 into K intervals.

Each element and its left and right edges are defined as:

𝛺𝑘≔[𝑥𝑘 , 𝑥𝑘+1] , 𝜕𝛺𝐿𝑘≔𝑥𝑘 , 𝜕𝛺𝑅𝑘 ≔𝑥𝑘+1 . (3.2)

The “volume” of 𝛺𝑘 (i.e. it’s length) and the position of its centroid (i.e.midpoint) are:

𝛥𝑥𝑘≔𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘≔
𝑥𝑘 + 𝑥𝑘+1

2 . (3.3)

1The term “degree of freedom” is used in FE to refer to each of the unknowns that the discrete system is to be solved for. This
generalizes the various particular choices used in each method. For example: in FD, the degrees of freedom are solution values
at grid points; in cellcentered FV, the unknowns are cellaveraged solution values, etc.

21



22 3. Compact Discontinuous HighOrder Discretization

Among the set of all element boundaries {𝑥1, … , 𝑥K+1}, let us distinguish between exterior ones (i.e. the
boundaries of the domain) {𝑥1, 𝑥K+1} and interior ones (i.e. element interfaces) {𝑥2, … , 𝑥K}.

Element

Face

Centroid Edge

Vertex

Element

Face
⇕

Edge
⇕

Vertex

Centroid

Figure 3.1: Analogies between threedimensional (hexahedral) and onedimensional meshes.

𝑥1 𝑥2 𝑥𝑘−1 𝑥𝑘 𝑥𝑘+1 𝑥K 𝑥K+1
... ...𝛺1 𝛺𝑘−1 𝛺𝑘 𝛺K

Figure 3.2: Indexing convention for the onedimensional meshes used in this report.

3.1.1. Reference element
Let 𝜉 ∈ 𝛺≔[−1, 1] define a reference element and its 1D coordinate system. Any point 𝑥 ∈ 𝒯ℎ can be
transformed to reference element coordinates via the invertible affine mapping 𝒳𝑘 ∶ 𝛺𝑘 → 𝛺, defined
as [66, p. 298]:

𝒳𝑘(𝜉)≔𝑥𝑘 +
𝛥𝑥𝑘
2 𝜉 , 𝒳−1𝑘 (𝑥) = 2

𝛥𝑥𝑘
(𝑥 − 𝑥𝑘) . (3.4)

Its Jacobian is simply a scalar constant:

d𝒳𝑘
d𝜉 ≔ (d𝑥

d𝜉 )|𝛺𝑘
= 𝛥𝑥𝑘

2 . (3.5)

𝑥𝑘 𝑥𝑘+1 𝜉 = 1𝜉 = −1

𝛺𝑘 𝛺
𝒳𝑘 (𝜉)

𝒳−1𝑘 (𝑥)

Figure 3.3: Mapping between physical element 𝛺𝑘, and reference element 𝛺.

3.2. Solution discretization
Discretization of the solution consists on replacing its exact counterpart with an approximate solu
tion 𝒒ℎ(𝑡, 𝑥) ≃ 𝒒(𝑡, 𝑥). To that aim, highorder finite element methods introduce 𝑆ℎ ∈ 𝐿2 (𝛺), a finite
dimensional trial function space in which to “look for” 𝒒ℎ. Discontinuous methods (unlike standard finite
elements) do not enforce continuity of the approximate solution across element boundaries. Instead:

𝒒ℎ(𝑡, 𝑥)≔
K

⨁
𝑘=1

𝒒ℎ𝑘(𝑡, 𝑥) , 𝑞ℎ𝑖𝑘(𝑡, 𝑥) ∈ 𝐶0 ; (3.6)



3.2. Solution discretization 23

i.e. the global approximated solution is constructed by “stitching together”2 several elementwise contin
uous solutions, rendering the approximate solution and flux components twicevalued at every interior
edge.

3.2.1. Reference element space
In the most general situation, each component of 𝒒ℎ𝑘 exists in its element’s own function space. Even
in that case, it is convenient to work in reference coordinates (see §3.1.1), such that:

�̃�ℎ𝑘(𝑡, 𝜉)≔𝒒ℎ𝑘 (𝑡,𝒳𝑘(𝜉)) , 𝑞ℎ𝑖𝑘 ∈ 𝑆ℎ𝑘 (𝛺) . (3.7)

Given that 𝑆ℎ𝑘 (𝛺) is independent on the element’s geometry, is is possible for multiple elements to
share it; e.g. a discretization where all elements use the same number of degrees of freedom (and the
same spatial discretization scheme) only uses a single unique reference element space. Without loss
of generality, I assume that each element possesses its own approximate solution space.

3.2.2. Trial basis functions
Each reference element space, 𝑆ℎ𝑘 (𝛺), needs to be specified via a basis. Given that we are dealing
with a function space, its basis’ components are functions—hence their name. Each discretization
scheme uses a particular type of basis; more information about the methods reviewed can be found in
their respective chapters of this report. Given a generic set {𝜙1𝑘(𝜉), … , 𝜙J𝑘(𝜉)} of basis functions, the
reference element space of J dimensions3 is constructed as:

𝑆ℎ𝑘 (𝛺)≔ span{𝜙𝑗𝑘(𝜉)}J𝑗=1 . (3.8)

For convenience, let us also define the following vector basis function 𝝓𝑘 ∶ ℝ → ℝJ:

𝝓𝑘(𝜉)≔ [𝜙1𝑘(𝜉) 𝜙2𝑘(𝜉) … 𝜙J𝑘(𝜉)]
⊺
. (3.9)

3.2.3. Degrees of freedom
The approximate solution vector on 𝛺𝑘 is encoded as a linear combination of the basis functions of
𝑆ℎ𝑘 ; I shall refer to the coefficients of such a series expansion as the degrees of freedom of 𝛺𝑘. It is
convenient to group all degrees of freedom of 𝛺𝑘 into a twodimensional array �̂�𝑘 ∈ ℝI×J,

�̂�𝑘(𝑡)≔ [
�̂�11𝑘(𝑡) �̂�12𝑘(𝑡) ⋯ �̂�1J𝑘(𝑡)
⋮ ⋮ ⋮

�̂�I1𝑘(𝑡) �̂�I2𝑘(𝑡) ⋯ �̂�IJ𝑘(𝑡)
] ≡ [�̂�1𝑘(𝑡) �̂�2𝑘(𝑡) ⋯ �̂�J𝑘(𝑡)] , (3.10)

so that the approximate solution components within 𝛺𝑘 are obtained (in reference coordinates) as:

�̃�ℎ𝑘 (𝑡, 𝜉) = �̂�1𝑘(𝑡)𝜙1(𝜉) + �̂�2𝑘(𝑡)𝜙2(𝜉) + … + �̂�J𝑘(𝑡)𝜙J(𝜉) =
J

∑
𝑗=1
�̂�𝑗𝑘(𝑡)𝜙𝑗𝑘(𝜉) ≡ �̂�𝑘(𝑡)𝝓𝑘(𝜉) . (3.11)

These uniquely define the global approximate solution at any (𝑡, 𝑥), with �̂�𝑖𝑗𝑘(𝑡) ∈ ℝ being a particular
degree of freedom associated with equation 1 ≤ 𝑖 ≤ I, basis function 1 ≤ 𝑗 ≤ J and element 1 ≤ 𝑘 ≤ K.

3.2.4. Flux representation
For economy of notation, let us define an approximate version of the flux function as

𝒇ℎ(𝑡, 𝑥) ≃ 𝒇 (𝒒(𝑡, 𝑥)) , (3.12)

with its elementlocal and referenceelement counterparts, 𝒇ℎ𝑘(𝑡, 𝑥) and �̃�ℎ𝑘(𝑡, 𝜉), defined analogously to
those of the approximate solution. For every flux function considered in this report, 𝑓ℎ𝑖𝑘 is continuous if
so is 𝑞ℎ𝑖𝑘. With nonlinear and/or nonconstant flux Jacobians, choosing a suitable representation for this
2More precisely, 𝒒ℎ is the direct sum of all elementwise solutions [47, §2.2.1].
3Even if omitted for clarity of notation, the length of each basis is not assumed unique over the various elements, i.e. J = J(𝑘).



24 3. Compact Discontinuous HighOrder Discretization

approximate flux vector is a delicate issue. The problem arises from the fact that, even if 𝑞ℎ𝑖𝑘 ∈ 𝑆ℎ(𝛺),
in general:

𝑓𝑖 (�̃�ℎ𝑘(𝑡, 𝜉)) ∉ 𝑆ℎ(𝛺) . (3.13)

For all methods considered in this report, the flux vector components are expanded into the very same
𝑆ℎ𝑘 as the state vector ones4, i.e. :

�̃�ℎ𝑘 (𝑡, 𝜉) = �̂�𝑘(𝑡)𝝓𝑘(𝜉) ≡ [
̂𝑓11𝑘(𝑡) ̂𝑓12𝑘(𝑡) ⋯ ̂𝑓1J𝑘(𝑡)
⋮ ⋮ ⋮
̂𝑓I1𝑘(𝑡) ̂𝑓I2𝑘(𝑡) ⋯ ̂𝑓IJ𝑘(𝑡)

]
⎡
⎢
⎢
⎢
⎣

𝜙1𝑘(𝜉)
𝜙2𝑘(𝜉)
⋮

𝜙J𝑘(𝜉)

⎤
⎥
⎥
⎥
⎦

; (3.14)

and therefore, except for linear flux functions:

�̃�ℎ𝑘(𝑡, 𝜉) ≠ 𝒇 (�̃�ℎ𝑘(𝑡, 𝜉)) . (3.15)

This mismatch that, in general, occurs between the number of dimensions available in the approxi
mate solution space and number of those that would actually be necessary to exactly resolve its flux in
troduces some error, in addition to the truncation one, if any, into the discretization. Sometimes broadly
referred to as a “variational crime”, this error can be understood as a consequence of aliasing in nodal
finite element and collocation spectral methods [47, §5.3] (see §4.2 for additional details). Moreover,
although tempting, in general �̂�𝑗𝑘 ≠ 𝒇 (�̂�𝑗𝑘). The evaluation of these flux coefficients depends on each
method and its choice of basis, and is thus delegated to subsequent chapters.

3.3. Equation discretization
Sections 3.1 and 3.2 in combination provide a mechanism with which to represent an approximation to
the exact solution of (2.1) in a discrete setting, one that allows high order of accuracy under suitably
chosen basis functions. All that remains is a way to actually compute said approximate solution. This
is achieved by transforming the mathematical model (equation 2.1 in this case) from a set of partial
differential equations to a system of algebraic equations, in which the unknowns are then not the exact
state variables defined for a continuum, but the degrees of freedom (3.10) of the discrete solution.

3.3.1. Spatial residuals (method of lines)
The method of lines refers to a particular treatment of the spatial and temporal operators of the general
conservation law. In this approach, one aims to obtain a semidiscrete version of the system of PDEs
first, in which the temporal derivative still appears as a continuous operator. This decouples the spatial
and temporal discretization schemes from each other (see §7).

After (spatial) semidiscretization, (2.1) for each degree of freedom is expected to become

d�̂�𝑖𝑗𝑘
d𝑡 = �̂�𝑖𝑗𝑘(𝑡) , (3.16)

which is an ordinary differential equation (ODE), and can be solved as such. I will refer to the scalar
�̂�𝑖𝑗𝑘 ∈ ℝ as an expansion coefficient of the (spatial) residual [129] associated with the 𝑖, 𝑗, 𝑘th degree
of freedom. By analogy with the approximate solution, the matrices of residual coefficients �̂�𝑘 define
a discretizationdependent residual function �̃�𝑘(𝑡, 𝜉) ∈ 𝑆ℎ𝑘 (𝛺), as follows:

�̃�𝑘(𝑡, 𝜉)≔ �̂�(𝑡)𝝓⊺𝑘(𝜉) , 𝓻𝑘(𝑡, 𝑥) = �̃�𝑘(𝑡,𝒳𝑘(𝜉)) , 𝓻(𝑡, 𝑥)≔
K

⨁
𝑘=1

𝓻𝑘(𝑡, 𝑥) . (3.17)

3.3.2. Weak formulation
All finite element methods, including those considered in this report, start from a weak (or variational)
formulation of the continuous problem. For a discontinuous method, a convenient weak form of (2.1)

4This approach is borrowed from continuous finite element methods, where it is known as Fletcher’s group formulation [37].



3.3. Equation discretization 25

is obtained by multiplying it first by an arbitrary (sufficiently smooth) test function 𝑣 ∈ 𝑉 (𝛺), and then
integrating by parts over 𝛺𝑘 ∈ 𝒯ℎ:

𝜕
𝜕𝑡 ∫𝛺𝑘

𝒒𝑣 d𝑥 + 𝒇|
𝜕𝛺𝑅𝑘
𝑣 (𝑥𝑘+1) − 𝒇|𝜕𝛺𝐿𝑘

𝑣 (𝑥𝑘) − ∫
𝛺𝑘
𝒇d𝑣
d𝑥 d𝑥 = 0 . (3.18)

The weak form of the general hyperbolic conservation law on an element can now be stated as: find
𝒒(𝑡, 𝑥) such that (3.18) holds for every 𝑣(𝑥), for 𝑘 = 1, 2, … , K. Similarly to the difference between the
differential and the integral forms of the hyperbolic conservation law, this formulation of the problem
requires fewer conditions on its solution. More importantly, though, is the fact that, at the same time
(and unlike the integral form itself), it provides a way to introduce the highorder approximate solution
from the previous section into the discrete conservation law.

In a discrete setting, it is not possible to enforce (3.18) for all test functions. Instead, the space of
test functions is replaced by a finitedimensional subset of it, 𝑉ℎ (𝛺) ⊂ 𝑉 (𝛺). The exact specification of
this subspace depends on the discretization scheme; the most common approach consists on reusing
the trial space as test function space5, i.e. : 𝑉ℎ = 𝑆ℎ. With discontinuous methods, it is convenient to
consider elementwise test function spaces in reference element coordinates, i.e.𝑉ℎ𝑘 (𝛺). Furthermore,
since 𝑣 does not need to satisfy any particular boundary condition, each test function is independent
from the rest [66, p. 309]. Equation (3.18) can be enforced discretely elementbyelement by choosing
a test function among the set

{𝜑𝑟𝑘(𝜉) : 𝑉ℎ𝑘 (𝛺) = span{𝜑𝑟𝑘}J𝑟=1} , (3.19)

and replacing the exact solution vector 𝒒(𝑡, 𝑥) with its local highorder approximation, 𝒒ℎ𝑘(𝑡, 𝑥). The
result, in reference element coordinates, is

𝛥𝑥𝑘
2

d
d𝑡 ∫

1

−1
�̃�ℎ𝑘𝜑𝑟𝑘 d𝜉 + 𝒇|𝜕𝛺𝑅𝑘

𝜑𝑟𝑘(1) − 𝒇|𝜕𝛺𝐿𝑘
𝜑𝑟𝑘 (−1) − ∫

1

−1
�̃�ℎ𝑘

d𝜑𝑟𝑘
d𝜉 d𝜉 = 0 , (3.20)

which has to hold for every element and test function (𝑟 being its index) of the discretization. It is
convenient to group such test functions into the vector 𝝋𝑘 ∶ ℝ → ℝJ:

𝝋⊺𝑘(𝜉)≔ [𝜑1𝑘(𝜉) 𝜑2𝑘(𝜉) … 𝜑J𝑘(𝜉)] . (3.21)

3.3.3. Interelement coupling
One last issue remains unsolved in (3.20): how to evaluate the flux vector at element interfaces. Com
pact discontinuous high order methods borrow the answer directly from the finite volume method. Sup
pose that a numerical flux function �̆� ∶ (ℝI, ℝI) → ℝI is available; the numerical fluxes at each edge of
𝛺𝑘 are approximated as:

𝒇|
𝜕𝛺𝐿𝑘

≃ �̆�𝐿𝑘(𝑡)≔ �̆� (𝒒ℎ𝑘−1 (𝑡, 𝑥𝑘) , 𝒒ℎ𝑘 (𝑡, 𝑥𝑘)) ≡ �̆� (�̃�ℎ𝑘−1 (𝑡, +1) , �̃�ℎ𝑘 (𝑡, −1)) , (3.22a)

𝒇|
𝜕𝛺𝑅𝑘

≃ �̆�𝑅𝑘(𝑡)≔ �̆� (𝒒ℎ𝑘 (𝑡, 𝑥𝑘+1) , 𝒒ℎ𝑘+1 (𝑡, 𝑥𝑘+1)) ≡ �̆� (�̃�ℎ𝑘 (𝑡, +1) , �̃�ℎ𝑘+1 (𝑡, −1)) . (3.22b)

Such a flux couples each element with the rest weakly, and in an optimally compact way: an ele
ment’s discrete conservation law requires information from its two immediate neighbors only. This can
be exploited to achieve very high parallel scalability in solver implementations, and is one of the main
virtues of these kind of schemes. Additionally, this coupling mechanism manages to carry over the
local conservation property [107], as defined for finite volumes, to a highorder context.

With highorder methods, the typical numerical flux function used is the Riemann flux, defined in
§2.4. This choice arises quite naturally if we treat the neighborhood of every edge as defining a local
Riemann problem. Unlike in (loworder) finite volumes, where the order of the discretization is deter
mined by the order of this numerical flux, discontinuous finite element methods of the kind considered
in this report maintain their order of accuracy (in smooth regions of the solution) regardless—it is deter
mined by the type of solution discretization employed. While this makes the choice of Riemann solver
less critical, a discontinuous high order discretization may still benefit from a less diffusive numerical
flux.
5In some contexts (e.g. spectral methods [19, §1.2.5]) this choice is known as BubnovGalerkin—or, simply, Galerkin.



26 3. Compact Discontinuous HighOrder Discretization

3.3.4. Semidiscrete hyperbolic conservation law
All pieces are now in place to explicitly write (2.1) as (3.16), a semidiscrete ODE for the degrees of
freedom as a function of time. Expansion of �̃�ℎ𝑘 and �̃�ℎ𝑘 into their respective linear combinations of basis
functions turns (3.20) into the soughtafter result, which has to hold for every 𝛺𝑘 ∈ 𝒯ℎ,

d�̂�𝑘
d𝑡 𝓜𝑘 + [�̆�𝝋⊺𝑘]𝜕𝛺𝑘 − �̂�𝑘𝓒𝑘 = 0 , (3.23)

where

[�̆�𝝋⊺𝑘]𝜕𝛺𝑘≔�̆�
𝑅
𝑘𝝋⊺𝑘(1) − �̆�𝐿𝑘𝝋⊺𝑘(−1) ≡ [

̆𝑓𝑅1𝑘𝜑1𝑘(1) − ̆𝑓𝐿1𝑘𝜑1𝑘(−1) ⋯ ̆𝑓𝑅1𝑘𝜑J𝑘(1) − ̆𝑓𝐿1𝑘𝜑J𝑘(−1)
⋮ ⋮

̆𝑓𝑅I𝑘𝜑1𝑘(1) − ̆𝑓𝐿I𝑘𝜑1𝑘(−1) ⋯ ̆𝑓𝑅I𝑘𝜑J𝑘(1) − ̆𝑓𝐿I𝑘𝜑J𝑘(−1)
] (3.24)

can be interpreted as the net boundary fluxes associated to each equation (row) and test function
(column) in 𝛺𝑘, and

𝓜𝑘≔
𝛥𝑥𝑘
2 ∫

1

−1
𝝓𝑘𝝋⊺𝑘 d𝜉 ≡

𝛥𝑥𝑘
2 [

∫1−1 𝜙1𝑘𝜑1𝑘 d𝜉 ⋯ ∫1−1 𝜙1𝑘𝜑J𝑘 d𝜉
⋮ ⋮

∫1−1 𝜙J𝑘𝜑1𝑘 d𝜉 ⋯ ∫1−1 𝜙J𝑘𝜑J𝑘 d𝜉
] , (3.25a)

𝓒𝑘≔∫
1

−1
𝝓𝑘

d𝝋⊺𝑘
d𝜉 d𝜉 ≡

⎡
⎢
⎢
⎣

∫1−1 𝜙1𝑘
d𝜑1𝑘
d𝜉 d𝜉 ⋯ ∫1−1 𝜙1𝑘

d𝜑J𝑘
d𝜉 d𝜉

⋮ ⋮
∫1−1 𝜙J𝑘

d𝜑1𝑘
d𝜉 d𝜉 ⋯ ∫1−1 𝜙J𝑘

d𝜑J𝑘
d𝜉 d𝜉

⎤
⎥
⎥
⎦

(3.25b)

are, respectively, the consistent mass matrix and the discrete gradient operator in 𝛺𝑘. The residual
matrix for this arbitrary element, defined in accordance to §3.3.1, is:

�̂�𝑘≔(�̂�𝑘𝓒𝑘 − [�̆�𝝋⊺𝑘]𝜕𝛺𝑘)𝓜
−1
𝑘 . (3.26)

The components of the discrete mass and gradient operators involve an integral over the reference
domain which still counts as a continuous operator not yet discretized. In 1D, these are the only integrals
to be approximated (additional boundary integrals would appear in higher dimensions). Each method
tries to exploit the properties of the basis and test functions to do so as efficiently and accurately as
possible; in fact, it is typically the case that these terms are computed exactly. More details are provided
in subsequent chapters. A consequence of approximating the flux vector via (3.14) is that, not only the
mass matrix, but also a discrete gradient operator exists and can be precomputed; this makes the
evaluation of (3.26) rather efficient.

Throughout this report, the matrices of degrees of freedom and residuals are arranged such that
each row corresponds to a state variable, and each column to a basis component. I made such a choice
during the design stages of the solver used in part II; and I have chosen to maintain it in this document
so that it better serves as a documentation of sorts for said implementation. Under this convention,
the mass and gradient matrices (3.25) have been derived as the transposes of their usual definitions
(cf. [47, §2.2], where the latter is referred to as stiffness matrix). This also translates in these operators
appearing as rightmultiplications in (3.23) and (3.26). More generally, operations involving trial or
test basis functions are encoded as matrix rightmultiplications, while leftmultiplications will generally
involve the state or flux vector components (e.g. transformation to/from primitive variables).

3.4. The loworder case: finite volume discretization
Equation (3.23) can be seen as a generalization of the finite volume (FV) method to arbitary order;
more specifically, for the choice of numerical fluxes made in this report, the first order upwind finite
volume method (also known as Godunov’s method). Refer to [82] for details. To see this, consider the
situation J = 1, 𝜙𝑘 = 𝜑𝑘≔1. The discrete solution is piecewise constant and there is a single degree
of freedom per equation, thus:

∫
𝛺𝑘
𝒒(𝑡, 𝑥) d𝑥 = ∫

𝛺𝑘
𝒒𝑘(𝑡, 𝑥) d𝑥 ≡ 𝛥𝑥𝑘𝒒ℎ𝑘(𝑡, 𝑥) , 𝒒𝑘(𝑡, 𝑥) ≈ 𝒒ℎ𝑘(𝑡, 𝑥) ≡ �̃�ℎ𝑘(𝑡, 𝜉) ≡ �̂�𝑘(𝑡) . (3.27)



3.5. Initial condition projection 27

Mass and gradient operators (3.25) in this case are:

𝓜𝑘 = 𝛥𝑥𝑘 , 𝓒𝑘 = 0 . (3.28)

Therefore, the semidiscrete conservation law (3.23) reduces to:

𝛥𝑥𝑘
d𝒒ℎ𝑘
d𝑡 + �̆�𝑅𝑘 − �̆�𝐿𝑘 = 0 , (3.29)

and the spatial residuals, (3.26), to:

𝓻𝑘 = −
1
𝛥𝑥𝑘

(�̆�𝑅𝑘 − �̆�𝐿𝑘) . (3.30)

If we now combine this spatial discretization with firstorder upwind finite differences in time (explicit
Euler’s time scheme, see §7) such that 𝑡 = 𝑡0, 𝑡1, … , 𝑡𝑛 , … , 𝑡𝑁, we obtain Godunov’s method:

𝒒ℎ𝑘(𝑡𝑛+1, 𝑥) = 𝒒ℎ𝑘(𝑡𝑛 , 𝑥) +
𝛥𝑡
𝛥𝑥𝑘

(�̆�𝐿𝑘(𝑡𝑛) + �̆�𝑅𝑘(𝑡𝑛)) . (3.31)

The spatial discretization in the secondorder finite volume method is identical—its only difference
being the use of a centered numerical flux. Thus we reach the fundamental limitation of finite volume
methods: to achieve highorder with a piecewiseconstant (i.e. FV) discretization, compactness cannot
be maintained. Spatial discretizations of the type (3.23) manage to overcome this limitation.

Let us use this opportunity to appreciate the strengths of (3.31). It is an extremely simple and
concise expression, and yet, ensures exact local (and global) conservation of the solution. Moreover,
it is both consistent6 and (in the firstorder case) total variation diminishing—hence stable—even for
nonlinear flux functions, no limiting required (see §8). It is guaranteed to converge to a weak solution of
the exact PDE and, although not proven, overwhelming numerical evidence suggests that it does so to
the entropy solution (i.e. the physically meaningful one)—assuming the use of an adequate numerical
flux and/or an entropy fix.

3.5. Initial condition projection
Just like in the continuous situation (2.1), (3.23) encodes the evolution of a system in time and (discrete)
space, starting from a known discrete initial condition and subject to numerical boundary conditions
(addressed in §3.6). It is therefore necessary to obtain a discrete counterpart of (2.4); a general way
to do so is presented in this section.

Consider some projection of a component of the exact initial condition to the discrete solution space
of 𝒯ℎ; let it be the approximate initial condition, i.e.

𝑞0𝑖 (𝑥) ≃ 𝑞ℎ𝑖 (0, 𝑥) ∈ 𝑆ℎ (𝛺) . (3.32)

The goal is to evaluate �̂�𝑖𝑗𝑘(0), ∀𝑖, 𝑗, 𝑘; this can be done weakly—in precisely the same sense as in §3.3
with the conservation law—by requiring, for every 𝑖, 𝑟, 𝑘 combination:

∫
𝛺𝑘
𝑞0𝑖 𝜑𝑟𝑘 d𝑥 = ∫

𝛺𝑘
𝑞ℎ𝑖𝑘𝜑𝑟𝑘 d𝑥 . (3.33)

This equality defines what is known in the literature as the 𝐿2 projection of the exact initial condition into
the discrete function space [78, §10].

Expanding the approximate solution into its basis components, the entire matrix of degrees of free
dom that solves (3.33) can be computed as:

�̂�𝑘 = (∫
𝛺𝑘
𝒒0𝝋⊺𝑘 d𝑥)𝓜−1

𝑘 . (3.34)

6A discretization is said to be consistent with the continuous PDE(s) it models when the local truncation error of its solution tends
to zero as 𝛥𝑡 → 0, for all smooth exact solutions of the latter. Equation (3.31) is such a method, provided that a consistent
numerical flux is employed; this, in turn, means that: 𝒇(𝒒) = �̆�(𝒒, 𝒒) [82, §4.3.1]. All numerical fluxes mentioned in this report
are consistent, and so are e.g. the centered fluxes in [60].



28 3. Compact Discontinuous HighOrder Discretization

The matrix integral in (3.34), unlike the mass and gradient matrices previously (in most cases), cannot
be computed exactly for an arbitrary initial condition. In the implementation used to obtain the results in
part II, I opt for an adaptive LobattoKronrod quadrature algorithm [106] with tolerances 10−9 (relative)
and 10−13 (absolute). An alternative would be to simply use Gauss or GaussLobatto quadrature of
fixed order.

3.6. Numerical boundary conditions
Compact discontinuous methods lend themselves to a weak enforcement of boundary conditions, in
the sense that the known value (in the Dirichlet case) at a given boundary edge is not directly assigned
to the approximate solution, but is instead used to calculate a numerical flux crossing it. The simplest
and most convenient of such approaches is known as weakRiemann prescription [89]. It is used in all
results shown in this report.

Let 𝒢ℎ≔{𝛺0, 𝛺K+1} be a set of fictitious or ghost elements such that:

𝛺0≔[𝑥0, 𝑥1] , 𝑥0≔𝑥1 − 𝛥𝑥1 , (3.35a)
𝛺K+1≔[𝑥K+1, 𝑥K+2] , 𝑥K+2≔𝑥K + 𝛥𝑥K , (3.35b)

and let them possess all features of any actual element, e.g. 𝑆ℎ0 (𝛺), 𝒳0(𝜉). The weakRiemann ap
proach consists on updating �̂�0(𝑡) and �̂�K+1(𝑡) at every solver iteration7, with the aim to obtain 𝒒ℎ0(𝑡, 𝑥1)
and 𝒒ℎK+1(𝑡, 𝑥K+1) values representative of each physical boundary condition function and type. The
two ghost elements are eventually used to evaluate the numerical flux at the boundary edges, just as if
they were regular elements, thus coupling the approximate solution to the boundary condition. Some
relevant kinds of boundary conditions will be briefly explored next.

3.6.1. Periodic
A periodic boundary condition on the left edge (treatment of a right boundary is analogous; see figure
3.4) implies:

𝒒𝐿(𝑡) = 𝒒ℎ(𝑡, 𝑥K+1) . (3.36)

In the weakRiemann framework, this relation is approximated by setting �̃�ℎ0(𝑡, 𝜉) = �̃�ℎK(𝑡, 𝜉), implying:

�̂�0(𝑡) = �̂�K(𝑡) . (3.37)

𝑥0

𝑥1

𝑥2
...

𝑞ℎ0

𝑞ℎ1

𝑥K

𝑥K+1

𝑥K+2

𝑞ℎK

𝑞ℎK+1

Figure 3.4: Left and right periodic boundary conditions (dashed lines denote ghost elements).

3.6.2. Farfield
Assume that the state vector is uniform and known for any position to the left of 𝜕𝛺𝐿, i.e. :

𝒒(𝑡, 𝑥) = 𝒒𝐿(𝑡) for 𝑥 < 𝑥1 . (3.38)
7In my implementation, I do so at every RungeKutta stage (see §7).



3.6. Numerical boundary conditions 29

Such a situation is modeled by setting J = 1 in 𝛺0  so that 𝑆ℎ0 admits a constant function only—and
requiring:

�̂�0(𝑡) ≡ �̂�0(𝑡) = 𝒒𝐿(𝑡) . (3.39)

Notice that inflow and outflow boundary conditions are automatically covered by this case because
it is left to the Riemann solver to “decide” which characteristics go in and out of the computational
domain. For the same reason, inflow and outflow constraints are guaranteed to be wellposed with this
approach.

3.6.3. Transmissive
Also known as nonreflective [114, §14.2] or absorbing [82, §7.3.1], this boundary condition attempts
to mimic an infinite domain by allowing any outgoing characteristic to exit it cleanly, i.e. without intro
ducing any spurious wave that could influence the solution. For loworder methods, this is achieved
numerically via the socalled zeroorder extrapolation (described e.g. in [82, p. 134]). In the highorder
case, I propose the following treatment, which generalizes the previous to a zerogradient condition in
all derivatives of the approximate solution at a boundary.

Consider 𝛺1 ∈ 𝒯ℎ, and its corresponding ghost element, 𝛺0 ∈ 𝒢ℎ. The opposite boundary case is
treated analogously. Let us assume that:

𝑆ℎ1 (𝛺) = 𝑆ℎ0 (𝛺) = span{𝒫𝑚}p𝑚=0 , (3.40)

i.e. the first J = p + 1 Legendre polynomials are the basis functions of both (see §4.1.1 for details).
The goal is to deduce a set of ghost element degrees of freedom which ensure that the approximate
solution crosses the target boundary smoothly (in physical coordinates), e.g. :

𝜕𝑑𝒒ℎ1
𝜕𝑥𝑑 |𝑥1

= 𝜕𝑑𝒒ℎ0
𝜕𝑥𝑑 |𝑥1

for 𝑑 = 0, 1, … , p . (3.41)

Expanding (3.41) into the Legendre basis functions, reveals the relationship between an element’s
degrees of freedom (lefthandside) and those of its ghost counterpart (righthandside):

�̂�1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒫0(−1) 0

𝒫1(−1)
d1𝒫1
d𝜉1 |−1

⋮ ⋮ ⋱

𝒫p(−1)
d1𝒫p
d𝜉1 |−1

⋯ dp𝒫p
d𝜉p |−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= �̂�0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒫0(1) 0

𝒫1(1)
d1𝒫1
d𝜉1 |1

⋮ ⋮ ⋱

𝒫p(1)
d1𝒫p
d𝜉1 |1

⋯ dp𝒫p
d𝜉p |1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.42)

The matrices in (3.42) are lower triangular because of the hierarchical nature of the Legendre basis.
For p = 0, the previous reduces to the approach in [82, p. 134]. Notice that each element’s Jacobian
can be neglected because of the definition in (3.35).

3.6.4. Reflective
Also known as the (oscillating) wall condition, this constraint models the opposite to the situation in the
previous subsection: whenever a wave reaches the boundary, we wish to reflect it back in a physically
meaningful way. This, of course, implies a dependence on the PDE being solved. For the Euler equa
tions, the presence of a (nonporous) wall at 𝜕𝛺𝐿, moving at a speed 𝑢𝑤(𝑡) with negligible displacement
amplitude, is modeled by setting [114, p. 496]:

𝜌ℎ0 (𝑡, 𝑥1) = 𝜌ℎ1 (𝑡, 𝑥1) , 𝑢ℎ0 (𝑡, 𝑥1) = −𝑢ℎ1 (𝑡, 𝑥1) + 2𝑢𝑤(𝑡) , 𝑝ℎ0 (𝑡, 𝑥1) = 𝑝ℎ1 (𝑡, 𝑥1) . (3.43)

For the wave equation—interpreted as linearised acoustics i.e. (2.26)—the previous becomes [82,
§7.3.4]:

𝑞ℎ10(𝑡, 𝑥1) = 𝑞ℎ11(𝑡, 𝑥1) , 𝑞ℎ20(𝑡, 𝑥1) = −𝑞ℎ21(𝑡, 𝑥1) + 2𝑢𝑤(𝑡) . (3.44)



30 3. Compact Discontinuous HighOrder Discretization

In both cases the wall constraint is recreated via a reflection symmetry8 of the numerical solution about
the position of the boundary, with the velocity component additionally being negated and displaced so
that the average between left and right velocities, for all time instants, is the prescribed wall velocity.

As with the nonreflective case, I propose a methodology to enforce this condition with a compact,
discontinuous, high order discretization. Assume, this time, that both ghost and nonghost element at
each side of the targeted boundary employ the same nodal (e.g. Lagrange, see §4) or quasinodal (in
the sense of the Bspline functions, see §6) basis, or that their projection to one of these is available.
Also, let 𝙏 be defined as in (2.44) for the Euler case, and as 𝙏≔𝑰 ∈ ℝ2×2 for the wave equation (assume
that the velocitylike variable is 𝑞2); the transformation to primary variables can be done for each vector
of degrees of freedom, such that 𝙏𝑗𝑘≔𝙏(�̂�𝑗𝑘). Then proceed as follows:

0. Consider a ghost element 𝛺0 and its neighbor 𝛺1 (left boundary; opposite case is analogous)

1. Deduce the (quasi)nodal expansion coefficients of the solution in primary variables, i.e. :

�̂�𝑖𝑗𝑘≔(𝙏𝑗𝑘�̂�𝑗𝑘)𝑖 for {
𝑖 = 1,… , I
𝑗 = 1,… , J
𝑘 = 1

(3.45)

2. Obtain the discrete reflection of pressurelike variables, i.e. :

�̂�𝑖𝑗0 = �̂�𝑖 (J+1−𝑗) 1 for {𝑖 ≠ 2𝑗 = 1,… , J (3.46)

3. Prescribe the specified velocity at the boundary:

�̂�𝑖𝑗0 = 2𝑢𝑤 − �̂�𝑖 (J+1−𝑗) 1 for {𝑖 = 2𝑗 = 1,… , J (3.47)

4. Finally, transform the degrees of freedom of the ghost element back to conservative variables:

�̂�𝑖𝑗𝑘≔(𝙏−1𝑗𝑘 �̂�𝑗𝑘)𝑖 for {
𝑖 = 1,… , I
𝑗 = 1,… , J
𝑘 = 0

(3.48)

𝑥0 𝑥1 𝑥2 𝑥3

𝑝ℎ1 = 𝑢ℎ1
𝑝ℎ0

𝑢ℎ0

𝑝ℎ2 = 𝑢ℎ2

Figure 3.5: Reflective (left, 𝑢𝑤 = 0) and nonreflective (right) boundary conditions for 𝒯ℎ = {𝛺1}.

8This can be inferred from the approach followed in the references cited above, which employ two ghost cells per side.



4
Discontinuous Galerkin Spectral

Element Method (DGSEM)
The very first example in the literature of a highorder yet compact finiteelement discretization for hyper
bolic conservation laws is due to the work of Bernardo Cockburn and ChiWang Shu (and collaborators),
during the last decade of the 20th century. These researchers, in a series of papers [22–24, 26, 27],
combined an all but forgotten method developed in the 70s for the steadystate neutron transport equa
tion of nuclear physics with an explicit RungeKutta timeintegrator (see §7) and a nonlinear stabiliza
tion mechanism (see §8). The result became known as RungeKutta discontinuous Galerkin (RKDG),
which is nowadays often associated to the specific combination in which the order of the time scheme
matches that of the spatial discretization. In this report, I shall use the termmodal DG to refer to the par
ticular subset of compact discontinuous highorder methods in which both trial and test function spaces
employ Legendre polynomials as basis functions, independently of the timediscretization scheme or
its order.

Discontinuous Galerkin (DG) is the oldest common ancestor of all members of the compact discon
tinuous highorder family. In this chapter, the general formulation of §3 is particularized to the first of the
three discretization methods selected as research objects of this thesis. A concise description of this
method for the threedimensional NavierStokes equations, including implementation considerations,
is found in [49]. The much simpler case of a onedimensional hyperbolic conservation law described
in this chapter borrows heavily from [66, section 8.1.4].

Essentially, DGSEM is the particular DG method that uses Lagrange polynomial basis functions,
with a specific distribution of nodes such that the resulting discretization is mathematically identical—but
computationally advantageous—to that of modal DG.

4.1. Spectral basis functions
Classical spectral methods (SM) are defined in [19, p. 3] as a particular subset of finite element methods
(FEM) in which the trial basis functions 𝜙(𝜉) (see §3):

• Have nonzero support over the entire domain.

• Are infinitely differentiable.

• Are orthogonal (or nearly so).

Since they offer no possibility of ℎrefinement, an increase in the number of degrees of freedom in these
methods is typically achieved through an increase in order of accuracy. As a consequence, they often
experience exponential—sometimes called spectral—convergence. Moreover, for periodic boundary
conditions, they inherit the nondiffusive nature of continuous finite element methods (since there is no
mechanism by which numerical diffusion can be introduced). A canonical choice of basis functions for
a spectral method is the set of sinusoids of a truncated Fourier series.

Modern spectral methods have evolved closer to finite elements and finite volumes, borrowing their
multidomain approach to discretization [20]. These are referred to as spectral elementmethods (SEM),

31



32 4. Discontinuous Galerkin Spectral Element Method (DGSEM)

since their basis functions adhere to the definition above in an elementlocal fashion. The distinction
between FEM and SEM has thus become rather ambiguous; in practice, the spectral denomination
suggests that a method is designed to be used in a high order of accuracy/low number of elements
setting—at least, this is the case for DGSEM [49]. Be it as it may, both DGSEM and modal DG satisfy
the formal requirements to be considered spectral element methods.

4.1.1. Legendre polynomials
Assume that, rather than e.g. sinusoids, we would like to use a polynomial basis for the Jdimensional
trial space, 𝑆ℎ𝑘 (𝛺), of a spectral element discretization. The straightforward choice: {1, 𝜉, 𝜉2, 𝜉3, … , 𝜉p}
would theoretically allow an exact representation of any polynomial solution up to degree p = J − 1,
making its formal order of accuracy p+1 = J. However, in practice, this basis turns out to be very badly
conditioned1 [47, §3.1].

To circumvent this setback (and in order to satisfy the definition of a spectral method above), we
can simply orthogonalize the previous in an 𝐿2 GramSchmidt sense. The result is the set {𝒫𝑚(𝜉)}

J−1
𝑚=0

of Legendre polynomials [66, §1.8.1]:

𝒫0 = 1 ,
𝒫1(𝜉) = 𝜉 ,

𝒫2(𝜉) =
1
2 (3𝜉

2 − 1) ,

𝒫3(𝜉) =
1
2 (5𝜉

3 − 3𝜉) ,

𝒫4(𝜉) =
1
8 (35𝜉

4 − 30𝜉2 + 3) ,
⋮

𝒫𝑚+1(𝜉) =
2𝑚 + 1
𝑚 + 1 𝜉𝒫𝑚(𝜉) −

𝑚
𝑚 + 1𝒫𝑚−1(𝜉), for 𝑚 > 0 . (4.1)

Note that, keeping consistency with typical notation, these basis functions are indexed starting from 0;
this is so that 𝒫𝑚 is a polynomial of degree 𝑚. The following threeterm relationship holds [66, §1.8.1]:

(2𝑚 + 1)𝒫𝑚(𝜉) = 𝒫′𝑚+1(𝜉) − 𝒫′𝑚−1(𝜉) . (4.2)

Consequently, arbitrary 𝜅th order derivatives can be evaluated for 𝜉 ∈ [−1, 1] as:
d𝜅𝒫𝑚+1
d𝜉𝜅 (𝜉) = (2𝑚 + 1)d

𝜅−1𝒫𝑚
d𝜉𝜅−1 (𝜉) +

d𝜅𝒫𝑚−1
d𝜉𝜅 (𝜉) . (4.3)

Some properties of these polynomials are listed next [2, 6].
Property 4.1. For 𝑚 > 0, it holds that:

∫
1

−1
𝒫𝑚 d𝜉 = 0 . (4.4)

As a consequence, the leading expansion coefficient of a Legendrebased discretization of 𝛺𝑘 is equal
to the average of the approximate solution over it:

1
𝛥𝑥𝑘

∫
𝛺𝑘
𝑞ℎ𝑖𝑘(𝑡, 𝑥) d𝑥 =

1
2 (∫

1

−1
�̂�𝑖1𝑘(𝑡)𝒫0(𝜉) d𝜉 + ∫

1

−1
�̂�𝑖2𝑘(𝑡)𝒫1(𝜉) d𝜉 + …) ≡ �̂�𝑖1𝑘(𝑡) . (4.5)

Property 4.2 (parity). Legendre polynomials are either even or odd, such that:

𝒫𝑚(−𝜉) = (−1)𝑚𝒫𝑚(𝜉) . (4.6)

In particular, 𝒫𝑚(1) = 1 for all 𝑚; 𝒫𝑚(−1) = −1 if 𝑚 is odd, and 𝒫𝑚(−1) = 1 if 𝑚 is even.
Property 4.3 (orthogonality). Legendre polynomials satisfy, for 𝑗, 𝑟 > 0:

∫
1

−1
𝒫𝑗−1𝒫𝑟−1 d𝜉 = {

2
2𝑗−1 if 𝑗 = 𝑟

0 otherwise
. (4.7)

1The condition number of𝓜𝑘 would become very large as p increases.



4.2. DGSEM semidiscretization 33

4.1.2. Lagrange polynomials
The Legendre functions (4.1) are but one of many sets of polynomials that span 𝑆ℎ𝑘 (𝛺) (see figure 4.1).
One of such alternatives is the set of Lagrange polynomials {𝑙𝑗(𝜉)}J𝑗=1, usually defined as

𝑙𝑗(𝜉)≔
J

∏
𝑛=1
𝑛≠𝑗

𝜉 − 𝜉𝑛
𝜉𝑗 − 𝜉𝑛

, (4.8)

or, equivalently, in socalled barycentric form—which is preferred in practice [66, §3.4]—

𝑙𝑗(𝜉) =
𝑤𝑏𝑗

(𝜉 − 𝜉𝑗) (∑
J
𝑗=1

𝑤𝑏𝑗
𝜉−𝜉𝑗

)
, 𝑤𝑏𝑗 ≔

1
∏J𝑛=1
𝑛≠𝑗

(𝜉𝑗 − 𝜉𝑛)
; (4.9)

where 𝑤𝑏𝑗 is the barycentric weight associated to 𝑙𝑗(𝜉). The defining feature of this basis is that:

𝑙𝑗(𝜉𝑛) = 𝛿𝑗𝑛≔{
1 if 𝑛 = 𝑗
0 otherwise

. (4.10)

Derivatives of Lagrange polynomials can be evaluated in a number of ways [66, §3.5]. If they are
only needed at the nodes (such as is the case in DGSEM), an efficient approach is to define the following
derivative matrix:

𝓓≔[
𝑑11 ⋯ 𝑑1J
⋮ ⋱ ⋮
𝑑J1 ⋯ 𝑑JJ

] = [
𝑙′1(𝜉1) ⋯ 𝑙′1(𝜉J)
⋮ ⋱ ⋮

𝑙′J(𝜉1) ⋯ 𝑙′J(𝜉J)
] , (4.11)

the entries of which which, using the barycentric form, are [66, §3.5.2]:

𝑑𝑗𝑗 = −
J

∑
𝑛=1

𝑑𝑗𝑛 , 𝑑𝑗𝑛 =
𝑤𝑏𝑛

𝑤𝑏𝑗 (𝜉𝑗 − 𝜉𝑛)
for 𝑛 ≠ 𝑗 . (4.12)

Analogous higherorder derivative matrices, 𝓓(𝜅), can be defined recursively [66, p. 82]:

𝑑(𝜅)𝑗𝑗 = −
J

∑
𝑛=1

𝑑(𝜅)𝑗𝑛 , 𝑑(𝜅)𝑗𝑛 =
𝜅

𝜉𝑗 − 𝜉𝑛
(𝑤

𝑏
𝑛
𝑤𝑏𝑗
𝑑(𝜅−1)𝑗𝑗 − 𝑑(𝜅−1)𝑗𝑛 ) for 𝑛 ≠ 𝑗 . (4.13)

Unlike in the modal case, each Lagrange basis function is itself a polynomial of degree p = J − 1.
Every 𝑙𝑗(𝜉) is associated to one coordinate, 𝜉𝑗—we say that a node exists there. The distribution of
these p+1 nodes is arbitrary, as long as they are unique; each distinct set of nodes results in a specific
basis, with particular properties. This is discussed further in the context of DGSEM in §4.2.2.

4.2. DGSEM semidiscretization
As in the general formulation, the domain 𝛺 is discretized into K elements, 𝛺𝑘 ∈ 𝒯ℎ (§3.1). Each
of those has a counterpart in reference coordinates, 𝜉, such that 𝛺 = [−1, 1] (see §3.1.1). Let trial
and test spaces of each reference element be identical polynomial function spaces of degree p, i.e. :
𝑆ℎ𝑘 (𝛺) = 𝑉ℎ𝑘 (𝛺), dim 𝑆ℎ𝑘 (𝛺) = J and p ≡ J − 1. As a consequence, the number of dimensions of these
spaces is equal to the formal order of accuracy in any approximated function 𝑞ℎ𝑖𝑘 ∈ 𝑆ℎ𝑘 (𝛺), which means
that any polynomial of degree p or less can be represented exactly in the discretization.

4.2.1. Modal representation
Let us first consider the Legendre basis of length J spanning 𝑆ℎ𝑘 (𝛺). The general semidiscrete con
servation law (3.23) particularized to an arbitrary mode 1 ≤ 𝑟 ≤ J and element 𝛺𝑘 ∈ 𝒯ℎ, by properties
4.2 and 4.3, reads:

𝛥𝑥𝑘
2𝑟 − 1

d�̂�𝑟𝑘
d𝑡 + �̆�𝑅𝑘 + (−1)𝑟�̆�𝐿𝑘 =

J

∑
𝑗=1
�̂�𝑗𝑘∫

1

−1
𝒫𝑗−1𝒫′𝑟−1 d𝜉 , (4.14)



34 4. Discontinuous Galerkin Spectral Element Method (DGSEM)

−1 1−1

0

1
𝜉0

𝜉1

𝜉2

𝜉3

(a) Simple monomials

−1 1−1

0

1 𝒫0
𝒫1

𝒫2

𝒫3

(b) Legendre polynomials

−√3
7 +

2
7√

6
5 −√3

7 −
2
7√

6
5

√3
7 −

2
7√

6
5

√3
7 +

2
7√

6
5

−1

0

1
𝑙1 𝑙2 𝑙3

𝑙4

(c) Lagrange polynomials, GaussLegendre nodes

−1 10

1
𝑁31

𝑁32 𝑁33

𝑁34

(d) Bernstein polynomials (see §6.2.2)

Figure 4.1: Polynomial bases spanning a 4dimensional reference finiteelement space.



4.2. DGSEM semidiscretization 35

with left and right edge Riemann fluxes as defined in (3.22).
The integrand on the righthandside of (4.14) is a polynomial of degree 2p − 1, and can thus be

computed exactly via either GaussLegendre or GaussLobatto quadrature of only p + 1 points (see
table 4.2). Should we attempt to avoid aliasing errors by evaluating the interior fluxes as 𝒇 (�̃�ℎ𝑘), the
righthandside would instead be:

∫
1

−1
𝒇 (�̃�ℎ𝑘)𝒫′𝑟−1 d𝜉 = ∫

1

−1
𝒇(

J

∑
𝑗=1
�̂�𝑗𝑘𝒫𝑗−1)𝒫′𝑟−1 d𝜉 , (4.15)

and could either not be evaluated exactly, or doing so would require a number of quadrature points well
above J (see table 4.2)2. That being said, approximating the aforementioned integral with sufficiently
highorder quadrature (dealiasing through overintegration or supercollocation) does mitigate aliasing
driven instabilities in underresolved simulations [65]. The appeal of Jpoint quadrature will become
clear in §4.2.3. Also, see §4.2.5 for some further remarks.

4.2.2. Nodal representation
Given a set of unique (assumed in increasing order, without loss of generality) nodal coordinates,
𝜉1 < 𝜉2 < ⋯ < 𝜉J, there exists a set of Lagrange basis functions (§4.1.2) defining the polynomial of
minimum degree that interpolates over any given function evaluated at each and every 𝜉𝑗. One of such
socalled Lagrange interpolants (a linear combination of Lagrange basis functions) is used in DGSEM
to represent the approximate counterpart of each exact state and flux vector component.

Introducing nodal expansion coefficients for the solution and flux interpolants:

�̌�𝑘 = [�̌�1𝑘 �̌�2𝑘 ⋯ �̌�J𝑘]≔ [�̃�ℎ𝑘(𝑡, 𝜉1) �̃�ℎ𝑘(𝑡, 𝜉2) ⋯ �̃�ℎ𝑘(𝑡, 𝜉J)] , (4.16a)

�̌�𝑘 = [�̌�1𝑘 �̌�2𝑘 ⋯ �̌�J𝑘]≔ [�̃�ℎ𝑘(𝑡, 𝜉1) �̃�ℎ𝑘(𝑡, 𝜉2) ⋯ �̃�ℎ𝑘(𝑡, 𝜉J)] ; (4.16b)

the former satisfy:

�̃�ℎ𝑘(𝑡, 𝜉) =
J

∑
𝑗=1
�̂�𝑗𝑘(𝑡)𝒫𝑗−1(𝜉) =

J

∑
𝑗=1
�̌�𝑗𝑘(𝑡)𝑙𝑗(𝜉) ⟹ �̌�𝑗𝑘(𝑡) =

J

∑
𝑗=1
�̂�𝑗𝑘(𝑡)𝒫𝑗−1(𝜉𝑛) (4.17)

and, therefore, the latter can be conveniently evaluated as:

�̌�𝑗𝑘 = 𝒇 (�̃�ℎ𝑘(𝜉𝑗)) ≡ 𝒇(�̌�𝑗𝑘) . (4.18)

The relationship between Legendre and Lagrange expansion coefficients is used in this report to extend
hierarchical limiters to Lagrangebased methods, including DGSEM (see §8), and to define one type of
numerical boundary condition (§3.6.3). Having chosen a set of nodes, we can define a linear operator
relating these two representations:

�̌�𝑘 ≡ �̂�𝑘𝓥 , 𝓥≔
⎡
⎢
⎢
⎢
⎣

𝒫0(𝜉1) 𝒫0(𝜉2) ⋯ 𝒫0(𝜉J)
𝒫1(𝜉1) 𝒫1(𝜉2) ⋯ 𝒫1(𝜉J)
⋮ ⋮ ⋮

𝒫p(𝜉1) 𝒫p(𝜉2) ⋯ 𝒫p(𝜉J)

⎤
⎥
⎥
⎥
⎦

. (4.19)

Known in the literature as a generalized Vandermonde matrix, 𝓥 is invertible and wellconditioned for
nonuniform nodal distributions [47, §3.1] (see figure 4.2).

Using Lagrange polynomials as trial and test basis functions in (3.23), instead of (4.14), we have:

𝛥𝑥𝑘
2

J

∑
𝑗=1

d�̌�𝑗𝑘
d𝑡 ∫

1

−1
𝑙𝑗𝑙𝑟 d𝜉 + [�̆�𝑙𝑟]𝜕𝛺𝑘 =

J

∑
𝑗=1
�̌�𝑗𝑘∫

1

−1
𝑙𝑗𝑙′𝑟 d𝜉 . (4.20)

2For example, in the Euler equations with polynomial conservative variables, where the momentum and energy flux compo
nents are rational functions (since because pressure involves a quotient of polynomials, in this case). If primitive variables are
discretized instead, the velocity and pressure fluxes are polynomials of degree 3p (in the compressible case) [36].



36 4. Discontinuous Galerkin Spectral Element Method (DGSEM)

Nodes �̃� cond (�̃�)

Equidistant
⎡
⎢
⎢
⎢
⎣

0.1524 0.1179 −0.04286 0.02262
0.1179 0.7714 −0.09643 −0.04286
−0.04286 −0.09643 0.7714 0.1179
0.02262 −0.04286 0.1179 0.1524

⎤
⎥
⎥
⎥
⎦

9.361

GaussLobatto
⎡
⎢
⎢
⎢
⎣

0.1429 0.05324 −0.05324 0.02381
0.05324 0.7143 0.119 −0.05324
−0.05324 0.119 0.7143 0.05324
0.02381 −0.05324 0.05324 0.1429

⎤
⎥
⎥
⎥
⎦

8.65148

Chebyshev
⎡
⎢
⎢
⎢
⎣

0.2309 0.05211 −0.03544 0.0167
0.05211 0.6619 0.05711 −0.03544
−0.03544 0.05711 0.6619 0.05211
0.0167 −0.03544 0.05211 0.2309

⎤
⎥
⎥
⎥
⎦

3.68089

GaussLegendre
⎡
⎢
⎢
⎢
⎣

0.3479 0 0 0
0 0.6521 0 0
0 0 0.6521 0
0 0 0 0.3479

⎤
⎥
⎥
⎥
⎦

1.87476

Table 4.1: 4thorder DGSEM reference element mass matrices and their condition numbers, for various kinds of
node distributions. Inner products between pairs of Lagrange basis functions computed using adaptive quadrature,
with machine precision absolute tolerance. The sum of all entries adds to 2 in all cases.

4.2.3. Collocated quadrature
DGSEM employs collocated interpolation and integration points to evaluate the integrals in (4.20) [49].
This is done by selecting node locations that match the integration points of a chosen quadrature rule.
Both GaussLegendre and GaussLobatto quadratures are commonly employed with DGSEM; some
basic differences between the two are summarized in table 4.2, and exemplified in figure 4.3. The
resulting variants of DGSEM are compared in [38, 40, 67], and references therein. In this literature
study, I consider GaussLegendre DGSEM only. For additional details about it, refer to [66, §8.1.4].
The alternative GaussLobatto DGSEM variant can be seen as a particular case of the onedimensional
nodal DG method described in [47, §3]. Given that (standard) DGSEM assumes both approximate
solution and flux to be Lagrange interpolants, each mass and discrete gradient matrix entry integrand
is a polynomial, respectively, of degree 2p and 2p−1. Therefore these operators can be precomputed
exactly3 and applied directly to the timedependent degrees of freedom at each residual evaluation,
avoiding any interpolation within4 the element.

Quadrature Number of nodes Degree of exactness [104] Nodes at 𝜉 = ±1?
GaussLegendre p + 1 ≥ 1 2p + 1 No
GaussLobatto p + 1 > 1 2p − 1 Yes

Table 4.2: Comparison betweenGaussLegendre andGaussLobatto quadratures, for a polynomial approximation
of degree p. Note that GaussLobatto would not be defined for p = 0, while GaussLegendre DGSEM inherently
reduces to FVM.

3In GaussLobatto DGSEM, it is still possible to obtain an exact mass matrix by exploiting an algebraic relationship that it has
with the Vandermonde matrix associated with a normalized set of Legendre polynomials, see [47, §3.2].

4When using GaussLegendre nodes, however, the approximate state does need to be extrapolated at both edges of each
element, in every residual evaluation, in order to compute the Riemann fluxes used for coupling.



4.2. DGSEM semidiscretization 37

0 5 10 15 20
10−2

10−1

100

101

102

103

J

| d
et
𝓥|

GaussLobatto
Chebyshev
GaussLegendre
Equidistant

(a) Vandermonde determinant; higher is better [47, p. 49]

0 5 10 15 20

100

101

102

103

104

105

106

J

co
n
d
(𝓜

)

GaussLobatto
Chebyshev
GaussLegendre
Equidistant

(b) Mass matrix condition number; lower is better

Figure 4.2: Quantities associated with the robustness of a nodal discretization, for various types of node distribu
tions, as a function of formal order of accuracy.

4.2.4. Semidiscrete DGSEM operators
Collocated GaussLegendre quadrature applied to the integral on the lefthandside of (4.20) reveals:

∫
1

−1
𝑙𝑗𝑙𝑟 d𝜉 =

J

∑
𝑛=1

𝑙𝑗(𝜉𝑛)𝑙𝑟(𝜉𝑛)𝑤𝑛 = {
𝑤𝑟 if 𝑗 = 𝑟

0 otherwise
, (4.21)

i.e. the Legendre polynomial are orthogonal when using collocated GaussLegendre nodes (see table
4.1). The diagonal matrix of Gaussquadrature weights may be interpreted as a reference element
mass matrix:

�̃�≔[
𝑤1 0

⋱
0 𝑤J

] , �̃�−1 =
⎡
⎢
⎢
⎣

1
𝑤1

0
⋱

0 1
𝑤J

⎤
⎥
⎥
⎦
. (4.22)

The discrete gradient component on the righthandside of (4.20) becomes:

∫
1

−1
𝑙𝑗𝑙′𝑟 d𝜉 =

J

∑
𝑛=1

𝑙𝑗(𝜉𝑛)𝑙′𝑟(𝜉𝑛)𝑤𝑛 = 𝑙′𝑟(𝜉𝑗)𝑤𝑗 , (4.23)

and, in turn, warrants the definition of the following modified derivative matrix:

�̃�≔−�̃�𝓓⊺�̃�−1 , 𝑑𝑟𝑗≔−
𝑤𝑗
𝑤𝑟
𝑑𝑗𝑟 . (4.24)

The general hyperbolic conservation law (2.1) in semidiscrete form (3.23), for DGSEM, is:

d�̌�𝑘
d𝑡 + 2

𝛥𝑥𝑘
(�̆�𝑅𝑘 ̃𝑙(1) − �̆�𝐿𝑘 ̃𝑙(−1) + �̌�𝑘�̃�) = 0 , (4.25)



38 4. Discontinuous Galerkin Spectral Element Method (DGSEM)

GaussLegendre

GaussLobatto

𝜉2 = 0𝜉1 = −√3/5 𝜉3 = √3/5

𝜉1 = −1 𝜉4 = 1𝜉2 = −√1/5 𝜉3 = √1/5

Figure 4.3: GaussLegendre and GaussLobatto quadrature points. Both distributions would result in a quadrature
rule of 5th degree of exactness (i.e. exact for polynomials up to 5th degree).

where:
̃𝑙(𝜉)≔ 𝑙⊺(𝜉)�̃�−1 = [ 𝑙1(𝜉)𝑤1

𝑙2(𝜉)
𝑤2

⋯ 𝑙J(𝜉)
𝑤J ] . (4.26)

This corresponds to the particular case of (3.23) in which mass and gradient matrices are, respectively:

𝓜𝑘 =
𝛥𝑥𝑘
2 �̃� , 𝓒𝑘 = �̃�𝓓⊺ . (4.27)

4.2.5. Polynomial aliasing
It has been assumed in the previous derivation that the flux vector component interpolants, which
are polynomials of degree p, are representative of the (potentially nonpolynomial, see §4.2.1) exact
flux vector components. This is unfortunately not the case if the discretization does not have enough
resolution—i.e. if the exact solution is underresolved. In such a situation, interpolation is prone to alias
ing errors, which in the context of DG is often referred to as underintegration—since it is often seen
as a failure to integrate the noninterpolatory flux term (4.15) exactly.

On the positive side, there is a simple (yet possibly expensive) remedy for this problem: by simply
increasing the resolution of the discretization, aliasing effects should become negligible as the exact
solution becomes better and better resolved. Of course, this only applies to smooth solutions, and
is only feasible for exact solutions that are not prohibitively rich in terms of flow scales. An example
of the feasibility of this “brute force” approach is shown in figure 4.4. In the present study, no explicit
dealiasing strategy is employed. For more details on this phenomenon, refer to [11, 39].



4.2. DGSEM semidiscretization 39

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢
𝑓(𝑢)
𝑢ℎ

𝑓ℎ
𝑓(𝑢ℎ)

(a) p = 1

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢
𝑓(𝑢)
𝑢ℎ

𝑓ℎ
𝑓(𝑢ℎ)

(b) p = 3

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢
𝑓(𝑢)
𝑢ℎ

𝑓ℎ
𝑓(𝑢ℎ)

(c) p = 5

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢
𝑓(𝑢)
𝑢ℎ

𝑓ℎ
𝑓(𝑢ℎ)

(d) p = 7

Figure 4.4: Demonstration of polynomial aliasing in DGSEM for 𝑢(𝑥) = sin(𝜋𝑥) and 𝑓(𝑢) = 𝑢2

2 . The approximate
solution and flux, 𝑢ℎ and 𝑓ℎ, are obtained by projecting their exact counterparts (dashed) into the space of all
polynomials of degree p (via adaptive quadrature with machine precision tolerance, see §3.5). Aliasing is mani
festing as a discrepancy between 𝑓(𝑢ℎ) and 𝑓ℎ; for a sufficiently wellresolved solution, the aliased flux becomes
acceptable. Dot markers represent GaussLegendre nodes; nodal distribution has no influence in these results.





5
Flux Reconstruction (FR) or Correction
Procedure via Reconstruction (CPR)

The second method subject to study in this work was originally proposed for hyperbolic conserva
tion laws by Huynh [55] under the name flux reconstruction, as a framework that unified DG (§4) and
spectral difference (SD) or staggered grid (SG) multidomain spectral methods. At the same time, the
approach provided a mechanism (the choice of correction function) through which new methods could
be constructed. Some of these (FR versions of DG and SG/SD) had already been formulated indepen
dently prior to its introduction; others have appeared thanks to it [55, 121]. The correction procedure
via reconstruction denomination was adopted later; note that both FR and CPR refer to the exact same
methodology. The main selling points of FR/CPR are its simplicity, flexibility, and alleged computational
efficiency [128].

The fundamental idea behind FR/CPR is the realization that coupling between adjacent elements,
when done in a discontinuous weakRiemann fashion (§3.3.3), does not require a variational formula
tion of the problem; it instead can be applied, indirectly through a clever mechanism (the flux recon
struction/correction procedure, in this context), to the differential form of the PDE. This derivation of the
method, given in §5.1.1, is consistent with both [55] (which is FR’s original formulation) and [128] (in
which both FR and CPR denominations are recognized as a unique method). Its ties to the general
one introduced in §3.3, are highlighted in §5.1.4 and explored further in §5.3.

5.1. FR/CPR semidiscretization
The derivation of the FR/CPR semidiscrete hyperbolic conservation law is typically done starting from
(2.1), the strong formulation (i.e. the differential form) of the problem. Regardless, solution discretiza
tion is exactly the same as for the general case (§3.2)—more specifically, in fact, it is the same as
for (nodal) DGSEM: exact solution and flux vectors, 𝒒(𝑡, 𝑥) and 𝒇(𝒒), are respectively approximated
as 𝒒ℎ(𝑡, 𝑥) = ⨁K

𝑘=1 𝒒ℎ𝑘(𝑡, 𝑥) and 𝒇ℎ(𝑡, 𝑥) = ⨁K
𝑘=1 𝒇ℎ𝑘(𝑡, 𝑥), in K piecewise polynomial finitedimensional

spaces 𝛺𝑘 ∈ 𝒯ℎ. Each component of the approximate solution and flux vectors is a polynomial of de
gree p ≡ J − 1; each element 𝛺𝑘 has an associated Jdimensional trial function space 𝑆ℎ𝑘 (𝛺), in which
the aforementioned approximations exist.

The trial basis functions used in FR/CPR are, as in DGSEM, the Lagrange polynomials. An ar
bitrary element, 𝛺𝑘, contains J nodes (their number need not be the same for every element). The
distribution of nodes within each element is commonly made according to either GaussLegendre or
GaussLobatto quadrature rules (some correction function may be more conveniently employed in one
particular distribution). In this report, as with DGSEM in the previous chapter, only the former is con
sidered. The degrees of freedom (i.e. nodal values) of flux and solution interpolants are, respectively
(see §4.2.2) �̌�𝑗𝑘≔𝒇(�̌�𝑗𝑘) and �̌�𝑗𝑘.

41



42 5. Flux Reconstruction (FR) or Correction Procedure via Reconstruction (CPR)

5.1.1. Differential formulation
Equation semidiscretization in FR/CPR starts from the strong statement of the general conservation
law in differential form1 (2.1)—as opposed to standard DG discretizations, which start from the weaker
integral formulation, (2.9), which is enforced in a variational sense via test functions—under the premise
that we wish to evaluate the term representing the divergence of the flux directly, that is, avoiding the
use of calculus tools such as the divergence theorem or integration by parts.

For the approximate solution over a particular element 𝛺𝑘, (2.1) reads:

𝜕𝒒ℎ𝑘
𝜕𝑡 + 𝜕𝒇

ℎ
𝑘

𝜕𝑥 = 0 . (5.1)

Two problems need to be overcome:

• The derivative of the flux is illdefined at element interfaces, since 𝒇ℎ (𝑥) will, in general, experi
ence a discontinuity at such locations.

• There is no equation relating the solution on an element with that on another, since there is no
coupling mechanism between elements.

The solution to both these issues consists on constructing a continuous approximation to the exact
flux function, the corrected or reconstructed flux, which is the key ingredient of the FR/CPR frame
work:

𝒇(𝑡, 𝑥) ≃ 𝒉(𝑡, 𝑥) =
K

⨁
𝑘=1

𝒉𝑘(𝑡, 𝑥) , �̃�𝑘(𝑡, 𝜉) =
J+1

∑
𝑟=1

�̌�𝑟𝑘(𝑡)𝑙𝑟,𝑘(𝜉) . (5.2)

As with the regular flux vector, �̃�𝑘 is the reference element version of 𝒉𝑘. Notice that each ℎ𝑖𝑘 is a
polynomial of degree 𝑝 + 1; the reason for this will be made clear further on in the derivation. In fact,
𝒉𝑘 has to satisfy three requirements:

1. ℎ𝑖𝑘 is a polynomial of degree J ≡ 𝑝 + 1, one higher than 𝑞ℎ𝑖𝑘 and 𝑓ℎ𝑖𝑘.

2. ℎ𝑖𝑘 approaches 𝑓ℎ𝑖𝑘 in some sense, i.e. ‖ℎ𝑖𝑘 − 𝑓ℎ𝑖𝑘‖ is minimized in some norm.

3. 𝒉𝑘 takes the value of the Riemann flux at each interface (see §3.3.3). As a consequence, each
component of 𝒉 is continuous over 𝛺 (the entire domain).

The FR/CPR method reduces to using 𝒉𝑘 instead of 𝒇ℎ𝑘 in (5.1),

𝜕𝒒ℎ𝑘
𝜕𝑡 + 𝜕𝒉𝑘𝜕𝑥 = 0 , (5.3)

and (3.4) can be used to cast (5.3) into reference element coordinates. The result is:

𝛥𝑥𝑘
2
𝜕�̃�ℎ𝑘
𝜕𝑡 + 𝜕�̃�𝑘𝜕𝜉 = 0 . (5.4)

Given that �̃�𝑘 and �̃�𝑘 are Lagrange interpolants of different degree, it would seem that (5.4) requires
using two different bases (and sets of nodes) for each element. Thanks to a clever definition of the
former, we shall see that this is actually not the case.

5.1.2. Flux correction
In order to construct �̃�𝑘 from known data, let us start by assigning to it a unique value at element
interfaces (that of the Riemann flux, as mentioned previously):

�̃�𝑘(𝑡, −1) ≡ �̃�𝑘−1(𝑡, 1) = �̆�𝐿𝑘(𝑡) , �̃�𝑘(𝑡, 1) ≡ �̃�𝑘+1(𝑡, −1) = �̆�𝑅𝑘(𝑡) . (5.5)

1FR/CPR can also be derived in its socalled lifting collocation penalty formulation as a particular case of the method of weighted
residuals [125], thus starting from a weak formulation.



5.1. FR/CPR semidiscretization 43

These equalities will be enforced by means of a pair of socalled correction functions, 𝑔𝐿(𝜉) and 𝑔𝑅(𝜉),
associated with the left and right edges of the reference element 𝛺, respectively.

Consider the following (trivial) equalities:

�̃�𝑘(𝑡, 𝜉) = �̃�ℎ𝑘(𝑡, 𝜉) + �̃�𝑘(𝑡, 𝜉) − �̃�ℎ𝑘(𝑡, 𝜉) , (5.6a)
�̃�𝑘(𝑡, 1) = �̃�ℎ𝑘(𝑡, 1) + �̃�𝑘(𝑡, 1) − �̃�ℎ𝑘(𝑡, 1) , (5.6b)

�̃�𝑘(𝑡, −1) = �̃�ℎ𝑘(𝑡, −1) + �̃�𝑘(𝑡, −1) − �̃�ℎ𝑘(𝑡, −1) . (5.6c)

The corrected flux function is defined by combining the three into one in such a way that the differences
between corrected and uncorrected fluxes act as a weighting factors for the correction functions, as
follows:

�̃�𝑘(𝑡, 𝜉)≔ �̃�ℎ𝑘(𝑡, 𝜉) + (�̃�𝑘(𝑡, −1) − �̃�ℎ𝑘(𝑡, −1)) 𝑔𝐿(𝜉) + (�̃�𝑘(𝑡, 1) − �̃�ℎ𝑘(𝑡, 1)) 𝑔𝑅(𝜉) ; (5.7)

under the following constraints:

𝑔𝐿 (−1) = 1 , 𝑔𝐿 (1) = 0 , 𝑔𝑅 (−1) = 0 , 𝑔𝑅 (1) = 1 , (5.8)

and, because of a symmetry argument [55], it is generally possible to obtain the right correction function
from the left one through a reflection about the origin:

𝑔𝑅 (𝜉) = 𝑔𝐿 (−𝜉) , 𝑔′𝑅 (𝜉) = −𝑔′𝐿 (−𝜉) .

These requirements ensure that 𝒉𝑘 takes the Riemann flux values at the edges of 𝛺𝑘, at the same time
that make it possible to separate each edge’s contribution. The actual correction functions to employ
are not uniquely defined by the previous constrains; they remain a design choice (as long as 𝑝 > 0,
see §5.3.2). Four wellknown types of correction functions are detailed in §5.2.

−3 −1 1 3−0.5

0

0.5

1

𝑥

𝑓(𝑥)
𝑔(𝑥)
ℎ(𝑥)

Figure 5.1: The correction procedure applied to three identical linear elements (𝛥𝑥 = 2). A continuous function
ℎ (green) is reconstructed from 𝑓 (blue), which is discontinuous at element interfaces, by adding to it a correction
function 𝑔 (red). Dot markers represent GaussLegendre nodes.

5.1.3. Flux derivative
Application of the gradient operator to (5.7) results in:

𝜕�̃�𝑘
𝜕𝜉 = 𝜕�̃�ℎ𝑘

𝜕𝜉 + (�̃�𝑘(𝑡, −1) − �̃�ℎ𝑘(𝑡, −1)) 𝑔′𝐿 + (�̃�𝑘(𝑡, 1) − �̃�ℎ𝑘(𝑡, 1)) 𝑔′𝑅 . (5.9)

Given that the uncorrected flux vector components are Lagrange interpolants, their gradient can be
conveniently computed at an arbitrary nodal location 𝜉𝑛 ∈ 𝛺𝑘 using the derivativematrix of the Lagrange



44 5. Flux Reconstruction (FR) or Correction Procedure via Reconstruction (CPR)

polynomials, 𝓓, as defined by (4.11):

𝜕�̃�ℎ𝑘
𝜕𝜉 (𝑡, 𝜉𝑛) =

J

∑
𝑗=1
�̌�𝑗𝑘(𝑡)𝑑𝑗,𝑛 (5.10)

The remaining terms in (5.9) are known; this includes the derivative of the correction function, which is
the actual quantity defining a particular FR/CPR variant (as opposed to the correction function itself).

All FR/CPR results in this report have been obtained using (5.10), thus maintaining consistency with
the other two methods reviewed. As an alternative, Wang and Gao [127] claim that the following (an
application of the chain rule) may result in increased accuracy in some cases:

𝜕�̃�ℎ𝑘
𝜕𝜉 (𝑡, 𝜉𝑛) = 𝑨 (�̌�𝑛𝑘)

J

∑
𝑗=1
�̌�𝑗𝑘𝑑𝑗,𝑛 , (5.11)

where the Jacobian matrix 𝑨 is evaluated at the state �̃�ℎ𝑘(𝑡, 𝜉𝑛) ≡ �̌�𝑛𝑘(𝑡). This second version of the
uncorrected flux derivative term, however, I have not attempted.

All ingredients are now in place to evaluate (5.4) for the p + 1 nodal values of the approximate
solution; this completes the spatial semidiscretization of the strong form of the conservation law.

5.1.4. Semidiscrete FR/CPR operators
Retaking the derivation back from (5.4), using (5.9) to evaluate the partial derivative of the corrected
flux function, we obtain:

𝛥𝑥𝑘
2
𝜕�̃�ℎ𝑘
𝜕𝑡 + 𝜕�̃�

ℎ
𝑘

𝜕𝜉 + 𝛥�̆�𝐿𝑘𝑔′𝐿 + 𝛥�̆�𝑅𝑘𝑔′𝑅 = 0 , (5.12)

where:

𝛥�̆�𝐿𝑘(𝑡)≔ �̃�𝑘(𝑡, −1) − �̃�ℎ𝑘(𝑡, −1) ≡ �̆�𝐿𝑘(𝑡) − �̃�ℎ𝑘(𝑡, −1) , (5.13a)
𝛥�̆�𝑅𝑘(𝑡)≔ �̃�𝑘(𝑡, 1) − �̃�ℎ𝑘(𝑡, 1) ≡ �̆�𝑅𝑘(𝑡) − �̃�ℎ𝑘(𝑡, 1) (5.13b)

correspond to the differences between corrected and uncorrected fluxes at the boundaries of 𝛺𝑘.
It now becomes clear why the corrected flux function had to be defined as a polynomial of degree J:

we are actually interested in its derivative; 𝑆ℎ𝑘 being Jdimensional, it is most natural to consider a cor
rection function such that 𝑔′(𝜉) ∈ 𝑆ℎ𝑘 (𝛺). Equation (5.12), using 𝑔′(𝝃⊺) = [𝑔′(𝜉1) 𝑔′(𝜉2) ⋯ 𝑔′(𝜉J)],
may be rewritten in matrix form as:

d�̌�𝑘
d𝑡 + 2

𝛥𝑥𝑘
(�̌�𝑘𝓓+ 𝛥�̆�𝐿𝑘𝑔′𝐿(𝝃⊺) + 𝛥�̆�𝑅𝑘𝑔′𝑅(𝝃⊺)) = 0 , (5.14)

A termbyterm comparison between (5.14) and (3.23) reveals that the general formulation in §3.3.4
can be particularized to FR/CPR by setting the mass and gradient operators to:

𝓜𝑘 =
𝛥𝑥𝑘
2 𝑰 , 𝓒𝑘 = 𝓓 , (5.15)

and replacing the element’s net outward flux term, [�̆�𝝋⊺𝑘]𝜕𝛺𝑘= �̆�
𝑅
𝑘𝝋⊺𝑘(1) − �̆�𝐿𝑘𝝋⊺𝑘(−1), as follows:

�̆�𝑅𝑘𝝋⊺𝑘(1) ← 𝛥�̆�𝑅𝑘𝑔′𝑅(𝝃⊺) , −�̆�𝐿𝑘𝝋⊺𝑘(−1) ← 𝛥�̆�𝐿𝑘𝑔′𝐿(𝝃⊺) . (5.16)

In relation to both (4.27) and (6.17), their FR/CPR counterparts (5.15) are indeed remarkably simple.
Moreover, with its mass matrix being the identity, the conditioning of (5.14) does not depend on the dis
cretization order or the nodal distribution chosen2. Also, no numerical integration has been necessary
in any step of the derivation (nor evaluation) of the FR/CPR spatial residual operator.
2Nevertheless, it has been reported in the literature that using nodal locations matching the quadrature points of a “highstrength”
quadrature rule is critical to achieve nonlinear stability [56, §5.4].



5.2. Correction functions 45

It should be noted that, in general, the extrapolation of the uncorrected flux function to a bound
ary is not equal to the flux function applied to the state extrapolated to that same boundary; that is:
𝒇ℎ(𝑡, ±1) ≠ 𝒇 (𝒒ℎ(𝑡, ±1)). Therefore, when using a GaussLegendre nodal distribution, it will be nec
essary in FR/CPR to extrapolate both 𝒒ℎ𝑘 and 𝒇ℎ𝑘 at both edges of every 𝛺𝑘 ∈ 𝒯ℎ, in order to evaluate
(5.13). This could be avoided by employing e.g. GaussLobatto nodes (any distribution in which a node
is placed at each edge).

5.2. Correction functions
Specification of an actual correction function (or rather, its derivative at a set of nodes) is needed to fully
define the FR/CPR discretization. In this section, the most common of such are listed—specifically, all
definitions are given for the left correction function, 𝑔𝐿(𝜉). Accuracy and stability results reported in this
chapter are taken from [55].

It is reasonable to assume that the optimal correction function is problemdependent [55]; in this
context, the flexibility of FR/CPR to produce various methods according to the choice of 𝑔 should be
seen as a relevant strength, as it allows tailoring the tradeoff between accuracy and stability to each
particular case. Huynh [55] originally put forward three kinds of correction functions. The two first ones
reproduce, from within the FR/CPR framework, the discontinuous Galerkin and spectral difference
schemes; the third, brings about a completely new family of methods. An additional forth kind was
discovered by Vincent et al. [121], and is further explored in [122].

5.2.1. DG correction function
The first (left) correction function, denoted 𝑔DG, is designed so that it exactly reproduces DGSEM; see
§5.3. This happens to be the right3 Radau polynomial of degree J, 𝑅J𝑅(𝜉), which can be evaluated using
the Legendre ones (4.1) as:

𝑔DG = 𝑅J𝑅≔
(−1)J

2 (𝒫J − 𝒫J−1) . (5.17)

Taking the gradient of (5.17), leads to:

𝑔′DG =
(−1)J

2 (𝒫′J − 𝒫′J−1) , (5.18)

with the following simplified expressions for its values at the edges of 𝛺:

𝑔′DG(−1) = −
J2
2 , 𝑔′DG(1) = − (−1)

J J
2 . (5.19)

This version of FR/CPR achieves the highest formal order of accuracy among all known alternatives
(see table 5.1). Moreover, under Fourier analysis, it seems to possess favorable stability characteristics
up to arbitrarily high order. Its maximum allowable timestep size, however, is relatively small [55,
figures 6.3, 6.5 and 6.7].

5.2.2. SG/SD correction function
A second correction function, 𝑔SG, recovers a simplified version of the staggered grid (SG) scheme,
also known as spectral difference (SD). Its FR/CPR version has the advantage over SG’s original form
of requiring only one grid. Compared with DG, this method has a slightly larger allowable timestep
size, but at the cost of losing DG’s alleged superaccuracy and being mildly unstable for all degrees
[55].

This correction function is defined as the Jth degree polynomial that, given a set of J+1 Chebyshev
quadrature points (see [66, section 3.2.3]):

𝜉𝑚 = − cos(
𝑚
J 𝜋) , 𝑚 = 0, 1, … , J , (5.20)

interpolates over the values:

𝑔SG(𝜉𝑚) = {
1 if 𝑚 = 0
0 otherwise

. (5.21)

3Note that the right Radau polynomial is the left correction function, and viceversa.



46 5. Flux Reconstruction (FR) or Correction Procedure via Reconstruction (CPR)

5.2.3. Huynh’s correction functions
Many correction functions can be defined as interpolants over a given set of values. The sample
locations of these (as in the previous example) have nothing to do with the nodes of the discretization.

In addition to the two previous examples, Huynh [55] experimented with several other correction
functions, leading to new methods. Among these, one interesting example is:

𝑔2 =
(J − 1)𝑅J𝑅 + J𝑅J−1𝑅

2J − 1 , J > 1 . (5.22)

This correction function is obtained if, in addition to enforcing 𝑔𝐿 (−1) = 1 and 𝑔𝐿 (1) = 0, a zero for its
derivative is also specified at 𝜉 = 1: 𝑔′𝐿 (1) = 0 (hence its designation as 𝑔2).

A remarkable feature of this left correction function is that its derivative is zero at all but the first
(leftmost) node of the Jpoint GaussLobatto quadrature rule. That is, for a sequence −1 < 𝜉2 < ⋯ <
𝜉J−1 < 1 of J GaussLobatto quadrature points:

𝑔′2(𝜉𝑚) = {
𝑔′2(−1) = (1 − J)

J
2 if 𝑚 = 1

0 otherwise
. (5.23)

Huynh [55] alternatively uses the designation 𝑔Lump,Lo for this function, meaning that all the effect
of the correction is lumped (i.e. concentrated) to its edge’s Lobatto node (as it is zero at all others). An
FR/CPR implementation that uses this correction function in conjunction with a GaussLobatto distri
bution of J solution nodes can, therefore, be particularly simple and economical. Additionally, such as
scheme is found to be stable for all degrees and to allow a timestep size twice as large as that of DG,
with its accuracy being reduced only by one order (in optimal conditions).

Analogous correction functions can be designed using other point distributions, e.g. Chebyshev
(𝑔Lump,Ch). Extending the procedure that led to 𝑔SG, new schemes of the SD/SG kind can be obtained
by directly selecting the J − 1 additional conditions that its correction function should satisfy (recall that
𝑔𝐿 and 𝑔𝑅 are polynomials of degree J and, therefore, require J + 1 constraints to be unique—two of
which have already been imposed). For example, let 𝑔Ga be defined as the interpolant for which:

𝑔Ga(𝜉) = {
1 if 𝜉 = −1
0 if 𝜉 = 𝜉𝑚
0 if 𝜉 = 1

, (5.24)

where 𝜉𝑚 ∈ {𝜉1, 𝜉2, … , 𝜉J−1}, in this case the set of J − 1 GaussLegendre quadrature points extending
over the reference element 𝛺. Analogously, if instead of the GaussLegendre points one would use
GaussLobatto ones, a new correction function would arise: 𝑔Lo. A comparative summary of the main
features of all correction functions mentioned so far is given in table 5.1.

Correction function Max. accuracy order Max. 𝛥𝑡
𝛥𝑡DG

Linearly stable?

𝑔DG 2p + 1 1 3

𝑔Ga 2p ≈ 1.5 3

𝑔2 ≡ 𝑔Lump,Lo 2p ≈ 2 3

𝑔Lump,Ch p + 1 – 3

𝑔SG p + 1 ≈ 1.6 7

𝑔Lo p + 1 – 7

Table 5.1: Comparative summary of the properties of various FR/CPR variants when applied to the linear advection
equation (2.19) with a degree 𝑝 approximation, according to the correction function employed. Based on Fourier
analysis results reported in [55]. Orders of accuracy were obtained from (A.65). Allowable timestep size ratios
shown correspond to the RK3(3) scheme and p = 3.



5.2. Correction functions 47

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2−0.5

0

0.5

1

1.5

𝜉

𝑔 𝐿
𝑔DG
𝑔Ga
𝑔2
4point Radau
3point Gauss
4point Lobatto

Figure 5.2: Cubic (left) correction functions—quadratic approximate solution and flux—discovered by Huynh [55].
Notice that each kind of correction function is associated to certain distribution of nodes; these are either its interior
zeros (𝑔Ga) or its local extrema.

5.2.4. Energystable correction functions
Vincent et al. [121] introduced an entire family of correction functions parameterized with a single scalar
quantity, 𝑐. These are now known as VCJHtype correction functions. By design, all 𝑔VCJH functions
lead to linearly stable schemes, provided that 𝑐− < 𝑐 < 𝑐∞ (and adequate timestep size restrictions);
the lower bound of this interval, which depends on the polynomial degree of the approximate solution,
is given by:

𝑐− =
−2

(2p + 1) (𝑎pp!)
2 , (5.25)

where 𝑎p is the coefficient of the leading monomial term of the Legendre polynomial of degree p:

𝑎p =
(2p)!
2p (p!)2

. (5.26)

There is no finite upper bound for 𝑐, i.e. 𝑐∞ → ∞. Note that 𝑐− < 0 (see table 5.2). On the opposite end
of its range, it turns out that 𝑐∞ results in a valid FR/CPR scheme [121], 𝑔∞ being equivalent to 𝑔DG of
degree p (i.e. lowered by one)—see figure 5.3.

For every value of 𝑐, left and right VCJHtype correction functions of degree p + 1 > 1 can be
constructed from the following general definition:

𝑔𝐿 =
(−1)p

2 (𝒫p −
𝜂𝒫p−1 + 𝒫p+1

1 + 𝜂 ) , 𝑔𝑅 =
1
2 (𝒫p +

𝜂𝒫p−1 + 𝒫p+1
1 + 𝜂 ) , (5.27)

where:

𝜂≔
𝑐 (2p + 1) (𝑎pp!)

2

2 . (5.28)

Particular values for 𝑐 that recover the most interesting of the functions studied by Huynh [55] are:

𝑐DG≔0 , 𝑐Ga≔
2p

(2p + 1) (p + 1) (𝑎pp!)
2 , 𝑐2≔

2(p + 1)
(2p + 1) p (𝑎pp!)

2 ; (5.29)

or, in terms of 𝜂:

𝜂− = −1 , 𝜂DG = 0 , 𝜂Ga =
p

p + 1 , 𝜂2 =
p + 1
p , 𝜂∞ = ∞ . (5.30)



48 5. Flux Reconstruction (FR) or Correction Procedure via Reconstruction (CPR)

This type of correction functions has later been found to be contained in an even larger set, sharing
the same favorable stability properties [122]. It should be pointed out that the definition of the VCJH
family of correction functions (5.27) breaks down for 𝑝 = 0. In that case, only one correction function
satisfies (5.8) (see §5.3.2): 𝑔𝐿 = (1 − 𝜉)/2.

p 𝑐− 𝑐DG 𝑐Ga 𝑐2

1 − 2/3≈− 0.667 0 1/3≈0.333 4/3≈1.333

2 − 2/45≈− 4.444 × 10−2 0 4/135≈2.963 × 10−2 1/15≈6.667 × 10−2

3 − 2/1575≈− 1.270 × 10−3 0 1/1050≈9.524 × 10−4 8/4725≈1.693 × 10−3

4 − 2/99225≈− 2.016 × 10−5 0 8/496125≈1.612 × 10−5 1/39690≈2.520 × 10−5

5 − 2/9823 275≈− 2.036 × 10−7 0 1/5893 965≈1.697 × 10−7 4/16372 125≈2.443 × 10−7

Table 5.2: Value of the 𝑐 parameter for the main FR/CPR correction functions, as the degree increases.

5.3. FR/CPR and the discontinuous Galerkin method
Huynh [55] proved, as already mentioned, that the choice of 𝑔DG as correction function will result in
a scheme that is identical to the Lagrange polynomialbased (i.e. nodal) DG method. Such a method
is identical, in turn, to DGSEM as presented in chapter 4; this is because both it and FR/CPR (in this
report) employ GaussLegendre nodes.

The reverse is not exactly true; however, it is made manifest in §5.1.4 that—leaving out the net
boundary flux term, in which correction functions play their role—the mass and discrete gradient matri
ces are consistent with the general formulation in 3.3. In fact, this sets some requirements on the set
of test functions that would result in said FR/CPR semidiscrete operators. Specifically, for all 𝑗, 𝜑𝑛𝑘
satisfies:

∫
1

−1
𝑙𝑗𝜑𝑛𝑘 d𝜉 = 𝑙𝑗(𝜉𝑛) , ∫

1

−1
𝑙′𝑗𝜑𝑛𝑘 d𝜉 = 𝑙′𝑗(𝜉𝑛) . (5.31)

These suggest that 𝜑𝑛𝑘 = 𝛿(𝜉−𝜉𝑛), Dirac’s Delta function centered at node 𝜉𝑛, for which, by definition:

𝛿(𝜉 − 𝜉𝑛) = 0, 𝜉 ≠ 𝜉𝑛 , ∫
𝜉𝑛+𝜀

𝜉𝑛−𝜀
𝑓𝛿(𝜉 − 𝜉𝑛) d𝜉 = 𝑓(𝜉𝑛), 𝜀 > 0 (5.32)

for any function 𝑓 ∶ ℝ → ℝ [6, §1.15].
My interpretation of this result is that the discrete version of the conservation law is being prescribed

at each node only. However, any Lagrange interpolant is uniquely defined by its nodal values; therefore,
the approximate solution is nevertheless still identical to that of DGSEM (assuming that the adequate
correction function is used as well), provided that both approximate solutions are initially the same (see
§5.3.1). This idea of FR/CPR seen as a nonstandard application of the method of weighted residuals
is briefly explored in [55].

5.3.1. Initialization
As mentioned in §5.3, the semidiscrete conservation law obtained using FR/CPR’s version of DG is
identical to that of DGSEM. However, the approximate solution obtained with these two methods will
generally be identical at a given instant 𝑡 > 𝑡0 only if it starts from an identical numerical initial condition.
The problem is that, strictly following the general initialization procedure described in §3.5—i.e. using
(3.34) with the mass matrix defined for FR/CPR by (5.15) and Dirac delta test functions (see §5.3)—



5.3. FR/CPR and the discontinuous Galerkin method 49

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

𝜉

𝑔 𝐿

𝜂−/2
𝜂DG
𝜂Ga
𝜂2
𝜂∞

(a) Quadratic (p = 1 ⟺ J = 2)

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

𝜉

𝑔 𝐿

𝜂−/2
𝜂DG
𝜂Ga
𝜂2
𝜂∞

(b) Cubic (p = 2 ⟺ J = 3)

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

𝜉

𝑔 𝐿

𝜂−/2
𝜂DG
𝜂Ga
𝜂2
𝜂∞

(c) Quartic (p = 3 ⟺ J = 4)

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

𝜉

𝑔 𝐿

𝜂−/2
𝜂DG
𝜂Ga
𝜂2
𝜂∞

(d) Quintic (p = 4 ⟺ J = 5)

Figure 5.3: Some energystable (left) correction functions.



50 5. Flux Reconstruction (FR) or Correction Procedure via Reconstruction (CPR)

would result in an interpolatory (rather than 𝐿2) projection:

∫
1

−1
𝑞0𝑖 (𝒳𝑘(𝜉)) 𝛿(𝜉 − 𝜉𝑛) d𝜉 = ∫

1

−1

J

∑
𝑗=1
�̌�𝑖𝑗𝑘𝑙𝑗(𝜉)𝛿(𝜉 − 𝜉𝑛) d𝜉 ⟹ �̌�𝑖𝑛𝑘 = 𝑞0𝑖 (𝒳𝑘(𝜉𝑛)) . (5.33)

In general, the polynomial that interpolates the exact initial solution at a given set of nodes is not
the same as that which minimizes the 𝐿2 norm of the error between it and that same exact solution.
Therefore, in order to establish a fair framework in which to compare experimental results, all FR/CPR
approximate initial conditions shown in this report are obtained by interpolating its DGSEM counterpart
(of the same degree). This is equivalent tomomentarily (only when projecting the initial condition) using
the Lagrange polynomials as test basis functions in (3.33).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.2

0

0.2

0.4

0.6

0.8

1

𝜉

Exact
𝐿2 projection
Interpolation

Figure 5.4: Comparison between interpolatory (red) and 𝐿2norm preserving (blue) approximations of a Gaussian
hump, on a polynomial finiteelement of degree p = 6. Markers denote nodes (GaussLegendre).

5.3.2. FR/CPR and the finite volume method
It is worth considering the particular case of an FR/CPR discretization with 𝑝 = 0, i.e. zero degree ap
proximation. Because this translates in assuming the solution polynomials to be simply constants, one
would expect this case to reduce to the first order finite volume method (as is the case with DGSEM);
it can be easily proven that this is indeed true.

Proof. Since the solution is approximated as a constant, the correction functions are linear polynomials.
Each of these is, therefore, uniquely defined by its two edge constraints: 𝑔𝐿(−1) = 1, 𝑔𝐿(1) = 0 and
conversely for 𝑔𝑅. The uncorrected flux is approximated with the same degree as the solution; hence, it
is also a constant and its derivative is zero. Therefore, the term associated with its derivative vanishes
from equation 5.12:

𝜕�̃�ℎ𝑘
𝜕𝜉 = 0 ⟹ 𝛥𝑥𝑘

2
d�̃�ℎ𝑘
d𝑡 + 𝛥�̆�𝐿𝑘𝑔′𝐿 + 𝛥�̆�𝑅𝑘𝑔′𝑅 = 0 . (5.34)

The derivatives of 𝑔𝐿 and 𝑔𝑅, these being linear functions subject to (5.8), necessarily have to be:

𝑔′𝐿 = −
1
2 , 𝑔′𝑅 =

1
2 . (5.35)

Equation (5.14) becomes:

𝛥𝑥𝑘
2

d�̃�ℎ𝑘
d𝑡 + 12 (−�̆�

𝐿
𝑘 + �̃�ℎ𝑘(−1) + �̆�𝑅𝑘 − �̃�ℎ𝑘(1)) = 0 , (5.36)



5.3. FR/CPR and the discontinuous Galerkin method 51

but the uncorrected flux is also approximated as a constant, so �̃�ℎ𝑘(−1) = �̃�ℎ𝑘(1). Therefore, (5.14)
turns out to be:

𝛥𝑥𝑘
d�̃�ℎ𝑘
d𝑡 + �̆�𝑅𝑘 − �̆�𝐿𝑘 = 0 , (5.37)

which is identical to the semidiscrete form of the finite volume method.





6
Isogeometric Analysis (IGA)

Isogeometric analysis was first proposed in [54] and further established in [28]. In essence, it consists
on using the basis employed by the geometrical representation of a domain (e.g. in a CAD program)
to approximate the solution fields on it. It can be seen as an evolution of the isoparametric concept of
classical finite element analysis (FEA) [28, §3.1]. According to the literature, IGA has already demon
strated superior accuracy to traditional FEA in several problems, including (incompressible) turbulent
flows [28, §9.4].

The last research object considered in the present work is a DG method employing Bsplines as
basis functions, to which I will refer as discontinuous galerkin isogeometric analysis (DGIGA). Isogeo
metric highorder methods have been applied to hyperbolic conservation laws only recently, in [57, 90]
and [31, 32]. Given that the geometric advantages of an IGA formulation of DG cannot be explored
in one dimension, I focus in this thesis on the effects of using NURBS—actually, and in particular, B
spline—basis functions, as opposed to the more conventional Lagrange polynomials of the previous
two methods.

6.1. Basis splines (Bsplines)
A Bspline is a piecewisepolynomial curve of degree p. The locations (in reference coordinates) where
a polynomial segment starts or ends are called breakpoints [97, p. 51]. I will refer in this report to the
intervals between to breakpoints as breakpoint spans; consequently, any Bspline is 𝐶∞ within each
of its breakpoint spans. The domain where a Bspline is defined is called patch. Any Bspline basis
function (in 1D) will therefore be associated with at least two breakpoints: the edges of the patch.

6.1.1. Knot vector
A sequence of nondecreasing (possibly repeated) real values defines a socalled knot vector :

𝛯≔{𝜉1, 𝜉2, … , 𝜉J+p+1} , (6.1)

where each 𝜉𝑙 ∈ ℝ is a knot, and every halfopen interval 𝛴𝑙≔[𝜉𝑙 , 𝜉𝑙+1) is a knot span. The set of
distinct knot values equals the set of breakpoints, as defined above; likewise, every breakpoint span
corresponds to a knot span of nonzero size.

Knot vectors can be uniform or nonuniform, depending on whether knots are equidistantly spaced
(in reference coordinates) or not. They can also be either open1or closed, the former being those for
which the first and last knots have multiplicity m = p + 1; all knot vectors that appear in this report are
open.

6.1.2. Basis functions
An open knot vector of length J + p + 1 defines the set {𝑁p1 , … , 𝑁pJ } of linearly independent Bspline
functions, each of piecewisepolynomial degree p, which constitute a basis. Evaluation of 𝑁p𝑗 ∶ ℝ → ℝ
1Open knot vectors are also referred to as nonperiodic or clamped in the literature.

53



54 6. Isogeometric Analysis (IGA)

can be carried out via:

𝑁0𝑗 (𝜉) = {
1 if 𝜉 ∈ 𝛴𝑗
0 otherwise

, (6.2a)

𝑁p𝑗 (𝜉) =
𝜉 − 𝜉𝑗
𝜉𝑗+p − 𝜉𝑗

𝑁p−1𝑗 (𝜉) +
𝜉𝑗+p+1 − 𝜉
𝜉𝑗+p+1 − 𝜉𝑗+1

𝑁p−1𝑗+1 (𝜉) , (6.2b)

which is known as the Coxde Boor recursive formula (see figure 6.1). Derivatives of Bspline basis
functions can also be computed recursively. First derivatives are given by [97, §2.3]:

(𝑁p𝑗 )
′
= p
𝜉𝑗+p − 𝜉𝑗

𝑁p−1𝑗 − p
𝜉𝑗+p+1 − 𝜉𝑗+1

𝑁p−1𝑗+1 . (6.3)

A trivial generalization of (6.3) to an arbitrary 𝜅th derivative is:

(𝑁p𝑗 )
(𝜅)
= p
𝜉𝑗+p − 𝜉𝑗

(𝑁p−1𝑗 )
(𝜅−1)

− p
𝜉𝑗+p+1 − 𝜉𝑗+1

(𝑁p−1𝑗+1 )
(𝜅−1)

. (6.4)

Equations (6.2), (6.3) and (6.4) can all be implemented efficiently2 following the guidelines in [97, §2.5].
This basis has a number of interesting properties, listed here without proof (refer to [97, §§ 2.2,

2.4]). Note that orthogonality is not one of them.
Property 6.1 (local support). Every basis function has nonzero support over p + 1 knot spans, more
precisely: 𝑁p𝑗 (𝜉) = 0 for all 𝜉 ∉ [𝜉𝑗 , 𝜉𝑗+p+1). As a consequence, each basis function shares support
with, at most, 2p + 1 functions (up to p on each side, plus itself), regardless of knot multiplicities. This
implies that discrete IGA operators (e.g.mass matrix) have the same bandwidth as those of classical
FEA [28, p. 22].
Property 6.2. Given a knot span 𝛴𝑙, only the functions 𝑁p𝑙−p, … , 𝑁

p
𝑙 (if defined) have nonzero support

on it, i.e. a maximum of p + 1 basis functions. If 𝛴𝑙 is a break span, exactly p + 1 basis functions are
nonzero over it.
Property 6.3 (nonnegativity). 𝑁p𝑗 (𝜉) ≥ 0 for all 𝑗, p, 𝜉.

Property 6.4 (partition of unity). ∑𝑙𝑗=𝑙−p𝑁
p
𝑗 (𝜉) = 1 for all 𝜉 ∈ 𝛴𝑙, i.e. the addition of all basis functions

with support on a knot span is unity at any point within that knot span.
Property 6.5. All derivatives of a basis function exists within a knot span, i.e.𝑁p𝑗 (𝜉) ∈ 𝐶∞ for all 𝜉 ∈
(𝜉𝑙 , 𝜉𝑙+1). At a breakpoint, 𝑁p𝑗 ∈ 𝐶p−m (m is the number of knots sharing that breakpoint’s location); in
particular, open knot vectors impose 𝐶−1 continuity at patch edges. For the same reason, continuity can
be at most 𝐶p−1 across breakpoint spans. Increasing the degree increases continuity (smoothness),
while increasing knot multiplicity reduces it.
Property 6.6. Any basis function of degree p > 0 has exactly one maximum.

6.1.3. Bspline curves
Bsplines are used in CAD software to generate complex geometric shapes (curves, surfaces and
solids) in two or threedimensional space. Their interpretation as geometric entities is quite intuitive,
and so I use it here to facilitate the introduction of the main elements that will later be “repurposed” to
construct an IGA discretization (§6.3). Higherdimensional Bspline shapes, i.e. surfaces and solids,
can be built via tensor products between univariate Bspline bases [28, §2.1.3]; only said univariate
(i.e. single knot vector) case is considered in this report. A set of Bspline basis functions obtained from
(6.2) may be used to generate parametric curves 𝒄∶ ℝ → ℝ𝑑 via linear combination:

𝒄(𝜉)≔
J

∑
𝑗=1
𝒃𝑗𝑁p𝑗 (𝜉), 𝜉1 ≤ 𝜉 ≤ 𝜉J+1 . (6.5)

2It is possible to evaluate these expressions as is, if one takes the precaution of replacing any indetermination of the type 0
0 by

0; a welldesigned algorithm avoids these terms altogether.



6.2. Related bases 55

𝑁0
1

𝑁0
2

𝑁0
3

𝑁0
4

⋮

𝑁1
1

𝑁1
2

𝑁1
3

⋮

𝑁2
1

𝑁2
2

⋮

𝑁3
1

⋮

Figure 6.1: Tabular representation of (6.2): a given basis function is generated via a linear combination of its
upperleft and lowerleft neighbors in this arrangement; its domain of nonzero support is the union of these two’s
respective ones.

Thus, 𝒄(𝜉) is a onedimensional shape in a 𝑑dimensional space, parameterized by 𝜉, and each of
its 𝑑 components exists in a Jdimensional function space spanned by the Bspline basis functions
associated to some given knot vector.

Each of the J vectors 𝒃𝑗 ∈ ℝ𝑑 is given the name control point; the entire set of them defines the
control polygon associated to 𝒄(𝜉). These control points (in combination with the set of knots) generalize
the role of nodes in a Lagrange polynomial expansion, in the sense that they represent the expansion
coefficients of the basis while being associated to a particular location. With a Bspline basis, however,
the Bspline curve—itself analogous to the Lagrange interpolant—does not interpolate over the control
point positions in general; qualitatively, a control point “tends to pull” the Bspline curve towards it, but
may fail to do so all the way to intersection.

A number of properties of Bspline curves follow from those of their basis functions [97, §3.2],
namely:
Property 6.7. The Bspline curve 𝒄(𝜉) is piecewisepolynomial of degree p; it requires J control points
(one per basis function) and a knot vector of length J + p + 1.
Property 6.8 (endpoint interpolation). The curve intersects its first and last control points i.e. : 𝒄 (𝜉1) =
𝒃1 and 𝒄 (𝜉J+p+1) = 𝒃J.
Property 6.9 (affine invariance). Any affine transformation can be applied to the curve indirectly, by
applying it to its control points.
Property 6.10 (strong convex hull). The curve is contained in the convex hull of its control polygon. More
specifically, the portion of 𝒄(𝜉) for 𝜉 ∈ 𝛴𝑙 such that p < 𝑙 < J, is in the convex hull of the 𝒃𝑙−p, … , 𝒃𝑙+1
control points.
Property 6.11 (local modification scheme). A change in 𝒃𝑗 can only affect the shape of the curve in the
interval 𝜉 ∈ [𝜉𝑗 , 𝜉𝑗+p+1). This is a consequence of the local support of the basis.
Property 6.12. The Bspline curve can be regarded as an approximation to its control polygon. The
higher the degree, the worse this approximation becomes—with p = 1 being exact. Note, however,
that the entity of interest is usually not the control polygon but the curve.
Property 6.13 (variation diminishing). No line (if 𝑑 = 2; plane if 𝑑 = 3) can have more intersections
with a Bspline curve than with its control polygon. This is illustrated in figure 6.4.

6.2. Related bases
It is insightful to compare Bsplines to other sets of basis functions. This might help us to identify critical
differences with the previous methods, as well as possible equivalences.

6.2.1. Nonuniform rational Bsplines (NURBS)
NURBS were the original basis functions of choice for IGA, due to their prevalence in geometry gener
ation software used in the computer aided engineering (CAE) industry [28, §1.1.2]. They are obtained



56 6. Isogeometric Analysis (IGA)

−1 −1/2 0 1/2 10

1
𝑁3
1

𝑁3
2 𝑁3

3
𝑁3
4 𝑁3

5 𝑁3
6

𝑁3
7

(a) 𝛯 = {−1,−1,−1,−1,− 12 , 0,
1
2 , 1, 1, 1, 1}

−1 −1/2 0 1/2 10

1
𝑁3
1

𝑁3
2 𝑁3

3

𝑁3
4 𝑁3

5

𝑁3
6 𝑁3

7 𝑁3
8 𝑁3

9

𝑁3
10

(b) 𝛯 = {−1,−1,−1,−1,− 12 , 0, 0,
1
2 ,
1
2 ,
1
2 , 1, 1, 1, 1}

Figure 6.2: Examples of cubic Bspline function bases for the reference patch.

via weighted rational combinations of Bsplines, in such a way that any Bspline can be seen as a par
ticular case of NURBS. The advantage of NURBS over nonrational Bsplines is that they allow exact
representation of analytic shapes beyond those amenable to polynomials, namely conics (in 2D) and
quadrics (in 3D), while at the same time allowing representation of freeform shapes. It is debatable
whether such a feature justifies the added complexity over nonrational Bsplines, even in CAD applica
tions [98]. More recently developed alternatives (e.g. Tsplines) might prove particularly advantageous
in IGA [28, §13]. In any case, rational Bsplines are left outside the scope of the current study; more
details on them can be found in [28, 97].

6.2.2. Bernstein polynomials and Bézier curves
An open knot vector such as 𝛯 = {−1,… ,−1, 1, … , 1} (i.e. that has a single break span) generates a set
of basis functions known as the Bernstein polynomials (see figure 4.1). Such a basis has the same
length as the Legendre and Lagrange ones of the same degree, J = p+1, and all three span the same
function space: that of all polynomials of degree up to p. Bspline curves employing such a polynomial
basis have historically been referred to as Bézier curves, i.e. Bsplines with a single break point span.

It is possible to transform a general Bspline to/from piecewiseBézier curves without changing its
geometry via a process known as knot insertion [97, §5.2]. In [31, 32], for example, an isogeometric DG
method is proposed exclusively for Bézier elements, taking advantage of the fact that such a conversion
is available.

6.2.3. Classical FEA vs. IGA
In continuous Galerkin methods, it is typical to use Lagrange basis functions within each (continuously
coupled) element, leading to 𝐶0 smoothness for the approximate solution overall. Bspline and La
grange bases are identical for the linear case3 , yet the former is capable of maintaining up to 𝐶p−1
smoothness for any p while the latter is limited to piecewise continuity only. A comparison between
FEA and IGA bases of varying smoothness is shown in figure 6.5. For p > 1, the CG and IGA bases
are no longer identical, even in the 𝐶0 case (6.5b); nevertheless, they still span the exact same function
space. Consequently, keeping §6.2.2 in mind, we realize that Bspline basis functions can reproduce

3Provided that a GaussLobatto distribution of nodes is employed in the latter—which is most convenient due to the continuity
requirement of CG at element interfaces. Note, however, that this is not the nodal distribution used for DG in this work.



6.3. Discontinous Galerkin isogeometric analysis (DGIGA) 57

(a) 𝛯 = {−1,−1,−1,−1, 13 , 1, 1, 1, 1} (b) 𝛯 = {−1,−1,−1,−1,− 12 , 0, 0,
1
2 ,
1
2 ,
1
2 , 1, 1, 1, 1}

Figure 6.3: Examples of cubic Bspline curves (solid, black), with their control polygons (dashed, blue), control
points (circles, blue) and breakpoints (squares, red).

both CG and DG methods, under particular combinations of knot vectors and number of patches.
A consequence of the increased smoothness of Bspline bases is a reduction in overall number of

degrees of freedom, in the same way that CG experiences with respect to DG. Assume a DG discretiza
tion of a function space 𝑆ℎ (𝛺) into K elements, each using degree p. Each element has its own set of
p + 1 (polynomial) basis functions. This is reproduced in IGA with an open knot vector of K breakpoint
spans and no continuity constraints whatsoever, which requires multiplicity p + 1 for every knot, i.e. :

𝛯 = {𝜉1, … , 𝜉1⎵⎵⎵⎵⎵⎵
p+1

, 𝜉2, … , 𝜉2⎵⎵⎵⎵⎵⎵
p+1

, … , 𝜉K+1, … , 𝜉K+1⎵⎵⎵⎵⎵⎵⎵⎵⎵
p+1

} . (6.6)

Both these two discretizations imply dim(𝑆ℎ) = K (p + 1). If we now increase continuity to 𝐶0, the
number of dimensions (i.e. the number of degrees of freedom) is reduced to that of CG—known to
require fewer degrees of freedom than DG for a given order of accuracy. The smoother the basis
functions of degree p are, the fewer distinct ones there can be in a given mesh (compare subfigures
6.5a and 6.5d); in general [97, §2.4]:

dim (𝑆ℎ) = K (p + 1) −
K+1

∑
𝑘=1

(𝜘𝑘 + 1) , (6.7)

where −1 ≤ 𝜘𝑘 < p is the number of successive derivatives of every basis function that are continuous
at the 𝜉𝑘 breakpoint—typically, 𝜘1 = 𝜘K+1 = −1.

6.3. Discontinous Galerkin isogeometric analysis (DGIGA)
Once more, only 1D domains are under consideration in what follows. In a discontinuous Galerkin
discretization, a patch is best assimilated to an element4 (as defined in §3.1). Assume that 𝒯ℎ =
{𝛺𝑘}K𝑘=1. Let the test and basis function spaces on 𝛺𝑘 be equal and defined as:

𝑉ℎ𝑘 ≡ 𝑆ℎ𝑘 ≔ span{𝑁p𝑗 (𝜉)}
J
𝑗=1 , (6.8)

i.e. the space spanned by some set of Bspline functions, generated by any arbitrary open knot vector
of J + p + 1 elements. To maintain consistency with the general formulation in §3, let us assume 𝜉 ∈ 𝛺,
i.e. :

𝛯𝑘 = { − 1,… ,−1⎵⎵⎵⎵⎵⎵⎵⎵
p+1

, 𝜉p+2, … , 𝜉J, 1, … , 1⎵⎵⎵⎵⎵
p+1

} , (6.9)

4Some authors [28] prefer to consider the knot span as the element analogue; this is convenient when attempting a continuous
Galerkin discretization based on Bspline basis functions (see §6.2.3).



58 6. Isogeometric Analysis (IGA)

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

1.5

𝑥
(a) p = 5

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

1.5

𝑥
(b) p = 7

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

1.5

𝑥
(c) p = 9

Figure 6.4: Bspline (red) and Lagrange (blue) “interpolants” of degree p over a discontinuous set of non
equidistant points (Chebyshev nodes). The former are variation diminishing yet not actually interpolatory, while
the latter experience spurious oscillations.

for 𝑘 = 1, 2, … , K (each DG element—i.e. IGA patch—may have its own values of p, J and smoothness
distribution). Hence, the mappings to and from reference patch are still given by (3.4), and its Bspline
basis functions 𝑵∶ ℝ → ℝJ (sub and superscripts omitted in favor of conciseness) are defined in the
same reference coordinate system as every other basis function in this report. Additionally, let us
restrict interior knot multiplicity to m ≤ p to avoid the possibility of discontinuous basis functions within
a patch. We may now carry on as in the general discontinuous highorder case (§3.3.4).

Each component of the approximate solution over 𝛺𝑘 is a linear combination of the basis functions
of 𝑆ℎ, i.e. :

�̃�ℎ𝑘(𝑡, 𝜉) = �̂�𝑘(𝑡)𝑵(𝜉) . (6.10)

The expansion coefficients—or degrees of freedom—play the role of “scalar control points” or control
values. We may regard each approximate solution components as a Bspline curve in 2D statespace
if we assign arbitrary locations to each degree of freedom; in this report I simply employ a uniform
distribution of control point abscissae from the element’s left edge to its right one. In other words: the
graph of the function 𝑞ℎ𝑖,𝑘(𝑡, 𝑥), at a fixed time instant, is a Bspline curve in the (𝑥, 𝑞ℎ𝑖,𝑘) plane. This
facilitates the analogy between control values in DGIGA and nodal values in DGSEM and FR/CPR
(illustrated e.g. in figure 6.4).

6.3.1. Flux expansion coefficients
Once more, an approximation of the flux components into the same space as the solution’s (3.14) is
assumed for convenience:

�̃�ℎ𝑘(𝑡, 𝜉) = �̂�𝑘(𝑡)𝑵(𝜉) , (6.11)

at the cost of an additional error being introduced into the discretization in nonlinear cases. The al
ternative would be to apply higherorder quadrature to the nonlinear flux function, evaluated on the
approximate solution [31, 32] (see §4.2.1).

Flux expansion coefficients in (6.11) are the result of applying the flux function to the approximate
solution sampled at each control location, i.e. :

�̃�ℎ𝑘(𝑡, 𝜉𝑗) = 𝒇 (�̃�ℎ𝑘(𝑡, 𝜉𝑗)) , (6.12)

which is exact, having made the assumption beforehand that the flux can be accurately approximated
as a Bspline curve in the same space as that of the solution’s (as mentioned in the previous paragraph,



6.3. Discontinous Galerkin isogeometric analysis (DGIGA) 59

(a) 𝐶0 piecewise Lagrange polynomials (classical FEA)

(b) 𝐶0 Bsplines

(c) 𝐶1 Bsplines

(d) 𝐶2 Bsplines (typical IGA)

Figure 6.5: Cubic basis functions with nonzero support on an arbitrary interior CG element (in 6.5a) or knot span,
with uniformly distributed nodes (circles) or knots (squares). Notice that the portion of the patch over which an
average Bspline basis function has nonzero support increases as they become smoother.



60 6. Isogeometric Analysis (IGA)

this is generally not the case). Defining, analogously to (4.19), the following patch Vandermondematrix,

𝑵(𝝃⊺)≔
⎡
⎢
⎢
⎢
⎣

𝑁1(𝜉1) 𝑁1(𝜉2) ⋯ 𝑁1(𝜉J)
𝑁2(𝜉1) 𝑁2(𝜉2) ⋯ 𝑁2(𝜉J)
⋮ ⋮ ⋮

𝑁J(𝜉1) 𝑁J(𝜉2) ⋯ 𝑁J(𝜉J)

⎤
⎥
⎥
⎥
⎦

, (6.13)

the flux expansion coefficients in (6.11) satisfying (6.12) can be obtained as:

�̂�𝑘 = (𝒇 (�̂�𝑘𝑵(𝝃⊺))) (𝑵(𝝃⊺))
−1

, (6.14)

where 𝒇 is applied columnbycolumn.
An even simpler flux evaluation is proposed in [57, 90]:

�̂�𝑗𝑘(𝑡) ≈ 𝒇 (�̂�𝑗𝑘(𝑡)) , (6.15)

which would be equivalent to (6.14) if the basis were nodal5. While this is clearly not the case for a
modal DG basis in general, Bsplines have “quasinodal” behavior in the sense of property 6.12; this
prevents the approximate solution from outright diverging, but could reduce its accuracy even further.

Direct comparison between these two approaches in terms of numerical errors (figures 6.7 and 6.9)
suggests that the solution obtained with (6.15) experiences additional numerical diffusion in relation to
that computed using (6.14), and that this is the case (for the particular example considered) both with
and without AFCbased limiting. Nevertheless, the role of (6.13) and its inverse in (6.14) warrants the
question of how wellconditioned said matrix is. It turns out that, for the assumed uniform distribution
of control points, (6.13) can easily become quasisingular as the number of breakpoint spans grows,
for degrees p > 2. Moreover, nonuniform distributions of control points seem to worsen this problem
even further (figure 6.11).

6.3.2. Semidiscrete DGIGA operators
The general semidiscrete conservation law (3.23) for DGIGA may be written as:

d�̂�𝑘
d𝑡 ∫

𝛺𝑘
𝑵𝑵⊺ d𝑥 = �̂�𝑘∫

𝛺𝑘
𝑵d𝑵

⊺

d𝑥 d𝑥 − [�̆�𝑵⊺]𝜕𝛺𝑘 , (6.16)

which corresponds to:

𝓜𝑘 =
𝛥𝑥𝑘
2 ∫

1

−1
𝑵𝑵⊺ d𝜉 , 𝓒𝑘 = ∫

1

−1
𝑵(𝑵′)⊺ d𝜉 . (6.17)

One last remaining issue is the evaluation of the integral terms in the mass and discrete gradient
matrices. For DGIGA, I propose a “brute force” approach based on Gauss quadrature at the knot span
level, carried out as as follows. Let an additional affine mapping 𝜓𝑙 ∶ 𝛴𝑙 → [−1, 1], analogous to (3.4),
be defined as:

𝜓𝑙(𝜎)≔𝜉𝑙 +
𝛥𝜉𝑙
2 𝜎 , (6.18)

for every 𝜉𝑙 ∈ 𝛯𝑘 : 𝑙 = 1, 2, … , J + p, i.e. each knot span in 𝛺𝑘. Operator entries are first evaluated in
reference patch coordinates:

∫
𝛺𝑘
𝑁𝑗𝑁𝑟 d𝑥 = 𝒳′𝑘∫

1

−1
𝑁𝑗𝑁𝑟 d𝜉 , ∫

𝛺𝑘
𝑁𝑗

d𝑁𝑟
d𝑥 d𝑥 = ∫

1

−1
𝑁𝑗 (𝑁𝑟)

′ d𝜉 ; (6.19)

then, each integral is split knot spanwise:

∫
1

−1
𝑁𝑗𝑁𝑟 d𝜉 =

J+p

∑
𝑙=1
∫
𝜉𝑙+1

𝜉𝑙
𝑁𝑗𝑁𝑟 d𝜉 , ∫

1

−1
𝑁𝑗 (𝑁𝑟)

′ d𝜉 =
J+p

∑
𝑙=1
∫
𝜉𝑙+1

𝜉𝑙
𝑁𝑗 (𝑁𝑟)

′ d𝜉 ; (6.20)

5In addition, nodal and modal treatments are identical for the linear flux case (e.g. advection equation); see §A.3.3.



6.3. Discontinous Galerkin isogeometric analysis (DGIGA) 61

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(a) Modal, unlimited

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(b) Modal, FCTlimited

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(c) Nodal, unlimited

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(d) Nodal, FCTlimited

Figure 6.6: Approximate solution to Burgers equation at 𝑡 = 0.4 (periodic boundaries, Gaussian hump initial
condition at 𝑡 = 0), with (right) and without (left) AFCbased FCT limiting, for the modal (6.14) and quasinodal
(6.15) treatment of flux coefficients in IGA (i.e. single patch). Control points are shown as cross markers and the
exact solution as a black dashed curve. All cases approximate the solution as a quadratic 𝐶1 Bspline curve, made
up of 23 polynomial segments (breakpoint spans), resulting in a total degree of freedom count of 25. Time scheme
is SSPRK3, with 𝛥𝑡 = 4 × 10−4.



62 6. Isogeometric Analysis (IGA)

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(a) Modal, unlimited

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(b) Modal, FCTlimited

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(c) Nodal, unlimited

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(d) Nodal, FCTlimited

Figure 6.7: DGIGA version of the results in figure 6.6. The approximate solution is now globally 𝐶−1, divided into
5 𝐶1 Bspline patches, each in turn made up of 3 quadratic 𝐶∞ polynomials; the overall number of degrees of
freedom remains unchanged (25). All results still employ SSPRK3, but this time with 𝜍 = 10−3 and 5 elements
(depicted in distinct colors), each with 𝛯𝑘 = {−1,−1,−1,−

1
3 ,

1
3 , 1, 1, 1}.



6.3. Discontinous Galerkin isogeometric analysis (DGIGA) 63

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
4.7

4.75

4.8

4.85

4.9
⋅10−1

𝑡

‖𝑢
ℎ ‖

2

Nodal, FCTlimited
Modal, FCTlimited
Nodal, unlimited
Modal, unlimited

(a) 𝐿2 norm of the approximate solution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8
⋅10−2

𝑡

‖𝑢
−
𝑢ℎ

‖ 2

Nodal, FCTlimited
Modal, FCTlimited
Nodal, unlimited
Modal, unlimited

(b) 𝐿2 norm of the approximate solution’s error

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1.8

2

2.2

2.4

2.6

𝑡

‖𝑢
ℎ ‖

TV

Exact ‖𝑢‖TV
Nodal, FCTlimited
Modal, FCTlimited
Nodal, unlimited
Modal, unlimited

(c) Estimated total variation of the approximate solution; see §8.1

Figure 6.8: Behavior of the approximate solution in time (sampled every 25 timesteps), for all cases in figure 6.6.



64 6. Isogeometric Analysis (IGA)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
4.7

4.75

4.8

4.85

4.9
⋅10−1

𝑡

‖𝑢
ℎ ‖

2

Nodal, FCTlimited.
Modal, FCTlimited.
Nodal, unlimited.
Modal, unlimited.

(a) 𝐿2 norm of the approximate solution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8
⋅10−2

𝑡

‖𝑢
−
𝑢ℎ

‖ 2

Nodal, FCTlimited
Modal, FCTlimited
Nodal, unlimited
Modal, unlimited

(b) 𝐿2 norm of the approximate solution’s error

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1.8

2

2.2

2.4

2.6

𝑡

‖𝑢
ℎ ‖

TV

Exact ‖𝑢‖TV
Nodal, FCTlimited
Modal, FCTlimited
Nodal, unlimited
Modal, unlimited

(c) Estimated total variation of the approximate solution; see §8.1

Figure 6.9: Behavior of the approximate solution in time (sampled every 25 timesteps), for all cases in figure 6.7.



6.3. Discontinous Galerkin isogeometric analysis (DGIGA) 65

followed by each span being brought to reference span coordinates:

∫
𝜉𝑙+1

𝜉𝑙
𝑁𝑗𝑁𝑟 d𝜉 = 𝜓′𝑙 ∫

1

−1
𝑁𝑗𝑁𝑟 d𝜎 , ∫

𝜉𝑙+1

𝜉𝑙
𝑁𝑗 (𝑁𝑟)

′ d𝜉 = 𝜓′𝑙 ∫
1

−1
𝑁𝑗 (𝑁𝑟)

′ d𝜎 ; (6.21)

and, finally, every knot spanwise integral is evaluated exactly using a unique set of p + 1 Gauss
Legendre quadrature points (𝜎𝑛) and weights (𝑤𝑛) on the interval [−1, 1]:

∫
1

−1
𝑁𝑗𝑁𝑟 d𝜎 =

p+1

∑
𝑛=1

𝑁𝑗(𝜓𝑙(𝜎𝑛)) 𝑁𝑟(𝜓𝑙(𝜎𝑛)) 𝑤𝑛 , (6.22a)

∫
1

−1
𝑁𝑗 (𝑁𝑟)

′ d𝜎 =
p+1

∑
𝑛=1

𝑁𝑗(𝜓𝑙(𝜎𝑛)) (𝑁𝑟)
′(𝜓𝑙(𝜎𝑛)) 𝑤𝑛 . (6.22b)

Note that for the single breakpoint span case, the mapping (6.18) reduces to the identity and quadrature
is performed elementwise.

The mass matrix in DGIGA is known to be very badly conditioned (figure 6.10), and it is not diagonal
(unlike in the previous two methods); it instead has a bandwidth of 2p+1 (property 6.1). Nevertheless,
it is symmetric positive definite.

Proof. 𝓜𝑘 is symmetric because the product of Bspline basis functions is commutative: 𝑁𝑗𝑁𝑟 ≡ 𝑁𝑟𝑁𝑗.
For an arbitrary vector �̂� ∈ ℝJ, it will be positive definite if �̂�⊺𝓜𝑘�̂� ≥ 0 (with the equality implying the
trivial case) [16, §0.2]. This may be written as:

J

∑
𝑗=1

J

∑
𝑟=1

�̂�𝑗 (∫
𝛺𝑘
𝑁𝑗𝑁𝑟 d𝑥) �̂�𝑟 = ∫

𝛺𝑘
(

J

∑
𝑗=1
�̂�𝑗𝑁𝑗)(

J

∑
𝑟=1

𝑁𝑟�̂�𝑟) d𝑥 ≡ ‖𝑞ℎ𝑘‖
2
𝐿2 , (6.23)

i.e. the square of the 𝐿2 norm of some arbitrary function in 𝑆ℎ, which is nonnegative and zero only if
�̂� = 0, as required.

The discrete gradient operator matrix, provided that p > 0 (otherwise the gradient operator is a
scalar and trivially zero), is quasiskewsymmetric in the following sense:

𝑐𝑗𝑟 =

⎧
⎪

⎨
⎪
⎩

−12 if 𝑗 = 𝑟 = 1

+12 if 𝑗 = 𝑟 = J

−𝑐𝑟𝑗 otherwise

. (6.24)

Proof. It follows from the chain rule: ∫1−1𝑁𝑗 (𝑁𝑟)
′ d𝜉 = [𝑁𝑗𝑁𝑟]

1
−1 − ∫

1
−1𝑁𝑟 (𝑁𝑗)

′
d𝜉. If 𝑗 = 𝑟, since the

first and last Bsplines in a patch are interpolatory at its respective edges:

[𝑁𝑗𝑁𝑗]
1
−1 = {

−1 if 𝑗 = 1
+1 if 𝑗 = J
0 otherwise

. (6.25)

Then:

• if 𝑗 = 1:

∫
1

−1
𝑁1 (𝑁1)

′ d𝜉 = −1 −∫
1

−1
𝑁1 (𝑁1)

′ d𝜉 ⟹ ∫
1

−1
𝑁1 (𝑁1)

′ d𝜉 = −12 (6.26)

• else, if 𝑗 = J:

∫
1

−1
𝑁J (𝑁J)

′
d𝜉 = 1 − ∫

1

−1
𝑁J (𝑁J)

′
d𝜉 ⟹ ∫

1

−1
𝑁J (𝑁J)

′
d𝜉 = 1

2 (6.27)



66 6. Isogeometric Analysis (IGA)

• else:

∫
1

−1
𝑁𝑗 (𝑁𝑗)

′
d𝜉 = −∫

1

−1
𝑁𝑗 (𝑁𝑗)

′
d𝜉 ⟹ ∫

1

−1
𝑁𝑗 (𝑁𝑗)

′
d𝜉 = 0 (6.28)

Otherwise (if 𝑗 ≠ 𝑟), at least one of the two functions is zero at any given edge; therefore: [𝑁𝑗𝑁𝑟]
1
−1 = 0.

This implies skewsymmetry in all nondiagonal entries: ∫1−1𝑁𝑗 (𝑁𝑟)
′ d𝜉 = −∫1−1𝑁𝑟 (𝑁𝑗)

′
d𝜉.

0 5 10 15 20 25 30 35 40

100

101

102

103

104

105

J

co
n
d
(𝓜

)

Lagrange (GaussLegendre)
Quadratic Bsplines
Cubic Bsplines
Bernstein

Figure 6.10: Condition number of the reference element mass matrix for various Bspline bases (also Lagrange,
see 4.2), as a function of the number of degrees of freedom per patch. This gives a rough idea of relative com
putational cost vs. memory requirements between bases, regardless of accuracy. The condition number of the
Bernstein mass matrix keeps growing exponentially until assembly breaks down (reaching ≈7 × 1016 at J = 30).

6.4. Algebraic flux correction (AFC)
In [90], a Bspline based continuous Galerkin discretization is turned into a highresolution scheme by
combining it with a limiting strategy in the context of algebraic flux correction [78]. This pairing is quite
synergistic, since it exploits the nonnegativity property of IGA bases to guarantee that the approximate
solution is local extremum diminishing6 (LED) in the presence of discontinuous features, regardless of
the degree of the basis. This is in contrast to Lagrangebased FEM, for which only the p = 1 case
is amenable to this methodology. Unlike typical shock capturing schemes for DG (see §8), such an
approach achieves subelement resolution, i.e. the discontinuity is modeled across knot spans rather
than patches (see figure 6.12).

6.4.1. A predictorcorrector approach to highresolution
Algebraic flux correction is based on a predictorcorrector strategy. Equation (6.16) defines a matrix of
uncorrected highorder residuals, namely:

�̂�𝑘 = (�̂�𝑘𝓒𝑘 − [�̆�𝑵⊺]𝜕𝛺𝑘)𝓜
−1
𝑘 . (6.29)

In combination with a Bspline basis, AFC is able to (algebraically) construct a loworder version of
these residuals such that, when used in conjunction with a strong stability preserving timeintegration
scheme (see §7), no spurious oscillation are generated in the endofstep solution [90]. These socalled
predictor residuals, are defined as:

�̂�𝐿𝑘≔(�̂�𝑘𝓒𝑘 − [�̆�𝑵⊺]𝜕𝛺𝑘 + 𝑭
𝐷
𝑘 ) (𝓜𝐿

𝑘)
−1

, (6.30)

6Local extremum diminishing (LED) and total variation diminishing (TVD) criteria are equivalent in one dimension [59]



6.4. Algebraic flux correction (AFC) 67

0 20 40 60 80 100 120 140 160
10−35

10−31

10−27

10−23

10−19

10−15

10−11

10−7

10−3

101

J

rc
on

d
(𝑵

(𝝃
⊺ ))

Uniform Chebyshev
p = 1 p = 1
p = 2 p = 2
p = 3 p = 3
p = 4 p = 4

Figure 6.11: Reciprocal condition number of (6.13), for various degrees and control point distributions, as a func
tion of the number of basis functions per patch. Smoothness class is 𝐶p−1 in all cases. Higher is better.

which differs from (6.29) in two aspects: the mass matrix is replaced by its lumped counterpart, and an
explicit numerical diffusion term is added.

From an implementation perspective, this can be seen as a replacement of the DGIGA operator with
a loworder counterpart—say, a DGIGAAFC operator—which ensures a priori that no spurious oscil
lations will appear in the solution as it is advanced a number of timestages, until the next timestep.
All other routines remain unchanged (e.g. evaluation of internal and numerical fluxes, timeintegration;
all the terms of (6.30) are reevaluated using latest available predictor control variables at every inter
mediate stage). Once all “transported and diffused”—advanced from 𝑡 to 𝑡 + 𝛥𝑡 using (6.30) instead
of (6.29)—sets of control values �̂�𝐿𝑘(𝑡 + 𝛥𝑡) in 𝒯ℎ are available, a correction procedure takes care of
recovering highorder accuracy. This second step can be treated as an “a posteriori” limiter (or, more
precisely, an “antilimiter”), and is described as such in §8.7. The process can then start again, and so
on.

6.4.2. Mass matrix lumping
The lumped mass matrix for DGIGA is:

𝓜𝐿
𝑘≔[

𝑚𝐿1𝑘 0
⋱

0 𝑚𝐿J𝑘
] , 𝑚𝐿𝑗𝑘≔

J

∑
𝑟=1

𝑚𝑗𝑟𝑘 ≡
𝛥𝑥𝑘
2 ∫

1

−1
𝑁𝑗 d𝜉 . (6.31)

Unlike highorder Lagrange polynomials in general, Bspline basis functions guarantee that all off
diagonal entries of𝓜𝐿 are strictly positive [90]. Note that an added benefit of employing the lumped
mass matrix is that we recover a decoupled lefthandside in (3.23), circumventing one of the disad
vantages of the Bspline basis not being orthogonal.



68 6. Isogeometric Analysis (IGA)

−1 −0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

𝑥

𝑞ℎ 𝑖
(𝑡
,𝑥

)

(a) DGIGA + TVB limiter (§8.4)

−1 −0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

𝑥

𝑞ℎ 𝑖
(𝑡
,𝑥

)

(b) DGIGAAFC + FCT limiter (§8.7)

Figure 6.12: Interelement vs. subelement resolution of a shock (dashed line) using 2nd order DGIGA. Markers
denote control points; the twomeshes are identical (each color corresponds to a different patch). In both examples,
the shock has been projected onto the mesh; both limiters perform optimally in this situation.

6.4.3. Artificial viscosities
The term 𝑭𝐷𝑘 in (6.30) represents an array of net diffusive fluxes “going into” each given control point,
i.e. :

𝑭𝐷𝑘 ≔[𝒇𝐷1𝑘 𝒇𝐷2𝑘 ⋯ 𝒇𝐷J𝑘] . (6.32)

In AFC, an edgebased representation is common; in this sense, a socalled edge is a pair of distinct
control points with shared nonzero support. A simple general way to identify such edges is through the
sparsity graph of the (consistent) mass matrix: any component 𝑚𝑗𝑟𝑘 ≠ 0 implies that there is at least
one basis function that the pair of control points 𝑗 and 𝑟 falls within nonzero support of. Diffusive fluxes
are defined such that:

𝒇𝐷𝑟𝑘≔∑
𝑗≠𝑟
𝑫𝑟𝑗𝑘 (�̂�𝑗𝑘 − �̂�𝑟𝑘) , (6.33)

to ensure a suitable predictor [90]. The matrix 𝑫𝑟𝑗𝑘 ∈ ℝI×I determines the contribution due to control
point 𝑗 to the net diffusion added to control point 𝑟. Various definitions for it are given in [78, §5]. I
propose the following as a compromise between robustness and accuracy.

Let 𝑨𝑟, 𝑨𝑗 and �̃� be the Jacobian matrices of the system of PDEs, evaluated at �̂�𝑟𝑘, �̂�𝑗𝑘 and the
Roeaveraged state (2.45) between the previous two (arithmetic average in Burgers), respectively. As
in [90]:

𝑫𝑟𝑗𝑘≔|𝑒𝑟𝑗𝑘| �̃� |�̃�| �̃� , 𝑒𝑟𝑗𝑘≔
𝑐𝑟𝑗 − 𝑐𝑗𝑟

2 , (6.34)

but, in advance, apply an entropy fix7 [64] to every entry of �̃�:

𝜆𝑖 ←
𝜆2𝑖 + 𝜀2
2𝜀 if |𝜆𝑖| < 𝜀 , 𝜀≔max {0, 𝜆𝑖 − 𝜆𝑟𝑖 , 𝜆

𝑗
𝑖 − 𝜆𝑖} . (6.35)

Should (6.34) fail to prevent oscillations in the predicted solution, the following may be used instead
[78, equation 46]:

𝑫𝑟𝑗𝑘≔|𝑒𝑟𝑗𝑘| 𝑑𝑟𝑗𝑘𝑰 , 𝑑𝑟𝑗𝑘≔max {|𝜆𝑟1| , |𝜆𝑟2| , … , |𝜆𝑟I | , |𝜆𝑗1| , |𝜆𝑗2| , … , |𝜆𝑗I |} , (6.36)

which, according to Kuzmin et al. [78], is the most robust (but also most diffusive) of the alternatives
listed therein. Yet another option, more economical and comparable in accuracy to (6.34), is to employ
an arithmetic average (instead of Roe’s) [78, equation 44].
7Harten and Hyman’s first entropy fix; any other of those listed in [64] (or similar) could have been used instead.



7
Time Discretization

In the present thesis, the discretization of time is of no particular interest in itself. It merely has to satisfy
the following two basic requirements:

• Produce a consistent fully discrete conservation law; in particular, the spatial discretization error
should be dominant for sufficiently small timestep sizes (𝛥𝑡).

• Result in a stable numerical method when in combination with the spatial discretizations reviewed.

Temporal and spatial semidiscretizations are coupled together via the method of lines approach, pre
viously brushed over in §3.3.1, now properly addressed in §7.1. Prime candidates for such a task are
the socalled strong stability preserving (SSP) time schemes (§7.2); relevant schemes of this type are
detailed in §7.3. Finally, a brief mention of alternatives present in the literature is made in §7.4.

7.1. The method of lines
Consider (2.1), the general conservation law in differential form. Up to this point, time has been a
continuous variable; let its discrete counterpart be henceforth defined as the sequence 𝑡0 ≤ 𝑡1 ≤
⋯ ≤ 𝑡𝑁 of 𝑁 + 1 discrete time levels (the first of which is assumed to correspond to a known initial
state), such that 𝛥𝑇≔𝑡𝑁 − 𝑡0 represents the total simulated time span—i.e. domain in the temporal
dimension in which (2.1) is to be solved. 𝛥𝑇 is divided into 𝑁 timesteps, not necessarily equal, such
that 𝛥𝑇 = ∑𝑁𝑛=1 𝛥𝑡𝑛. For ease of notation, I will omit the explicit indication that the timestep size is time
level–dependent: 𝛥𝑡𝑛 ≡ 𝛥𝑡.

Consider now the integral of (2.1) over an arbitrary timestep:

∫
𝑡𝑛+1

𝑡𝑛
(𝜕𝒒𝜕𝑡 +

𝜕𝒇
𝜕𝑥 ) d𝑡 = 0 , (7.1)

by the fundamental theorem of calculus1, it is equivalent to:

𝒒(𝑡𝑛+1, 𝑥) − 𝒒(𝑡𝑛 , 𝑥) = −∫
𝑡𝑛+1

𝑡𝑛

𝜕𝒇
𝜕𝑥 d𝑡 . (7.2)

Thus, the change in the solution across a discrete timestep is equal to the timeintegral of the spatial
residuals (righthandside). This strategy is known as the method of lines [50, §8.3.2]. If we now
introduce approximate solution and residual vectors into (7.2),

𝒒ℎ(𝑡𝑛+1, 𝑥) = 𝒒ℎ(𝑡𝑛 , 𝑥) + ∫
𝑡𝑛+1

𝑡𝑛
𝓻(𝑡, 𝑥) d𝑡 , (7.3)

1If 𝑡 and 𝑥 are independent from each other, the following holds: ∫ 𝜕𝑞(𝑡,𝑥)
𝜕𝑡 d𝑡 = 𝑞(𝑡, 𝑥) + 𝐶(𝑥). For a definite integral, the

𝑥dependent integration “constant” vanishes.

69



70 7. Time Discretization

𝑡0 𝑡1 𝑡𝑛−1 𝑡𝑛 𝑡𝑛+1 𝑡𝑁−1 𝑡𝑁... ...

𝛥𝑡1 𝛥𝑡𝑛 𝛥𝑡𝑛+1 𝛥𝑡𝑁0 𝑡

Figure 7.1: Time discretization and indexing convention used for it in this report.

it becomes clear that the discretization of time is completely independent from that of space.
All that is left is to evaluate the righthandside integral in (7.3) numerically—this is the job of the

timeintegration scheme. As an example, consider the right Riemann sum approximation:

𝒒ℎ(𝑡𝑛+1, 𝑥) = 𝒒ℎ(𝑡𝑛 , 𝑥) + 𝓻(𝑡𝑛+1, 𝑥)𝛥𝑡 . (7.4)

This is the backward Euler method, a 1st order implicit time scheme. Only explicit schemes, in particular
those of the RungeKutta family—see §7.3—, are used in this thesis’ numerical experiments (part II of
this report). These are methods which, unlike (7.4), require only the solution (and residuals) at the
current time level (𝑡𝑛) to approximate the solution at the next (𝑡𝑛+1).

7.1.1. Courant number
The Courant number represents a dimensionless timestep size, equal to the ratio between physical
and numerical information propagation speeds. In linear cases, the velocity of physical propagation of
information is unique and unambiguous (e.g. 𝒸 in the wave equation):

𝜍≔ 𝒸𝛥𝑡
min{𝛥𝑥𝑘}

K
𝑘=1

, (7.5)

where the smallest 𝛥𝑥𝑘 is chosen so that the resulting Courant number is largest (i.e.most restrictive2).
For the general case, consider an arbitrary element 𝛺𝑘 ∈ 𝒯ℎ; the solution of the Riemann problem

at its edges, 𝜕𝛺𝐿𝑘 and 𝜕𝛺𝑅𝑘 , produces two sets of eigenvalues: {𝜆𝐿𝑖𝑘}I𝑖=1 and {𝜆𝐿𝑖𝑘}I𝑖=1 (respectively). The
subsets 𝜆𝐿𝑖𝑘 > 0 and 𝜆𝑅𝑖𝑘 < 0 of the previous represent characteristic waves traveling into element
𝛺𝑘 (from the left and right, respectively). The most restrictive of these two (left and right) defines the
element’s componentwise Courant number; similarly, the largest among components is selected as
elementwise Courant number and, finally, the same is done meshwide. In other words:

𝜍≔max{𝜍𝑘}
K
𝑘=1 , 𝜍𝑘≔max{𝜍𝑖𝑘}

I
𝑖=1 , 𝜍𝑖𝑘≔

𝛥𝑡
𝛥𝑥𝑘

max{𝜆+𝑖𝑘 , −𝜆−𝑖𝑘} ; (7.6)

with:

𝜆+𝑖𝑘≔max{0, 𝜆𝐿𝑖𝑘} , 𝜆−𝑖𝑘≔min{0, 𝜆𝑅𝑖𝑘} . (7.7)

All results in this report use either a constant 𝛥𝑡, or a constant 𝜍 (or both, in linear cases).

7.1.2. Amplification factor
Some characteristics of numerical methods (such as stability) can be studied analytically for the linear
case (see §A.4). Relevant for our current discussion of time schemes is that said methodology involves
the linear spatial discretization being encoded into a linear operator (i.e. a matrix). The eigenvalues of
the discrete spatial operator describe its influence on the numerical error. The temporal scheme acts on
an arbitrary 𝑧 ∈ ℂ—one of such spatial operator eigenvalues, associated with some component of the
spatial discretization error. The actual values that 𝑧 takes depend entirely on the spatial discretization
and, as a scaling factor, the Courant number. Because of the independent treatment of time and space
in the method of lines, 𝑧 does not depend on the time scheme; the latter simply amplifies or dampens
the error encoded in each 𝑧 provided by the spatial scheme.

If the temporal discretization is itself linear, it is possible to define an amplification factor function
𝐺 ∶ ℂ → ℂ that quantifies the former’s influence on an arbitrary error component in the complex plane
(see §A.4.1 for details). Among the isocontours of |𝐺(𝑧)| that join together the values of 𝑧 that result
2If, for example, a method is stable for 𝜍 < 𝜍max, this definition ensures that all elements are within stability bounds.



7.2. Strong stability preserving (SSP) time discretization 71

in certain amplification, the specific set of all 𝑧 for which |𝐺(𝑧)| = 1 defines the boundary of the time
scheme’s stability region, i.e. the set of all 𝑧 for which |𝐺(𝑧)| < 1. If the spatial discretization can be
shown to restrict the values of 𝑧 (possibly under some conditions on the timestep) so that they never
lie outside of the time scheme’s stability region, the numerical error is damped in every time step; the
method is, therefore, linearly stable. The amplification factor of (7.4), for instance, is:

𝐺(𝑧) = 1
1 − 𝑧 . (7.8)

Amplification factor functions of the time schemes used in this report are included with their definitions
in §7.3. Other examples can be found e.g. in [116, §B.3.2].

−4 −3 −2 −1 0 1 2 3 4 5 −4
−2

0
2

4

0.5

1

0.2

0.2

0.4

0.6

0.8

1

ℜ(𝑧)
ℑ (𝑧)

|𝐺
(𝑧
)|

Figure 7.2: Isocontours of |𝐺(𝑧)| (i.e.magnitude of the amplification factor) of the implicit Euler scheme (7.4). Its
stability region includes the entire complex plane except for the circle centered around 𝑧 = 1 and radius 1. This
scheme is unconditionally stable in combination with any spatial discretization for which ℜ(𝑧) < 0.

7.2. Strong stability preserving (SSP) time discretization
The method of lines leads to a separate characterization of spatial and temporal operators. Gottlieb
and Shu [42] numerically showed that, even when a spatial discretization is proven to be stable in a total
variation sense (see §8.1), the method resulting from its combination with a time discretization may turn
out to be unstable in general. This is particularly important for discontinuous solutions of hyperbolic
conservation laws, for which a combination of time and space discretizations which is linearly stable
may become unstable [41]. Stability of a numerical method is addressed in §8. Ideas initially explored
by Shu and Osher [109] eventually culminated in a class of socalled strong stability preserving time
schemes3.

Temporal discretizations of the SSP kind are highorder generalizations of the forward Euler method,
which guarantee that “the nonlinear stability properties satisfied by the spatial discretization when cou
pled with the forward Euler integration will be preserved when the same spatial discretization is coupled
with these higher order methods” [41, §1.1], provided that the timestep size is suitably restricted. In
more precise terms, assuming that there exists a 𝛥𝑡max such that:

‖𝒒ℎ(𝑡𝑛 , 𝑥) + 𝛥𝑡𝓻(𝑡𝑛 , 𝑥)‖ ≤ ‖𝒒ℎ(𝑡𝑛 , 𝑥)‖ for 0 ≤ 𝛥𝑡 ≤ 𝛥𝑡max , (7.9)

where ‖•‖ is some convex functional (e.g. a norm or seminorm), a given (single step) temporal scheme
is said to be SSP if it produces a 𝒒ℎ(𝑡𝑛+1, 𝑥) such that:

‖𝒒ℎ(𝑡𝑛+1, 𝑥)‖ ≤ ‖𝒒ℎ(𝑡𝑛 , 𝑥)‖ whenever 𝛥𝑡 ≤ 𝑐SSP𝛥𝑡max , (7.10)
3Originally, these were known as TVD time schemes (by analogy with TVD spatial methods). Over time, this designation has
been phased out in favor of the the broader (and more accurate) term, SSP.



72 7. Time Discretization

for some 𝑐SSP > 0—its SSP coefficient. In the linear and constant coefficient case, the SSP coefficient
is replaced in the previous by a socalled threshold factor ; the latter is an upper bound on 𝑐SSP, and is
at most equal to the number of stages of the method [41, §1.4.1].

7.3. Explicit SSP RungeKutta methods (SSPRK)
Most popular among explicit SSP timeintegration methods is the RungeKutta family of schemes.
These methods generalize Euler’s method (1st order, explicit) to higher order through the addition
of intermediate substeps between every two discrete time instants, such that the solution is advanced
from an arbitrary time level 𝑡𝑛 to the next, 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡, in S stages:

𝑡𝑛+ 𝑠S ≔𝑡𝑛 + 𝛥𝑡
𝑠
S , for 𝑠 = 1, 2, … , S (7.11)

There is quite some flexibility in the way how each of these stages’ results is combined to give the
solution at the future time instant. Specific combinations are possible that ensure the SSP property; in
fact, the first SSP schemes discovered (§7.2) were of this kind. One prominent usage of these time
schemes is in the RKDG method of Cockburn and Shu (see §4). A selection of optimal4 SSPRK
variants currently known is given next for completeness. Refer to [41, §2.1] for details.

Time scheme Order of
accuracy

Relative CPU
cost/step

Relative memory
cost/step

Effective SSP
coefficient

SSPRK1(1) 1 1 1 1
SSPRK2(2) 2 2 2 0.5
SSPRK3(3) 3 3 2 0.333...
SSPRK4(5) 4 5 3 ≈0.30
SSPRK4(10) 4 10 2 0.6

Table 7.1: Comparison between various explicit SSPRK methods considered optimal. The CPU cost of each
method is proportional to the number of stages per timestep, S, while the memory cost is proportional to the total
number of the degrees of freedom values stored simultaneously within a timestep. The effective SSP coefficient
is 𝑐SSP

S . Optimal explicit SSPRK methods beyond 4th order do not exist [41, §2.1].

7.3.1. SSPRK1(1) or Euler’s method: 1st order, 1 stage
Possibly the simplest way to approximate the integral in (7.2) is via a left Riemann sum:

∫
𝑡𝑛+1

𝑡𝑛
𝓻(𝑡, 𝑥) d𝑡 ≈ 𝓻(𝑡𝑛 , 𝑥)𝛥𝑡 ; (7.12)

equation (7.3) then becomes:

𝒒ℎ(𝑡𝑛+1, 𝑥) = 𝒒ℎ(𝑡𝑛 , 𝑥) + 𝛥𝑡𝓻(𝑡𝑛 , 𝑥) , (7.13)

which, written directly for the expansion coefficients of the solution and residual, is:

�̂�1 = �̂�0 + 𝛥𝑡�̂�0 , (7.14)

where, for economy of notation, the following definitions are employed:

�̂�𝑠≔�̂�(𝑡𝑛+ 𝑠S ) , �̂�𝑠≔�̂�(𝑡𝑛+ 𝑠S ) . (7.15)

Its amplification factor is simply:
𝐺(𝑧) = 𝑧 + 1 . (7.16)

4Optimal here refers to possessing the largest SSP coefficient among all explicit SSPRK methods of a given order and number
of stages; see table 7.1.



7.3. Explicit SSP RungeKutta methods (SSPRK) 73

This approach is known as forward Euler method, to which the particular case of a RungeKutta
scheme with a single stage reduces. While attractive because of its simplicity, this method is only
first order accurate. Moreover, its stability region is relatively small and includes no purely imaginary
numbers. The latter implies that its combination with any nondiffusive spatial discretization (e.g. 2nd
order central finite differences) is guaranteed to be unconditionally unstable (see figure 7.3 and e.g. [82,
§4.5]).

7.3.2. SSPRK2(2): 2nd order, 2 stages
Reusing (7.15), this scheme can be written as:

�̂�1 = �̂�0 + 𝛥𝑡�̂�0 , (7.17a)

�̂�2 = 1
2�̂�

0 + 12�̂�
1 + 12𝛥𝑡�̂�

1 , (7.17b)

and its amplification factor is:

𝐺(𝑧) = 𝑧2
2 + 𝑧 + 1 . (7.18)

Despite having second order accuracy, the fact that this scheme uses two stages means that the
number of operations within a time step is twice that of SSPRK1(1). Moreover, its SSP coefficient
remains the same, 𝑐SSP = 1 (reducing the effective SSP coefficient to one half), and it requires storing
all the degrees of freedom of the discretization at two time levels simultaneously. On the positive side,
the stability domain of this method is such that a finite portion of the imaginary axis is in its boundary
of marginal stability.

7.3.3. SSPRK3(3): 3rd order, 3 stages
This is one of the most popular time schemes of this type, perhaps due to it being an “optimum among
optima” in the sense of it achieving 3rd order with only 3 stages (the number of stages starts growing
beyond the scheme’s order, from here on) and being the lowest order method to include part of the
imaginary axis inside its stability domain.

�̂�1 = �̂�0 + 𝛥𝑡�̂�0 , (7.19a)

�̂�2 = 3
4�̂�

0 + 14�̂�
1 + 14𝛥𝑡�̂�

1 , (7.19b)

�̂�3 = 1
3�̂�

0 + 23�̂�
2 + 23𝛥𝑡�̂�

2 . (7.19c)

Its amplification factor is:

𝐺(𝑧) = 𝑧3
6 +

𝑧2
2 + 𝑧 + 1 . (7.20)

The cost per timestep is now three times that of forward Euler. Nevertheless, the theoretical memory
cost is still only twice that of the aforementioned (only two different time levels appear in each stage
update).

7.3.4. SSPRK4(5): 4th order, 5 stages
Unfortunately, there is no optimal SSPRKmethod with 4th order and only 4 stages [41, p. 271]; instead,
at least S = 5 are required. The optimal SSPRK scheme of 5 stages and 4th order is:

�̂�1 = �̂�0 + 0.391752226571890𝛥𝑡�̂�0 , (7.21a)
�̂�2 = 0.444370493651235�̂�0 + 0.555629506348765�̂�1 + 0.368410593050371𝛥𝑡�̂�1 , (7.21b)
�̂�3 = 0.620101851488403�̂�0 + 0.379898148511597�̂�2 + 0.251891774271694𝛥𝑡�̂�2 , (7.21c)
�̂�4 = 0.178079954393132�̂�0 + 0.821920045606868�̂�3 + 0.544974750228521𝛥𝑡�̂�3 , (7.21d)
�̂�5 = 0.517231671970585�̂�2 + 0.096059710526147�̂�3 + 0.063692468666290𝛥𝑡�̂�3

+ 0.386708617503269�̂�4 + 0.226007483236906𝛥𝑡�̂�4 , (7.21e)



74 7. Time Discretization

with the following amplification factor:

𝐺(𝑧) ≈ 0.00448 𝑧5 + 0.0417 𝑧4 + 0.167 𝑧3 + 0.5 𝑧2 + 𝑧 + 1 . (7.22)

This scheme has a larger 𝑐SSP ≈ 1.508, making it only slightly more CPUintensive than SSPRK3
per timestep (but an entire order more accurate). It requires at least one additional memory register,
however, and has irrational coefficients.

7.3.5. SSPRK4(10): 4th order, 10 stages
Lastly, this is an alternative to (7.21) which goes up to S = 10, reaching 𝑐SSP = 6. It can be proven
optimal analytically (its SSP coefficient is equal to its threshold factor, thus reaching its theoretical upper
bound), and recovers the simple rational coefficients of the first three schemes in the family. Also, it can
be implemented such that each time step requires no more memory than SSPRK2(2) and SSPRK3(3)
[41, p. 274].

�̂�𝑠 = �̂�𝑠−1 + 16𝛥𝑡�̂�
𝑠−1, 𝑠 = 1, 2, 3, 4, 6, 7, 8, 9 , (7.23a)

�̂�5 = 3
5�̂�

0 + 25�̂�
4 + 1

15𝛥𝑡�̂�
4 , (7.23b)

�̂�10 = 1
25�̂�

0 + 9
25�̂�

4 + 35�̂�
9 + 3

50𝛥𝑡�̂�
4 + 1

10𝛥𝑡�̂�
9 . (7.23c)

Its amplification factor function is:

𝐺(𝑧) = 𝑧10
251942400 +

𝑧9
4199040 +

𝑧8
155520 +

𝑧7
9720 +

7 𝑧6
6480 +

17 𝑧5
2160 +

𝑧4
24 +

𝑧3
6 +

𝑧2
2 + 𝑧 + 1 . (7.24)

7.4. Alternative time discretization schemes
Strong stability preserving RungeKutta methods are not, by any means, the only option when perform
ing the integration of a semidiscrete conservation law. Other popular RungeKutta variants include
lowstorage (LSRK) [95] and low dissipation–low dispersion (LDDRK) [52]. Moreover, an entirely inde
pendent class of highorder time integration schemes are the linear multistep methods, some variants
of which can also be SSP [41]. All these are left outside of the scope of this thesis. The same applies
to implicit time schemes of any kind.



7.4. Alternative time discretization schemes 75

−14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

ℜ (𝑧)

ℑ
( 𝑧
)

SSPRK1(1)
SSPRK2(2)
SSPRK3(3)
SSPRK4(5)
SSPRK4(10)

Figure 7.3: Domain of stability, i.e. set of all 𝑧 ∈ ℂ where |𝐺(𝑧)| ≤ 1, of each time scheme in §7.3.





8
Nonlinear Stabilization

The approximate solution in discontinuous methods is allowed to have jump discontinuities at element
edges. The larger these jumps are, the larger the error associated with the numerical flux across them
becomes. This error typically1 has a diffusive nature, and so the discretization will implicitly add more
numerical diffusion the less resolved the solution is—a convenient negative feedback loop. This is the
main stabilization mechanism of all discontinuous highorder schemes, and it is sufficient to guarantee
linear stability (when combined with an appropriate time discretization). Nevertheless, it is not enough
to ensure stability for the highorder case in general.

Godunov showed with his barrier theorem of 1959 (see [50, §8.3.3]) that only firstorder linear
schemes for the advection equation can be monotone. Consequently, any linear highorder discretiza
tion (DGSEM, FR/CPR and DGIGA included) will result in nonphysical oscillations appearing in the
approximate solution whenever its exact counterpart has a discontinuity—by the Gibbs phenomenon.
These wiggles will prevent the discretization from retaining its formal order of accuracy. Moreover,
for PDEs in which certain state quantities are physically bounded (e.g. density and total energy being
nonnegative in the Euler equations), they may cause the method to diverge. It is for this reason that a
discontinuity capturing strategy is required in every of the methods addressed in this work.

Shock capturing consists on modeling a discontinuous feature of the solution (e.g. a shock wave,
which in an inviscid context could only be represented accurately with an infinitely fine discretization)
via a discrete solution feature of finite thickness that approximates it reasonably well, in a way that does
not hinder accuracy elsewhere in the domain. Seen at the higher level, shock capturing adds nonlinear
steps to the highorder discretization so that the premise of Godunov’s theorem no longer applies. Said
nonlinearity may introduce considerable complexity to the discretization.

The literature on stabilization methods for hyperbolic conservation laws is vast (figure 8.1). In this
chapter, I describe a selection of six limiters and two sensors; the performance of these is later studied
in part II. The goal here is to provide all necessary details to facilitate an eventual reproduction of any
such results. This choice of sensors and limiters is motivated, to a large extent, by the comparisons in
[102, 124, 135].

8.1. Total variation stability
Linear stability2 of a numerical method may be defined as the requirement that, for some simulated
time span 𝛥𝑇 ≡ 𝑡𝑁 − 𝑡0 (see §7.1) [82, §8.3.2]:

‖𝑺𝑛‖ ≤ 𝐶, for all 𝑛 ≤ 𝛥𝑇
𝛥𝑡 , (8.1)

where 𝐶 is a constant and 𝑺 is the matrix (i.e. linear operator) that advances the approximate solution
from 𝒒ℎ(𝑡, 𝑥) to 𝒒ℎ(𝑡 + 𝛥𝑡, 𝑥)—i.e. some norm of the 𝑛th power of 𝑺 is uniformly bounded from an
initial time 𝑡0 up to a final time 𝑡𝑁. The basics of linear stability analysis via the Von Neumann (or
1This is the case for all upwind numerical fluxes, such as those given by any of the Riemann solvers used in this report.
2Sometimes referred to as LaxRichtmyer stability.

77



78 8. Nonlinear Stabilization

Shock
capturing
in
FEM

C
ellw

ide
lim

iting
A
posteriori

M
odal

Shu
[108]

H
ierarchical

Bisw
as

etal.[13]

Burbeau
etal.[17]

Krivodonova
[69]

W
ang

[124]
N
odal

Barth
and

Jespersen
[10]

Kuzm
in
[74]

W
EN

O
Q
iu
and

Shu
[101]

Luo
etal.[87]

Zhong
and

Shu
[134]

Lietal.[84]

Positivitypreserving
Zhang

and
Shu

[132]
Zhang

and
Shu

[133]

Subcell
lim

iting

A
priori

FC
T

Boris
and

Book
[15]

A
FC

Kuzm
in
etal.[77]

Kuzm
in
and

Shadid
[76]

Artificial
viscosity

Jaffre
etal.[58]

H
artm

ann
and

H
ouston

[45]
H
artm

ann
[44]

Persson
and

Peraire
[96]

Barterand
D
arm

ofal[9]
M
urm

an
etal.[94]

A
posteriori

D
um

bserand
Loubère

[30]
M
arkertetal.[88]

Figure
8.1:

O
verview

ofsom
e
ofthe

m
ain

nonlinearstabilization
fam

ilies
thathave

been
applied

to
highorderm

ethods
in
the

literature.



8.1. Total variation stability 79

Fourier) method for compact highorder spatial discretizations and explicit RungeKutta time schemes
are covered in appendix A.

Nonlinear stability refers instead to a nonlinear numerical method, regardless of the continuous
PDE that it tries to approximate being linear or not (e.g. if limiting is employed, the method itself may be
nonlinear even for a linear PDE). The previous notion of stability is lost, since 𝑺 no longer exists as a
matrix; in fact, no linear stability criterion is enough to ensure convergence in such cases [82, §8.3.5].
Intuitively, it is clear that even if the approximate solution remains bounded e.g. in terms of energy (𝐿2
norm), it can still experience nonphysical oscillations. Such spurious wiggles may be quantified through
the socalled total variation of the approximate solution, which can be used to define sufficient criteria
for nonlinear stability [82, §12.12].

The total variation acts similarly to a norm—it is a scalar associated with the (exact or approximate)
solution over the entire domain at a given time instant—measuring how oscillatory a given function is.
It is defined, for a scalar function 𝑞(𝑡, 𝑥) at some arbitrary time instant, as [82, §6.7]:

‖𝑞(𝑡, 𝑥)‖TV≔ sup
𝑁

∑
𝑛=1

|𝑞(𝑡, 𝑥𝑛) − 𝑞(𝑡, 𝑥𝑛−1)| , (8.2)

where sup indicates the supremum3 operator, taken over all partitions of the real line. This quantity
can only be finite if 𝑞(𝑡, 𝑥) approaches constant values as 𝑥 → ±∞ (even so, in some cases—e.g. if
the solution is periodic—it may be meaningful to define the total variation over a subset of the real line
instead). If 𝑞(𝑡, 𝑥) is differentiable4, (8.2) is equivalent to:

‖𝑞(𝑡, 𝑥)‖TV = ∫
∞

−∞
|𝜕𝑞𝜕𝑥 (𝑡, 𝑥)| d𝑥 . (8.3)

In the vector case, (8.2) and (8.3) can be evaluated either by replacing the absolute value with a vector
norm, or, alternatively, by measuring the total variation in characteristic variables [82, §15.8].

In all results shown in this report, I compute the approximate total variation of a given function (be
it continuous or not) by evaluating (8.2) for increasing numbers of sample points within each 𝛺𝑘 ∈ 𝒯ℎ.
For each 𝑁, a total variation estimate is obtained; 𝑁 is doubled (and the new sample points obtained
via bisection) iteratively, until the sequence of resulting estimates converges (to an absolute tolerance
of 1 × 10−10). To speed up this series convergence process, I employ Richardson extrapolation [12,
p. 375]. In nonscalar conservation laws, all normlike quantities—TV included—are applied conserved
variable–wise to the solution (or error) vectors.

8.1.1. Total variation diminishing (TVD)
It can be shown that, even in the nonlinear scalar case, if the exact initial condition 𝑞(𝑡0, 𝑥) = 𝑞0(𝑥) has
finite total variation, the total variation of the exact solution does not increase in time [114, §13.6.1]:

‖𝑞(𝑡, 𝑥)‖TV ≤ ‖𝑞(𝑡0, 𝑥)‖TV for all 𝑡 > 𝑡0 , (8.4)

the previous is a condition known as total variation diminishing (TVD); it should be pointed out that
the total variation of such a function is actually nonincreasing (rather than strictly diminishing) as time
progresses. It is possible to show that in linear systems of conservation laws, under a definition of
the total variation based on characteristic variables, the total variation of the exact solution remains
constant [82, §15.8.1]. In the nonlinear system case, the exact solution is not TVD even in such a
definition—even in one dimension [82, §15.8.2].

Typically, the total variation of the (scalar) exact solution remains constant until (in the Burgers case)
said solution develops into a shockwave—it then starts diminishing (see, for example, the results in [83,
§3]). This property of the exact solution becomes one additional aspect to be mimicked by the discrete
model. A numerical method is said to be TVD if the approximate solution it produces satisfies (8.4).
3The supremum of a set is the least upper bound of all its elements; it generalizes the concept of maximum. For example, the
set of all negative real numbers has no maximum—there is no element within the set (i.e. a negative real number) larger than
any other—yet, it has a supremum: zero.

4If 𝜕𝑞𝜕𝑥 is interpreted as the distribution derivative (i.e. constructed using Dirac Delta functions at each discontinuity point), (8.3)
applies even for nondifferentiable functions [82, §6.7].



80 8. Nonlinear Stabilization

The 1st order upwind finite volume spatial discretization (or, equivalently, any of the three highorder
methods reviewed in this report with p = 0), combined with the explicit 1st order Euler time scheme, is
the simplest example of a TVD method.

8.1.2. Monotonicity
The onset of Gibbs oscillations in an approximate solution will be accompanied by an increase in its
total variation. In fact, any approximate solution obtained by a fully discrete conservation law that does
not increase the total variation to the function it is applied to is necessarilymonotonicitypreserving [82,
p. 110]. This, in turn, means that for all 𝑥𝑛 < 𝑥𝑛+1 ∈ 𝛺 (two arbitrary sample locations in the domain)
and 𝑡1 > 𝑡0:

𝑞ℎ(𝑡0, 𝑥𝑛) ≥ 𝑞ℎ(𝑡0, 𝑥𝑛+1) ⟹ 𝑞ℎ(𝑡1, 𝑥𝑛) ≥ 𝑞ℎ(𝑡1, 𝑥𝑛+1) . (8.5)

In a monotonicitypreserving solution, no new local extrema can form as time advances. Moreover, in
the case of nonincreasing total variation, any existing local extrema can only become less pronounced—
i.e.minima cannot decrease and maxima cannot increase. A TVD method, therefore, guarantees that
the approximate solution it provides will not achieve invalid values that could cause the numerical solver
routine to crash (e.g. negative densities or imaginary speeds of sound). There is, however, an impor
tant disadvantage associated with a scheme being TVD: its accuracy in local extrema, even smooth
ones, can be at most 2nd order—regardless of its order in monotone smooth regions [108].

8.1.3. Total variation bounded (TVB)
An approximate solution component is said to be total variation bounded (TVB) [108] in [𝑡0, 𝑡𝑁] if it
satisfies:

‖𝑞ℎ𝑖 (𝑡𝑛 , 𝑥)‖TV ≤ 𝐵 for all 𝑡0 ≤ 𝑡𝑛 ≤ 𝑡𝑁 , (8.6)

where 𝐵 > 0 is a constant that only depends on ‖𝑞ℎ𝑖 (𝑡0, 𝑥)‖TV—i.e. that is unique for all possible 𝑛 and
𝛥𝑡 such that 𝑡𝑛 = 𝑡0 + 𝑛𝛥𝑡. Comparing (8.6) and (8.4), it is clear that TVD implies TVB. Total variation
stability of a method is guaranteed by it being TVB [108], [82, p. 250]; even in the nonlinear system
case—if a suitable TV definition is employed, see [26, p. 95].

8.1.4. Other nonlinear stability criteria
Even TVB is often too restrictive for nonlinear highorder discretizations—in the sense that, although
a given method may seem to be stable and convergent in practice, no actual TVB proof is known for
it. Such a qualitative notion of nonlinear stability is paradigmatic of essentially nonoscillatory (ENO)
methods; see §8.6.

It is typical for the total variation of a high resolution–high order approximate solution to oscillate
around a TV value slightly lower that of its exact counterpart, and converge towards it (from below) as
the number of degrees of freedom increases [83, §3]. Such behavior is suggestive of TV boundedness
as long as ‖𝑞ℎ‖TV ≤ ‖𝑞‖TV for all 𝑡, and can be attributed to a combination of:

• The total variation ‖𝑞ℎ‖TV being inexact, as it is evaluated at a finite number of sample points in
a subset of the real line.

• The discrete samples of the approximate solution, used in the TV estimation, not being exact
themselves.

Stability criterion Monotonicitypreserving Highorder (in smooth regions) Nonlinearly stable

TVD 3 7 3

TVB 7 3 3

ENO 7 3 7

Linearly stable 7 3 7

Table 8.1: Summary of the various stability criteria and the properties of the approximate solution that they guar
antee (scalar onedimensional case). Cross markers (7) indicate that a given stability criterion is insufficient to
ensure the corresponding property.



8.2. Legendrebased limiting 81

8.2. Legendrebased limiting
Most limiters incorporated in the present thesis (all except §8.7), as well as the two shock sensors in
§8.3, are defined for a modal DG discretization (§4.2.1). This means that the expansion coefficients
of the approximate solution and flux are assumed to be associated with a Legendre polynomial basis,
spanning each element’s trial solution space 𝑆ℎ𝑘 (𝛺). These are obtained via 𝐿2 projection from the
actual Jdimensional trial function space—be it Lagrange polynomials (DGSEM and FR/CPR) or B
splines (DGIGA)—onto a Legendrebased destination one with the same number of dimensions, as
follows. Once the limiting/sensing procedure is complete, the approximate solution is projected back
onto its original basis.

Due to the orthogonality of the Legendre basis, any higherorder expansion coefficients that may
seem undefined (e.g. because an element is using a lower approximation degree than its neighbors)
can be assigned values of zero without modifying the approximate solution. This facilitates limiting of
discretizations employing prefinement.

Within this chapter, �̂�𝑘 and �̌�𝑘 are redefined as the matrices of Legendre and “original” (Lagrange
or Bspline) expansion coefficients, respectively. Assume that destination (𝒫𝑗−1, Legendre) and source
(𝜙𝑗, Lagrange or Bspline) basis functions are arranged into vectors, as in (3.9). Then, the state coef
ficients of the two approximate solution representations are related by:

�̂�𝑘(𝑡)∫
1

−1
𝓟𝓟⊺ d𝜉 = �̌�𝑘(𝑡)∫

1

−1
𝝓𝓟⊺ d𝜉 . (8.7)

For DGSEM and FR/CPR, the previous reduces to (4.19), i.e. :

�̂�𝑘(𝑡) = �̌�𝑘(𝑡)𝓥−1 , (8.8)

while, for DGIGA—using (4.7):

�̂�𝑘(𝑡) = �̌�𝑘(𝑡) (∫
1

−1
𝑵𝓟⊺ d𝜉)

⎡
⎢
⎢
⎢
⎣

1
2 0

3
2

⋱
0 2J−1

2

⎤
⎥
⎥
⎥
⎦

, (8.9)

with each entry in the ℝJ×J mixed inner product matrix being computed exactly via GaussLegendre
quadrature of J + 1 points at the breakpoint span level (see §6.3.2).

DGSEM and FR/CPR employ a polynomial trial function space. Hence, for these two methods, the
projection to and from Legendre is a mere change of basis; the approximate solution is unaffected. In
DGIGA, however, the smoothness of the approximate solution will generally not be preserved. Fur
thermore, the degree of the Legendrebased version of the solution will be equal or higher than that of
its Bsplinebased version (the overall number of degrees of freedom is kept the same).

8.3. Discontinuity sensing
Limiting adds nonnegligible computational overhead to each residual evaluation; in addition, the ac
curacy in limited elements is generally reduced. It would therefore be desirable to apply any given
limiter only to the smallest set of elements which require it. Shock sensors (also known as troubled cell
detectors) try to determine a priori which elements contain discontinuities and/or will result in undesir
able spurious oscillations unless limited. Two sensors have been selected to complement the limiters
reviewed in the present study.

8.3.1. KXRCF sensor
Krivodonova et al. [68] propose a sensor that estimates the local order of accuracy of a DG discretization
at the inflow edge(s) of each element, and uses this information to determine whether or not to mark
it for limiting. It exploits the fact that the DG approximate solution is 𝒪(𝛥𝑥2p+1) and 𝒪(𝛥𝑥p+2) super
accurate at smooth outflow and inflow element boundaries, respectively [4]. This shock detector is both
simple and free of userdefined parameters, and seems to be wellregarded in the literature [102].

The implementation I use in this thesis, slightly adapted from [68], is as follows:



82 8. Nonlinear Stabilization

1. Consider an arbitrary 𝛺𝑘 ∈ 𝒯ℎ. Evaluate a PDEdependent, velocitylike quantity5 at each of its
edges; let us denote these here as 𝑢𝐿𝑘 and 𝑢𝑅𝑘 . Then, use them to compute the indicator variable
𝐼𝑘 as follows:

(a) Initialize it to 𝐼𝑘 = 0.
(b) If 𝑢𝐿𝑘 > 0 (the left edge is an inflow boundary):

𝐼𝑘 ← 𝐼𝑘 + |𝑞ℎ1𝑘(−1) − 𝑞ℎ1𝑘−1(1)| . (8.10)

(c) If 𝑢𝑅𝑘 < 0, i.e. the right edge is (also) an inflow boundary:

𝐼𝑘 ← 𝐼𝑘 + |𝑞ℎ1𝑘(1) − 𝑞ℎ1𝑘+1(−1)| . (8.11)

For vector PDEs, I only consider the first state vector component (e.g. density for Euler).

2. Normalize it by a baseline convergence rate:

𝐼𝑘 ←
𝐼𝑘

|�̂�11𝑘|
𝛥𝑥−

p+1
2

𝑘 . (8.12)

3. It is shown in [68] that 𝐼𝑘 → 0 as either 𝛥𝑥𝑘 → 0 or p → ∞ if 𝑞1(𝑥) ∈ 𝐶∞ (locally), while 𝐼 → ∞ near
regions where 𝑞1(𝑥) ∉ 𝐶0. Therefore, if 𝐼𝑘 > 1 (once normalized), assume that 𝛺𝑘 is troubled
(i.e. it contains a discontinuity and/or needs to be limited).

8.3.2. APTVD sensor
This second sensor is due to Wang [124]. He argues that KXRCF has too much of a tendency to result
in false positives, a problem that this alternative marker is designed to correct. It is based on the TVD
generalized slope limiter of Cockburn and Shu (§8.4), but tries to avoid mistaking smooth extrema for
spurious oscillations caused by discontinuities without requiring userdefined parameters (similarly to
§8.5), hence its “accuracypreserving” designation.

I use it in a slightly modified way from [124], which can be summarized as follows:

1. Consider 𝛺𝑘 ∈ 𝒯ℎ and the first, second and third Legendre coefficients of its approximate so
lution vector (�̂�1𝑘, �̂�2𝑘 and �̂�3𝑘, respectively associated with 𝒫0, 𝒫1 and 𝒫2). This element is
preemptively assumed to require limiting if:

𝑞ℎ𝑖𝑗𝑘(𝜉𝑛) > 1.001max{�̂�1𝑘−1, �̂�1𝑘 , �̂�1𝑘+1} or 𝑞ℎ𝑖𝑗𝑘(𝜉𝑛) < 0.999min{�̂�1𝑘−1, �̂�1𝑘 , �̂�1𝑘+1} (8.13)

for any 𝑖 ∈ [1, I], 𝑗 ∈ [1, J] and 𝑛 ∈ [1, J+2], where 𝜉𝑛 ∈ {−1, 𝜉2, 𝜉3, … , 𝜉J+1, 1}, the set of coordinates
associated with the degrees of freedom (nodes or control points), augmented with the left and
right edge locations.

2. If 𝛺𝑘 was marked as troubled according to the previous step, compute:

�̂�∗3𝑘≔minmod(�̂�3𝑘 ,
�̂�2𝑘 − �̂�2𝑘−1

3 , �̂�2𝑘+1 − �̂�2𝑘3 ) (8.14)

and, overriding step 1, 𝛺𝑘 is considered free of troubles if �̂�3𝑘 = �̂�∗3𝑘.

The second step, in which smooth extrema are unmarked, is done comparing elementaveraged
derivatives of the approximate solution in [124]. My alternative formulation—using Legendre coeffi
cients instead—is justified solely on its similarity with hierarchical limiters (§8.5); there seems to be no
reason why, it being effective in that situation, should no longer be so in this context.

5Advection: 𝑎; wave: 𝒸; Burgers: 𝑢2 ; Euler: 𝑢.



8.4. Generalized slope limiting 83

8.4. Generalized slope limiting
Cockburn and Shu [23], aware of the limitations of their novel method in regards to nonlinear stability,
already included a simple (yet very effective) limiter in their original proposal of the RungeKutta Dis
continuous Galerkin scheme. This limiter is applied to each troubled element (see §8.3) at the end of
every RungeKutta stage. Its role is to modify its Legendre coefficients �̂�𝑘(𝑡) (in fact, it only limits the
columns for which 𝑗 > 1) in such a way that any spurious oscillations are removed from 𝒒ℎ𝑘(𝑡, 𝑥).

The DG slope limiter of Cockburn and Shu borrows a minmodbased6 TVD slope limiter from
MUSCLtype highresolution finite volume schemes [82, §6.9] to instead enforce the weaker TVB cri
terion on the limited approximate solution.

For a piecewise constant approximate solution, (8.2) reduces to being evaluated at each element’s
mean value. This generalizes into a weaker stability indicator for highorder methods—TVM rather than
TV—but one that is much simpler (and economical) to evaluate [22, p. 424]:

‖𝑞ℎ(𝑡1, 𝑥)‖TVM≔
K+1

∑
𝑘=1

|�̂�1𝑘(𝑡1) − �̂�1𝑘−1(𝑡1)| , (8.15)

where �̂�1𝑘 is the first Legendre coefficient of the approximate solution on 𝛺𝑘 (see §8.2). The slope
limited DG method is proven in [22] to satisfy the corresponding TVDM and TVBM criteria (when𝑀 = 0
and 𝑀 > 0, respectively; see §8.4), when combined with a strong stability–preserving RungeKutta
(SSPRK) time scheme (see §7) for a small enough7 Courant number. Both TVDM and TVBM imply
TVB [26, p. 95]—this is one of the very few general stability results known for highorder methods.

8.4.1. Modified minmod function
Shu’s elementwise modified minmod function is defined as:

modminmod
𝑘

(𝑞1, 𝑞2, 𝑞3)≔ {
𝑞1 if |𝑞1| ≤ 𝑀𝛥𝑥2𝑘
minmod (𝑞1, 𝑞2, 𝑞3) otherwise

, (8.16)

with the conventional minmod function being:

minmod (𝑞1, 𝑞2, 𝑞3)≔ {
sign(𝑞1)min{𝑞1, 𝑞2, 𝑞3} if sign(𝑞1) = sign(𝑞2) = sign(𝑞3)
0 otherwise

. (8.17)

It is convenient to vectorize these functions, such that:

modminmod
𝑘

(𝒒1, 𝒒2, 𝒒3) =
⎡
⎢
⎢
⎢
⎣

modminmod𝑘 (𝑞11, 𝑞12, 𝑞13)
modminmod𝑘 (𝑞21, 𝑞22, 𝑞23)

⋮
modminmod𝑘 (𝑞I 1, 𝑞I 2, 𝑞I 3)

⎤
⎥
⎥
⎥
⎦

. (8.18)

The scalar 𝑀 ≥ 0 is a userspecified parameter8. For 𝑀 = 0, the limiter enforces TVD slopes on
any element which contains a critical point (i.e. location where the first derivative of the solution either
is zero or does not exist). This makes 𝒒∗(𝑡, 𝑥) TVDM (which implies TVB) but has the drawback of
greatly diffusing local maxima or minima, even if they are smooth, needlessly reducing accuracy to low
order in their neighborhood. By gradually increasing 𝑀, it is possible to reduce the activation threshold
of the limiter so that smooth extrema are excluded, and the limiter only diffuses actual discontinuities
(as intended). The resulting solution is TVBM (and, still, TVB) for 𝑀 > 0,. As 𝑀 → ∞, limiting stops.
6The minmod slope limiter can be regarded as the baseline TVD limiter, since it results in the most conservative slopes—
i.e. introduces the most numerical diffusion—among similar alternatives (e.g. superbee, MC, van Leer; see [82, §6.12]). Cock
burn and Shu’s generalized slope limiter is actually built upon a slightly less restrictive one due to Osher (that also uses the
minmod function) [25, §2.4].

7The Courant number (𝜍) required for TVBMstability is much larger than that necessary for linear stability when the order of the
SSPRK time scheme is equal or smaller than that of the discretization [25, p. 198].

8In scalar conservation laws, the optimal 𝑀 corresponds to the supremum of the set of absolute values of the second derivative
of the solution at local extrema [25, p. 195].



84 8. Nonlinear Stabilization

8.4.2. Local characteristic variables
In systems of conservation laws, generalized slope (and also moment, see §8.5) limiters are typically
applied to local characteristic variables, as this is necessary to ensure TVB behavior 9.

A given state vector 𝒒ℎ𝑘 may be projected to characteristic variables by leftmultiplying it with some
left eigenvector matrix (as defined in §2). Interelement limiters act on Legendre coefficients of the
solution on a compact stencil encompassing three elements, {�̂�𝑘−1, �̂�𝑘 , �̂�𝑘+1}. It is thus convenient
to employ such a local characteristic decomposition directly on the matrices of Legendre coefficients,
which simply means that any eigenvectors or eigenvalues are evaluated at the mean state of the middle
element in the stencil, i.e. {𝑳𝑘�̂�𝑘−1, 𝑳𝑘�̂�𝑘 , 𝑳𝑘�̂�𝑘+1} with:

𝑳𝑘≔𝑳([�̂�11𝑘 �̂�21𝑘 ⋯ �̂�I 1 𝑘]
⊺
) , 𝑹𝑘≔𝑹([�̂�11𝑘 �̂�21𝑘 ⋯ �̂�I 1 𝑘]

⊺
) . (8.19)

For further details and generalizations (e.g. to triangular elements), refer to [24].

8.4.3. TVB limiter
My implementation of the TVB slope limiter used in this thesis is based on [25, §2.4]. It consists on the
following steps:

1. Let us assume that, after applying stage 𝑠 of an Sstage RungeKutta timescheme, �̃�ℎ𝑘(𝑡𝑛+𝑠/S, 𝜉)
and �̂�𝑘 (𝑡𝑛+𝑠/S) have just been computed at 𝑡𝑛+𝑠/S = 𝑡𝑛 + (𝑠/S)𝛥𝑡, for 𝛺𝑘 ∈ 𝒯ℎ ∪ 𝒢ℎ (ghost
elements included). Evaluate the following for every (troubled) element in 𝒯ℎ:

𝛥𝒒𝐿𝑘≔�̂�1𝑘 (𝑡𝑛+ 𝑠S ) − �̃�
ℎ
𝑘 (𝑡𝑛+ 𝑠S , −1) , 𝛥𝒒𝑅𝑘≔�̃�ℎ𝑘 (𝑡𝑛+ 𝑠S , 1) − �̂�1𝑘 (𝑡𝑛+

𝑠
S
) , (8.20a)

𝛥�̄�𝐿𝑘≔�̂�1𝑘 (𝑡𝑛+ 𝑠S ) − �̂�1𝑘−1 (𝑡𝑛+
𝑠
S
) , 𝛥�̄�𝑅𝑘≔�̂�1𝑘+1 (𝑡𝑛+ 𝑠S ) − �̂�1𝑘 (𝑡𝑛+

𝑠
S
) . (8.20b)

2. Compute corresponding left and right–sided, TVBlimited slopes (see §§ 8.4.1 and 8.4.2):

(𝛥𝒒𝐿𝑘)
∗≔𝑹𝑘modminmod

𝑘
(𝑳𝑘𝛥𝒒𝐿𝑘 , 𝑳𝑘𝛥�̄�𝐿𝑘 , 𝑳𝑘𝛥�̄�𝑅𝑘) , (8.21a)

(𝛥𝒒𝑅𝑘)
∗≔𝑹𝑘modminmod

𝑘
(𝑳𝑘𝛥𝒒𝑅𝑘 , 𝑳𝑘𝛥�̄�𝐿𝑘 , 𝑳𝑘𝛥�̄�𝑅𝑘) . (8.21b)

3. Compute safe slopes for the 𝐿2 projection of the approximate solution on a p = 1 space:

�̂�∗2𝑘 ≡ 𝑹𝑘modminmod
𝑘

(𝑳𝑘�̂�2𝑘 , 𝑳𝑘𝛥�̄�𝐿𝑘 , 𝑳𝑘𝛥�̄�𝑅𝑘) . (8.22)

4. Any component 𝑖 of the approximate solution for which (𝛥𝑞𝐿𝑖𝑘)
∗ ≠ 𝛥𝑞𝐿𝑖𝑘 or (𝛥𝑞𝑅𝑖𝑘)

∗ ≠ 𝛥𝑞𝑅𝑖𝑘 has
unsafe edge values. To correct this, replace it with its limited linear version by setting:

�̂�𝑖 2 𝑘 ← �̂�∗𝑖 2 𝑘 , �̂�𝑖𝑗𝑘 ← 0 for 𝑗 > 2 . (8.23)

Despite its robustness, simplicity and effectiveness (for a proper choice of 𝑀), this method has two
important shortcomings:

• It relies on a problemdependent and generally unknown parameter to function effectively.

• When a solution component is limited, all information apart from its mean value is discarded.

8.5. Generalized moment limiting
Biswas et al. [13] pioneered an approach aimed at overcoming both weaknesses of the TVB slope
limiter (§8.4.3) at once. Their idea was to extend the slope limiting idea to higherordermoments of the
approximate solution. This was a breakthrough achievement, making it possible for highorder accuracy
to be retained—not only at smooth extrema, but also across linearly degenerate discontinuities and
9This is not enough, however, to guarantee that certain physical bounds will always be preserved; see §8.8.



8.5. Generalized moment limiting 85

all the way up to the very close neighborhood of genuine nonlinear shocks—without any problem
dependent constant to adjust. Over time, this method has developed into its own family of DG limiters
[17, 69, 124].

In the context of Legendrebased DG (see §4.2.1), the 𝑚th moment of a polynomial approximant
𝑞ℎ𝑖𝑘(𝑡, 𝜉) is:

∫
1

−1
𝑞ℎ𝑖𝑘𝒫𝑚 d𝜉 ≡ 2

2𝑚 + 1�̂�𝑖 𝑚+1𝑘 . (8.24)

If applied to a linear approximation 𝑞ℎ𝑖𝑘(𝜉) (so that its two nonzero moments are mean value and slope),
generalized moment limiting reduces to generalized slope limiting. It can be shown [69] that the 𝑚th
moment of a 𝐶∞ function defined over 𝛺𝑘—and therefore, in turn, the �̂�𝑖 𝑚+1𝑘 Legendre coefficient of
its polynomial approximation—is proportional to its 𝑚th derivative sampled at any point of the element
(i.e. the zeroth coefficient is the mean value, the first one is associated with the slope, the second with
the curvature, and so on).

8.5.1. BDF limiter
This is the original generalized moment limiter due to Biswas, Devine, and Flaherty [13] (hence its
designation), the first of the three such limiters studied in this report. My implementation of it is as
follows; starting with 𝑖 = 1:
1. Let 𝒯∗ ⊆ 𝒯ℎ be the set of troubled 𝛺𝑘 ∈ 𝒯ℎ (§8.3); if no sensor is used, 𝒯∗ = 𝒯ℎ.
2. For every 𝑗 from J − 1 to 1:

(a) For every 𝛺𝑘 ∈ 𝒯∗, use (8.17) to compute a limited version of the 𝑗th Legendre coefficient (in
characteristic variables) associated with the 𝑖th state vector component of the approximate
solution:

(𝑳𝑘�̂�𝑗+1𝑘)
∗
𝑖 ≔minmod((𝑳𝑘�̂�𝑗+1𝑘)𝑖 ,

(𝑳𝑘 (�̂�𝑗 𝑘 − �̂�𝑗 𝑘−1))𝑖
2𝑗 − 1 ,

(𝑳𝑘 (�̂�𝑗 𝑘+1 − �̂�𝑗 𝑘))𝑖
2𝑗 − 1 ) . (8.25)

This generalizes (8.22) to modes 𝑗 ≥ 1.
(b) Exclude from 𝒯∗ any 𝛺𝑘 for which (𝑳𝑘�̂�𝑗+1𝑘)

∗
𝑖 = (𝑳𝑘�̂�𝑗+1𝑘)𝑖 or (𝑳𝑘�̂�𝑗+1𝑘)𝑖 = 0, and assume

that their remaining modes are safe—i.e. : (𝑳𝑘�̂�𝑟 𝑘)
∗
𝑖 ≔(𝑳𝑘�̂�𝑟 𝑘)𝑖 for 𝑟 = 2, 3, … , 𝑗. The limit

ing process is thus stopped for the 𝑖th characteristic component of all elements which (are
assumed to) no longer require it.

This step gives rise to the notion of hierarchical limiting, in which higherorder modes are limited
using lowerorder ones until no more limiting is required. Looping over 𝑗 from highest to lowest
ensures that only unlimited modes of each element’s left and right neighbors are used in each
iteration.

3. Advance to the next PDE component, 𝑖 ← 𝑖 +1. If 𝑖 ≤ I, go back to step 1 (i.e. repeat the process
for the next characteristic component of all troubled elements); otherwise, move on to the last
step.

4. For every (troubled) 𝛺𝑘, replace its unlimited expansion coefficients with limited ones (only unsafe
ones will actually be modified10):

�̂�𝑘 ← 𝑹𝑘 (𝑳𝑘�̂�𝑘)
∗
. (8.26)

8.5.2. BSB limiter
Burbeau, Sagaut, and Bruneau [17] proposed this limiter as a general improvement over BDF in terms
of overall accuracy. In essence, it consists on performing the following after step 2b in §8.5.1:

(c) Compute the following quantities:

𝛥�̂�𝐿𝑗𝑘≔�̂�𝑗 𝑘−1 + (2𝑗 − 1) �̂�𝑗+1𝑘−1 , 𝛥�̂�𝑅𝑗𝑘≔�̂�𝑗 𝑘+1 − (2𝑗 − 1) �̂�𝑗+1𝑘+1 . (8.27)
10In the DGIGA case, special care needs to be taken to make sure that, for any conservative variable that is not affected by the
limiter, the original Bspline expansion coefficients are maintained (instead of needlessly converting them back and forth).



86 8. Nonlinear Stabilization

(d) Using the previous, evaluate:

(𝑳𝑘�̂�𝑗+1𝑘)
max
𝑖 ≔minmod((𝑳𝑘�̂�𝑗+1𝑘)𝑖 ,

(𝑳𝑘 (�̂�𝑗𝑘 − 𝛥�̂�𝐿𝑗𝑘))𝑖
2𝑗 − 1 ,

(𝑳𝑘 (𝛥�̂�𝑅𝑗𝑘 − �̂�𝑗𝑘))𝑖
2𝑗 − 1 ) . (8.28)

(e) And, in turn, compute:

(𝑳𝑘�̂�𝑗+1𝑘)
∗∗
𝑖 ≔maxmod ((𝑳𝑘�̂�𝑗+1𝑘)

∗
𝑖 , (𝑳𝑘�̂�𝑗+1𝑘)

max
𝑖 ) , (8.29)

where:

maxmod (𝑞1, 𝑞2)≔ {
sign(𝑞1)max{|𝑞1| , |𝑞2|} if sign(𝑞1) = sign(𝑞2)
0 otherwise

, (8.30)

which is applied in vectorized fashion, in the same manner as (8.17) earlier.

(f) Repeat step 2b in 8.5.1, this time searching for elements such that (𝑳𝑘�̂�𝑗+1𝑘)
∗∗
𝑖 = (𝑳𝑘�̂�𝑗+1𝑘)𝑖.

In step 4, (𝑳𝑘�̂�𝑘)
∗∗
is used instead of the more conservative (𝑳𝑘�̂�𝑘)

∗
. Numerical experiments in [17]

suggest that this modification does indeed lower numerical diffusion, while still maintaining nonlinear
stability in practice.

8.5.3. Krivodonova’s limiter
Yet another variant of the generalized moment limiter for DG was proposed by Krivodonova [69]. She
claims that her recipe leads to reduced numerical diffusion in the limited solution without compromising
stability (in most practical situations, at least). While this is similar to BSB, her approach is substantially
simpler.

The reasoning behind this limiter is as follows. When generalizing (8.22) from slope to any arbitrary
higher order moment, consider limiting solution derivatives directly (instead of inner products between
solution and each Legendre basis function). Assuming that 𝑞ℎ𝑖𝑘(𝑡, 𝑥) ∈ 𝐶∞, comparison between its
Taylor series and Legendre polynomial expansion reveals that [69]:

�̂�𝑖𝑗𝑘(𝑡) ≈ 𝐶𝛥𝑥𝑗𝑘
𝜕𝑗𝑞ℎ𝑖𝑘
𝜕𝑥𝑗 (𝑡, 𝜁), 𝜁 ∈ 𝛺𝑘 . (8.31)

i.e. each Legendre coefficient is an estimate (up to a scaling factor, 𝐶 ∈ ℝ+) of the spatial derivative of
matching order of the approximate solution, sampled at any point of the element. This eventually leads
to [69]:

�̂�𝑖 𝑗+1𝑘 =
�̂�𝑖 𝑗 𝑘 − �̂�𝑖 𝑗 𝑘−1
2 (2𝑗 − 1) + 𝒪 (𝛥𝑥𝑗+2) =

�̂�𝑖 𝑗 𝑘+1 − �̂�𝑖 𝑗 𝑘
2 (2𝑗 − 1) + 𝒪 (𝛥𝑥𝑗+2) , 𝑗 = 1, 2, 3, … , J , (8.32)

which is smaller than the approximation employed by Biswas et al. [13] in the BDF limiter (§8.5.1) by a
factor of 1/2 in the leading term of every mode. As an entirely ad hoc modification, Krivodonova [69]
then proposes to replace (8.25), in step 2a of §8.5.1, with the following:

(𝑳𝑘�̂�𝑗+1𝑘)
∗
𝑖 ≔minmod((𝑳𝑘�̂�𝑗+1𝑘)𝑖 ,

(𝑳𝑘 (�̂�𝑗 𝑘 − �̂�𝑗 𝑘−1))𝑖
𝛼𝑗

,
(𝑳𝑘 (�̂�𝑗 𝑘+1 − �̂�𝑗 𝑘))𝑖

𝛼𝑗
) . (8.33)

For 𝛼𝑗 = 2𝑗 − 1, Krivodonova’s limiter becomes identical to BDF. However, if 𝛼𝑗 = 2 (2𝑗 − 1)
(i.e. strictly as derived), it turns out to be too conservative for practical purposes (it becomes unneces
sarily diffusive). This suggests that, actually, BDF’s overestimation of the modal expansion coefficients
is itself an ad hoc compromise between stability and accuracy, made implicitly through the design deci
sion of limiting Legendre moments (rather than solution derivatives). Krivodonova’s contribution is the
realization that this can be taken one step further by using an even more aggressive set of 𝛼𝑗 values
in (8.33). More specifically, any values in the range:

1 ≤ 𝛼𝑗 ≤ 2 (2𝑗 − 1) , (8.34)



8.6. Weighted essentially nonoscillatory (WENO) limiting 87

are claimed to maintain stability11 in all numerical tests performed in [69]. Consequently, the simplest
case 𝛼𝑗 = 1—corresponding to the mildest possible limiting—seems to be optimal. Only this value is
employed in the present report.

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

𝑗

1
𝛼𝑗

Krivodonova, 𝛼𝑗 = 1
BDF, 𝛼𝑗 = 2𝑗 − 1
𝛼𝑗 = 2 (2𝑗 − 1)

Figure 8.2: Krivodonova’s range of 1
𝛼𝑗

scaling factors as functions of 𝑗, in comparison with BDF’s ones. The
reduction in limiting intensity of 𝛼𝑗 = 1, in relation to (8.32), becomes more pronounced at high modes, possibly
leading to some amount of smallwavelength oscillations not being removed by the limiter.

8.6. Weighted essentially nonoscillatory (WENO) limiting
A more recent trend exists in the literature trying to bring the ENO and/or WENO machinery, well
established in the contexts of finite differences and finite volumes, to discontinuous Galerkin. For
details on this kind of high resolution schemes, see [43, 62, 110] and references therein.

This “(W)ENO for DG” initiative seems to have started with the series of papers [101, 103, 136],
in which the socalled Hermite WENO (HWENO) approach is developed. HWENO schemes have a
more compact stencil than traditional variants for a given order, making them better suited to DG. Other
examples of HWENO limiters for DG are [84, 87, 134]. The main downsides of WENO limiters are their
relative complexity and associated computational cost. The latter, however, can be mitigated with the
use of sensors (§8.3).

8.6.1. HWENO limiter
In the present thesis, I consider a particularly simple HWENO limiter originally due to Zhong and Shu
[134], later extended to FR/CPR in [29] and improved in [137]. I apply it in the following way, which
incorporates the improvements of Zhu et al. [137] by exploiting the fact that, when undergoing limiting,
all solution components exist in a Legendrebased space (see §8.2).

Consider, once again, the set of troubled elements 𝒯∗ ⊆ 𝒯ℎ. Now, for every 𝛺𝑘 ∈ 𝒯∗:

1. The local ENO/WENO stencil centered on 𝛺𝑘 contains three polynomial vectors, namely: 𝒒ℎ𝑘−1,
𝒒ℎ𝑘 and 𝒒ℎ𝑘+1. For ease of notation, let us define their respective projections to local characteristic
variables as:

𝓺0≔𝑳𝑘�̃�ℎ𝑘−1 , 𝓺1≔𝑳𝑘�̃�ℎ𝑘 , 𝓺2≔𝑳𝑘�̃�ℎ𝑘+1 . (8.35)

Replace the mean values (i.e. 1st Legendre coefficient) of the left and right approximate solu
tion polynomials in characteristic variables by those of the approximate solution polynomial, in

11As with the rest of moment limiters, there is no known TVB guarantee of nonlinear stability linked with this range. Krivodonova
[69] herself admits that the choice 𝛼𝑗 = 1 allows (minor) oscillations to appear in highest order derivatives. This is similar to
the essentially nonoscillatory (ENO) requirement, under which some degree of nonmonotonicity is considered acceptable.



88 8. Nonlinear Stabilization

characteristic variables, of 𝛺𝑘:

�̂�10 ← �̂�11 , �̂�12 ← �̂�11 . (8.36)

This ensures that any convex combination12 of these three vectors’ components will preserve the
unlimited elementwise solution component averages.

2. Construct a limited version of 𝓆𝑖 1,

(𝑳𝑘�̃�ℎ𝑘)
∗
𝑖 ≔𝜔0𝓆𝑖 0 + 𝜔1𝓆𝑖 1 + 𝜔2𝓆𝑖 2 , (8.37)

using normalized nonlinear weights, {𝜔𝑙}2𝑙=0, obtained as follows. For 𝑖 = 1, 2, … , I:

(a) Estimate the smoothness of 𝓆𝑖𝑙, for 𝑙 = 0, 1, 2. Since it is a Legendrebased polynomial of
degree p, the smoothness indicator suggested in [134]—which, in turn, was first proposed
in [62]—becomes:

𝛽𝑙≔
p

∑
𝜅=1

22𝜅−1∫
1

−1
(

J

∑
𝑗=1
�̂�𝑖𝑗𝑙

d𝜅𝒫𝑗−1
d𝜉𝜅 )

2

d𝜉 . (8.38)

The integrand in (8.38) is a product of two polynomials, each of degree ≤ p − 1; it is hence
also a polynomial, but of degree ≤ 2p − 2. Its integral can therefore be computed exactly
using e.g.≥ p–point GaussLegendre quadrature (see table 4.2).

(b) Use the previous to compute corresponding nonnormalized nonlinear weights. For 𝑙 =
0, 1, 2:

�̄�𝑙≔
𝛾𝑙

(𝜀 + 𝛽𝑙)
𝑟 , (8.39)

where 𝛾𝑙 is an element of the triplet of linear weights subject to the condition ∑
2
𝑙=0 𝛾𝑙 = 1. In

order to bias the stencil toward the middle element, it is typical to choose 𝛾1 ≫ 𝛾0, 𝛾1 ≫ 𝛾2—
in fact, the larger the ratios 𝛾1

𝛾0
and 𝛾1

𝛾2
are, the more accurate the limited solution polynomial

is in smooth regions but, also, the more oscillatory it remains near discontinuities. Imitating
[134], I employ 𝜀 = 10−6, 𝑟 = 2 and the following linear weights:

𝛾0 = 0.001 , 𝛾1 = 0.998 , 𝛾2 = 0.001 . (8.40)

(c) Normalize the nonlinear weights obtained in the previous step; for 𝑙 = 0, 1, 2:

𝜔𝑙≔
�̄�𝑙

∑2𝑙=0 �̄�𝑙
. (8.41)

Once the previous steps have been completed, i.e.∃ (𝑳𝑘�̃�ℎ𝑘)
∗ ∀𝑘 ∶ 𝛺𝑘 ∈ 𝒯∗, the unlimited approximate

solution in conservative variables is overridden by its limited counterpart by setting, for every 𝛺𝑘 ∈ 𝒯∗:

�̃�ℎ𝑘 ← 𝑹𝑘 (𝑳𝑘�̃�ℎ𝑘)
∗
. (8.42)

8.7. Flux corrected transport (FCT) limiting
As explained in §6.4, it may be advantageous for DGIGA to apply limiting in a predictorcorrection
approach, where AFC is used to generate a suitable predictor. In what follows, I propose a modified
version of the FCT limiter in [77] that corrects said predicted solution, recovering a compromise between
highorder and highresolution. This method assumes the discretization to be of the type (6.30); it is
not applicable to the other methods, (6.16) included. Also, unlike the rest of limiters in this chapter, it
is used only once per timestep (and not after every timestage)13.
12A convex combination is a sum of weighted terms in which the sum of said weights is exactly 1. In the HWENO limiter case,
this means that ∑2𝑙=0𝜔𝑖𝑙 = 1 for every 𝑖.

13Only the predictor is advanced stage by stage, and is corrected, only once, at the end of the step.



8.7. Flux corrected transport (FCT) limiting 89

8.7.1. Linearized antidiffusive fluxes
Having constructed (6.30)—a loworder predictor—via AFC, the theory of flux corrected transport (FCT)
ensures that, for every control point 𝑟, there must exist a vector of highorder net antidiffusive fluxes,
𝒇𝐻𝑟𝑘, that relates the degrees of freedom of the loworder predictor with those of its unlimited highorder
(possibly oscillatory) counterpart, such that:

(�̂�𝐻𝑘 − �̂�𝐿𝑘)𝓜𝐿
𝑘 = 𝑭𝐻𝑘 , 𝑭𝐻𝑘 ≔[𝒇𝐻1𝑘 𝒇𝐻2𝑘 ⋯ 𝒇𝐻J𝑘] . (8.43)

In an analogous manner to (6.33), each net flux vector is associated to a control point and includes
contributions from all other ones within nonzero basis function support, each being referred to as a raw
antidiffusive flux vector, 𝙛𝑟𝑗𝑘. These are defined such that:

𝒇𝐻𝑟𝑘≔∑
𝑗≠𝑟
𝙛𝑟𝑗𝑘 , 𝙛𝑟𝑗𝑘 ≡ 𝙛𝑗𝑟𝑘 , (8.44)

as in (6.33), the summation can be made over all control points, but the only nonzero contributions will
be due to those 𝑁𝑗 with nonzero support overlapping that of 𝑁𝑟 (itself excluded).

Explicit timemarching solvers such as those considered in this report (§7) are best suited to a
linearized variant of FCT. Each raw antidiffusive flux is approximated as [90]:

𝙛𝑟𝑗𝑘 ≈ 𝛥𝑡 ((�̂�𝐿𝑟𝑘 − �̂�𝑗𝑘
𝐿)𝑚𝑗𝑟𝑘 +𝑫𝑟𝑗𝑘 (�̂�𝐿𝑟𝑘 − �̂�𝐿𝑗𝑘)) , (8.45)

in which every term on the righthandside is evaluated using the loworder approximate solution at 𝑡 +
𝛥𝑡—including, in particular, the residual vectors. This implies one additional evaluation of the predictor
residuals in (6.30), done after the timescheme has finished advancing the discretization to the next
timestep (if the limiter is being applied in an initialization step, see 8.7.3).

8.7.2. Synchronized sequential FCT limiter
In the context of FCT, limiting consists on reducing the magnitude of each antidiffusive flux by a factor
0 ≤ 𝛼𝑟𝑗𝑘 ≤ 1, such that replacing them in (8.44) and propagating the result via (8.43), leads to a set of
matrices of limited highorder control values which encode the soughtafter highresolution approximate
solution:

�̂�𝑘≔�̂�𝐿𝑘 + 𝑭𝐿𝑘 (𝓜𝐿
𝑘)
−1

, 𝒇𝐿𝑟𝑘≔∑
𝑗≠𝑟
𝛼𝑟𝑗𝑘𝙛𝑟𝑗𝑘 , 𝛼𝑟𝑗𝑘 ≡ 𝛼𝑗𝑟𝑘 . (8.46)

These limiting coefficients can be obtained in a generalized version of Zalesak’s algorithm [77], [78,
§9.2]. Said limiter was designed for loworder Lagrange basis functions, but can be applied in IGA
by essentially treating control points as as if they were nodes [90]. The limiting procedure used for
DGIGAAFC in this report consists on the following steps:

1. Prelimit raw antidiffusive fluxes as in [75, §6.4.1] (in conservative variables), i.e. set 𝘧𝑖𝑟𝑗𝑘 = 0
for every 𝑖, 𝑟, 𝑗, 𝑘 for which 𝘧𝑖𝑟𝑗𝑘 (�̂�𝐿𝑖𝑗𝑘 − �̂�𝐿𝑖𝑟𝑘) > 0 (if this product is positive, the associated raw
antidiffusive flux is actually diffusive).

2. Determine upper and lower bounds for each control value in the highresolution approximation.
For DGIGAAFC, I propose to do so as follows:

(a) First, determine elementlocal extrema (ghost elements included) in the control polygon of
each primary variable’s loworder predictor :

�̂�max
𝑖𝑟𝑘 ≔max {�̂�𝐿𝑖 𝑟−p𝑘 , … , �̂�𝐿𝑖 𝑟+p𝑘} , �̂�min

𝑖𝑟𝑘 ≔min {�̂�𝐿𝑖 𝑟−p𝑘 , … , �̂�𝐿𝑖 𝑟+p𝑘} . (8.47)

Control values in primary variables are obtained from conservative ones via leftmultiplication
with 𝙏(�̂�𝐿𝑟𝑘), defined by (2.44) for Euler (or the identity matrix otherwise).

(b) Then, communicate extrema across element edges (for 𝑘 = 0,…K), i.e. :

�̂�max
𝑖J𝑘 = �̂�max

𝑖 1 𝑘+1 =max {�̂�max
𝑖 J 𝑘 , �̂�max

𝑖 1 𝑘+1} , �̂�min
𝑖J𝑘 = �̂�min

𝑖 1 𝑘+1 =min {�̂�min
𝑖 J 𝑘 , �̂�min

𝑖 1 𝑘+1} . (8.48)



90 8. Nonlinear Stabilization

(c) Finally, propagate them inwards of each 𝛺𝑘 ∈ 𝒯ℎ; starting e.g. with 𝑟 = 2, 3, … , p + 1 (basis
functions that have shared nonzero support with the leftmost one):

�̂�max
𝑖𝑟𝑘 =max {�̂�max

𝑖1𝑘 , �̂�max
𝑖𝑟𝑘 } , �̂�min

𝑖𝑟𝑘 =min {�̂�min
𝑖1𝑘 , �̂�min

𝑖𝑟𝑘 } . (8.49)

and for 𝑟 = J − 1, J − 2,… , J − p (analogously, with the rightmost one):

�̂�max
𝑖𝑟𝑘 =max {�̂�max

𝑖J𝑘 , �̂�max
𝑖𝑟𝑘 } , �̂�min

𝑖𝑟𝑘 =min {�̂�min
𝑖J𝑘 , �̂�min

𝑖𝑟𝑘 } . (8.50)

This recipe reduces to sharing local maxima and minima among all control points within shared
nonzero basis function support of each other, treating the two nonzero basis functions at every
patch interface as if they where one. Preliminary numerical results (figure 8.3) suggest that this
approach is at least not worse than no coupling at all.

3. Compute synchronized limiting coefficients for each raw antidiffusive flux. This requires casting
the raw antidiffusive fluxes to primitive variables, which for the Euler equations (2.39) can be done
via controlpointbased transformations as:

𝘧𝜌𝑟𝑗𝑘≔𝘧1𝑟𝑗𝑘 , (8.51a)

𝘧𝑢𝑟𝑗𝑘≔
𝘧2𝑟𝑗𝑘 − �̂�𝑟𝑘𝘧𝜌𝑟𝑗𝑘

�̂�𝑟𝑘
, (8.51b)

𝘧𝑝𝑟𝑗𝑘≔(𝛾 − 1) (𝘧3𝑟𝑗𝑘 +
1
2�̂�

2
𝑟𝑘𝘧

𝜌
𝑟𝑗𝑘 − �̂�𝑟𝑘𝘧2𝑟𝑗𝑘) . (8.51c)

For the other conservation laws, no such conversion is necessary: there is no distinction between
primary and conservative variables.
In synchronized FCT, a single limiting coefficient acts on all components of 𝙛𝑟𝑗𝑘. Yet, it is possible
to apply multiple such coefficients sequentially, each corresponding to one loop over the following
algorithm; starting with 𝑖 = 1 and assuming, without loss of generality, that all primary variables
are to be limited:

(a) Use (8.51) to compute 𝘧𝘷𝑟𝑗𝑘, the raw antidiffusive flux corresponding to 𝘷𝑖𝑟𝑗𝑘.
(b) Compute positive/negative contributions to the net antidiffusive flux at control point 𝑟:

𝑓+𝑟𝑘≔∑
𝑗≠𝑟

max {0, 𝘧𝘷𝑟𝑗𝑘} , 𝑓−𝑟𝑘≔∑
𝑗≠𝑟

min {0, 𝘧𝘷𝑟𝑗𝑘} . (8.52)

(c) Compute distances to the local maxima/minima determined earlier:

𝛥�̂�+𝑟𝑘≔�̂�max
𝑖𝑟𝑘 − �̂�𝐿𝑖𝑟𝑘 , 𝛥�̂�−𝑟𝑘≔�̂�min

𝑖𝑟𝑘 − �̂�𝐿𝑖𝑟𝑘 . (8.53)

(d) Compute positive/negative control value correction factors:

𝛼+𝑟𝑘≔min {1,𝑚𝐿𝑟
𝛥�̂�+𝑟𝑘
𝑓+𝑟𝑘

} , 𝛼−𝑟𝑘≔min {1,𝑚𝐿𝑟
𝛥�̂�−𝑟𝑘
𝑓−𝑟𝑘

} . (8.54)

(e) Use the previous to compute 𝛼𝘷𝑟𝑗𝑘 ≡ 𝛼𝘷𝑗𝑟𝑘, as:

𝛼𝘷𝑟𝑗𝑘≔min {𝛼∗𝑟𝑗𝑘 , 𝛼∗𝑗𝑟𝑘} , 𝛼∗𝑟𝑗𝑘≔{
𝛼+𝑟𝑘 if 𝘧𝘷𝑟𝑗𝑘 ≥ 0
𝛼−𝑟𝑘 if 𝘧𝘷𝑟𝑗𝑘 < 0

. (8.55)

(f) Apply 𝛼𝘷𝑟𝑗𝑘 to the antidiffusive flux vector in conservative variables:

𝙛𝐿𝑟𝑗𝑘≔𝛼𝘷𝑟𝑗𝑘𝙛𝑟𝑗𝑘 . (8.56)

(g) If 𝑖 < I, set 𝑖 ← 𝑖 + 1 and go back to step (a) but replace 𝙛𝑟𝑗𝑘 with 𝙛𝐿𝑟𝑗𝑘, i.e. use the partially
limited 𝙛𝐿𝑟𝑗𝑘 to compute the next 𝘧𝘷𝑟𝑗𝑘 and, from it, limit 𝙛𝐿𝑟𝑗𝑘 further. Otherwise, stop: 𝙛𝐿𝑟𝑗𝑘 is
fully limited.



8.7. Flux corrected transport (FCT) limiting 91

Limited net antidiffusive fluxes can finally be obtained using (8.46) by setting, e.g. for the Euler
equations, 𝛼𝑟𝑗𝑘 = 𝛼𝑝𝑟𝑗𝑘𝛼𝑢𝑟𝑗𝑘𝛼

𝜌
𝑟𝑗𝑘. Or, more conveniently, simply by replacing 𝙛𝑟𝑗𝑘 with 𝙛𝐿𝑟𝑗𝑘 in (8.44),

after the limiter has been fully applied [77]:

𝒇𝐿𝑟𝑘 =∑
𝑗≠𝑟
𝙛𝐿𝑟𝑗𝑘 . (8.57)

With the Euler equations, it is critical to ensure that neither density nor pressure attain negative values,
making these two a sensible choice of primary variables to limit. It should also be pointed out that, in
this sequential approach, the order in which the selected primary variables are limited will generally
influence the final value of 𝛼𝑟𝑗𝑘. Unless specified otherwise, this limiter is applied in this report to all
PDE components, in their natural order (i.e. as defined in §2).

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑞ℎ
(𝑥
)

(a) AFC predictor (no FCT)

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑞ℎ
(𝑥
)

(b) FCT with no coupling between patches

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑞ℎ
(𝑥
)

(c) FCT with proposed interpatch coupling

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑞ℎ
(𝑥
)

(d) Consistent 𝐿2 projection

Figure 8.3: Comparison between four ways of projecting a Gaussian hump, 𝑞(𝑥) = exp (− 9𝜋𝑥2

4 ), into a DGIGA
discretization with 15 degrees of freedom, K = 3, p = 2 and J = 5 (3 breakpoint spans per patch). Markers are
control points of 𝑞ℎ(𝑥), and the dashed line is the exact 𝑞(𝑥).

8.7.3. Constrained initialization
The FCT limiter presented above depends on the existence of some set of antidiffusive fluxes so that the
relation (8.43) can be established. Yet, (8.45) has only been defined so far for a timematching context.



92 8. Nonlinear Stabilization

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(a) Consistent 𝐿2 projection

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(b) Unlimited DGIGA

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(c) Lumped 𝐿2 projection

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(d) DGIGAAFC predictor

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(e) Constrained 𝐿2 projection

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑢ℎ
(𝑡
,𝑥

)

(f) DGIGAAFC + FCT limiter

Figure 8.4: Unlimited, predictor and FCTcorrected initial condition projection (left) and approximate solution at
𝑡 = 0.45 (right) of Burgers equation in 𝛺 = [−1, 1], subject to periodic boundary conditions. Spatial discretization
consists of 3 elements (blue, red and green), each with 11 uniformly distributed breakpoints, p = 2 and no repeated
interior knots (J = 12), resulting in a total of 36 degrees of freedom. Timescheme is SSPRK3 with 𝜍 = 10−3. Cross
markers correspond to control points of the approximate solution; dashed line is the exact solution.



8.8. Failsafe limiting for the Euler equations 93

All conservation laws in this report are timedependent, and only unsteady solutions are considered.
Even so, there is a special case in which the approximate solution might need to be limited in a steady
state fashion: when it is obtained by projecting a given initial condition (see §3.5).

The consistent 𝐿2 projection of an initial condition 𝒒0(𝑥) onto 𝛺𝑘, an arbitrary DGIGA element,
implies:

(∫
𝛺𝑘
𝒒0𝑵⊺ d𝑥) = �̂�𝐻𝑘𝓜𝑘 . (8.58)

Doing the same on a DGIGAAFC element, gives rise to a lumped 𝐿2 projection:

(∫
𝛺𝑘
𝒒0𝑵⊺ d𝑥) = �̂�𝐿𝑘𝓜𝐿

𝑘 . (8.59)

It follows that:
�̂�𝐻𝑘𝓜𝑘 = �̂�𝐿𝑘𝓜𝐿

𝑘 . (8.60)

Meaning that the highorder solution can be constructed algebraically from the loworder one.
This fact can be exploited to determine the antidiffusive fluxes needed for FCT—even avoiding, in

this case, any linearization. In practice, the limiting procedure described above can still be applied, the
only difference being in the definition of raw antidiffusive fluxes (8.45), which is replaced by [77, §8]:

𝙛𝑟𝑗𝑘≔𝑚𝑗𝑟 (�̂�𝐻𝑟𝑘 − �̂�𝐻𝑗𝑘) . (8.61)

8.7.4. Troubled element detection
By construction, no discontinuity sensor should activate if applied to a DGIGAAFC element before
FCT limiting (since it contains a TVD predictor solution, at that point). The straightforward way to com
bine a sensor with this limiter is to first approximate the unlimited highorder solution using linearized
antidiffusive fluxes, and determine the presence of discontinuities in it. The limiter is then applied as
originally, but only to those 𝙛𝘷𝑟𝑗𝑘 for which 𝛺𝑘 has been determined to be troubled.

8.8. Failsafe limiting for the Euler equations
The Euler system of equations has some additional constraints on the values of primitive variables:
neither density nor pressure can ever be negative. This makes perfect sense from a physical point of
view on its own, but it is also important from a numerical perspective, as it ensures that the speed of
sound remains realvalued. Should that not be the case, even if only at one degree of freedom and by a
small amount, any nonzero imaginary part would propagate and eventually render the entire numerical
solution meaningless—assuming that the implementation supports complex numbers in the first place.

All limiters considered in this study except FCT are meant to be applied in local characteristic vari
ables (when these are defined, as in the Euler case). It is possible that, even when local characteristic
variables are TVDM, density and/or pressure experience small fluctuations. Nothing prevents these
from reaching negative values14. I propose to do so, in line with e.g. [69], by applying two additional
limiting steps (which can be seen and used as separate limiters), according to the following sequence:

1. Apply a RK stage

2. Apply the main limiter

3. Apply the first failsafe limiter (§8.8.1; optional)

4. Apply the second failsafe limiter (§8.8.2)

5. Repeat

The FCT limiter of §8.7.2 acts on primary variables, so it should not experience this issue. Never
theless, the correction procedure employs a linealization; this is believed to be the reason why invalid
density and pressure values may still arise in the constrained solution [77]. In situations with very
14I should mention, however, that there are limiters specifically designed to preserve positivity in this sense; see figure 8.1.



94 8. Nonlinear Stabilization

strong shocks, I have observed that control values in Bspline–based DG discretizations can reach in
valid density and pressure values even when the actual primitive variable function they are associated
with remains positive (e.g. figure 8.5a).

This might, at first, seem to be a feature of the Bspline basis: there is no reason (a priori) why
control values themselves should be nonnegative—what matters is the actual solution. Negative con
trol values “pull” the latter towards zero, actually making the discontinuity sharper; should the solution
become invalid, failsafes in §§8.8.1 and/or 8.8.2 would take care of the problem (assuming DGIGA
proper, i.e.multiple IGA patches). Nevertheless, most diffusion functions used in the AFC procedure,
including both (6.34) and (6.36), happen to fail in the presence of “invalid” control values (in the pre
vious sense). This is because they perform a decomposition into local characteristic variables at the
control point level, and this fails if pressure and/or density is negative.

To overcome this impasse reliably, I employ the alternative failsafe strategy of §8.8.4 with DGIGA
AFC (6.30) basis types, rather than the two (much simpler) failsafe limiters presented next. I use it as
follows:

1. Apply all RK stages (to the DGIGAAFC predictor)

2. Apply the main FCT limiter (§8.7.2)

3. Apply the failsafe FCT limiter (§8.8.4)

4. Repeat for the next step

8.8.1. Failsafe slope limiter
If a given element is considered troubled by a sensor, and is subsequently limited using one of the hier
archical limiters (BDF, BSB, Krivodonova’s or HWENO), it is possible that only higher order Legendre
coefficients have been adjusted, yet unlimited lower order ones are still causing nonphysical primary
variable values. This first failsafe step consists on detecting any of such invalid states that may have
remained after applying the main limiter. If found, set �̂�3𝑘 = �̂�4𝑘 = … = �̂�J 𝑘 = 0 (𝛺𝑘 is the offend
ing element), limit �̂�2𝑘 (slope) according to (8.25) or (8.33), and leave �̂�1𝑘 (elementwide average)
untouched.

8.8.2. Lastresort failsafe limiter
Given that the first failsafe step (§8.8.1) is also done in characteristic variables, the problem might still
persist. If so, a last resort is to set every Legendre coefficient above 𝑗 = 1 to zero. As long as the
main limiter is able to ensure that the approximate solution is TVDM, this is guaranteed to result in valid
states—at the cost of reducing the offending element to first order (although only temporarily, until the
next stage). This is nothing else than degreeadaptation.

8.8.3. Invalid element criteria for intercell failsafe limiters
I propose the following criteria to determine which elements incur into invalid Euler states.

1. First consider each edge in the mesh, 𝜕𝛺𝑘, and the two elements sharing it: 𝛺𝐿 and 𝛺𝑅; if any of
the following holds, flag it as invalid.

• The density or pressure (either side) is negative:

𝜌𝐿 < 0 ∪ 𝜌𝑅 < 0 ∪ 𝑝𝐿 < 0 ∪ 𝑝𝑅 < 0 . (8.62)

• The Riemann problem at this edge would “generate vacuum” [114, equation 4.40]:

𝑢𝑅 − 𝑢𝐿
2 ≥ 𝒸𝐿 + 𝒸𝑅

𝛾 − 1 . (8.63)

2. Then, flag as invalid both elements, 𝛺𝑘−1 and 𝛺𝑘, adjacent to every invalid edge 𝜕𝛺𝑘 (as detected
in the previous step).

3. Last, flag each of the remaining elements, 𝛺𝑘, in which �̂�𝑖𝑗𝑘 < 0 for 𝑖 = 1, 3 and 𝑗 = 1, 2, … , J.
These represent, either:



8.8. Failsafe limiting for the Euler equations 95

• Nodal values, if the basis functions are nodal (DGSEM and FR/CPR)
• Control values, if the basis functions are Bsplines (DGIGA)

The requirement that density and pressure control values be nonnegative can be overly conser
vative and may lead to unnecessary limiting. Yet, I have found this to be necessary to ensure a
valid AFC predictor.

8.8.4. Subcell FCT failsafe limiter
I propose the following straightforward extension to Bspline basis functions of the failsafe limiter
detailed in [77, §5] (also mentioned in [78, page 15]). In essence, this algorithm consists on gradually
reducing the magnitude of antidiffusive fluxes to be applied to the loworder predictor, until no invalid
control values remain; in the worst case scenario, the FCT correction is undone entirely. Note that
negative pressures and densities are not targeted explicitly: any over/undershoot with respect to the
predictor’s local maxima/minima is to be removed.

Let 𝑀 ∈ ℤ+ be a number of limiting stages15. The rest of variables are carried over from §8.7. For
𝑚 = 1, 2, … ,𝑀, and for all 𝑘 in need of limiting (e.g. designated by a sensor), do:

1. Set 𝑖 to the vector component associated to a desired control variable16

2. Compute a limiting coefficient associated to each pair of control points within mutual nonzero
basis function support, with indices 𝑟 and 𝑗, as follows:

𝛽(𝑚)𝑖𝑟𝑗𝑘 = {
𝛽(𝑚−1)𝑖𝑟𝑗𝑘 if (�̂�min

𝑖𝑟𝑘 − 𝜖 ≤ �̂�𝑖𝑟𝑘 ≤ �̂�max
𝑖𝑟𝑘 + 𝜖) ∩ (�̂�min

𝑖𝑗𝑘 − 𝜖 ≤ �̂�𝑖𝑗𝑘 ≤ �̂�max
𝑖𝑗𝑘 + 𝜖)

𝑚
𝑀 otherwise

, (8.64)

where 𝛽(0)𝑖𝑟𝑗𝑘≔0 and 𝜖 = 10−6.

3. Limit state vector control values by one stage, using the limiting coefficients just obtained in the
previous step:

�̂�𝑖𝑟𝑘 ← �̂�𝑖𝑟𝑘 −∑
𝑗≠𝑟
𝛽(𝑚)𝑖𝑟𝑗𝑘

𝑓𝐿𝑖𝑟𝑗𝑘
𝑚𝐿𝑟𝑘

. (8.65)

4. Repeat for the next control variable, and so on.

Bear in mind that this failsafe limiter, as well as FCT correction itself, assumes the predictor to
be free of invalid control values in the first place. In some cases (for modal DGIGAAFC, at least) I
have found that the control points of the loworder predictor itself can attain invalid values of density
and/or pressure. An example is shown in figure 8.5a. Despite the approximate pressure itself being
everywhere positive, one of its expansion coefficients has reached a negative value (𝑝 ≈ −0.0058,
encircled and magnified); this will cause the simulation to fail as soon as the solver attempts to compute
new antidiffusive fluxes “into” or “out from” this particular control point. This can be avoided by failsafe
limiting the predictor control values as in §8.8.2, leading to the approximate solution shown in subfigure
8.5b.

I have been unable to reproduce this problem (the presence in the AFC predictor of negative control
values for pressure or density) with nodal DGIGAAFC; it seems to be immune or, at least, less prone
to it. Nevertheless, both nodal and modal treatments do require, in addition, failsafe FCT limiting
(§8.8.4) after performing the correction to highorder as detailed in §8.7. Therefore, to ensure stability
with AFClimited DGIGA, it seems necessary that one must apply the intercell failsafes (§8.8.1 and/or
§8.8.2) on the loworder predictor, once per timescheme stage, as well as the subcell FCT failsafe
(§8.8.4) to the corrected approximate solution, at the end of each timestep.

15It is possible that this failsafe strategy overcorrects one control value at the expense of making some other one invalid; I have
found that using multiple stages prevents this (based on my own experiments, 2 or 3 stages seem to be enough).

16For the Euler equations, Kuzmin et al. [77, equation 13] seem to favor the following order: density, pressure and velocity.



96 8. Nonlinear Stabilization

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

200

400

600

800

1,000

𝑥

𝑝

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

200

400

600

800

1,000

𝑥

𝑝

(a) No failsafe

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

200

400

600

800

1,000

𝑥

𝑝

(b) Patchwide failsafe, p = 0

Figure 8.5: A very strong shock wave, discretized via DGIGAAFC (2 knot spans, p = 3, 𝐶1; modal treatment)
using the most robust diffusion function (6.36), without attempting to perform the FCT correction to highorder
(i.e. the uncorrected loworder predictor is the approximate solution). The numerical solution at 𝑡 = 1.80 × 10−4 is
represented with solid lines; cross markers denote control points and vertical line ones are break points. A change
of color indicates a separate patch. The dotted black line is the exact solution at 𝑡 = 0.



II
Experiments

97





9
Methodology

Part II contains the bulk of numerical results of this report. They can be split in two categories: solu
tion to test cases and semianalytical modified wavenumber analysis results. The former are always
accompanied by a test matrix, in which each test’s conditions are summarized. The latter are detailed
casebycase; the general formulation of the approach and all related magnitudes are described in
appendix A.

Each of the three research objects under study—DGSEM (§4), FR/CPR (§5) and DGIGA (§6)—has
multiple free parameters. The experimental campaign of this thesis is envisioned as a search for opti
mum configurations of each of these methods, when applied in highspeed, turbulent flow simulations
(but remaining within scope, i.e. one spatial dimension and inviscid flow). Each of these optima is a
point in the “design” or “parameter” space of the family of methods it belongs. All results assume a
uniform discretization, i.e. 𝑆ℎ𝑘 and 𝛥𝑥𝑘 are the same for all 𝑘. In the DGIGA case, the distribution of
breakpoints is uniform as well (but not the distribution of knots, which may still have multiplicity).

9.1. MATLAB implementation
All results shown in this thesis have been obtained using my own implementation of the formulation of
the various schemes presented in part I. The code, written for MATLAB 2017b, is publicly available at
https://github.com/mikiandh/dgmatlabscripts. It also includes all scripts used to obtain
the experimental results in this second part of the report.

9.2. Test matrices
Every data point in these results corresponds to a numerical solution of a particular model problem—
this I will refer to as a run1. Associated to each run is a set of parameters, uniquely defining every
detail of the computation, from the temporal and spatial discretizations to the limiter employed (if any);
these are summarized in test matrices, tables each row of which uniquely specifies one run (or batch
of related runs). Whenever a column is empty, it should be interpreted as having the same value as in
the previous row. Every test matrix has the following categories:

Table 9.1: Empty test matrix, for example purposes.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

• Figure: the figure in which the corresponding run (marker) and batch (plot line) is shown

• Problem: the initialboundary value problem solved, among those in §9.3
1To clarify, consider for example figure 10.1. In it, each point corresponds to the 𝐿2 error obtained after simulating 2 units of
time with a given timestep size. This means that over a hundred simulation runs have been necessary to obtain its data—and,
reciprocally, over a hundred simulation results are neatly summarized into one single picture.

99

https://github.com/mikiandh/dg-matlab-scripts


100 9. Methodology

• Time discretization

– RK: which of the SSPRK schemes in §7.3 is used (order and number of stages)
– 𝛥𝑡: timestep size (can be either fixed or relative to largest stable one)
– 𝛥𝑇: simulated span of time, i.e. 𝑡 − 𝑡0 at the instant when results are obtained

• Space discretization

– Method: DGSEM, FR/CPR or DGIGA (modal formulation, unless indicated otherwise)
– Ndofs: total number of degrees of freedom, per equation
– K: number of elements in the mesh

⋄ Ndofs≔JK, where J is the number of basis functions per element
– p: polynomial degree

⋄ If J > p + 1, the discretization method is DGIGA
– 𝜂: correction function parameter; only specified2 for FR/CPR
– k: number of breakpoint spans per element; only DGIGA can have k > 1
– 𝜘: smoothness of the approximate solution within an element (differentiability class 𝐶𝜘)

⋄ For DGIGA, 𝜘 < p; in particular, 𝜘 = p − 1 ⟹ J = k + p
• Limiting.

– Limiter: if any, one of those in §8
– Sensor: idem, for §8.3

Several runs are grouped into a batch—a row of the test matrix—and are associated with a figure
(as indicated). Every one of such batches shows the change in one dependent quantity (e.g. a measure
of the error) as some parameter of the run changes discretely (i.e. independent variable, indicated as a
range), for fixed values of the remaining free parameters. These can be seen as a series of 2D slices
of some multidimensional function the domain of which is the parameter space of the method.

9.3. List of model problems
The following are all combinations of boundary conditions (BC), initial condition (IC) and conservation
law (PDE) used in this thesis. In all cases 𝑡0 = 0 (time starts at zero).

9.3.1. Monochromatic wave (linear)
A sinusoidal signal of wavenumber 𝜅 = 𝑛𝜋 (𝑛 ∈ ℤ), centered around the unit amplitude:

PDE ∶ (2.19), 𝑎 = 1 , (9.1a)
IC ∶ 𝑞0(𝑥) = 1 + 0.1 sin (𝑛𝜋𝑥) , (9.1b)
BC ∶ Periodic, 𝛺 = [−1, 1] , (9.1c)

which travels unmodified at a rate of one domain length every two time units, towards +∞. Equation
(8.3) indicates that the total variation of the exact solution per period is 2𝑛

5 .

9.3.2. Monochromatic wave (nonlinear)
The same initial and boundary conditions as (9.1), but evolved according to the inviscid Burgers equa
tion instead:

PDE ∶ (2.29) , (9.2a)
IC ∶ 𝑢0(𝑥) = 1 + 0.1 sin (𝑛𝜋𝑥) , (9.2b)
BC ∶ Periodic, 𝛺 = [−1, 1] . (9.2c)

According to (2.30), the solution of this case breaks at 𝑡shock =
10
𝑛𝜋 . Until then, the total variation of the

exact solution is preserved and, hence, equal to that of (9.1).
2The symbol ‘’ indicates that some parameter is not defined for the current run—in the case of limiters and sensors, it simply
means that none have been used.



9.3. List of model problems 101

9.3.3. Monochromatic wave (Euler)
Setup for the Euler equations that mimics problem (9.3.1)—density is a monochromatic wave under
going linear advection. The actual value of pressure is irrelevant; it is only necessary that it is uniform
across the domain. Other initial density distributions and (uniform) initial velocities would have been
equally valid; these reproduce (9.1) specifically.

PDE ∶ (2.39) , (9.3a)

IC ∶ 𝙫(𝑥) = [
𝜌0(𝑥)
𝑢0
𝑝0

] = [
1 + 0.1 sin (𝑛𝜋𝑥)

1
1

] , (9.3b)

BC ∶ Periodic, 𝛺 = [−1, 1] . (9.3c)

This initial condition is borrowed from [48, appendix C]. The exact solution to this problem is:

𝙫(𝑡, 𝑥) = [
𝜌0(𝑥 − 𝑡)

1
1

] . (9.4)

Proof. Clearly, 𝙫(𝑡, 𝑥) satisfies the initial and boundary conditions of (9.3). It also satisfies (2.39), since:

𝜕𝜌
𝜕𝑡 = −

d𝜌0
d𝑥 ,

𝜕𝜌
𝜕𝑥 =

d𝜌0
d𝑥 , (9.5)

and:

𝒒 = [
𝜌
𝜌

1
2𝜌 +

1
𝛾−1

] , 𝒇 = [
𝜌

𝜌 + 1
1
2𝜌 +

𝛾
𝛾−1

] . (9.6)

And, because 𝜌0(𝑥) is analytic, this solution is unique [114, §19.3].

9.3.4. Gaussian hump (linear)
The linear advection equation with periodic boundary conditions, and the following initial condition:

PDE ∶ (2.19), 𝑎 = 1 , (9.7a)

IC ∶ 𝑢0(𝑥) = e−
9𝜋
4 𝑥

2
, (9.7b)

BC ∶ Periodic, 𝛺 = [−1, 1] , (9.7c)

which is a Gaussian bell curve of variance 𝜎 = 1
3√

2
𝜋 , chosen so that ∫

∞
−∞ 𝑢0 d𝑥 =

2
3 (>99.98% of this

area is contained in 𝛺).

9.3.5. Gaussian hump (nonlinear)
Identical to problem (9.7), but for the Burgers equation:

PDE ∶ (2.29) , (9.8a)

IC ∶ 𝑢0(𝑥) = e−
9𝜋
4 𝑥

2
, (9.8b)

BC ∶ Periodic, 𝛺 = [−1, 1] . (9.8c)

Using (8.3), ‖𝑢0‖TV = 2; until the breaking time, the total variation per period of the exact solution
is >99.80% of the previous. According to (2.30), this problem’s solution becomes discontinuous at

𝑡shock =
1
3√

2e
𝜋 ≈ 0.4385.



102 9. Methodology

9.3.6. Triangular pulse (linear)
Analogous to (9.7), but with a triangular initial condition (instead of a smooth hump):

PDE ∶ (2.19), 𝑎 = 1 , (9.9a)
IC ∶ 𝑞0(𝑥) = 1 − |𝑥| , (9.9b)
BC ∶ Periodic, 𝛺 = [−1, 1] . (9.9c)

Note that the exact solution of this problem is continuous but nonsmooth. Its total variation per period
is ‖𝑞0‖TV = 2.

9.3.7. Triangular pulse (nonlinear)
Counterpart to (9.9) for the Burgers equation and analogue, in turn, to (9.8), i.e. :

PDE ∶ (2.29) , (9.10a)
IC ∶ 𝑢0(𝑥) = 1 − |𝑥| , (9.10b)
BC ∶ Periodic, 𝛺 = [−1, 1] . (9.10c)

My interest in this problem stems from the fact that its exact solution can be deduced for all times, 𝑡 >
𝑡shock included. The method of characteristics readily shows that the initial triangular pulse deforms—
maintaining its amplitude—until it attains a sawtooth or Nwave shape, at 𝑡shock = 1, which is then
retained. It can be shown that such an Nwave experiences a decay in amplitude such that, for all 𝑥,
𝑢(𝑡, 𝑥) ∝ 1/𝑡 [112, theorem 16.14, page 298]. Thanks to the simple geometry of this solution, I have
been able to determine this damping rate exactly through careful numerical experimentation; it is such
that the total variation within 𝛺 is 2

𝑡+1 for 𝑡 ≥ 1. All in all, the exact solution to (9.10) can be expressed
as:

𝑢(𝑡, 𝑥) =

⎧
⎪

⎨
⎪
⎩

1+𝑥
1+𝑡 if 𝑥 ≤ 𝑡 < 1 ,
1−𝑥
1−𝑡 if 𝑥 > 𝑡 < 1 ,

1
2 +

((𝑥+ 32−
𝑡
2 )mod 2)−1
1+𝑡 if 𝑡 ≥ 1 .

(9.11)

9.3.8. JiangShu problem
An initial condition for the linear advection equation first proposed by Jiang and Shu [62], made up (left
to right) of a superposition of three Gaussians, a square pulse, a triangular pulse, and a superposition
of three halfellipses.

PDE ∶ (2.19), 𝑎 = 1 , (9.12a)

IC ∶ 𝑞0(𝑥) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1
6 (𝐺(𝑥, 𝛼 − 𝛿) + 4𝐺(𝑥, 𝛼) + 𝐺(𝑥, 𝛼 + 𝛿)) if − 0.8 ≤ 𝑥 ≤ −0.6

1 if − 0.4 ≤ 𝑥 ≤ −0.2

1 − 10 |𝑥 − 0.1| if 0 ≤ 𝑥 ≤ 0.2
1
6 (𝐹(𝑥, 𝛽 − 𝛿) + 4𝐹(𝑥, 𝛽) + 𝐹(𝑥, 𝛽 + 𝛿)) if 0.4 ≤ 𝑥 ≤ 0.6

0 otherwise

, (9.12b)

BC ∶ Periodic, 𝛺 = [−1, 1] , (9.12c)

where 𝐺(𝑥, 𝛼) = e−
ln2
36𝛿2 (𝑥−𝛼)

2
, 𝐹(𝑥, 𝛽) = √max{0, 1 − 100(𝑥 − 𝛽)2}, 𝛼 = −0.7, 𝛽 = 0.5 and 𝛿 = 0.005.

This problem’s exact solution involves the transport of piecewise sharp yet smooth features, joined
together in either 𝐶−1 or 𝐶0 fashion. It is a rather challenging test case, especially if simulated over long
times, as its extrema tend to be (wrongfully) targeted by sensors and limiters.



9.3. List of model problems 103

9.3.9. Toro’s transonic shock tube
Aminor modification of the classical shock tube test case for the Euler equations due to Sod [113], used
in [114]. The solution includes, left to right, a leftgoing expansion wave (along which the flow speed
crosses the speed of sound, inducing nonphysical expansion shocks in some Riemann solvers), a
contact discontinuity and a shock wave (both moving towards the right).

PDE ∶ (2.39) , (9.13a)

IC ∶ 𝙫0(𝑥) =
⎧

⎨
⎩

[1 0.75 1]
⊺

if 0 ≤ 𝑥 ≤ 0.5

[0.125 0 0.1]
⊺

if 0.5 < 𝑥 ≤ 1
, (9.13b)

BC ∶ Farfield, 𝛺 = [0, 1] ∶ 𝙫(𝑡, 𝑥) = 𝙫0(𝑥) for 𝑥 ∈ 𝜕𝛺 . (9.13c)

All problems for the Euler equations the initial condition of which is a pair of piecewise constant states
can be solved exactly by means of an exact Riemann solver. For this purpose, I have implemented (in
MATLAB) an exact Riemann solver based on the FORTRAN code in [114, §4.9].

9.3.10. The 123 problem
Another test case for the Euler system, due to Einfeldt et al. [33], known as the “123” problem because
of its initial state vector. In it, the exact solution consists on two strong rarefaction waves moving
away from each other, leaving a nearvacuum state in the middle. The goal in this case is to test the
robustness of a discretization by forcing it to approximate nearzero densities and pressures; some
Riemann solvers (e.g. Roe’s) are known to fail under these conditions.

PDE ∶ (2.39) , (9.14a)

IC ∶ 𝒒0(𝑥) =
⎧

⎨
⎩

[1 −2 3]
⊺

if 0 ≤ 𝑥 ≤ 0.5

[1 2 3]
⊺

if 0.5 < 𝑥 ≤ 1
, (9.14b)

BC ∶ Farfield, 𝛺 = [0, 1] ∶ 𝒒(𝑡, 𝑥) = 𝒒0(𝑥) for 𝑥 ∈ 𝜕𝛺 . (9.14c)

Regarding this problem’s exact solution, the same as in 9.3.9 applies.

9.3.11. Blast wave interaction
The term “blast wave” is used to refer to a region of increased pressure moving away supersonically
from an origin point (essentially, a very strong shock wave). These can be the result of a sudden and
concentrated release of a large amount of energy, i.e. an explosion, hence their name.

This problem, often referred by the name of the authors that first studied it at length, Woodward and
Colella [131], simulates the frontal collision between two of such blast waves.

PDE ∶ (2.39) , (9.15a)

IC ∶ 𝙫0(𝑥) =

⎧
⎪⎪

⎨
⎪⎪
⎩

[1 0 1000]
⊺

if 0 ≤ 𝑥 < 0.1

[1 0 0.01]
⊺

if 0.1 ≤ 𝑥 < 0.9

[1 0 100]
⊺

if 0.9 ≤ 𝑥 ≤ 1

, (9.15b)

BC ∶ Reflective, 𝛺 = [0, 1] . (9.15c)

This is a very challenging test case, requiring robust nonlinear stabilization techniques if attempted
with a highorder discretization. Unlike the previous two, its exact solution is not available (the exact
Riemann solver mentioned in 9.3.9 is no longer suitable). In its place, I simply use a very fine numerical
solution3.
3Discretized into 2500 DGSEM linear elements (Ndofs = 5000), and obtained employing the TVD limiter (§8.4) in combination
with the KXRCF sensor (§8.3.1).



104 9. Methodology

9.3.12. Acoustic wave–shock wave interaction
A test case simulating the interaction between a rightmoving shock wave and a stationary density
fluctuation of sinusoidal form. This roughly mimics a shockturbulence interaction. Attributed to Shu
and Osher [110].

PDE ∶ (2.39) , (9.16a)

IC ∶ 𝙫0(𝑥) =
⎧

⎨
⎩

[3.857143 2.629369 10.33333]
⊺

if 𝑥 < −4

[1 + 0.2 sin(5𝑥) 0 1]
⊺

if 𝑥 ≥ −4
, (9.16b)

BC ∶ Farfield, 𝛺 = [−5, 5] ∶ 𝙫(𝑡, 𝑥) = 𝙫0(𝑥) for 𝑥 ∈ 𝜕𝛺 . (9.16c)

This problem is often used to test the degree to which a nonlinear stabilization strategy hinders accuracy
in smooth regions. It is hence similar to (9.12) in spirit, but using more realistic (nonlinear) physics.
No exact solution exists for this case either. Instead, I show a numerical reference solution—same
discretization as that of (9.15).



10
Order of Accuracy

In this chapter, the parameter space of each method is explored by observing how each of their pa
rameters affects the numerical error, on a smooth solution test case. This encompasses:

• Order of accuracy in time for all SSPRK methods, in §10.1 (only for a particular DGIGA config
uration and in a linear setting).

• Accuracy vs. timestep size and number of degrees of freedom (changing either p or K) for
DGSEM (§10.2), in the nonlinear setting of Burgers equation (2.29).

• Idem for FR/CPR, adding one dimension: the choice of correction function (§10.3).

• Idem for DGIGA, but with two additional dimensions over DGSEM: number of breakpoint spans
and smoothness class (§10.4).

Most results in this chapter involve the computation of the 𝐿2 norm of the error between exact and
discrete solutions. This norm, for a given time 𝑡, is defined as [129, p. 816 (bottom)]:

‖𝑞(𝑡, 𝑥) − 𝑞ℎ(𝑡, 𝑥)‖2≔√
∫𝛺 (𝑞(𝑡, 𝑥) − 𝑞ℎ(𝑡, 𝑥))

2 d𝑥
∫𝛺 d𝑥 . (10.1)

The integral in the numerator is approximated using breakpoint span–wise adaptive GaussKronrod
quadrature [106] with 10−13 and 10−9 absolute and relative tolerances1, respectively (also when pro
jecting initial conditions, see §3.5).

10.1. Time schemes
The order of accuracy in time (i.e. for varying 𝛥𝑡) of each SSPRK scheme (see §7.3) is verified nu
merically for the setup summarized in table 10.1. It is seen to match the formal one in every case—for
the particular spatial discretization and (linear) problem tested. Since the implementation of temporal
schemes is unique, any deviations from these trends observed in upcoming results will be attributed to
the spatial discretization used and/or the test case solved.

1All reported 𝐿2 error results stagnate near a common lower bound; I attribute this to said integration tolerance, given the fact that
√10−13 ≈ 10−7. Note, however, that lowering this further (to machine precision) would not bemuch better, since√10−16 ≈ 10−8.

105



106 10. Order of Accuracy

Table 10.1: Verifying the order of accuracy of the SSPRK schemes.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 10.1 (9.7) 1(1) 10−6–10−1 2 DGIGA 30 1 3  27 2  
2 2(2) 10−4–10−1
3 3(3) 10−3–10−1
4 4(5) 10−2–1
5 4(10) 10−2–1

10.2. DGSEM
This section’s test matrix is table 10.2. Runs are divided into 12 batches; the first 6 show the time
independence of the rest. Three of the remaining 6 explore the K dimension, and the remaining three
focus instead on refining p at fixed values of K. DGSEM is found to achieve its formal order of p+1, at
least for degrees up to 4; the exponential convergence associated with prefinement is also observed.
Notice that Lagrange polynomial basis functions can reach degrees as high as 119 without issues.

Table 10.2: Exploring DGSEM’s parameter space.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 10.2 (9.8) 3(3) 10−5–10−2 0.25 DGSEM 900 300 2  1 ∞  
2 225 3
3 180 4
4 120 20 5
5 10 11
6 1 119
7 10.3 10−4 3–900 1–300 2
8 4–900 1–225 3
9 5–900 1–180 4
10 10.4 20–120 20 0–5
11 10–120 10 0–11
12 1–120 1 0–119

10.3. FR/CPR
Table 10.3 expands upon the previous by incorporating the four main correction functions of FR/CPR.
It is quite apparent for this method that the larger 𝜂 is, the lower the accuracy for a given Ndofs, with

𝜂−
2

and 𝜂DG (i.e. DGSEM) results being very close to each other.

Table 10.3: Exploring FR/CPR’s parameter space.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 10.5 (9.8) 3(3) 10−5–10−2 0.25 FR/CPR 900 180 4 𝜂−/2 1 ∞  
2 𝜂Ga
3 𝜂2
4 𝜂∞
5 120 10 11 𝜂−/2
6 𝜂Ga
7 𝜂2
8 𝜂∞
9 10.6 10−4 3–900 1–300 2 𝜂−/2
10 𝜂Ga
11 𝜂2
12 𝜂∞
13 4–900 1–225 3 𝜂−/2
14 𝜂Ga

(continues in the next page)



10.4. DGIGA 107

Table 10.3: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

15 𝜂2
16 𝜂∞
17 5–900 1–180 4 𝜂−/2
18 𝜂Ga
19 𝜂2
20 𝜂∞
21 10.7 20–120 20 0–5 𝜂−/2
22 𝜂Ga
23 𝜂2
24 𝜂∞
25 10–120 10 0–11 𝜂−/2
26 𝜂Ga
27 𝜂2
28 𝜂∞
29 1–120 1 0–119 𝜂−/2
30 𝜂Ga
31 𝜂2
32 𝜂∞

10.4. DGIGA
DGIGA expands considerably the design space of the discretization, and so table 10.4 is rather long;
hopefully helpful in better transmitting the concept of DGIGA’s “4dimensional refinement space” is
the comparison between batches 46 to 49 (figure 10.12). As before, all spatial refinement results are
checked to be 𝛥𝑡independent (batches 1 to 46). The former are divided into:

• K or 𝛥𝑥–refinement: increasing the number of DG elements—i.e. patches—in the domain.

• krefinement: adding more polynomial segments to the Bspline basis functions, keeping their
degree and smoothness fixed; sometimes referred to in the IGA literature as knot insertion [28,
§2.1.4.1].

• prefinement (i.e. order elevation [28, §2.1.4.2]): increase the degree of the basis functions while
adding knot multiplicities to preserve their smoothness.

• 𝜘refinement (necessarily combined with increased p): both degree and smoothness are in
creased, with no addition of knots [28, §2.1.4.3].

In contrast to the previous two methods, DGIGA seems to become unstable under some combi
nations of its parameters (unrelated to timestep size limitations). It appears to experience a weak
(nonlinear) instability for high 𝜘 and p > 2, and which seems less pronounced if multiple patches are
used. Note that this can not be attributed directly to the illconditioning of the discrete operators in
DGIGA (e.g. Vandermonde matrix, see figure 6.11), because it occurs even for moderate condition
numbers.

Lastly, the direct comparisons with its modal counterpart (6.14) clearly show that the nodal approach
(6.15) is unsuitable for highorder approximations; these results indicate that the latter is so diffusive
that it reduces to second order, regardless of the basis function degree (in the unlimited, nonlinear,
smoothsolution case under consideration).

Table 10.4: Exploring DGIGA’s parameter space.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 10.8 (9.8) 3(3) 10−5–10−2 0.25 DGIGA 40 10 2  2 1  
2 120 30
3 10 6
4 2 10

(continues in the next page)



108 10. Order of Accuracy

Table 10.4: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

5 10 2 9
6 10.9 900 300 2 1 ∞
7 100 4 0
8 150 1
9 891 27 16 0
10 900 50 1
11 225 3 ∞
12 897 69 4 0
13 896 128 2
14 882 18 16 0
15 893 47 2
16 180 4 ∞
17 884 52 4 0
18 896 112 3
19 845 13 16 0
20 900 45 3
21 10.10 899 1 2 449 0
22 900 898 1
23 890 10 44 0
24 87 1
25 900 20 22 0
26 43 1
27 898 1 3 299 0
28 56 53 2
29 790 10 26 0
30 360 33 2
31 860 20 14 0
32 760 35 2
33 897 1 4 224 0
34 13 9 3
35 890 10 22 0
36 200 16 3
37 900 20 11 0
38 400 16 3
39 10.11 340 20 16 1 ∞
40 620 15 2 0
41 900 11 4 0
42 820 5 8 0
43 280 12 2 11
44 300 11 4 10
45 280 6 8 5
46 10.12 10−4 40–120 10–30 2 2 1
47 10 2–6
48 2 2–10
49 𝜘 + 1 2 1–9
50 10.13 3–900 1–300 2 1 ∞
51 4–900 1–225 3
52 5–900 1–180 4
53 (nodal) 3–900 1–300 2
54 4–900 1–225 3
55 5–900 1–180 4
56 10.14 (modal) 3–900 1–300 2
57 9–900 1–100 4 0
58 6–900 1–150 1
59 33–891 1–27 16 0
60 18–900 1–50 1
61 10.15 4–900 1–225 3 1 ∞
62 13–897 1–69 4 0
63 7–896 1–128 2
64 49–882 1–18 16 0

(continues in the next page)



10.4. DGIGA 109

Table 10.4: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

65 19–893 1–47 2
66 10.16 5–900 1–180 4 1 ∞
67 17–884 1–52 4 0
68 8–896 1–112 3
69 65–845 1–13 16 0
70 100–900 5–45 3
71 10.17 2–900 1 1 1–899 0
72 3–899 2 1–449
73 4–898 3 1–299
74 5–897 4 1–224
75 (nodal) 3–899 2 1–449
76 4–898 3 1–299
77 5–897 4 1–224
78 10.18 (modal) 2–900 1 1–899
79 3–900 2 1–898 1
80 4–900 3 1–897 2
81 5–900 4 1–896 3
82 (nodal) 3–900 2 1–898 1
83 4–900 3 1–897 2
84 5–900 4 1–896 3
85 10.19 (modal) 3–899 2 1–449 0
86 3–900 1–898 1
87 30–890 10 1–44 0
88 30–890 1–87 1
89 60–900 20 1–22 0
90 60–900 1–43 1
91 10.20 4–898 1 3 1–299 0
92 4–56 1–53 2
93 40–790 10 1–26 0
94 40–360 1–33 2
95 80–860 20 1–14 0
96 80–760 1–35 2
97 10.21 5–897 1 4 1–224 0
98 5–13 1–9 3
99 50–890 10 1–22 0
100 50–200 1–16 3
101 100–900 20 1–11 0
102 100–400 1–16 3
103 10.22 2–9 1 1–8 1 0
104 3–17 2
105 5–61 1–15 4
106 9–129 1–16 8
107 40–340 20 1
108 60–620 1–15 2
109 100–900 1–11 4
110 180–820 1–5 8
111 10.23 40–260 𝜘 + 1 1 0–11
112 60–280 2 0–11
113 100–320 4 0–10
114 180–280 8 0–5



110 10. Order of Accuracy

10−6 10−5 10−4 10−3 10−2 10−1 100

10−4

10−3

10−2

10−1

1

1

1

2

1

3

1

4

𝛥𝑡

‖𝑞
−
𝑞ℎ
‖ 2

RK1(1)
RK2(2)
RK3(3)
RK4(5)
RK4(10)

Figure 10.1: Order of accuracy of the SSPRK schemes (table 10.1).

10−5 10−4 10−3 10−2 10−1
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

3

Fig. 10.24

𝛥𝑡

‖𝑢
−
𝑢ℎ
‖ 2

K p
300 2
225 3
180 4
20 5
10 11
1 119

Figure 10.2: DGSEM, timestep size independence (table 10.2, batches 1–6).



10.4. DGIGA 111

101 102 103

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1

3

1

4

1

5

Fig. 10.25

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

p
2
3
4

Figure 10.3: DGSEM, 𝛥𝑥 refinement (table 10.2, batches 7–9).

100 101 102 103

10−6

10−5

10−4

10−3

10−2

10−1

100

Fig. 10.26

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

K
20
10
1

Figure 10.4: DGSEM, p refinement (table 10.2, batches 10–12).



112 10. Order of Accuracy

10−5 10−4 10−3 10−2

10−7

10−6

1

3

𝛥𝑡

‖𝑢
−
𝑢ℎ
‖ 2 𝜂−/2 𝜂Ga 𝜂2 𝜂∞ Ndofs

900
120

Figure 10.5: FR/CPR, timestep size independence (table 10.3, batches 1–8).

102 103

10−7

10−6

10−5

10−4

10−3

10−2

1
2

1
3

1
4

1

5

Fig. 10.27

Fig. 10.28

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

𝜂−/2 𝜂Ga 𝜂2 𝜂∞ p
2
3
4

Figure 10.6: FR/CPR, 𝛥𝑥 refinement (table 10.3, batches 9–20).



10.4. DGIGA 113

101.1 101.2 101.3 101.4 101.5 101.6 101.7 101.8 101.9 102 102.1

10−6

10−5

10−4

10−3

10−2

10−1

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

𝜂−/2 𝜂Ga 𝜂2 𝜂∞ K
20
10
1

Figure 10.7: FR/CPR, p refinement (table 10.3, batches 21–32).

10−5 10−4 10−3 10−2
10−6

10−5

10−4

10−3

10−2

10−1

100

𝛥𝑡

‖𝑢
−
𝑢ℎ
‖ 2

Ndofs K p k 𝜘
40 10 2 2 1
120 30 2 2 1
120 10 6 2 1
120 10 2 10 1
120 10 10 2 9

Figure 10.8: DGIGA’s four refinement directions, timestep size independence (table 10.4, batches 1–5).



114 10. Order of Accuracy

10−5 10−4 10−3 10−2
10−8

10−7

10−6

10−5

10−4

10−3

𝛥𝑡

‖𝑢
−
𝑢ℎ
‖ 2

1
k4

16
2 2 2 3 3 3 4 4 4 p
∞ 0 1 ∞ 0 2 ∞ 0 3 𝜘

Figure 10.9: DGIGA, K ≫ 1, timestep size independence (table 10.4, batches 6–20).

10−5 10−4 10−3 10−2

10−12

10−10

10−8

10−6

10−4

10−2

100

𝛥𝑡

‖𝑢
−
𝑢ℎ
‖ 2

1
K10

20
2 2 3 3 4 4 p
0 1 0 2 0 3 𝜘

Figure 10.10: DGIGA, k ≫ 1, timestep size independence (table 10.4, batches 21–38).



10.4. DGIGA 115

10−6 10−5 10−4 10−3 10−2
10−8

10−7

10−6

10−5

10−4

10−3

𝛥𝑡

‖𝑢
−
𝑢ℎ
‖ 2

k 𝜘
1 ∞
2 0
4 0
8 0
2 11
4 10
8 5

Figure 10.11: DGIGA, p ≫ 1, timestep size independence (table 10.4, batches 39–45).

101.6 101.65 101.7 101.75 101.8 101.85 101.9 101.95 102 102.05 102.1
10−6

10−5

10−4

10−3

10−2

1
3

1
4

Fig. 10.29

Fig. 10.30

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

K
p
k
𝜘

Figure 10.12: DGIGA’s four refinement directions (table 10.4, batches 46–49).



116 10. Order of Accuracy

101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

1
2

1
3

1
4

1

5

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

Modal Nodal p
2
3
4

Figure 10.13: DGIGA, k = 1, 𝛥𝑥 refinement (table 10.4, batches 50–55).

101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1

3

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

k 𝜘
1 ∞
4 0
4 1
16 0
16 1

Figure 10.14: DGIGA, p = 2, 𝛥𝑥 refinement (table 10.4, batches 56–60).



10.4. DGIGA 117

101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1

4

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

k 𝜘
1 ∞
4 0
4 2
16 0
16 2

Figure 10.15: DGIGA, p = 3, 𝛥𝑥 refinement (table 10.4, batches 61–65).

101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1

5

Fig. 10.31

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

k 𝜘
1 ∞
4 0
4 3
16 0
16 3

Figure 10.16: DGIGA, p = 4, 𝛥𝑥 refinement (table 10.4, batches 66–70).



118 10. Order of Accuracy

100 101 102 103

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

1

2

1

5

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

Modal Nodal p
1
2
3
4

Figure 10.17: CG, k refinement (table 10.4, batches 71–77).

100 101 102 103

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

1

2

1

3

Fig. 10.32

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

Modal Nodal p
1
2
3
4

Figure 10.18: IGA, k refinement (table 10.4, batches 78–84).



10.4. DGIGA 119

101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
2

1

3

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

K 𝜘
1 10 20

0
1

Figure 10.19: DGIGA, p = 2, k refinement (table 10.4, batches 85–90).

101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1

4

1

5

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

K 𝜘
1 10 20

0
2

Figure 10.20: DGIGA, p = 3, k refinement (table 10.4, batches 91–96).



120 10. Order of Accuracy

101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1

5

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

K 𝜘
1 10 20

0
3

Figure 10.21: DGIGA, p = 4, k refinement (table 10.4, batches 97–102).

100 101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fig. 10.33

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

K k
1 20

1
2
4
8

Figure 10.22: DGIGA, p refinement (table 10.4, batches 103–110).



10.4. DGIGA 121

101.6 101.7 101.8 101.9 102 102.1 102.2 102.3 102.4 102.5 102.6

10−7

10−6

10−5

10−4

10−3

10−2

Fig. 10.34

Ndofs

‖𝑢
−
𝑢ℎ
‖ 2

k
1
2
4
8

Figure 10.23: DGIGA, combined p and 𝜘 refinement (table 10.4, batches 111–114).



122 10. Order of Accuracy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

𝑥

|𝑢
−
𝑢ℎ

|
DGSEM 𝛥𝑡 ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2

0.000106 1.998181 0.485492 4.624708 × 10−7
0.015118 1.998089 0.485490 3.321760 × 10−5
0.019145 2.941220 0.485381 0.011802

Figure 10.24: DGSEM, selected runs of figure 10.2 (batch 5).



10.4. DGIGA 123

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

𝑥

|𝑢
−
𝑢ℎ

|

DGSEM Ndofs ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
105 1.998172 0.485492 2.496494 × 10−5
125 1.998197 0.485492 2.080428 × 10−5
150 1.998198 0.485492 5.639772 × 10−6

Figure 10.25: DGSEM, selected runs of figure 10.3 (batch 9).



124 10. Order of Accuracy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

𝑥

|𝑢
−
𝑢ℎ
|

DGSEM K Ndofs ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
20 20 1.754952 0.465025 0.065691
10 20 2.376729 0.483797 0.023844
1 20 2.194507 0.485560 0.010962
20 120 1.998213 0.485492 7.693622 × 10−6
10 120 1.998181 0.485492 4.624707 × 10−7
1 120 1.997965 0.485492 9.896914 × 10−7

Figure 10.26: DGSEM, selected runs of figure 10.4 (batches 10–12).



10.4. DGIGA 125

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

𝑥

|𝑢
−
𝑢ℎ
|

FR/CPR 𝜂 ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
𝜂−/2 1.998279 0.485492 4.386177 × 10−7
𝜂Ga 1.998279 0.485492 7.185730 × 10−7
𝜂2 1.998280 0.485492 1.248549 × 10−6
𝜂∞ 2.019247 0.485492 3.581458 × 10−5

Figure 10.27: FR/CPR, selected runs of figure 10.6 (batches 9–12).



126 10. Order of Accuracy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−12

10−11

10−10

10−9

10−8

10−7

10−6

𝑥

|𝑢
−
𝑢ℎ
|

FR/CPR Ndofs ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
370 1.998262 0.485492 1.238026 × 10−7
440 1.998271 0.485492 7.715097 × 10−8
525 1.998275 0.485492 6.537474 × 10−8
630 1.998277 0.485492 6.334775 × 10−8

Figure 10.28: FR/CPR, selected runs of figure 10.6 (batch 17).



10.4. DGIGA 127

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

𝑥

|𝑢
−
𝑢ℎ

|

DGIGA ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
1.997998 0.485491 0.000837
1.998411 0.485492 0.000391
1.997948 0.485482 0.000456
1.997681 0.485496 0.000258

Figure 10.29: DGIGA, selected runs of figure 10.12 (batches 46–49).



128 10. Order of Accuracy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3

𝑥

|𝑢
−
𝑢ℎ

|
DGIGA p 𝜘 Ndofs ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2

5 1 100 1.998235 0.485492 1.500287 × 10−5
6 1 120 1.998218 0.485492 4.681527 × 10−6
8 7 100 1.998257 0.485492 1.032280 × 10−5
10 9 120 1.998272 0.485492 1.411021 × 10−6

Figure 10.30: DGIGA, selected runs of figure 10.12 (batches 47 and 49).



10.4. DGIGA 129

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−14

10−12

10−10

10−8

10−6

10−4

10−2

𝑥

|𝑢
−
𝑢ℎ
|

DGIGA Ndofs ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
140 2.019155 0.485492 0.002626
220 2.012106 0.485492 0.000382
900 1.998292 0.485492 6.441432 × 10−8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−14

10−12

10−10

10−8

10−6

10−4

10−2

𝑥

|𝑢
−
𝑢ℎ
|

DGIGA Ndofs ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
140 2.019155 0.485492 0.002626
220 2.012106 0.485492 0.000382
900 1.998292 0.485492 6.441432 × 10−8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−14

10−12

10−10

10−8

10−6

10−4

10−2

𝑥

|𝑢
−
𝑢ℎ
|

DGIGA Ndofs ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
140 2.019155 0.485492 0.002626
220 2.012106 0.485492 0.000382
900 1.998292 0.485492 6.441432 × 10−8

Figure 10.31: DGIGA, selected runs of figure 10.16 (batch 70).



130 10. Order of Accuracy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

𝑥

|𝑢
−
𝑢ℎ

|
DGIGA 𝜘 ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2

1 1.998372 0.485491 0.000203
2 26.411240 0.761474 0.586664

Figure 10.32: DGIGA, selected runs of figure 10.18 (batches 79 and 80).



10.4. DGIGA 131

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

𝑥

|𝑢
−
𝑢ℎ

|

DGIGA p ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2
15 1.998752 0.485492 5.768911 × 10−5
16 2.548801 0.485560 0.006582

Figure 10.33: DGIGA, selected runs of figure 10.22 (batch 106).



132 10. Order of Accuracy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

𝑥

|𝑢
−
𝑢ℎ

|
DGIGA p ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2

5 1.998286 0.485492 9.499574 × 10−8
6 1.998289 0.485492 8.255893 × 10−7

Figure 10.34: DGIGA, selected runs of figure 10.23 (batch 114).



11
Dispersion, Dissipation and Linear

Stability
Equation (2.19), the linear scalar hyperbolic conservation law, allows the characterization of dissipative,
dispersive and linear stability properties of a given (linear) spatial discretization method in an analyti
cal, a priori, approach (all details are given in appendix A). The main motivation behind these results
is to identify regions in the parameter space of each method under study which result in promising dis
cretizations for a scaleresolving context (to be placed under further scrutiny in subsequent chapters).

In all figures, the exact dispersion/dissipation relation (§A.2.1) is shown as a thick, solid line. Also,
in the complex plane graphs, the boundary of the stability region of SSPRK3(3) is shown in black. All
Fourier footprints shown are scaled by the largest linearly stable1 Courant number; these are listed in
each figure, for every basis analyzed.

11.1. DGSEM
A priori modified wavenumber results are for 𝛥𝑥 → 0. DGSEM discretizations, therefore, have only
one free parameter: the polynomial degree, p. For this method, spurious eigenmodes seem to always
retain exactly the same shape as the physical one—their footprints in the complex plane coincide, see
e.g. figures 11.1, 11.2 and 11.3. Focusing only on the physical eigenmode, figures 11.4 and 11.5 show
a clear trend: the higher the degree, the more wavenumbers per basis function that are accurately
resolved. In all cases, there is an overshoot in the modified dispersion relation. It becomes stronger as
p increases. This occurs at the same wavenumbers for which dissipation rate increases rather sharply;
this onset of numerical dissipation becomes both stronger and more sudden with increasing p. These
results match those found in the literature, e.g. [116, §8.1.5] and [38].

11.2. FR/CPR
Flux reconstruction adds a new parameter, the correction function. Just like in DGSEM, the spurious
eigenmodes of all2 FR/CPR discretizations appear to correspond to phase shifts applied to the physical
one—evidence of that is provided in figures 11.6–11.15. Figures 11.16–11.20 focus on the behavior of
the physical eigenmode as p increases, for each correction function separately. Reciprocally, various
correction functions are compared to each other at a fixed degree in figures 11.21–11.25. These figures
show that the overshoot in the dispersion relation can be mitigated by using a stronger correction, for
moderate degrees—this effect is very modest for high degrees, and increasing 𝜂 to arbitrarily high
values is not enough to reduce said overshoot further; also, this simultaneously pulls the onset of
nonnegligible numerical dissipation towards lower wavenumbers.

Vincent et al. [120] carried out a similar analysis, the results of which are consistent with those
presented here. They performed a very detailed study on the optimal choice of the 𝑐 or 𝜂 parameters,
and concluded that:
1See §A.4.
2Except for 𝜂∞, for which one of the eigenmodes is constant and equal to zero—see 11.10 and 11.15.

133



134 11. Dispersion, Dissipation and Linear Stability

• Values close to the extrema (𝜂− and 𝜂∞), at high wavenumbers, admit large dispersion errors with
little damping and, therefore, should be avoided.

• It is possible to maximize the range of wavenumbers over which the exact dispersion relation is
approximated accurately, by using 𝜂 > 0 (e.g. 𝜂Ga is optimal in this sense for p = 3).

• A second local optimum is in global order of accuracy per degree of freedom, and is achieved by
𝜂DG (a justification can be found in [120]).

• A third local optimum exists in the form of the 𝜂 that maximizes the maximum allowable timestep
size for a fixed degree (refer to [120] for details).

11.3. DGIGA
A Bspline–based trial space has three free parameters able to influence its spectral response: the
number of breakpoint spans per patch (k > 0), the degree of the piecewise polynomials within each
span (p ≥ 0), and the continuity class of its basis functions across spans (𝐶𝜘 ∶ 0 ≤ 𝜘 ≤ p − 1). A
crucial difference that I have observed DGIGA has with DGSEM and (most) FR/CPR cases is the
tendency—as the number of basis functions per patch, J, increases—of its Fourier footprint to split into
more than one contour (compare figures 11.26 and 11.27). This process, which seems to occur for
k > 1 once J (the number of basis functions per patch) is high enough, is reminiscent to how bubbles
are made when blowing onto a soap film. It starts with the main (and only, up to that point) contour
developing a pair of protrusions (one in each side of the real axis); these elongate such that the region
that connects themwith themain contour gets thinner, until it eventually closes, resulting in three distinct
contours: the main one, traced by the the physical eigenmode and its “resonant eigenmodes”, and two
isolated “bubbles”—traced, in every single case encountered, by a single (spurious) eigenmode each.
This process continues as J keeps increasing, with additional “bubbles” forming on each of the new
contours, and so on.

The influence of the degree is shown first, in figures 11.28–11.35. Figures 11.36–11.43 do the
same for k. These reveal an interesting aspect of the k = 1 discretizations: their dispersion/dissipation
relations and Fourier footprint are identical to those of DGSEM with equal degree3. Therefore—in
the linear case, at least—this particular version of DGIGA is essentially equivalent to DGSEM4. The
effect of the smoothness of the basis functions is explored for various break span numbers at p = 4 in
figures 11.44–11.46. Lastly, in figure 11.47, various combinations of parameters resulting in J = 22 are
compared to each other.

To my knowledge, no extensive exploration of the spectral properties of the DGIGA discretization
such as the present one exists in the literature. There is some degree of overlap, however, with [21,
figure 22a]. The aforementioned is consistent with my results—specifically, figure 11.42.

3Differences start being nonnegligible at sufficiently high degree (p > 25, not shown); I hypothesize this to be a numerical artifact,
due to the illconditioning of such DGIGA bases resulting in large errors in the computation of their modified wavenumbers.

4Notice that the finite dimensional space spanned by these basis functions coincides with the trial and test spaces of DGSEM—
see §6.2.2.



11.3. DGIGA 135

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.1: Modified wavenumbers (all eigenmodes); DGSEM, p = 2.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.2: Modified wavenumbers (all eigenmodes); DGSEM, p = 3.



136 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋−4

−2

0

2

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)
−𝑎

𝛥𝑡
ℜ
( 𝜅
)

Figure 11.3: Modified wavenumbers (all eigenmodes); DGSEM, p = 4.



11.3. DGIGA 137

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGSEM p J 𝑎 𝛥𝑡
𝛥𝑥

0 1 1.256373
1 2 0.409615
2 3 0.209757
3 4 0.130094
4 5 0.089687
5 6 0.066100

Figure 11.4: Modified wavenumbers (physical eigenmode only) of various DGSEM bases at low to moderate
degrees.



138 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

10

20

30

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−60

−40

−20

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGSEM p J 𝑎 𝛥𝑡
𝛥𝑥

5 6 0.066100
9 10 0.027903
18 19 0.009278
33 34 0.003362
63 64 0.001098
119 120 0.000356

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

10

20

30

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−60

−40

−20

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGSEM p J 𝑎 𝛥𝑡
𝛥𝑥

5 6 0.066100
9 10 0.027903
18 19 0.009278
33 34 0.003362
63 64 0.001098
119 120 0.000356

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

10

20

30

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−60

−40

−20

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGSEM p J 𝑎 𝛥𝑡
𝛥𝑥

5 6 0.066100
9 10 0.027903
18 19 0.009278
33 34 0.003362
63 64 0.001098
119 120 0.000356

Figure 11.5: Modified wavenumbers (physical eigenmode only) of various DGSEM bases at moderate to high
degrees.



11.3. DGIGA 139

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−2

0

2

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋−8

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.6: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂−2 .

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.7: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂DG.



140 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.8: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂Ga.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−1.5

−1

−0.5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.9: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂2.



11.3. DGIGA 141

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.10: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂∞.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

0

5

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−8

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.11: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂−2 .



142 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.12: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂DG.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.13: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂Ga.



11.3. DGIGA 143

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.14: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂2.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.15: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂∞.



144 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

2

4

6

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−10

−8

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

2 −0.500000 3 0.114004
3 −0.500000 4 0.074218
4 −0.500000 5 0.053041
5 −0.500000 6 0.040194

Figure 11.16: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂−
2 .



11.3. DGIGA 145

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

2 0.000000 3 0.209757
3 0.000000 4 0.130094
4 0.000000 5 0.089687
5 0.000000 6 0.066100

Figure 11.17: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂DG.



146 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

2 0.666666 3 0.322228
3 0.750000 4 0.201876
4 0.800000 5 0.139791
5 0.833333 6 0.103338

Figure 11.18: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂Ga.



11.3. DGIGA 147

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

2 1.500000 3 0.449069
3 1.333333 4 0.254283
4 1.250000 5 0.167583
5 1.200000 6 0.120301

Figure 11.19: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂2.



148 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

2 1 × 1016 3 0.409594
3 1 × 1016 4 0.209754
4 1 × 1016 5 0.130094
5 1 × 1016 6 0.089687

Figure 11.20: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂∞.



11.3. DGIGA 149

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

2

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋−8

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

2 𝜂−/2 3 0.114004
2 𝜂DG 3 0.209757
2 𝜂Ga 3 0.322228
2 𝜂2 3 0.449069
2 𝜂∞ 3 0.409594

Figure 11.21: Modified wavenumbers (physical eigenmode) of 3rd order FR/CPR, for several correction functions.



150 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−8

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

3 𝜂−/2 4 0.074218
3 𝜂DG 4 0.130094
3 𝜂Ga 4 0.201876
3 𝜂2 4 0.254283
3 𝜂∞ 4 0.209754

Figure 11.22: Modified wavenumbers (physical eigenmode) of 4th order FR/CPR, for several correction functions.



11.3. DGIGA 151

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

4

6

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−10

−8

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

4 𝜂−/2 5 0.053041
4 𝜂DG 5 0.089687
4 𝜂Ga 5 0.139791
4 𝜂2 5 0.167583
4 𝜂∞ 5 0.130094

Figure 11.23: Modified wavenumbers (physical eigenmode) of 5th order FR/CPR, for several correction functions.



152 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

4

6

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−10

−8

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

5 𝜂−/2 6 0.040194
5 𝜂DG 6 0.066100
5 𝜂Ga 6 0.103338
5 𝜂2 6 0.120301
5 𝜂∞ 6 0.089687

Figure 11.24: Modified wavenumbers (physical eigenmode) of 6th order FR/CPR, for several correction functions.



11.3. DGIGA 153

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−20

0

20

40

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−80

−60

−40

−20

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

119 𝜂−/2 120 0.000279
119 𝜂DG 120 0.000356
119 𝜂Ga 120 0.000603
119 𝜂2 120 0.000620
119 𝜂∞ 120 0.000361

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−20

0

20

40

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−80

−60

−40

−20

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

119 𝜂−/2 120 0.000279
119 𝜂DG 120 0.000356
119 𝜂Ga 120 0.000603
119 𝜂2 120 0.000620
119 𝜂∞ 120 0.000361

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−20

0

20

40

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−80

−60

−40

−20

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

119 𝜂−/2 120 0.000279
119 𝜂DG 120 0.000356
119 𝜂Ga 120 0.000603
119 𝜂2 120 0.000620
119 𝜂∞ 120 0.000361

Figure 11.25: Modified wavenumbers (physical eigenmode) of high order FR/CPR, for several correction functions.



154 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.26: Physical (1) and spurious (14) eigenmodes of DGIGA, k = 2, p = 7, 𝐶0 (cf. 11.27).

0 𝜋/4 𝜋/2 3𝜋/4 𝜋−4

−2

0

2

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.27: Physical (1), “bubble” (2) and spurious (14) eigenmodes of DGIGA, k = 2, p = 8, 𝐶0 (cf. 11.26).



11.3. DGIGA 155

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

2 2 0 5 0.163094
2 3 0 7 0.101465
2 4 0 9 0.070291
2 5 0 11 0.052068

Figure 11.28: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 2 breakpoint
spans per patch and minimal smoothness.



156 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

4 2 0 6 0.125265
4 3 0 7 0.079422
4 4 0 8 0.056268
4 5 0 9 0.042636

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

4 2 0 6 0.125265
4 3 0 7 0.079422
4 4 0 8 0.056268
4 5 0 9 0.042636

Figure 11.29: Effect of the degree to the modified wavenumbers (physical and “bubble” eigenmodes) in DGIGA,
for 4 breakpoint spans per patch and minimal smoothness.



11.3. DGIGA 157

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

−1.5

−1

−0.5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

8 2 0 17 0.052704
8 3 0 25 0.030632
8 4 0 33 0.020679
8 5 0 41 0.015060

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

−1.5

−1

−0.5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

8 2 0 17 0.052704
8 3 0 25 0.030632
8 4 0 33 0.020679
8 5 0 41 0.015060

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

−1.5

−1

−0.5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)
−𝑎

𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

8 2 0 17 0.052704
8 3 0 25 0.030632
8 4 0 33 0.020679
8 5 0 41 0.015060

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

−1.5

−1

−0.5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

8 2 0 17 0.052704
8 3 0 25 0.030632
8 4 0 33 0.020679
8 5 0 41 0.015060

Figure 11.30: Effect of the degree to the modified wavenumbers (physical and “bubble” eigenmodes) in DGIGA,
for 8 breakpoint spans per patch and minimal smoothness.



158 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

2 2 1 4 0.169313
2 3 2 5 0.108055
2 4 3 6 0.076211
2 5 4 7 0.057188

Figure 11.31: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 2 breakpoint
spans per patch and maximal smoothness.



11.3. DGIGA 159

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

4 2 1 9 0.114097
4 3 2 13 0.064463
4 4 3 17 0.042983
4 5 4 21 0.031095

Figure 11.32: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 4 breakpoint
spans per patch and maximal smoothness.



160 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

8 2 1 10 0.094508
8 3 2 11 0.058830
8 4 3 12 0.040717
8 5 4 13 0.030295

Figure 11.33: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 8 breakpoint
spans per patch and maximal smoothness.



11.3. DGIGA 161

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

16 2 1 18 0.053805
16 3 2 19 0.045109
16 4 3 20 0.031103
16 5 4 21 0.022768

Figure 11.34: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 16 breakpoint
spans per patch and maximal smoothness.



162 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

32 2 1 34 0.026265
32 3 2 35 0.023982
32 4 3 36 0.022706
32 5 4 37 0.017762

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

32 2 1 34 0.026265
32 3 2 35 0.023982
32 4 3 36 0.022706
32 5 4 37 0.017762

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)
−𝑎

𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

32 2 1 34 0.026265
32 3 2 35 0.023982
32 4 3 36 0.022706
32 5 4 37 0.017762

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

32 2 1 34 0.026265
32 3 2 35 0.023982
32 4 3 36 0.022706
32 5 4 37 0.017762

Figure 11.35: Effect of the degree to the modified wavenumbers (physical and “bubble” eigenmodes) in DGIGA,
for 32 breakpoint spans per patch and maximal smoothness.



11.3. DGIGA 163

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 2 ∞ 3 0.209757
2 2 0 4 0.163094
4 2 0 9 0.114097
8 2 0 17 0.052704

Figure 11.36: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical
eigenmode) in 3rd order, 𝐶0, DGIGA.



164 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 3 ∞ 4 0.130094
2 3 0 7 0.101465
4 3 0 13 0.064463
8 3 0 25 0.030632

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 3 ∞ 4 0.130094
2 3 0 7 0.101465
4 3 0 13 0.064463
8 3 0 25 0.030632

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 3 ∞ 4 0.130094
2 3 0 7 0.101465
4 3 0 13 0.064463
8 3 0 25 0.030632

Figure 11.37: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical and
“bubble” eigenmodes) in 4th order, 𝐶0, DGIGA.



11.3. DGIGA 165

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 4 ∞ 5 0.089687
2 4 0 9 0.070291
4 4 0 17 0.042983
8 4 0 33 0.020679

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 4 ∞ 5 0.089687
2 4 0 9 0.070291
4 4 0 17 0.042983
8 4 0 33 0.020679

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 4 ∞ 5 0.089687
2 4 0 9 0.070291
4 4 0 17 0.042983
8 4 0 33 0.020679

Figure 11.38: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical and
“bubble” eigenmodes) in 5th order, 𝐶0, DGIGA.



166 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 5 ∞ 6 0.066100
2 5 0 11 0.052068
4 5 0 21 0.031095
8 5 0 41 0.015060

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 5 ∞ 6 0.066100
2 5 0 11 0.052068
4 5 0 21 0.031095
8 5 0 41 0.015060

Figure 11.39: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical and
“bubble” eigenmodes) in 6th order, 𝐶0, DGIGA.



11.3. DGIGA 167

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 2 ∞ 3 0.209757
2 2 1 4 0.169313
4 2 1 6 0.125265
8 2 1 10 0.094508
16 2 1 18 0.053805
32 2 1 34 0.026265

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 2 ∞ 3 0.209757
2 2 1 4 0.169313
4 2 1 6 0.125265
8 2 1 10 0.094508
16 2 1 18 0.053805
32 2 1 34 0.026265

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 2 ∞ 3 0.209757
2 2 1 4 0.169313
4 2 1 6 0.125265
8 2 1 10 0.094508
16 2 1 18 0.053805
32 2 1 34 0.026265

Figure 11.40: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical and
“bubble” eigenmodes) in 3rd order, 𝐶1, DGIGA.



168 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 3 ∞ 4 0.130094
2 3 2 5 0.108055
4 3 2 7 0.079422
8 3 2 11 0.058830
16 3 2 19 0.045109
32 3 2 35 0.023982

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 3 ∞ 4 0.130094
2 3 2 5 0.108055
4 3 2 7 0.079422
8 3 2 11 0.058830
16 3 2 19 0.045109
32 3 2 35 0.023982

Figure 11.41: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical
eigenmode) in 4th order, 𝐶2, DGIGA.



11.3. DGIGA 169

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 4 ∞ 5 0.089687
2 4 3 6 0.076211
4 4 3 8 0.056268
8 4 3 12 0.040717
16 4 3 20 0.031103
32 4 3 36 0.022706

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 4 ∞ 5 0.089687
2 4 3 6 0.076211
4 4 3 8 0.056268
8 4 3 12 0.040717
16 4 3 20 0.031103
32 4 3 36 0.022706

Figure 11.42: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical
eigenmode) in 5th order, 𝐶3, DGIGA.



170 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 5 ∞ 6 0.066100
2 5 4 7 0.057188
4 5 4 9 0.042636
8 5 4 13 0.030295
16 5 4 21 0.022768
32 5 4 37 0.017762

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 5 ∞ 6 0.066100
2 5 4 7 0.057188
4 5 4 9 0.042636
8 5 4 13 0.030295
16 5 4 21 0.022768
32 5 4 37 0.017762

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 5 ∞ 6 0.066100
2 5 4 7 0.057188
4 5 4 9 0.042636
8 5 4 13 0.030295
16 5 4 21 0.022768
32 5 4 37 0.017762

Figure 11.43: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical
eigenmode) in 6th order, 𝐶4, DGIGA.



11.3. DGIGA 171

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

2 4 0 9 0.070291
2 4 1 8 0.069147
2 4 2 7 0.070619
2 4 3 6 0.076211

Figure 11.44: Fourth order DGIGA’s modified wavenumbers (physical eigenmode), for 2 breakpoint spans per
patch and all possible smoothnesses.



172 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

4 4 0 17 0.042983
4 4 1 14 0.052930
4 4 2 11 0.052557
4 4 3 8 0.056268

Figure 11.45: Fourth order DGIGA’s modified wavenumbers (physical eigenmode), for 4 breakpoint spans per
patch and all possible smoothnesses.



11.3. DGIGA 173

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

8 4 0 33 0.020679
8 4 1 26 0.030041
8 4 2 19 0.040337
8 4 3 12 0.040717

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

8 4 0 33 0.020679
8 4 1 26 0.030041
8 4 2 19 0.040337
8 4 3 12 0.040717

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

8 4 0 33 0.020679
8 4 1 26 0.030041
8 4 2 19 0.040337
8 4 3 12 0.040717

Figure 11.46: Fourth order DGIGA’s modified wavenumbers (physical and “bubble” eigenmodes), for 8 breakpoint
spans per patch and all possible smoothnesses.



174 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

4

6

8

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−15

−10

−5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 21 ∞ 22 0.007195
20 2 1 22 0.042563
11 11 10 22 0.008746
7 3 0 22 0.035205

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

4

6

8

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−15

−10

−5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 21 ∞ 22 0.007195
20 2 1 22 0.042563
11 11 10 22 0.008746
7 3 0 22 0.035205

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

4

6

8

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−15

−10

−5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 21 ∞ 22 0.007195
20 2 1 22 0.042563
11 11 10 22 0.008746
7 3 0 22 0.035205

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

4

6

8

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−15

−10

−5

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (�̃�)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 21 ∞ 22 0.007195
20 2 1 22 0.042563
11 11 10 22 0.008746
7 3 0 22 0.035205

Figure 11.47: Modified wavenumbers (physical and “bubble” eigenmodes) of several combinations of parameters
leading to DGIGA discretizations with 22 basis functions per patch.



12
Optimal FR/CPR and DGIGA

Configurations
Recall that either DGSEM, FR/CPR or DGIGA possess the freedom to still allow an infinite number
of semidiscretization variants each (a full breakdown is given §9.2). The spectral characteristics of
the various methods under consideration have been explored in §11, showcasing the effect of each
method’s parameters in a more qualitative manner. My intention in this section is to go one step further
and select the instance of each of these classes of schemes that, in some sense, is best suited to the
resolution of turbulent flows.

Turbulent flows are characterized by a broad range of scales coexisting in a flow. In a scaleresolving
context (LES or DNS), the goal is to compute the dynamics of a large number of these smallscale
features accurately, while simultaneously solving the larger scales as well. The goal of this chapter is
to identify promising configurations of the FR/CPR and DGIGA schemes for such applications. I shall
do so in in the context of linear advection of a wave of given wavenumber1, for which it is possible to
predict resolution errors (dispersion and dissipation) analytically. Promising configurations of FR/CPR
and DGIGA are first identified in §12.1. Then, the following additional aspects of the previously selected
methods are studied:

• A priori dispersion and dissipation errors, as a function of time and wavenumber (§12.2)

• Potential suitability for implicit LES (§12.3)

• Estimated computational cost, given a largesttosmallest resolved wavelength ratio (§12.4)

12.1. Identification of optimal configurations
I choose to treat this selection process as a an optimization problem. Such an approach naturally leads
to a quantitative way of comparing any two methods (the value of the objective function), and removes
any ambiguity in the selection process. The downside, however, is that the entire responsibility of the
selection being meaningful falls on the choice of said objective function. I propose the following one,
borrowed from Asthana and Jameson [7], but modified slightly with the use of combinedmode phase
shift and amplification factors (see §A.2.5) instead of a weighted average of eigenmodal contributions
(akin to that employed in §A.5.4).

12.1.1. Objective function
Consider, as the exact solution, a monochromatic complexvalued wave:

𝑞(𝑥, 𝑡, 𝜅) = ei𝜅(𝑥−𝑎𝑡) , (12.1)

and let the following represent dimensionless versions of space, time and wavenumber:

𝑥∗≔ 𝑥
𝛥𝑥 , 𝑡∗≔ 𝑎

𝛥𝑥 𝑡 , 𝜅∗≔𝜅𝛥𝑥 , (12.2)

1Admittedly, a rather crude approximation to an actual turbulent flow.

175



176 12. Optimal FR/CPR and DGIGA Configurations

so that we may rewrite the previous as:

𝑞(𝑥∗, 𝑡∗, 𝜅∗) = ei𝜅∗(𝑥∗−𝑡∗) . (12.3)

Let us assume, for the sake of this argument, that the numerical solution has a similar form, but is
afflicted with:

• A reduced amplitude, 𝐺(𝑡∗, 𝜅∗) ∈ [0, 1] (the effect of numerical dissipation)
• A modified phase angle 𝛹(𝑡∗, 𝜅∗)≔𝜅∗𝑡∗ − 𝛥𝛹(𝑡∗, 𝜅∗), 𝛥𝛹 being the phase angle by which the
approximate solution is lagging behind the exact one (as a consequence of numerical dispersion)

These two quantities are defined by (A.36) and (A.35), respectively, for any specific semidiscretization
and wavenumber as functions of 𝑡∗. The result is:

𝑞ℎ(𝑥∗, 𝑡∗, 𝜅∗) = 𝐺(𝑡∗, 𝜅∗)ei(𝜅∗𝑥∗−𝛹(𝑡∗ ,𝜅∗)) . (12.4)

After some simple algebra2, the magnitude of the combinedmode spectral error between exact and
numerical solutions, at any position 𝑥, simplifies to:

|𝑞 − 𝑞ℎ| = |1 − 𝐺(𝑡∗, 𝜅∗)ei𝛥𝛹(𝑡∗ ,𝜅∗)| . (12.5)

From (12.5), I define an objective function, 𝐹 ∶ ℝ → ℝ, as:

𝐹(𝑡∗)≔ 1
J𝜋 ∫

J𝜋

0
|1 − 𝐺(𝑡∗, 𝜅∗)ei𝛥𝛹(𝑡∗ ,𝜅∗)|d𝜅∗ , (12.6)

i.e. the 𝐿1 norm of (12.5), taken over all (positive) wavenumbers up to the Nyquist limit (see §A.1 for
more details), which I evaluate at a very large time, 𝑡∗ = 100 (the time necessary for the exact solution to
travel across 100 elements or patches), imitating [7]. I do so via MATLAB’s builtin adaptive quadrature
routine3, with default tolerances (1 × 10−10 absolute, 1 × 10−6 relative).

For DGSEM, I have observed (not shown) that (12.5) is almost identical to the integrand used in [7],
provided that 𝑡∗ ≫ 1. Regardless, based on [5, 117], I would argue that (12.6) can be expected to be
more (or, at least, equally) representative of the spectral error of any given scheme, in general, than
the aforementioned.

12.1.2. Optimization problems
An optimization problem can then be defined for each method, at a given number of degrees of freedom
per patch or element, J. In the FR/CPR case, it is simply:

min
𝜂

𝐹(100) , (12.7a)

subject to − 1 < 𝜂 , (12.7b)

where the constraint on 𝜂 restricts the search to linearly stable schemes. To solve (12.7), I use MAT
LAB’s singlevariable minimization over an interval builtin routine4, with default settings and 𝜂 ≤ 5 as
upper bound.

With DGIGA, in turn, I tackle the slightly more complicated:

min
k,p,𝜘

𝐹(100) , (12.8a)

subject to 1 ≤ k , (12.8b)
1 ≤ p ≤ J − 1 , (12.8c)
0 ≤ 𝜘 ≤ p , (12.8d)
J = kp + (1 − k)𝜘 + 1 . (12.8e)

This is a discrete (nonlinear) optimization, since k, p, 𝜘 ∈ ℤ. To solve it, I resort to evaluating (12.6) for
every single combination of these three parameters that satisfy the indicated constraints; each one of
such combinations represents a candidate method, and that with the lowest 𝐹(100) value is optimal.
2In particular, note that |ei𝑥| = 1 for any 𝑥 ∈ ℝ.
3https://nl.mathworks.com/help/matlab/ref/integral.html
4https://nl.mathworks.com/help/matlab/ref/fminbnd.html

https://nl.mathworks.com/help/matlab/ref/integral.html
https://nl.mathworks.com/help/matlab/ref/fminbnd.html


12.2. Combinedmode dispersion and dissipation errors 177

12.1.3. Optimization results and discussion
The results of the optimization problems (12.7) and (12.8), for a selection of J, are detailed in tables 12.2
and 12.3, respectively. Additionally, table 12.4 complements the latter by including all configurations
(not only optimal ones) evaluated when solving (12.8). For added clarity, I report the characteristics of
the optimized methods in terms of changes over the DGSEM scheme of equal J, which I shall consider
the baseline methods; these are detailed in table 12.1. Besides the “badness” (lower is better) measure
given by (12.6), I shall also judge the quality of each optimal semidiscretization through the following
magnitudes (all of them are defined and detailed in appendix A):

• Theoretical order of convergence, 𝐴𝑇 (A.65).
• Highest wellresolved wavenumber (dispersion plus dissipation, 1% threshold), 𝜅𝑓 (A.66).
• Cutoff wavenumber (dissipation only, 1% threshold), 𝜅1% (A.68).

In addition, themaximum allowable Courant number (as well as the condition number of its massmatrix,
in the DGIGA case) of each optimum is also included in these results.

Table 12.2 shows that, for every J tested, the optimal FR/CPR discretization fails to achieve barely
any improvement over DGSEM in terms of 𝐹(100). Furthermore, all metrics other than linear stability
indicate a slight decrease in performance with respect to the baseline, while the increase in maximum
allowable Courant number—between 2% and 8%—is rather moderate in comparison to that obtained
if optimizing FR/CPR for stability, which yields improvements in the 100% to 200% range [120] (results
which I have verified, even though I do not show them). All in all, these results suggest that FR/CPR
methods of the VCJH class offer little to no intrinsic advantage over DGSEM in terms of reduced spec
tral errors, theoretical order of convergence, resolution efficiency and stability. The same conclusion
is reached in [7], although I deem it worth mentioning that I could not reproduce the improvements
reported there for FR/CPR (my results seem to be more conservative).

For DGIGA (table 12.3), the three lowest J considered behave in the same way as just described
for FR/CPR: the optimum corresponds to the scheme which reduces to DGSEM—that is, Bernstein
based DG (DGIGA with Bsplines made up of a single polynomial segment of degree J − 1). This is
not surprising, as it results in the highest possible polynomial degree for a given number of degrees
of freedom. Interestingly, however, this is not longer optimal for J = 6 and above5. From then on, all
optima (up until J = 20, at least) correspond to bases that employ precisely two breakpoint spans per
patch (k = 2). Moreover, and in contrast to FR/CPR, the optimized DGIGA schemes achieve significant
improvements, 3% to 12% in 𝐹(100) and 50% to 30% in 𝜍max, while simultaneously increasing (albeit
only moderately) their resolving efficiency.

There is a considerable loss in theoretical order of accuracy, reaching up to 23% (for which the
optimum is of degree p = 7, in contrast to the baseline’s p = 10). Although substantial, this reduction
can be easily attributed to the lower Bspline degree. In fact, it is quite remarkable that higher spectral
accuracy and resolving efficiency can be achieved with a significantly lower degree. This reduction
of p for a fixed J, leads to the conditioning of the Bspline basis being greatly improved; additionally,
the bandwidth of the gradient and residual matrices (which only depends on p for both DGSEM and
DGIGA) is thus lower in the optimum than in the baseline. The fact that k = 2 is optimal for all tested
J > 5 could be due to it representing the minimum number of breakpoints (a single one) across which
the smoothness of the basis, 𝐶𝜘, can be varied—any additional breakpoint would force an even lower
degree (since J needs to be preserved), while one breakpoint fewer would result in 𝐶∞ smoothness
within the patch (and, hence, no possibility of balancing degree and smoothness). Table 12.4 shows
that, for sufficiently high J, there are still multiple DGIGA configurations superior to the baseline, some of
them only slightly worse than the optimum. It is possible, therefore, to exploit the benefits of a reduced
Bspline degree even further, should it be necessary or desirable to do so, by selecting a slightly less
optimal basis of even lower degree.

12.2. Combinedmode dispersion and dissipation errors
Complementing the error norm that is (12.6), figures 12.1 to 12.5 show the semidiscrete combined
mode behavior in terms of phase and amplitude errors (between the result of using a given scheme and
5I have verified that Bernsteinbased DGIGA and DGSEM give almost identical results for all magnitudes shown in the tables, up
to J = 20. This means that the illconditioning of the former is not sufficient to compromise the optimization procedure (Bernstein
is the worstconditioned of all DGIGA bases of a given J).



178 12. Optimal FR/CPR and DGIGA Configurations

Table 12.1: Comparison, according to several criteria (higher is better), between DGSEM schemes of varying
degree. The relative increase in “goodness” (negated objective function value) is evaluated with respect to that of
the first row, p = 0 (first order upwind FVM).

J p −𝐹(100) −𝛥𝐹(100)𝐹(100) 𝐴𝑇
𝛥𝑥
J𝜋 𝜅𝑓

𝛥𝑥
J𝜋 𝜅1% 𝜍max

1 0 −0.96 +0 1 0.006 0.045 1.256
2 1 −0.867 +0.097 2.999 0.145 0.179 0.41
3 2 −0.796 +0.171 4.999 0.263 0.278 0.21
4 3 −0.744 +0.225 6.988 0.34 0.345 0.13
5 4 −0.706 +0.265 8.962 0.392 0.392 0.09
6 5 −0.675 +0.297 10.948 0.429 0.428 0.066
8 7 −0.631 +0.342 14.787 0.479 0.478 0.041
11 10 −0.589 +0.386 20.348 0.523 0.524 0.024
15 14 −0.553 +0.425 28.452 0.557 0.561 0.014
20 19 −0.523 +0.455 34.08 0.581 0.589 0.008

Table 12.2: FR/CPR semidiscretizations that, for each number of basis functions per element (J), minimize the
objective function (12.6). The only free parameter is 𝜂 (or, equivalently, 𝑐). Relative changes are increments
over the DGSEM method of the same degree (table 12.1); in all magnitudes, a positive increment represents an
improvement.

J p 𝜂 𝑐 −𝛥𝐹(100)𝐹(100)
𝛥𝐴𝑇
𝐴𝑇

𝛥𝜅𝑓
𝜅𝑓

𝛥𝜅1%
𝜅1%

𝛥𝜍max
𝜍max

3 2 0.023 0.001 +0 −0.029 −0.002 −0.007 +0.019
4 3 0.035 4.457 ⋅ 10−5 +0.001 −0.034 −0.002 −0.01 +0.027
5 4 0.047 9.492 ⋅ 10−7 +0.001 −0.037 −0.002 −0.011 +0.035
6 5 0.058 1.181 ⋅ 10−8 +0.001 −0.039 −0.002 −0.012 +0.041
8 7 0.079 5.745 ⋅ 10−13 +0.002 −0.03 −0.002 −0.014 +0.051
11 10 0.103 2.286 ⋅ 10−20 +0.002 −0.033 −0.002 −0.016 +0.062
15 14 0.128 1.944 ⋅ 10−31 +0.003 −0.041 −0.002 −0.017 +0.073
20 19 0.152 1.161 ⋅ 10−46 +0.003 −0.037 −0.002 −0.017 +0.081

Table 12.3: DGIGA semidiscretizations that minimize (12.6). Each optimal scheme has been selected among all
possible combinations of k, p, 𝜘 (number of breakpoint spans, degree, smoothness) that result in a given J (number
of basis functions per patch). Relative changes are increments with respect to the DGSEM method of equal J in
table 12.1; positive increments imply improvements over the baseline.

J k p 𝜘 cond (�̃�) −𝛥𝐹(100)𝐹(100)
𝛥𝐴𝑇
𝐴𝑇

𝛥𝜅𝑓
𝜅𝑓

𝛥𝜅1%
𝜅1%

𝛥𝜍max
𝜍max

3 1 2 1 10 −7 ⋅ 10−15 +6 ⋅ 10−6 −1 ⋅ 10−14 −4 ⋅ 10−15 +2 ⋅ 10−10
4 1 3 2 35 −3 ⋅ 10−14 +0.017 +1 ⋅ 10−14 +2 ⋅ 10−14 −5 ⋅ 10−11
5 1 4 3 126 −5 ⋅ 10−14 +0 +7 ⋅ 10−15 +5 ⋅ 10−15 −1 ⋅ 10−11
6 2 3 1 34.92 +0.028 −0.111 +0.03 +0.011 +0.53
8 2 5 3 326 +0.033 −0.061 +0.025 −0.01 +0.298
11 2 7 4 3,507.34 +0.086 −0.228 +0.062 +0.023 +0.348
15 2 10 6 1.5 ⋅ 105 +0.107 −0.121 +0.074 +0.034 +0.331
20 2 14 9 2.8 ⋅ 107 +0.119 −0.209 +0.072 +0.031 +0.29



12.2. Combinedmode dispersion and dissipation errors 179

Table 12.4: All DGIGA candidates involved in the solution of (12.8), sorted from best to worst.

J k p 𝜘 𝐹(100)

20 2 14 9 0.461
20 5 7 4 0.477
20 2 12 5 0.486
20 2 15 11 0.487
15 2 10 6 0.493
20 3 11 7 0.496
20 2 16 13 0.506
20 4 10 7 0.507
20 7 7 5 0.515
20 2 17 15 0.517
20 2 11 3 0.52
15 3 8 5 0.52
15 2 11 8 0.522
20 2 18 17 0.522
20 1 19 18 0.523
20 3 13 10 0.524
20 8 5 3 0.526
20 6 9 7 0.528
15 2 9 4 0.529
20 3 17 16 0.534
20 3 15 13 0.536
11 2 7 4 0.538
20 5 11 9 0.542
15 2 12 10 0.542
15 2 8 2 0.544
20 4 16 15 0.544
20 4 13 11 0.544
20 2 13 7 0.545
20 13 7 6 0.546
20 14 6 5 0.548
15 5 6 4 0.55
20 12 8 7 0.551
15 2 13 12 0.551
20 5 15 14 0.552
15 1 14 13 0.553
20 11 9 8 0.558
20 6 14 13 0.56
15 4 8 6 0.561

J k p 𝜘 𝐹(100)

15 6 4 2 0.561
15 3 10 8 0.561
20 10 10 9 0.564
20 7 13 12 0.565
20 15 5 4 0.565
15 3 12 11 0.566
20 9 11 10 0.567
20 8 12 11 0.568
11 2 8 6 0.573
20 3 7 1 0.576
15 4 11 10 0.577
11 4 4 2 0.582
11 3 6 4 0.582
15 5 10 9 0.586
20 2 10 1 0.587
11 2 9 8 0.588
11 1 10 9 0.589
15 9 6 5 0.59
15 6 9 8 0.592
15 8 7 6 0.592
15 7 8 7 0.594
15 10 5 4 0.594
20 3 9 4 0.597
20 16 4 3 0.598
11 3 8 7 0.606
8 2 5 3 0.611
15 11 4 3 0.617
11 4 7 6 0.618
15 2 7 0 0.62
11 5 6 5 0.626
11 6 5 4 0.631
8 2 6 5 0.631
8 1 7 6 0.631
11 7 4 3 0.643
8 3 3 1 0.647
20 4 7 3 0.648
8 3 5 4 0.651
11 2 5 0 0.656

J k p 𝜘 𝐹(100)

6 2 3 1 0.656
15 3 6 2 0.659
20 17 3 2 0.664
15 12 3 2 0.666
8 4 4 3 0.668
8 2 4 1 0.674
11 2 6 2 0.675
6 1 5 4 0.675
11 8 3 2 0.678
6 2 4 3 0.68
8 5 3 2 0.694
5 1 4 3 0.706
6 3 3 2 0.708
20 9 3 1 0.716
5 2 3 2 0.716
15 4 5 2 0.731
4 1 3 2 0.744
11 9 2 1 0.752
8 6 2 1 0.756
11 3 4 1 0.756
15 13 2 1 0.758
6 4 2 1 0.759
5 3 2 1 0.764
20 18 2 1 0.767
4 2 2 1 0.769
20 6 4 1 0.778
3 1 2 1 0.796
15 7 2 0 0.825
5 4 1 0 0.839
4 3 1 0 0.84
6 5 1 0 0.848
3 2 1 0 0.85
8 7 1 0 0.853
11 10 1 0 0.864
15 14 1 0 0.875
5 2 2 0 0.884
11 5 2 0 0.886
20 19 1 0 0.887



180 12. Optimal FR/CPR and DGIGA Configurations

the exact solution; details are in §A.2.5). These correspond to the optima found in §12.1.2 to improve
significantly over their baseline methods—i.e. (some) DGIGA discretizations.

Starting with dispersion, compared to the baseline, the optimal schemes incur in higher error at low
wavenumbers; this difference reduces with increasing wavenumber, and it eventually reverses. The
DGIGA schemes thus end up maintaining a lower phase shift than DGSEM for a majority of the spec
trum. In addition, this crossover occurs (for all methods considered) within the wellresolved wavenum
ber range; this suggests that the increased error up to that point is negligible.

When it comes to dissipation, the optimal methods appear to allow higher dissipation both in the
wellresolved range and in the later portion of the underresolved range. For a small portion at the
middle of the spectrum, however, the situation reverses, and dissipation can be clearly observed to be
lower for the optimal DGIGA scheme than for the DGSEM baseline.

All in all, it seems that the benefit of the optimal DGIGA schemes stems from a redistribution of
both dispersion and dissipation errors away from the early portion of the underresolved range, which
is pushed to the lower (where it makes little difference, since both it and the baseline are very accurate
there) and higher (where a higher numerical dissipation might be beneficial, as will be argued in §12.3)
wavenumber extremes. As a final note, recall that this qualitative analysis is not used to justify these
semidiscretizations as being optimal; on the contrary, this is an explanation of why these can be better
than the baseline, a fact that is a direct consequence of the choice of objective function. Hence the
importance of choosing a sensible one—which I have argued as so due to it being associated with a
theoretical error norm, as well as having been used (in a very similar form) in the literature.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

20

40

60

𝜅𝛥𝑥/J

| 𝛥
𝛹
|

𝑡∗ Optimum Baseline
1
10
100

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.2

0.4

0.6

0.8

1

𝜅𝛥𝑥/J

1−
𝐺

Figure 12.1: Combinedmode errors, as functions of the wavenumber, for J = 6 and several (nondimensional)
time instants. Optimum: DGIGA with k = 2, p = 3 and 𝐶1 smoothness. Baseline: DGSEM with p = 5. Lower is
better.

12.3. Balance between dispersion and dissipation
Results discussed in §12.2 suggest an additional advantage of the optimal DGIGA: increased dissipa
tion in the underresolved range. Numerical dissipation is typically undesirable, since it causes details
of the solution to diffuse away. In some cases, however, one can take advantage of this effect and use
it as a numerical filter in an implicit LES approach: the numerical dissipation itself ensures that there
is no nonphysical backscatter of the energy that would have been dissipated by molecular viscosity
should the discretization have been fine enough to resolve the small flow structures where that process
takes place; this is in contrast to explicit LES, in which dissipation of unresolved scales is accomplished
using a dedicated subgridscale model.

Figure 12.6 shows the amount of dissipation introduced at each wavenumber, in proportion to how
badly the same wavenumber is affected by dispersion, for each optimum and its baseline. This ratio
between dispersion and dissipation, 𝜒, is defined by (A.73) and can be interpreted as amean lifetime (in
terms of degrees of freedom crossed) of any spurious wave packet, present in the numerical solution,
centered at a given wavenumber (further details are given in §A.5.4). It is shown for the underresolved



12.3. Balance between dispersion and dissipation 181

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

20

40

60

𝜅𝛥𝑥/J

| 𝛥
𝛹
|

𝑡∗ Optimum Baseline
1
10
100

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.2

0.4

0.6

0.8

1

𝜅𝛥𝑥/J

1−
𝐺

Figure 12.2: Same as figure 12.1, for J = 8. Optimum: DGIGA with k = 2, p = 5, 𝐶3. Baseline: p = 7 DGSEM.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

20

40

60

𝜅𝛥𝑥/J

| 𝛥
𝛹
|

𝑡∗ Optim. Base.
1
10
100

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.2

0.4

0.6

0.8

1

𝜅𝛥𝑥/J

1−
𝐺

Figure 12.3: Idem for J = 11. DGIGA: k = 2, p = 7, 𝐶4. DGSEM: p = 10.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

20

40

60

𝜅𝛥𝑥/J

| 𝛥
𝛹
|

𝑡∗ Optim. Base.
1
10
100

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.2

0.4

0.6

0.8

1

𝜅𝛥𝑥/J

1−
𝐺

Figure 12.4: Idem for J = 15. DGIGA: k = 2, p = 10, 𝐶6. DGSEM: p = 14.



182 12. Optimal FR/CPR and DGIGA Configurations

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

20

40

60

𝜅𝛥𝑥/J

| 𝛥
𝛹
|

𝑡∗ Optim. Base.
1
10
100

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.2

0.4

0.6

0.8

1

𝜅𝛥𝑥/J

1−
𝐺

Figure 12.5: Idem for J = 20. DGIGA: k = 2, p = 14, 𝐶9. DGSEM: p = 19.

range (as defined in §A.5.2) of each scheme only; hence, figure 12.6 also compares their resolving
efficiencies (recall that the Nyquist wavenumber of a DGlike scheme is 𝜅 = J𝜋/𝛥𝑥). In addition, its norm
(A.74) for these same cases is listed in table 12.5.

Fixed the number of degrees of freedom, the optimized DGIGA semidiscretization has higher dissi
pation than its DGSEM counterpart for a given amount of dispersion (at small wavelengths). Moreover,
it can also be seen that the divide between wellresolved and underresolved ranges is pushed to higher
wavenumbers in the former. It can be argued quite conclusively, therefore, that the optima found are
not only still suitable but also even superior than DGSEM for use in implicit LES. Note that the FR/CPR
optima do show a reduction (up to 24%) over the baseline in this metric—see table 12.5; the DGIGA
optima, however, do so much more significantly (47% to 72% improvement).

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

𝜅𝛥𝑥

𝜒

J 6 8 11 15 20
Optimum
Baseline

Figure 12.6: Mean lifetime of a spurious wave packet as a function of its wavenumber (A.73), for each optimal
DGIGA method with k ≠ 1 and its DGSEM baseline. Lower is better; plotted over the underresolved range only
(the furthest to the right the graph starts, the more resolution).

12.4. Relative cost at a fixed resolution
As a final criterion through which to judge the results of the optimization, I propose to compare the
computational cost in terms of number of floating point operations (i.e. time complexity), for a fixed
resolution, in the following way. Consider the linear advection (2.19) of some range of scales—let the



12.4. Relative cost at a fixed resolution 183

Table 12.5: Mean lifetime of spurious a wave packet, in degrees of freedom crossed, averaged over the under
resolved wavenumber range of each semidiscretization. The lower this lifetime, the sooner spurious energy is
removed from the numerical solution; hence, lower is better (i.e. negative increments represent an improvement,
in this case). Relative changes are with respect to either the p = 0 case (DGSEM) or the DGSEM scheme of equal
J (FR/CPR and DGIGA).

(a) DGSEM

J ‖𝜒‖ 𝛥‖𝜒‖
‖𝜒‖

1 1 0
2 1 0
3 1.47 0.47
4 2.01 1.01
5 2.62 1.62
6 3.3 2.29
8 4.77 3.76
11 6.93 5.92
15 9.36 8.35
20 12.66 11.65

(b) FR/CPR

J ‖𝜒‖ 𝛥‖𝜒‖
‖𝜒‖

3 1.36 −0.07
4 1.82 −0.09
5 2.32 −0.11
6 2.87 −0.13
8 4.01 −0.16
11 5.64 −0.19
15 7.35 −0.21
20 9.62 −0.24

(c) DGIGA

J ‖𝜒‖ 𝛥‖𝜒‖
‖𝜒‖

3 1.45 −0.01
4 1.95 −0.03
5 2.47 −0.06
6 0.93 −0.72
8 2.04 −0.57
11 2.9 −0.58
15 4.44 −0.53
20 6.67 −0.47

smallest of these be denoted 𝜆—over a periodic domain of length 𝐿, at a rate 𝑎. Suppose that we are
interested in the solution after some arbitrary amount of simulated time, 𝛥𝑇 > 0, has passed. In order to
obtain this solution numerically, we will employ K ∈ ℤ+ spatial elements or patches (either DGSEM, FR
or DGIGA), each of size 𝛥𝑥 and with J ∈ ℤ+ degrees of freedom, in combination with the SSPRK3(3)
time scheme.

12.4.1. Number of timesteps
The number of timesteps of size 𝛥𝑡 necessary to reach 𝛥𝑇 is:

Nsteps = ⌈
𝛥𝑇
𝛥𝑡 ⌉ , (12.9)

which accounts for the size of the last timestep possibly being truncated so that Nsteps ∈ ℤ+. Assume
that we use the largest possible timestep size that is linearly stable in combination with each given
spatial scheme. Since 𝐿 = K𝛥𝑥, it follows that:

𝛥𝑡 =
𝜍max
𝑎/𝛥𝑥 ⟹ Nsteps = ⌈

K
𝜍max

𝛥𝑇
𝐿/𝑎⌉ . (12.10)

12.4.2. Number of elements or patches
Next, assume6 that the minimum amount of resolution required to accurately resolve the smallest scale
present in the solution is given by the relationship:

2𝜋
𝜆 = 𝜅𝑓 , (12.11)

i.e. the smallest scale present in the solution is precisely at the boundary between wellresolved and
underresolved portions of any given spatial scheme’s wavenumber spectrum. Consequently, the fol
lowing relationship holds:

𝐿
𝜆 =

𝜅𝑓𝛥𝑥
J𝜋

JK
2 , (12.12)

6This, of course, is merely a convention: recall that the threshold selected for the definition of 𝜅𝑓 (§A.5.2) is arbitrary, and that
the time scheme introduces additional errors not taken into account.



184 12. Optimal FR/CPR and DGIGA Configurations

and, therefore, the minimum number of elements or patches (which has to be a positive integer) nec
essary to ensure sufficient resolution is:

K = ⌈2J
J𝜋
𝜅𝑓𝛥𝑥

𝐿
𝜆 ⌉ , (12.13)

which only depends on 𝐿/𝜆, for a given spatial scheme.
A first guess on the typical range for this ratio may be made based on turbulence theory [100], via

the relationship 𝐿/𝜆 ≈ Re
3/4
𝐿 —Re𝐿 is the Reynolds number referred to the integral length scale, which

for estimation purposes can be assumed approximately equal to 𝐿. Once a value for this ratio has
been selected, both K and Nsteps become fixed—resolution efficiency and maximum Courant numbers
of each scheme are listed in tables 12.1, 12.2 and 12.3.

12.4.3. Cost model
The total number of floatingpoint operations made throughout a simulation is given by the product:

Nflops = Nflops/stepNsteps , (12.14)

where the number of operations per step, Nflops/step, depends on the spatial and temporal discretizations
and on how they are implemented. For my particular implementation of these methods, I estimate the
following costs per step7:

NDGSEMflops/step = 6J2K + 45JK + 24J + 18K + 15 , (12.15a)

NFR/CPRflops/step = 6J2K + 51JK + 24J + 24K + 15 , (12.15b)

NDGIGAflops/step = 12Kkp2 − 12Kk𝜘2 + 6J2K − 6Kp2 + 12K𝜘2 + 12JKp + 12Kkp − 12Kk𝜘
+ 36JK − 6Kp + 12K𝜘 + 24J + 36K + 15 .

(12.15c)

Appendix B details how these have been obtained.
Even though I have chosen to use FLOPs as a measure of time complexity by which to compare

the various schemes, the reader should keep in mind that this magnitude is regarded as a bad estimate
of performance in modern computers: it is entirely possible for an algorithm that requires much fewer
FLOPs to be slower than an alternative, if the latter has better memory management (recall figure 1.2).

12.4.4. Results and discussion
Figure 12.7 shows the cost predicted under the assumptions of §§12.4.1–12.4.3 for DGSEM. Among
those tested, degrees p = 4 and p = 5 achieve (an almost identical) lowest overall cost per unit of
simulated time, throughout the range of 𝐿/𝜆 ratios sampled. Both higher and lower degrees are sub
optimal according to this metric: p = 3 and p = 7 are about 10%worse; p = 2 and p = 10 are both 38%
more costly; p = 1 and p = 19 require, respectively, 2.30 and 1.50 times more FLOPs than p = 4. The
DGSEM equivalent of first order upwind FVM, despite its cost being minimal, clearly performs much
worse (>1000 times more FLOPs) than the rest; this can be attributed to its poor resolution efficiency.

The optimal FR/CPR semidiscretizations shown in figure 12.8 are all about as costly as their base
lines. Despite being slightly (up to 10%) more expensive than the baseline for J < 11, the two highest
order schemes tested are actually slightly more costeffective than their baselines under equal reso
lution requirements—which suggests that the increase in allowable Courant number gained by using
𝜂 > 0 can outweigh the price, in terms of added computational complexity, invested in supporting the
correction procedure. That being said, this improvement is very small (<5%).

Lastly, figure 12.9 shows that the DGIGA optima fail to outperform DGSEM in regards to cost
efficiency, even when possessing both larger maximum Courant number and resolving efficiency. This
can only be attributed to a significantly increased cost per timestep of DGIGA with respect to DGSEM.
The DGIGA optima closest to its baseline (according to this metric) is J = 8, with both higher and lower
J schemes being worse in relation to their respective baselines. Note that this results already take into
account the fact that DGIGA’s operators can be sparser than their DGSEM counterparts for an equal
number of degrees of freedom per patch (see B.2).
7Note that NDGSEM

flops/step < NFR/CPR
flops/step , the latter requiring 2(J + 1) additional FLOPs per stage and element (in my implementation).



12.4. Relative cost at a fixed resolution 185

101 102 103 104 105 106
105

107

109

1011

1013

1015

1017

𝐿/𝜆

ND
G
SE

M
flo
ps

𝑎 /𝐿
𝛥𝑇

J
1
2
3
4
5
6
8
11
15
20

101 102 103 104 105 106
105

107

109

1011

1013

1015

1017

𝐿/𝜆

ND
G
SE

M
flo
ps

𝑎 /𝐿
𝛥𝑇

J
1
2
3
4
5
6
8
11
15
20

101 102 103 104 105 106
105

107

109

1011

1013

1015

1017

𝐿/𝜆

ND
G
SE

M
flo
ps

𝑎 /𝐿
𝛥𝑇

J
1
2
3
4
5
6
8
11
15
20

Figure 12.7: Estimated cost of solving the advection equation with SSPRK3(3) and DGSEM, in terms of number
of FLOPs per dimensionless unit of simulated time. Even though this cost increases strongly with the resolu
tion requirement (note the logarithmic axis scales), the relative differences between orders remain approximately
constant.

101 102 103 104 105 106
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝐿/𝜆

NF
R
/C
PR

flo
ps

−N
D
G
SE

M
flo
ps

ND
G
SE

M
flo
ps

J
3
4
5
6
8
11
15
20

101 102 103 104 105 106
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝐿/𝜆

NF
R
/C
PR

flo
ps

−N
D
G
SE

M
flo
ps

ND
G
SE

M
flo
ps

J
3
4
5
6
8
11
15
20

Figure 12.8: Cost of the FR/CPR optima of indicated order, relative to their DGSEM counterparts (figure 12.7).



186 12. Optimal FR/CPR and DGIGA Configurations

101 102 103 104 105 106
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

𝐿/𝜆

ND
G
IG

A
flo

ps
−N

D
G
SE

M
flo

ps
ND

G
SE

M
flo

ps

J
3
4
5
6
8
11
15
20

Figure 12.9: Relative cost of the DGIGA optima with respect to their baselines (DGSEM of equal number of
degrees of freedom per element/patch).



13
Nonlinear Physics

All results shown and discussed in chapter 12 were based on a priori analytical considerations valid only
for the linear advection equation. The extent to which any conclusions reached in such a setting can be
generalized to more realistic flows is unclear. In this chapter, I verify numerically whether the optimal
configurations found previously are actually so in practice, starting with the linear advection case, and
compare their behavior when switching to the nonlinear advection that the inviscid Burgers equation
represents (§13.1). Then, as a preliminary to chapter 14, I consider the Euler equations without using
limiters, studying them via a posteriori modified wavenumber analysis (§13.2).

13.1. Burgers equation
The combinedmode analysis employed in §12.2 does not generalize easily to the nonlinear case. A
simple alternative is to compare the growth of the numerical error as the simulation progresses, for
each triplet of schemes of given J—these being: DGSEM baseline, FR/CPR optimum and DGIGA
optimum (which, in addition, I consider in both its modal and nodal variants), as established in chapter
12. This strategy, purely experimental and a posteriori (as opposed to the analytically obtained a priori
combinedmode analysis) has the downside of only detecting the combined effect of both dispersion
and dissipation, and for all wavenumbers present in the numerical solution at once. I consider test
problems (9.2), (9.8) and (9.10), and compare the 𝐿2 norm of their error, as a function of time, with that
of their linear advection counterparts: (9.1), (9.7) and (9.9).

13.1.1. Verification of combinedmode analysis results
In this subsection, I focus on comparing baseline and optimized spatial schemes in the latter’s “design
conditions”—i.e. for a marginally resolved monochromatic wave, advected in a linear fashion. The
following test matrix details the setup of the experiments from which the results I discuss below have
been obtained.

Table 13.1: Confirming the advantage of optimized schemes (most favorable conditions).

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 13.4a (9.1), 𝑛 = 7 3(3) 10−3 20 DGSEM 60 20 2   ∞  
2 FR/CPR 0.023
3 DGIGA  1 1
4 (nodal)
5 13.6a 𝑛 = 12 DGSEM 10 5  ∞
6 FR/CPR 0.058
7 DGIGA 3  2 1
8 (nodal)
9 13.8a 𝑛 = 16 DGSEM 3 19  ∞
10 FR/CPR 0.152
11 DGIGA 14  2 9

(continues in the next page)

187



188 13. Nonlinear Physics

Table 13.1: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

12 (nodal)

All runs of table 13.1 indicate that the theoretical combinedmode analysis results also occur in
practice. The sinusoidal initial condition (see figure 13.1a) in these three sets of runs has been selected
such that 𝑛 ∈ ℤ (i.e. an integer number of wavelengths fit in the domain) at the same time that it results
in a wavenumber≈90% of the wellresolved threshold for DGSEM of degree 2, 5 and 19 (respectively);
in this way, I target the range where the combinedmode response of each DGIGA optimum differs the
most from its respective baseline (see §12.2). For J = 3 (figure 13.4a), the optimal DGIGA basis (runs
3 and 4) spans the same function space as the DGSEM one (run 1)—see §6.2.2 for details—hence we
observe no difference between the two (in this linear context). The same applies to J = 4 and 5 (not
shown). Whenever the optimized spatial scheme differs from the baseline, however, the former’s error
grows at a reduced rate as the simulation progresses, in relation to the latter; this suggests a reduced
numerical dispersion and/or dissipation, as predicted (see figures 12.1 and 12.5). The advantage of the
optimized basis over the baseline in this regard is more pronounced the higher the J gets, as expected
(this also holds for the rest of J, which are not shown for conciseness). Likewise, the FR/CPR optimum
is less so than the DGIGA one in every case. All in all, these results confirm that the optimization
procedure, including the choice of objective function, is sensible (in the linear case)—at least, for a
solution containing a wide range of scales over a long time. Note that in all linear cases, nodal and
modal versions of DGIGA give identical results.

13.1.2. Influence of the initial condition
Considering still the linear advection equation, let us now investigate whether or not the previous ob
servations can be extended to less favorable initial conditions.

Table 13.2: Testing the advantage of optimized schemes (unfavorable conditions).

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 13.4b (9.7) 3(3) 10−3 20 DGSEM 60 20 2   ∞  
2 FR/CPR 0.023
3 DGIGA  1 1
4 (nodal)
5 13.6b DGSEM 10 5  ∞
6 FR/CPR 0.058
7 DGIGA 3  2 1
8 (nodal)
9 13.8b DGSEM 3 19  ∞
10 FR/CPR 0.152
11 DGIGA 14  2 9
12 (nodal)
13 13.4c (9.9) DGSEM 20 2  ∞
14 FR/CPR 0.023
15 DGIGA  1 1
16 (nodal)
17 13.6c DGSEM 10 5  ∞
18 FR/CPR 0.058
19 DGIGA 3  2 1
20 (nodal)
21 13.8c DGSEM 3 19  ∞
22 FR/CPR 0.152
23 DGIGA 14  2 9
24 (nodal)

For a Gaussian initial condition, figure 13.6b suggests that the optimized bases (both FR and
DGIGA) may lose their advantage over DGSEM at large scales—note that a Gaussian signal contains



13.1. Burgers equation 189

most of its energy in the smallest wavenumbers (see figure 13.1b). Nevertheless, this is no longer
the case in figure 13.8b (I have observed the same to occur for J = 8, 11, 15, 20 as well): the DGIGA
optimum returns to being the most accurate. The FR/CPR optima differ only very slightly from their
baselines for all J. Be it as it may, these results show that for a smooth and wellresolved solution of the
advection equation, any of the three types of bases produce very small errors, even for long simulation
times (10 domain lengths in this case).

With problem (9.9), a similar situation as for the Gaussian initial condition occurs (note the similarity
between figures 13.1b and 13.1c). In this case, however, the error norm associated with DGIGA is
always equal or lower than that of DGSEM (figures 13.4c, 13.6c and 13.8c; also for the rest of values,
not shown). Note that the initial condition is now only 𝐶0 smooth; the dominant contributions to the error
in this test case are the greatly diffused regions of the approximate solution around the sharp extrema
of its exact counterpart.

13.1.3. Linear vs. nonlinear advection
To conclude this section, I repeat all the previous simulations for the Burgers equation and consider
the question: do the optimized methods retain their advantage in this (scalar) nonlinear context?

Table 13.3: Exploring the behavior of optimized schemes applied to the Burgers equation.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 13.5a (9.2), 𝑛 = 7 3(3) 10−3 0.409 DGSEM 60 20 2   ∞  
2 FR/CPR 0.023
3 DGIGA  1
4 (nodal)
5 13.7a 𝑛 = 12 0.239 DGSEM 10 5 
6 FR/CPR 0.058
7 DGIGA 3  2 1
8 (nodal)
9 13.9a 𝑛 = 16 0.179 DGSEM 3 19  ∞
10 FR/CPR 0.152
11 0.06 (unstable) DGIGA 14  2 9
12 0.034 (unstable) (nodal)
13 13.5b (9.8) 0.4 DGSEM 20 2  ∞
14 FR/CPR 0.023
15 DGIGA  1 1
16 (nodal)
17 13.7b DGSEM 10 5  ∞
18 FR/CPR 0.058
19 DGIGA 3  2 1
20 (nodal)
21 13.9b DGSEM 3 19  ∞
22 FR/CPR 0.152
23 0.208 (unstable) DGIGA 14  2 9
24 0.284 (unstable) (nodal)
25 13.5c (9.10) 7 DGSEM 20 2  ∞
26 FR/CPR 0.023
27 DGIGA  1 1
28 (nodal)
29 13.7c DGSEM 10 5  ∞
30 FR/CPR 0.058
31 DGIGA 3  2 1
32 1.229 (unstable) (nodal)
33 13.9c DGSEM 3 19  ∞
34 FR/CPR 0.152
35 0.171 (unstable) DGIGA 14  2 9
36 0.111 (unstable) (nodal)

Let us first return to the sinusoidal initial condition. The significant advantage that DGIGA had over
DGSEM in the linear situation is lost (compare figures 13.6a and 13.7a). Moreover, nodal and modal



190 13. Nonlinear Physics

versions of it are no longer identical, and the former experiences significantly higher errors than its
modal counterpart for all J (which is consistent with the increased numerical dissipation that I attribute
to it, see §6.3.1). Similarly, DGIGA and DGSEM no longer produce identical results for J = 3, 4, 5 (only
the first is shown), with DGIGA being always worse (figure 13.5a, lower J not shown).

For problems (9.8) and (9.10), modal DGIGA (when stable) is on par with the baseline, perhaps
even marginally better for some J (runs 17 to 20 and 29 to 31; see also figure 13.3). I attribute this to
the fact that the DGIGA optima have lower order than their DGSEM baselines; this, in turn, results in
less pronounced spurious oscillations near steep gradients. This same effect is even more pronounced
in nodal DGIGA, yet it appears that the increased numerical dissipation ends up being excessive: its 𝐿2
errors are much larger than for its modal counterpart in nonlinear cases. The advantage over DGSEM
that the FR/CPR optima possess appears to be minimal.

Runs 11, 12, 23, 24, 32, 35 and 36 experience numerical instability. I do not fully understand what
is causing this phenomenon; all I can offer are the following observations:

• All schemes that experience instability in the Burgers equation are linearly stable (confirmed both
theoretically and numerically).

• The only difference between stable and unstable spatial schemes, not only conceptually but also
at the implementation level (see appendix B), is the computation of the spatial residuals; this
instability, therefore, must have to do with the particularities of the Bspline basis itself.

• The higher the number of degrees of freedom per patch, the more prone to instability a basis is.
This coincides with more illposed mass, gradient and residual matrices, but that alone does not
explain the crashes (while the condition number of the mass matrix of optimal J = 20 DGIGA is
≈4 × 107, it is only ≈53 for J = 6).

• Increasing the number of patches, even if keeping each one’s basis fixed, can counteract this
instability.

• Nonlinear stabilization via limiters seems to correct the problem (see table 13.4 and associated
figures).

Table 13.4: Investigating the unexplained nonlinear instability of DGIGA.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 13.2a (9.8) 3(3) 10−3 0, 0.1, 0.2, 0.3, 0.43 DGSEM 60 20 2   ∞  
2 DGIGA 2 1
3 (nodal)
4 DGIGAAFC AFC
5 (nodal)
6 13.2b 0, 0.1, 0.16, 0.22, 0.33, 0.43 DGSEM 3 19  ∞ 
7 0, 0.1, 0.16 (unstable) DGIGA 14 2 9
8 0, 0.1, 0.16, 0.22 (unstable) (nodal)
9 0, 0.1, 0.16, 0.22, 0.33, 0.43 DGIGAAFC AFC
10 (nodal)
11 13.3 (9.10) 1, 2, 3 DGSEM 10 5  ∞ 
12 DGIGA 3 2 1
13 1 (unstable) (nodal)

The main conclusion to be extracted from the comparison between linear and nonlinear scalar
conservation laws is that the schemes optimized for high resolution in the linear advection and assuming
a smooth solution, lose most of their advantage over plain DGSEM if applied to the Burgers equation.
And, not only that, they can even become unstable.

13.2. Euler equations
For the Euler equations, spurious oscillations of the solution—unlike in the Burgers equation—can
easily cause the numerical solution to attain invalid states (e.g. negative density and/or imaginary speed



13.2. Euler equations 191

−20 0 200

0.2

0.4

0.6

0.8

1

2𝜋

𝜅
(a) Monochromatic, 𝑛 = 7

−20 0 200

0.2

0.4

0.6

0.8

1

𝜅
(b) Gaussian

−20 0 200

0.2

0.4

0.6

0.8

1

𝜅
(c) Triangular

Figure 13.1: Fourier transform of the initial conditions of problems (9.7), (9.8), (9.9) and (9.10). Defined as:
ℱ (𝑞(𝑥))≔∫+∞−∞ 𝑞(𝑥)e−i𝜅𝑥 d𝑥. Vertical axes show its magnitude (that of figure 13.1a is clipped).

Exact DGSEM DGIGA DGIGA (nod.) DGIGAAFC DGIGAAFC (n.)

−1 0 1 0 0.1 0.2 0.3 0.43
0

0.5

1

𝑥 𝑡

𝑞ℎ

(a) J = 3

−1 0 1 0 0.1 0.16 0.22 0.33 0.43
0

0.5

1

𝑥 𝑡

𝑞ℎ

(b) J = 20

Figure 13.2: Solution at multiple time instants of batches 1 to 5 (top) and 6 to 10 (bottom), of table 13.4.



192 13. Nonlinear Physics

−1 −0.5 0 0.5 1
1

2
3

0

0.5

1

𝑥
𝑡

𝑞ℎ

Exact DGSEM DGIGA DGIGA (nod.)

Figure 13.3: Solution of (9.10) at multiple instants; batches 11 to 13 of table 13.4. Notice that the shock position
coincides with, either, the midpoint of one element/patch (𝑥 = −0.5, 𝑡 = 2) or the interface between two (𝑥 = ±1,
𝑡 = 1; 𝑥 = 0, 𝑡 = 3).

of sound), typically causing the solver algorithm to fail. In order to compare the accuracy of the different
spatial schemes in the same manner as in §13.1, an exact solution that remains smooth (and, hence,
free of said oscillations) for some period of time is required1.

Unfortunately, exact solutions of this type are very scarce, even in one dimension. Yet, there is
one case (albeit rather trivial) which does fulfill these requirements: problem (9.3). The solution of this
problem consists on the propagation of the initial density profile, unmodified in amplitude nor frequency,
at a phase speed of 𝑢0 = 1; it is identical to the solution of the linear advection equation. Because
there is essentially no nonlinear phenomena in this solution, I do not repeat here the comparison be
tween spatial bases of §13.1—expecting similar results as for the linear case. Instead, I shall use
the methodology proposed in [48, appendix C], which provides separate measures of dispersion and
dissipation2.

13.2.1. Modified wavenumber analysis a la Hickel et al.
Hickel et al. [48] refer to this approach as an a posteriori modified wavenumber analysis. This stems
from the fact that, in it, one evaluates a modified wavenumber associated with each given baseline
wavenumber (see §A.2.2) using the spatial residual functions, once these have been computed by the
numerical scheme just as if in the middle of any timestage update. In all a posteriori results, I use
100 elements or patches and 100 samples in each (i.e. 10000 meshwide), to compute every modified
wavenumber from the first component (i.e. density) of residual and state vectors (transformed to Fourier
domain using Matlab’s FFT routine3).

A feature of this approach is that it does not require the semidiscretization it is applied to to be linear
(be it because the PDE is nonlinear or because e.g. limiters have been used). An immediately apparent
shortcoming that I have observed in its highorder generalization, is that the modified wavenumber is
misspredicted—there is a sudden spike in the dispersion relation—whenever two eigenmodes coincide
on the same wavenumber. This, of course, cannot happen if there is no multiplicity of eigenmodes, i.e. if
J = 1. As a matter of fact, I argue in the following subsection (§13.2.2) that the presence of multiple
modified wavenumbers for each baseline wavenumber means that this approach is not suitable for
studying highorder schemes.

1I postpone all numerical experiments involving limiters for the Euler equations until chapter 14.
2A posteriori modified wavenumber analysis is presented in [48] for finite volume schemes. Nevertheless, its generalization to
DGlike schemes is straightforward.

3https://nl.mathworks.com/help/matlab/ref/fft.html

https://nl.mathworks.com/help/matlab/ref/fft.html


13.2. Euler equations 193

−1 −0.5 0 0.5 1
0.9

1

1.1

𝑥

𝑞ℎ

0 5 10 15 20

0

2

4

6

8 ⋅10−2

𝑡
‖𝑞

−
𝑞ℎ

‖ 2

Exact DGSEM FR/CPR DGIGA DGIGA (nodal)

−1 −0.5 0 0.5 1
0.9

1

1.1

𝑥

𝑞ℎ

0 5 10 15 20

0

2

4

6

8 ⋅10−2

𝑡
‖𝑞

−
𝑞ℎ

‖ 2

Exact DGSEM FR/CPR DGIGA DGIGA (nodal)

−1 −0.5 0 0.5 1
0.9

1

1.1

𝑥

𝑞ℎ

0 5 10 15 20

0

2

4

6

8 ⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

Exact DGSEM FR/CPR DGIGA DGIGA (nodal)

(a) Monochromatic wave, 𝑛 = 7

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 5 10 15 20

2

4

6 ⋅10−4

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(b) Gaussian hump

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 5 10 15 20

0

0.5

1 ⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 5 10 15 20

0

0.5

1 ⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(c) Triangular pulse

Figure 13.4: Solution at 𝑡 = 𝛥𝑇 (left) and 𝐿2 norm of the error as a function of time (right) of all K = 20 ⟺ J = 3
runs in test matrices 13.1 and 13.2.



194 13. Nonlinear Physics

−1 −0.5 0 0.5 1

0.9

1

1.1

𝑥

𝑞ℎ

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3 ⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

Exact DGSEM FR/CPR DGIGA DGIGA (nodal)

(a) Monochromatic wave, 𝑛 = 7

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 0.1 0.2 0.3 0.4

0

0.5

1

1.5
⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(b) Gaussian hump

−1 −0.5 0 0.5 1

0.4

0.5

0.6

𝑥

𝑞ℎ

0 2 4 6

0

0.05

0.1

7

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(c) Triangular pulse

Figure 13.5: Idem for test matrix 13.3.



13.2. Euler equations 195

−1 −0.5 0 0.5 1
0.9

1

1.1

𝑥

𝑞ℎ

0 5 10 15 20
0

2

4

6

8 ⋅10−2

𝑡
‖𝑞

−
𝑞ℎ

‖ 2

Exact DGSEM FR/CPR DGIGA DGIGA (nodal)

(a) Monochromatic wave, 𝑛 = 12

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 5 10 15 20

0

1

2

3

4 ⋅10−5

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(b) Gaussian hump

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 5 10 15 20

0

1

2

3

4 ⋅10−3

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(c) Triangular pulse

Figure 13.6: Idem, for all K = 10 ⟺ J = 6 runs of test matrices 13.1 and 13.2.



196 13. Nonlinear Physics

−1 −0.5 0 0.5 1

0.9

1

1.1

𝑥

𝑞ℎ

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4 ⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

Exact DGSEM FR/CPR DGIGA DGIGA (nodal)

(a) Monochromatic wave, 𝑛 = 12

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 0.1 0.2 0.3 0.4

0

0.5

1

1.5

2 ⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(b) Gaussian hump

−1 −0.5 0 0.5 1
0.3

0.4

0.5

0.6

𝑥

𝑞ℎ

0 2 4 6

0

0.05

0.1

7

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(c) Triangular pulse

Figure 13.7: Idem for test matrix 13.3.



13.2. Euler equations 197

−1 −0.5 0 0.5 1
0.9

1

1.1

𝑥

𝑞ℎ

0 5 10 15 20

0

2

4

6

8 ⋅10−2

𝑡
‖𝑞

−
𝑞ℎ

‖ 2

Exact DGSEM FR/CPR DGIGA DGIGA (nodal)

(a) Monochromatic wave, 𝑛 = 16

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 5 10 15 20

0

0.5

1

1.5

2 ⋅10−5

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(b) Gaussian hump

−1 −0.5 0 0.5 1
0

0.5

1

𝑥

𝑞ℎ

0 5 10 15 20

1

1.5

2 ⋅10−3

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(c) Triangular pulse

Figure 13.8: Idem, for all K = 3 ⟺ J = 20 runs of test matrices 13.1 and 13.2.



198 13. Nonlinear Physics

−1 −0.5 0 0.5 1

0.9

1

1.1

𝑥

𝑞ℎ

0 0.05 0.1 0.15 0.2
0

1

2

3

4 ⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

Exact DGSEM FR/CPR DGIGA DGIGA (nodal)

(a) Monochromatic wave, 𝑛 = 16

−1 −0.5 0 0.5 1

0

0.5

1

𝑥

𝑞ℎ

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1 ⋅10−2

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(b) Gaussian hump

−1 −0.5 0 0.5 1

0.4

0.5

0.6

𝑥

𝑞ℎ

0 2 4 6
0

0.05

0.1

0.15

0.2

7

𝑡

‖𝑞
−
𝑞ℎ

‖ 2

(c) Triangular pulse

Figure 13.9: Idem for test matrix 13.3.



13.2. Euler equations 199

13.2.2. A posteriori vs. combinedmode analyses
The comparisons in figure 13.10 strongly suggest that a posteriori modified wavenumber analysis is not
a good predictor of the longterm spectral characteristics of highorder DGlike schemes. After all, this
procedure attempts to characterize the dispersion and dissipation of the spatial scheme via a single
(complexvalued) function, analogously to the analytical a priori approach used extensively in chapter
11. I would argue, therefore, that is has the same fundamental problem as the latter: for highorder
schemes, a single modified wavenumber can not be expected to encode these properties accurately
[5]. Of course, this conclusion is only supported by the aforementioned numerical evidence as long as
combinedmode analysis is representative of the true behaviour of the scheme (this is supported by
the literature [5, 117]).

There are, nevertheless, three details worth pointing out. First, that a priori (combinedmode) and a
posteriori approaches coincide for the lowestorder case (figure 13.10a); this is so because, in the J = 1
case, there is no multiplicity of eigenmodes. Second: they differ more strongly the higher p becomes
(the more basis components, the larger the discrepancy). And, third, that the two predictions become
closer to each other as 𝑡∗ → 0, especially for 𝜅 ≈ 𝜅𝑓, for p > 0.

13.2.3. Spatial schemes
Figure 13.11 shows a posteriori dispersion and dissipation relations of DGSEM, FR/CPR and DGIGA
of a given J. According to the conclusions of the previous subsection, I do not consider these results
representative of the longtime behaviour of the schemes considered. That being said, they are actually
consistent with those of the linear case.

13.2.4. Riemann solvers
Figure 13.12 shows a new set of results of a posteriori modified wavenumber analysis, this time for a
number of different Riemann solvers of the Euler equations all used in conjuction with p = 5 DGSEM.
This comparison can be interpreted as a direct measure of the amount of numerical dispersion/dissipa
tion introduced by each Riemann solver in one timestage; therefore, the concerns about the reliability
of the a posteriori approach are mitigated—it is not the longtime behaviour of the discretization that is
being assessed, but the relative effect per timestage of each solver.

Taking these results at face value, I would place HLLC as the optimal Riemann solver, due to
it possessing the secondlowest dispersion and lowest (nonzero) dissipation of the set, in addition to
being simple and efficient (it is as accurate as Roe’s and exact solvers, yet these two require an entropy
fix or/and are not as costeffective). Figure 13.12 can also be used to justify the following fallback
strategy: should HLLC fail to produce a stable solution, the next best option would be HLL, then HLLE,
and, as a last resort, LLF. The central numerical flux (KEP), which renders the discretization completely
nondissipative, is not of interest in this work because numerical dissipation (at high wavenumbers) is
a desirable feature in scaleresolving flow simulations (see §12.3).



200 13. Nonlinear Physics

Combinedmode, 𝑡∗ = 0.1 𝑡∗ = 1 𝑡∗ = 10
A posteriori, 𝑡∗ = 0.1 𝑡∗ = 1 𝑡∗ = 10

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

10

20

30

40

𝜅𝛥𝑥/J

𝛥𝛹

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.5

1

𝜅𝛥𝑥/J

1−
𝐺

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

10

20

30

40

𝜅𝛥𝑥/J

𝛥𝛹

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.5

1

𝜅𝛥𝑥/J
1−

𝐺
(a) p = 0

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

20

40

60
70

𝜅𝛥𝑥/J

𝛥𝛹

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.5

1

𝜅𝛥𝑥/J

1−
𝐺

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

20

40

60
70

𝜅𝛥𝑥/J

𝛥𝛹

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.5

1

𝜅𝛥𝑥/J

1−
𝐺

(b) p = 1

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

50

100

𝜅𝛥𝑥/J

𝛥𝛹

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−0.5

0

0.5

1

𝜅𝛥𝑥/J

1−
𝐺

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

50

100

𝜅𝛥𝑥/J

𝛥𝛹

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−0.5

0

0.5

1

𝜅𝛥𝑥/J

1−
𝐺

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

50

100

𝜅𝛥𝑥/J

𝛥𝛹

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−0.5

0

0.5

1

𝜅𝛥𝑥/J

1−
𝐺

(c) p = 2

Figure 13.10: Predicted errors in dispersion (phase angle, left) and dissipation (damping factor, right) for DGSEM
of degree p, according to both a posteriori modified wavenumber analysis (markers) and combinedmode semidis
crete analysis (lines, see §A.2.5). Dashed grid lines indicate 𝜅 = 𝜅𝑓.



13.2. Euler equations 201

Spectral (exact) DGSEM FR/CPR DGIGA

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

1

𝜅𝛥𝑥/J
ℑ
( 𝜅
)𝛥

𝑥 /J
(a) J = 3

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

2

4

6

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

1

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

(b) J = 6

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−1

0

11

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

(c) J = 20

Figure 13.11: Dispersion (left) and dissipation (right) relations obtained from a posteriori modified wavenumber
analysis, for DGSEM and the optimized schemes from §12 in combination with the exact Riemann solver.



202 13. Nonlinear Physics

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

2

4

6

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

KEP HLLC HLL HLLE LLF

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−8

−6

−4

−2

0

2

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

Figure 13.12: Idem to figure 13.11b, for DGSEM (of degree 5) in combination with various Riemann solvers (see
§2.8.2 for a brief description of each). I do not show neither exact nor Roe’s (with and without entropy fix) because
they are indistinguishable from HLLC. Consistent results can be obtained for other J, as well as FR/CPR and
DGIGA schemes (not shown). A dashed grid line separates wellresolved and underresolved regimes, in each
case.



14
Nonsmooth Solutions, Sensors and

Limiters
The aim of this chapter is to judge the extend to which each of the types of schemes under consideration
are able to deal with problems the exact solution of which contains discontinuities. My approach of doing
so has been to test several promising combinations of limiters, sensors and discretization bases in a
battery of test cases which I myself have selected from the literature. The hope is that, when analyzed
together, any conclusions extracted from their results will be reasonably representative of each studied
configuration.

This last set of numerical experiments is split into a total of 7 batches, each corresponding to a
separate section. In §14.1, I compare (for DGSEM only) the performance of the Legendrebased lim
iters introduced in §§8.4.3 and 8.5. The most successful of those is then coupled, in §14.2, with each
of the two sensors described in §8.3, and each combination is compared with the limiter used alone
(without any sensor). Section 14.3 focuses on the AFC/FCT limiter (applicable to DGIGAAFC only),
with and without sensors, and compares its results to those of the best hierarchical limiter applied to
DGIGA. These DGIGAAFC results are complemented with those of §14.4, which instead considers
IGAAFC. A final comparison (of sorts) between DGSEM, FR/CPR, DGIGA and DGIGAAFC bases
and their best limiter/sensor combinations is done in §14.5. Section 14.6 adds to the results of the
said final comparison by explicitly testing the influence of the balance between patches and breakpoint
spans (i.e. between DG and CG elements) in FCTlimited DGIGAAFC. Finally, §14.7 closes the chap
ter by exploring the relationship between high order discretizations and limiters. In it, first, I explicitly
test which of the limiters considered preserve the order of the discretization at smooth extrema (often
considered the most basic requirement of any successful limiting strategy in the literature); then, I use
an example to discuss whether that really matters in practice.

In all figures of this chapter, the left vertical axis represents either the scalar unknown of the advec
tion equation, or the density in the Euler case. Element and patch interfaces are indicated with minor
grid lines (when applicable). Its approximate solution is represented with solid lines, each color asso
ciated to a particular run of the current batch (see each figure’s legend). The right vertical axis, when
shown, corresponds to the instantaneous limiter activation ratio—denoted 𝑃limiter(𝑞)—which measures
how many, out of all degrees of freedom of quantity 𝑞 in an element/patch, have been limited1. This
quantity is meant to indicate where limiting is being applied at any given instant, and at what strength.
It is represented in the figures by a single point located at the centroid of each element/patch; each run
has a different marker type to make visualization possible.

A more representative measure of how much limiting has been applied overall is the mean limiter
activation ratio. I define it as:

𝑃limiter≔
1
𝑁

𝑁

∑
𝑛=1

I

∑
𝑖=1
𝑃(𝑛)limiter (𝑞𝑖) , (14.1)

1Note that with hierarchical and slope limiters the maximum number of limitable degrees of freedom per element/patch is J − 1
(the 1st Legendre coefficient, associated with the elementwise mean, is never modified); for these, therefore, 𝑃limiter < 1. For
AFC/FCT, since all J control values may be modified, 𝑃limiter ≤ 1.

203



204 14. Nonsmooth Solutions, Sensors and Limiters

where 𝑁 denotes the total number of times the limiter has been applied up to the measured instant
(usually once per timescheme stage). This quantity is displayed in all tables of this chapter, together
with the 𝐿1 norm of the error (when applicable), the total variation of the approximate solution component
(or its ratio with that of the exact solution, if available) and the wallclock time required for the run to
complete2. I define the 𝐿1 norm as:

‖𝑞(𝑡, 𝑥) − 𝑞ℎ(𝑡, 𝑥)‖1≔
∫𝛺 |𝑞(𝑡, 𝑥) − 𝑞ℎ(𝑡, 𝑥)| d𝑥

∫𝛺 d𝑥 . (14.2)

The integral in the numerator is approximated in the same manner as in (10.1).

14.1. Hierarchical limiters
Test matrix 14.1 summarizes the runs intended to reveal whether any one of the limiters of §8.5 is
clearly superior to the rest. These results include two baseline configurations: that of no limiter (which
results in oscillations due to the Gibbs phenomena) and that associated with the TVB slope limiter
(§8.4.3), used in its TVDM mode. On top of that, all runs are first failsafe limited as in §8.8.1, and
then as in §8.8.2. Note that the timestep size indicated in 14.1 is half of 𝛥𝑡max; this indicates that the
Courant number is fixed (and not the timestep size itself), at a value equal to 𝜍 = 𝜍max/2—i.e. half of
the maximum linearly stable Courant number for the basis in question, as predicted from linear stability
analysis (see chapter 11 and §A.4).

Results of runs 1 to 12, both qualitative and quantitative, show that Krivodonova’s limiter is superior
to the rest for the JiangShu problem (9.12), displaying a clear advantage at smooth extrema (I focus
on this particular aspect in §14.7). Also distinguished, but in the opposite sense, is the behavior of the
HWENO limiter (§8.6): it starts with subpar performance for the p = 2 discretization, and becomes
completely outclassed, even by the TVB limiter, when the degree is increased to p = 5. The other two
hierarchical limiters, BDF (§8.5.1) and BSB (§8.5.2), are tied in second place with the former seemingly
being superior near discontinuous features yet slightly inferior in smooth ones—which is interesting, as
that the latter is considered an improvement over the former in the literature.

The advantage of krivodonova’s limiter is not as clear in the rest of test cases. I attribute this to these
other problems having relatively short simulated time spans and not as rich solutions. Interestingly, the
unlimited case is able to resolve contact discontinuities much more sharply than any of the limiters, in
all test cases, and even more so the higher the degree. In fact, despite its spurious oscillations, the
unlimited approximate solution is more accurate in the 𝐿1 norm than any of the limited ones for the
JiangShu and Toro’s shock tube problems, for both J = 3 and J = 6.

Table 14.1: Comparing intercell limiters used in combination with DGSEM.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.2a (9.12) 4(10) 𝛥𝑡max/2 8 DGSEM 300 100 2   ∞  
2 TVB, M = 0 (§8.4) 
3 BDF (§8.5.1) 
4 BSB (§8.5.2) 
5 Krivodonova (§8.5.3) 
6 HWENO (§8.6) 
7 14.3a 600 5  
8 TVB, M = 0 
9 BDF 
10 BSB 
11 Krivodonova 
12 HWENO 
13 14.2b (9.13) 0.2 300 2  
14 TVB, M = 0 

(continues in the next page)

2I need to insist that these timings may not be representative at all of the actual computational cost associated with the schemes,
as my implementation has not been designed for performance. A slightly more rigorous (albeit still imperfect) cost estimation
is provided in §12.4 (see also appendix B).



14.2. Sensors 205

Table 14.1: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

15 BDF 
16 BSB 
17 Krivodonova 
18 HWENO 
19 14.3b 600 5  
20 TVB, M = 0 
21 BDF 
22 BSB 
23 Krivodonova 
24 HWENO 
25 14.2c (9.14) 0.15 300 2  
26 TVB, M = 0 
27 BDF 
28 BSB 
29 Krivodonova 
30 HWENO 
31 14.3c 600 5  
32 TVB, M = 0 
33 BDF 
34 BSB 
35 Krivodonova 
36 HWENO 
37 14.2d (9.15) 0.038 600 200 2  
38 TVB, M = 0 
39 BDF 
40 BSB 
41 Krivodonova 
42 HWENO 
43 14.3d 1200 5  
44 TVB, M = 0 
45 BDF 
46 BSB 
47 Krivodonova 
48 HWENO 

14.2. Sensors
Having established Krivodonova’s limiter to be the best among those tested, this next batch is aimed
at doing the same for the two sensors under consideration. To do so, I try each of them in combination
with the aforementioned limiter, for the same set of test cases. The unlimited case is repeated from
§14.1.

This time, however, the comparison remains inconclusive: no sensor is consistently better than the
other, nor than using none at all. Therefore, I include both sensors in the comparisons of §§14.3 and
14.5. Purely from an activation perspective (see table 14.9), both sensors are able to reduce the limiter
usage (with KXRCF being very effective for p = 2, but seemingly conceding its advantage to APTVD
for p = 5). Nevertheless, the actual improvement that this has on accuracy is barely noticeable.

That being said, results in §14.5 do seem to reveal KXRCF as the superior choice, in terms of
precise location of discontinuities (although any improvement on accuracy remains minimal), for the
ShuOsher test case at least (which has not been part of the current batch).

Table 14.2: Comparing sensors, against each other and none at all, for DGSEM.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.4a (9.12) 4(10) 𝛥𝑡max/2 8 DGSEM 300 100 2   ∞ Krivodonova 
2 KXRCF (§8.3.1)
3 APTVD (§8.3.2)

(continues in the next page)



206 14. Nonsmooth Solutions, Sensors and Limiters

Table 14.2: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

4 14.5a 600 5 
5 KXRCF
6 APTVD
7 14.4b (9.13) 0.2 300 2 
8 KXRCF
9 APTVD
10 14.5b 600 5 
11 KXRCF
12 APTVD
13 14.4c (9.14) 0.15 300 2 
14 KXRCF
15 APTVD
16 14.5c 600 5 
17 KXRCF
18 APTVD
19 14.4d (9.15) 0.038 600 200 2 
20 KXRCF
21 APTVD
22 14.5d 1200 5 
23 KXRCF
24 APTVD

14.3. DGIGAAFC
Next is the turn of the AFC/FCT limiting approach. I consider, in this section, the optimal DGIGA
bases of 3 and 6 basis functions per patch (see §12.1) and compare the results of using no limiter,
Krivodonova’s limiter, and the FCT limiter (with each sensor as well as with none). All runs employ a
modal treatment of DGIGA (6.14). Also, all runs use the hierarchical failsafe limiters (as in previous
batches) but FCT ones additionally employ the FCT failsafe (§8.8.4); moreover, the latter apply the hi
erarchical failsafe on control values and both after every step (i.e. on the predictor) and stage (i.e. after
the FCT correction).

There are two observations to be made about these batch’s results. First, DGIGAAFC with FCT
limiting is very clearly outclassed by DGIGA coupled with Krivodonova’s sensor in terms of how diffused
its numerical solution ends up. This is most striking in the JiangShu problem (the initial condition is no
longer recognizable after crossing the domain 4 times), but is also present in the rest of test cases in
the form of a less sharp capture of discontinuities and kinks. A possible explanation for this excessive
diffusion might be found in the relatively large jumps that can be seen to exist across patch interfaces
in all AFC runs (recall that the only mechanism capable of introducing numerical diffusion in DG is the
Riemann solver used at every element or patch interface [120]).

And second: unlimited DGIGA experiences what appears to be a very strong entropy shock in the
expansion region at the left of Toro’s shock tube. This was not present in any of the unlimited DGSEM
cases; its cause must associated with some particularity of the Bspline basis itself. Note that this
occurs even in the J = 3 run, for which DGIGA reduces to 3rd order, Bernstein polynomialbased, DG.
I am inclined to believe that this is another symptom of the same underlying issue that caused the
unexplained stability issues in the Burgers equation, in §10.4. Furthermore, notice how the position of
the rightmost shock in the numerical solution of runs 36 and 37 is clearly biased to the left. I am not
able to provide an explanation for this either; perhaps it is yet another manifestation of the previously
mentioned issue.

Table 14.3: Comparing AFC against the best intercell limiter, for DGIGA.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.6a (9.12) 4(10) 𝛥𝑡max/2 8 DGIGA 300 100 2  1 ∞  
2 Krivodonova
3 DGIGAAFC FCT (§8.7.2)

(continues in the next page)



14.4. IGAAFC 207

Table 14.3: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

4 KXRCF
5 APTVD
6 14.7a DGIGA 600 3 2 1  
7 Krivodonova
8 DGIGAAFC FCT
9 KXRCF
10 APTVD
11 14.6b (9.13) 0.2 DGIGA 300 2 1 ∞  
12 Krivodonova
13 DGIGAAFC FCT
14 KXRCF
15 APTVD
16 14.7b DGIGA 600 3 2 1  
17 Krivodonova
18 DGIGAAFC FCT
19 KXRCF
20 APTVD
21 14.6c (9.14) 0.15 DGIGA 300 2 1 ∞  
22 Krivodonova
23 DGIGAAFC (6.36) FCT
24 KXRCF
25 APTVD
26 14.7c DGIGA 600 3 2 1  
27 Krivodonova
28 DGIGAAFC (6.36) FCT
29 KXRCF
30 APTVD
31 14.6d (9.15) 0.038 DGIGA 600 200 2 1 ∞  
32 Krivodonova
33 DGIGAAFC FCT
34 KXRCF
35 APTVD
36 14.7d DGIGA 1200 3 2 1  
37 Krivodonova
38 DGIGAAFC FCT
39 KXRCF
40 APTVD

14.4. IGAAFC
In §14.3, AFC limiting turned out to be subpar due to its very high numerical diffusion. I attribute this
excess of diffusion to the relatively large differences between Riemann problem left and right states. If
that is indeed the case, one would expect a reduction of said diffusion the lower the number of patches
employed. To confirm this, I now test IGAAFC at all degrees and smoothnesses up to p = 3. Note
in test matrix 14.4 that some runs employ nodal DGIGA; this is because the modal treatment in them
is unfeasible, due to either conditioning issues (see figure 14.1) and/or the presence of invalid control
point values (in the sense of figure 8.5a). This is the only option to help stabilize them, as IGA is
incompatible with intercell failsafe limiting (the entire mesh is one cell), so none of these runs can use
it. FCT failsafe is still employed.

Comparison between figures 14.8a and 14.6a (and associated tables) confirms that IGAAFC is not
as diffusive as DGIGAAFC for a given total number of degrees of freedom, at least in the case of the
latter using a single breakpoint span (i.e. opposite extremes) and p = 2. For this test case, the most
accurate basis is that of run 3 (piecewise polynomials of degree 2, joined at breakpoints in 𝐶1 fashion;
modal treatment). In the rest of test cases the difference is less clear, but this can be attributed to
their exact solutions being simpler. An interesting deviation is that of run 11 (degree 3, smoothness 𝐶1,
modal treatment); in it, the contact discontinuity in Toro’s shock tube is markedly more sharply resolved
than all other bases. This suggests that the optimal ratio between degree and smoothness in terms of
discontinuous features might not be at either extreme (neither 𝐶0 nor 𝐶p−1). I do not pursue this line of



208 14. Nonsmooth Solutions, Sensors and Limiters

research further in the present work.

Table 14.4: Attempting IGAAFC, the extreme case of DGIGA with a single patch.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.8a (9.12) 4(10) 10−2 8 DGIGAAFC 300 1 1  299 0 FCT 
2 301 2 150
3 300 298 1
4 301 3 100 0
5 300 149 1
6 (nodal) 297 2
7 14.8b (9.13) 10−3 0.2 (modal) 1 299 0
8 301 2 150
9 300 298 1
10 301 3 100 0
11 300 149 1
12 (nodal) 297 2
13 14.8c (9.14) 0.15 (modal; 6.36) 1 299 0
14 301 2 150
15 300 298 1
16 301 3 100 0
17 300 149 1
18 (nodal; 6.36) 297 2
19 14.8d (9.15) 10−4 0.038 (nodal; 6.34) 600 1 599 0
20 601 2 300
21 600 598 1
22 601 3 200 0
23 600 299 1
24 597 2

0 1 2 3 4
100

101

102

𝜘

co
n
d
(𝑵
(𝝃
⊺ ))

p = 1
p = 2
p = 3
p = 4
p = 5

(a) 2 breakpoint spans

0 1 2 3 4
101

106

1011

1016

1021

𝜘

co
n
d
(𝑵
(𝝃
⊺ ))

p = 1
p = 2
p = 3
p = 4
p = 5

(b) 200 breakpoint spans

Figure 14.1: Condition number of the control Vandermonde matrix (6.13) of an IGA patch of smoothness 𝐶𝜘,
for increasing degrees. When the number of breakpoint spans is large, the modal treatment (6.14) becomes
unfeasible for 𝜘 > 1. The nodal formulation (6.15), which does not use this matrix, is unaffected.

14.5. Final comparison
The ShuOsher problem is a very interesting test case from a practical point of view, as it combines the
resolution requirements of e.g. the JiangShu problemwith the presence of discontinuities and nonlinear
physics. In it, an ideal method would resolve the smooth features accurately, while capturing the shock
sharply yet without spurious oscillations. This section continues with the direct comparison between



14.5. Final comparison 209

the two optimal bases (FR and DGIGA) and DGSEM (see chapters 12 and 13), now incorporating the
usage of limiters and sensors. As indicated in test matrix 14.5, all runs use the same total number of
degrees of freedom.

Except for run 35, results of each of the three bases limited via Krivodonova’s scheme essentially
coincide for a given J and sensor. The deviation of run 35 is due to the action of the intercell failsafe.
This suggests that limiting destroys all of the inherent advantage in terms of lowered dispersion and
dissipation errors studied in chapter 12. I insist on this issue in section 14.7.

The FCT limiter, applied to DGIGAAFC, remains clearly inferior to the hierarchical one for J = 3, 6.
For J = 20 the situation reverses, but only because all four discretizations turn out to be exceedingly
inaccurate. Note how the higher J, the more diffused the approximate solution becomes at the left of the
shock. This is because, having fixed Ndofs, a higher J implies fewer yet larger patches. Once the shock
reaches a given element/patch, it forces the limiter to reduce the order of the approximation locally.
Inevitably, then, any information associated with the higher modes is lost; the element size becomes
the dominant factor influencing accuracy.

Interestingly, the KXRCF sensor happens to be very effective with respect to both APTVD and
the control case for all J = 3 and J = 6 runs, targeting only those elements actually near to the highest
gradients in the approximate solution and reducing 𝑃limiter(𝑞1) and 𝑃limiter very significantly. This breaks
the ambiguity of the results of section 14.2, bringing me to lean in favor of KXRCF. In fact, it turns out
to be cheaper to use this sensor than to use no sensor at all (this can be seen in table 14.12). This
is evidence that the overhead of sensing can be compensated by the consequently reduced number
of times that the limiter needs to be applied. Notice as well that both sensors are able to reduce the
large jumps across patches in the DGIGAAFC discretization. In the region left of the shock, however,
neither of the sensors is able to impact accuracy significantly. Finally, it might be worth highlighting that
AFC, despite being very diffusive regardless, does manage to explicitly target only the region around
the shock, even for J = 20, suggesting the possibility of using it as a (subcell) sensor instead.

Table 14.5: Comparing optimal vs. baseline DG bases, for J = 3, 6, 20.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.9a (9.16) 4(10) 𝛥𝑡max/2 1.8 DGSEM 1200 400 2   ∞ Krivodonova 
2 FR/CPR 0.023
3 DGIGA 
4 DGIGAAFC FCT
5 14.9b DGSEM Krivodonova KXRCF
6 FR/CPR 0.023
7 DGIGA 
8 DGIGAAFC FCT
9 14.9c DGSEM Krivodonova APTVD
10 FR/CPR 0.023
11 DGIGA 
12 DGIGAAFC FCT
13 14.10a DGSEM 200 5  ∞ Krivodonova 
14 FR/CPR 0.058
15 DGIGA 3  2 1
16 DGIGAAFC FCT
17 14.10b DGSEM 5  ∞ Krivodonova KXRCF
18 FR/CPR 0.058
19 DGIGA 3  2 1
20 DGIGAAFC FCT
21 14.10c DGSEM 5  ∞ Krivodonova APTVD
22 FR/CPR 0.058
23 DGIGA 3  2 1
24 DGIGAAFC FCT
25 14.11a DGSEM 60 19 ∞ Krivodonova 
26 FR/CPR 0.152
27 DGIGA 14  2 9
28 DGIGAAFC FCT
29 14.11b DGSEM 19  ∞ Krivodonova KXRCF

(continues in the next page)



210 14. Nonsmooth Solutions, Sensors and Limiters

Table 14.5: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

30 FR/CPR 0.152
31 DGIGA 14  2 9
32 DGIGAAFC FCT
33 14.11c DGSEM 19  ∞ Krivodonova APTVD
34 FR/CPR 0.152
35 DGIGA 14  2 9
36 DGIGAAFC FCT

14.6. DGIGAAFC revisited
In light of the observation made in §§14.3 and 14.5, consider this: could there be an optimum number
of patches for which DGIGAAFC with FCT limiting becomes competitive with the hierarchical limiter? I
aim to test this hypothesis for the ShuOsher test case, as I consider it the most representative of a flow
of engineering interest, via test matrix 14.6. None of these runs apply either of the intercell failsafe
limiters; as a consequence, run 6 (which turns out to incur in invalid control values) fails.

Figure 14.12 reveals that for a fixed degree, smoothness and total number of degrees of freedom,
the more DGIGAAFC patches, the more diffusion (regardless of any sensor being used or not). More
over, comparison between it and figure 14.9 shows that even IGAAFC remains inferior to DGIGA
coupled with krivodonova’s limiter. This was the last opportunity for AFC/FCT to prove itself competi
tive when applied in a DG context; in the form I have proposed to use it at least (§8.7.2), AFC is not a
good alternative to Krivodonova’s limiter for Bspline based DG.

Table 14.6: Isolating the effect of the number of patches in FCTlimited DGIGAAFC.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.12a (9.16) 4(10) 10−3 1.8 DGIGAAFC 1200 1 2  1198 1 FCT 
2 10 118
3 100 10
4 200 4
5 400 1 ∞
6 14.12b (crashes) 10 118 1 KXRCF
7 1.8 100 10
8 200 4
9 400 1 ∞
10 14.12c 10 118 1 APTVD
11 100 10
12 200 4
13 400 1 ∞

14.7. Do limiters preserve high order?
In §14.5, I touched upon the fact that higher order may not lead to higher accuracy when limiters
are involved. With this final batch of experiments, I aim to verify experimentally whether said order
is preserved by Krivodonova’s and AFC/FCT limiters. I shall do so first in the linear case and for a
smooth solution (which is the situation most often assumed when addressing this issue in the literature),
and then in the ShuOsher problem—this time for a fixed number of patches, i.e. the most favorable
condition. Runs that use the TVD limiter, known to not preserve it, are also included for comparison
purposes.

Data from table 14.14 confirms that Krivodonova’s limiter preserves accuracy at smooth extrema,
and is consistent with [69]. This happens both for DGSEM and DGIGA bases, which give practically
indistinguishable results in this category. The FCT limiter, however, clearly does not. With IGAAFC,
the discretization seems to maintain second order accuracy regardless of the Bspline degree; this
is similar to the TVB limiter (when used in TVDM fashion), both according to these results and the
literature [26]. With DGIGAAFC, tested here in the most diffusive case (single breakpoint span per
patch), this effect is even more pronounced: accuracy degrades to, at best, first order. This explains



14.7. Do limiters preserve high order? 211

why most DGIGAAFC results in this chapter were much less accurate than their respective intercell
limited counterparts.

The question remains of whether a highorder preserving limiter facilitates that a DG discretization
will approximate a solution combining underresolved and discontinuous features more accurately the
higher its number of basis functions per element/patch. Results shown in figure 14.13 indicate that this
is actually not the case: Krivodonova’s limiter fails to facilitate an accuracy improvement in the Shu
Osher test problem when refining in p only, even if the number of elements/patches is kept constant
(the most generous situation possible—compare it with that of batch 14.12, in which the total number
of degrees of freedom was maintained instead). As a matter of fact, they suggest that the TVB limiter
can be about as accurate if coupled with an effective sensor. And yet, DGIGAAFC with FCT limiting is
still very much worse than either—while IGAAFC should perform better, recall that higher that second
degree discretizations are generally unfeasible due to conditioning issues (see §14.4).

All in all, these results are consistent with the idea that high order preservation at smooth extrema
is necessary but not sufficient to maintain high order in practice. I will go even further; as I see it, the
missing ingredient is hrefinement: via hpadaptation (to solution gradients), it should in principle be
possible to reduce the discretization all the way to first order locally (this ensures a monotone capture
of the shock) at the same time that accuracy is maintained by concentrating more elements around
the discontinuity. This view is already taking shape in the literature, an example being the limiter by
Dumbser and Loubère [30]. Unfortunately, the much increased complexity of such an approach has
forced me to leave it out of the scope of the present work.

Table 14.7: Checking whether the three main limiters considered preserve accuracy.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.14a (table) (9.7) 4(10) 𝛥𝑡max/2 8 DGIGA 48 24 1  1 ∞ TVB, 𝑀 = 0 
2 72 36
3 96 48
4 14.14b (table) 48 16 2
5 72 24
6 96 32
7 14.14c (table) 48 12 3
8 72 18
9 96 24
10 14.14d (table) 48 24 1 Krivodonova
11 72 36
12 96 48
13 14.14e (table) 48 16 2
14 72 24
15 96 32
16 14.14f (table) 48 12 3
17 72 18
18 96 24
19 14.14g (table) DGIGAAFC 48 24 1 FCT
20 72 36
21 96 48
22 14.14h (table) 48 16 2
23 72 24
24 96 32
25 14.14i (table) 48 12 3
26 72 18
27 96 24
28 14.14j (table) DGSEM 48 24 1 Krivodonova
29 72 36
30 96 48
31 14.14k (table) 48 16 2
32 72 24
33 96 32
34 14.14l (table) 48 12 3
35 72 18

(continues in the next page)



212 14. Nonsmooth Solutions, Sensors and Limiters

Table 14.7: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

36 96 24
37 14.14m (table) DGIGAAFC 48 1 1 47 0 FCT
38 72 71
39 96 95
40 14.14n (table) 48 2 46 1
41 72 70
42 96 94
43 14.14o (table) 48 3 45 2
44 72 69
45 96 93
46 14.13a (9.16) 1.8 DGIGA 600 300 1 1 ∞ TVB, 𝑀 = 0 KXRCF
47 900 2
48 1200 3
49 14.13b 600 1 Krivodonova
50 900 2
51 1200 3
52 14.13c DGIGAAFC 600 1 FCT
53 900 2
54 1200 3



14.7. Do limiters preserve high order? 213

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.5

1

𝑃 lim
ite
r(𝑞

1)

Exact solution No limiter TVB BDF BSB Kriv. HWENO

𝑥

𝑞 1

(a) JiangShu problem (runs 1 to 6); see also table 14.8a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) Toro’s transonic shock tube (runs 13 to 18); see also table 14.8c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(c) The 123 problem (runs 25 to 30); see also table 14.8e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(d) Blast wave interaction (runs 37 to 42); see also table 14.8g

Figure 14.2: Solution and instantaneous limiter activation for all p = 2 runs in table 14.1.



214 14. Nonsmooth Solutions, Sensors and Limiters

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite
r(𝑞

1)

Exact solution No limiter TVB BDF BSB Kriv. HWENO

𝑥

𝑞 1

(a) JiangShu problem, (runs 7 to 12); see also table 14.8b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) Toro’s transonic shock tube (runs 19 to 24); see also table 14.8d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(c) The 123 problem (runs 31 to 36); see also table 14.8f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(d) Blast wave interaction (runs 43 to 48); see also table 14.8h

Figure 14.3: Idem, for all p = 5 runs in table 14.1.



14.7. Do limiters preserve high order? 215

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.5

1

𝑃 lim
ite
r(𝑞

1)

Exact solution No sensor KXRCF APTVD

𝑥

𝑞 1

(a) JiangShu problem (runs 1 to 3); see also table 14.9a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) Toro’s transonic shock tube (runs 7 to 9); see also table 14.9c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(c) The 123 problem (runs 13 to 15); see also table 14.9e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(d) Blast wave interaction (runs 19 to 21); see also table 14.9g

Figure 14.4: Solution and instantaneous limiter activation for all p = 2 runs in table 14.2.



216 14. Nonsmooth Solutions, Sensors and Limiters

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite
r(𝑞

1)

Exact solution No sensor KXRCF APTVD

𝑥

𝑞 1

(a) JiangShu problem, (runs 4 to 6); see also table 14.9b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) Toro’s transonic shock tube (runs 10 to 12); see also table 14.9d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(c) The 123 problem (runs 16 to 18); see also table 14.9f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(d) Blast wave interaction (runs 22 to 24); see also table 14.9h

Figure 14.5: Idem, for all p = 5 runs in table 14.2.



14.7. Do limiters preserve high order? 217

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

Exact solution No limiter Kriv. FCT KXRCF + FCT APTVD + FCT

𝑥

𝑞 1

(a) JiangShu problem (runs 1 to 3); see also table 14.10a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) Toro’s transonic shock tube (runs 7 to 9); see also table 14.10c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(c) The 123 problem (runs 13 to 15); see also table 14.10e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(d) Blast wave interaction (runs 19 to 21); see also table 14.10g

Figure 14.6: Solution and instantaneous limiter activation for all J = 3 runs in table 14.3.



218 14. Nonsmooth Solutions, Sensors and Limiters

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

Exact solution No limiter Kriv. FCT KXRCF + FCT APTVD + FCT

𝑥

𝑞 1

(a) JiangShu problem, (runs 4 to 6); see also table 14.10b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) Toro’s transonic shock tube (runs 10 to 12); see also table 14.10d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(c) The 123 problem (runs 16 to 18); see also table 14.10f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(d) Blast wave interaction (runs 22 to 24); see also table 14.10h

Figure 14.7: Idem, for all J = 6 runs in table 14.3.



14.7. Do limiters preserve high order? 219

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

𝑥

𝑞 1
Exact solution p = 1, 𝐶0 p = 2, 𝐶0 p = 2, 𝐶1 p = 3, 𝐶0 p = 3, 𝐶1 p = 3, 𝐶2

(a) JiangShu problem (runs 1 to 6); see also table 14.11a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

𝑥

𝑞 1

(b) Toro’s transonic shock tube (runs 7 to 12); see also table 14.11b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

𝑥

𝑞 1

(c) The 123 problem (runs 13 to 18); see also table 14.11c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

𝑥

𝑞 1

(d) Blast wave interaction (runs 19 to 24); see also table 14.11d

Figure 14.8: Solution of all the runs in table 14.4; these correspond to IGAAFC, i.e. singlepatch DGIGA limited
via AFC. The total (meshwide) number of degrees of freedom is the same as in figures 14.2, 14.4 and 14.6.



220 14. Nonsmooth Solutions, Sensors and Limiters

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.5

1

𝑃 lim
ite
r(𝑞

1)

Reference solution DGSEM FR DGIGA DGIGAAFC

𝑥

𝑞 1

(a) No sensor (runs 1 to 4); see also table 14.12a

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) KXRCF sensor (runs 5 to 8); see also table 14.12b

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.5

1
𝑃 lim

ite
r(𝑞

1)

𝑥

𝑞 1

(c) APTVD sensor (runs 9 to 12); see also table 14.12c

Figure 14.9: Solution and instantaneous limiter activation for all J = 3 runs in table 14.5.



14.7. Do limiters preserve high order? 221

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite
r(𝑞

1)

Reference solution DGSEM FR DGIGA DGIGAAFC

𝑥

𝑞 1

(a) No sensor (runs 13 to 16); see also table 14.12d

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) KXRCF sensor (runs 17 to 20); see also table 14.12e

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(c) APTVD sensor (runs 21 to 24); see also table 14.12f

Figure 14.10: Idem, for all J = 6 runs in table 14.5.



222 14. Nonsmooth Solutions, Sensors and Limiters

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite
r(𝑞

1)

Reference solution DGSEM FR DGIGA DGIGAAFC

𝑥

𝑞 1

(a) No sensor (runs 25 to 28); see also table 14.12g

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) KXRCF sensor (runs 29 to 32); see also table 14.12h

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1
𝑃 lim

ite
r(𝑞

1)

𝑥

𝑞 1

(c) APTVD sensor (runs 33 to 36); see also table 14.12i

Figure 14.11: Idem, for all J = 20 runs in table 14.5.



14.7. Do limiters preserve high order? 223

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

𝑥

𝑞 1
Reference solution K = 1 K = 10 K = 100 K = 200 K = 400

(a) No sensor (runs 1 to 5); see also table 14.13a

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

𝑥

𝑞 1

(b) KXRCF sensor (runs 6 to 9); see also table 14.13b

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

𝑥

𝑞 1

(c) APTVD sensor (runs 10 to 13); see also table 14.13c

Figure 14.12: Solution for all runs in table 14.6.



224 14. Nonsmooth Solutions, Sensors and Limiters

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.25

0.5

0.75

1

𝑃 lim
ite

r(𝑞
1)

Reference solution p = 1 p = 2 p = 3

𝑥

𝑞 1

(a) TVB limiter + KXRCF sensor (runs 46 to 48); see also table 14.15a

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.25

0.5

0.75

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) Krivodonova’s limiter + KXRCF sensor (runs 49 to 51); see also table 14.15b

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.25

0.5

0.75

1
𝑃 lim

ite
r(𝑞

1)

𝑥

𝑞 1

(c) AFC/FCT limiter + KXRCF sensor (runs 52 to 54); see also table 14.15c

Figure 14.13: Solution and instantaneous limiter activation for all runs in table 14.5.



14.7. Do limiters preserve high order? 225

Table 14.8: Additional quantitative comparison among the various limiters (test matrix 14.1).

(a) JiangShu problem, p = 2 (figure 14.2a)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.6 ⋅ 10−2 1.118 0.0 108
TVB 8.5 ⋅ 10−2 0.707 39.8 207
BDF 5.6 ⋅ 10−2 0.830 25.4 211
BSB 6.6 ⋅ 10−2 0.768 19.2 214
Kriv. 3.4 ⋅ 10−2 0.941 10.5 199

HWENO 9.0 ⋅ 10−2 0.801 64.2 200

(b) JiangShu problem, p = 5 (figure 14.3a)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 6.7 ⋅ 10−3 1.188 0.0 289
TVB 8.8 ⋅ 10−2 0.676 35.0 570
BDF 5.6 ⋅ 10−2 0.829 44.9 625
BSB 5.7 ⋅ 10−2 0.824 46.2 639
Kriv. 2.2 ⋅ 10−2 0.973 36.3 637

HWENO 2.1 ⋅ 10−1 0.491 80.8 641

(c) Toro’s transonic shock tube, p = 2 (figure 14.2b)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 3.6 ⋅ 10−3 1.866 0.0 48
TVB 4.0 ⋅ 10−3 1.042 26.0 65
BDF 3.7 ⋅ 10−3 1.023 25.5 63
BSB 3.7 ⋅ 10−3 1.027 21.2 61
Kriv. 3.6 ⋅ 10−3 1.109 20.0 62

HWENO 7.2 ⋅ 10−3 1.055 34.0 61

(d) Toro’s transonic shock tube, p = 5 (figure 14.3b)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.9 ⋅ 10−3 2.654 0.0 133
TVB 4.0 ⋅ 10−3 1.041 30.9 180
BDF 3.7 ⋅ 10−3 1.025 33.4 176
BSB 3.8 ⋅ 10−3 1.024 32.2 178
Kriv. 3.4 ⋅ 10−3 1.060 30.7 176

HWENO 8.5 ⋅ 10−3 1.169 40.4 174

(e) The 123 problem, p = 2 (figure 14.2c)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.3 ⋅ 10−2 1.035 0.0 33
TVB 6.2 ⋅ 10−3 1.019 29.2 48
BDF 5.7 ⋅ 10−3 1.006 34.3 45
BSB 5.9 ⋅ 10−3 1.006 25.0 44
Kriv. 5.8 ⋅ 10−3 1.008 18.5 44

HWENO 9.3 ⋅ 10−3 1.007 43.3 46

(f) The 123 problem, p = 5 (figure 14.3c)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.1 ⋅ 10−2 1.039 0.0 93
TVB 6.2 ⋅ 10−3 1.019 34.8 130
BDF 5.4 ⋅ 10−3 1.007 45.5 140
BSB 5.5 ⋅ 10−3 1.007 41.3 139
Kriv. 6.2 ⋅ 10−3 1.005 30.6 140

HWENO 1.4 ⋅ 10−2 1.099 57.0 141

(g) Blast wave interaction, p = 2 (figure 14.2d)

Limiter TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

− 23.06 0.0 545
TVB 12.41 34.9 678
BDF 12.50 24.4 683
BSB 12.58 24.7 660
Kriv. 13.19 19.6 675

HWENO 10.26 48.8 650

(h) Blast wave interaction, p = 5 (figure 14.3d)

Limiter TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

− 33.39 0.0 1,153
TVB 12.31 42.5 1,767
BDF 12.21 45.9 1,687
BSB 12.66 44.1 1,869
Kriv. 13.31 38.8 1,590

HWENO 12.48 60.5 1,428



226 14. Nonsmooth Solutions, Sensors and Limiters

Table 14.9: Additional quantitative comparison among the various DGSEM sensors (test matrix 14.2).

(a) JiangShu problem, p = 2 (figure 14.4a)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 3.4 ⋅ 10−2 0.941 10.5 176
KXRCF 3.3 ⋅ 10−2 0.954 7.3 198
APTVD 3.4 ⋅ 10−2 0.939 10.6 210

(b) JiangShu problem, p = 5 (figure 14.5a)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.2 ⋅ 10−2 0.973 36.3 505
KXRCF 2.2 ⋅ 10−2 0.979 36.2 643
APTVD 2.0 ⋅ 10−2 0.977 4.9 619

(c) Toro’s transonic shock tube, p = 2 (figure 14.4b)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 3.6 ⋅ 10−3 1.109 20.0 51
KXRCF 3.5 ⋅ 10−3 1.065 6.5 45
APTVD 3.6 ⋅ 10−3 1.057 13.9 59

(d) Toro’s transonic shock tube, p = 5 (figure 14.5b)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 3.4 ⋅ 10−3 1.060 30.7 147
KXRCF 3.5 ⋅ 10−3 1.055 23.7 132
APTVD 3.5 ⋅ 10−3 1.100 17.7 160

(e) The 123 problem, p = 2 (figure 14.4c)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 5.8 ⋅ 10−3 1.008 18.5 38
KXRCF 7.8 ⋅ 10−3 1.011 7.0 35
APTVD 5.9 ⋅ 10−3 1.007 7.4 41

(f) The 123 problem, p = 5 (figure 14.5c)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 6.2 ⋅ 10−3 1.005 30.6 110
KXRCF 6.1 ⋅ 10−3 1.009 29.7 112
APTVD 6.7 ⋅ 10−3 1.004 11.0 117

(g) Blast wave interaction, p = 2 (figure 14.4d)

Sensor TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

− 13.19 19.6 562
KXRCF 12.95 6.2 495
APTVD 13.13 13.1 608

(h) Blast wave interaction, p = 5 (figure 14.5d)

Sensor TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

− 13.31 38.8 1,447
KXRCF 13.30 34.3 1,479
APTVD 13.25 19.0 1,673



14.7. Do limiters preserve high order? 227

Table 14.10: Quantitative comparison between limiters for DGIGA, with and without sensors (test matrix 14.3).

(a) JiangShu problem, J = 3 (figure 14.6a)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.6 ⋅ 10−2 1.118 0.0 109
Kriv. 3.4 ⋅ 10−2 0.939 10.6 912
FCT 2.9 ⋅ 10−1 0.160 9.7 383

KXRCF 2.9 ⋅ 10−1 0.161 6.8 398
APTVD 2.9 ⋅ 10−1 0.161 0.3 452

(b) JiangShu problem, J = 6 (figure 14.7a)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 7.1 ⋅ 10−3 1.247 0.0 237
Kriv. 2.4 ⋅ 10−2 0.965 35.5 3,287
FCT 2.1 ⋅ 10−1 0.461 8.0 1,858

KXRCF 2.1 ⋅ 10−1 0.461 8.0 1,819
APTVD 2.1 ⋅ 10−1 0.467 1.4 1,921

(c) Toro’s transonic shock tube, J = 3 (figure 14.6b)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.6 ⋅ 10−2 2.123 0.0 48
Kriv. 3.8 ⋅ 10−3 1.048 21.5 155
FCT 7.5 ⋅ 10−3 1.056 6.3 138

KXRCF 7.5 ⋅ 10−3 1.057 5.4 122
APTVD 7.4 ⋅ 10−3 1.079 3.4 130

(d) Toro’s transonic shock tube, J = 6 (figure 14.7b)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.9 ⋅ 10−2 3.641 0.0 96
Kriv. 3.3 ⋅ 10−3 1.076 30.0 513
FCT 5.1 ⋅ 10−3 1.138 4.6 627

KXRCF 5.1 ⋅ 10−3 1.138 4.6 604
APTVD 5.1 ⋅ 10−3 1.148 4.5 635

(e) The 123 problem, J = 3 (figure 14.6c)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.2 ⋅ 10−2 1.046 0.0 36
Kriv. 5.4 ⋅ 10−3 1.008 20.0 119
FCT 1.7 ⋅ 10−2 1.120 1.9 98

KXRCF 1.8 ⋅ 10−2 1.121 2.0 83
APTVD 1.7 ⋅ 10−2 1.120 1.8 89

(f) The 123 problem, J = 6 (figure 14.7c)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.1 ⋅ 10−2 1.035 0.0 79
Kriv. 6.1 ⋅ 10−3 1.005 34.1 394
FCT 9.2 ⋅ 10−3 1.146 0.9 348

KXRCF 1.3 ⋅ 10−2 1.147 1.4 319
APTVD 9.2 ⋅ 10−3 1.146 0.8 329

(g) Blast wave interaction, J = 3 (figure 14.6d)

Limiter/
sensor TV (𝑞ℎ1 ) 𝑃limiter

(%)
Elapsed
time (s)

− 24.26 0.0 566
Kriv. 12.90 21.9 1,681
FCT 12.07 7.5 1,531

KXRCF 12.07 5.7 1,469
APTVD 12.21 4.7 1,514

(h) Blast wave interaction, J = 6 (figure 14.7d)

Limiter/
sensor TV (𝑞ℎ1 ) 𝑃limiter

(%)
Elapsed
time (s)

− 23.02 0.0 1,219
Kriv. 13.06 38.3 4,851
FCT 15.34 6.0 5,972

KXRCF 15.38 5.8 5,681
APTVD 15.42 5.3 5,240



228 14. Nonsmooth Solutions, Sensors and Limiters

Table 14.11: Quantitative results for the IGAAFC runs of test matrix 14.4.

(a) JiangShu problem (figure 14.8a)

Degree Smoothness class ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

1 𝐶0 1.0 ⋅ 10−1 0.655 60.8 161
2 𝐶0 1.1 ⋅ 10−1 0.652 56.2 218
2 𝐶1 9.0 ⋅ 10−2 0.716 44.4 524
3 𝐶0 1.3 ⋅ 10−1 0.605 53.6 301
3 𝐶1 1.1 ⋅ 10−1 0.668 48.5 359
3 𝐶2 9.9 ⋅ 10−2 0.694 44.1 595

(b) Toro’s transonic shock tube (figure 14.8b)

Degree Smoothness class ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

1 𝐶0 6.9 ⋅ 10−3 1.001 4.8 130
2 𝐶0 6.4 ⋅ 10−3 1.032 5.0 194
2 𝐶1 5.5 ⋅ 10−3 1.001 6.5 394
3 𝐶0 6.9 ⋅ 10−3 1.014 6.6 252
3 𝐶1 4.5 ⋅ 10−3 1.010 5.6 273
3 𝐶2 6.5 ⋅ 10−3 1.000 7.0 452

(c) The 123 problem (figure 14.8c)

Degree Smoothness class ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

1 𝐶0 4.1 ⋅ 10−3 0.999 1.4 71
2 𝐶0 5.9 ⋅ 10−3 0.994 2.6 103
2 𝐶1 5.1 ⋅ 10−3 0.996 2.0 138
3 𝐶0 6.8 ⋅ 10−3 0.992 3.2 106
3 𝐶1 5.7 ⋅ 10−3 0.995 2.3 122
3 𝐶2 5.1 ⋅ 10−3 0.998 1.9 145

(d) Blast wave interaction (figure 14.8d)

Degree Smoothness class TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

1 𝐶0 12.09 11.5 644
2 𝐶0 11.88 13.6 1,031
2 𝐶1 13.17 11.6 1,425
3 𝐶0 11.59 16.5 1,376
3 𝐶1 12.32 13.2 1,014
3 𝐶2 12.60 12.0 1,130



14.7. Do limiters preserve high order? 229

Table 14.12: Quantitative comparison between basis types, with compatible limiters and sensors (test matrix 14.5).

(a) No sensor, J = 3 (figure 14.9a)

Basis TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

DGSEM 18.99 10.6 0.4
FR/CPR 18.98 10.3 0.4
DGIGA 18.80 9.6 1

DGIGAAFC 10.19 1.5 0.9

(b) KXRCF, J = 3 (figure 14.9b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

19.74 0.8 0.3
20.02 0.8 0.3
19.63 0.8 0.5
10.31 1.0 0.8

(c) APTVD, J = 3 (figure 14.9c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

19.64 6.1 0.4
19.84 5.9 0.4
19.64 5.6 1.4
10.27 0.9 1

(d) No sensor, J = 6 (figure 14.10a)

Basis TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

DGSEM 15.04 22.2 0.3
FR/CPR 14.92 22.1 0.3
DGIGA 14.63 22.2 0.9

DGIGAAFC 11.22 1.8 1

(e) KXRCF, J = 6 (figure 14.10b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

15.40 5.2 0.2
15.29 5.2 0.2
14.83 5.8 0.3
11.30 1.7 1

(f) APTVD, J = 6 (figure 14.10c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

14.97 8.8 0.3
14.63 9.2 0.3
14.38 9.9 0.8
11.76 1.5 0.9

(g) No sensor, J = 20 (figure 14.11a)

Basis TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

DGSEM 7.50 41.0 0.2
FR/CPR 7.51 40.3 0.2
DGIGA 7.06 40.7 6.8

DGIGAAFC 9.62 1.6 7.3

(h) KXRCF, J = 20 (fig. 14.11b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

7.47 34.4 0.2
7.60 33.7 0.2
7.03 35.0 3.3
9.63 1.5 8.2

(i) APTVD, J = 20 (fig. 14.11c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

7.36 21.2 0.2
7.42 20.4 0.2
5.66 27.2 4.8
9.75 1.6 7.6

Table 14.13: Quantitative comparison of third order DGIGAAFC discretizations, with and without sensors, for
varying numbers of patches (test matrix 14.6).

(a) No sensor (figure 14.12a)

K TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

10 14.61 1.2 1.7
100 13.44 1.4 1.5
200 12.20 1.4 1.5
400 10.10 1.1 1.6

(b) KXRCF (figure 14.12b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

  
13.38 1.3 1.4
12.28 1.4 1.4
10.19 0.8 1.1

(c) APTVD (figure 14.12c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

14.62 1.2 1.7
13.89 1.3 1.3
13.03 1.3 1.5
10.18 0.6 1.4



230 14. Nonsmooth Solutions, Sensors and Limiters

Table 14.14: 𝐿1 error, its measured rate of convergence (with increasing Ndofs) and averaged limiter activation;
runs 1 to 45 of test matrix 14.7.

(a) DGIGA, TVB limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 3.7 ⋅ 10−2 18.8
72 1.5 ⋅ 10−2 −2.28 12.7
96 7.4 ⋅ 10−3 −2.34 9.6

(b) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

6.9 ⋅ 10−2 40.3
3.5 ⋅ 10−2 −1.67 26.1
1.9 ⋅ 10−2 −2.13 20.1

(c) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

1.2 ⋅ 10−1 50.1
6.0 ⋅ 10−2 −1.74 35.7
3.4 ⋅ 10−2 −1.93 26.6

(d) DGIGA, Krivodonova’s limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 3.7 ⋅ 10−2 18.8
72 1.5 ⋅ 10−2 −2.28 12.7
96 7.4 ⋅ 10−3 −2.34 9.6

(e) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

3.5 ⋅ 10−3 6.3
8.6 ⋅ 10−4 −3.51 4.3
3.4 ⋅ 10−4 −3.18 3.3

(f) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

1.1 ⋅ 10−3 9.8
1.9 ⋅ 10−4 −4.4 6.9
5.7 ⋅ 10−5 −4.18 5.6

(g) DGIGAAFC, FCT limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 1.9 ⋅ 10−1 20.8
72 1.5 ⋅ 10−1 −0.58 13.1
96 1.3 ⋅ 10−1 −0.65 9.0

(h) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

2.1 ⋅ 10−1 25.4
1.6 ⋅ 10−1 −0.56 16.0
1.4 ⋅ 10−1 −0.63 10.9

(i) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

2.1 ⋅ 10−1 25.6
1.7 ⋅ 10−1 −0.57 15.1
1.4 ⋅ 10−1 −0.63 10.0

(j) DGSEM, Krivodonova’s limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 3.7 ⋅ 10−2 18.8
72 1.5 ⋅ 10−2 −2.28 12.7
96 7.4 ⋅ 10−3 −2.34 9.6

(k) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

3.5 ⋅ 10−3 6.3
8.6 ⋅ 10−4 −3.51 4.3
3.4 ⋅ 10−4 −3.18 3.3

(l) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

1.1 ⋅ 10−3 9.8
1.9 ⋅ 10−4 −4.4 6.9
5.7 ⋅ 10−5 −4.18 5.6

(m) IGAAFC, FCT limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 5.2 ⋅ 10−2 60.1
72 2.4 ⋅ 10−2 −1.89 36.1
96 1.3 ⋅ 10−2 −2.07 23.0

(n) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

4.8 ⋅ 10−2 48.2
2.0 ⋅ 10−2 −2.15 27.7
9.8 ⋅ 10−3 −2.48 17.6

(o) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

5.5 ⋅ 10−2 48.2
2.4 ⋅ 10−2 −2.08 29.2
1.2 ⋅ 10−2 −2.49 17.1

Table 14.15: Quantitative comparison of the numerical solutions of (9.16), obtained with a fixed number of second,
third and fourthorder DGIGA/DGIGAAFC patches (runs 46 to 54 of test matrix 14.7).

(a) TVB (𝑀 = 0) + KXRCF (fig. 14.13a)

p TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (min)

1 18.31 0.5 5.3
2 18.66 0.9 11.7
3 16.50 2.3 21.2

(b) Kriv. + KXRCF (fig. 14.13b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (min)

18.31 0.5 6.5
19.63 0.9 13.5
18.41 1.4 17.1

(c) FCT + KXRCF (fig. 14.13c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (min)

8.95 0.8 6.8
9.60 1.2 21.1
10.12 1.2 48.9



15
Conclusions

This thesis has been concerned with the potential of highorder methods for application to scale
resolving simulations of highspeed, possibly turbulent, flows. Rather than targeting a turbulent high
speed flow in itself, I have instead studied the most fundamental aspects of three discontinuous finite
element methods (DGSEM, FR/CPR and DGIGA) in the relatively simple context of onedimensional
hyperbolic transport equations (linear advection, inviscid Burgers equation and Euler equations). The
suitability for LES and DNS of the latter scheme, in relation to the former two, has thus been evaluated
indirectly.

In what follows, I express my conclusions based on the results discussed in each of the previous
chapters. Additionally, I highlight the most important shortcomings of the work and provide recommen
dations for future research. This chapter is divided into five sections, the first four corresponding to
each of the research subquestions posed in the introduction chapter. These double as an account,
chapter by chapter, of all tasks carried out. I then end with a final answer to the main research question
of this project that takes into account all previous considerations.

15.1. Order of accuracy
I started by verifying that all three spatial schemes, applied to Burgers equation, were indeed high
order. DGSEM, FR/CPR and (most configurations of) DGIGA are able to achieve their formal order
of accuracy, at least up to degree 4 and order 5. I was also able to detect an exponential type of
convergence when refining in polynomial/Bspline degree. For FR/CPR, I confirmed that the correction
parameter 𝜂 > 0 can only reduce the global order of accuracy with respect to that of DGSEM. I also
checked that all optimal explicit timeschemes of the SSPRK type converged at their expected rates
as 𝛥𝑡 was reduced. The fact that all these results are consistent with the literature and/or theory is an
indication that, to some extent, the implementation used is errorfree.

In relation to the research questions of this project, I found that DGIGA is able to achieve high order
in the same sense that DGSEM and FR/CPR do, albeit with the following caveats:

• This is only true for the modal treatment of DGIGA; nodal DGIGA reaches only second order
accuracy, regardless of its degree.

• Even though all DGIGA configurations show the expected order of accuracy when refining in 𝛥𝑥,
increasing the number of breakpoint spans (i.e. refining “in a CG way”) improves said order even
further, in some cases.

• Some configurations of DGIGA simply fail—in the sense that the algorithm executing them is
unstable. Neither linear stability limits nor condition number issues are able to explain this phe
nomenon in all cases that it occurs.

For DGIGA, results suggest that the best way of extracting the most accuracy per degree of freedom
is to increase both Bspline degree and smoothness simultaneously. The next best options would be
to increase degree only (at a fixed smoothness), then number of breakpoint spans, and, lastly, number
of patches.

231



232 15. Conclusions

15.1.1. Limitations
Only orders up to 5 could be confirmed. To measure the order of convergence, I qualitatively compared
the slope of a rectilinear (in logarithmic axes) portion of the error vs. degrees of freedom plot with the
formal order of accuracy of the scheme in question, based on its degree. However, I found that for
orders higher than 5 there were no linear portions in said plot. I am under the impression that this is
because the error stagnates (it does not reduce any further) before this linear portion can appear.

Also, no indication of superconvergence (orders of accuracy higher than p+1) was found for DGSEM
nor FR/CPR. I attribute this to the way in which I measure the numerical error and its norm.

15.1.2. Recommendations
All things considered, these results were evidence that higher order can lead to higher accuracy for
a fixed number of degrees of freedom, even in the nonlinear case of Burgers equation, as long as
no limiters and/or discontinuous solution are involved. Yet, it remains to be seen if, and under which
conditions, this translates into lower overall cost for a given accuracy; this is a possible direction of
future research.

An alternative way to define the numerical error would have been as the difference between the
approximate solution and the projection of the exact solution to the same finite dimensional space as
the former. Because the exact solution is generally not a piecewise polynomial, it would make sense
that the definition of the error used in this work can only ever reach orders of convergence up to p+1. In
the alternative definition, however, the error would only be dependent on the dispersive and dissipative
characteristics of the discretization. The fact that the theoretical order of accuracy estimate (A.65),
which predicts betterthanoptimal orders, is based on spectral properties suggests that this way to
define the error would have led to the detection of superaccuracy. Moreover, this approach would
allow the computation of the error norm to be made directly by subtracting nodal or control point–wise
values (because both functions involved would then share a common discretization), thus avoiding the
need to numerically integrate the error. Nevertheless, one would still need to use quadrature to project
the exact solution into the approximate one’s trial space.

It might also be interesting to clarify the complicated relation that order of convergence seems
to have with the various refinement directions in DGIGA. Any insight on the unexplained nonlinear
instability could prove valuable as well.

15.2. Dispersion, dissipation and linear stability
Next, I studied the wave propagation behavior of the three schemes. I did this through an a priori
modified wavenumber analysis, valid only for a linear discretization. Timestep size bounds for liner
stability were also obtained.

In DGSEM, the higher the order, the wider the range of wavenumbers that are well resolved. The
catch, however, is that, simultaneously, there is a localized increase in dispersion error in the middle
portion of the underresolved wavenumber range. FR/CPR has one extra free parameter, the correction
factor 𝜂, which I simply sampled across its full range for each degree. Results for DGSEM and FR/CPR
once more matched the literature, indicating that the methodology used and its implementation was
sound.

Characterizing DGIGA was challenging due to it having three (constrained) parameters for a given
number of basis function per patch: degree, number of breakpoint spans and smoothness. I opted
to study the effect that each of these parameters had while keeping the other two fixed. While not
exhaustive, I consider that this has allowed me to provide a representative picture of DGIGA.

DGIGA presents the same trends as DGSEM when degree and smoothness are increased simulta
neously; they even coincide for the Bernstein case (single breakpoint span). Balancing degree, smooth
ness and/or number of breakpoint spans, I realized that it was possible to influence the dispersion and
dissipation curves of a given J more effectively than in FR/CPR. I also discovered a curious “bubbling”
phenomenon for DGIGA: as the number of degrees of freedom per patch increases (also influenced
by the rest of basis parameters) its Fourier footprint, usually a single contour, splits into three; the two
new ones split again, and so on. These “bubble” eigenmodes are reminiscent of those observed when
using a nondissipative numerical flux across elements in DGSEM.

In all three schemes, a higher polynomial/Bspline degree was found to be associated with a more
restrictive Courant number. This bound can be relaxed mildly in FR/CPR, by increasing the correction



15.3. Optimal FR/CPR and DGIGA configurations 233

factor. In DGIGA, since the number of degrees of freedom per patch is no longer dependent on degree
only, the potential for a much laxer linear stability constraint exists.

A striking feature of DGIGA is that its dispersion and dissipation relations for equal number of de
grees of freedom, yet different degree, are comparable. This has powerful implications for the potential
of highorder schemes in LES and DNS: for a fixed number of degrees of freedom, lowerorder DGIGA
offers dispersion and dissipation characteristics comparable to those of higherorder DGSEM.

15.2.1. Limitations and recommendations
The spectral characteristics reported focused mostly on the socalled primary or physical eigenmode,
which is representative only in the lower range of wavenumbers. In general, all eigenmodes contribute
to the wave propagation characteristics. Combinedmode analysis would have been a more reliable
way to measure the spectral response of high order schemes.

A more exhaustive exploration of the DGIGA configuration space is still possible. I doubt, however,
that it would add much additional insight. More general kinds of FR/CPR correction functions could
have been considered as well; recall that only the VCJH class was considered in this work.

15.3. Optimal FR/CPR and DGIGA configurations
The realization that DGIGA (also FR/CPR, but only to a minor extent) allowed the freedom to influence
dispersion, dissipation and linear stability independently from degree and/or order of accuracy, led me
to the inclusion of an additional chapter (and associated research subquestion) in the thesis. My goal
was simple: determine, for a given number of degrees of freedom per element/patch, the best (in some
sense) possible configuration of DGIGA and FR/CPR.

I had to establish a criterion through which to measure the quality of a discretization. This ended
up being the overall spectral error (both dispersive and dissipative contributions) across the entire
range of resolved wavenumbers, after an arbitrary simulation time, determined via a combinedmode
analysis approach. In addition, alternative criteria (theoretical order of accuracy, resolving efficiency,
ratio between dispersion and dissipation, and computational cost estimation) were also considered.
These, however, were not used as objective functions; they were only evaluated afterwards.

Optimized DGIGA turned out to possess advantageous spectral characteristics with respect to
DGSEM, starting from 6 degrees of freedom per patch. Interestingly, from that point on, the opti
mal DGIGA patch happens to always be the one with a single breakpoint inside it. For FR/CPR, on
the other hand, no optima had barely any advantage over DGSEM in terms of the chosen objective
function; a result consistent with the literature, once more giving validity to the approach employed. In
addition, the following features of DGIGA optima were revealed:

• The ratio between their numerical dispersion and dissipation appears to be particularly favorable
for LES and/or DNS applications (the scheme has an increased inherent tendency to dissipate
its own dispersion errors).

• Their resolving efficiency (largest wellresolved wavenumber) is higher than DGSEM’s—despite
the former having a lower order of accuracy.

• They posses significantly (up to 70%) larger stability limits than DGSEM.

These findings suggest that DGIGA possesses inherently superior spectral characteristics com
pared to DGSEM, at least based on the indirect metrics considered in this work. Said advantage is
clearly greater for DGIGA than for FR/CPR. It appears that that the true strength of highorder methods
might not actually be their order in itself, but rather the reduced dissipation and diffusion over a range of
wavenmumbers that usually—but not necessarily—comes with it. DGIGA, unlike FR/CPR (of the VCJH
type) and DGSEM, possesses the necessary freedom to exploit this. At the same time, nevertheless,
the higher resolving efficiency and stability limits of DGIGA seem not to be enough to compensate for
its extra cost in terms of floating point operations compared to DGSEM.

15.3.1. Limitations
Despite the promising features of optimal DGIGA schemes discovered, it must be pointed out that these
only occur for relatively high values of J, which could be impractical. Moreover, as in every optimization



234 15. Conclusions

problem, these results were entirely dependent on the chosen objective function. Furthermore, the cost
model employed is based on number of floating point operations; this has two major limitations:

• It is entirely dependent on the implementation in question.

• More FLOPs are not necessarily correlated with higher computational cost (CPUhours).

15.3.2. Recommendations
A high resolving efficiency was assumed to be beneficial in scale resolving simulations. Rigorously
testing the extent to which this is the case could be a promising direction for future work. The same
applies to the ratio between dispersion and dissipation as an indication of LES/DNS potential. It would
also be interesting to further clarify the role and relative importance of order of accuracy and spectral
properties in scale resolving simulations.

A more meaningful measure of computational cost could be based on the idea in [129, §3.2]. It con
sists on expressing the cost associated with a specific implementation of a method as a nondimensional
value; the reference value used to nondimensionalize said cost is the one associated with a particular
run of the benchmark code TauBench [1]. Cost, in this approach, is actual wallclock time (e.g. CPU
hours) necessary to obtain a result with certain accuracy. The influence of hardware is minimized by
making the magnitude dimensionless.

15.4. Nonlinear physics
Both a priori modified wavenumber analysis and combinedmode analysis are semianalytical tools
that quantify linear wave propagation physics. Next, I set out to show that the error in the solution
is influenced by the spectral properties predicted via combinedmode analysis. I was able to confirm
this for the linear advection equation. For Burgers equation, however, the advantage was barely per
ceptible, if at all. This aspect of the thesis, i.e. whether the linear wave propagation characteristics of
DGIGA, FR/CPR and DGSEM can be used to predict suitability for scale resolving simulations, remains
inconclusive.

A posteriori modified wavenumber was generalized from finite volumes to DG (FR/CPR and DGIGA
included), and applied to the Euler system. I had hoped that this would allow a characterization of the
spectral properties of a discretization directly for the nonlinear case. However, I was able to show that its
predictions are incompatible with those of combinedmode analysis in the higherthanfirstorder case
(whenever there is a multiplicity of eigenmodes). I therefore decided not to pursue this idea further.

15.4.1. Limitations and Recommendations
The fact that I was unable to detect a clear advantage for DGIGA in the nonlinear case is not evidence
that said advantage is not there. I would suggest the TaylorGreen vortex (a twodimensional problem
for the Euler equations) as a more conclusive test case in that regard, based on the amount of attention
it has received in the highorder literature.

15.5. Discontinuous solutions, limiters and sensors
In the last chapter of this thesis, I finally turned my attention to the Euler equations and the issue of
limiting. I compared the TVB slope limiter, three hierarchical modal limiters, a simple WENO one, as
well as algebraic flux correction (for DGIGA). The hierarchical moment limiter of Krivodonova was found
to be the best of these. Among Legendrebased limiters, HWENO performed worst by far.

When used in combination with Krivodonova’s limiter, optimal DGIGA results were comparable to
those of DGSEM and optimal FR/CPR.

Using the proposed formulation, no DGIGAAFC configuration is able to even compare against
Krivodonova’s hierarchical limiter. The least diffusive configuration corresponded to using a single patch
throughout the whole domain (IGAAFC). Even then, however, accuracy was subpar; comparable
to that of the TVDM slope limiter, which is regarded as outright unusable in the literature, due to its
tendency of needlessly diffusing smooth extrema.

I additionally tested two sensors, and found one of them, KXRCF, to be beneficial in relation to using
none at all. However, this seemed to depend on the specific test case being solved. For a test case
roughly mimicking a shock wave–turbulence interaction, I found that the combination of DGSEM with



15.6. Is DGIGAAFC wellsuited to LES of highspeed flows? 235

the KXRCF sensor and the TVDM limiter was about as accurate as the same scheme and sensor but
with Krivodonova’s limiter instead. Yet, DGIGAAFC in combination with this same sensor, was much
less accurate.

Lastly, I showed that, even with the best sensorlimiter combinations, increasing the order of accu
racy alone is not an effective way to increase accuracy in solutions that contain shocks or other dis
continuous features. I blame this on the lack of hrefinement that would compensate the pcoarsening
around discontinuities.

15.5.1. Limitations and recommendations
No limiter currently seems to exists that is entirely satisfying; this is clear among the numerically tested
ones, and there is consensus in the literature in this regard. Popular approaches not considered in
this work include artificial viscosity, as well as more elaborate WENO limiters. An even more promis
ing approach, albeit significantly more involved, would be to capture discontinuities by adapting both
discretization degree and mesh cell size around them.

15.6. Is DGIGAAFC wellsuited to LES of highspeed flows?
Regarding the DGIGAAFC combination, results are conclusive: the proposed formulation is a failure.
AFC diffuses sharp features excessively and it does not preserve accuracy at smooth extrema. While
not as pronounced, this also happens in IGA (i.e. single patch DGIGA) and is, therefore, not a conse
quence of my extension of AFC from IGA to DGIGA only. My impression, in light of the fact that AFC is
much more successful when used as a means of constraining the 𝐿2 projection of an initial condition,
is that it is the linearized version of AFC that is at fault.

When it comes to DGIGA on its own, however, my answer is more nuanced: I have found no strong
reason to discard it as a valid alternative to either DGSEM nor FR/CPR. In fact, DGIGA does offer the
promise of significant advantages for application in LES and DNS if we take at face value its numerical
dissipation and dispersion properties. Keeping in mind that lower degree implies reduced bandwidth
in the discrete operator matrices and larger maximum stable timestep sizes, the possibility of DGIGA
being able to use a lower degree than DGSEM and FR without compromising wave propagation accu
racy could, in principle, be used to justify it as a better method. Recall, too, that the condition number
of Bspline mass and control Vandermonde matrices grows exponentially with Bspline degree—the
previous consideration thus also mitigates this problem. That being said, the only evidence I could
find in support of the idea that the good wave propagation properties observed in the linear advection
case actually carry over to nonlinear ones, was the fact that all three schemes (even with DGIGA being
of lower degree) produce practically identical results in the ShuOsher test case when stabilized with
the hierarchical limiter of Krivodonova. Furthermore, in my implementation at least, DGIGA remains
significantly more costly per degree of freedom than both alternatives considered.

The weak interpatch coupling proposed for IGA in this work has been shown to be effective for
the most part—the unexplained nonlinear instability issue notwithstanding. This is also very relevant,
because of the illconditioning of the control Vandermonde matrix1 becoming exponentially more pro
nounced as the number of breakpoints per patch grows (figure 6.11; note that this is not the case
for the mass matrix, though, as seen in figure 6.10). By subdividing the domain into 𝐶−1coupled
(DG) patches, themselves divided in turn into 𝐶0–𝐶p−1coupled breakpoint spans, moderately high ap
proximation degrees (p ≤ 10) and associated orders can be achieved while maintaining reasonable
condition numbers, both patchwide and meshwide.

15.7. Recommendations for future work
The possibility remains that aspects not studied in this thesis, most relevant the advantages of an isoge
ometric formulation in relation to meshing, could outweigh its cost overhead—which is the most salient
limitation encountered in this work for DGIGA itself. It is for this reason that I encourage future research
on IGA to be carried out in two or three dimensions, and for Euler or even NavierStokes physics di
rectly: so that focus is placed on its geometric representation advantages, and that any comparisons
with more conventional schemes can be made directly for the relevant, nonlinear physics. Alternatively,

1The control Vandermonde matrix is a necessary ingredient of the modal formulation of IGA I have proposed; recall that I have
also shown that the nodal treatment is firstorderaccurate only.



236 15. Conclusions

if interest is on large eddy simulation, study of the onedimensional viscous Burgers equation could also
be a very adequate next step.



A
Modified Wavenumber Analysis

This appendix describes the procedure used in this work to characterize the wave propagation (i.e.
diffusion and dispersion) and linear stability properties of the three methods studied in detail, namely:
discontinuous Galerkin spectral element method (DGSEM), flux reconstruction (FR/CPR) and discon
tinuous Galerkin isogeometric analysis (DGIGA). It is largely based on the excellent account of the
approach given in [116, appendix B], with the notion of a modified wavenumber incorporated from [48,
appendix C]. The same approach particularized for modal DG and FR/CPR, along with results, can be
found in [53] and [120], respectively.

A.1. Discrete wavenumbers
Fundamentally, the approach described in this appendix can be regarded as a generalization of Von
Neumann analysis [50, §7.2] from a loworder finite volume context to a highorder finite element one.
Accordingly, the aim is to study the evolution in time of a monochromatic Fourier wave (in a fully lin
ear setting and with no influence from boundary conditions) by comparing the exact (i.e. continuous)
and approximate (i.e. discrete) situations. In the continuous case, one may consider an infinite one
dimensional domain 𝑥 ∈ [−∞,∞] in which any function satisfying certain conditions (see e.g. [19,
section 2.1]) can be represented as:

𝑞(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑞(𝜅)ei𝜅𝑥 d𝜅 , (A.1)

where i = √−1. The previous can be regarded as defining 𝑞(𝑥)∶ ℝ → ℝ as the inverse Fourier transform
of 𝑞(𝜅)∶ ℂ → ℂ. The wavenumber, defined as the number of wavelengths (𝜆) in a 2𝜋 period, takes any
real value, 𝜅 ∈ ℝ, in accordance to the wavelengths ranging continuously from infinity to zero, and
every Fourier wave having two possible orientations (each associated to a sign) except for 𝜅 = 0,
which represents a constant mode.

A discrete version of the situation described in the previous paragraph is required. The first step
is to construct a version of the previous infinite domain in such a way that does not require an infinite
number of degrees of freedom. This is possible if we instead consider a particular domain, 𝛺, and
let it repeat periodically to cover the entire real line. From here on, 𝑞(𝑥) is defined over 𝑥 ∈ 𝛺. As
a consequence, only a discrete number (yet still infinitely many) of wavenumbers are allowed, with a
maximum wavelength and minimum wavenumber (both corresponding to the 1st wavemode) equal to:

𝜆1 = 𝐿 ⟺ 𝜅1 =
2𝜋
𝐿 , (A.2)

where 𝐿 is the size of 𝛺. All other modes will be multiples of this fundamental wavenumber1, except
for the trivial case of a constant 𝑞(𝑥)—for which we reserve the zeroth wavemode:

𝜆0 = ∞ ⟺ 𝜅0 = 0 . (A.3)
1Note that the present derivation discards any wave that does not repeat itself in a period of 𝐿. This is not the same as having
periodic boundary conditions on the edges of 𝛺—in the latter situation, wavelengths 2𝐿, 2/3𝐿, 2/5𝐿,… would be allowed.

237



238 A. Modified Wavenumber Analysis

Equation (A.1) is thus replaced by the Fourier series:

𝑞(𝑥) =
∞

∑
𝑛=−∞

𝑞𝑛ei𝜅𝑛𝑥 , (A.4)

with 𝑛 ∈ ℤ. Equation A.4 can be readily interpreted as the original function being expanded into the
infinitedimensional space spanned by the complex exponential functions (i.e. Fourier basis functions).
Still, there is no lower bound for the wavelength—i.e. upper bound for the wavenumber.

Next, a uniform discontinuous finite element discretization is applied. For all discretization methods
considered in this work, the fundamental repeating unit is the subdomain 𝛺𝑘, discontinuously coupled
to its two neighbors through a numerical flux. Any such element or patch is designated the generating
pattern of the discretization. For the discretization to be amenable to a Fourier representation, unifor
mity is required at the generating pattern level. It must be both geometrical (i.e. all generating patterns
need to have the same size) as well as in terms of the finite dimensional spaces used in each one of
them. Within a generating pattern, however, no such restriction applies; therefore, nonuniform knot
vectors are not excluded from the analysis. Accordingly, 𝛺 is subdivided into K patches; not only is ev
ery patch (𝛺𝑘) geometrically identical the the rest, but also each employs the same trial and test function
spaces as every other. The number of dimensions of these is J. All in all, there are Ndofs≔JK degrees
of freedom in every spatial period of the discrete signal, 𝐿 = K𝛥𝑥, and 𝛥𝑥/J represents a characteristic
length associated with the distance between two degrees of freedom.

Once more, the allowable wavenumbers in the approximate solution have been restricted. This
time, however, an upper bound to the wavelength appears: by the NyquistShannon sampling theo
rem, a minimum of two degrees of freedom are required to capture any given frequency [117]. As a
consequence, the smallest (positive) wavelength and largest wavenumber resolvable are:

𝜆Nyq =
2𝛥𝑥
J ⟺ 𝜅Nyq =

J𝜋
𝛥𝑥 . (A.5)

At this point, finally, 𝜅 has become both bounded and discrete. The wavenumbers that can be resolved
within a spatial period (domain 𝛺), split into an even number of patches K, each of them employing J
basis functions, are:

𝜅𝑛 = 𝑛
2𝜋
𝐿 ≡ 𝑛 2𝜋K𝛥𝑥 ≡ 𝑛

J𝜋
𝛥𝑥Ndofs2

, 𝑛 ∈ [−Ndofs2 , Ndofs2 ] ⊂ ℤ . (A.6)

A conventional discrete version of A.4, assuming Ndofs is even, is [19, p. 48]:

𝑞ℎ(𝑥) =
Ndofs/2−1

∑
𝑛=−Ndofs/2

𝑞ℎ𝑛ei𝜅𝑛𝑥 , (A.7)

or, if Ndofs is odd:

𝑞ℎ(𝑥) =
(Ndofs−1)/2

∑
𝑛=−(Ndofs−1)/2

𝑞ℎ𝑛ei𝜅𝑛𝑥 . (A.8)

In these, the total number of degrees of freedom, Ndofs, is preserved: the total number of distinct
wavemodes (including both orientations, positive and negative) that can be resolved in the periodically
bounded domain is also equal to Ndofs. Equations (A.7) and (A.8) express the approximate solution in
𝛺 as the linear combination of Ndofs Fourier waves.

A.2. Wave propagation
Let us consider the simplest hyperbolic problem—the advection equation (2.19)—written in dimension
less form as follows:

𝜕𝑞
𝜕𝑡∗ +

𝜕𝑞
𝜕𝑥∗ = 0 , (A.9)



A.2. Wave propagation 239

0 0.5 1 1.5 2−2

−1

0

1

2

𝑥/𝛥𝑥
(a) 𝜅1 =

𝜋
𝛥𝑥

0 0.5 1 1.5 2−2

−1

0

1

2

𝑥/𝛥𝑥

(b) 𝜅2 =
2𝜋
𝛥𝑥

0 0.5 1 1.5 2−2

−1

0

1

2

𝑥/𝛥𝑥

(c) 𝜅3 =
3𝜋
𝛥𝑥 (Nyquist wavenumber)

0 0.5 1 1.5 2−2

−1

0

1

2

𝑥/𝛥𝑥

(d) 𝜅4 =
4𝜋
𝛥𝑥 (underresolved)

Figure A.1: Fourier waves (dashed, black lines) and 𝐿2projected discrete counterparts, for a periodic domain
discretized into 2 DGIGA patches (blue and red) of 3 degrees of freedom—in this case, control points—each
(cross markers). The fourth mode, which cannot be resolved with the available degrees of freedom, is aliasing the
second. The knot vector of each patch is: 𝛯 = [−1 −1 −1 1 1 1].



240 A. Modified Wavenumber Analysis

0 2 4 6

−1

0

1

𝑥

0 10

0.5

1

1.5

𝜅
(a) 𝛯 = [−1 1]

0 2 4 6

−1

0

1

𝑥

0 1 20

0.5

1

1.5

𝜅
(b) 𝛯 = [−1 −1 1 1]

0 2 4 6

−1

0

1

𝑥

0 1 2 30

0.5

1

1.5

𝜅
(c) 𝛯 = [−1 −1 0 1 1]

Figure A.2: Smallest wavelength Fourier mode resolvable (top, dashed) and its 𝐿2 projection into finiteelement
space (top, solid), along with the latter’s singlesided discrete Fourier spectrum2 (bottom); for three DGIGA dis
cretizations of 𝛺 = [0, 2𝜋], each using 2 patches with knot vector 𝛯.

with a nondimensionalization such that:

𝑡 = 𝛥𝑥
𝑎 𝑡

∗ , 𝑥 = 𝛥𝑥𝑥∗ , (A.10)

𝛥𝑥 being the size of each patch in the uniform discretization, 𝑎 the advection velocity, and 𝑞(𝑥∗, 𝑡∗) the
scalar quantity being advected (assumed dimensionless without significant loss of generality).

A.2.1. Exact dispersion relation
By the principle of superposition, it is sufficient to focus on an exact solution function that consists of a
single (realvalued) Fourier wave in space:

𝑞(𝑡∗, 𝑥∗) = 𝑞(𝑡∗, 𝜅∗)ei𝜅∗𝑥∗ , (A.11)

all information regarding amplitude and phase as a function of time is contained in 𝑞 ∶ (ℝ,ℝ) → ℂ. One
way to encode this dependence is to define ̂̂𝑞 ∶ ℝ → ℂ such that:

𝑞(𝑡∗, 𝜅∗) = ̂̂𝑞(𝜅∗)e𝜃∗𝑡∗ , (A.12)

with 𝜃∗ ∈ ℂ (at least, a priori). Plugging (A.11) into (A.9) gives:

𝜃∗ + i𝜅∗ = 0 , (A.13)

a result known as the exact dispersion relation (in dimensionless form). Cast back in dimensional terms,
it reads 𝜃 = −i𝜅𝑎 ⟺ 𝜅 = i𝜃/𝑎. The exact behavior of a Fourier mode of wavenumber 𝜅 subject to
2Obtained by applying the fast Fourier transform (FFT) algorithm to a uniform J pointsperpatch sampling of the approximate
solution, 𝑞ℎ(𝑥).



A.2. Wave propagation 241

linear advection is, therefore, described by the function:

𝑞(𝑡, 𝑥) = ̂̂𝑞(𝜅)ei𝜅(𝑥−𝑎𝑡) . (A.14)

In the literature, ℜ(𝜃) is known as the exact dissipation rate, and it being zero implies that the exact
solution does not change in amplitude as time goes on; this is the ideal nondissipative behavior. In turn,
−ℑ(𝜃) is the exact angular frequency; (A.14) reveals that it being equal to 𝑎𝜅 implies that the exact
solution is advected with speed 𝑎 (regardless of the wavenumber)—the ideal nondispersive case.
The previous considerations give rise to the modified wavenumber analysis, in which the imaginary
and real parts of �̃�∗ = i�̃�∗ (the analogue to 𝜅∗, corresponding to the solution obtained with a particular
spatial discretization method) are compared with these exact ones. This quantity, �̃�, is the modified
wavenumber.

A.2.2. Modified wavenumber
Let us consider the arbitrary instant 𝑡, and the wavenumber 𝜅𝑛 (the 𝑛 subscript indicates the specific
instance associated to this wavemode). The exact solution (A.14), projected3 into the finitedimensional
trial space 𝑆ℎ𝑘 (𝛺), will define a vector of timedependent degrees of freedom, �̂�𝐿

2
𝑘 ∶ ℝ → ℝJ×1, such that:

∫
1

−1
̂̂𝑞(𝜅∗𝑛)ei𝜅

∗𝑛(𝑘+
1+𝜉
2 −𝑡∗)𝝓 d𝜉 = �̃��̂�𝐿2𝑘 (𝑡∗) , (A.15)

where 𝝓 = [𝜙1(𝜉), … , 𝜙J(𝜉)]
⊺
is the (column) vector of basis functions that span 𝑆ℎ𝑘 (𝛺). The mapping

to/from reference element space is explained in §3.1.1; the element index appears in the exponent
because 𝑥𝑘/𝛥𝑥 = 𝑘 (hence assuming, without loss of generality, that 𝑥1 = 𝛥𝑥). We can then define the
following vectors of degree of freedom–wise amplitudes (timedependent and not, respectively):

�̂�𝐿2𝑛 (𝑡∗)≔ ̂̂𝒒𝐿2𝑛 e−i𝜅
∗𝑛𝑡∗ , ̂̂𝒒𝐿2𝑛 ≔ ̂̂𝑞(𝜅∗𝑛) (�̃�)−1∫

1

−1
ei𝜅

∗𝑛(
1+𝜉
2 )𝝓 d𝜉 , (A.16)

and use them to express the degrees of freedom of the projection of the exact solution into finiteelement
space, in direct analogy with (A.11) and (A.14), as:

�̂�𝐿2𝑘 (𝑡∗) = �̂�𝐿
2
𝑛 (𝑡∗)ei𝜅

∗𝑛𝑘 = ̂̂𝒒𝐿2𝑛 ei𝜅
∗𝑛(𝑘−𝑡∗) . (A.17)

It is reasonable to seek an approximate solution similar to (A.17), in the sense of its degrees of
freedom satisfying:

�̂�𝑘(𝑡∗) = �̂�𝑛(𝑡∗)ei𝜅
∗𝑛𝑘 , (A.18)

i.e. such that any errors due to the discrete spatial derivative operator4 are concentrated in the still
timedependent (and now also wavenumberdependent) but no longer elementlocal, array of degrees
of freedom, �̂�𝑛(𝑡∗). This makes it possible to represent the spatial residual operator as a matrix (recall
that we are dealing with a linear problem) 𝓡∗𝑛 ∈ ℂJ×J; its derivation is detailed in §A.3. With it, the
semidiscrete advection equation (A.9) becomes:

d�̂�𝑘
d𝑡∗ = 𝓡

∗
𝑛�̂�𝑘 . (A.19)

The eigendecomposition of 𝓡∗𝑛 results in a matrix of (right, column) eigenvectors and a diagonal
matrix of eigenvalues,

𝑽∗𝑛 = [𝒗∗1𝑛 𝒗∗2𝑛 … 𝒗∗J 𝑛] , 𝜣∗𝑛 = [
�̃�∗1𝑛 0

⋱
0 �̃�∗J 𝑛

] , (A.20)

such that:
𝓡∗𝑛𝑽∗𝑛 = 𝑽∗𝑛𝜣∗𝑛 . (A.21)

3Details are in §§3.2 and 3.5; for FR/CPR, trial functions (instead of test functions) are used in the projection, for the reasons
given in §5.3.1.

4Note that time is kept continuous in the present semidiscrete wave propagation analysis, i.e. it approximates the limit 𝛥𝑡 → 0.



242 A. Modified Wavenumber Analysis

Let us use (A.18) and this factorization, (A.20), to restate (A.19) as:

d
d𝑡∗ ((𝑽

∗
𝑛)
−1 �̂�𝑛(𝑡∗)) = 𝜣∗𝑛 ((𝑽∗𝑛)

−1 �̂�𝑛(𝑡∗)) , (A.22)

which is actually a trivial system of ODEs, in which each equation is decoupled from the rest; a solution
vector that satisfies it, and has the form of (A.12), is:

(𝑽∗𝑛)
−1 �̂�𝑛(𝑡∗) = [

̂̂𝓆1𝑛e�̃�
∗
1𝑛𝑡∗

⋮
̂̂𝓆J𝑛e�̃�

∗
J𝑛𝑡∗

] , (A.23)

with ̂̂𝓆𝑗𝑛 ∈ ℂ. At some initial instant (𝑡∗ = 0, without loss of generality), it must hold that �̂�𝐿
2
𝑘 (0) = �̂�𝑘(0).

The array of eigenmodewise amplitudes, therefore, must be:

̂̂𝓺𝑛≔[
̂̂𝓆1𝑛
⋮
̂̂𝓆J𝑛
] = (𝑽∗𝑛)

−1 ̂̂𝒒𝐿2𝑛 . (A.24)

Comparing equations (A.23) and (A.12) leads to the conclusion that each of the eigenvalues of
the residual matrix, �̃�∗𝑗𝑛, plays a similar role as 𝜃∗ does in the exact dispersion relation (§A.2.1). This
justifies the definition of a set of modified wavenumbers (one for each eigenvalue) that contain all
information related to the wave propagation properties of a given spatial semidiscretization. Each
modified wavenumber is defined, by analogy with (A.13), so that:

�̃�∗𝑗𝑛≔ i�̃�∗𝑗𝑛 . (A.25)

All in all, we now have an expression in which the degrees of freedom of the approximate solution are
the result of J eigenvectorshaped contributions (hence my use of the term eigenmodes5), each of the
form of (A.17) and (A.14):

�̂�𝑘(𝑡∗) =
J

∑
𝑗=1
𝒗∗𝑗𝑛 ̂̂𝓆𝑗𝑛e

i(𝜅∗𝑛𝑘−�̃�∗𝑗𝑛𝑡∗) , (A.26)

and so, we see that the degree of freedom–wise Fourier coefficients in (A.18) must satisfy:

�̂�𝑛(𝑡∗) = 𝑽∗𝑛�̂�𝑛(𝑡∗) , (A.27)

if we define �̃�∗𝑛≔[�̃�∗1𝑛 … �̃�∗J𝑛]
⊺
, and:

�̂�𝑛(𝑡∗)≔ ̂̂𝓺𝑛⊙ e−i�̃�∗𝑛𝑡∗ , (A.28)

where ⊙ represents the Hadamard (i.e. elementwise) product between two vectors or matrices, and
the exponential function applied to a vector is to be understood as the vector of elementwise expo
nentials. It is worth pointing out that:

(𝑽∗𝑛 ̂̂𝓺𝑛)⊙ e−i�̃�∗𝑛𝑡∗ ≠ 𝑽∗𝑛 (̂̂𝓺𝑛⊙ e−i�̃�∗𝑛𝑡∗) . (A.29)

A.2.3. Multiplicity of eigenmodes
Van den Abeele [116, p. 229] explains the presence of multiple modified wavenumbers in the discrete
version of an exact solution that only contains a single one, with the fact that the characteristic poly
nomial of the residual operator matrix has periodicity 2𝜋. The dimensionless wavenumber ranges (in
line with the bounds addressed in §A.1) within the interval −J𝜋 ≤ 𝜅∗𝑛 ≤ J𝜋. This allows for J modified
wavenumbers being associated to each baseline wavenumber, 𝜅𝑛, such that �̃�∗𝑛 = 𝜅∗𝑛+2𝑙𝜋, with 𝑙 ∈ ℤ.

Moura et al. [92] point out that a single Fourier basis function will not—in general—correspond to
a single basis function of the semidiscretization’s trial space; the projection of the initial condition can
5Note that there are two kinds of “modes” present in this analysis: eigenmodes (index 𝑗) and wavemodes (index 𝑛).



A.2. Wave propagation 243

therefore energize various modes in a finite element’s eigenspace, and each of them will disperse
and dissipate in accordance to each own’s modified wavenumber. The combined effect of all these
eigenmodes could therefore be defined as the “true” spectral response of the method [5].

In the present report, I use the term physical eigenmode to refer to the single �̃�∗𝑛 (among all �̃�∗𝑗𝑛)
that best approximates the exact dispersion relation in the wellresolved6 range of wavenumbers. A
simple way to obtain it for every 𝜅∗𝑛 > 0 is as follows:

1. Set 𝑛 = 0 (zeroth wavemode).

2. Compute 𝜅∗𝑛 = 𝑛
2𝜋
K .

3. Compute all �̃�∗𝑗𝑛 associated to 𝜅∗𝑛.

4. Set �̃�∗𝑛 to the �̃�∗𝑗𝑛 for which |�̃�∗𝑗𝑛 − 𝜅∗𝑛| is closest to zero (assume it is the physical eigenmode).

5. Set 𝑛 = 𝑛 + 1 (next wavemode).

6. Repeat steps 2 and 3.

7. Set �̃�∗𝑛 to the �̃�∗𝑗𝑛 for which |�̃�∗𝑗𝑛 − �̃�∗𝑛−1| is closest to zero.

8. Repeat from step 5 while 𝑛 ≤ Ndofs
2 , then stop.

a strategy similar in spirit to that used by Hu et al. [53].

A.2.4. Dominant eigenmode
With some discretizations—such as DGwith centered numerical fluxes (𝛽 = 0)—the notions of physical
and spurious (or parasitic7) modes are not particularly useful [7, 92]. Instead, it is more convenient to
distinguish between primary and secondary eigenmodes, with the addendum that it is not always the
case that the primary mode dominates the spectral response of the scheme.

Asthana and Jameson [7] propose a simple way to determine which eigenmode is the dominant one,
at any given wavenumber, by measuring how the approximate solution’s energy is distributed among
them. The energy of a Fourier mode is associated with its amplitude squared; by similarity with (A.17),
the amplitudes associated with each eigenmode are the ̂̂𝓆𝑗𝑛 coefficients given by (A.24). The relative
contribution of each eigenmode to the approximate solution’s 𝑛th wavemode can then be expected to
be equal to each one’s relative energy content, defined as:

𝛤𝑗𝑛≔
|̂̂𝓆𝑗𝑛|

2

∑J𝑟=1 | ̂̂𝓆𝑟𝑛|
2 ∈ [0, 1] . (A.30)

Alhawwary and Wang [5] report results supporting the hypothesis that the most energized mode is
representative of the “true” spectral behavior of the semidiscretization at wavenumbers such that 𝛤𝑗𝑛 ≫
𝛤𝑟𝑛, for 𝑟 ≠ 𝑗.

A.2.5. Combined mode semidiscrete analysis
A definitive answer to the question of which eigenmode, if any, should be taken as representative
of the spectral behavior of the discretization can be found in the approach of Vanharen et al. [117].
These researchers forgo the notion of modified wavenumbers altogether; instead they focus directly
on the effects of dispersion and dissipation—phase shift and energy loss, respectively, of the numerical
solution in relation to its exact counterpart—for any resolvable wavenumber, at some given time instant.
For a matter of consistency with the rest of this appendix, I shall present the semidiscrete version of
this approach [5], which neglects any dispersion or dissipation due to the temporal discretization.

6Section A.5.3 establishes the criterion used in this work to define this range.
7Designating secondary modes as parasitic is particularly misleading, since these can actually be beneficial [92]—analyzing the
physical or primary mode exclusively, can lead to an underestimation of the discretization’s performance.



244 A. Modified Wavenumber Analysis

We have seen so far that the numerical solution to the linear advection problem with an initial con
dition of wavenumber 𝜅∗𝑛, over the arbitrary generating pattern 𝛺𝑘, may be expressed as:

𝑞ℎ𝑘 (𝑡∗, 𝜉) = 𝝓⊺(𝜉)�̂�𝑛(𝑡∗)ei𝜅
∗𝑛𝑘 = 𝝓⊺(𝜉)𝑽∗𝑛 (̂̂𝓺𝑛⊙ e−i�̃�∗𝑛𝑡∗) ei𝜅∗𝑛𝑘 , (A.31)

while the 𝐿2 projection, into this same discrete solution space, of its exact counterpart is:

𝑞𝐿2𝑘 (𝑡∗, 𝜉) = 𝝓⊺(𝜉)�̂�𝐿
2
𝑛 (𝑡∗)ei𝜅

∗𝑛𝑘 = 𝝓⊺(𝜉)̂̂𝒒𝐿2𝑛 (𝑡∗)ei𝜅
∗𝑛(𝑘−𝑡∗) . (A.32)

Recall that the actual (i.e. not projected) exact solution, restricted to 𝑥 ∈ 𝛺𝑘, was:

𝑞𝑘(𝑡∗, 𝜉) = 𝑞(𝑡∗, 𝜅∗𝑛)ei𝜅
∗𝑛
𝜉+1
2 ei𝜅∗𝑛𝑘 = ̂̂𝑞(𝜅∗𝑛)ei𝜅

∗𝑛
𝜉+1
2 ei𝜅∗𝑛(𝑘−𝑡∗) . (A.33)

All three, in general, are functions of dimensionless time and space (in reference element coordinates).
In fact, let us say that they belong to the space 𝐿2(𝛺), of all complexvalued functions over the reference
element. Let us then introduce the following complex scalar product operator between two functions
of this kind:

∀(𝑓, 𝑔) ∈ (𝐿2 (𝛺))2 ⟨𝑓, 𝑔⟩≔∫
1

−1
𝑓(𝜉) conj (𝑔 (𝜉)) d𝜉 . (A.34)

This operator (A.34), on one hand, can be used to determine the phase shift between two functions.
In particular, the (dimensionless) phase lag8 between approximate and projected solutions is [5]:

𝛥𝛹∗𝑛(𝑡∗)≔arg (⟨𝑞ℎ𝑘 (𝑡∗, 𝜉), 𝑞𝐿
2
𝑘 (𝑡∗, 𝜉)⟩) . (A.35)

From it, wemay define phase lead as−𝛥𝛹∗𝑛 , and phase shift as |𝛥𝛹∗𝑛|. On the other hand, (A.34) defines
an energy norm for 𝐿2(𝛺) that can be used to evaluate the amplification factor of the approximate
solution [5]:

𝐺𝑛(𝑡∗)≔
‖𝑞ℎ𝑘 (𝑡∗, 𝜉)‖
‖𝑞𝐿2𝑘 (𝑡∗, 𝜉)‖

= √
⟨𝑞ℎ𝑘 (𝑡∗, 𝜉), 𝑞ℎ𝑘 (𝑡∗, 𝜉)⟩
⟨𝑞𝐿2𝑘 (𝑡∗, 𝜉), 𝑞𝐿

2
𝑘 (𝑡∗, 𝜉)⟩

. (A.36)

These two quantities represent one additional way to measure numerical dispersion and dissipation
errors (respectively). The advantage of this approach is that it takes into account the influence of all
eigenmodes in “the right way” [117], and can thus be considered to describe the true spectral response
of the spatial scheme [5]. For comparison purposes, the phase shift and amplification factor for a single
eigenmode (e.g. physical or dominant) of modified wavenumber �̃�∗𝑛 are given by:

𝛥𝛹∗𝑛(𝑡∗) = (𝜅∗𝑛 −ℜ(�̃�∗𝑛)) 𝑡∗ , 𝐺𝑛(𝑡∗) = eℑ(�̃�∗𝑛)𝑡∗ , (A.37)

while those of the exact solution would be:

𝛥𝛹∗𝑛(𝑡∗) = 0 , 𝐺𝑛(𝑡∗) = 1 . (A.38)

It is worth highlighting that scalar products of the type (A.34) between two discrete functions can be
conveniently evaluated as follows. Consider, for example, (A.35). Note that:

⟨𝑞ℎ𝑘 (𝑡∗, 𝜉), 𝑞𝐿
2
𝑘 (𝑡∗, 𝜉)⟩ = ∫

1

−1
(

J

∑
𝑟=1

𝜙𝑟(𝜉)�̂�𝑟𝑘(𝑡∗)) conj(
J

∑
𝑗=1
𝜙𝑗(𝜉)�̂�𝐿

2
𝑗𝑘(𝑡∗)) d𝜉 . (A.39)

The complex conjugate operator is distributive both in addition and multiplication; therefore:

conj(
J

∑
𝑗=1
𝜙𝑗(𝜉)�̂�𝐿

2
𝑗𝑘(𝑡∗)) =

J

∑
𝑗=1
𝜙𝑗(𝜉) conj (𝑞𝐿

2
𝑗𝑛(𝑡∗)) e−i𝜅

∗𝑘 . (A.40)

8For any given 𝑧 ∈ ℂ, the operation arg(𝑧) extracts its phase angle; it is equivalent to ℑ (ln(𝑧)).



A.3. Residual operators in matrix form 245

Moreover, the product of sums can be expanded as the double sum over all termbyterm products,
i.e. :

(
J

∑
𝑟=1

𝜙𝑟(𝜉)𝑞ℎ𝑟𝑛(𝑡∗)ei𝜅
∗𝑘)(

J

∑
𝑗=1
𝜙𝑗(𝜉) conj (𝑞𝐿

2
𝑗𝑛(𝑡∗)) e−i𝜅

∗𝑘) =
J

∑
𝑟=1

J

∑
𝑗=1
𝜙𝑟(𝜉)𝑞ℎ𝑟𝑛(𝑡∗)𝜙𝑗(𝜉) conj (𝑞𝐿

2
𝑗𝑛(𝑡∗)) .

(A.41)
Hence, the scalar product between these two discrete functions ends up being equivalent to:

⟨𝑞ℎ𝑘 (𝑡∗, 𝜉), 𝑞𝐿
2
𝑘 (𝑡∗, 𝜉)⟩ ≡

J

∑
𝑟=1

J

∑
𝑗=1
𝑞ℎ𝑟𝑛(𝑡∗) conj (𝑞𝐿

2
𝑗𝑛(𝑡∗))∫

1

−1
𝜙𝑟(𝜉)𝜙𝑗(𝜉) d𝜉 , (A.42)

and an analogous result holds for the other two pairs of functions that appear in (A.36).

A.3. Residual operators in matrix form
Any spatial semidiscretization can be seen as an operator—the residual—being applied to the degrees
of freedom (each a function of time only) to give the timederivative of the same. In the particular case of
a linear differential equation and a linear discretization (including a linear numerical flux function and no
limiting), this residual can be written as a linear combination of the degrees of freedom within the spatial
stencil. Furthermore, if the approximate solution happens to be periodic and one employs a perfectly
uniform discretization to represent it, it becomes possible to relate the degrees of freedom across
various generating patterns; the result is that a single matrix is sufficient to encode the entire spatial
semidiscretization operator. This is essentially an extension of the Fourier/von Neumann method to
highorder methods.

In what follows, a semidiscretization matrix 𝓡∗𝑛—to be used in (A.19)—for each of the research
objects of this work is deduced. Said matrix, in all three cases, can be factored as:

𝑴𝓡∗𝑛 = 2𝑪 + 𝑬 + e−i𝜅∗𝑛𝑬− + ei𝜅∗𝑛𝑬+ , (A.43)

with 𝑴,𝑪, 𝑬, 𝑬± ∈ ℝJ×J defined by (A.51) in DG, and (A.55) in FR/CPR.

A.3.1. DGSEM
The DGSEM semidiscretization (4.25), particularized to the advection equation, reads:

d�̌�⊺𝑘
d𝑡 𝓜𝑘 + [𝑎�̆�𝒍⊺𝑘]𝜕𝛺𝑘 = 𝑎�̌�

⊺
𝑘𝓒𝑘 , (A.44)

where �̌�⊺𝑘 ∈ ℝ1×J is the vector of unknown Lagrange basis function coefficients, as this is a scalar
conservation law. Taking advantage of the fact that the spatial discretization is uniform (see §A.1), and
applying (A.10), the previous is equivalent9 to:

1
2�̃�

d�̌�𝑘
d𝑡∗ + [�̆�𝒍]𝜕𝛺𝑘 = 𝓒

⊺�̌�𝑘 . (A.45)

The boundary flux term is:
[�̆�𝒍]𝜕𝛺𝑘 = �̆�

𝑅
𝑘 𝒍(1) − �̆�𝐿𝑘𝒍(−1) , (A.46)

with �̆� being associated with a linear numerical flux function, such as the following:

�̆� (𝑞𝐿 , 𝑞𝑅) = 1 + 𝛽
2 𝑞𝐿 + 1 − 𝛽2 𝑞𝑅 , (A.47)

in which the value of 𝛽 ∈ ℝ determines the amount of upwinding. All methods studied in this report
employ the fully upwind Riemann flux10, which is reproduced by setting 𝛽 = 1. In favor of generality,
9Note that 𝛥𝑥𝑘2 �̃�𝑘 =𝓜𝑘.
10Typically, 0 ≤ 𝛽 ≤ 1 (central to upwind).



246 A. Modified Wavenumber Analysis

𝛽 will be kept arbitrary in this appendix; for an arbitrary element 𝛺𝑘, the left and right numerical fluxes
are:

�̆�𝑅𝑘 =
1 + 𝛽
2 𝒍⊺(1)�̌�𝑘 +

1 − 𝛽
2 𝒍⊺(−1)�̌�𝑘+1 , �̆�𝐿𝑘 =

1 + 𝛽
2 𝒍⊺(1)�̌�𝑘−1 +

1 − 𝛽
2 𝒍⊺(−1)�̌�𝑘 . (A.48)

It is now possible to write the semidiscrete advection equation as:

�̃�d�̌�𝑘
d𝑡∗ = (2𝓒

⊺ + 𝑬) �̌�𝑘 + 𝑬−�̌�𝑘−1 + 𝑬+�̌�𝑘+1 . (A.49)

Note that, in general, all degrees of freedom in the three patches within the stencil of the discretiza
tion appear in the previous system of ODEs. In order to simplify the problem further, it is necessary
to exploit the periodicity of the discretization such that a relationship between the degrees of freedom
across multiple patches can somehow be encoded in the matrix of coefficients of the system. Recalling
(A.18),

�̌�𝑘(𝑡∗) = �̂�𝑛(𝑡∗)ei𝜅
∗𝑛𝑘 , (A.50)

and by the properties of the exponential function, �̌�𝑘±1 ≡ �̌�𝑘e±i𝜅
∗𝑛 . Equation (A.49) can therefore be

rewritten in the form of (A.43), defining:

𝑴≔�̃� , (A.51a)
𝑪≔𝓒⊺ , (A.51b)
𝑬≔(1 − 𝛽)𝒍(−1)𝒍⊺(−1) − (1 + 𝛽)𝒍(1)𝒍⊺(1) , (A.51c)
𝑬−≔(1 + 𝛽)𝒍(−1)𝒍⊺(1) , (A.51d)
𝑬+≔(−1 + 𝛽)𝒍(1)𝒍⊺(−1) . (A.51e)

A.3.2. FR/CPR
Equation (5.14), when particularized for the scalar advection equation, becomes11:

d�̌�⊺𝑘
d𝑡 + 2𝑎

𝛥𝑥𝑘
(�̌�⊺𝑘𝓓+ 𝛥�̆�𝐿𝑘𝜶⊺𝐿 + 𝛥�̆�𝑅𝑘𝜶⊺𝑅) = 0 , (A.52)

which, once transposed and in dimensionless form, simplifies to:

d�̌�𝑘
d𝑡∗ + 2 (𝓓

⊺�̌�𝑘 + 𝜶𝐿𝛥�̆�𝐿𝑘 + 𝜶𝑅𝛥�̆�𝑅𝑘 ) = 0 . (A.53)

This time, it is the difference between corrected and uncorrected fluxes at each edges that needs to be
expanded in terms of the (nodal) degrees of freedom of the local stencil:

𝛥�̆�𝐿𝑘 = �̆�𝐿𝑘 − 𝑞ℎ𝑘 (𝑡∗, −1) =
1 + 𝛽
2 𝒍⊺(1)�̌�𝑘−1 −

1 + 𝛽
2 𝒍⊺(−1)�̌�𝑘 , (A.54a)

𝛥�̆�𝑅𝑘 = �̆�𝑅𝑘 − 𝑞ℎ𝑘 (𝑡∗, 1) =
1 − 𝛽
2 𝒍⊺(−1)�̌�𝑘+1 −

1 − 𝛽
2 𝒍⊺(1)�̌�𝑘 . (A.54b)

Proceeding as in the previous subsection, 𝓡∗𝑛 in the FR/CPR case is found to adhere to (A.43) if:

𝑴≔�̃� ≡ 𝑰 , (A.55a)
𝑪≔−𝓒⊺ ≡ −𝓓⊺ , (A.55b)
𝑬≔(1 + 𝛽)𝜶𝐿𝒍⊺(−1) + (1 − 𝛽)𝜶𝑅𝒍⊺(1) , (A.55c)
𝑬−≔−(1 + 𝛽)𝜶𝐿𝒍⊺(1) , (A.55d)
𝑬+≔−(1 − 𝛽)𝜶𝑅𝒍⊺(−1) . (A.55e)

11For economy of notation, let 𝜶⊺≔𝑔′(𝝃⊺) ∈ ℝ1×J.



A.4. Linear stability 247

A.3.3. DGIGA
Equation (6.14)—which I refer to as the modal flux treatment—becomes, for the advection equation:

�̂�𝑘 = (𝑎�̂�𝑘𝑵(𝝃⊺)) (𝑵(𝝃⊺))
−1 ≡ 𝑎�̂�𝑘 , (A.56)

i.e. it is identical to (6.15), the nodal flux treatment. Once particularized to the current case, the general
semidiscrete conservation law for DGIGA, (6.16), becomes precisely analogous to that of DGSEM—
the only difference being the type of basis functions employed (Bsplines, in this case):

1
2�̃�

d�̂�𝑘
d𝑡∗ + [�̆�𝑵]𝜕𝛺𝑘 = 𝓒

⊺�̂�𝑘 . (A.57)

Consequently, the matrices in (A.43) for DGIGA are defined analogously to the DGSEM ones, (A.51).

A.4. Linear stability
Consider (A.22) again. Each of its components encodes advection for a single eigenmode, with all
information associated with the spatial derivative of the solution contained in �̃�∗𝑗𝑛. Linear stability anal
ysis, for highorder schemes, consists on determining the conditions (i.e. timestep size) under which
the contribution to the solution due to the 𝑗th eigenmode reduces (stability), increases (instability) or
remains the same (equilibrium) in magnitude, as time advances. In the method of lines (see §7.1), the
role of a time integration scheme is to approximate the term at the righthandside of:

𝓆𝑗𝑛(𝑡∗ + 𝛥𝑡∗) − 𝓆𝑗𝑛(𝑡∗) = �̃�∗𝑗𝑛∫
𝑡∗+𝛥𝑡∗

𝑡∗
𝓆𝑗𝑛(𝑡∗)d𝑡∗ , (A.58)

an equation that arises when integrating a component of (A.22) in time, from the current instant, 𝑡∗ (in
which the solution is known), to the next, 𝑡∗ + 𝛥𝑡∗.

As an example, consider the implicit Euler timescheme (which also corresponds to the firstorder
implicit finitedifference approximation to the first time derivative). The integral in question is approxi
mated as:

∫
𝑡∗+𝛥𝑡∗

𝑡∗
𝓆𝑗𝑛(𝑡∗)d𝑡∗ ≈ 𝛥𝑡∗𝓆𝑗𝑛(𝑡∗ + 𝛥𝑡∗) . (A.59)

Using this approximation in (A.58), we obtain:

𝓆𝑗𝑛(𝑡∗ + 𝛥𝑡∗)
𝓆𝑗𝑛(𝑡∗)

=
̂̂𝓆𝑗𝑛e�̃�

∗
𝑗𝑛(𝑡∗+𝛥𝑡∗)

̂̂𝓆𝑗𝑛e�̃�
∗
𝑗𝑛𝑡∗

= e�̃�
∗
𝑗𝑛𝛥𝑡∗ ≈ 1

1 − 𝛥𝑡∗�̃�∗𝑗𝑛
. (A.60)

This shows that:

• Nontrivial initial conditions ( ̂̂𝓆𝑗𝑛 ≠ 0) have no effect on linear stability.

• Exact time integration modifies the solution by a factor of e�̃�
∗
𝑗𝑛𝛥𝑡∗ , per timestep.

• The use of an approximate time integration scheme results in some approximation to the previous.

A.4.1. Amplification factor
It is always possible (for any linear timescheme) to follow these same steps and define an amplification
factor function, 𝐺 ∶ ℂ → ℂ, such that:

𝐺(𝑧) ≈ e𝑧 . (A.61)

This function only depends on the time scheme (not on the spatial operator) as long as 𝑧 is allowed to
take any value in the complex plane, to which 𝐺 associates a complex value. In fact, the role of the
spatial scheme is to restrict such values to 𝑧 = 𝛥𝑡∗�̃�∗𝑗𝑛.

By treating 𝑧 ∈ ℂ as an independent variable, it is possible to study the stability of each semi
discretization separately. An isocontour of |𝐺(𝑧)| joins together the values of 𝑧 that result in certain
amplification. The set of all 𝑧 for which |𝐺(𝑧)| = 1 enclose the stability region of the scheme, which
is the collection of all 𝑧 for which |𝐺(𝑧)| < 1, and for which the timeintegration is stable. For implicit



248 A. Modified Wavenumber Analysis

Euler, the amplification factor function gives a stability region encompassing the entire complex plane
except for the circle tangent to the imaginary axis with center at 𝑧 = 1. An equivalent expression can
be obtained for any linear scheme, including those with multiple stages (e.g. RungeKutta) or steps
(e.g. AdamsBashforth). Amplification factor functions of several SSP RungeKutta schemes are listed
in §7.3.

A.4.2. Fourier footprint
The collection of all eigenvalues of a spatial discretization—all eigenmodes, all wavenumbers—is fre
quently referred to as its Fourier footprint. These may be thought of as curves12 in the complex plane13.
The (nondimensional) timestep size acts as a scaling factor for said curves. All such figures in this
report are scaled so that all eigenvalues are within the |𝐺(𝑧)| = 1 contour (also shown) for a particular
time scheme (3stage, 3rd order strongstabilitypreserving RungeKutta).

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (�̃�)
−𝑎

𝛥𝑡
ℜ
( 𝜅
)

Figure A.3: Dispersion relation (top, left), dissipation relation (bottom, left) and Fourier footprint (right) of the
upwind ( ) and centered ( ), p = 0 discretizations. Their footprints are shown scaled by the Courant numbers
1.256 and 1.732, respectively.

A.4.3. Timestep size limits
The influence that the spatial semidiscretization scheme has on stability is thus encoded in the set
of points in the complex plane—the eigenvalues of its spatial operator—which, in combination with an
amplification factor function, will result in certain amplification factor magnitude. For a given Fourier
mode to be stable, none of the eigenmodes associated to it can have an amplitude factor greater than
one. Linear stability of a full discretization is therefore guaranteed whenever the entire Fourier footprint
of the spatial semidiscretization, scaled by the dimensionless timestep size, lies within the stability
region of the timeintegration scheme it is paired with.

12These curves correspond to the limit as 𝛥𝑥 → 0. In practice, they are sampled at KJ wavenumbers, uniformly distributed
around (and including) 𝜅 = 0; K is the number of generating patterns (i.e. patches or elements) within 𝛺, and J is the number
of basis function in each.

13Alternatively, one can regard the previous as projections onto the complex plane of the threedimensional curves shown in
figure A.4.



A.5. Quantifying dispersion and dissipation 249

−2
0

2 −3 −2 −1 0 1 2 3

−2

−1

0

𝜅𝛥𝑥
ℜ (�̃�) 𝛥𝑥

ℑ
( 𝜅
) 𝛥

𝑥

Figure A.4: Modified wavenumbers of figure A.3 (dimensionless, but with no scaling), now seen as socalled Bloch
waves [121].

This dimensionless timestep size expresses a ratio between the physical and numerical speeds of
propagation of information, and thus can be seen as a Courant number (𝜍). More precisely, the current
nondimensionalization gives:

𝛥𝑡∗ = 𝑎
𝛥𝑥/𝛥𝑡 ≡ 𝜍 , (A.62)

which matches the definition of the Courant number used in this report. Every combination of time and
space semidiscretizations will have a maximum stable Courant number, defined as

𝜍max ≡ 𝛥𝑡∗max≔ inf {𝛥𝑡∗ ≥ 0 : ∀𝑗, 𝑛 |𝐺 (𝛥𝑡∗�̃�∗𝑗𝑛)| = 1} , (A.63)

i.e. the largest 𝜍 for which no point of the Fourier footprint of the spatial scheme falls outside the stability
region of the time scheme. It is possible, nevertheless, that a discretization has 𝜍max = 0; it is then said
to be unconditionally unstable.

A.5. Quantifying dispersion and dissipation
With (A.25) as the definition of the modified wavenumber, the definitions of modified dissipation rate
and modified angular frequency arise naturally as analogues to their exact counterparts, derived from
(A.13). Assuming that a single representative �̃�∗𝑛 modified wavenumber can be found for every wave
mode, it is conventional in the literature to qualitatively judge the spectral performance of a scheme by
plotting ℜ(�̃�∗𝑛) and ℑ (�̃�∗𝑛) against 𝜅∗𝑛, for 𝑛 ≥ 0. This leads to the definition of �̃�∗ ∶ ℝ → ℂ as a (dimen
sionless) modified wavenumber associated to the (also dimensionless) exact wavenumber 𝜅∗. With
highorder discretizations, it is typical to normalize the exact and modified (dimensionless) wavenum
bers by J, the number of basis functions (i.e. degrees of freedom) per patch/element; this is because
𝜅∗ ∈ [−𝜋J, 𝜋J]. Moreover, the following symmetry around the origin holds: �̃�∗(𝜅∗) = − conj �̃�∗(−𝜅∗)
(real parts are antisymmetric, imaginary parts are symmetric).

A.5.1. Order of accuracy
The ability of a method to approximate the exact dispersion and dissipation relations can be measured
by taking the absolute value of the (complex) difference between exact and modified wavenumbers:

𝐸𝑇(𝜅∗)≔ |�̃�∗(𝜅∗) − 𝜅∗| . (A.64)

Following [55] and [120], one may compute the following theoretical order of accuracy associated to
the dispersion and dissipation errors of a spatial semidiscretization by evaluating (A.64) at a pair of



250 A. Modified Wavenumber Analysis

wellresolved wavenumbers, 𝜅∗ and 𝜅∗
2 :

𝐴𝑇≔
ln (𝐸𝑇 (𝜅∗)) − ln (𝐸𝑇 (

𝜅∗
2 ))

ln (2) − 1 . (A.65)

A piecewise polynomial solution discretization of degree p, in general, can be expected to converge
such that |𝑞ℎ − 𝑞| = 𝒪 (𝛥𝑥p+1). In practice, however, it is sometimes the case that quantities such as
the period of oscillation in an unsteady wake, or even—hypotetically—a boundary layer profile around
a sufficiently smooth geometry, are superaccurate [8], in the sense that their error reduces at a higher
thanexpected rate as themesh is refined—typically, for DG,𝒪 (𝛥𝑥2p+1). The quantity𝐴𝑇 is a theoretical
estimate of said superconvergence order [55, 120]14.

A.5.2. Resolving efficiency
As the discretization is refined—or, equivalently, for low enough wavenumbers—�̃�∗ ≈ 𝜅∗. The highest
wavenumber that a given discretization can resolve accurately is another important indicator of its
performance (the higher the better). Lele [81] proposed to define as the socalled resolving efficiency of
a scheme as the fraction between its highest wellresolved wavenumber, and its highest resolvable one.
This, however, still requires some criterion to distinguish between wellresolved and badlyresolved
wavenumbers.

Typically, the highest wellresolved (dimensionless) wavenumber is simply defined as:

𝜅∗𝑓≔ sup{𝜅∗ > 0 : 𝐸𝑇(𝜅
∗)

𝜅∗ ≤ 𝜀} , (A.66)

with an error threshold in the range 0.001 ≤ 𝜀 ≤ 0.1 [7, 81]—I use 𝜀 = 0.01. Any 𝜅∗ < 𝜅∗𝑓 is considered
to be wellresolved, and the resolving efficiency is:

𝑒1≔
𝜅∗𝑓
𝜋J . (A.67)

The larger 𝑒1 is, the more wavelengths can be resolved accurately per degree of freedom.

A.5.3. Numerical cutoff wavenumber
Different from the resolution threshold set by 𝜅∗𝑓, but also of interest, is the wavenumber at which
numerical dissipation starts to become significant. Numerical dissipation can act as an implicit sub
gridscale model in LES, damping any scales beyond some specific wavenumber.

Moura et al. [92] argue for what they refer to as the “1% rule”, a ruleofthumb criterion used to
define this cutoff threshold. Given a semidiscretization, let:

𝜅∗1%≔ sup{𝜅∗ > 0 : 1 − e
ℑ(�̃�∗)
J ≤ 0.01} , (A.68)

i.e. the wavenumber at which any propagating wave (regardless of its speed) has its amplitude scaled
to 99%, per degree of freedom crossed15. Numerical evidence suggests that this criterion is able to
accurately predict the beginning of the numerically induced dissipation range in underresolved turbulent
flow simulations, at least for DG schemes [93].

A.5.4. Dispersion to dissipation ratio
Within the wellresolved range, it is desirable for a semidiscretization to minimize 𝐸𝑇. As dispersion
errors start to become important, however, it is no longer optimal to have the least amount of dissipation
possible (at least in LES, there will—by definition—be some underresolved wavenumbers present in
the simulation). Instead, it would be desirable to have large numerical dissipation acting only on those
waves that are being advected at erroneous speeds, leaving the wellresolved ones untouched. One
may quantify this as follows, a slight generalization of the ideas in [3].
14Assuming that the Courant number is kept constant as 𝛥𝑥 is refined [8, p. 6].
15See §A.5.4.



A.5. Quantifying dispersion and dissipation 251

Consider, as the exact solution, a monochromatic wave of the form of (A.33), with (dimensionless)
wavenumber 𝜅∗. In any such wave, energy (and, equivalently, information) propagates through the
domain at the socalled group velocity [85, 115, 119]:

𝑣∗𝑔≔
d𝜅∗
d𝜅∗ ≡ 1 . (A.69)

This speed, defined as the derivative of the angular frequency with respect to the wavenumber, is
identically equal to unity for the exact advection problem under the current nondimensionalization
(A.10). In the exact solution, any perturbation (regardless of 𝜅∗) travels along the domain at a rate of “J
degrees of freedom per dimensionless unit of time”, with no change in amplitude.

In the discrete case, we have seen that multiple eigenmodes arise (§A.2.2). Any energy present
initially in the numerical solution will be distributed among all these modes (see §A.2.4). It is reasonable
to assume, then, that the fraction of the initial energy associated with a given eigenmode—e.g. the 𝑗th
one—will affect the solution independently of the others, and in accordance to this eigenmode’s wave
equation. Each of these “eigenwaves” will then carry a fraction of the total energy initially available in
the solution at its own modified group velocity:

�̃�∗𝑔,𝑗≔ℜ(
d�̃�∗𝑗
d𝜅∗ ) . (A.70)

If the numerical scheme is dispersive, 𝑣∗𝑔 ≠ �̃�∗𝑔,𝑗. This means that, as time progresses, the energy
content of the 𝑗th eigenmode gets further and further away from its desired position (that which would
correspond to the exact solution). We may, in that case (significant dispersion), associate said energy
to an undesired perturbation traveling at a dimensionless speed of 𝑣∗𝑔−�̃�∗𝑔,𝑗 along the domain. In terms
of number of degrees of freedom—of which, on average, there are J per every dimensionless unit of
distance (i.e. patch width)—the reach of this spurious perturbation, as a function of (dimensionless)
time and wavenumber, is: J|𝑣∗𝑔 − �̃�∗𝑔,𝑗|𝑡∗.

Nevertheless, if, in addition to being dispersive, a given semidiscretization is also dissipative, the
amplitude of the aforementioned perturbation will also be subjected to damping. This is an exponential
decay process (ℑ(�̃�∗𝑗) < 0 is assumed); the time it takes for the amplitude to reduce to a given fraction
1/𝑟 of its initial value is:

1
𝑟 = eℑ(�̃�

∗
𝑗 )𝑡∗1/𝑟 ⟹ 𝑡∗1/𝑟≔

− ln(𝑟)
ℑ (�̃�∗𝑗)

, (A.71)

and, for simplicity, let us define 𝑡1/e (𝑟 = e) to be the lifetime16 of this perturbation. In conclusion, the
mean lifetime—in terms of number of degrees of freedom “polluted”—of any spurious energy content
in the numerical solution associated to the 𝑗th eigenmode, is:

𝜒𝑗(𝜅∗)≔
J |1 − ℜ(d�̃�

∗
𝑗

d𝜅∗ )|

−ℑ (�̃�∗𝑗)
, (A.72)

a function of the (dimensionless) wavenumber only.
Furthermore, since each eigenmode may have a different amount of energy, let us define the overall

effect of all eigenmodes as the weighted average between the relative energy content of each pertur
bation, and its lifetime:

𝜒(𝜅∗)≔
J

∑
𝑗=1
𝛤𝑗𝜒𝑗(𝜅∗) . (A.73)

The largest the spurious energy content, and the largest its lifetime, the worse. Therefore, I would argue
that 𝜒 should be as low as possible in the underresolved wavenumber range. A concise way to mea
sure this effect is through the following quantity—the mean lifetime, averaged over all underresolved
wavenumbers:

‖𝜒‖≔ 1
J𝜋 − 𝜅∗𝑓

∫
J𝜋

𝜅∗𝑓
𝜒(𝜅∗)d𝜅∗ , (A.74)

16This definition is a standard convention, alternative to the perhaps more familiar halflife, 𝑡1/2 (𝑟 = 2).



252 A. Modified Wavenumber Analysis

using 𝜅∗𝑓 from §A.5.2. Equation (A.74) purposefully excludes the wellresolved wavenumber range, for
which 𝜒 is meaningless; in practice, this means that any indetermination in 𝜒𝑗 as 𝜅∗ → 0 is avoided.
Adaptive quadrature can be used to compute (A.74); however, because the integrand happens to be
highly nonsmooth, I use the rather coarse adaptation tolerances 1 × 10−5 (absolute) and 1 × 10−3
(relative).



B
Time Complexity Estimation

This appendix details the estimation of cost per step (in FLOPs) used in §12.4. The approach, based on
my implementation in particular, simply consists on selecting those methods representative of the cost
of a time step (indicated in listing B.1), and tracking the number of floating point operations involved in
every subroutine invoked by these. Its outcome is the cost model encoded by (12.15).

In what follows, I list every method involved in advancing the numerical solution from one step
to the next, highlight those nested functions the cost of which I take into account, and indicate the
number of floatingpoint operations made in every line of their source code—summation, subtraction,
multiplication or division between two floatingpoint scalars; each of these counts as one FLOP. These
estimates assume that the PDE being solved is the linear advection equation (2.19), such that the
solution over a given element or patch is encoded by a single vector of J entries. Moreover, the time
scheme is SSPRK3(3) from §7.3.3 (every timestep is subdivided into three stages), and periodic
boundary conditions are employed at both ends of the domain.

Listing B.1: Fragment of the Solver.stepForwardmethod (inherited by SSP_RK3) that advances the solution by
one timestep. Only the two highlighted methods (and their nested function calls) will be taken into account in the
cost estimation.

1 function STOP = stepForward(this,mesh)
2 ⟨...⟩
3 % Advance one time‐step:
4 this.stageNow = 0; % reset stage counter
5 while this.stageNow < this.stageCount
6 % Advance stage counter:
7 this.stageNow = this.stageNow + 1;
8 % Evaluate solution residuals:
9 mesh.computeResiduals(this.physics,this) See B.2
10 % Advance solution by one stage:
11 for element = mesh.elements
12 this.applyStage(element) 4JFLOPs (B.16)
13 end
14 % Apply limiter after each stage:
15 this.limiter.applyStage(mesh,this)
16 end
17 % Apply limiter after a full time step (one additional time):
18 this.limiter.applyStep(mesh,this)
19 ⟨...⟩
20 end

The software these estimates will be deduced for (see §9.1) makes use of the objectoriented
paradigm, meaning that the step update has been designed into separate and nonoverlapping log
ical entities. As a consequence, all differences between DGIGA, FR/CPR and DGSEM (all of them

253



254 B. Time Complexity Estimation

derived from a common parent class) are concentrated into the one method that computes the numeri
cal residual’s expansion coefficients. All computations made within a single timescheme stage update
can be grouped into the following three categories:

• Discontinuous coupling of the current solution across element interfaces

• Computation of the current numerical residual

• Computation of the numerical solution at the following timestage

Any other costs, most of which occurring only once per simulation (e.g. projection of initial conditions,
assembly of mass and gradient matrices), will be neglected. So will any overheads associated with
function calls, memory access, pointer arithmetic, and similar.

B.1. Discontinuous coupling
In DG methods the coupling between elements is made via a numerical flux, typically obtained by solv
ing a Riemann problem (see §3.3.3). This section details the cost of all methods involved in computing
said interface fluxes—including the treatment of boundary conditions, which are enforced weakly (§3.6).
Note that most methods in this section require knowledge of each element’s two immediate neighbors,
as well as the edge that each pair of elements share.

Listing B.2: Method computeResiduals of the Mesh class. Called in B.1, once per stage.

1 function computeResiduals(this,physics,solver)
2 % Updates the residuals of all cells in a mesh, using the
3 % spatial discretization scheme assigned to the mesh.
4 %
5 % Compute the state at both edges of each element:
6 [this.elements.localTimeDelta] = deal(inf);
7 this.elements.interpolateStateAtEdges 4JKFLOPs (B.3)
8 % Also for ghost elements:
9 this.boundaries.apply(physics,solver) 8JFLOPs (B.4)
10 % Compute the Riemann flux at each edge:
11 this.edges.computeFlux(physics) 5(K + 1)FLOPs (B.6)
12 % Apply the spatial discretization operator to each element:
13 this.elements.computeResiduals(physics) See B.9
14 end

Listing B.3: Method interpolateStateAtEdges of the Element class. Called in B.2 and B.5.

1 function interpolateStateAtEdges(these)
2 % Evaluates and stores the state vector at these elements' edges.
3 % Vector input.
4 for this = these
5 this.stateL = this.states*this.basis.left; 2JFLOPs
6 this.stateR = this.states*this.basis.right; 2JFLOPs
7 end
8 end

Listing B.4: Method apply of the Boundary class. Its role is to enforce boundary conditions in a generic manner.
Called by B.2.

1 function apply(these,physics,solver)
2 % Updates the ghost element of each of these boundaries
3 % according to each's scalar apply method.
4 these(1).apply_scalar(physics,solver,true) 4JFLOPs (B.5)
5 these(2).apply_scalar(physics,solver,false) 4JFLOPs (B.5)
6 end



B.1. Discontinuous coupling 255

Listing B.5: Method apply_scalar of the Periodic class, a particular type of Boundary. It particularizes the
ghost element approach of imposing boundary conditions to the periodic case. Used twice in B.4—once for each
boundary of the mesh.

1 function apply_scalar(this,varargin)
2 % Updates the ghost element's states with those of its ”real”
3 % counterpart (i.e. the copy of it owned by the mesh).
4 this.ghostElement.states = this.oppositeBoundElement.states;
5 this.ghostElement.interpolateStateAtEdges 4JFLOPs (B.3)
6 end

Listing B.6: Method computeFlux of the Edge class, called in B.2.

1 function computeFlux(these,physics)
2 % Computes and sets numerical fluxes (i.e. solutions of the
3 % Riemann problem at an edge) on both elements sharing each of
4 % these edges, including a conventional sign. Also sets a local
5 % time‐step size based on each Riemann problem's characteristic
6 % speeds. Vector input.
7 for this = these
8 [flux,waveSpeeds] = physics.riemannFlux(...
9 this.elementL.stateR,this.elementR.stateL); 1FLOPs (B.7)
10 this.elementL.riemannR = flux; % 'normal vector' = +1
11 this.elementR.riemannL = ‐flux; % 'normal vector' = ‐1 1FLOPs
12 this.computeTimeDeltas(waveSpeeds); 3FLOPs (B.8)
13 end
14 end

Listing B.7: Method riemannFlux of the Advection class. It particularizes the generic Riemann solver (the
outputs of which are a numerical flux and a vector of wave speeds) to the simple case of linear advection. It is
called in B.6, for every edge in the mesh (boundaries included).

1 function [flux,S] = riemannFlux(this,stateL,stateR)
2 S = this.advSpeed;
3 if S > 0
4 flux = S*stateL; 1FLOPs
5 else
6 flux = S*stateR; 1FLOPs
7 end
8 end

Listing B.8: Method computeTimeDeltas of the Edge class. I use it to determine candidate timestep sizes for
the next timestep. It is called in B.6, once per edge.

1 function computeTimeDeltas(this,waveSpeeds)
2 % Sets local time‐step sizes based on characteristic speeds and
3 % element sizes, such that each local Courant number is unity.
4 % Does not override more conservative existing values.
5 this.elementL.localTimeDelta = min(...
6 [this.elementL.localTimeDelta
7 ‐this.elementL.dx./waveSpeeds(waveSpeeds < 0)]); 2FLOPs
8 this.elementR.localTimeDelta = min(...
9 [this.elementR.localTimeDelta
10 this.elementR.dx./waveSpeeds(waveSpeeds > 0)]); 1FLOPs
11 end



256 B. Time Complexity Estimation

Listing B.9: Method computeResiduals of the Element class. Used in B.2.

1 function computeResiduals(these,physics)
2 for this = these
3 this.basis.computeResiduals(this,physics); See B.10, B.13 and B.15
4 end
5 end

B.2. Residual evaluation (spatial schemes)
Once the numerical fluxes ensuring a coupled solution have been made available to each element, its
residuals can be evaluated completely independently from the rest. In fact, from this point onward, all
methods are applied elementwise.

B.2.1. DGSEM
The first of the three types of spatial schemes under consideration is DGSEM (§4). Since its trial and
test spaces are spanned by an orthogonal basis, the inverse of its diagonal mass matrix is trivial (it
is applied as a vector of weighting factors). Its derivatives matrix, however, is full—hence the cost
indicated for the matrixvector product in line 3 of listing B.10.

Listing B.10: Method computeResiduals of the DGSEM class, a subtype of the Basis superclass. Called in B.9,
for every element.

1 function computeResiduals(this,element,physics)
2 element.computeFluxesFromStates(physics); JFLOPs (B.11)
3 element.residuals =
4 element.fluxes*this.derivatives 2J2 FLOPs
5 + JFLOPs
6 (element.riemannR.*this.right' JFLOPs
7 + JFLOPs
8 element.riemannL.*this.left') JFLOPs
9 ./this.nodeWeights'; JFLOPs
10 element.residuals = ‐ 2/element.dx*element.residuals; J + 1FLOPs
11 end

Listing B.11: Method computeFluxesFromStates of the Element class. Called by B.10 and B.13.

1 function computeFluxesFromStates(this,physics)
2 this.fluxes = physics.flux(this.states); JFLOPs (B.12)
3 end

Listing B.12: Method flux of the Advection class, a particular type of Physics. Used in B.11 and B.15.

1 function flux = flux(this,state)
2 flux = this.advSpeed*state; JFLOPs
3 end

B.2.2. FR/CPR
The second type of spatial semidiscretization, FR/CPR (detailed in §5), takes it one step further: not
only is its mass matrix diagonal, it is the identity. Its discrete gradient operator is, nevertheless, a full
matrix (as for DGSEM). However, due to the need of evaluating the uncorrected fluxes at the element
edges (these are required for the flux correction procedure), FR ends up requiring 2(J + 1)FLOPs
more than DGSEM for every residual evaluation, making this scheme slightly more costly1. This can
be observed by comparing lisitings B.13 and B.10.
1Note that this would not have been the case if e.g. the distribution of nodes were GaussLobatto; if the value of the fluxes was
available at element edges by design, both in DGSEM and FR, the latter would be the cheapest of the two.



B.2. Residual evaluation (spatial schemes) 257

Listing B.13: Method computeResiduals of the FR class, another descendant of Basis. Called in B.9, for every
element.

1 function computeResiduals(this,element,physics)
2 element.computeFluxesFromStates(physics); JFLOPs (B.11)
3 element.interpolateFluxAtEdges; 4JFLOPs (B.14)
4 element.residuals =
5 element.fluxes*this.derivatives 2J2 FLOPs
6 + JFLOPs
7 (‐element.riemannL ‐ element.fluxL)*this.correctionsL J + 1FLOPs
8 + JFLOPs
9 (element.riemannR ‐ element.fluxR)*this.correctionsR; J + 1FLOPs
10 element.residuals = ‐2/element.dx*element.residuals; J + 1FLOPs
11 end

Listing B.14: Method interpolateFluxAtEdges of the Element class. Used in B.13.

1 function interpolateFluxAtEdges(this)
2 % Evaluates and stores the flux vector at the element's edges.
3 this.fluxL = this.fluxes*this.basis.left; 2JFLOPs
4 this.fluxR = this.fluxes*this.basis.right; 2JFLOPs
5 end

B.2.3. DGIGA
Lastly, the costs of the DGIGA scheme (presented in §6) are shown in listing B.15. Unlike the previous
two, this semidiscretization’s operators can be sparse—their halfbandwidth is at most p ≤ J − 1. This
is also the case for the mass matrix, which is therefore banded (rather than diagonal) for DGIGA. A
sparse matrixvector product requires twice as many FLOPs as the number of nonzero entries in said
matrix [91]. For a Bspline basis of k ≥ 1 breakpoint spans, degree p > 0 and smoothness 𝐶𝜘 ∶ 𝜘 < p
(all three of them integers), it can be shown that the number of nonzeroes in both massMatrix and
gradientMatrix (i.e.𝓜 and 𝓒, respectively) is:

nnz (𝓜) = nnz (𝓒) = k (p + 1)2 − (k − 1) (𝜘 + 1)2 . (B.1)

The fact that DGIGA employs a modal basis adds complexity to the computation of fluxes in the
interior of the element. I do so—as explained in §6.3.1—by first evaluating the state function at the
control point locations (line 2 of listing B.15), then evaluating the flux function there (line 3 of listing
B.15), and finally deducing the modal flux coefficients that would produce the control point flux values
just obtained (lines 4 to 7 of listing B.15). As shown in the listing, this is encoded by a multiplication
with the controlVandermonde matrix, 𝑵(𝝃⊺) (defined by equation 6.13) and its inversion. The number
of nonzero entries in 𝑵(𝝃⊺) bounded by (this underestimates the number of zeros by roughly up to 35%
for p ≤ 20 and k ≤ 5):

nnz (𝑵(𝝃⊺)) ≤ k (p2 + 1) − (k − 1) (𝜘2 + 1) . (B.2)
I estimate the cost of the inverse projection—from control location samples tomodal expansion coefficients—
by assuming that said controlVandermonde matrix has previously been factored into lower and up
per triangular full2 matrices, upperControlVandermonde and lowerControlVandermonde respec
tively. Each of the two triangular system inversions associated with these matrices, therefore, requires
J2 FLOPs—J being, as in DGSEM and FR, the total number of rows or columns of 𝓜, 𝓒 and 𝑵(𝝃⊺).
As a side note: recall that for linear advection this projection to/from control locations is unnecessary
altogether (see §6.3.1, equation 6.15); however, I consider that not taking the cost of these steps into
account would overestimate the performance of DGIGA in a misleading way.

DGIGA’s trial and test basis functions are not orthogonal. This manifests in yet another added cost,
this time associated with inverting its mass matrix. On the upside, massMatrix is guaranteed to be
2Unfortunately, controlVandermonde is nonsymmetric; pivoting might hence be required to ensure a stable factorization, which
will lead to the lower/upper bandwidth of its lower/upper triangular factors being increased, possibly, all the way up to J − 1.



258 B. Time Complexity Estimation

symmetricpositivedefinite; it is possible, therefore, to factorize it (via the Cholesky algorithm, without
pivoting) into a pair of triangular matrices (choleskyMassMatrix and its transpose) which preserve the
bandwidth of massMatrix (i.e. upper/lower bandwidth equal to p). Assuming, as previously, that said
Cholesky factor has been computed beforehand, it can quite easily be shown3 that the cost of each of
the two sparse triangular system solves (lines 12 and 13 of listing B.15) is as indicated.

Listing B.15: Method computeResiduals of DGIGA, also derived from Basis. Called in B.9, once per element.

1 function computeResiduals(this,element,physics)
2 element.residuals = element.states*this.controlVandermonde;

≤ 2k (p2 + 1) − 2 (k − 1) (𝜘2 + 1)FLOPs
3 element.fluxes = physics.flux(element.residuals); JFLOPs (B.12)
4 % Overcomplicated control Vandermonde matrix inversion...
5 element.fluxes = element.fluxes(:,this.colPivotIdsControlVandermonde)/

this.upperControlVandermonde; J2 FLOPs
6 element.fluxes(:,this.rowPivotIdsControlVandermonde) = element.fluxes/

this.lowerControlVandermonde; J2 FLOPs
7 % ...done.
8 element.residuals = element.fluxes*this.gradientMatrix;

2k (p + 1)2 − 2 (k − 1) (𝜘 + 1)2 FLOPs
9 element.residuals(:,[1 end]) = element.residuals(:,[1 end])...
10 ‐ [element.riemannL element.riemannR]; 2FLOPs
11 % Overcomplicated mass matrix inversion...
12 element.residuals = element.residuals/this.choleskyMassMatrix;

J (2p + 1) − p (p + 1)FLOPs
13 element.residuals = element.residuals/this.choleskyMassMatrix.';

J (2p + 1) − p (p + 1)FLOPs
14 % ...done.
15 element.residuals = element.residuals*2/element.dx; J + 1FLOPs
16 end

B.3. Solution update (time scheme)
Once both solution and residuals are available for each element, the former can be advanced one stage
towards the next timestep. This is done by the timescheme, e.g. SSPRK3(3). From listing B.16, it is
clear that each stage update requires 4JFLOPs (on average).

Listing B.16: Method applyStage of the SSP_RK3 class, implementing this particular type of Solver (its parent
class). It is called in B.1, three times (once per stage) for each element.

1 function applyStage(this,element)
2 switch this.stageNow
3 case 1
4 element.extraStates = element.states;
5 element.states = element.states + this.timeDelta*

element.residuals; 2JFLOPs
6 case 2
7 element.states = 0.75*element.extraStates + 0.25*(

element.states + this.timeDelta*element.residuals); 5JFLOPs
8 otherwise
9 element.states = element.extraStates/3 + (element.states +

this.timeDelta*element.residuals)/1.5; 5JFLOPs
10 end
11 end

3Consider an upper triangular matrix 𝑨 ∈ ℝJ×J of upper bandwidth p, i.e.𝑎𝑖𝑗 = 0 if 𝑗 − 𝑖 > p ∪ 𝑗 < 𝑖. We wish to solve 𝑨𝒙 = 𝒃.
We start with 𝑥J = 𝑏J/𝑎JJ (1 FLOP). Next, 𝑥J−1 = (𝑏J−1 − 𝑎J−1 J𝑥J)/𝑎J−1 J−1 (3 FLOPs); then 5, 7, and so on—until reaching 𝑖 = J−p. From
then on, each row has p + 1 nonzeros; the cost is 1 + 2pFLOPs per remaining row.



Bibliography
[1] Integrated Performance Analysis of Computer Systems. URL http://www.ipacs‐benchmark.

org.

[2] Milton Abramowitz and Irene Ann Stegun, editors. Handbook of Mathematical Functions with
Figures, Graphs and Tables. Applied Mathematics. National Bureau of Standards, Washington,
D. C., tenth edition, December 1972.

[3] Nikolaus Adams, Xiangyu Hu, and Volker Tritschler. Dispersiondissipation condition for finite
difference schemes. 2015. doi:10.13140/RG.2.1.5181.7122.

[4] Slimane Adjerid, Karen D. Devine, Joseph E. Flaherty, and Lilia Krivodonova. A posteriori error
estimation for discontinuous Galerkin solutions of hyperbolic problems. Computer Methods in
Applied Mechanics and Engineering, 191(1112):1097–1112, January 2002. ISSN 00457825.
doi:10.1016/S00457825(01)003188.

[5] Mohammad Alhawwary and Z. J. Wang. Fourier analysis and evaluation of DG, FD and com
pact difference methods for conservation laws. Journal of Computational Physics, 373:835–862,
November 2018. ISSN 00219991. doi:10.1016/j.jcp.2018.07.018.

[6] George B. Arfken and Hans J. Weber. Mathematical Methods for Physicists. Elsevier Academic
Press, sixth edition, 2005.

[7] Kartikey Asthana and Antony Jameson. HighOrder Flux Reconstruction Schemes with Minimal
Dispersion and Dissipation. Journal of Scientific Computing, 62(3):913–944, March 2015. ISSN
08857474, 15737691. doi:10.1007/s1091501498825.

[8] Harold Atkins and Brian Helenbrook. SuperConvergence of Discontinuous Galerkin Method Ap
plied to the NavierStokes Equations. In 19th AIAA Computational Fluid Dynamics, San Antonio,
Texas, June 2009. American Institute of Aeronautics and Astronautics. ISBN 9781624101373.
doi:10.2514/6.20093787.

[9] Garrett E. Barter and David L. Darmofal. Shock capturing with PDEbased artificial viscosity for
DGFEM: Part I. Formulation. Journal of Computational Physics, 229(5):1810–1827, March 2010.
ISSN 00219991. doi:10.1016/j.jcp.2009.11.010.

[10] Timothy Barth and Dennis Jespersen. The design and application of upwind schemes on unstruc
tured meshes. In 27th Aerospace Sciences Meeting, Reno,NV,U.S.A., January 1989. American
Institute of Aeronautics and Astronautics. doi:10.2514/6.1989366.

[11] Andrea D. Beck, Thomas Bolemann, David Flad, Hannes Frank, Gregor J. Gassner, Florian Hin
denlang, and ClausDieter Munz. Highorder discontinuous Galerkin spectral element methods
for transitional and turbulent flow simulations. International Journal for Numerical Methods in
Fluids, 76(8):522–548, November 2014. ISSN 02712091. doi:10.1002/fld.3943.

[12] Carl M. Bender and Steven A. Orszag. Advanced Mathematical Methods for Scientists and
Engineers I. Springer New York, New York, NY, 1999. ISBN 9781441931870 97814757
30692. doi:10.1007/9781475730692.

[13] Rupak Biswas, Karen D. Devine, and Joseph E. Flaherty. Parallel, adaptive finite element meth
ods for conservation laws. Applied Numerical Mathematics, 14(13):255–283, April 1994. ISSN
01689274. doi:10.1016/01689274(94)900299.

[14] Jiri Blazek. Computational Fluid Dynamics: Principles and Applications. ButterworthHeinemann,
Amsterdam, 3rd edition, 2015. ISBN 9780080999951.

259

http://www.ipacs-benchmark.org
http://www.ipacs-benchmark.org
https://doi.org/10.13140/RG.2.1.5181.7122
https://doi.org/10.1016/S0045-7825(01)00318-8
https://doi.org/10.1016/j.jcp.2018.07.018
https://doi.org/10.1007/s10915-014-9882-5
https://doi.org/10.2514/6.2009-3787
https://doi.org/10.1016/j.jcp.2009.11.010
https://doi.org/10.2514/6.1989-366
https://doi.org/10.1002/fld.3943
https://doi.org/10.1007/978-1-4757-3069-2
https://doi.org/10.1016/0168-9274(94)90029-9


260 Bibliography

[15] Jay P. Boris and David L. Book. Fluxcorrected transport. I. SHASTA, a fluid transport algorithm
that works. Journal of Computational Physics, 11(1):38–69, January 1973. ISSN 00219991.
doi:10.1016/00219991(73)901472.

[16] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Element Methods,
volume 15 of Texts in Applied Mathematics. Springer New York, New York, NY, 2008. ISBN 978
0387759333 9780387759340. doi:10.1007/9780387759340.

[17] A. Burbeau, P. Sagaut, and Ch.H. Bruneau. A ProblemIndependent Limiter for HighOrder
Runge–Kutta Discontinuous Galerkin Methods. Journal of Computational Physics, 169(1):111–
150, May 2001. ISSN 00219991. doi:10.1006/jcph.2001.6718.

[18] Cameron Taylor. Finite Difference Coefficients Calculator. URL https://web.media.mit.edu/
~crtaylor/calculator.html.

[19] C. Canuto, editor. Spectral Methods: Fundamentals in Single Domains. Scientific Computation.
SpringerVerlag, Berlin ; New York, 2006. ISBN 9783540307259.

[20] Claudio Canuto, M. Yousuff Hussaini, Alfio Maria Quarteroni, and Thomas A. Zang, Jr. Spectral
Methods in Fluid Dynamics. Springer Science & Business Media, December 2012. ISBN 978
3642841088.

[21] Jesse Chan and John A. Evans. Multipatch discontinuous Galerkin isogeometric analysis
for wave propagation: Explicit timestepping and efficient mass matrix inversion. Computer
Methods in Applied Mechanics and Engineering, 333:22–54, May 2018. ISSN 00457825.
doi:10.1016/j.cma.2018.01.022.

[22] Bernardo Cockburn and ChiWang Shu. TVB RungeKutta Local Projection Discontinuous
Galerkin Finite Element Method for Conservation Laws II: General Framework. Mathematics
of Computation, 52(186):411–435, 1989. ISSN 00255718. doi:10.2307/2008474.

[23] Bernardo Cockburn and ChiWang Shu. The RungeKutta local projection P1discontinuous
Galerkin finite element method for scalar conservation laws. Mathematical Modelling and Nu
merical Analysis, 25(3):337–361, 1991.

[24] Bernardo Cockburn and ChiWang Shu. The Runge–Kutta Discontinuous Galerkin Method for
Conservation Laws V. Journal of Computational Physics, 141(2):199–224, April 1998. ISSN
00219991. doi:10.1006/jcph.1998.5892.

[25] Bernardo Cockburn and ChiWang Shu. Runge–Kutta Discontinuous Galerkin Methods for
ConvectionDominated Problems. Journal of Scientific Computing, 16(3):173–261, September
2001. ISSN 15737691. doi:10.1023/A:1012873910884.

[26] Bernardo Cockburn, SanYih Lin, and ChiWang Shu. TVB RungeKutta local projection dis
continuous Galerkin finite element method for conservation laws III: Onedimensional sys
tems. Journal of Computational Physics, 84(1):90–113, September 1989. ISSN 00219991.
doi:10.1016/00219991(89)901836.

[27] Bernardo Cockburn, Suchung Hou, and ChiWang Shu. The RungeKutta Local Projec
tion Discontinuous Galerkin Finite Element Method for Conservation Laws. IV: The Multidi
mensional Case. Mathematics of Computation, 54(190):545, April 1990. ISSN 00255718.
doi:10.2307/2008501.

[28] J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs. Isogeometric Analysis: Toward
Integration of CAD and FEA. John Wiley & Sons, August 2009. ISBN 9780470749098.

[29] Jie Du, ChiWang Shu, and Mengping Zhang. A simple weighted essentially nonoscillatory lim
iter for the correction procedure via reconstruction (CPR) framework. Applied Numerical Mathe
matics, 95:173–198, September 2015. ISSN 01689274. doi:10.1016/j.apnum.2014.01.006.

https://doi.org/10.1016/0021-9991(73)90147-2
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1006/jcph.2001.6718
https://web.media.mit.edu/~crtaylor/calculator.html
https://web.media.mit.edu/~crtaylor/calculator.html
https://doi.org/10.1016/j.cma.2018.01.022
https://doi.org/10.2307/2008474
https://doi.org/10.1006/jcph.1998.5892
https://doi.org/10.1023/A:1012873910884
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.2307/2008501
https://doi.org/10.1016/j.apnum.2014.01.006


Bibliography 261

[30] Michael Dumbser and Raphaël Loubère. A simple robust and accurate a posteriori subcell
finite volume limiter for the Discontinuous Galerkin method on unstructured meshes. Journal of
Computational Physics, 319, May 2016. doi:10.1016/j.jcp.2016.05.002.

[31] R. Duvigneau. Isogeometric analysis for compressible flows using a Discontinuous Galerkin
method. Computer Methods in Applied Mechanics and Engineering, 333:443–461, May 2018.
ISSN 00457825. doi:10.1016/j.cma.2018.01.039.

[32] Régis. Duvigneau. CADconsistent adaptive refinement using a NURBSbased discontinuous
Galerkin method. International Journal for Numerical Methods in Fluids, page fld.4819, February
2020. ISSN 02712091, 10970363. doi:10.1002/fld.4819.

[33] B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen. On Godunovtype methods near low den
sities. Journal of Computational Physics, 92(2):273–295, February 1991. ISSN 00219991.
doi:10.1016/00219991(91)902113.

[34] Bernd Einfeldt. On GodunovType Methods for Gas Dynamics. SIAM Journal on Numerical
Analysis, 25(2):294–318, 1988. URL http://www.jstor.org/stable/2157317.

[35] European Commission. HighFidelity LES/DNS Data for Innovative Turbulence Models. URL
https://cordis.europa.eu/project/id/814837.

[36] David Flad, Andrea Beck, and ClausDieter Munz. Simulation of underresolved turbulent flows by
adaptive filtering using the high order discontinuous Galerkin spectral element method. Journal
of Computational Physics, 313:1–12, May 2016. ISSN 00219991. doi:10.1016/j.jcp.2015.11.064.

[37] C. A.J. Fletcher. The group finite element formulation. Computer Methods in Applied Me
chanics and Engineering, 37(2):225–244, April 1983. ISSN 00457825. doi:10.1016/0045
7825(83)901226.

[38] Gregor Gassner and David A. Kopriva. A Comparison of the Dispersion and Dissipation Er
rors of Gauss and Gauss–Lobatto Discontinuous Galerkin Spectral Element Methods. SIAM
Journal on Scientific Computing, 33(5):2560–2579, January 2011. ISSN 10648275, 10957197.
doi:10.1137/100807211.

[39] Gregor J. Gassner and Andrea D. Beck. On the accuracy of highorder discretizations for un
derresolved turbulence simulations. Theoretical and Computational Fluid Dynamics, 27(34):
221–237, June 2013. ISSN 09354964, 14322250. doi:10.1007/s0016201102537.

[40] Gregor J. Gassner, Andrew R. Winters, Florian J. Hindenlang, and David A. Kopriva. The BR1
Scheme is Stable for the Compressible Navier–Stokes Equations. Journal of Scientific Com
puting, 77(1):154–200, October 2018. ISSN 08857474, 15737691. doi:10.1007/s10915018
07021. Something is going on with this. There are two papers and one technical report; one
paper is an erratum of the first. The technical report is more recent than the papers and does not
have exactly the same content.

[41] S. Gottlieb, D. I. Ketcheson, and C.W. Shu. High order strong stability preserving time discretiza
tions. Journal of Scientific Computing, 38(3):251–289, 2009. doi:10.1007/s109150089239z.

[42] Sigal Gottlieb and ChiWang Shu. Total variation diminishing RungeKutta schemes. Mathemat
ics of Computation of the American Mathematical Society, 67(221):73–85, January 1998. ISSN
00255718, 10886842. doi:10.1090/S0025571898009132.

[43] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Chakravarthy. Uniformly high order
accurate essentially nonoscillatory schemes, III. Journal of Computational Physics, 71(2):231–
303, 1987. ISSN 00219991. doi:10.1016/00219991(87)900313.

[44] R. Hartmann. Adaptive discontinuous Galerkin methods with shockcapturing for the compress
ible Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 51(910):
1131–1156, July 2006. ISSN 02712091, 10970363. doi:10.1002/fld.1134.

https://doi.org/10.1016/j.jcp.2016.05.002
https://doi.org/10.1016/j.cma.2018.01.039
https://doi.org/10.1002/fld.4819
https://doi.org/10.1016/0021-9991(91)90211-3
http://www.jstor.org/stable/2157317
https://cordis.europa.eu/project/id/814837
https://doi.org/10.1016/j.jcp.2015.11.064
https://doi.org/10.1016/0045-7825(83)90122-6
https://doi.org/10.1016/0045-7825(83)90122-6
https://doi.org/10.1137/100807211
https://doi.org/10.1007/s00162-011-0253-7
https://doi.org/10.1007/s10915-018-0702-1
https://doi.org/10.1007/s10915-018-0702-1
https://doi.org/10.1007/s10915-008-9239-z
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1016/0021-9991(87)90031-3
https://doi.org/10.1002/fld.1134


262 Bibliography

[45] Ralf Hartmann and Paul Houston. Adaptive Discontinuous Galerkin Finite Element Methods for
the Compressible Euler Equations. Journal of Computational Physics, 183(2):508–532, Decem
ber 2002. ISSN 00219991. doi:10.1006/jcph.2002.7206.

[46] Ralf Hartmann and Tobias Leicht. Higher order and adaptive DGmethods for compressible flows.
VKI LS, 3:156, 2014.

[47] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications. Number 54 in Texts in Applied Mathematics. Springer, New York,
2008. ISBN 9780387720654 9780387720678.

[48] Stefan Hickel, Christian P. Egerer, and Johan Larsson. Subgridscale modeling for implicit large
eddy simulation of compressible flows and shockturbulence interaction. Physics of Fluids, 26
(10):106101, October 2014. ISSN 10706631, 10897666. doi:10.1063/1.4898641.

[49] Florian Hindenlang, Gregor J. Gassner, Christoph Altmann, Andrea Beck, Marc Staudenmaier,
and ClausDieter Munz. Explicit discontinuous Galerkin methods for unsteady problems. Com
puters & Fluids, 61:86–93, May 2012. ISSN 00457930. doi:10.1016/j.compfluid.2012.03.006.

[50] Charles Hirsch. Numerical Computation of Internal and External Flows: Fundamentals of Com
putational Fluid Dynamics. Elsevier/ButterworthHeinemann, Oxford ; Burlington, MA, 2nd ed
edition, 2007. ISBN 9780750665940.

[51] Charles Hirsch, Koen Hillewaert, Ralf Hartmann, Vincent Couaillier, JeanFrancois Boussuge,
Frederic Chalot, Sergey Bosniakov, and Werner Haase, editors. TILDA: Towards Industrial
LES/DNS in Aeronautics: Paving the Way for Future Accurate CFD  Results of the H2020 Re
search Project TILDA, Funded by the European Union, 2015 2018. Notes on Numerical Fluid
Mechanics and Multidisciplinary Design. Springer International Publishing, 2021. ISBN 9783
030620479. doi:10.1007/9783030620486.

[52] F. Q. Hu, M. Y. Hussaini, and J. L. Manthey. LowDissipation and LowDispersion Runge–
Kutta Schemes for Computational Acoustics. Journal of Computational Physics, 124(1):177–191,
March 1996. ISSN 00219991. doi:10.1006/jcph.1996.0052.

[53] Fang Q. Hu, M. Y. Hussaini, and Patrick Rasetarinera. An Analysis of the Discontinuous Galerkin
Method for Wave Propagation Problems. Journal of Computational Physics, 151(2):921–946,
May 1999. ISSN 00219991. doi:10.1006/jcph.1999.6227.

[54] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and
Engineering, 194(3941):4135–4195, 2005. doi:10.1016/j.cma.2004.10.008.

[55] H. T. Huynh. A Flux Reconstruction Approach to HighOrder Schemes Including Discontinuous
Galerkin Methods. In 18th AIAA Computational Fluid Dynamics Conference, Miami, Florida,
June 2007. American Institute of Aeronautics and Astronautics. ISBN 9781624101298.
doi:10.2514/6.20074079.

[56] H. T. Huynh, Z. J. Wang, and P. E. Vincent. Highorder methods for computational fluid dynamics:
A brief review of compact differential formulations on unstructured grids. Computers & Fluids,
98:209–220, July 2014. ISSN 00457930. doi:10.1016/j.compfluid.2013.12.007.

[57] Andrzej Jaeschke and Matthias Möller. HighOrder Isogeometric Methods for Compressible
Flows. I. Scalar Conservation Laws. arXiv:1809.10896 [math], September 2018. URL http:
//arxiv.org/abs/1809.10896. Comment: Accepted for publication in the Proceedings of the
19th International Conference on Finite Elements in Flow Problems (FEF 2017).

[58] J. Jaffre, C. Johnson, and A. Szepessy. Convergence of the discontinuous galerkin finite ele
ment method for hyperbolic conservation laws. Mathematical Models and Methods in Applied
Sciences, 05(03):367–386, May 1995. ISSN 02182025. doi:10.1142/S021820259500022X.

https://doi.org/10.1006/jcph.2002.7206
https://doi.org/10.1063/1.4898641
https://doi.org/10.1016/j.compfluid.2012.03.006
https://doi.org/10.1007/978-3-030-62048-6
https://doi.org/10.1006/jcph.1996.0052
https://doi.org/10.1006/jcph.1999.6227
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.2514/6.2007-4079
https://doi.org/10.1016/j.compfluid.2013.12.007
http://arxiv.org/abs/1809.10896
http://arxiv.org/abs/1809.10896
https://doi.org/10.1142/S021820259500022X


Bibliography 263

[59] A. Jameson. Analysis and design of numerical schemes for gas dynamics, 1: Artificial diffusion,
upwind biasing, limiters and their effect on accuracy and multigrid convergence. International
Journal of Computational Fluid Dynamics, 4(34):171–218, January 1995. ISSN 10618562,
10290257. doi:10.1080/10618569508904524.

[60] Antony Jameson. Formulation of kinetic energy preserving conservative schemes for gas dy
namics and direct numerical simulation of onedimensional viscous compressible flow in a shock
tube using entropy and kinetic energy preserving schemes. Journal of Scientific Computing, 34
(2):188–208, 2008. URL http://www.springerlink.com/index/U256264735254303.pdf.

[61] Antony Jameson. Computational Fluid Dynamics: Past, Present and Future, August
2012. URL https://www.cespr.fsu.edu/people/myh/CFD‐Conference/Session‐1/Tony‐
Jameson‐Presentation.pdf.

[62] GuangShan Jiang and ChiWang Shu. Efficient Implementation of Weighted ENO
Schemes. Journal of Computational Physics, 126(1):202–228, June 1996. ISSN 00219991.
doi:10.1006/jcph.1996.0130.

[63] Forrester Johnson, Edward Tinoco, and Jong Yu. Thirty Years of Development and Application
of CFD at Boeing Commercial Airplanes, Seattle. In 16th AIAA Computational Fluid Dynamics
Conference, Orlando, Florida, June 2003. American Institute of Aeronautics and Astronautics.
ISBN 9781624100864. doi:10.2514/6.20033439.

[64] M. Kermani and E. Plett. Modified entropy correction formula for the Roe scheme. In 39th
Aerospace Sciences Meeting and Exhibit, Reno,NV,U.S.A., January 2001. American Institute of
Aeronautics and Astronautics. doi:10.2514/6.200183.

[65] Robert M. Kirby and George Em Karniadakis. Dealiasing on nonuniform grids: Algorithms and
applications. Journal of Computational Physics, 191(1):249–264, October 2003. ISSN 00219991.
doi:10.1016/S00219991(03)003140.

[66] David A. Kopriva. Implementing Spectral Methods for Partial Differential Equations. Scientific
Computation. Springer Netherlands, Dordrecht, 2009. ISBN 9789048122608 97890481
22615. doi:10.1007/9789048122615.

[67] David A. Kopriva andGregor Gassner. On theQuadrature andWeak FormChoices in Collocation
Type Discontinuous Galerkin Spectral Element Methods. Journal of Scientific Computing, 44(2):
136–155, August 2010. ISSN 08857474, 15737691. doi:10.1007/s1091501093723.

[68] L. Krivodonova, J. Xin, J. F. Remacle, N. Chevaugeon, and J. E. Flaherty. Shock detection and
limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Applied Numerical
Mathematics, 48(3):323–338, March 2004. ISSN 01689274. doi:10.1016/j.apnum.2003.11.002.

[69] Lilia Krivodonova. Limiters for highorder discontinuous Galerkin methods. Jour
nal of Computational Physics, 226(1):879–896, September 2007. ISSN 00219991.
doi:10.1016/j.jcp.2007.05.011.

[70] Norbert Kroll, editor. ADIGMA  A European Initiative on the Development of Adaptive Higher
Order Variational Methods for Aerospace Applications: Results of a Collaborative Research
Project Funded by the European Union, 20062009. Number v. 113 in Notes on Numerical Fluid
Mechanics and Multidisciplinary Design. Springer, Berlin, 2010. ISBN 9783642037061 978
3642037078.

[71] Norbert Kroll, Charles Hirsch, Francesco Bassi, Craig Johnston, and Koen Hillewaert, editors.
IDIHOM: Industrialization of HighOrder Methods  A TopDown Approach, volume 128 of Notes
on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing,
Cham, 2015. ISBN 9783319128856 9783319128863. doi:10.1007/9783319128863.

[72] Martin Kronbichler. The Discontinuous Galerkin Method: Derivation and Properties. In Martin
Kronbichler and PerOlof Persson, editors, Efficient HighOrder Discretizations for Computational
Fluid Dynamics, volume 602, pages 1–55. Springer International Publishing, Cham, 2021. ISBN
9783030606091 9783030606107. doi:10.1007/9783030606107_1.

https://doi.org/10.1080/10618569508904524
http://www.springerlink.com/index/U256264735254303.pdf
https://www.cespr.fsu.edu/people/myh/CFD-Conference/Session-1/Tony-Jameson-Presentation.pdf
https://www.cespr.fsu.edu/people/myh/CFD-Conference/Session-1/Tony-Jameson-Presentation.pdf
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.2514/6.2003-3439
https://doi.org/10.2514/6.2001-83
https://doi.org/10.1016/S0021-9991(03)00314-0
https://doi.org/10.1007/978-90-481-2261-5
https://doi.org/10.1007/s10915-010-9372-3
https://doi.org/10.1016/j.apnum.2003.11.002
https://doi.org/10.1016/j.jcp.2007.05.011
https://doi.org/10.1007/978-3-319-12886-3
https://doi.org/10.1007/978-3-030-60610-7_1


264 Bibliography

[73] Martin Kronbichler and PerOlof Persson, editors. Efficient HighOrder Discretizations for Com
putational Fluid Dynamics, volume 602 of CISM International Centre for Mechanical Sciences.
Springer International Publishing, Cham, 2021. ISBN 9783030606091 9783030606107.
doi:10.1007/9783030606107.

[74] Dmitri Kuzmin. A vertexbased hierarchical slope limiter for padaptive discontinuous Galerkin
methods. Journal of Computational and Applied Mathematics, page 9, 2010.

[75] Dmitri Kuzmin. Algebraic Flux Correction I. In Dmitri Kuzmin, Rainald Löhner, and Stefan Turek,
editors, FluxCorrected Transport, pages 145–192. Springer Netherlands, Dordrecht, 2012. ISBN
9789400740372 9789400740389. doi:10.1007/9789400740389_6.

[76] Dmitri Kuzmin and John N. Shadid. Gradientbased nodal limiters for artificial diffusion opera
tors in finite element schemes for transport equations: Gradientbased nodal limiters for artificial
diffusion operators in finite element schemes for transport equations. International Journal for Nu
merical Methods in Fluids, 84(11):675–695, August 2017. ISSN 02712091. doi:10.1002/fld.4365.

[77] Dmitri Kuzmin, Matthias Möller, John N. Shadid, and Mikhail Shashkov. Failsafe flux limiting and
constrained data projections for equations of gas dynamics. Journal of Computational Physics,
229(23):8766–8779, November 2010. ISSN 00219991. doi:10.1016/j.jcp.2010.08.009.

[78] Dmitri Kuzmin, Matthias Möller, and Marcel Gurris. Algebraic Flux Correction II. In Dmitri Kuzmin,
Rainald Löhner, and Stefan Turek, editors, FluxCorrected Transport, pages 193–238. Springer
Netherlands, Dordrecht, 2012. ISBN 9789400740372 9789400740389. doi:10.1007/978
9400740389_7.

[79] Tobias Leicht, Daniel Vollmer, Jens Jägersküpper, Axel Schwöppe, Ralf Hartmann, J. Fiedler,
and Tobias Schlauch. DLRProject DigitalX  Next Generation CFD Solver ’Flucs’. Technical
Report 420027, DLR, 2016. URL https://elib.dlr.de/111205/1/420027.pdf.

[80] Robert W. Leland, Mahesh Rajan, and Michael A. Heroux. Performance Efficiency and Effectiv
ness of Supercomputers. Technical Report SAND20163730, 1561471, April 2016.

[81] Sanjiva K. Lele. Compact finite difference schemes with spectrallike resolution. Journal of
Computational Physics, 103(1):16–42, November 1992. ISSN 00219991. doi:10.1016/0021
9991(92)90324R.

[82] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Univer
sity Press, Cambridge; New York, 2002. ISBN 9780511042195 9780511791253 978
0521810876 9780511045073 9780511148095. URL http://dx.doi.org/10.1017/
CBO9780511791253.

[83] Doron Levy, Gabriella Puppo, and Giovanni Russo. On the behavior of the total variation in
CWENOmethods for conservation laws. Applied Numerical Mathematics, 33(14):407–414, May
2000. ISSN 01689274. doi:10.1016/S01689274(99)001075.

[84] Wanai Li, Qian Wang, and YuXin Ren. A pweighted limiter for the discontinuous Galerkin
method on onedimensional and twodimensional triangular grids. Journal of Computational
Physics, 407:109246, April 2020. ISSN 00219991. doi:10.1016/j.jcp.2020.109246.

[85] James Lighthill. Waves in Fluids. Cambridge University Press, 1990. ISBN 0521292336.

[86] J. Loffeld and J. A.F. Hittinger. On the arithmetic intensity of highorder finitevolume discretiza
tions for hyperbolic systems of conservation laws. The International Journal of High Perfor
mance Computing Applications, 33(1):25–52, January 2019. ISSN 10943420, 17412846.
doi:10.1177/1094342017691876.

[87] Hong Luo, Joseph D. Baum, and Rainald Löhner. A Hermite WENObased limiter for discontinu
ous Galerkin method on unstructured grids. Journal of Computational Physics, 225(1):686–713,
July 2007. ISSN 00219991. doi:10.1016/j.jcp.2006.12.017.

https://doi.org/10.1007/978-3-030-60610-7
https://doi.org/10.1007/978-94-007-4038-9_6
https://doi.org/10.1002/fld.4365
https://doi.org/10.1016/j.jcp.2010.08.009
https://doi.org/10.1007/978-94-007-4038-9_7
https://doi.org/10.1007/978-94-007-4038-9_7
https://elib.dlr.de/111205/1/420027.pdf
https://doi.org/10.1016/0021-9991(92)90324-R
https://doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1017/CBO9780511791253
http://dx.doi.org/10.1017/CBO9780511791253
https://doi.org/10.1016/S0168-9274(99)00107-5
https://doi.org/10.1016/j.jcp.2020.109246
https://doi.org/10.1177/1094342017691876
https://doi.org/10.1016/j.jcp.2006.12.017


Bibliography 265

[88] Johannes Markert, Gregor Gassner, and Stefanie Walch. A SubElement Adaptive Shock Cap
turing Approach for Discontinuous Galerkin Methods. arXiv:2011.03338 [astroph], November
2020. URL http://arxiv.org/abs/2011.03338. Comment: 40 pages in total: 30 pages of
main text and 7 pages of appendix.

[89] Gianmarco Mengaldo, Daniele De Grazia, Freddie Witherden, Antony Farrington, Peter Vincent,
Spencer Sherwin, and Joaquim Peiro. A Guide to the Implementation of Boundary Conditions
in Compact HighOrder Methods for Compressible Aerodynamics. In 7th AIAA Theoretical Fluid
Mechanics Conference, Atlanta, GA, June 2014. American Institute of Aeronautics and Astro
nautics. ISBN 9781624102936. doi:10.2514/6.20142923.

[90] Matthias Möller and Andrzej Jaeschke. HighOrder Isogeometric Methods for Compressible
Flows. II. Compressible Euler Equations. arXiv:1809.10893 [math], September 2018. URL
http://arxiv.org/abs/1809.10893.

[91] Euripides Montagne and Edward Aymeric. Let’s Agree on Computing Flops for the Symmetric
Sparse Matrix Vector Product. In 24th High Performance Computing Symposium, Pasadena,
CA, 2016. Society for Modeling and Simulation International (SCS). ISBN 9781510823181.
doi:10.22360/SpringSim.2016.HPC.037.

[92] R. C. Moura, S. J. Sherwin, and J. Peiró. Linear dispersion–diffusion analysis and its ap
plication to underresolved turbulence simulations using discontinuous Galerkin spectral/hp
methods. Journal of Computational Physics, 298:695–710, October 2015. ISSN 00219991.
doi:10.1016/j.jcp.2015.06.020.

[93] R. C. Moura, G. Mengaldo, J. Peiró, and S. J. Sherwin. On the eddyresolving capability of
highorder discontinuous Galerkin approaches to implicit LES / underresolved DNS of Euler
turbulence. Journal of Computational Physics, 330:615–623, February 2017. ISSN 00219991.
doi:10.1016/j.jcp.2016.10.056.

[94] Scott M. Murman, Nicholas K. Burgess, Laslo T. Diosady, and Anirban Garai. A DGSEM Shock
capturing Scheme for Scaleresolving Simulations. In 23rd AIAA Computational Fluid Dynamics
Conference, AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics, June
2017. doi:10.2514/6.20174106.

[95] Jens Niegemann, Richard Diehl, and Kurt Busch. Efficient lowstorage Runge–Kutta schemes
with optimized stability regions. Journal of Computational Physics, 231(2):364–372, January
2012. ISSN 00219991. doi:10.1016/j.jcp.2011.09.003.

[96] PerOlof Persson and Jaime Peraire. SubCell Shock Capturing for DiscontinuousGalerkin Meth
ods. In 44th AIAA Aerospace SciencesMeeting and Exhibit, Reno, Nevada, January 2006. Amer
ican Institute of Aeronautics and Astronautics. ISBN 9781624100390. doi:10.2514/6.2006
112.

[97] Les A. Piegl and Wayne Tiller. The NURBS Book. Monographs in Visual Communications.
Springer, Berlin ; New York, 2nd ed edition, 1997. ISBN 9783540615453.

[98] Les A. Piegl, Wayne Tiller, and Khairan Rajab. It is time to drop the “R” from NURBS.
Engineering with Computers, 30(4):703–714, October 2014. ISSN 01770667, 14355663.
doi:10.1007/s003660130318x.

[99] Sergio Pirozzoli. Numerical Methods for HighSpeed Flows. Annual Review of Fluid Mechanics,
43(1):163–194, January 2011. ISSN 00664189, 15454479. doi:10.1146/annurevfluid122109
160718.

[100] Stephen B. Pope. The computational cost. In Turbulent Flows, pages 346–350. Cambridge
University Press, Cambridge, 2017. ISBN 9780521598866.

[101] Jianxian Qiu and ChiWang Shu. Hermite WENO schemes and their application as limiters for
Runge–Kutta discontinuous Galerkin method: Onedimensional case. Journal of Computational
Physics, 193(1):115–135, January 2004. ISSN 00219991. doi:10.1016/j.jcp.2003.07.026.

http://arxiv.org/abs/2011.03338
https://doi.org/10.2514/6.2014-2923
http://arxiv.org/abs/1809.10893
https://doi.org/10.22360/SpringSim.2016.HPC.037
https://doi.org/10.1016/j.jcp.2015.06.020
https://doi.org/10.1016/j.jcp.2016.10.056
https://doi.org/10.2514/6.2017-4106
https://doi.org/10.1016/j.jcp.2011.09.003
https://doi.org/10.2514/6.2006-112
https://doi.org/10.2514/6.2006-112
https://doi.org/10.1007/s00366-013-0318-x
https://doi.org/10.1146/annurev-fluid-122109-160718
https://doi.org/10.1146/annurev-fluid-122109-160718
https://doi.org/10.1016/j.jcp.2003.07.026


266 Bibliography

[102] Jianxian Qiu and ChiWang Shu. A Comparison of TroubledCell Indicators for Runge–Kutta
Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters. SIAM
Journal on Scientific Computing, 27(3):995–1013, January 2005. ISSN 10648275, 10957197.
doi:10.1137/04061372X.

[103] Jianxian Qiu and ChiWang Shu. Hermite WENO schemes and their application as limiters for
Runge–Kutta discontinuous Galerkin method II: Two dimensional case. Computers & Fluids, 34
(6):642–663, July 2005. ISSN 00457930. doi:10.1016/j.compfluid.2004.05.005.

[104] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. Number 37 in
Texts in Applied Mathematics. Springer, Berlin ; New York, 2nd ed edition, 2007. ISBN 9783
540346586.

[105] P. L. Roe. Computational fluid dynamics—retrospective and prospective. International Jour
nal of Computational Fluid Dynamics, 19(8):581–594, November 2005. ISSN 10618562.
doi:10.1080/10618560600585315.

[106] L. F. Shampine. Vectorized adaptive quadrature in MATLAB. Journal of Compu
tational and Applied Mathematics, 211(2):131–140, February 2008. ISSN 03770427.
doi:10.1016/j.cam.2006.11.021.

[107] Cengke Shi and ChiWang Shu. On local conservation of numerical methods for
conservation laws. Computers & Fluids, 169:3–9, June 2018. ISSN 00457930.
doi:10.1016/j.compfluid.2017.06.018.

[108] ChiWang Shu. TVB Uniformly HighOrder Schemes for Conservation Laws. Mathematics of
Computation, 49(179):105–121, July 1987.

[109] ChiWang Shu and Stanley Osher. Efficient implementation of essentially nonoscillatory shock
capturing schemes. Journal of Computational Physics, 77(2):439–471, August 1988. ISSN
00219991. doi:10.1016/00219991(88)901775.

[110] ChiWang Shu and Stanley Osher. Efficient Implementation of Essentially Nonoscillatory Shock
Capturing Schemes, II. page 47, 1989.

[111] Jeffrey Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal, William Gropp, Elizabeth
Lurie, and Dimitri Mavriplis. CFD Vision 2030 Study: A Path to Revolutionary Computational
Aerosciences. Contractor Report (CR) NASA/CR–2014218178, NASA, March 2014. URL
https://ntrs.nasa.gov/citations/20140003093.

[112] Joel Smoller. Shock Waves and ReactionDiffusion Equations. Number 258 in Grundlehren
Der Mathematischen Wissenschaften. SpringerVerlag, New York, 2nd ed edition, 1994. ISBN
9780387942599 9783540942597.

[113] G. A. Sod. Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic
Conservation Laws. J. Comput. Phys.; (United States), 26:4, April 1978. doi:10.1016/0021
9991(78)900232.

[114] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction.
Springer, Dordrecht ; New York, 3rd ed edition, 2009. ISBN 9783540252023 9783540
498346.

[115] Lloyd N. Trefethen. Group Velocity in Finite Difference Schemes. SIAM Review, 24(2):113–136,
April 1982. ISSN 00361445, 10957200. doi:10.1137/1024038.

[116] Kris Van den Abeele. Development of HighOrder Accurate Schemes for Unstructured Grids.
PhD thesis, Vrije Universiteit Brussel, Brussels, 2009.

[117] Julien Vanharen, Guillaume Puigt, Xavier Vasseur, JeanFrançois Boussuge, and Pierre Sagaut.
Revisiting the spectral analysis for highorder spectral discontinuous methods. Journal of Com
putational Physics, 337:379–402, May 2017. ISSN 00219991. doi:10.1016/j.jcp.2017.02.043.

https://doi.org/10.1137/04061372X
https://doi.org/10.1016/j.compfluid.2004.05.005
https://doi.org/10.1080/10618560600585315
https://doi.org/10.1016/j.cam.2006.11.021
https://doi.org/10.1016/j.compfluid.2017.06.018
https://doi.org/10.1016/0021-9991(88)90177-5
https://ntrs.nasa.gov/citations/20140003093
https://doi.org/10.1016/0021-9991(78)90023-2
https://doi.org/10.1016/0021-9991(78)90023-2
https://doi.org/10.1137/1024038
https://doi.org/10.1016/j.jcp.2017.02.043


Bibliography 267

[118] John Vassberg. Expectations for computational fluid dynamics. International Journal
of Computational Fluid Dynamics, 19(8):549–558, November 2005. ISSN 10618562.
doi:10.1080/10618560500508375.

[119] Robert Vichnevetsky and John B. Bowles. Fourier Analysis of Numerical Approximations of
Hyperbolic Equations. Society for Industrial and Applied Mathematics, January 1982. ISBN
9780898711813 9781611970876. doi:10.1137/1.9781611970876.

[120] P. E. Vincent, P. Castonguay, and A. Jameson. Insights from von Neumann analysis of highorder
flux reconstruction schemes. Journal of Computational Physics, 230(22):8134–8154, September
2011. ISSN 00219991. doi:10.1016/j.jcp.2011.07.013.

[121] P. E. Vincent, P. Castonguay, and A. Jameson. A New Class of HighOrder Energy Stable Flux
Reconstruction Schemes. Journal of Scientific Computing, 47(1):50–72, April 2011. ISSN 0885
7474, 15737691. doi:10.1007/s109150109420z.

[122] P. E. Vincent, A. M. Farrington, F. D. Witherden, and A. Jameson. An extended range
of stablesymmetricconservative Flux Reconstruction correction functions. Computer Meth
ods in Applied Mechanics and Engineering, 296:248–272, November 2015. ISSN 00457825.
doi:10.1016/j.cma.2015.07.023.

[123] J. B. Vos, A. Rizzi, D. Darracq, and E. H. Hirschel. Navier–Stokes solvers in European aircraft
design. Progress in Aerospace Sciences, 38(8):601–697, November 2002. ISSN 03760421.
doi:10.1016/S03760421(02)000507.

[124] Michael Yang and Z. J. Wang. A ParameterFree Generalized Moment Limiter for HighOrder
Methods on Unstructured Grids. Advances in Applied Mathematics and Mechanics, 1(4):451–
480, June 2009. ISSN 20700733, 20751354. doi:10.4208/aamm.09m0913.

[125] Z. J. Wang, editor. Adaptive HighOrder Methods in Computational Fluid Dynamics. Number v. 2
in Advances in Computational Fluid Dynamics. World Scientific, Singapore ; Hackensack, N.J.,
2011. ISBN 9789814313186.

[126] Z. J. Wang. Highorder computational fluid dynamics tools for aircraft design. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372
(2022):20130318, August 2014. doi:10.1098/rsta.2013.0318.

[127] Z. J. Wang and Haiyang Gao. A unifying lifting collocation penalty formulation including the
discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed
grids. Journal of Computational Physics, 228(21):8161–8186, November 2009. ISSN 00219991.
doi:10.1016/j.jcp.2009.07.036.

[128] Z. J. Wang and H. T. Huynh. A review of flux reconstruction or correction procedure via re
construction method for the NavierStokes equations. Mechanical Engineering Reviews, 3(1):
15–00475–15–00475, 2016. ISSN 21879753. doi:10.1299/mer.1500475.

[129] Z. J. Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni, Andrew Cary,
Herman Deconinck, Ralf Hartmann, Koen Hillewaert, H. T. Huynh, Norbert Kroll, Georg May,
PerOlof Persson, Bram van Leer, and Miguel Visbal. Highorder CFD methods: Current status
and perspective. International Journal for Numerical Methods in Fluids, 72(8):811–845, 2013.
ISSN 10970363. doi:10.1002/fld.3767.

[130] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual perfor
mance model for multicore architectures. Communications of the ACM, 52(4):65–76, April 2009.
ISSN 00010782, 15577317. doi:10.1145/1498765.1498785.

[131] Paul Woodward and Phillip Colella. The numerical simulation of twodimensional fluid flow with
strong shocks. Journal of Computational Physics, 54(1):115–173, April 1984. ISSN 00219991.
doi:10.1016/00219991(84)901426.

https://doi.org/10.1080/10618560500508375
https://doi.org/10.1137/1.9781611970876
https://doi.org/10.1016/j.jcp.2011.07.013
https://doi.org/10.1007/s10915-010-9420-z
https://doi.org/10.1016/j.cma.2015.07.023
https://doi.org/10.1016/S0376-0421(02)00050-7
https://doi.org/10.4208/aamm.09-m0913
https://doi.org/10.1098/rsta.2013.0318
https://doi.org/10.1016/j.jcp.2009.07.036
https://doi.org/10.1299/mer.15-00475
https://doi.org/10.1002/fld.3767
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1016/0021-9991(84)90142-6


268 Bibliography

[132] Xiangxiong Zhang andChiWang Shu. On positivitypreserving high order discontinuousGalerkin
schemes for compressible Euler equations on rectangular meshes. Journal of Computational
Physics, 229(23):8918–8934, November 2010. ISSN 00219991. doi:10.1016/j.jcp.2010.08.016.

[133] Xiangxiong Zhang and ChiWang Shu. Maximumprinciplesatisfying and positivitypreserving
highorder schemes for conservation laws: Survey and new developments. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2134):2752–2776, Oc
tober 2011. ISSN 13645021, 14712946. doi:10.1098/rspa.2011.0153.

[134] Xinghui Zhong and ChiWang Shu. A simple weighted essentially nonoscillatory limiter for
Runge–Kutta discontinuous Galerkin methods. Journal of Computational Physics, 232(1):397–
415, January 2013. ISSN 00219991. doi:10.1016/j.jcp.2012.08.028.

[135] Hongqiang Zhu, Yue Cheng, and Jianxian Qiu. A Comparison of the Performance of Limiters for
RungeKutta Discontinuous Galerkin Methods. Advances in Applied Mathematics and Mechan
ics, 5, June 2013. doi:10.4208/aamm.2012.m22.

[136] Jun Zhu and Jianxian Qiu. HermiteWENOSchemes and Their Application as Limiters for Runge
Kutta Discontinuous Galerkin Method, III: Unstructured Meshes. Journal of Scientific Computing,
39(2):293–321, May 2009. ISSN 08857474, 15737691. doi:10.1007/s1091500992717.

[137] Jun Zhu, Xinghui Zhong, ChiWang Shu, and Jianxian Qiu. RungeKutta Discontinu
ous Galerkin Method with a Simple and Compact Hermite WENO Limiter. Communica
tions in Computational Physics, 19(4):944–969, April 2016. ISSN 18152406, 19917120.
doi:10.4208/cicp.070215.200715a.

https://doi.org/10.1016/j.jcp.2010.08.016
https://doi.org/10.1098/rspa.2011.0153
https://doi.org/10.1016/j.jcp.2012.08.028
https://doi.org/10.4208/aamm.2012.m22
https://doi.org/10.1007/s10915-009-9271-7
https://doi.org/10.4208/cicp.070215.200715a

	List of Figures
	List of Tables
	Nomenclature
	Symbols
	Abbreviations

	Introduction
	Motivation: next-generation CFD
	Research objectives
	Relevance of this work
	Outline

	I Theory
	Hyperbolic Conservation Laws
	Conservation laws in one dimension
	Quasilinear form
	Integral form

	Hyperbolicity
	Characteristic fields

	Discontinuous solutions
	Riemann problem
	Advection
	Eigendecomposition
	Riemann flux

	Wave equation
	Eigendecomposition
	Riemann flux
	Equivalent systems

	Inviscid Burgers equation
	Eigendecomposition
	Riemann flux

	Euler equations
	Eigendecomposition
	Riemann solvers


	Compact Discontinuous High-Order Discretization
	Domain discretization
	Reference element

	Solution discretization
	Reference element space
	Trial basis functions
	Degrees of freedom
	Flux representation

	Equation discretization
	Spatial residuals (method of lines)
	Weak formulation
	Inter-element coupling
	Semi-discrete hyperbolic conservation law

	The low-order case: finite volume discretization
	Initial condition projection
	Numerical boundary conditions
	Periodic
	Farfield
	Transmissive
	Reflective


	Discontinuous Galerkin Spectral Element Method (DGSEM)
	Spectral basis functions
	Legendre polynomials
	Lagrange polynomials

	DGSEM semi-discretization
	Modal representation
	Nodal representation
	Collocated quadrature
	Semi-discrete DGSEM operators
	Polynomial aliasing


	Flux Reconstruction (FR) or Correction Procedure via Reconstruction (CPR)
	FR/CPR semi-discretization
	Differential formulation
	Flux correction
	Flux derivative
	Semi-discrete FR/CPR operators

	Correction functions
	DG correction function
	SG/SD correction function
	Huynh's correction functions
	Energy-stable correction functions

	FR/CPR and the discontinuous Galerkin method
	Initialization
	FR/CPR and the finite volume method


	Isogeometric Analysis (IGA)
	Basis splines (B-splines)
	Knot vector
	Basis functions
	B-spline curves

	Related bases
	Non-uniform rational B-splines (NURBS)
	Bernstein polynomials and Bézier curves
	Classical FEA vs. IGA

	Discontinous Galerkin isogeometric analysis (DGIGA)
	Flux expansion coefficients
	Semi-discrete DGIGA operators

	Algebraic flux correction (AFC)
	A predictor-corrector approach to high-resolution
	Mass matrix lumping
	Artificial viscosities


	Time Discretization
	The method of lines
	Courant number
	Amplification factor

	Strong stability preserving (SSP) time discretization
	Explicit SSP Runge-Kutta methods (SSP-RK)
	SSP-RK1(1) or Euler's method: 1st order, 1 stage
	SSP-RK2(2): 2nd order, 2 stages
	SSP-RK3(3): 3rd order, 3 stages
	SSP-RK4(5): 4th order, 5 stages
	SSP-RK4(10): 4th order, 10 stages

	Alternative time discretization schemes

	Nonlinear Stabilization
	Total variation stability
	Total variation diminishing (TVD)
	Monotonicity
	Total variation bounded (TVB)
	Other nonlinear stability criteria

	Legendre-based limiting
	Discontinuity sensing
	KXRCF sensor
	AP-TVD sensor

	Generalized slope limiting
	Modified minmod function
	Local characteristic variables
	TVB limiter

	Generalized moment limiting
	BDF limiter
	BSB limiter
	Krivodonova's limiter

	Weighted essentially non-oscillatory (WENO) limiting
	HWENO limiter

	Flux corrected transport (FCT) limiting
	Linearized antidiffusive fluxes
	Synchronized sequential FCT limiter
	Constrained initialization
	Troubled element detection

	Fail-safe limiting for the Euler equations
	Fail-safe slope limiter
	Last-resort fail-safe limiter
	Invalid element criteria for inter-cell fail-safe limiters
	Sub-cell FCT fail-safe limiter



	II Experiments
	Methodology
	MATLAB implementation
	Test matrices
	List of model problems
	Monochromatic wave (linear)
	Monochromatic wave (nonlinear)
	Monochromatic wave (Euler)
	Gaussian hump (linear)
	Gaussian hump (nonlinear)
	Triangular pulse (linear)
	Triangular pulse (nonlinear)
	Jiang-Shu problem
	Toro's transonic shock tube
	The 1-2-3 problem
	Blast wave interaction
	Acoustic wave–shock wave interaction


	Order of Accuracy
	Time schemes
	DGSEM
	FR/CPR
	DGIGA

	Dispersion, Dissipation and Linear Stability
	DGSEM
	FR/CPR
	DGIGA

	Optimal FR/CPR and DGIGA Configurations
	Identification of optimal configurations
	Objective function
	Optimization problems
	Optimization results and discussion

	Combined-mode dispersion and dissipation errors
	Balance between dispersion and dissipation
	Relative cost at a fixed resolution
	Number of time-steps
	Number of elements or patches
	Cost model
	Results and discussion


	Nonlinear Physics
	Burgers equation
	Verification of combined-mode analysis results
	Influence of the initial condition
	Linear vs. nonlinear advection

	Euler equations
	Modified wavenumber analysis a la Hickel et al.
	A posteriori vs. combined-mode analyses
	Spatial schemes
	Riemann solvers


	Non-smooth Solutions, Sensors and Limiters
	Hierarchical limiters
	Sensors
	DGIGA-AFC
	IGA-AFC
	Final comparison
	DGIGA-AFC revisited
	Do limiters preserve high order?

	Conclusions
	Order of accuracy
	Limitations
	Recommendations

	Dispersion, dissipation and linear stability
	Limitations and recommendations

	Optimal FR/CPR and DGIGA configurations
	Limitations
	Recommendations

	Nonlinear physics
	Limitations and Recommendations

	Discontinuous solutions, limiters and sensors
	Limitations and recommendations

	Is DGIGA-AFC well-suited to LES of high-speed flows?
	Recommendations for future work

	Modified Wavenumber Analysis
	Discrete wavenumbers
	Wave propagation
	Exact dispersion relation
	Modified wavenumber
	Multiplicity of eigenmodes
	Dominant eigenmode
	Combined mode semi-discrete analysis

	Residual operators in matrix form
	DGSEM
	FR/CPR
	DGIGA

	Linear stability
	Amplification factor
	Fourier footprint
	Time-step size limits

	Quantifying dispersion and dissipation
	Order of accuracy
	Resolving efficiency
	Numerical cutoff wavenumber
	Dispersion to dissipation ratio


	Time Complexity Estimation
	Discontinuous coupling
	Residual evaluation (spatial schemes)
	DGSEM
	FR/CPR
	DGIGA

	Solution update (time scheme)

	Bibliography


