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Abstract
Computational fluid dynamics is nowadays one of the pillars of modern aircraft design, just as impor­
tant as experimental wind tunnel testing. Very ambitious goals in regards to performance, efficiency
and sustainability are being asked of the aviation industry, the kind that warrant a virtual exploration
of the edges of the flight envelope. High­order has come to be regarded as a necessary ingredient to
achieve breakthrough advances in this direction. So much so, in fact, that the major aircraft manufac­
turers, governmental aerospace research agencies and top universities worldwide have been acting in
coordination to increase the technology readiness level of these approaches, for the last ten years.

In this work, I study in significant detail the one aspect that makes high­order methods ideal candi­
dates for enabling the use of more advanced turbulence models in industry: the cost­efficiency of their
discretization—they offer minimal amounts of dispersion and dissipation errors, for a given number of
degrees of freedom. I consider three research objects:

• The discontinuous Galerkin spectral method (DGSEM)

• All energy­stable variants of flux reconstruction (FR), also known as correction procedure via
reconstruction (CPR), that can be parameterized through a single scalar parameter

• A novel B­spline–based discontinuous Galerkin formulation, stabilized via algebraic flux correc­
tion (DGIGA­AFC)

and characterize their order of accuracy, linear and nonlinear stability characteristics, as well as dis­
persion and dissipation errors as a function of wavenumber. Afterwards, I experimentally investigate
their relative suitability towards scale­resolving simulation of compressible and turbulent flows, by solv­
ing a number of simple test cases of increasing difficulty (linear advection, inviscid Burgers and Euler
equations; all in 1D) using a purpose­made MATLAB implementation.

The proposed isogeometric method (DGIGA) has been found to be at least as viable as the other
two, a priori, for the resolution of high­speed turbulent flows. Moreover, I have found that low dispersion
and dissipation need not always be associated to high order, but to a high number of degrees of freedom
per patch instead; these two coincide in the more conventional schemes, yet not necessarily in DGIGA.
As a nonlinear stabilization mechanism, however, the proposed combination of DGIGA with AFC has
turned out to be inferior to existing limiters.
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Preface
This document summarizes all the knowledge and insight I have obtained after understanding, imple­
menting, and experimenting with discontinuous Galerkin methods for over two years. The entire project
has been the consequence of the following simple idea: to understand a numerical method, you need
to implement it yourself.

I have had a hard time bringing this project to a reasonably satisfying conclusion, as the time it
has taken me might suggest. Perhaps the topic was too ambitious and/or ambiguous from the start.
That certainly didn’t help. Most of all, I think, this was an instance of me falling prey to my own lack of
control: I should simply have gotten more to the point. I realize now, in hindsight, that the prolonged lack
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forced upon all of us due to the COVID­19 health crisis, has probably contributed to this tendency of
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All in all, the completion of this project has been a bit less enjoyable that I had hoped. Still, overall, I
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me see my own work in a more positive light; worse people would simply not have cared. Thank you,
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they have had to live with the angst of not being able to help—in fact, of barely being able to even
understand what I was struggling with—for such a long time.
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1
Introduction

In computational fluid dynamics (CFD), a spatial discretization method is said to be high­order when
its order of accuracy1 is higher than two [129]. High order is not a new concept, and the number of
high­order methods in the literature is considerable; these are reviewed in [126] and references therein.
This work focuses on one particular type of high­order methods: compact, discontinuous, finite element
methods. The epitome of these schemes is the discontinuous Galerkin (DG) method.
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Figure 1.1: Convergence rate of the three finite difference schemes in (1.1).

High­order methods are potentially more cost­effective than their low­order counterparts, provided
that a sufficiently­high level of accuracy is required. Allow me to motivate this through an example.
Assume that we wish to use finite differences to approximate 𝑓′(𝑥), the first derivative of 𝑓(𝑥) = e𝑥, on
a uniform grid—every two points separated by a distance ℎ. Its 1st, 2nd and 3rd order (fully backward,

1Order of accuracy of a numerical scheme refers to the rate at which the error in the approximate solution it produces is reduced,
as the discrete problem it solves is refined. A method of order 𝑛 has an error that grows as 𝒪(ℎ𝑛), where ℎ is a representative
grid length. See figure 1.1.
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2 1. Introduction

uniform) finite difference approximations are, respectively [18]:

𝑓′(𝑥) ≈ 𝑓(𝑥) − 𝑓(𝑥 − ℎ)
ℎ , (1.1a)

𝑓′(𝑥) ≈ 3𝑓(𝑥) − 4𝑓(𝑥 − ℎ) + 𝑓(𝑥 − 2ℎ)
2ℎ , (1.1b)

𝑓′(𝑥) ≈ 11𝑓(𝑥) − 18𝑓(𝑥 − ℎ) + 9𝑓(𝑥 − 2ℎ) − 2𝑓(𝑥 − 3ℎ)
6ℎ . (1.1c)

Let us now plot the error of each of the approximations at 𝑥 = 0, as a function of 1/ℎ, in logarithmic axes;
the result is figure 1.1. To reach an error of 1% at 𝑥 = 0, methods (1.1b) and (1.1a) require roughly
2 and 20 times as many points, respectively, than method (1.1c). At the same time, however, each
evaluation of (1.1c) involves four points; those are 33%more than (1.1b), and twice as many as (1.1a).
This is the core feature of high­order methods: for a fixed accuracy, they reduce the total number of
unknowns in the discrete problem in exchange of using each of them an increased number of times.

1.1. Motivation: next­generation CFD
Unstructured, low­order, finite volume­based Navier­Stokes solvers, despite having been developed in
the 80s and 90s, have remained in predominant use for aerospace applications to this day [61, 63, 123].
High­order discretizations are now making their way into a new generation of production Navier­Stokes
solvers [79, 126]. These methods are considered to be necessary for certain cases of commercial
interest where current­generation codes fail to provide accurate results, namely [123]:

• To increase precision in boundary layers, needed to predict the onset of turbulent transition

• Simulating vortex­dominated flows (e.g. in the wake of an aircraft in high­lift configuration)

• To simulate aero­acoustics

• Predicting drag forces

• Simulating turbulence using large eddy simulation (LES)

High­order methods have been receiving renewed attention since the 2000s, perhaps most notably
through the sequence of European projects ADIGMA [70] (2006–2009), IDIHOM [71] (2010–2014) and
TILDA [51] (2015–2018). Universities, public research institutions and industry have all collaborated in
these projects. Development has been focused on the following pacing items [126]:

• Commercial quality high­order mesh generation tools

• Robust error estimates and hp­adaptations

• Scalable, efficient, robust and low­memory implicit solvers

• Parameter free, accuracy preserving and convergent shock capturing

Broadly speaking, high­order schemes possess two advantages. The first has to do with the balance
between accuracy and cost:

efficiency = accuracy
cost = ( accuracy

unknowns × time steps)⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
Discretization

(unknowns × time steps
cost )

⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
Implementation

. (1.2)

High­order methods tend to have superior accuracy per unknown; we have seen this through an exam­
ple. In order to be efficient, however, discretization efficiency is only half of the picture—implementation
efficiency is just as important. Yet, some high­order schemes (such as DG) are quite good at maximiz­
ing that as well.

The throughput (number of unknowns processed at a given cost) of high­order methods can never
be higher than that of low­order ones [73]—in the example, evaluating (1.1c) is more costly (it takes
longer, since it involves additional terms) than (1.1b) or (1.1a). Nevertheless, because they possess a
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Figure 1.2: Roofline model [130] representing the arithmetic throughput (number of operations per second,
i.e. performance) of a multi­core architecture. The arithmetic intensity—number of floating point operations done
on each byte of information retrieved from memory—of a program (notice that this is hardware­independent) de­
termines if execution will be memory­bound (yellow­shaded, left) or compute­bound (orange­shaded, right). For
optimal use of hardware resources, the algorithm should operate at the balance point. High­order methods may
simultaneously increase the arithmetic intensity and lower the total amount of memory required in CFD solvers,
possibly making a more efficient use of current hardware. Supercomputers are typically being used nowadays at
merely 5% to 20% of their theoretical peak performance [80].

higher degree of data reuse, high­order methods tend to have a higher arithmetic intensity than well­
optimized low­order ones [86]: for every byte of information transferred from main memory to cache,
more floating point operations are made. High performance computing technology evolution is currently
experiencing a so­called “memory wall” barrier: there is an exponentially increasing disparity between
compute and memory speeds (the latter is lagging behind). For example [73]:

• Nvidia A100 (108 streaming multiprocessors, 765MHz, released in 2020): 6.20FLOPs/B

• Intel Xeon Platinum 8280 (28 cores, 2.70GHz; released in 2019): 17.20FLOPs/B

• Intel Xeon W5590 (4 cores, 3.33GHz; released in 2009): 1.70FLOPs/B

while Kronbichler and Persson [73] estimate 10FLOPs/B for a fine­tuned DG implementation. This
means that high­order methods tend to utilize modern hardware more efficiently, compensating (to
some extent) the increase in floating point operations with a higher attained fraction of peak machine
throughput (figure 1.2). In more concise terms: they exploit the “FLOPs are for free” paradigm to
attain a cost per unknown comparable to their low­order counterparts. On a modern supercomputer
architecture, this translates as them having good scaling within a node, i.e.minimizing the overhead
due to slow data transfer rates between main memory and CPU/GPU caches.

Moreover, in compact variants (such as DG), each grid element uses data from a single layer of
points of each of its nearest neighbors only, regardless of order. This means that communication of
data between nodes is not usually a bottleneck, and lends DG an excellent parallel scalability [73]. And,
on top of it all, DG has very good synergy with adaptive refinement: it readily supports unstructured
meshes and non­conforming discretizations, and the finite element formulation it is based on gives it a
strong mathematical foundation on which to build adjoint­based error estimators [46].

The second advantage of high­order methods has to do with novel approaches to tackle vortex­
dominated and turbulent flows. High order is widely thought to be required for LES and direct numerical
simulation (DNS) [111, 118, 123]. This is because, in relation to low­order finite volumes, higher­order
discretizations significantly reduce dispersion and dissipation errors per unknown. These have a dom­
inant contribution on the overall error in high–Reynolds number flows [72], since in that case physical
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diffusion of momentum and dissipation of energy due to viscosity is small relative to convection. This
can, in principle, be compensated with more elements using a low­order discretization; the issue then,
however, is that meshes become impractically large.

Even with high­order methods, LES is likely to remain too expensive to replace Reynolds­Averaged
Navier Stokes (RANS) turbulencemodels in the foreseeable future. In fact, the latest trend in turbulence
modeling is to build improved RANS models based on flow data, using machine learning techniques.
This data must come from somewhere; typically, and most conveniently, a numerical simulation. High
order is therefore far from unnecessary in this new AI­accelerated paradigm: it is, in fact, instrumental
to its success. Proof of this is the European project HiFi­TURB [35].

It is clear that high­order methods have a crucial role to play in the ongoing initiative to satisfy
the ambitious performance, efficiency and sustainability goals required of the aviation industry in the
upcoming decades.

1.2. Research objectives
In this thesis, I focus on a particular approach of achieving high order, known as discontinuous Galerkin
(DG)—and a very close relative, flux reconstruction (FR). The goal is to study fundamental properties
of three high­order methods:

• Discontinuous Galerkin spectral element method (DGSEM)

• Flux reconstruction (FR)

• Discontinuous Galerkin isogeometric analysis (DGIGA), particularly when coupled with algebraic
flux correction as its limiter (DGIGA­AFC)

such that a preliminary assessment can be made on whether the third, DGIGA­AFC, is more or less
suitable to LES of compressible flows relative to the first two.

In terms of research questions, this work hopes to answer:

Is the DGIGA­AFC method, in comparison to selected alternatives (DGSEM and FR/CPR, with modal
limiters), well­suited to LES of high­speed flows?

a response, in turn, steered by the following research sub­questions:

1. Does DGIGA achieve high order of accuracy, in the same conditions that FR/CPR and DGSEM
do?

2. What are DGIGA’s spectral (dispersion, dissipation) and linear stability characteristics, and how
do they compare to those of DGSEM and FR/CPR?

3. Which FR/CPR and DGIGA settings are most advantageous, in terms of spectral and/or linear
stability features, in relation to DGSEM?

4. Are DGIGA, FR/CPR and DGSEM’s wave propagation characteristics actually representative of
their performance in nonlinear physics cases?

5. Does DGIGA retain any advantage over FR/CPR and DGSEM when used with limiters? Is the
AFC limiter applied to DGIGA (DGIGA­AFC) as effective as alternatives?

Which translate, in terms of objectives, to:

1. Confirm the order of accuracy of DGIGA, FR/CPR and DGSEM

2. Obtain, for the three methods (several representative configurations of each) applied to a linear
PDE:

(a) Dispersion relation (dispersive error vs. wavenumber)
(b) Dissipation relation (dissipative error vs. wavenumber)
(c) Linear stability bounds (largest stable time­step size)
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3. Optimize the configuration of FR/CPR and DGIGA, so that dispersion/dissipation are minimized
(also under linear PDE assumptions)

4. Obtain numerical evidence supporting the linear wave propagation analysis predictions in nonlin­
ear PDE cases

5. Test whether DGIGA­AFC is a successful limited scheme or not, comparing its performance with
alternatives on several benchmark problems

1.3. Relevance of this work
DGIGA­AFC addresses two of the pacing items of high­order methods:

• High­order mesh generation: indirectly, through the inherent advantages of isogeometric analysis
(I do not actually measure these, since all tests in this thesis are in one spatial dimension)

• Limiting: by directly testing a novel limiter­discretization combination

This will be, to the best of my knowledge, the first exhaustive exploration of spectral and stability fea­
tures of DGIGA in the literature. It will also be the first time that modified wavenumber analysis has
been formulated for and applied to it.

The first two schemes, DGSEM and FR, are relatively mature; their properties have been studied
before. Still, they will serve as baselines (I see them as control and placebo, respectively) with which
to compare the characteristics and effectiveness of the novel DGIGA. Additionally, they are included
in the study for verification purposes. By taking a step back, and focusing on the fundamentals, this
work offers the opportunity to judge the performance and suitability of DGIGA against more mature
alternatives in a controlled manner, i.e. with full knowledge of the conditions in which the comparison is
made. This research should therefore be of most value to researchers and/or university departments
considering an investment of resources in the isogeometric analysis idea.

Lastly, the fact that all formulation is particularized to 1D and self­contained in this report, and that I
have made an effort to present high­order schemes in an easy to understand way for someone familiar
with FV only (my own situation at the start of this thesis), should make this work adequate as a first
introduction to discontinuous and isogeometric finite element methods.

1.4. Outline
This report is divided in two parts. Part I is theoretical; it offers a succinct overview of all concepts
involved in this thesis, making it essentially self­contained. Its purpose is to make the results and
methodology as transparent and reproducible as possible, by removing all ambiguity from the formu­
lation of the schemes and numerical analysis tools involved. I start by presenting relevant aspects of
hyperbolic partial differential equations (chapter 2), as well as a complete mathematical formulation of
all ingredients necessary for constructing the three spatial discretization methods under consideration
(chapters 3–6). Next, in chapter 7, I give a brief overview of the kind of explicit time integration schemes
I later use in part II. This first part ends with some basic aspects about nonlinear stabilization, including
the formulation of all sensors and limiters in the precise way that I later employ them (chapter 8). That
includes AFC; in particular, my own extension of it to multi­patch IGA.

In part II, all actual experimental results obtained in this project are presented and discussed. First,
in chapter 9, I clarify some methodology aspects; these include details about all test problems solved,
and the implementation used. Five chapters of experimental results then follow, 10–14, each address­
ing one of the research sub­questions and objectives above. Lastly, in chapter 15, the aforementioned
research (sub­)questions are answered one by one—recounting the entirety of tasks performed in the
process. It also includes limitations of this thesis, and recommendations for future work.
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2
Hyperbolic Conservation Laws

The Navier­Stokes equations are the set of scientific laws which describe the evolution of fluid flows.
They arise from the following conservation argument1: in any given portion of space filled with fluid,
any change in the total amount of mass, momentum or energy over time is only possible if there exists
a net flux of that quantity in (or out) of such domain, and/or there is a source (or sink) of the same within
said domain [50, §1.1]. Each of these three quantities then has a partial differential equation (PDE) that
encodes the previous relationship mathematically. This system of equations happens to be, in general,
of mixed mathematical type; its (unsteady) inviscid counterpart, however, is hyperbolic [50, §2]. This
is the reason why the present work focuses on conservation laws of this particular kind.

The three research objects of this work will be studied for a general hyperbolic conservation law,
which is defined in §2.1. The definition of hyperbolicity for a system of PDEs is given in §2.2. The
fact that (the integral form) of these problems allows discontinuous solutions is addressed §2.3. Sec­
tion 2.4 does the same for the Riemann problem, which plays a fundamental role in discontinuous
discretizations of the type considered. Finally, relevant details of a canonical example of each com­
bination of types of hyperbolic conservation laws, from simplest (scalar and linear) to most complex
(vector and nonlinear) are presented in §§ 2.5­2.8. In consonance with the scope of this work, only
the one­dimensional version of such equations is addressed and none of them includes source terms
(cf. [82, §§ 17­18]).

2.1. Conservation laws in one dimension
The idea of conservation is intuitive for the particular example of fluid flows. Mathematically, however,
it can be extended to a generic quantity, regardless of any eventual physical interpretation. This report
is concerned with systems of PDEs of the following general form:

𝜕𝒒
𝜕𝑡 +

𝜕𝒇
𝜕𝑥 = 0 . (2.1)

In (2.1), 𝑡 ∈ ℝ+ and 𝑥 ∈ 𝛺 are independent variables. The (one­dimensional) spatial domain of the
PDEs is 𝛺 ⊆ ℝ. Its boundary can be split into left and right portions, such that 𝜕𝛺 = 𝜕𝛺𝐿 ∪ 𝜕𝛺𝑅; their
coordinates are 𝑥𝐿 and 𝑥𝑅. With no loss of generality, time is assumed to start at 0 (𝑡 ≥ 0) and to have
no upper bound. Dependent ones are grouped into a vector of conserved variables 𝒒(𝑡, 𝑥) ∈ ℝI (or
state vector),

𝒒(𝑡, 𝑥)≔ [𝑞1(𝑡, 𝑥) 𝑞2(𝑡, 𝑥) ⋯ 𝑞I(𝑡, 𝑥)]
⊺
, (2.2)

and 𝒇∶ ℝI → ℝI, the vector of conserved variable fluxes (or flux vector)

𝒇(𝒒)≔ [𝑓1(𝒒) 𝑓2(𝒒) ⋯ 𝑓I(𝒒)]
⊺
, (2.3)

1It can be argued that the Navier­Stokes equations are not conservation laws in a strict sense, because they include viscous
dissipation terms. Regardless, the definition of conservation given above is broad enough to still apply.

9
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which, for the physical models under consideration, will be some vector­valued function of the state
vector only2. Thus, 𝒒(𝑡, 𝑥) is the solution of an initial­boundary value problem defined by (2.1) together
with some initial condition

𝒒0(𝑥)≔𝒒(0, 𝑥) , (2.4)

and compatible boundary conditions

𝒒𝐿(𝑡)≔𝒒(𝑡, 𝑥𝐿) , (2.5)
𝒒𝑅(𝑡)≔𝒒(𝑡, 𝑥𝑅) . (2.6)

2.1.1. Quasilinear form
Applying the chain rule to (2.1) leads to

𝜕𝒒
𝜕𝑡 + 𝑨

𝜕𝒒
𝜕𝑥 = 0 , (2.7)

which is known as the quasilinear form of the PDEs [82, §2.6]. The so­called Jacobian of this system
is, for a one­dimensional domain, a single square matrix 𝑨 ∈ ℝI×I, representing the gradient of the flux
vector in state space, i.e. :

𝑨 (𝒒) = [
𝑎11 (𝒒) ⋯ 𝑎1I (𝒒)
⋮ ⋮

𝑎I1 (𝒒) ⋯ 𝑎II (𝒒)
]≔ 𝜕𝒇

𝜕𝒒 =
⎡
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑞1

⋯ 𝜕𝑓1
𝜕𝑞I

⋮ ⋮
𝜕𝑓I
𝜕𝑞1

⋯ 𝜕𝑓I
𝜕𝑞I

⎤
⎥
⎥
⎦
, (2.8)

with each of its entries being a function of the state vector. In this most general situation, the system
is said to be nonlinear (e.g. Euler equations, §2.8). If the entries of 𝑨 were to dependent on 𝑡 and/or
𝑥 instead, the system would be linear with variable coefficients. This case is not considered in this
work. The simplest scenario corresponds to a linear system of constant coefficients, were 𝑨 is constant
(e.g. wave equations, §2.6). For the particular case that I = 1, (2.1) becomes a scalar conservation
law.

2.1.2. Integral form
Integration of (2.1) over the whole spatial domain leads to

𝜕
𝜕𝑡 (∫𝛺

𝒒 d𝑥) + 𝒇 (𝒒𝑅) − 𝒇 (𝒒𝐿) = 0 . (2.9)

Equations (2.1) and (2.9) are equivalent by the divergence theorem3 provided that the flux function is
differentiable (and under the assumption that 𝛺 itself does not change in time). Should 𝒇 be discon­
tinuous in space, (2.1) would break down but (2.9) would not. For this reason, the latter is said to be
a weaker representation of the general conservation law, since it relaxes the smoothness required in
the solution. Equation (2.9) elegantly casts our introductory definition of a conservation law in precise
mathematical terms. It should be noted that (2.9) is but one among several integral representations of
(2.1); others can be found in the literature, e.g. [114, §2.4.1].

2.2. Hyperbolicity
A system of equations is said to be hyperbolic if its Jacobian matrix is diagonalizable with real eigen­
values [114, §2.1]. An eigenvalue 𝜆 ∈ ℂ of matrix 𝑨 is defined as a root of its characteristic poly­
nomial, i.e. for which det (𝑨 − 𝜆𝑰) = 0. Also, for every eigenvalue there exists a right eigenvector
𝒓 = [𝑟1 ⋯ 𝑟I]

⊺
that satisfies 𝑨𝒓 = 𝜆𝒓, and a left eigenvector 𝒍 = [𝑙1 ⋯ 𝑙I]

⊺
, that solves 𝒍𝑨 = 𝜆𝒍.

2More generally (e.g. in the Navier­Stokes case), the flux vector may be a function of both state vector and its first spatial derivative
[114, §2.4.2]: 𝒇 = 𝒇 (𝒒, 𝜕𝒒𝜕𝑥 ).

3The divergence theorem reduces to the fundamental theorem of calculus in one dimension.
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By definition, for any hyperbolic conservation law there must exist 𝜦,𝑹, 𝑳 ∈ ℝI×I:

𝜦 (𝒒) = [
𝜆1 (𝒒) 0

⋱
0 𝜆I (𝒒)

] , (2.10a)

𝑹(𝒒) = [𝒓1 (𝒒) ⋯ 𝒓I (𝒒)] = [
𝑟11 (𝒒) ⋯ 𝑟1I (𝒒)
⋮ ⋮

𝑟I1 (𝒒) ⋯ 𝑟II (𝒒)
] , (2.10b)

𝑳 (𝒒) = 𝑹−1 (𝒒) = [𝒍1 (𝒒) ⋯ 𝒍I (𝒒)] = [
𝑙11 (𝒒) ⋯ 𝑙1I (𝒒)
⋮ ⋮

𝑙I1 (𝒒) ⋯ 𝑙II (𝒒)
] ; (2.10c)

such that 𝑨 = 𝑹𝜦𝑳 ⟺ 𝜦 = 𝑳𝑨𝑹, where 𝜦 is the (diagonal) matrix of (real) eigenvalues and 𝑨 is the
Jacobian matrix, as in (2.7); if every 𝜆𝑖 is unique, the system is said to be strictly hyperbolic. Each
column 𝒍𝑖 and 𝒓𝑖 of matrices 𝑳 and 𝑹, corresponds to the left and right eigenvectors associated with
eigenvalue 𝜆𝑖, respectively. Without loss of generality, these are assumed to be normalized such that
𝑳𝑹 = 𝑹𝑳 = 𝑰. Note that these eigenvalues and eigenvectors, just like the Jacobian matrix that they
factorize, are generally functions of the state vector.

2.2.1. Characteristic fields
As discussed at the start of this section, any hyperbolic conservation law is guaranteed to have a set
of real eigenvalues {𝜆1 (𝒒) , … , 𝜆I (𝒒)}. This enables a more intuitive interpretation of the concept of
hyperbolicity: each 𝜆𝑖 (𝒒) acts as the propagation speed4 of its associated 𝜆𝑖­characteristic field.

In one dimension, each 𝜆­field is a curve in space­time, defined as such by the ordinary differential
equation (ODE):

d𝑥
d𝑡 = 𝜆 (𝑞) . (2.11)

We can focus on the solution along one of such curves, leaving time as the only independent variable,
i.e. 𝑥 = 𝑥(𝑡); in the scalar case, this leads (by virtue of the chain rule) to the following result:

d𝑞
d𝑡 =

𝜕𝑞
𝜕𝑡 +

d𝑥
d𝑡
𝜕𝑞
𝜕𝑥 ⟹ d𝑞

d𝑡 =
𝜕𝑞
𝜕𝑡 + 𝑎 (𝑞)

𝜕𝑞
𝜕𝑥 ⟹ d𝑞

d𝑡 ≡ 0 . (2.12)

Hence, the scalar hyperbolic conservation law reduces to a constraint: the value of the solution remains
invariant along characteristic curves. In the linear case with constant coefficients, substitution of (2.10)
in (2.7) leads to the canonical form of (2.1),

𝜕 (𝑳𝒒)
𝜕𝑡 + 𝜦𝜕

(𝑳𝒒)
𝜕𝑥 = 0 , (2.13)

which shows that, in characteristic space, each equation becomes decoupled from the rest, indicating
that component 𝓆𝑖 ∈ ℝ of the vector of characteristic variables,

𝓺 (𝑡, 𝑥)≔𝑳𝒒 (𝑡, 𝑥) , (2.14)

is the invariant associated with the 𝜆𝑖­field. In nonlinear situations, it is useful to define analogous local
characteristic variables, obtained as in (2.14) but using a linearized eigenvector matrix (i.e. evaluated
at some reference state) instead. Also noteworthy are the notions of genuinely nonlinear and linearly
degenerate 𝜆­fields, the latter being those for which:

𝜕𝜆𝑖 (𝒒)
𝜕𝒒 ⋅ 𝒓𝑖 (𝒒) = 0, 𝒒 ∈ ℝI . (2.15)

The concepts laid out in this section play a role in shock capturing via solution limiting (§8), in addition
to setting the groundwork for solving the Riemann problem (§2.4), which is, in turn, a fundamental
building block of all discontinuous discretizations considered for review in this part of the report. For
further details, the reader is referred to [50, §3], [114, §2.3.1, §2.4.3] and [82, §11.2, §13.3].
4Dimensional analysis of (2.13) readily reveals that 𝜆𝑖 has dimensions of length over time.
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2.3. Discontinuous solutions
The hyperbolic nature of the systems of equations under consideration allows initially discontinuous5
signals to remain so indefinitely. This is not the case in an elliptic or parabolic problem, where any
discontinuity will be smeared out by the physical diffusion present in the system.

Furthermore, in the general case, even smooth initial conditions can evolve into discontinuous so­
lutions over time. The qualitative explanation of this phenomena can be found in the 𝜆­field structure
of the solution: assume that two distinct characteristic lines intersect at some particular point of space­
time; the solution at that point must still satisfy (2.11), but for two different initial values. The only
possibility (in a genuinely nonlinear context) is for the solution to be multi­valued—hence, discontinu­
ous. An example of this effect is the so­called N­wave decay that occurs for the the inviscid Burgers
equation [82, §11.15].

The inviscid flow equations possess no mechanism to prevent the presence of arbitrarily large so­
lution gradients, hence their solutions can, in principle, be truly discontinuous. When viscosity is taken
into account, evidence6 suggests that dissipative effects eventually become dominant, only allowing
large (but finite) changes in flow quantities (e.g. density, pressure, temperature) across transition layers
of small, but finite, thickness. Admittedly, these are not actual discontinuities; but considering them as
such is often a reasonable approximation [114, p. 71]. Hence the treatment of both viscous and inviscid
flows is typically the same in regards to discontinuity regularization strategies.

In CFD, the presence of (quasi­)discontinuous features (e.g. shock waves) is problematic. In a
numerical simulation the number of degrees of freedom available to represent the solution is limited,
making it unfeasible to resolve the flow across very sharp features such as shock waves (in most
cases). Insufficient spatial resolution can lead to the physical dissipation present in the model, if any,
being incompatible in terms of an energy balance with approximately accurate solution values. Unless
there is some numerical (as opposed to physical) dissipative mechanism, the system may stabilize—if
it does at all—at a highly oscillatory, erroneous state. In simpler terms: the adequate equations, solved
with insufficient resolution, result in an entirely inaccurate solution, and may even cause instability.
These nonphysical disturbances in the numerical solution are referred to in the literature as spurious
oscillations or wiggles, and their appearance is known as the Gibbs phenomenon [47, §5.6].

Effectively coping with this issue is crucial for high­speed flow applications. Still, the lack of an
entirely satisfactory approach (particularly so in multiple dimensions) has led some experts to argue
that “we still do not really know how to capture shocks” [105]. Shock capturing consists in a controlled
and localized increase of viscosity in the neighborhood of a shock (or discontinuity in general) so that
the computed solution is smooth enough to be resolved discretely. Chapter 8 details various shock
capturing schemes studied in this work, all of them designed for high­order methods. For a general
overview of alternatives, see [99].

2.4. Riemann problem
Consider an infinite domain, 𝑥 ∈ [−∞,+∞]. When the general hyperbolic conservation law (2.1) is
solved for the following piecewise constant initial condition at 𝑡 = 𝑡0, we obtain a particularly interesting
initial­value problem known as the Riemann problem:

𝒒0(𝑥) = {
𝒒𝐿 𝑥 ≤ 𝑥0
𝒒𝑅 𝑥 ≥ 𝑥0

. (2.16)

Its solution will involve the transport of the initial data along 𝜆­fields. Each of these characteristics
can accommodate a jump discontinuity, thus the solution at some future instant 𝑡1 > 𝑡0 may consist
(if there are no repeated eigenvalues) of a set of I + 1 piece­wise constant states: {𝒒1, … , 𝒒I+1}. Alter­
natively, a characteristic may split into an expansion fan, joining its two adjacent states smoothly via
an infinite number of intermediate states. Additional details on the Riemann problem for each of the
conservation laws studied in this work are included in the remaining sections of this chapter.

This model problem plays the key role of coupling adjacent elements in compact discontinuous
methods, both in Godunov’s method and other finite volumes, and also in the high­order finite ele­
ment schemes considered in this work. All these methods use the solution of the Riemann problem to
5In this report, 𝐶𝑘 is the set of functions with continuous 𝑘­th derivative. Discontinuous functions belong to 𝐶−1 by convention.
6In [60], shocks are resolved (and, hence, the Gibbs phenomenon is not allowed to occur) for moderate Reynolds numbers with
a non­dissipative 2nd order finite volume scheme.
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evaluate a so­called Riemann flux,
𝒇̆ (𝒒𝐿 , 𝒒𝑅)≔𝒇 (𝒒̆) (2.17)

(where
𝒒̆≔𝒒(𝑡1, 𝑥0) (2.18)

is the Riemann state), which is the flux computed from the solution of the Riemann problem at the
location of the interface, some small time after the initial instant (see figure 2.1). In this way, solving
the Riemann problem determines how to compute the flux at element interfaces (see §3).

For coupling purposes, computing the exact solution is not desirable, as it can be a computationally
intensive process for nonlinear conservation laws; moreover, only one of the solution states is of interest
In practice, an approximate Riemann solver can be employed to directly obtain 𝒇̆ relatively cheaply.

𝑥𝑥0

𝑡

𝑥0 + 𝜆1(𝑡1 − 𝑡0) 𝑥0 + 𝜆2(𝑡1 − 𝑡0) 𝑥0 + 𝜆3(𝑡1 − 𝑡0)

𝑡0

𝑡1

𝒒1 ≡ 𝒒𝐿

𝒒2 ≡ 𝒒̆ 𝒒3

𝒒4 ≡ 𝒒𝑅

Figure 2.1: Solution to the Riemann problem in space­time. Depicted is a system with 3 distinct and constant
eigenvalues, with 𝒒(𝑡, 𝑥) = 𝒒0(𝑥) for 𝑡 < 𝑡0. In the situation shown: 𝒒̆ = 𝒒2.

2.5. Advection
In the remainder of this chapter, four particular examples of hyperbolic conservation laws are given. The
objective is to address in more detail some of the mathematical aspects that play a role in the numerical
methods formulated in subsequent chapters, namely: their eigendecomposition and the solution of their
Riemann problem in terms of a Riemann flux. All results reported in §II correspond to these PDEs.

The simplest hyperbolic conservation law is obtained when I = 1 and 𝑓 (𝑞) = 𝑎𝑞; 𝑎 is a non­zero
constant. Equation (2.1) becomes scalar, linear and of constant coefficients:

𝜕𝑞
𝜕𝑡 + 𝑎

𝜕𝑞
𝜕𝑥 = 0 . (2.19)

This problem is useful to assess the behavior of errors in a linear setting, in particular dispersion,
diffusion and stability (see appendix A).

2.5.1. Eigendecomposition
In this scalar case:

𝜦 ≡ 𝑎 , 𝑹 ≡ 1 , 𝑳 ≡ 1 , 𝓺 ≡ 𝑞 , (2.20)

i.e. eigenvalues and eigenvectors are trivial; characteristic and conserved variables are one and the
same.
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2.5.2. Riemann flux
Given that the PDE is scalar, a single 𝜆­field will be present in the solution. The additional restriction of
the Jacobian being constant means that said characteristic curve is a straight line of slope 𝑎; the solu­
tion of the Riemann problem will consist on the two initial states, separated by a contact discontinuity
traveling in space­time at a rate 𝑎, both of which remain unchanged. Consequently, the Riemann flux
is:

̆𝑓 (𝑞𝐿 , 𝑞𝑅) = {𝑎𝑞
𝐿 if 𝑎 > 0

𝑎𝑞𝑅 if 𝑎 < 0 ⟺ ̆𝑓 (𝑞𝐿 , 𝑞𝑅) = 𝑎
2 (𝑞

𝐿 + 𝑞𝑅) +
|𝑎|
2 (𝑞𝐿 − 𝑞𝑅) . (2.21)

Note that this corresponds to selecting the state on the upwind side (i.e. the side opposite to the prop­
agation of information, or “from where the wind blows”).

2.6. Wave equation
The wave equation is usually thought of as a scalar second­order PDE:

𝜕2𝑞
𝜕𝑡2 + 𝒸

2 𝜕2𝑞
𝜕𝑥2 = 0 . (2.22)

Nevertheless, it can be rewritten as the following system of two first­order PDEs [82, §2.9.1]:

𝜕
𝜕𝑡 [

𝑞1
𝑞2
] + [0 𝒸2

1 0 ]
𝜕
𝜕𝑥 [

𝑞1
𝑞2
] = 0 . (2.23)

This problem will be used to study the generalization of the different methods to vector equations
(i.e. I > 1, in this case I = 2). In it, each equation is still linear and the Jacobian matrix is still constant.

2.6.1. Eigendecomposition
The Jacobian matrix in (2.23) has two real and distinct eigenvalues. Its diagonalization and associated
characteristic variables are not trivial:

𝜦 = [𝒸 0
0 −𝒸] , 𝑹 = [𝒸 −𝒸

1 1 ] , 𝑳 = 1
2𝑐 [

1 𝒸
−1 𝒸] , 𝓺 = 1

2𝑐 [
𝑞1 + 𝒸𝑞2
𝒸𝑞2 − 𝑞1

] . (2.24)

2.6.2. Riemann flux
Once the system 2.23 has been diagonalized, it becomes equivalent to two decoupled advection equa­
tions. Thanks to the linear nature of the same, the exact solution to its Riemann problem can then be
conveniently obtained by linear superposition of each of these equations’ solutions. Assuming that the
left and right states are known, the Riemann flux is given by:

̆𝑓 (𝒒𝐿 , 𝒒𝑅) = 1
2 [
|𝒸| 𝒸2
1 |𝒸|] 𝒒

𝐿 + 12 [
− |𝒸| 𝒸2
1 − |𝒸|] 𝒒

𝑅 . (2.25)

2.6.3. Equivalent systems
The Euler equations (§2.8) can be linearized—see [82, §2.7]—to give the following system of 2 PDEs
which models the propagation of weak pressure and velocity fluctuations in a fluid flow:

𝜕
𝜕𝑡 [

𝑝
𝑢] + [

𝑢0 𝐾0
1/𝜌0 𝑢0

] 𝜕
𝜕𝑥 [

𝑝
𝑢] = 0 . (2.26)

Here, 𝑝 and 𝑢 are pressure and velocity perturbations around a reference state 𝑝0, 𝑢0. 𝐾0 is the bulk
modulus of compressibility of the fluid. If we let 𝑢0 = 0, (2.26) becomes a model for the propagation of
sound waves within a fluid at rest. Its dimensionless form turns out to be identical to that of (2.23).

This equivalence holds true also for the equations of solid mechanics, in the elastic regime, for a
one­dimensional solid [82, §2.12]:

𝜕
𝜕𝑡 [

𝜎11
𝑢 ] + [

0 − (𝜆 + 2𝜇)
−1/𝜌 0 ] 𝜕

𝜕𝑥 [
𝜎11
𝑢 ] = 0 , (2.27a)
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𝜕
𝜕𝑡 [

𝜎12
𝑣 ] + [

0 −𝜇
−1/𝜌 0 ]

𝜕
𝜕𝑥 [

𝜎12
𝑣 ] = 0 , (2.27b)

where 𝞂 ∈ ℝ1×2×1 is the stress tensor and 𝑢, 𝑣 are velocity components normal and tangential to the
length of the solid (respectively); 𝜆 and 𝜇 are, here, the Lamé parameters characterizing the material.

The same applies for Maxwell’s equations in the case of a planar electromagnetic wave [82, §2.14]:

𝜕
𝜕𝑡 [

𝐸2
𝐵3
] + [0

1
𝜀𝜇

1 0
] 𝜕
𝜕𝑥 [

𝐸2
𝐵3
] = 0 , (2.28)

with 𝐸⃗, 𝐵⃗ ∈ ℝ3 being the electric and magnetic field intensities, 𝜀 the permittivity of the medium and 𝜇
its magnetic permeability.

All of these systems model essentially the same phenomenon: a wave­like propagation of the solu­
tion, at a rate associated with a constant 𝒸 ≡ |𝜆|, be it the speed of sound in a fluid, normal or tangential
wave propagation speeds in a solid, or the speed of light in some medium.

2.7. Inviscid Burgers equation
All PDEs until this point have been examples of linear hyperbolic conservation laws. The simplest
nonlinear case is constructed from (2.19), generalizing its Jacobian to make it a function of the solution.
For convenience, we may choose this dependency to be a one­to­one equivalence: 𝑎(𝑢)≔𝑢. Thus
we obtain the (inviscid) Burgers equation, a scalar nonlinear hyperbolic conservation law which models
a convection process in which the advection speed depends on the advected quantity itself:

𝜕𝑢
𝜕𝑡 +

𝜕
𝜕𝑥 (

𝑢2
2 ) = 0 . (2.29)

For this conservation law, neglecting any influence from boundary conditions and assuming 𝑢0(𝑥) ∈
𝐶0, it can be shown that 𝑢(𝑡, 𝑥) becomes discontinuous at an instant 𝑡shock, given by [82, p. 224, exercise
11.1]

𝑡shock = −(min
𝑥
{d𝑢

0

d𝑥 })
−1

, (2.30)

corresponding to the earliest moment in which any two characteristic fields intersect each other—if
𝑡shock < 0, characteristics never cross. Under these conditions, for 𝑡 < 𝑡shock, the exact solution of
(2.29) is:

𝑢(𝑡, 𝑥) = 𝑢0 (𝑥 − 𝑢(𝑡, 𝑥)𝑡) . (2.31)
When necessary in part II of this report, equation (2.31) is evaluated recursively: stopping when the
maximum norm of the absolute error between the result of two successive estimates is <1 × 10−12,
starting from 𝑢(𝑡, 𝑥) = 𝑢0 (𝑥 − 𝑢0(𝑥)𝑡).

2.7.1. Eigendecomposition
Diagonalization of (2.29)’s Jacobian is analogous to (2.20):

𝜦 ≡ 𝑢 , 𝑹 ≡ 1 , 𝑳 ≡ 1 . (2.32)

The only difference in this case being that the single eigenvalue depends on the solution.

2.7.2. Riemann flux
Equation (2.29) having a non­constant characteristic speed complicates the exact solution of its Rie­
mann problem quite substantially. We are interested in a particular state 𝑢̆ (see §2.4) such that:

̆𝑓 (𝑢𝐿 , 𝑢𝑅) = 𝑓 (𝑢̆) = 1
2𝑢̆

2 . (2.33)

However, it is not trivial to decide which side is the upwind one, in general. It will depend on the specific
combination of sign and magnitude of the eigenvalues seen from each side of 𝑥0. Moreover, there is
one situation in which 𝑢̆ is neither 𝑢𝐿 nor 𝑢𝑅. Four cases are possible in total, summarized in table 2.1.
They are explained next.
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Case 𝑢𝐿 𝑢𝑅 𝑢̆
1 > 0 > 0 𝑢𝐿
2 < 0 < 0 𝑢𝑅
3 > 0 < 0 𝑢𝐿 if 𝑢𝐿 ≥ |𝑢𝑅|, 𝑢𝑅 if 𝑢𝐿 ≤ |𝑢𝑅|
4 < 0 > 0 0

Table 2.1: Summary of initial condition combinations in the Riemann problem for Burgers equation.

Case 1: right­going shocks
Both left and right state eigenvalues have the same, positive sign. Their associated 𝜆­fields are shock
waves, both traveling in the positive direction of the 𝑥 axis; therefore, the upwind state is the left one:

𝑢̆ ≡ 𝑢𝐿 ⟹ ̆𝑓 (𝑢𝐿 , 𝑢𝑅) = 𝑓(𝑢𝐿) . (2.34)

Case 2: left­going shocks
Reciprocal of the previous case, the two characteristics are traveling towards decreasing 𝑥­axis values:

𝑢̆ ≡ 𝑢𝑅 ⟹ ̆𝑓 (𝑢𝐿 , 𝑢𝑅) = 𝑓(𝑢𝑅) . (2.35)

Case 3: centered shock­shock interaction
In this situation the right­going characteristics from the left state are intersecting the left­going ones
coming from the right. This will result in a shock wave that, at the instant 𝑡1, moves with speed [82,
§11.8]:

𝑢 = 𝑢𝐿 + 𝑢𝑅
2 . (2.36)

If the right­going characteristic dominates, 𝑢 > 0; the shock resulting from the interaction will be moving
to the right. Otherwise, if 𝑢 < 0, the combined show wave travels to the left. A stationary shock can
occur, if |𝑢𝐿| = |𝑢𝑅| ⟺ 𝑢𝐿 = −𝑢𝑅; this case is trivial, since 𝑓(𝑢) ≡ 𝑓(−𝑢). In conclusion:

̆𝑓 (𝑢𝐿 , 𝑢𝑅) = {𝑓(𝑢
𝐿), 𝑢𝐿 + 𝑢𝑅 ≥ 0

𝑓(𝑢𝑅), 𝑢𝐿 + 𝑢𝑅 < 0 . (2.37)

Case 4: centered expansion
Two characteristic fields are adjacent but moving away from each other at (𝑡0, 𝑥0). Let us assume a
linear expansion fan profile for 𝑡1 ≈ 𝑡0. At 𝑡1, the left crest will have moved (to the left) to 𝑥0 + 𝑢𝐿𝛥𝑡,
while the right one will be at 𝑥0 + 𝑢𝑅𝛥𝑡 (right of its initial position). The left and right states, initially
adjacent, are now joined by a straight line, 𝑦(𝑥) = 𝑐1 (𝑥 − 𝑥0) + 𝑐0; therefore:

{𝑢
𝐿 = 𝑐1𝑢𝐿𝛥𝑡 + 𝑐0
𝑢𝑅 = 𝑐1𝑢𝑅𝛥𝑡 + 𝑐0

⟹ 𝑐0
𝑢𝑅 −

𝑐0
𝑢𝐿 = 0 ⟹ 𝑦 (𝑥0) = 0 ⟹ 𝑢̆ = 0 .

Which means that the expansion fan will be centered around zero at 𝑡1 regardless of the specific values
of 𝑢𝐿 and 𝑢𝑅, i.e. :

̆𝑓 (𝑢𝐿 , 𝑢𝑅) = 𝑓 (0) = 0 . (2.38)

2.8. Euler equations
The Euler equations model the behavior of a compressible, inviscid fluid. They are the most general
case considered in this work: a system of nonlinear PDEs,

𝜕
𝜕𝑡 [

𝜌
𝜌𝑢
𝜌𝐸
] + 𝜕

𝜕𝑥 [
𝜌𝑢

𝜌𝑢2 + 𝑝
𝑢 (𝜌𝐸 + 𝑝)

] = 0 . (2.39)

The conserved variables are: mass, momentum and total energy (each of them per unit volume), and
each has its own corresponding flux vector component. The flow velocity is 𝑢.
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An additional equation of state is needed in order to close (2.39). Under the assumption of a calor­
ically perfect gas, such a relation is given by

𝑝
𝛾 − 1 = 𝜌𝑒 = 𝜌𝐸 −

1
2𝜌𝑢

2 , (2.40)

where 𝑝 is the pressure, 𝑒 is the internal energy (per unit mass) and 𝛾 is the diatomic gas constant.
Several additional relations and quantities can be derived from the current set based on thermo­

dynamic considerations [114, section 1.2]. Most relevant among these are the total enthalpy (per unit
volume),

𝜌𝐻 = 𝜌𝐸 + 𝑝 , (2.41)
and the speed of sound,

𝒸 = √
𝛾𝑝
𝜌 = √(𝛾 − 1) (𝐻 − 12𝑢

2) . (2.42)

In addition to the vector of conserved variables, it is useful for the Euler equations to define two
additional state vectors, primitive and Roe variables (𝙫 and 𝙬, respectively):

𝙫≔ [𝜌 𝑢 𝑝]
⊺
, 𝙬≔[√𝜌 √𝜌𝑢 √𝜌𝐻]

⊺
. (2.43)

Let the transformation from conserved to primitive variables be designated by the nonlinear operator
𝙏∶ ℝ3 → ℝ3×3, defined such that 𝙫 = 𝙏𝒒:

𝙏 (𝒒)≔[
1 0 0
0 1/𝑞1 0
0 1−𝛾

2
𝑞2
𝑞1

𝛾 − 1
] . (2.44)

And let a so­called Roe average between two vectors of Roe variables be:

𝙬̃ (𝙬𝐿 , 𝙬𝑅)≔ [𝘸𝐿1𝘸𝑅1
𝘸𝐿2+𝘸𝑅2
𝘸𝐿1+𝘸𝑅1

𝘸𝐿3+𝘸𝑅3
𝘸𝐿1+𝘸𝑅1

]
⊺
. (2.45)

2.8.1. Eigendecomposition
In conserved variables, the Jacobian matrix of 2.39 and its eigendecompostion are [82, §14.8]:

𝑨 (𝒒) = [
0 1 0

𝛾−3
2 𝑢

2 (3 − 𝛾) 𝑢 𝛾 − 1
(𝛾−12 𝑢

2 − 𝐻)𝑢 𝐻 − (𝛾 − 1) 𝑢2 𝛾𝑢
] , (2.46a)

𝜦 (𝒒) = [
𝑢 − 𝒸 0 0
0 𝑢 0
0 0 𝑢 + 𝒸

] , (2.46b)

𝑹(𝒒) = [
1 1 1

𝑢 − 𝒸 𝑢 𝑢 + 𝒸
𝐻 − 𝑢𝒸 1

2𝑢
2 𝐻 + 𝑢𝒸

] , (2.46c)

𝑳 (𝒒) = 𝛾 − 1
2𝒸2

⎡
⎢
⎢
⎢
⎣

𝐻 + 𝒸
𝛾−1 (𝑢 − 𝒸) −(𝑢 + 𝒸

𝛾−1) 1
−2𝐻 + 4

𝛾−1𝒸
2 2𝑢 −2

𝐻 + 𝒸
𝛾−1 (𝑢 + 𝒸) −𝑢 + 𝒸

𝛾−1 1

⎤
⎥
⎥
⎥
⎦

. (2.46d)

For primitive variables, however, (2.46a) and (2.46c) are simplified substantially (the eigenvalues, of
course, remain the same) [82, 14.7]:

𝑨 (𝙫) = [
𝑢 𝜌 0
0 𝑢 1/𝜌
0 𝛾𝑝 𝑢

] , 𝑹(𝙫) = [
−𝜌/𝒸 1 𝜌/𝒸
1 0 𝑢 + 𝒸
−𝜌𝒸 0 𝜌𝒸

] . (2.47)
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Recalling (2.15), it turns out that

𝜕𝜆1 (𝙫)
𝜕𝙫 ⋅ 𝒓1 (𝙫) = [

𝒸
2𝜌 1 − 𝒸

2𝜌 ] [
−𝜌/𝒸
1
−𝜌𝒸

] = 𝛾 + 1
2 , (2.48a)

𝜕𝜆2 (𝙫)
𝜕𝙫 ⋅ 𝒓2 (𝙫) = [0 1 0] [

1
0
0
] ≡ 0 , (2.48b)

𝜕𝜆3 (𝙫)
𝜕𝙫 ⋅ 𝒓3 (𝙫) = [−

𝒸
2𝜌 1 𝒸

2𝜌 ] [
𝜌/𝒸
1
𝜌𝒸
] = 𝛾 + 1

2 , (2.48c)

i.e. the 𝜆2­field is always linearly degenerate in the Euler equations [82, §14.7]. This is the reason why
a discontinuity associated with it is not referred to as a shock but a contact discontinuity. The other two
characteristics can either be a shock or a rarefaction, both genuinely nonlinear since 𝛾 > 0.

2.8.2. Riemann solvers
In this section some of the many different approaches to solving the Riemann problem for the Euler
equations—those which have been studied and tested during the course of this work—are simply listed;
a thorough description of each can be found in their respective chapters of [114].

Exact Riemann solver
Similarly to the case of Burgers equation, this approach consists on deducing future states at a time
in the very near future based on the characteristic speeds of the system. Toro [114, §4] gives a very
detailed explanation, including a Fortran implementation, of a simple yet effective approach based on
using pressure to determine which of the four possible combinations involving left shock, left rarefaction,
right shock and right rarefaction is taking place. Knowing that, it is possible to deduce the state at the
interface in a similar way as it was shown for the Burger’s case and eventually use it to compute the
Riemann flux.

Single wave­speed estimate
The simplest kind of Riemann solvers use a single estimated wave­speed to compute an approximated
Riemann flux. Note that the diagonalization of (2.46a) revealed that there are in fact 3 distinct eigen­
values in the 1D situation; these methods sacrifice accuracy in favour of efficiency, and are the most
diffusive among those reviewed. One of the most popular among these is the Local Lax­Friedrichs
or Rusanov solver [114, p. 329].

Two wave­speed estimates
Quite less diffusive are the methods that use two characteristic speed estimates to solve the problem
approximately. Consequently, they are slightly more computationally­intensive than those of the pre­
vious class. Most popular in this category is the HLL solver [114, §10.3]. An alternative estimation of
the two wave speeds leads to a variant of it known as HLLE [82, §15.3.7], which is reported to have
positivity preserving properties [33, 34].

Three wave­speed estimates
Adding a third characteristic speedmakes the Riemann solver significantly more accurate. A successful
example of one such schemes is HLLC, which adds an additional characteristic speed estimate to HLL
[114, §10.4]. Numerical tests reported in [114] suggest that this method is as accurate or more than
HLL (particularly at contact discontinuities) while being only slightly more expensive than the methods
using only two wave­speed estimates.

Last, and arguably the most popular of them all, Roe’s Riemann solver [114, §11] also uses three
wave­speeds. Its estimation employs eigendecomposition of the Jacobian matrix, which leads to a
more accurate flux at the price of a more costly scheme. In practice, however, Roe’s solver is known
to be more prone to failure e.g. near­vacuum situations than alternatives. Furthermore, it is the only
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one among those considered here that requires an entropy fix to produce a physical solution at sonic
rarefactions [114, §11.4]. In this work only one of such fixes has been studied, that of Harten–Hyman
[114, §11.4.2].





3
Compact Discontinuous High­Order

Discretization
Discretization, broadly speaking, consists on replacing some continuous system—not amenable to
representation on a digital computer—with some finite number of entities of some kind, eventually
leading to a finite set of degrees of freedom1 the behavior of which is modeled instead.

This chapter is meant as an introduction to the discretization framework targeted by the present the­
sis. It describes, in a general setting, all aspects that the three particular methods selected as research
objects share—leaving the specifics of each to its own dedicated chapter (§§ 4–6). The derivation is
within the framework of the method of lines; details about the treatment of the time operator are post­
poned until §7. The relationship that exists between compact discontinuous high­order methods and
the final volume method is explored in §3.4. Sections 3.5 and 3.6, specifically address the enforce­
ment of initial and boundary conditions in a unified manner for all the methods considered. There is a
large amount of literature covering these topics; some suggestions are: Blazek [14], Brenner and Scott
[16], Hartmann and Leicht [46], Hesthaven and Warburton [47], Hirsch [50], Kopriva [66].

3.1. Domain discretization
The result of spatial discretization is a mesh, 𝒯ℎ≔{𝛺𝑘}K𝑘=1. It is obtained by dividing 𝛺 into K non­
overlapping sub­domains, called elements (also cells or patches, depending on the context), such that:

𝛺 =
K

⋃
𝑘=1

𝛺𝑘 ,
K

⋂
𝑘=1

𝛺𝑘 = ∅ , K ≥ 1 . (3.1)

In the most general case, each 𝛺𝑘 is a 3D shape (not necessarily a polyhedron) composed of faces,
edges and vertices. For the one­dimensional case within scope, the situation is greatly simplified: each
element is a line segment, with two end­points that are the equivalent of vertices, edges and faces—all
collapsed into a single entity (see figure 3.1). Consequently, only one type of connectivity exists: every
line is delimited by points, and every one of such points is connected to two adjacent line segments
(which share it). In short, to generate a mesh in 1D we simply need to specify 𝑥1 < 𝑥2 < … < 𝑥K+1, a
partitioning of 𝑥 into K intervals.

Each element and its left and right edges are defined as:

𝛺𝑘≔[𝑥𝑘 , 𝑥𝑘+1] , 𝜕𝛺𝐿𝑘≔𝑥𝑘 , 𝜕𝛺𝑅𝑘 ≔𝑥𝑘+1 . (3.2)

The “volume” of 𝛺𝑘 (i.e. it’s length) and the position of its centroid (i.e.midpoint) are:

𝛥𝑥𝑘≔𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘≔
𝑥𝑘 + 𝑥𝑘+1

2 . (3.3)

1The term “degree of freedom” is used in FE to refer to each of the unknowns that the discrete system is to be solved for. This
generalizes the various particular choices used in each method. For example: in FD, the degrees of freedom are solution values
at grid points; in cell­centered FV, the unknowns are cell­averaged solution values, etc.

21
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Among the set of all element boundaries {𝑥1, … , 𝑥K+1}, let us distinguish between exterior ones (i.e. the
boundaries of the domain) {𝑥1, 𝑥K+1} and interior ones (i.e. element interfaces) {𝑥2, … , 𝑥K}.

Element

Face

Centroid Edge

Vertex

Element

Face
⇕

Edge
⇕

Vertex

Centroid

Figure 3.1: Analogies between three­dimensional (hexahedral) and one­dimensional meshes.

𝑥1 𝑥2 𝑥𝑘−1 𝑥𝑘 𝑥𝑘+1 𝑥K 𝑥K+1
... ...𝛺1 𝛺𝑘−1 𝛺𝑘 𝛺K

Figure 3.2: Indexing convention for the one­dimensional meshes used in this report.

3.1.1. Reference element
Let 𝜉 ∈ 𝛺≔[−1, 1] define a reference element and its 1D coordinate system. Any point 𝑥 ∈ 𝒯ℎ can be
transformed to reference element coordinates via the invertible affine mapping 𝒳𝑘 ∶ 𝛺𝑘 → 𝛺, defined
as [66, p. 298]:

𝒳𝑘(𝜉)≔𝑥𝑘 +
𝛥𝑥𝑘
2 𝜉 , 𝒳−1𝑘 (𝑥) = 2

𝛥𝑥𝑘
(𝑥 − 𝑥𝑘) . (3.4)

Its Jacobian is simply a scalar constant:

d𝒳𝑘
d𝜉 ≔ (d𝑥

d𝜉 )|𝛺𝑘
= 𝛥𝑥𝑘

2 . (3.5)

𝑥𝑘 𝑥𝑘+1 𝜉 = 1𝜉 = −1

𝛺𝑘 𝛺
𝒳𝑘 (𝜉)

𝒳−1𝑘 (𝑥)

Figure 3.3: Mapping between physical element 𝛺𝑘, and reference element 𝛺.

3.2. Solution discretization
Discretization of the solution consists on replacing its exact counterpart with an approximate solu­
tion 𝒒ℎ(𝑡, 𝑥) ≃ 𝒒(𝑡, 𝑥). To that aim, high­order finite element methods introduce 𝑆ℎ ∈ 𝐿2 (𝛺), a finite­
dimensional trial function space in which to “look for” 𝒒ℎ. Discontinuous methods (unlike standard finite
elements) do not enforce continuity of the approximate solution across element boundaries. Instead:

𝒒ℎ(𝑡, 𝑥)≔
K

⨁
𝑘=1

𝒒ℎ𝑘(𝑡, 𝑥) , 𝑞ℎ𝑖𝑘(𝑡, 𝑥) ∈ 𝐶0 ; (3.6)
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i.e. the global approximated solution is constructed by “stitching together”2 several element­wise contin­
uous solutions, rendering the approximate solution and flux components twice­valued at every interior
edge.

3.2.1. Reference element space
In the most general situation, each component of 𝒒ℎ𝑘 exists in its element’s own function space. Even
in that case, it is convenient to work in reference coordinates (see §3.1.1), such that:

𝒒̃ℎ𝑘(𝑡, 𝜉)≔𝒒ℎ𝑘 (𝑡,𝒳𝑘(𝜉)) , 𝑞ℎ𝑖𝑘 ∈ 𝑆ℎ𝑘 (𝛺) . (3.7)

Given that 𝑆ℎ𝑘 (𝛺) is independent on the element’s geometry, is is possible for multiple elements to
share it; e.g. a discretization where all elements use the same number of degrees of freedom (and the
same spatial discretization scheme) only uses a single unique reference element space. Without loss
of generality, I assume that each element possesses its own approximate solution space.

3.2.2. Trial basis functions
Each reference element space, 𝑆ℎ𝑘 (𝛺), needs to be specified via a basis. Given that we are dealing
with a function space, its basis’ components are functions—hence their name. Each discretization
scheme uses a particular type of basis; more information about the methods reviewed can be found in
their respective chapters of this report. Given a generic set {𝜙1𝑘(𝜉), … , 𝜙J𝑘(𝜉)} of basis functions, the
reference element space of J dimensions3 is constructed as:

𝑆ℎ𝑘 (𝛺)≔ span{𝜙𝑗𝑘(𝜉)}J𝑗=1 . (3.8)

For convenience, let us also define the following vector basis function 𝝓𝑘 ∶ ℝ → ℝJ:

𝝓𝑘(𝜉)≔ [𝜙1𝑘(𝜉) 𝜙2𝑘(𝜉) … 𝜙J𝑘(𝜉)]
⊺
. (3.9)

3.2.3. Degrees of freedom
The approximate solution vector on 𝛺𝑘 is encoded as a linear combination of the basis functions of
𝑆ℎ𝑘 ; I shall refer to the coefficients of such a series expansion as the degrees of freedom of 𝛺𝑘. It is
convenient to group all degrees of freedom of 𝛺𝑘 into a two­dimensional array 𝑸̂𝑘 ∈ ℝI×J,

𝑸̂𝑘(𝑡)≔ [
𝑞̂11𝑘(𝑡) 𝑞̂12𝑘(𝑡) ⋯ 𝑞̂1J𝑘(𝑡)
⋮ ⋮ ⋮

𝑞̂I1𝑘(𝑡) 𝑞̂I2𝑘(𝑡) ⋯ 𝑞̂IJ𝑘(𝑡)
] ≡ [𝒒̂1𝑘(𝑡) 𝒒̂2𝑘(𝑡) ⋯ 𝒒̂J𝑘(𝑡)] , (3.10)

so that the approximate solution components within 𝛺𝑘 are obtained (in reference coordinates) as:

𝒒̃ℎ𝑘 (𝑡, 𝜉) = 𝒒̂1𝑘(𝑡)𝜙1(𝜉) + 𝒒̂2𝑘(𝑡)𝜙2(𝜉) + … + 𝒒̂J𝑘(𝑡)𝜙J(𝜉) =
J

∑
𝑗=1
𝒒̂𝑗𝑘(𝑡)𝜙𝑗𝑘(𝜉) ≡ 𝑸̂𝑘(𝑡)𝝓𝑘(𝜉) . (3.11)

These uniquely define the global approximate solution at any (𝑡, 𝑥), with 𝑞̂𝑖𝑗𝑘(𝑡) ∈ ℝ being a particular
degree of freedom associated with equation 1 ≤ 𝑖 ≤ I, basis function 1 ≤ 𝑗 ≤ J and element 1 ≤ 𝑘 ≤ K.

3.2.4. Flux representation
For economy of notation, let us define an approximate version of the flux function as

𝒇ℎ(𝑡, 𝑥) ≃ 𝒇 (𝒒(𝑡, 𝑥)) , (3.12)

with its element­local and reference­element counterparts, 𝒇ℎ𝑘(𝑡, 𝑥) and 𝒇̃ℎ𝑘(𝑡, 𝜉), defined analogously to
those of the approximate solution. For every flux function considered in this report, 𝑓ℎ𝑖𝑘 is continuous if
so is 𝑞ℎ𝑖𝑘. With nonlinear and/or nonconstant flux Jacobians, choosing a suitable representation for this
2More precisely, 𝒒ℎ is the direct sum of all element­wise solutions [47, §2.2.1].
3Even if omitted for clarity of notation, the length of each basis is not assumed unique over the various elements, i.e. J = J(𝑘).
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approximate flux vector is a delicate issue. The problem arises from the fact that, even if 𝑞ℎ𝑖𝑘 ∈ 𝑆ℎ(𝛺),
in general:

𝑓𝑖 (𝒒̃ℎ𝑘(𝑡, 𝜉)) ∉ 𝑆ℎ(𝛺) . (3.13)

For all methods considered in this report, the flux vector components are expanded into the very same
𝑆ℎ𝑘 as the state vector ones4, i.e. :

𝒇̃ℎ𝑘 (𝑡, 𝜉) = 𝑭̂𝑘(𝑡)𝝓𝑘(𝜉) ≡ [
̂𝑓11𝑘(𝑡) ̂𝑓12𝑘(𝑡) ⋯ ̂𝑓1J𝑘(𝑡)
⋮ ⋮ ⋮
̂𝑓I1𝑘(𝑡) ̂𝑓I2𝑘(𝑡) ⋯ ̂𝑓IJ𝑘(𝑡)

]
⎡
⎢
⎢
⎢
⎣

𝜙1𝑘(𝜉)
𝜙2𝑘(𝜉)
⋮

𝜙J𝑘(𝜉)

⎤
⎥
⎥
⎥
⎦

; (3.14)

and therefore, except for linear flux functions:

𝒇̃ℎ𝑘(𝑡, 𝜉) ≠ 𝒇 (𝒒̃ℎ𝑘(𝑡, 𝜉)) . (3.15)

This mismatch that, in general, occurs between the number of dimensions available in the approxi­
mate solution space and number of those that would actually be necessary to exactly resolve its flux in­
troduces some error, in addition to the truncation one, if any, into the discretization. Sometimes broadly
referred to as a “variational crime”, this error can be understood as a consequence of aliasing in nodal
finite element and collocation spectral methods [47, §5.3] (see §4.2 for additional details). Moreover,
although tempting, in general 𝒇̂𝑗𝑘 ≠ 𝒇 (𝒒̂𝑗𝑘). The evaluation of these flux coefficients depends on each
method and its choice of basis, and is thus delegated to subsequent chapters.

3.3. Equation discretization
Sections 3.1 and 3.2 in combination provide a mechanism with which to represent an approximation to
the exact solution of (2.1) in a discrete setting, one that allows high order of accuracy under suitably
chosen basis functions. All that remains is a way to actually compute said approximate solution. This
is achieved by transforming the mathematical model (equation 2.1 in this case) from a set of partial
differential equations to a system of algebraic equations, in which the unknowns are then not the exact
state variables defined for a continuum, but the degrees of freedom (3.10) of the discrete solution.

3.3.1. Spatial residuals (method of lines)
The method of lines refers to a particular treatment of the spatial and temporal operators of the general
conservation law. In this approach, one aims to obtain a semi­discrete version of the system of PDEs
first, in which the temporal derivative still appears as a continuous operator. This decouples the spatial
and temporal discretization schemes from each other (see §7).

After (spatial) semi­discretization, (2.1) for each degree of freedom is expected to become

d𝑞̂𝑖𝑗𝑘
d𝑡 = 𝓇̂𝑖𝑗𝑘(𝑡) , (3.16)

which is an ordinary differential equation (ODE), and can be solved as such. I will refer to the scalar
𝓇̂𝑖𝑗𝑘 ∈ ℝ as an expansion coefficient of the (spatial) residual [129] associated with the 𝑖, 𝑗, 𝑘­th degree
of freedom. By analogy with the approximate solution, the matrices of residual coefficients 𝓡̂𝑘 define
a discretization­dependent residual function 𝓻̃𝑘(𝑡, 𝜉) ∈ 𝑆ℎ𝑘 (𝛺), as follows:

𝓻̃𝑘(𝑡, 𝜉)≔ 𝓡̂(𝑡)𝝓⊺𝑘(𝜉) , 𝓻𝑘(𝑡, 𝑥) = 𝓻̃𝑘(𝑡,𝒳𝑘(𝜉)) , 𝓻(𝑡, 𝑥)≔
K

⨁
𝑘=1

𝓻𝑘(𝑡, 𝑥) . (3.17)

3.3.2. Weak formulation
All finite element methods, including those considered in this report, start from a weak (or variational)
formulation of the continuous problem. For a discontinuous method, a convenient weak form of (2.1)

4This approach is borrowed from continuous finite element methods, where it is known as Fletcher’s group formulation [37].
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is obtained by multiplying it first by an arbitrary (sufficiently smooth) test function 𝑣 ∈ 𝑉 (𝛺), and then
integrating by parts over 𝛺𝑘 ∈ 𝒯ℎ:

𝜕
𝜕𝑡 ∫𝛺𝑘

𝒒𝑣 d𝑥 + 𝒇|
𝜕𝛺𝑅𝑘
𝑣 (𝑥𝑘+1) − 𝒇|𝜕𝛺𝐿𝑘

𝑣 (𝑥𝑘) − ∫
𝛺𝑘
𝒇d𝑣
d𝑥 d𝑥 = 0 . (3.18)

The weak form of the general hyperbolic conservation law on an element can now be stated as: find
𝒒(𝑡, 𝑥) such that (3.18) holds for every 𝑣(𝑥), for 𝑘 = 1, 2, … , K. Similarly to the difference between the
differential and the integral forms of the hyperbolic conservation law, this formulation of the problem
requires fewer conditions on its solution. More importantly, though, is the fact that, at the same time
(and unlike the integral form itself), it provides a way to introduce the high­order approximate solution
from the previous section into the discrete conservation law.

In a discrete setting, it is not possible to enforce (3.18) for all test functions. Instead, the space of
test functions is replaced by a finite­dimensional subset of it, 𝑉ℎ (𝛺) ⊂ 𝑉 (𝛺). The exact specification of
this subspace depends on the discretization scheme; the most common approach consists on reusing
the trial space as test function space5, i.e. : 𝑉ℎ = 𝑆ℎ. With discontinuous methods, it is convenient to
consider element­wise test function spaces in reference element coordinates, i.e.𝑉ℎ𝑘 (𝛺). Furthermore,
since 𝑣 does not need to satisfy any particular boundary condition, each test function is independent
from the rest [66, p. 309]. Equation (3.18) can be enforced discretely element­by­element by choosing
a test function among the set

{𝜑𝑟𝑘(𝜉) : 𝑉ℎ𝑘 (𝛺) = span{𝜑𝑟𝑘}J𝑟=1} , (3.19)

and replacing the exact solution vector 𝒒(𝑡, 𝑥) with its local high­order approximation, 𝒒ℎ𝑘(𝑡, 𝑥). The
result, in reference element coordinates, is

𝛥𝑥𝑘
2

d
d𝑡 ∫

1

−1
𝒒̃ℎ𝑘𝜑𝑟𝑘 d𝜉 + 𝒇|𝜕𝛺𝑅𝑘

𝜑𝑟𝑘(1) − 𝒇|𝜕𝛺𝐿𝑘
𝜑𝑟𝑘 (−1) − ∫

1

−1
𝒇̃ℎ𝑘

d𝜑𝑟𝑘
d𝜉 d𝜉 = 0 , (3.20)

which has to hold for every element and test function (𝑟 being its index) of the discretization. It is
convenient to group such test functions into the vector 𝝋𝑘 ∶ ℝ → ℝJ:

𝝋⊺𝑘(𝜉)≔ [𝜑1𝑘(𝜉) 𝜑2𝑘(𝜉) … 𝜑J𝑘(𝜉)] . (3.21)

3.3.3. Inter­element coupling
One last issue remains unsolved in (3.20): how to evaluate the flux vector at element interfaces. Com­
pact discontinuous high order methods borrow the answer directly from the finite volume method. Sup­
pose that a numerical flux function 𝒇̆ ∶ (ℝI, ℝI) → ℝI is available; the numerical fluxes at each edge of
𝛺𝑘 are approximated as:

𝒇|
𝜕𝛺𝐿𝑘

≃ 𝒇̆𝐿𝑘(𝑡)≔ 𝒇̆ (𝒒ℎ𝑘−1 (𝑡, 𝑥𝑘) , 𝒒ℎ𝑘 (𝑡, 𝑥𝑘)) ≡ 𝒇̆ (𝒒̃ℎ𝑘−1 (𝑡, +1) , 𝒒̃ℎ𝑘 (𝑡, −1)) , (3.22a)

𝒇|
𝜕𝛺𝑅𝑘

≃ 𝒇̆𝑅𝑘(𝑡)≔ 𝒇̆ (𝒒ℎ𝑘 (𝑡, 𝑥𝑘+1) , 𝒒ℎ𝑘+1 (𝑡, 𝑥𝑘+1)) ≡ 𝒇̆ (𝒒̃ℎ𝑘 (𝑡, +1) , 𝒒̃ℎ𝑘+1 (𝑡, −1)) . (3.22b)

Such a flux couples each element with the rest weakly, and in an optimally compact way: an ele­
ment’s discrete conservation law requires information from its two immediate neighbors only. This can
be exploited to achieve very high parallel scalability in solver implementations, and is one of the main
virtues of these kind of schemes. Additionally, this coupling mechanism manages to carry over the
local conservation property [107], as defined for finite volumes, to a high­order context.

With high­order methods, the typical numerical flux function used is the Riemann flux, defined in
§2.4. This choice arises quite naturally if we treat the neighborhood of every edge as defining a local
Riemann problem. Unlike in (low­order) finite volumes, where the order of the discretization is deter­
mined by the order of this numerical flux, discontinuous finite element methods of the kind considered
in this report maintain their order of accuracy (in smooth regions of the solution) regardless—it is deter­
mined by the type of solution discretization employed. While this makes the choice of Riemann solver
less critical, a discontinuous high order discretization may still benefit from a less diffusive numerical
flux.
5In some contexts (e.g. spectral methods [19, §1.2.5]) this choice is known as Bubnov­Galerkin—or, simply, Galerkin.



26 3. Compact Discontinuous High­Order Discretization

3.3.4. Semi­discrete hyperbolic conservation law
All pieces are now in place to explicitly write (2.1) as (3.16), a semi­discrete ODE for the degrees of
freedom as a function of time. Expansion of 𝒒̃ℎ𝑘 and 𝒇̃ℎ𝑘 into their respective linear combinations of basis
functions turns (3.20) into the sought­after result, which has to hold for every 𝛺𝑘 ∈ 𝒯ℎ,

d𝑸̂𝑘
d𝑡 𝓜𝑘 + [𝒇̆𝝋⊺𝑘]𝜕𝛺𝑘 − 𝑭̂𝑘𝓒𝑘 = 0 , (3.23)

where

[𝒇̆𝝋⊺𝑘]𝜕𝛺𝑘≔𝒇̆
𝑅
𝑘𝝋⊺𝑘(1) − 𝒇̆𝐿𝑘𝝋⊺𝑘(−1) ≡ [

̆𝑓𝑅1𝑘𝜑1𝑘(1) − ̆𝑓𝐿1𝑘𝜑1𝑘(−1) ⋯ ̆𝑓𝑅1𝑘𝜑J𝑘(1) − ̆𝑓𝐿1𝑘𝜑J𝑘(−1)
⋮ ⋮

̆𝑓𝑅I𝑘𝜑1𝑘(1) − ̆𝑓𝐿I𝑘𝜑1𝑘(−1) ⋯ ̆𝑓𝑅I𝑘𝜑J𝑘(1) − ̆𝑓𝐿I𝑘𝜑J𝑘(−1)
] (3.24)

can be interpreted as the net boundary fluxes associated to each equation (row) and test function
(column) in 𝛺𝑘, and

𝓜𝑘≔
𝛥𝑥𝑘
2 ∫

1

−1
𝝓𝑘𝝋⊺𝑘 d𝜉 ≡

𝛥𝑥𝑘
2 [

∫1−1 𝜙1𝑘𝜑1𝑘 d𝜉 ⋯ ∫1−1 𝜙1𝑘𝜑J𝑘 d𝜉
⋮ ⋮

∫1−1 𝜙J𝑘𝜑1𝑘 d𝜉 ⋯ ∫1−1 𝜙J𝑘𝜑J𝑘 d𝜉
] , (3.25a)

𝓒𝑘≔∫
1

−1
𝝓𝑘

d𝝋⊺𝑘
d𝜉 d𝜉 ≡

⎡
⎢
⎢
⎣

∫1−1 𝜙1𝑘
d𝜑1𝑘
d𝜉 d𝜉 ⋯ ∫1−1 𝜙1𝑘

d𝜑J𝑘
d𝜉 d𝜉

⋮ ⋮
∫1−1 𝜙J𝑘

d𝜑1𝑘
d𝜉 d𝜉 ⋯ ∫1−1 𝜙J𝑘

d𝜑J𝑘
d𝜉 d𝜉

⎤
⎥
⎥
⎦

(3.25b)

are, respectively, the consistent mass matrix and the discrete gradient operator in 𝛺𝑘. The residual
matrix for this arbitrary element, defined in accordance to §3.3.1, is:

𝓡̂𝑘≔(𝑭̂𝑘𝓒𝑘 − [𝒇̆𝝋⊺𝑘]𝜕𝛺𝑘)𝓜
−1
𝑘 . (3.26)

The components of the discrete mass and gradient operators involve an integral over the reference
domain which still counts as a continuous operator not yet discretized. In 1D, these are the only integrals
to be approximated (additional boundary integrals would appear in higher dimensions). Each method
tries to exploit the properties of the basis and test functions to do so as efficiently and accurately as
possible; in fact, it is typically the case that these terms are computed exactly. More details are provided
in subsequent chapters. A consequence of approximating the flux vector via (3.14) is that, not only the
mass matrix, but also a discrete gradient operator exists and can be precomputed; this makes the
evaluation of (3.26) rather efficient.

Throughout this report, the matrices of degrees of freedom and residuals are arranged such that
each row corresponds to a state variable, and each column to a basis component. I made such a choice
during the design stages of the solver used in part II; and I have chosen to maintain it in this document
so that it better serves as a documentation of sorts for said implementation. Under this convention,
the mass and gradient matrices (3.25) have been derived as the transposes of their usual definitions
(cf. [47, §2.2], where the latter is referred to as stiffness matrix). This also translates in these operators
appearing as right­multiplications in (3.23) and (3.26). More generally, operations involving trial or
test basis functions are encoded as matrix right­multiplications, while left­multiplications will generally
involve the state or flux vector components (e.g. transformation to/from primitive variables).

3.4. The low­order case: finite volume discretization
Equation (3.23) can be seen as a generalization of the finite volume (FV) method to arbitary order;
more specifically, for the choice of numerical fluxes made in this report, the first order upwind finite
volume method (also known as Godunov’s method). Refer to [82] for details. To see this, consider the
situation J = 1, 𝜙𝑘 = 𝜑𝑘≔1. The discrete solution is piecewise constant and there is a single degree
of freedom per equation, thus:

∫
𝛺𝑘
𝒒(𝑡, 𝑥) d𝑥 = ∫

𝛺𝑘
𝒒𝑘(𝑡, 𝑥) d𝑥 ≡ 𝛥𝑥𝑘𝒒ℎ𝑘(𝑡, 𝑥) , 𝒒𝑘(𝑡, 𝑥) ≈ 𝒒ℎ𝑘(𝑡, 𝑥) ≡ 𝒒̃ℎ𝑘(𝑡, 𝜉) ≡ 𝒒̂𝑘(𝑡) . (3.27)
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Mass and gradient operators (3.25) in this case are:

𝓜𝑘 = 𝛥𝑥𝑘 , 𝓒𝑘 = 0 . (3.28)

Therefore, the semi­discrete conservation law (3.23) reduces to:

𝛥𝑥𝑘
d𝒒ℎ𝑘
d𝑡 + 𝒇̆𝑅𝑘 − 𝒇̆𝐿𝑘 = 0 , (3.29)

and the spatial residuals, (3.26), to:

𝓻𝑘 = −
1
𝛥𝑥𝑘

(𝒇̆𝑅𝑘 − 𝒇̆𝐿𝑘) . (3.30)

If we now combine this spatial discretization with first­order upwind finite differences in time (explicit
Euler’s time scheme, see §7) such that 𝑡 = 𝑡0, 𝑡1, … , 𝑡𝑛 , … , 𝑡𝑁, we obtain Godunov’s method:

𝒒ℎ𝑘(𝑡𝑛+1, 𝑥) = 𝒒ℎ𝑘(𝑡𝑛 , 𝑥) +
𝛥𝑡
𝛥𝑥𝑘

(𝒇̆𝐿𝑘(𝑡𝑛) + 𝒇̆𝑅𝑘(𝑡𝑛)) . (3.31)

The spatial discretization in the second­order finite volume method is identical—its only difference
being the use of a centered numerical flux. Thus we reach the fundamental limitation of finite volume
methods: to achieve high­order with a piecewise­constant (i.e. FV) discretization, compactness cannot
be maintained. Spatial discretizations of the type (3.23) manage to overcome this limitation.

Let us use this opportunity to appreciate the strengths of (3.31). It is an extremely simple and
concise expression, and yet, ensures exact local (and global) conservation of the solution. Moreover,
it is both consistent6 and (in the first­order case) total variation diminishing—hence stable—even for
nonlinear flux functions, no limiting required (see §8). It is guaranteed to converge to a weak solution of
the exact PDE and, although not proven, overwhelming numerical evidence suggests that it does so to
the entropy solution (i.e. the physically meaningful one)—assuming the use of an adequate numerical
flux and/or an entropy fix.

3.5. Initial condition projection
Just like in the continuous situation (2.1), (3.23) encodes the evolution of a system in time and (discrete)
space, starting from a known discrete initial condition and subject to numerical boundary conditions
(addressed in §3.6). It is therefore necessary to obtain a discrete counterpart of (2.4); a general way
to do so is presented in this section.

Consider some projection of a component of the exact initial condition to the discrete solution space
of 𝒯ℎ; let it be the approximate initial condition, i.e.

𝑞0𝑖 (𝑥) ≃ 𝑞ℎ𝑖 (0, 𝑥) ∈ 𝑆ℎ (𝛺) . (3.32)

The goal is to evaluate 𝑞̂𝑖𝑗𝑘(0), ∀𝑖, 𝑗, 𝑘; this can be done weakly—in precisely the same sense as in §3.3
with the conservation law—by requiring, for every 𝑖, 𝑟, 𝑘 combination:

∫
𝛺𝑘
𝑞0𝑖 𝜑𝑟𝑘 d𝑥 = ∫

𝛺𝑘
𝑞ℎ𝑖𝑘𝜑𝑟𝑘 d𝑥 . (3.33)

This equality defines what is known in the literature as the 𝐿2 projection of the exact initial condition into
the discrete function space [78, §10].

Expanding the approximate solution into its basis components, the entire matrix of degrees of free­
dom that solves (3.33) can be computed as:

𝑸̂𝑘 = (∫
𝛺𝑘
𝒒0𝝋⊺𝑘 d𝑥)𝓜−1

𝑘 . (3.34)

6A discretization is said to be consistent with the continuous PDE(s) it models when the local truncation error of its solution tends
to zero as 𝛥𝑡 → 0, for all smooth exact solutions of the latter. Equation (3.31) is such a method, provided that a consistent
numerical flux is employed; this, in turn, means that: 𝒇(𝒒) = 𝒇̆(𝒒, 𝒒) [82, §4.3.1]. All numerical fluxes mentioned in this report
are consistent, and so are e.g. the centered fluxes in [60].
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The matrix integral in (3.34), unlike the mass and gradient matrices previously (in most cases), cannot
be computed exactly for an arbitrary initial condition. In the implementation used to obtain the results in
part II, I opt for an adaptive Lobatto­Kronrod quadrature algorithm [106] with tolerances 10−9 (relative)
and 10−13 (absolute). An alternative would be to simply use Gauss or Gauss­Lobatto quadrature of
fixed order.

3.6. Numerical boundary conditions
Compact discontinuous methods lend themselves to a weak enforcement of boundary conditions, in
the sense that the known value (in the Dirichlet case) at a given boundary edge is not directly assigned
to the approximate solution, but is instead used to calculate a numerical flux crossing it. The simplest
and most convenient of such approaches is known as weak­Riemann prescription [89]. It is used in all
results shown in this report.

Let 𝒢ℎ≔{𝛺0, 𝛺K+1} be a set of fictitious or ghost elements such that:

𝛺0≔[𝑥0, 𝑥1] , 𝑥0≔𝑥1 − 𝛥𝑥1 , (3.35a)
𝛺K+1≔[𝑥K+1, 𝑥K+2] , 𝑥K+2≔𝑥K + 𝛥𝑥K , (3.35b)

and let them possess all features of any actual element, e.g. 𝑆ℎ0 (𝛺), 𝒳0(𝜉). The weak­Riemann ap­
proach consists on updating 𝑸̂0(𝑡) and 𝑸̂K+1(𝑡) at every solver iteration7, with the aim to obtain 𝒒ℎ0(𝑡, 𝑥1)
and 𝒒ℎK+1(𝑡, 𝑥K+1) values representative of each physical boundary condition function and type. The
two ghost elements are eventually used to evaluate the numerical flux at the boundary edges, just as if
they were regular elements, thus coupling the approximate solution to the boundary condition. Some
relevant kinds of boundary conditions will be briefly explored next.

3.6.1. Periodic
A periodic boundary condition on the left edge (treatment of a right boundary is analogous; see figure
3.4) implies:

𝒒𝐿(𝑡) = 𝒒ℎ(𝑡, 𝑥K+1) . (3.36)

In the weak­Riemann framework, this relation is approximated by setting 𝒒̃ℎ0(𝑡, 𝜉) = 𝒒̃ℎK(𝑡, 𝜉), implying:

𝑸̂0(𝑡) = 𝑸̂K(𝑡) . (3.37)

𝑥0

𝑥1

𝑥2
...

𝑞ℎ0

𝑞ℎ1

𝑥K

𝑥K+1

𝑥K+2

𝑞ℎK

𝑞ℎK+1

Figure 3.4: Left and right periodic boundary conditions (dashed lines denote ghost elements).

3.6.2. Farfield
Assume that the state vector is uniform and known for any position to the left of 𝜕𝛺𝐿, i.e. :

𝒒(𝑡, 𝑥) = 𝒒𝐿(𝑡) for 𝑥 < 𝑥1 . (3.38)
7In my implementation, I do so at every Runge­Kutta stage (see §7).
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Such a situation is modeled by setting J = 1 in 𝛺0 ­ so that 𝑆ℎ0 admits a constant function only—and
requiring:

𝑸̂0(𝑡) ≡ 𝒒̂0(𝑡) = 𝒒𝐿(𝑡) . (3.39)

Notice that inflow and outflow boundary conditions are automatically covered by this case because
it is left to the Riemann solver to “decide” which characteristics go in and out of the computational
domain. For the same reason, inflow and outflow constraints are guaranteed to be well­posed with this
approach.

3.6.3. Transmissive
Also known as non­reflective [114, §14.2] or absorbing [82, §7.3.1], this boundary condition attempts
to mimic an infinite domain by allowing any outgoing characteristic to exit it cleanly, i.e. without intro­
ducing any spurious wave that could influence the solution. For low­order methods, this is achieved
numerically via the so­called zero­order extrapolation (described e.g. in [82, p. 134]). In the high­order
case, I propose the following treatment, which generalizes the previous to a zero­gradient condition in
all derivatives of the approximate solution at a boundary.

Consider 𝛺1 ∈ 𝒯ℎ, and its corresponding ghost element, 𝛺0 ∈ 𝒢ℎ. The opposite boundary case is
treated analogously. Let us assume that:

𝑆ℎ1 (𝛺) = 𝑆ℎ0 (𝛺) = span{𝒫𝑚}p𝑚=0 , (3.40)

i.e. the first J = p + 1 Legendre polynomials are the basis functions of both (see §4.1.1 for details).
The goal is to deduce a set of ghost element degrees of freedom which ensure that the approximate
solution crosses the target boundary smoothly (in physical coordinates), e.g. :

𝜕𝑑𝒒ℎ1
𝜕𝑥𝑑 |𝑥1

= 𝜕𝑑𝒒ℎ0
𝜕𝑥𝑑 |𝑥1

for 𝑑 = 0, 1, … , p . (3.41)

Expanding (3.41) into the Legendre basis functions, reveals the relationship between an element’s
degrees of freedom (left­hand­side) and those of its ghost counterpart (right­hand­side):

𝑸̂1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒫0(−1) 0

𝒫1(−1)
d1𝒫1
d𝜉1 |−1

⋮ ⋮ ⋱

𝒫p(−1)
d1𝒫p
d𝜉1 |−1

⋯ dp𝒫p
d𝜉p |−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝑸̂0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒫0(1) 0

𝒫1(1)
d1𝒫1
d𝜉1 |1

⋮ ⋮ ⋱

𝒫p(1)
d1𝒫p
d𝜉1 |1

⋯ dp𝒫p
d𝜉p |1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.42)

The matrices in (3.42) are lower triangular because of the hierarchical nature of the Legendre basis.
For p = 0, the previous reduces to the approach in [82, p. 134]. Notice that each element’s Jacobian
can be neglected because of the definition in (3.35).

3.6.4. Reflective
Also known as the (oscillating) wall condition, this constraint models the opposite to the situation in the
previous subsection: whenever a wave reaches the boundary, we wish to reflect it back in a physically
meaningful way. This, of course, implies a dependence on the PDE being solved. For the Euler equa­
tions, the presence of a (non­porous) wall at 𝜕𝛺𝐿, moving at a speed 𝑢𝑤(𝑡) with negligible displacement
amplitude, is modeled by setting [114, p. 496]:

𝜌ℎ0 (𝑡, 𝑥1) = 𝜌ℎ1 (𝑡, 𝑥1) , 𝑢ℎ0 (𝑡, 𝑥1) = −𝑢ℎ1 (𝑡, 𝑥1) + 2𝑢𝑤(𝑡) , 𝑝ℎ0 (𝑡, 𝑥1) = 𝑝ℎ1 (𝑡, 𝑥1) . (3.43)

For the wave equation—interpreted as linearised acoustics i.e. (2.26)—the previous becomes [82,
§7.3.4]:

𝑞ℎ10(𝑡, 𝑥1) = 𝑞ℎ11(𝑡, 𝑥1) , 𝑞ℎ20(𝑡, 𝑥1) = −𝑞ℎ21(𝑡, 𝑥1) + 2𝑢𝑤(𝑡) . (3.44)
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In both cases the wall constraint is recreated via a reflection symmetry8 of the numerical solution about
the position of the boundary, with the velocity component additionally being negated and displaced so
that the average between left and right velocities, for all time instants, is the prescribed wall velocity.

As with the non­reflective case, I propose a methodology to enforce this condition with a compact,
discontinuous, high order discretization. Assume, this time, that both ghost and non­ghost element at
each side of the targeted boundary employ the same nodal (e.g. Lagrange, see §4) or quasi­nodal (in
the sense of the B­spline functions, see §6) basis, or that their projection to one of these is available.
Also, let 𝙏 be defined as in (2.44) for the Euler case, and as 𝙏≔𝑰 ∈ ℝ2×2 for the wave equation (assume
that the velocity­like variable is 𝑞2); the transformation to primary variables can be done for each vector
of degrees of freedom, such that 𝙏𝑗𝑘≔𝙏(𝒒̂𝑗𝑘). Then proceed as follows:

0. Consider a ghost element 𝛺0 and its neighbor 𝛺1 (left boundary; opposite case is analogous)

1. Deduce the (quasi­)nodal expansion coefficients of the solution in primary variables, i.e. :

𝘷̂𝑖𝑗𝑘≔(𝙏𝑗𝑘𝒒̂𝑗𝑘)𝑖 for {
𝑖 = 1,… , I
𝑗 = 1,… , J
𝑘 = 1

(3.45)

2. Obtain the discrete reflection of pressure­like variables, i.e. :

𝘷̂𝑖𝑗0 = 𝘷̂𝑖 (J+1−𝑗) 1 for {𝑖 ≠ 2𝑗 = 1,… , J (3.46)

3. Prescribe the specified velocity at the boundary:

𝘷̂𝑖𝑗0 = 2𝑢𝑤 − 𝘷̂𝑖 (J+1−𝑗) 1 for {𝑖 = 2𝑗 = 1,… , J (3.47)

4. Finally, transform the degrees of freedom of the ghost element back to conservative variables:

𝑞̂𝑖𝑗𝑘≔(𝙏−1𝑗𝑘 𝙫̂𝑗𝑘)𝑖 for {
𝑖 = 1,… , I
𝑗 = 1,… , J
𝑘 = 0

(3.48)

𝑥0 𝑥1 𝑥2 𝑥3

𝑝ℎ1 = 𝑢ℎ1
𝑝ℎ0

𝑢ℎ0

𝑝ℎ2 = 𝑢ℎ2

Figure 3.5: Reflective (left, 𝑢𝑤 = 0) and non­reflective (right) boundary conditions for 𝒯ℎ = {𝛺1}.

8This can be inferred from the approach followed in the references cited above, which employ two ghost cells per side.



4
Discontinuous Galerkin Spectral

Element Method (DGSEM)
The very first example in the literature of a high­order yet compact finite­element discretization for hyper­
bolic conservation laws is due to the work of Bernardo Cockburn and Chi­Wang Shu (and collaborators),
during the last decade of the 20th century. These researchers, in a series of papers [22–24, 26, 27],
combined an all but forgotten method developed in the 70s for the steady­state neutron transport equa­
tion of nuclear physics with an explicit Runge­Kutta time­integrator (see §7) and a non­linear stabiliza­
tion mechanism (see §8). The result became known as Runge­Kutta discontinuous Galerkin (RKDG),
which is nowadays often associated to the specific combination in which the order of the time scheme
matches that of the spatial discretization. In this report, I shall use the termmodal DG to refer to the par­
ticular subset of compact discontinuous high­order methods in which both trial and test function spaces
employ Legendre polynomials as basis functions, independently of the time­discretization scheme or
its order.

Discontinuous Galerkin (DG) is the oldest common ancestor of all members of the compact discon­
tinuous high­order family. In this chapter, the general formulation of §3 is particularized to the first of the
three discretization methods selected as research objects of this thesis. A concise description of this
method for the three­dimensional Navier­Stokes equations, including implementation considerations,
is found in [49]. The much simpler case of a one­dimensional hyperbolic conservation law described
in this chapter borrows heavily from [66, section 8.1.4].

Essentially, DGSEM is the particular DG method that uses Lagrange polynomial basis functions,
with a specific distribution of nodes such that the resulting discretization is mathematically identical—but
computationally advantageous—to that of modal DG.

4.1. Spectral basis functions
Classical spectral methods (SM) are defined in [19, p. 3] as a particular subset of finite element methods
(FEM) in which the trial basis functions 𝜙(𝜉) (see §3):

• Have nonzero support over the entire domain.

• Are infinitely differentiable.

• Are orthogonal (or nearly so).

Since they offer no possibility of ℎ­refinement, an increase in the number of degrees of freedom in these
methods is typically achieved through an increase in order of accuracy. As a consequence, they often
experience exponential—sometimes called spectral—convergence. Moreover, for periodic boundary
conditions, they inherit the non­diffusive nature of continuous finite element methods (since there is no
mechanism by which numerical diffusion can be introduced). A canonical choice of basis functions for
a spectral method is the set of sinusoids of a truncated Fourier series.

Modern spectral methods have evolved closer to finite elements and finite volumes, borrowing their
multi­domain approach to discretization [20]. These are referred to as spectral elementmethods (SEM),
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since their basis functions adhere to the definition above in an element­local fashion. The distinction
between FEM and SEM has thus become rather ambiguous; in practice, the spectral denomination
suggests that a method is designed to be used in a high order of accuracy/low number of elements
setting—at least, this is the case for DGSEM [49]. Be it as it may, both DGSEM and modal DG satisfy
the formal requirements to be considered spectral element methods.

4.1.1. Legendre polynomials
Assume that, rather than e.g. sinusoids, we would like to use a polynomial basis for the J­dimensional
trial space, 𝑆ℎ𝑘 (𝛺), of a spectral element discretization. The straight­forward choice: {1, 𝜉, 𝜉2, 𝜉3, … , 𝜉p}
would theoretically allow an exact representation of any polynomial solution up to degree p = J − 1,
making its formal order of accuracy p+1 = J. However, in practice, this basis turns out to be very badly
conditioned1 [47, §3.1].

To circumvent this setback (and in order to satisfy the definition of a spectral method above), we
can simply orthogonalize the previous in an 𝐿2 Gram­Schmidt sense. The result is the set {𝒫𝑚(𝜉)}

J−1
𝑚=0

of Legendre polynomials [66, §1.8.1]:

𝒫0 = 1 ,
𝒫1(𝜉) = 𝜉 ,

𝒫2(𝜉) =
1
2 (3𝜉

2 − 1) ,

𝒫3(𝜉) =
1
2 (5𝜉

3 − 3𝜉) ,

𝒫4(𝜉) =
1
8 (35𝜉

4 − 30𝜉2 + 3) ,
⋮

𝒫𝑚+1(𝜉) =
2𝑚 + 1
𝑚 + 1 𝜉𝒫𝑚(𝜉) −

𝑚
𝑚 + 1𝒫𝑚−1(𝜉), for 𝑚 > 0 . (4.1)

Note that, keeping consistency with typical notation, these basis functions are indexed starting from 0;
this is so that 𝒫𝑚 is a polynomial of degree 𝑚. The following three­term relationship holds [66, §1.8.1]:

(2𝑚 + 1)𝒫𝑚(𝜉) = 𝒫′𝑚+1(𝜉) − 𝒫′𝑚−1(𝜉) . (4.2)

Consequently, arbitrary 𝜅­th order derivatives can be evaluated for 𝜉 ∈ [−1, 1] as:
d𝜅𝒫𝑚+1
d𝜉𝜅 (𝜉) = (2𝑚 + 1)d

𝜅−1𝒫𝑚
d𝜉𝜅−1 (𝜉) +

d𝜅𝒫𝑚−1
d𝜉𝜅 (𝜉) . (4.3)

Some properties of these polynomials are listed next [2, 6].
Property 4.1. For 𝑚 > 0, it holds that:

∫
1

−1
𝒫𝑚 d𝜉 = 0 . (4.4)

As a consequence, the leading expansion coefficient of a Legendre­based discretization of 𝛺𝑘 is equal
to the average of the approximate solution over it:

1
𝛥𝑥𝑘

∫
𝛺𝑘
𝑞ℎ𝑖𝑘(𝑡, 𝑥) d𝑥 =

1
2 (∫

1

−1
𝑞̂𝑖1𝑘(𝑡)𝒫0(𝜉) d𝜉 + ∫

1

−1
𝑞̂𝑖2𝑘(𝑡)𝒫1(𝜉) d𝜉 + …) ≡ 𝑞̂𝑖1𝑘(𝑡) . (4.5)

Property 4.2 (parity). Legendre polynomials are either even or odd, such that:

𝒫𝑚(−𝜉) = (−1)𝑚𝒫𝑚(𝜉) . (4.6)

In particular, 𝒫𝑚(1) = 1 for all 𝑚; 𝒫𝑚(−1) = −1 if 𝑚 is odd, and 𝒫𝑚(−1) = 1 if 𝑚 is even.
Property 4.3 (orthogonality). Legendre polynomials satisfy, for 𝑗, 𝑟 > 0:

∫
1

−1
𝒫𝑗−1𝒫𝑟−1 d𝜉 = {

2
2𝑗−1 if 𝑗 = 𝑟

0 otherwise
. (4.7)

1The condition number of𝓜𝑘 would become very large as p increases.
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4.1.2. Lagrange polynomials
The Legendre functions (4.1) are but one of many sets of polynomials that span 𝑆ℎ𝑘 (𝛺) (see figure 4.1).
One of such alternatives is the set of Lagrange polynomials {𝑙𝑗(𝜉)}J𝑗=1, usually defined as

𝑙𝑗(𝜉)≔
J

∏
𝑛=1
𝑛≠𝑗

𝜉 − 𝜉𝑛
𝜉𝑗 − 𝜉𝑛

, (4.8)

or, equivalently, in so­called barycentric form—which is preferred in practice [66, §3.4]—

𝑙𝑗(𝜉) =
𝑤𝑏𝑗

(𝜉 − 𝜉𝑗) (∑
J
𝑗=1

𝑤𝑏𝑗
𝜉−𝜉𝑗

)
, 𝑤𝑏𝑗 ≔

1
∏J𝑛=1
𝑛≠𝑗

(𝜉𝑗 − 𝜉𝑛)
; (4.9)

where 𝑤𝑏𝑗 is the barycentric weight associated to 𝑙𝑗(𝜉). The defining feature of this basis is that:

𝑙𝑗(𝜉𝑛) = 𝛿𝑗𝑛≔{
1 if 𝑛 = 𝑗
0 otherwise

. (4.10)

Derivatives of Lagrange polynomials can be evaluated in a number of ways [66, §3.5]. If they are
only needed at the nodes (such as is the case in DGSEM), an efficient approach is to define the following
derivative matrix:

𝓓≔[
𝑑11 ⋯ 𝑑1J
⋮ ⋱ ⋮
𝑑J1 ⋯ 𝑑JJ

] = [
𝑙′1(𝜉1) ⋯ 𝑙′1(𝜉J)
⋮ ⋱ ⋮

𝑙′J(𝜉1) ⋯ 𝑙′J(𝜉J)
] , (4.11)

the entries of which which, using the barycentric form, are [66, §3.5.2]:

𝑑𝑗𝑗 = −
J

∑
𝑛=1

𝑑𝑗𝑛 , 𝑑𝑗𝑛 =
𝑤𝑏𝑛

𝑤𝑏𝑗 (𝜉𝑗 − 𝜉𝑛)
for 𝑛 ≠ 𝑗 . (4.12)

Analogous higher­order derivative matrices, 𝓓(𝜅), can be defined recursively [66, p. 82]:

𝑑(𝜅)𝑗𝑗 = −
J

∑
𝑛=1

𝑑(𝜅)𝑗𝑛 , 𝑑(𝜅)𝑗𝑛 =
𝜅

𝜉𝑗 − 𝜉𝑛
(𝑤

𝑏
𝑛
𝑤𝑏𝑗
𝑑(𝜅−1)𝑗𝑗 − 𝑑(𝜅−1)𝑗𝑛 ) for 𝑛 ≠ 𝑗 . (4.13)

Unlike in the modal case, each Lagrange basis function is itself a polynomial of degree p = J − 1.
Every 𝑙𝑗(𝜉) is associated to one coordinate, 𝜉𝑗—we say that a node exists there. The distribution of
these p+1 nodes is arbitrary, as long as they are unique; each distinct set of nodes results in a specific
basis, with particular properties. This is discussed further in the context of DGSEM in §4.2.2.

4.2. DGSEM semi­discretization
As in the general formulation, the domain 𝛺 is discretized into K elements, 𝛺𝑘 ∈ 𝒯ℎ (§3.1). Each
of those has a counterpart in reference coordinates, 𝜉, such that 𝛺 = [−1, 1] (see §3.1.1). Let trial
and test spaces of each reference element be identical polynomial function spaces of degree p, i.e. :
𝑆ℎ𝑘 (𝛺) = 𝑉ℎ𝑘 (𝛺), dim 𝑆ℎ𝑘 (𝛺) = J and p ≡ J − 1. As a consequence, the number of dimensions of these
spaces is equal to the formal order of accuracy in any approximated function 𝑞ℎ𝑖𝑘 ∈ 𝑆ℎ𝑘 (𝛺), which means
that any polynomial of degree p or less can be represented exactly in the discretization.

4.2.1. Modal representation
Let us first consider the Legendre basis of length J spanning 𝑆ℎ𝑘 (𝛺). The general semi­discrete con­
servation law (3.23) particularized to an arbitrary mode 1 ≤ 𝑟 ≤ J and element 𝛺𝑘 ∈ 𝒯ℎ, by properties
4.2 and 4.3, reads:

𝛥𝑥𝑘
2𝑟 − 1

d𝒒̂𝑟𝑘
d𝑡 + 𝒇̆𝑅𝑘 + (−1)𝑟𝒇̆𝐿𝑘 =

J

∑
𝑗=1
𝒇̂𝑗𝑘∫

1

−1
𝒫𝑗−1𝒫′𝑟−1 d𝜉 , (4.14)
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Figure 4.1: Polynomial bases spanning a 4­dimensional reference finite­element space.
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with left and right edge Riemann fluxes as defined in (3.22).
The integrand on the right­hand­side of (4.14) is a polynomial of degree 2p − 1, and can thus be

computed exactly via either Gauss­Legendre or Gauss­Lobatto quadrature of only p + 1 points (see
table 4.2). Should we attempt to avoid aliasing errors by evaluating the interior fluxes as 𝒇 (𝒒̃ℎ𝑘), the
right­hand­side would instead be:

∫
1

−1
𝒇 (𝒒̃ℎ𝑘)𝒫′𝑟−1 d𝜉 = ∫

1

−1
𝒇(

J

∑
𝑗=1
𝒒̂𝑗𝑘𝒫𝑗−1)𝒫′𝑟−1 d𝜉 , (4.15)

and could either not be evaluated exactly, or doing so would require a number of quadrature points well
above J (see table 4.2)2. That being said, approximating the aforementioned integral with sufficiently
high­order quadrature (dealiasing through over­integration or super­collocation) does mitigate aliasing­
driven instabilities in under­resolved simulations [65]. The appeal of J­point quadrature will become
clear in §4.2.3. Also, see §4.2.5 for some further remarks.

4.2.2. Nodal representation
Given a set of unique (assumed in increasing order, without loss of generality) nodal coordinates,
𝜉1 < 𝜉2 < ⋯ < 𝜉J, there exists a set of Lagrange basis functions (§4.1.2) defining the polynomial of
minimum degree that interpolates over any given function evaluated at each and every 𝜉𝑗. One of such
so­called Lagrange interpolants (a linear combination of Lagrange basis functions) is used in DGSEM
to represent the approximate counterpart of each exact state and flux vector component.

Introducing nodal expansion coefficients for the solution and flux interpolants:

𝑸̌𝑘 = [𝒒̌1𝑘 𝒒̌2𝑘 ⋯ 𝒒̌J𝑘]≔ [𝒒̃ℎ𝑘(𝑡, 𝜉1) 𝒒̃ℎ𝑘(𝑡, 𝜉2) ⋯ 𝒒̃ℎ𝑘(𝑡, 𝜉J)] , (4.16a)

𝑭̌𝑘 = [𝒇̌1𝑘 𝒇̌2𝑘 ⋯ 𝒇̌J𝑘]≔ [𝒇̃ℎ𝑘(𝑡, 𝜉1) 𝒇̃ℎ𝑘(𝑡, 𝜉2) ⋯ 𝒇̃ℎ𝑘(𝑡, 𝜉J)] ; (4.16b)

the former satisfy:

𝒒̃ℎ𝑘(𝑡, 𝜉) =
J

∑
𝑗=1
𝒒̂𝑗𝑘(𝑡)𝒫𝑗−1(𝜉) =

J

∑
𝑗=1
𝒒̌𝑗𝑘(𝑡)𝑙𝑗(𝜉) ⟹ 𝒒̌𝑗𝑘(𝑡) =

J

∑
𝑗=1
𝒒̂𝑗𝑘(𝑡)𝒫𝑗−1(𝜉𝑛) (4.17)

and, therefore, the latter can be conveniently evaluated as:

𝒇̌𝑗𝑘 = 𝒇 (𝒒̃ℎ𝑘(𝜉𝑗)) ≡ 𝒇(𝒒̌𝑗𝑘) . (4.18)

The relationship between Legendre and Lagrange expansion coefficients is used in this report to extend
hierarchical limiters to Lagrange­based methods, including DGSEM (see §8), and to define one type of
numerical boundary condition (§3.6.3). Having chosen a set of nodes, we can define a linear operator
relating these two representations:

𝑸̌𝑘 ≡ 𝑸̂𝑘𝓥 , 𝓥≔
⎡
⎢
⎢
⎢
⎣

𝒫0(𝜉1) 𝒫0(𝜉2) ⋯ 𝒫0(𝜉J)
𝒫1(𝜉1) 𝒫1(𝜉2) ⋯ 𝒫1(𝜉J)
⋮ ⋮ ⋮

𝒫p(𝜉1) 𝒫p(𝜉2) ⋯ 𝒫p(𝜉J)

⎤
⎥
⎥
⎥
⎦

. (4.19)

Known in the literature as a generalized Vandermonde matrix, 𝓥 is invertible and well­conditioned for
non­uniform nodal distributions [47, §3.1] (see figure 4.2).

Using Lagrange polynomials as trial and test basis functions in (3.23), instead of (4.14), we have:

𝛥𝑥𝑘
2

J

∑
𝑗=1

d𝒒̌𝑗𝑘
d𝑡 ∫

1

−1
𝑙𝑗𝑙𝑟 d𝜉 + [𝒇̆𝑙𝑟]𝜕𝛺𝑘 =

J

∑
𝑗=1
𝒇̌𝑗𝑘∫

1

−1
𝑙𝑗𝑙′𝑟 d𝜉 . (4.20)

2For example, in the Euler equations with polynomial conservative variables, where the momentum and energy flux compo­
nents are rational functions (since because pressure involves a quotient of polynomials, in this case). If primitive variables are
discretized instead, the velocity and pressure fluxes are polynomials of degree 3p (in the compressible case) [36].
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Nodes 𝓜̃ cond (𝓜̃)

Equidistant
⎡
⎢
⎢
⎢
⎣

0.1524 0.1179 −0.04286 0.02262
0.1179 0.7714 −0.09643 −0.04286
−0.04286 −0.09643 0.7714 0.1179
0.02262 −0.04286 0.1179 0.1524

⎤
⎥
⎥
⎥
⎦

9.361

Gauss­Lobatto
⎡
⎢
⎢
⎢
⎣

0.1429 0.05324 −0.05324 0.02381
0.05324 0.7143 0.119 −0.05324
−0.05324 0.119 0.7143 0.05324
0.02381 −0.05324 0.05324 0.1429

⎤
⎥
⎥
⎥
⎦

8.65148

Chebyshev
⎡
⎢
⎢
⎢
⎣

0.2309 0.05211 −0.03544 0.0167
0.05211 0.6619 0.05711 −0.03544
−0.03544 0.05711 0.6619 0.05211
0.0167 −0.03544 0.05211 0.2309

⎤
⎥
⎥
⎥
⎦

3.68089

Gauss­Legendre
⎡
⎢
⎢
⎢
⎣

0.3479 0 0 0
0 0.6521 0 0
0 0 0.6521 0
0 0 0 0.3479

⎤
⎥
⎥
⎥
⎦

1.87476

Table 4.1: 4th­order DGSEM reference element mass matrices and their condition numbers, for various kinds of
node distributions. Inner products between pairs of Lagrange basis functions computed using adaptive quadrature,
with machine precision absolute tolerance. The sum of all entries adds to 2 in all cases.

4.2.3. Collocated quadrature
DGSEM employs collocated interpolation and integration points to evaluate the integrals in (4.20) [49].
This is done by selecting node locations that match the integration points of a chosen quadrature rule.
Both Gauss­Legendre and Gauss­Lobatto quadratures are commonly employed with DGSEM; some
basic differences between the two are summarized in table 4.2, and exemplified in figure 4.3. The
resulting variants of DGSEM are compared in [38, 40, 67], and references therein. In this literature
study, I consider Gauss­Legendre DGSEM only. For additional details about it, refer to [66, §8.1.4].
The alternative Gauss­Lobatto DGSEM variant can be seen as a particular case of the one­dimensional
nodal DG method described in [47, §3]. Given that (standard) DGSEM assumes both approximate
solution and flux to be Lagrange interpolants, each mass and discrete gradient matrix entry integrand
is a polynomial, respectively, of degree 2p and 2p−1. Therefore these operators can be precomputed
exactly3 and applied directly to the time­dependent degrees of freedom at each residual evaluation,
avoiding any interpolation within4 the element.

Quadrature Number of nodes Degree of exactness [104] Nodes at 𝜉 = ±1?
Gauss­Legendre p + 1 ≥ 1 2p + 1 No
Gauss­Lobatto p + 1 > 1 2p − 1 Yes

Table 4.2: Comparison betweenGauss­Legendre andGauss­Lobatto quadratures, for a polynomial approximation
of degree p. Note that Gauss­Lobatto would not be defined for p = 0, while Gauss­Legendre DGSEM inherently
reduces to FVM.

3In Gauss­Lobatto DGSEM, it is still possible to obtain an exact mass matrix by exploiting an algebraic relationship that it has
with the Vandermonde matrix associated with a normalized set of Legendre polynomials, see [47, §3.2].

4When using Gauss­Legendre nodes, however, the approximate state does need to be extrapolated at both edges of each
element, in every residual evaluation, in order to compute the Riemann fluxes used for coupling.
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Figure 4.2: Quantities associated with the robustness of a nodal discretization, for various types of node distribu­
tions, as a function of formal order of accuracy.

4.2.4. Semi­discrete DGSEM operators
Collocated Gauss­Legendre quadrature applied to the integral on the left­hand­side of (4.20) reveals:

∫
1

−1
𝑙𝑗𝑙𝑟 d𝜉 =

J

∑
𝑛=1

𝑙𝑗(𝜉𝑛)𝑙𝑟(𝜉𝑛)𝑤𝑛 = {
𝑤𝑟 if 𝑗 = 𝑟

0 otherwise
, (4.21)

i.e. the Legendre polynomial are orthogonal when using collocated Gauss­Legendre nodes (see table
4.1). The diagonal matrix of Gauss­quadrature weights may be interpreted as a reference element
mass matrix:

𝓜̃≔[
𝑤1 0

⋱
0 𝑤J

] , 𝓜̃−1 =
⎡
⎢
⎢
⎣

1
𝑤1

0
⋱

0 1
𝑤J

⎤
⎥
⎥
⎦
. (4.22)

The discrete gradient component on the right­hand­side of (4.20) becomes:

∫
1

−1
𝑙𝑗𝑙′𝑟 d𝜉 =

J

∑
𝑛=1

𝑙𝑗(𝜉𝑛)𝑙′𝑟(𝜉𝑛)𝑤𝑛 = 𝑙′𝑟(𝜉𝑗)𝑤𝑗 , (4.23)

and, in turn, warrants the definition of the following modified derivative matrix:

𝓓̃≔−𝓜̃𝓓⊺𝓜̃−1 , 𝑑𝑟𝑗≔−
𝑤𝑗
𝑤𝑟
𝑑𝑗𝑟 . (4.24)

The general hyperbolic conservation law (2.1) in semi­discrete form (3.23), for DGSEM, is:

d𝑸̌𝑘
d𝑡 + 2

𝛥𝑥𝑘
(𝒇̆𝑅𝑘 ̃𝑙(1) − 𝒇̆𝐿𝑘 ̃𝑙(−1) + 𝑭̌𝑘𝓓̃) = 0 , (4.25)
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Gauss­Legendre

Gauss­Lobatto

𝜉2 = 0𝜉1 = −√3/5 𝜉3 = √3/5

𝜉1 = −1 𝜉4 = 1𝜉2 = −√1/5 𝜉3 = √1/5

Figure 4.3: Gauss­Legendre and Gauss­Lobatto quadrature points. Both distributions would result in a quadrature
rule of 5th degree of exactness (i.e. exact for polynomials up to 5th degree).

where:
̃𝑙(𝜉)≔ 𝑙⊺(𝜉)𝓜̃−1 = [ 𝑙1(𝜉)𝑤1

𝑙2(𝜉)
𝑤2

⋯ 𝑙J(𝜉)
𝑤J ] . (4.26)

This corresponds to the particular case of (3.23) in which mass and gradient matrices are, respectively:

𝓜𝑘 =
𝛥𝑥𝑘
2 𝓜̃ , 𝓒𝑘 = 𝓜̃𝓓⊺ . (4.27)

4.2.5. Polynomial aliasing
It has been assumed in the previous derivation that the flux vector component interpolants, which
are polynomials of degree p, are representative of the (potentially non­polynomial, see §4.2.1) exact
flux vector components. This is unfortunately not the case if the discretization does not have enough
resolution—i.e. if the exact solution is underresolved. In such a situation, interpolation is prone to alias­
ing errors, which in the context of DG is often referred to as under­integration—since it is often seen
as a failure to integrate the non­interpolatory flux term (4.15) exactly.

On the positive side, there is a simple (yet possibly expensive) remedy for this problem: by simply
increasing the resolution of the discretization, aliasing effects should become negligible as the exact
solution becomes better and better resolved. Of course, this only applies to smooth solutions, and
is only feasible for exact solutions that are not prohibitively rich in terms of flow scales. An example
of the feasibility of this “brute force” approach is shown in figure 4.4. In the present study, no explicit
de­aliasing strategy is employed. For more details on this phenomenon, refer to [11, 39].
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Figure 4.4: Demonstration of polynomial aliasing in DGSEM for 𝑢(𝑥) = sin(𝜋𝑥) and 𝑓(𝑢) = 𝑢2

2 . The approximate
solution and flux, 𝑢ℎ and 𝑓ℎ, are obtained by projecting their exact counterparts (dashed) into the space of all
polynomials of degree p (via adaptive quadrature with machine precision tolerance, see §3.5). Aliasing is mani­
festing as a discrepancy between 𝑓(𝑢ℎ) and 𝑓ℎ; for a sufficiently well­resolved solution, the aliased flux becomes
acceptable. Dot markers represent Gauss­Legendre nodes; nodal distribution has no influence in these results.





5
Flux Reconstruction (FR) or Correction
Procedure via Reconstruction (CPR)

The second method subject to study in this work was originally proposed for hyperbolic conserva­
tion laws by Huynh [55] under the name flux reconstruction, as a framework that unified DG (§4) and
spectral difference (SD) or staggered grid (SG) multi­domain spectral methods. At the same time, the
approach provided a mechanism (the choice of correction function) through which new methods could
be constructed. Some of these (FR versions of DG and SG/SD) had already been formulated indepen­
dently prior to its introduction; others have appeared thanks to it [55, 121]. The correction procedure
via reconstruction denomination was adopted later; note that both FR and CPR refer to the exact same
methodology. The main selling points of FR/CPR are its simplicity, flexibility, and alleged computational
efficiency [128].

The fundamental idea behind FR/CPR is the realization that coupling between adjacent elements,
when done in a discontinuous weak­Riemann fashion (§3.3.3), does not require a variational formula­
tion of the problem; it instead can be applied, indirectly through a clever mechanism (the flux recon­
struction/correction procedure, in this context), to the differential form of the PDE. This derivation of the
method, given in §5.1.1, is consistent with both [55] (which is FR’s original formulation) and [128] (in
which both FR and CPR denominations are recognized as a unique method). Its ties to the general
one introduced in §3.3, are highlighted in §5.1.4 and explored further in §5.3.

5.1. FR/CPR semi­discretization
The derivation of the FR/CPR semi­discrete hyperbolic conservation law is typically done starting from
(2.1), the strong formulation (i.e. the differential form) of the problem. Regardless, solution discretiza­
tion is exactly the same as for the general case (§3.2)—more specifically, in fact, it is the same as
for (nodal) DGSEM: exact solution and flux vectors, 𝒒(𝑡, 𝑥) and 𝒇(𝒒), are respectively approximated
as 𝒒ℎ(𝑡, 𝑥) = ⨁K

𝑘=1 𝒒ℎ𝑘(𝑡, 𝑥) and 𝒇ℎ(𝑡, 𝑥) = ⨁K
𝑘=1 𝒇ℎ𝑘(𝑡, 𝑥), in K piece­wise polynomial finite­dimensional

spaces 𝛺𝑘 ∈ 𝒯ℎ. Each component of the approximate solution and flux vectors is a polynomial of de­
gree p ≡ J − 1; each element 𝛺𝑘 has an associated J­dimensional trial function space 𝑆ℎ𝑘 (𝛺), in which
the aforementioned approximations exist.

The trial basis functions used in FR/CPR are, as in DGSEM, the Lagrange polynomials. An ar­
bitrary element, 𝛺𝑘, contains J nodes (their number need not be the same for every element). The
distribution of nodes within each element is commonly made according to either Gauss­Legendre or
Gauss­Lobatto quadrature rules (some correction function may be more conveniently employed in one
particular distribution). In this report, as with DGSEM in the previous chapter, only the former is con­
sidered. The degrees of freedom (i.e. nodal values) of flux and solution interpolants are, respectively
(see §4.2.2) 𝒇̌𝑗𝑘≔𝒇(𝒒̌𝑗𝑘) and 𝒒̌𝑗𝑘.

41
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5.1.1. Differential formulation
Equation semi­discretization in FR/CPR starts from the strong statement of the general conservation
law in differential form1 (2.1)—as opposed to standard DG discretizations, which start from the weaker
integral formulation, (2.9), which is enforced in a variational sense via test functions—under the premise
that we wish to evaluate the term representing the divergence of the flux directly, that is, avoiding the
use of calculus tools such as the divergence theorem or integration by parts.

For the approximate solution over a particular element 𝛺𝑘, (2.1) reads:

𝜕𝒒ℎ𝑘
𝜕𝑡 + 𝜕𝒇

ℎ
𝑘

𝜕𝑥 = 0 . (5.1)

Two problems need to be overcome:

• The derivative of the flux is ill­defined at element interfaces, since 𝒇ℎ (𝑥) will, in general, experi­
ence a discontinuity at such locations.

• There is no equation relating the solution on an element with that on another, since there is no
coupling mechanism between elements.

The solution to both these issues consists on constructing a continuous approximation to the exact
flux function, the corrected or reconstructed flux, which is the key ingredient of the FR/CPR frame­
work:

𝒇(𝑡, 𝑥) ≃ 𝒉(𝑡, 𝑥) =
K

⨁
𝑘=1

𝒉𝑘(𝑡, 𝑥) , 𝒉̃𝑘(𝑡, 𝜉) =
J+1

∑
𝑟=1

𝒉̌𝑟𝑘(𝑡)𝑙𝑟,𝑘(𝜉) . (5.2)

As with the regular flux vector, 𝒉̃𝑘 is the reference element version of 𝒉𝑘. Notice that each ℎ𝑖𝑘 is a
polynomial of degree 𝑝 + 1; the reason for this will be made clear further on in the derivation. In fact,
𝒉𝑘 has to satisfy three requirements:

1. ℎ𝑖𝑘 is a polynomial of degree J ≡ 𝑝 + 1, one higher than 𝑞ℎ𝑖𝑘 and 𝑓ℎ𝑖𝑘.

2. ℎ𝑖𝑘 approaches 𝑓ℎ𝑖𝑘 in some sense, i.e. ‖ℎ𝑖𝑘 − 𝑓ℎ𝑖𝑘‖ is minimized in some norm.

3. 𝒉𝑘 takes the value of the Riemann flux at each interface (see §3.3.3). As a consequence, each
component of 𝒉 is continuous over 𝛺 (the entire domain).

The FR/CPR method reduces to using 𝒉𝑘 instead of 𝒇ℎ𝑘 in (5.1),

𝜕𝒒ℎ𝑘
𝜕𝑡 + 𝜕𝒉𝑘𝜕𝑥 = 0 , (5.3)

and (3.4) can be used to cast (5.3) into reference element coordinates. The result is:

𝛥𝑥𝑘
2
𝜕𝒒̃ℎ𝑘
𝜕𝑡 + 𝜕𝒉̃𝑘𝜕𝜉 = 0 . (5.4)

Given that 𝒉̃𝑘 and 𝒒̃𝑘 are Lagrange interpolants of different degree, it would seem that (5.4) requires
using two different bases (and sets of nodes) for each element. Thanks to a clever definition of the
former, we shall see that this is actually not the case.

5.1.2. Flux correction
In order to construct 𝒉̃𝑘 from known data, let us start by assigning to it a unique value at element
interfaces (that of the Riemann flux, as mentioned previously):

𝒉̃𝑘(𝑡, −1) ≡ 𝒉̃𝑘−1(𝑡, 1) = 𝒇̆𝐿𝑘(𝑡) , 𝒉̃𝑘(𝑡, 1) ≡ 𝒉̃𝑘+1(𝑡, −1) = 𝒇̆𝑅𝑘(𝑡) . (5.5)

1FR/CPR can also be derived in its so­called lifting collocation penalty formulation as a particular case of the method of weighted
residuals [125], thus starting from a weak formulation.
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These equalities will be enforced by means of a pair of so­called correction functions, 𝑔𝐿(𝜉) and 𝑔𝑅(𝜉),
associated with the left and right edges of the reference element 𝛺, respectively.

Consider the following (trivial) equalities:

𝒉̃𝑘(𝑡, 𝜉) = 𝒇̃ℎ𝑘(𝑡, 𝜉) + 𝒉̃𝑘(𝑡, 𝜉) − 𝒇̃ℎ𝑘(𝑡, 𝜉) , (5.6a)
𝒉̃𝑘(𝑡, 1) = 𝒇̃ℎ𝑘(𝑡, 1) + 𝒉̃𝑘(𝑡, 1) − 𝒇̃ℎ𝑘(𝑡, 1) , (5.6b)

𝒉̃𝑘(𝑡, −1) = 𝒇̃ℎ𝑘(𝑡, −1) + 𝒉̃𝑘(𝑡, −1) − 𝒇̃ℎ𝑘(𝑡, −1) . (5.6c)

The corrected flux function is defined by combining the three into one in such a way that the differences
between corrected and uncorrected fluxes act as a weighting factors for the correction functions, as
follows:

𝒉̃𝑘(𝑡, 𝜉)≔ 𝒇̃ℎ𝑘(𝑡, 𝜉) + (𝒉̃𝑘(𝑡, −1) − 𝒇̃ℎ𝑘(𝑡, −1)) 𝑔𝐿(𝜉) + (𝒉̃𝑘(𝑡, 1) − 𝒇̃ℎ𝑘(𝑡, 1)) 𝑔𝑅(𝜉) ; (5.7)

under the following constraints:

𝑔𝐿 (−1) = 1 , 𝑔𝐿 (1) = 0 , 𝑔𝑅 (−1) = 0 , 𝑔𝑅 (1) = 1 , (5.8)

and, because of a symmetry argument [55], it is generally possible to obtain the right correction function
from the left one through a reflection about the origin:

𝑔𝑅 (𝜉) = 𝑔𝐿 (−𝜉) , 𝑔′𝑅 (𝜉) = −𝑔′𝐿 (−𝜉) .

These requirements ensure that 𝒉𝑘 takes the Riemann flux values at the edges of 𝛺𝑘, at the same time
that make it possible to separate each edge’s contribution. The actual correction functions to employ
are not uniquely defined by the previous constrains; they remain a design choice (as long as 𝑝 > 0,
see §5.3.2). Four well­known types of correction functions are detailed in §5.2.
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Figure 5.1: The correction procedure applied to three identical linear elements (𝛥𝑥 = 2). A continuous function
ℎ (green) is reconstructed from 𝑓 (blue), which is discontinuous at element interfaces, by adding to it a correction
function 𝑔 (red). Dot markers represent Gauss­Legendre nodes.

5.1.3. Flux derivative
Application of the gradient operator to (5.7) results in:

𝜕𝒉̃𝑘
𝜕𝜉 = 𝜕𝒇̃ℎ𝑘

𝜕𝜉 + (𝒉̃𝑘(𝑡, −1) − 𝒇̃ℎ𝑘(𝑡, −1)) 𝑔′𝐿 + (𝒉̃𝑘(𝑡, 1) − 𝒇̃ℎ𝑘(𝑡, 1)) 𝑔′𝑅 . (5.9)

Given that the uncorrected flux vector components are Lagrange interpolants, their gradient can be
conveniently computed at an arbitrary nodal location 𝜉𝑛 ∈ 𝛺𝑘 using the derivativematrix of the Lagrange
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polynomials, 𝓓, as defined by (4.11):

𝜕𝒇̃ℎ𝑘
𝜕𝜉 (𝑡, 𝜉𝑛) =

J

∑
𝑗=1
𝒇̌𝑗𝑘(𝑡)𝑑𝑗,𝑛 (5.10)

The remaining terms in (5.9) are known; this includes the derivative of the correction function, which is
the actual quantity defining a particular FR/CPR variant (as opposed to the correction function itself).

All FR/CPR results in this report have been obtained using (5.10), thus maintaining consistency with
the other two methods reviewed. As an alternative, Wang and Gao [127] claim that the following (an
application of the chain rule) may result in increased accuracy in some cases:

𝜕𝒇̃ℎ𝑘
𝜕𝜉 (𝑡, 𝜉𝑛) = 𝑨 (𝒒̌𝑛𝑘)

J

∑
𝑗=1
𝒒̌𝑗𝑘𝑑𝑗,𝑛 , (5.11)

where the Jacobian matrix 𝑨 is evaluated at the state 𝒒̃ℎ𝑘(𝑡, 𝜉𝑛) ≡ 𝒒̌𝑛𝑘(𝑡). This second version of the
uncorrected flux derivative term, however, I have not attempted.

All ingredients are now in place to evaluate (5.4) for the p + 1 nodal values of the approximate
solution; this completes the spatial semi­discretization of the strong form of the conservation law.

5.1.4. Semi­discrete FR/CPR operators
Retaking the derivation back from (5.4), using (5.9) to evaluate the partial derivative of the corrected
flux function, we obtain:

𝛥𝑥𝑘
2
𝜕𝒒̃ℎ𝑘
𝜕𝑡 + 𝜕𝒇̃

ℎ
𝑘

𝜕𝜉 + 𝛥𝒇̆𝐿𝑘𝑔′𝐿 + 𝛥𝒇̆𝑅𝑘𝑔′𝑅 = 0 , (5.12)

where:

𝛥𝒇̆𝐿𝑘(𝑡)≔ 𝒉̃𝑘(𝑡, −1) − 𝒇̃ℎ𝑘(𝑡, −1) ≡ 𝒇̆𝐿𝑘(𝑡) − 𝒇̃ℎ𝑘(𝑡, −1) , (5.13a)
𝛥𝒇̆𝑅𝑘(𝑡)≔ 𝒉̃𝑘(𝑡, 1) − 𝒇̃ℎ𝑘(𝑡, 1) ≡ 𝒇̆𝑅𝑘(𝑡) − 𝒇̃ℎ𝑘(𝑡, 1) (5.13b)

correspond to the differences between corrected and uncorrected fluxes at the boundaries of 𝛺𝑘.
It now becomes clear why the corrected flux function had to be defined as a polynomial of degree J:

we are actually interested in its derivative; 𝑆ℎ𝑘 being J­dimensional, it is most natural to consider a cor­
rection function such that 𝑔′(𝜉) ∈ 𝑆ℎ𝑘 (𝛺). Equation (5.12), using 𝑔′(𝝃⊺) = [𝑔′(𝜉1) 𝑔′(𝜉2) ⋯ 𝑔′(𝜉J)],
may be rewritten in matrix form as:

d𝑸̌𝑘
d𝑡 + 2

𝛥𝑥𝑘
(𝑭̌𝑘𝓓+ 𝛥𝒇̆𝐿𝑘𝑔′𝐿(𝝃⊺) + 𝛥𝒇̆𝑅𝑘𝑔′𝑅(𝝃⊺)) = 0 , (5.14)

A term­by­term comparison between (5.14) and (3.23) reveals that the general formulation in §3.3.4
can be particularized to FR/CPR by setting the mass and gradient operators to:

𝓜𝑘 =
𝛥𝑥𝑘
2 𝑰 , 𝓒𝑘 = 𝓓 , (5.15)

and replacing the element’s net outward flux term, [𝒇̆𝝋⊺𝑘]𝜕𝛺𝑘= 𝒇̆
𝑅
𝑘𝝋⊺𝑘(1) − 𝒇̆𝐿𝑘𝝋⊺𝑘(−1), as follows:

𝒇̆𝑅𝑘𝝋⊺𝑘(1) ← 𝛥𝒇̆𝑅𝑘𝑔′𝑅(𝝃⊺) , −𝒇̆𝐿𝑘𝝋⊺𝑘(−1) ← 𝛥𝒇̆𝐿𝑘𝑔′𝐿(𝝃⊺) . (5.16)

In relation to both (4.27) and (6.17), their FR/CPR counterparts (5.15) are indeed remarkably simple.
Moreover, with its mass matrix being the identity, the conditioning of (5.14) does not depend on the dis­
cretization order or the nodal distribution chosen2. Also, no numerical integration has been necessary
in any step of the derivation (nor evaluation) of the FR/CPR spatial residual operator.
2Nevertheless, it has been reported in the literature that using nodal locations matching the quadrature points of a “high­strength”
quadrature rule is critical to achieve nonlinear stability [56, §5.4].
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It should be noted that, in general, the extrapolation of the uncorrected flux function to a bound­
ary is not equal to the flux function applied to the state extrapolated to that same boundary; that is:
𝒇ℎ(𝑡, ±1) ≠ 𝒇 (𝒒ℎ(𝑡, ±1)). Therefore, when using a Gauss­Legendre nodal distribution, it will be nec­
essary in FR/CPR to extrapolate both 𝒒ℎ𝑘 and 𝒇ℎ𝑘 at both edges of every 𝛺𝑘 ∈ 𝒯ℎ, in order to evaluate
(5.13). This could be avoided by employing e.g. Gauss­Lobatto nodes (any distribution in which a node
is placed at each edge).

5.2. Correction functions
Specification of an actual correction function (or rather, its derivative at a set of nodes) is needed to fully
define the FR/CPR discretization. In this section, the most common of such are listed—specifically, all
definitions are given for the left correction function, 𝑔𝐿(𝜉). Accuracy and stability results reported in this
chapter are taken from [55].

It is reasonable to assume that the optimal correction function is problem­dependent [55]; in this
context, the flexibility of FR/CPR to produce various methods according to the choice of 𝑔 should be
seen as a relevant strength, as it allows tailoring the trade­off between accuracy and stability to each
particular case. Huynh [55] originally put forward three kinds of correction functions. The two first ones
reproduce, from within the FR/CPR framework, the discontinuous Galerkin and spectral difference
schemes; the third, brings about a completely new family of methods. An additional forth kind was
discovered by Vincent et al. [121], and is further explored in [122].

5.2.1. DG correction function
The first (left) correction function, denoted 𝑔DG, is designed so that it exactly reproduces DGSEM; see
§5.3. This happens to be the right3 Radau polynomial of degree J, 𝑅J𝑅(𝜉), which can be evaluated using
the Legendre ones (4.1) as:

𝑔DG = 𝑅J𝑅≔
(−1)J

2 (𝒫J − 𝒫J−1) . (5.17)

Taking the gradient of (5.17), leads to:

𝑔′DG =
(−1)J

2 (𝒫′J − 𝒫′J−1) , (5.18)

with the following simplified expressions for its values at the edges of 𝛺:

𝑔′DG(−1) = −
J2
2 , 𝑔′DG(1) = − (−1)

J J
2 . (5.19)

This version of FR/CPR achieves the highest formal order of accuracy among all known alternatives
(see table 5.1). Moreover, under Fourier analysis, it seems to possess favorable stability characteristics
up to arbitrarily high order. Its maximum allowable time­step size, however, is relatively small [55,
figures 6.3, 6.5 and 6.7].

5.2.2. SG/SD correction function
A second correction function, 𝑔SG, recovers a simplified version of the staggered grid (SG) scheme,
also known as spectral difference (SD). Its FR/CPR version has the advantage over SG’s original form
of requiring only one grid. Compared with DG, this method has a slightly larger allowable time­step
size, but at the cost of losing DG’s alleged super­accuracy and being mildly unstable for all degrees
[55].

This correction function is defined as the J­th degree polynomial that, given a set of J+1 Chebyshev
quadrature points (see [66, section 3.2.3]):

𝜉𝑚 = − cos(
𝑚
J 𝜋) , 𝑚 = 0, 1, … , J , (5.20)

interpolates over the values:

𝑔SG(𝜉𝑚) = {
1 if 𝑚 = 0
0 otherwise

. (5.21)

3Note that the right Radau polynomial is the left correction function, and vice­versa.
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5.2.3. Huynh’s correction functions
Many correction functions can be defined as interpolants over a given set of values. The sample
locations of these (as in the previous example) have nothing to do with the nodes of the discretization.

In addition to the two previous examples, Huynh [55] experimented with several other correction
functions, leading to new methods. Among these, one interesting example is:

𝑔2 =
(J − 1)𝑅J𝑅 + J𝑅J−1𝑅

2J − 1 , J > 1 . (5.22)

This correction function is obtained if, in addition to enforcing 𝑔𝐿 (−1) = 1 and 𝑔𝐿 (1) = 0, a zero for its
derivative is also specified at 𝜉 = 1: 𝑔′𝐿 (1) = 0 (hence its designation as 𝑔2).

A remarkable feature of this left correction function is that its derivative is zero at all but the first
(left­most) node of the J­point Gauss­Lobatto quadrature rule. That is, for a sequence −1 < 𝜉2 < ⋯ <
𝜉J−1 < 1 of J Gauss­Lobatto quadrature points:

𝑔′2(𝜉𝑚) = {
𝑔′2(−1) = (1 − J)

J
2 if 𝑚 = 1

0 otherwise
. (5.23)

Huynh [55] alternatively uses the designation 𝑔Lump,Lo for this function, meaning that all the effect
of the correction is lumped (i.e. concentrated) to its edge’s Lobatto node (as it is zero at all others). An
FR/CPR implementation that uses this correction function in conjunction with a Gauss­Lobatto distri­
bution of J solution nodes can, therefore, be particularly simple and economical. Additionally, such as
scheme is found to be stable for all degrees and to allow a time­step size twice as large as that of DG,
with its accuracy being reduced only by one order (in optimal conditions).

Analogous correction functions can be designed using other point distributions, e.g. Chebyshev
(𝑔Lump,Ch). Extending the procedure that led to 𝑔SG, new schemes of the SD/SG kind can be obtained
by directly selecting the J − 1 additional conditions that its correction function should satisfy (recall that
𝑔𝐿 and 𝑔𝑅 are polynomials of degree J and, therefore, require J + 1 constraints to be unique—two of
which have already been imposed). For example, let 𝑔Ga be defined as the interpolant for which:

𝑔Ga(𝜉) = {
1 if 𝜉 = −1
0 if 𝜉 = 𝜉𝑚
0 if 𝜉 = 1

, (5.24)

where 𝜉𝑚 ∈ {𝜉1, 𝜉2, … , 𝜉J−1}, in this case the set of J − 1 Gauss­Legendre quadrature points extending
over the reference element 𝛺. Analogously, if instead of the Gauss­Legendre points one would use
Gauss­Lobatto ones, a new correction function would arise: 𝑔Lo. A comparative summary of the main
features of all correction functions mentioned so far is given in table 5.1.

Correction function Max. accuracy order Max. 𝛥𝑡
𝛥𝑡DG

Linearly stable?

𝑔DG 2p + 1 1 3

𝑔Ga 2p ≈ 1.5 3

𝑔2 ≡ 𝑔Lump,Lo 2p ≈ 2 3

𝑔Lump,Ch p + 1 – 3

𝑔SG p + 1 ≈ 1.6 7

𝑔Lo p + 1 – 7

Table 5.1: Comparative summary of the properties of various FR/CPR variants when applied to the linear advection
equation (2.19) with a degree 𝑝 approximation, according to the correction function employed. Based on Fourier
analysis results reported in [55]. Orders of accuracy were obtained from (A.65). Allowable time­step size ratios
shown correspond to the RK3(3) scheme and p = 3.
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Figure 5.2: Cubic (left) correction functions—quadratic approximate solution and flux—discovered by Huynh [55].
Notice that each kind of correction function is associated to certain distribution of nodes; these are either its interior
zeros (𝑔Ga) or its local extrema.

5.2.4. Energy­stable correction functions
Vincent et al. [121] introduced an entire family of correction functions parameterized with a single scalar
quantity, 𝑐. These are now known as VCJH­type correction functions. By design, all 𝑔VCJH functions
lead to linearly stable schemes, provided that 𝑐− < 𝑐 < 𝑐∞ (and adequate time­step size restrictions);
the lower bound of this interval, which depends on the polynomial degree of the approximate solution,
is given by:

𝑐− =
−2

(2p + 1) (𝑎pp!)
2 , (5.25)

where 𝑎p is the coefficient of the leading monomial term of the Legendre polynomial of degree p:

𝑎p =
(2p)!
2p (p!)2

. (5.26)

There is no finite upper bound for 𝑐, i.e. 𝑐∞ → ∞. Note that 𝑐− < 0 (see table 5.2). On the opposite end
of its range, it turns out that 𝑐∞ results in a valid FR/CPR scheme [121], 𝑔∞ being equivalent to 𝑔DG of
degree p (i.e. lowered by one)—see figure 5.3.

For every value of 𝑐, left and right VCJH­type correction functions of degree p + 1 > 1 can be
constructed from the following general definition:

𝑔𝐿 =
(−1)p

2 (𝒫p −
𝜂𝒫p−1 + 𝒫p+1

1 + 𝜂 ) , 𝑔𝑅 =
1
2 (𝒫p +

𝜂𝒫p−1 + 𝒫p+1
1 + 𝜂 ) , (5.27)

where:

𝜂≔
𝑐 (2p + 1) (𝑎pp!)

2

2 . (5.28)

Particular values for 𝑐 that recover the most interesting of the functions studied by Huynh [55] are:

𝑐DG≔0 , 𝑐Ga≔
2p

(2p + 1) (p + 1) (𝑎pp!)
2 , 𝑐2≔

2(p + 1)
(2p + 1) p (𝑎pp!)

2 ; (5.29)

or, in terms of 𝜂:

𝜂− = −1 , 𝜂DG = 0 , 𝜂Ga =
p

p + 1 , 𝜂2 =
p + 1
p , 𝜂∞ = ∞ . (5.30)
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This type of correction functions has later been found to be contained in an even larger set, sharing
the same favorable stability properties [122]. It should be pointed out that the definition of the VCJH
family of correction functions (5.27) breaks down for 𝑝 = 0. In that case, only one correction function
satisfies (5.8) (see §5.3.2): 𝑔𝐿 = (1 − 𝜉)/2.

p 𝑐− 𝑐DG 𝑐Ga 𝑐2

1 − 2/3≈− 0.667 0 1/3≈0.333 4/3≈1.333

2 − 2/45≈− 4.444 × 10−2 0 4/135≈2.963 × 10−2 1/15≈6.667 × 10−2

3 − 2/1575≈− 1.270 × 10−3 0 1/1050≈9.524 × 10−4 8/4725≈1.693 × 10−3

4 − 2/99225≈− 2.016 × 10−5 0 8/496125≈1.612 × 10−5 1/39690≈2.520 × 10−5

5 − 2/9823 275≈− 2.036 × 10−7 0 1/5893 965≈1.697 × 10−7 4/16372 125≈2.443 × 10−7

Table 5.2: Value of the 𝑐 parameter for the main FR/CPR correction functions, as the degree increases.

5.3. FR/CPR and the discontinuous Galerkin method
Huynh [55] proved, as already mentioned, that the choice of 𝑔DG as correction function will result in
a scheme that is identical to the Lagrange polynomial­based (i.e. nodal) DG method. Such a method
is identical, in turn, to DGSEM as presented in chapter 4; this is because both it and FR/CPR (in this
report) employ Gauss­Legendre nodes.

The reverse is not exactly true; however, it is made manifest in §5.1.4 that—leaving out the net
boundary flux term, in which correction functions play their role—the mass and discrete gradient matri­
ces are consistent with the general formulation in 3.3. In fact, this sets some requirements on the set
of test functions that would result in said FR/CPR semi­discrete operators. Specifically, for all 𝑗, 𝜑𝑛𝑘
satisfies:

∫
1

−1
𝑙𝑗𝜑𝑛𝑘 d𝜉 = 𝑙𝑗(𝜉𝑛) , ∫

1

−1
𝑙′𝑗𝜑𝑛𝑘 d𝜉 = 𝑙′𝑗(𝜉𝑛) . (5.31)

These suggest that 𝜑𝑛𝑘 = 𝛿(𝜉−𝜉𝑛), Dirac’s Delta function centered at node 𝜉𝑛, for which, by definition:

𝛿(𝜉 − 𝜉𝑛) = 0, 𝜉 ≠ 𝜉𝑛 , ∫
𝜉𝑛+𝜀

𝜉𝑛−𝜀
𝑓𝛿(𝜉 − 𝜉𝑛) d𝜉 = 𝑓(𝜉𝑛), 𝜀 > 0 (5.32)

for any function 𝑓 ∶ ℝ → ℝ [6, §1.15].
My interpretation of this result is that the discrete version of the conservation law is being prescribed

at each node only. However, any Lagrange interpolant is uniquely defined by its nodal values; therefore,
the approximate solution is nevertheless still identical to that of DGSEM (assuming that the adequate
correction function is used as well), provided that both approximate solutions are initially the same (see
§5.3.1). This idea of FR/CPR seen as a non­standard application of the method of weighted residuals
is briefly explored in [55].

5.3.1. Initialization
As mentioned in §5.3, the semi­discrete conservation law obtained using FR/CPR’s version of DG is
identical to that of DGSEM. However, the approximate solution obtained with these two methods will
generally be identical at a given instant 𝑡 > 𝑡0 only if it starts from an identical numerical initial condition.
The problem is that, strictly following the general initialization procedure described in §3.5—i.e. using
(3.34) with the mass matrix defined for FR/CPR by (5.15) and Dirac delta test functions (see §5.3)—
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(c) Quartic (p = 3 ⟺ J = 4)
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Figure 5.3: Some energy­stable (left) correction functions.
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would result in an interpolatory (rather than 𝐿2) projection:

∫
1

−1
𝑞0𝑖 (𝒳𝑘(𝜉)) 𝛿(𝜉 − 𝜉𝑛) d𝜉 = ∫

1

−1

J

∑
𝑗=1
𝑞̌𝑖𝑗𝑘𝑙𝑗(𝜉)𝛿(𝜉 − 𝜉𝑛) d𝜉 ⟹ 𝑞̌𝑖𝑛𝑘 = 𝑞0𝑖 (𝒳𝑘(𝜉𝑛)) . (5.33)

In general, the polynomial that interpolates the exact initial solution at a given set of nodes is not
the same as that which minimizes the 𝐿2 norm of the error between it and that same exact solution.
Therefore, in order to establish a fair framework in which to compare experimental results, all FR/CPR
approximate initial conditions shown in this report are obtained by interpolating its DGSEM counterpart
(of the same degree). This is equivalent tomomentarily (only when projecting the initial condition) using
the Lagrange polynomials as test basis functions in (3.33).
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Figure 5.4: Comparison between interpolatory (red) and 𝐿2­norm preserving (blue) approximations of a Gaussian
hump, on a polynomial finite­element of degree p = 6. Markers denote nodes (Gauss­Legendre).

5.3.2. FR/CPR and the finite volume method
It is worth considering the particular case of an FR/CPR discretization with 𝑝 = 0, i.e. zero degree ap­
proximation. Because this translates in assuming the solution polynomials to be simply constants, one
would expect this case to reduce to the first order finite volume method (as is the case with DGSEM);
it can be easily proven that this is indeed true.

Proof. Since the solution is approximated as a constant, the correction functions are linear polynomials.
Each of these is, therefore, uniquely defined by its two edge constraints: 𝑔𝐿(−1) = 1, 𝑔𝐿(1) = 0 and
conversely for 𝑔𝑅. The uncorrected flux is approximated with the same degree as the solution; hence, it
is also a constant and its derivative is zero. Therefore, the term associated with its derivative vanishes
from equation 5.12:

𝜕𝒇̃ℎ𝑘
𝜕𝜉 = 0 ⟹ 𝛥𝑥𝑘

2
d𝒒̃ℎ𝑘
d𝑡 + 𝛥𝒇̆𝐿𝑘𝑔′𝐿 + 𝛥𝒇̆𝑅𝑘𝑔′𝑅 = 0 . (5.34)

The derivatives of 𝑔𝐿 and 𝑔𝑅, these being linear functions subject to (5.8), necessarily have to be:

𝑔′𝐿 = −
1
2 , 𝑔′𝑅 =

1
2 . (5.35)

Equation (5.14) becomes:

𝛥𝑥𝑘
2

d𝒒̃ℎ𝑘
d𝑡 + 12 (−𝒇̆

𝐿
𝑘 + 𝒇̃ℎ𝑘(−1) + 𝒇̆𝑅𝑘 − 𝒇̃ℎ𝑘(1)) = 0 , (5.36)
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but the uncorrected flux is also approximated as a constant, so 𝒇̃ℎ𝑘(−1) = 𝒇̃ℎ𝑘(1). Therefore, (5.14)
turns out to be:

𝛥𝑥𝑘
d𝒒̃ℎ𝑘
d𝑡 + 𝒇̆𝑅𝑘 − 𝒇̆𝐿𝑘 = 0 , (5.37)

which is identical to the semi­discrete form of the finite volume method.





6
Isogeometric Analysis (IGA)

Isogeometric analysis was first proposed in [54] and further established in [28]. In essence, it consists
on using the basis employed by the geometrical representation of a domain (e.g. in a CAD program)
to approximate the solution fields on it. It can be seen as an evolution of the isoparametric concept of
classical finite element analysis (FEA) [28, §3.1]. According to the literature, IGA has already demon­
strated superior accuracy to traditional FEA in several problems, including (incompressible) turbulent
flows [28, §9.4].

The last research object considered in the present work is a DG method employing B­splines as
basis functions, to which I will refer as discontinuous galerkin isogeometric analysis (DGIGA). Isogeo­
metric high­order methods have been applied to hyperbolic conservation laws only recently, in [57, 90]
and [31, 32]. Given that the geometric advantages of an IGA formulation of DG cannot be explored
in one dimension, I focus in this thesis on the effects of using NURBS—actually, and in particular, B­
spline—basis functions, as opposed to the more conventional Lagrange polynomials of the previous
two methods.

6.1. Basis splines (B­splines)
A B­spline is a piecewise­polynomial curve of degree p. The locations (in reference coordinates) where
a polynomial segment starts or ends are called breakpoints [97, p. 51]. I will refer in this report to the
intervals between to breakpoints as breakpoint spans; consequently, any B­spline is 𝐶∞ within each
of its breakpoint spans. The domain where a B­spline is defined is called patch. Any B­spline basis
function (in 1D) will therefore be associated with at least two breakpoints: the edges of the patch.

6.1.1. Knot vector
A sequence of nondecreasing (possibly repeated) real values defines a so­called knot vector :

𝛯≔{𝜉1, 𝜉2, … , 𝜉J+p+1} , (6.1)

where each 𝜉𝑙 ∈ ℝ is a knot, and every half­open interval 𝛴𝑙≔[𝜉𝑙 , 𝜉𝑙+1) is a knot span. The set of
distinct knot values equals the set of breakpoints, as defined above; likewise, every breakpoint span
corresponds to a knot span of non­zero size.

Knot vectors can be uniform or nonuniform, depending on whether knots are equidistantly spaced
(in reference coordinates) or not. They can also be either open1or closed, the former being those for
which the first and last knots have multiplicity m = p + 1; all knot vectors that appear in this report are
open.

6.1.2. Basis functions
An open knot vector of length J + p + 1 defines the set {𝑁p1 , … , 𝑁pJ } of linearly independent B­spline
functions, each of piecewise­polynomial degree p, which constitute a basis. Evaluation of 𝑁p𝑗 ∶ ℝ → ℝ
1Open knot vectors are also referred to as nonperiodic or clamped in the literature.

53



54 6. Isogeometric Analysis (IGA)

can be carried out via:

𝑁0𝑗 (𝜉) = {
1 if 𝜉 ∈ 𝛴𝑗
0 otherwise

, (6.2a)

𝑁p𝑗 (𝜉) =
𝜉 − 𝜉𝑗
𝜉𝑗+p − 𝜉𝑗

𝑁p−1𝑗 (𝜉) +
𝜉𝑗+p+1 − 𝜉
𝜉𝑗+p+1 − 𝜉𝑗+1

𝑁p−1𝑗+1 (𝜉) , (6.2b)

which is known as the Cox­de Boor recursive formula (see figure 6.1). Derivatives of B­spline basis
functions can also be computed recursively. First derivatives are given by [97, §2.3]:

(𝑁p𝑗 )
′
= p
𝜉𝑗+p − 𝜉𝑗

𝑁p−1𝑗 − p
𝜉𝑗+p+1 − 𝜉𝑗+1

𝑁p−1𝑗+1 . (6.3)

A trivial generalization of (6.3) to an arbitrary 𝜅­th derivative is:

(𝑁p𝑗 )
(𝜅)
= p
𝜉𝑗+p − 𝜉𝑗

(𝑁p−1𝑗 )
(𝜅−1)

− p
𝜉𝑗+p+1 − 𝜉𝑗+1

(𝑁p−1𝑗+1 )
(𝜅−1)

. (6.4)

Equations (6.2), (6.3) and (6.4) can all be implemented efficiently2 following the guidelines in [97, §2.5].
This basis has a number of interesting properties, listed here without proof (refer to [97, §§ 2.2,

2.4]). Note that orthogonality is not one of them.
Property 6.1 (local support). Every basis function has nonzero support over p + 1 knot spans, more
precisely: 𝑁p𝑗 (𝜉) = 0 for all 𝜉 ∉ [𝜉𝑗 , 𝜉𝑗+p+1). As a consequence, each basis function shares support
with, at most, 2p + 1 functions (up to p on each side, plus itself), regardless of knot multiplicities. This
implies that discrete IGA operators (e.g.mass matrix) have the same bandwidth as those of classical
FEA [28, p. 22].
Property 6.2. Given a knot span 𝛴𝑙, only the functions 𝑁p𝑙−p, … , 𝑁

p
𝑙 (if defined) have nonzero support

on it, i.e. a maximum of p + 1 basis functions. If 𝛴𝑙 is a break span, exactly p + 1 basis functions are
nonzero over it.
Property 6.3 (nonnegativity). 𝑁p𝑗 (𝜉) ≥ 0 for all 𝑗, p, 𝜉.

Property 6.4 (partition of unity). ∑𝑙𝑗=𝑙−p𝑁
p
𝑗 (𝜉) = 1 for all 𝜉 ∈ 𝛴𝑙, i.e. the addition of all basis functions

with support on a knot span is unity at any point within that knot span.
Property 6.5. All derivatives of a basis function exists within a knot span, i.e.𝑁p𝑗 (𝜉) ∈ 𝐶∞ for all 𝜉 ∈
(𝜉𝑙 , 𝜉𝑙+1). At a breakpoint, 𝑁p𝑗 ∈ 𝐶p−m (m is the number of knots sharing that breakpoint’s location); in
particular, open knot vectors impose 𝐶−1 continuity at patch edges. For the same reason, continuity can
be at most 𝐶p−1 across breakpoint spans. Increasing the degree increases continuity (smoothness),
while increasing knot multiplicity reduces it.
Property 6.6. Any basis function of degree p > 0 has exactly one maximum.

6.1.3. B­spline curves
B­splines are used in CAD software to generate complex geometric shapes (curves, surfaces and
solids) in two or three­dimensional space. Their interpretation as geometric entities is quite intuitive,
and so I use it here to facilitate the introduction of the main elements that will later be “repurposed” to
construct an IGA discretization (§6.3). Higher­dimensional B­spline shapes, i.e. surfaces and solids,
can be built via tensor products between univariate B­spline bases [28, §2.1.3]; only said univariate
(i.e. single knot vector) case is considered in this report. A set of B­spline basis functions obtained from
(6.2) may be used to generate parametric curves 𝒄∶ ℝ → ℝ𝑑 via linear combination:

𝒄(𝜉)≔
J

∑
𝑗=1
𝒃𝑗𝑁p𝑗 (𝜉), 𝜉1 ≤ 𝜉 ≤ 𝜉J+1 . (6.5)

2It is possible to evaluate these expressions as is, if one takes the precaution of replacing any indetermination of the type 0
0 by

0; a well­designed algorithm avoids these terms altogether.
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Figure 6.1: Tabular representation of (6.2): a given basis function is generated via a linear combination of its
upper­left and lower­left neighbors in this arrangement; its domain of nonzero support is the union of these two’s
respective ones.

Thus, 𝒄(𝜉) is a one­dimensional shape in a 𝑑­dimensional space, parameterized by 𝜉, and each of
its 𝑑 components exists in a J­dimensional function space spanned by the B­spline basis functions
associated to some given knot vector.

Each of the J vectors 𝒃𝑗 ∈ ℝ𝑑 is given the name control point; the entire set of them defines the
control polygon associated to 𝒄(𝜉). These control points (in combination with the set of knots) generalize
the role of nodes in a Lagrange polynomial expansion, in the sense that they represent the expansion
coefficients of the basis while being associated to a particular location. With a B­spline basis, however,
the B­spline curve—itself analogous to the Lagrange interpolant—does not interpolate over the control
point positions in general; qualitatively, a control point “tends to pull” the B­spline curve towards it, but
may fail to do so all the way to intersection.

A number of properties of B­spline curves follow from those of their basis functions [97, §3.2],
namely:
Property 6.7. The B­spline curve 𝒄(𝜉) is piecewise­polynomial of degree p; it requires J control points
(one per basis function) and a knot vector of length J + p + 1.
Property 6.8 (endpoint interpolation). The curve intersects its first and last control points i.e. : 𝒄 (𝜉1) =
𝒃1 and 𝒄 (𝜉J+p+1) = 𝒃J.
Property 6.9 (affine invariance). Any affine transformation can be applied to the curve indirectly, by
applying it to its control points.
Property 6.10 (strong convex hull). The curve is contained in the convex hull of its control polygon. More
specifically, the portion of 𝒄(𝜉) for 𝜉 ∈ 𝛴𝑙 such that p < 𝑙 < J, is in the convex hull of the 𝒃𝑙−p, … , 𝒃𝑙+1
control points.
Property 6.11 (local modification scheme). A change in 𝒃𝑗 can only affect the shape of the curve in the
interval 𝜉 ∈ [𝜉𝑗 , 𝜉𝑗+p+1). This is a consequence of the local support of the basis.
Property 6.12. The B­spline curve can be regarded as an approximation to its control polygon. The
higher the degree, the worse this approximation becomes—with p = 1 being exact. Note, however,
that the entity of interest is usually not the control polygon but the curve.
Property 6.13 (variation diminishing). No line (if 𝑑 = 2; plane if 𝑑 = 3) can have more intersections
with a B­spline curve than with its control polygon. This is illustrated in figure 6.4.

6.2. Related bases
It is insightful to compare B­splines to other sets of basis functions. This might help us to identify critical
differences with the previous methods, as well as possible equivalences.

6.2.1. Non­uniform rational B­splines (NURBS)
NURBS were the original basis functions of choice for IGA, due to their prevalence in geometry gener­
ation software used in the computer aided engineering (CAE) industry [28, §1.1.2]. They are obtained
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Figure 6.2: Examples of cubic B­spline function bases for the reference patch.

via weighted rational combinations of B­splines, in such a way that any B­spline can be seen as a par­
ticular case of NURBS. The advantage of NURBS over non­rational B­splines is that they allow exact
representation of analytic shapes beyond those amenable to polynomials, namely conics (in 2D) and
quadrics (in 3D), while at the same time allowing representation of free­form shapes. It is debatable
whether such a feature justifies the added complexity over non­rational B­splines, even in CAD applica­
tions [98]. More recently developed alternatives (e.g. T­splines) might prove particularly advantageous
in IGA [28, §13]. In any case, rational B­splines are left outside the scope of the current study; more
details on them can be found in [28, 97].

6.2.2. Bernstein polynomials and Bézier curves
An open knot vector such as 𝛯 = {−1,… ,−1, 1, … , 1} (i.e. that has a single break span) generates a set
of basis functions known as the Bernstein polynomials (see figure 4.1). Such a basis has the same
length as the Legendre and Lagrange ones of the same degree, J = p+1, and all three span the same
function space: that of all polynomials of degree up to p. B­spline curves employing such a polynomial
basis have historically been referred to as Bézier curves, i.e. B­splines with a single break point span.

It is possible to transform a general B­spline to/from piecewise­Bézier curves without changing its
geometry via a process known as knot insertion [97, §5.2]. In [31, 32], for example, an isogeometric DG
method is proposed exclusively for Bézier elements, taking advantage of the fact that such a conversion
is available.

6.2.3. Classical FEA vs. IGA
In continuous Galerkin methods, it is typical to use Lagrange basis functions within each (continuously
coupled) element, leading to 𝐶0 smoothness for the approximate solution overall. B­spline and La­
grange bases are identical for the linear case3 , yet the former is capable of maintaining up to 𝐶p−1
smoothness for any p while the latter is limited to piece­wise continuity only. A comparison between
FEA and IGA bases of varying smoothness is shown in figure 6.5. For p > 1, the CG and IGA bases
are no longer identical, even in the 𝐶0 case (6.5b); nevertheless, they still span the exact same function
space. Consequently, keeping §6.2.2 in mind, we realize that B­spline basis functions can reproduce

3Provided that a Gauss­Lobatto distribution of nodes is employed in the latter—which is most convenient due to the continuity
requirement of CG at element interfaces. Note, however, that this is not the nodal distribution used for DG in this work.
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Figure 6.3: Examples of cubic B­spline curves (solid, black), with their control polygons (dashed, blue), control
points (circles, blue) and breakpoints (squares, red).

both CG and DG methods, under particular combinations of knot vectors and number of patches.
A consequence of the increased smoothness of B­spline bases is a reduction in overall number of

degrees of freedom, in the same way that CG experiences with respect to DG. Assume a DG discretiza­
tion of a function space 𝑆ℎ (𝛺) into K elements, each using degree p. Each element has its own set of
p + 1 (polynomial) basis functions. This is reproduced in IGA with an open knot vector of K breakpoint
spans and no continuity constraints whatsoever, which requires multiplicity p + 1 for every knot, i.e. :

𝛯 = {𝜉1, … , 𝜉1⎵⎵⎵⎵⎵⎵
p+1

, 𝜉2, … , 𝜉2⎵⎵⎵⎵⎵⎵
p+1

, … , 𝜉K+1, … , 𝜉K+1⎵⎵⎵⎵⎵⎵⎵⎵⎵
p+1

} . (6.6)

Both these two discretizations imply dim(𝑆ℎ) = K (p + 1). If we now increase continuity to 𝐶0, the
number of dimensions (i.e. the number of degrees of freedom) is reduced to that of CG—known to
require fewer degrees of freedom than DG for a given order of accuracy. The smoother the basis
functions of degree p are, the fewer distinct ones there can be in a given mesh (compare subfigures
6.5a and 6.5d); in general [97, §2.4]:

dim (𝑆ℎ) = K (p + 1) −
K+1

∑
𝑘=1

(𝜘𝑘 + 1) , (6.7)

where −1 ≤ 𝜘𝑘 < p is the number of successive derivatives of every basis function that are continuous
at the 𝜉𝑘 breakpoint—typically, 𝜘1 = 𝜘K+1 = −1.

6.3. Discontinous Galerkin isogeometric analysis (DGIGA)
Once more, only 1D domains are under consideration in what follows. In a discontinuous Galerkin
discretization, a patch is best assimilated to an element4 (as defined in §3.1). Assume that 𝒯ℎ =
{𝛺𝑘}K𝑘=1. Let the test and basis function spaces on 𝛺𝑘 be equal and defined as:

𝑉ℎ𝑘 ≡ 𝑆ℎ𝑘 ≔ span{𝑁p𝑗 (𝜉)}
J
𝑗=1 , (6.8)

i.e. the space spanned by some set of B­spline functions, generated by any arbitrary open knot vector
of J + p + 1 elements. To maintain consistency with the general formulation in §3, let us assume 𝜉 ∈ 𝛺,
i.e. :

𝛯𝑘 = { − 1,… ,−1⎵⎵⎵⎵⎵⎵⎵⎵
p+1

, 𝜉p+2, … , 𝜉J, 1, … , 1⎵⎵⎵⎵⎵
p+1

} , (6.9)

4Some authors [28] prefer to consider the knot span as the element analogue; this is convenient when attempting a continuous
Galerkin discretization based on B­spline basis functions (see §6.2.3).
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Figure 6.4: B­spline (red) and Lagrange (blue) “interpolants” of degree p over a discontinuous set of non­
equidistant points (Chebyshev nodes). The former are variation diminishing yet not actually interpolatory, while
the latter experience spurious oscillations.

for 𝑘 = 1, 2, … , K (each DG element—i.e. IGA patch—may have its own values of p, J and smoothness
distribution). Hence, the mappings to and from reference patch are still given by (3.4), and its B­spline
basis functions 𝑵∶ ℝ → ℝJ (sub and superscripts omitted in favor of conciseness) are defined in the
same reference coordinate system as every other basis function in this report. Additionally, let us
restrict interior knot multiplicity to m ≤ p to avoid the possibility of discontinuous basis functions within
a patch. We may now carry on as in the general discontinuous high­order case (§3.3.4).

Each component of the approximate solution over 𝛺𝑘 is a linear combination of the basis functions
of 𝑆ℎ, i.e. :

𝒒̃ℎ𝑘(𝑡, 𝜉) = 𝑸̂𝑘(𝑡)𝑵(𝜉) . (6.10)

The expansion coefficients—or degrees of freedom—play the role of “scalar control points” or control
values. We may regard each approximate solution components as a B­spline curve in 2D state­space
if we assign arbitrary locations to each degree of freedom; in this report I simply employ a uniform
distribution of control point abscissae from the element’s left edge to its right one. In other words: the
graph of the function 𝑞ℎ𝑖,𝑘(𝑡, 𝑥), at a fixed time instant, is a B­spline curve in the (𝑥, 𝑞ℎ𝑖,𝑘) plane. This
facilitates the analogy between control values in DGIGA and nodal values in DGSEM and FR/CPR
(illustrated e.g. in figure 6.4).

6.3.1. Flux expansion coefficients
Once more, an approximation of the flux components into the same space as the solution’s (3.14) is
assumed for convenience:

𝒇̃ℎ𝑘(𝑡, 𝜉) = 𝑭̂𝑘(𝑡)𝑵(𝜉) , (6.11)

at the cost of an additional error being introduced into the discretization in nonlinear cases. The al­
ternative would be to apply higher­order quadrature to the nonlinear flux function, evaluated on the
approximate solution [31, 32] (see §4.2.1).

Flux expansion coefficients in (6.11) are the result of applying the flux function to the approximate
solution sampled at each control location, i.e. :

𝒇̃ℎ𝑘(𝑡, 𝜉𝑗) = 𝒇 (𝒒̃ℎ𝑘(𝑡, 𝜉𝑗)) , (6.12)

which is exact, having made the assumption beforehand that the flux can be accurately approximated
as a B­spline curve in the same space as that of the solution’s (as mentioned in the previous paragraph,
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(a) 𝐶0 piecewise Lagrange polynomials (classical FEA)

(b) 𝐶0 B­splines

(c) 𝐶1 B­splines

(d) 𝐶2 B­splines (typical IGA)

Figure 6.5: Cubic basis functions with nonzero support on an arbitrary interior CG element (in 6.5a) or knot span,
with uniformly distributed nodes (circles) or knots (squares). Notice that the portion of the patch over which an
average B­spline basis function has nonzero support increases as they become smoother.
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this is generally not the case). Defining, analogously to (4.19), the following patch Vandermondematrix,

𝑵(𝝃⊺)≔
⎡
⎢
⎢
⎢
⎣

𝑁1(𝜉1) 𝑁1(𝜉2) ⋯ 𝑁1(𝜉J)
𝑁2(𝜉1) 𝑁2(𝜉2) ⋯ 𝑁2(𝜉J)
⋮ ⋮ ⋮

𝑁J(𝜉1) 𝑁J(𝜉2) ⋯ 𝑁J(𝜉J)

⎤
⎥
⎥
⎥
⎦

, (6.13)

the flux expansion coefficients in (6.11) satisfying (6.12) can be obtained as:

𝑭̂𝑘 = (𝒇 (𝑸̂𝑘𝑵(𝝃⊺))) (𝑵(𝝃⊺))
−1

, (6.14)

where 𝒇 is applied column­by­column.
An even simpler flux evaluation is proposed in [57, 90]:

𝒇̂𝑗𝑘(𝑡) ≈ 𝒇 (𝒒̂𝑗𝑘(𝑡)) , (6.15)

which would be equivalent to (6.14) if the basis were nodal5. While this is clearly not the case for a
modal DG basis in general, B­splines have “quasi­nodal” behavior in the sense of property 6.12; this
prevents the approximate solution from outright diverging, but could reduce its accuracy even further.

Direct comparison between these two approaches in terms of numerical errors (figures 6.7 and 6.9)
suggests that the solution obtained with (6.15) experiences additional numerical diffusion in relation to
that computed using (6.14), and that this is the case (for the particular example considered) both with
and without AFC­based limiting. Nevertheless, the role of (6.13) and its inverse in (6.14) warrants the
question of how well­conditioned said matrix is. It turns out that, for the assumed uniform distribution
of control points, (6.13) can easily become quasi­singular as the number of breakpoint spans grows,
for degrees p > 2. Moreover, non­uniform distributions of control points seem to worsen this problem
even further (figure 6.11).

6.3.2. Semi­discrete DGIGA operators
The general semi­discrete conservation law (3.23) for DGIGA may be written as:

d𝑸̂𝑘
d𝑡 ∫

𝛺𝑘
𝑵𝑵⊺ d𝑥 = 𝑭̂𝑘∫

𝛺𝑘
𝑵d𝑵

⊺

d𝑥 d𝑥 − [𝒇̆𝑵⊺]𝜕𝛺𝑘 , (6.16)

which corresponds to:

𝓜𝑘 =
𝛥𝑥𝑘
2 ∫

1

−1
𝑵𝑵⊺ d𝜉 , 𝓒𝑘 = ∫

1

−1
𝑵(𝑵′)⊺ d𝜉 . (6.17)

One last remaining issue is the evaluation of the integral terms in the mass and discrete gradient
matrices. For DGIGA, I propose a “brute force” approach based on Gauss quadrature at the knot span
level, carried out as as follows. Let an additional affine mapping 𝜓𝑙 ∶ 𝛴𝑙 → [−1, 1], analogous to (3.4),
be defined as:

𝜓𝑙(𝜎)≔𝜉𝑙 +
𝛥𝜉𝑙
2 𝜎 , (6.18)

for every 𝜉𝑙 ∈ 𝛯𝑘 : 𝑙 = 1, 2, … , J + p, i.e. each knot span in 𝛺𝑘. Operator entries are first evaluated in
reference patch coordinates:

∫
𝛺𝑘
𝑁𝑗𝑁𝑟 d𝑥 = 𝒳′𝑘∫

1

−1
𝑁𝑗𝑁𝑟 d𝜉 , ∫

𝛺𝑘
𝑁𝑗

d𝑁𝑟
d𝑥 d𝑥 = ∫

1

−1
𝑁𝑗 (𝑁𝑟)

′ d𝜉 ; (6.19)

then, each integral is split knot span­wise:

∫
1

−1
𝑁𝑗𝑁𝑟 d𝜉 =

J+p

∑
𝑙=1
∫
𝜉𝑙+1

𝜉𝑙
𝑁𝑗𝑁𝑟 d𝜉 , ∫

1

−1
𝑁𝑗 (𝑁𝑟)

′ d𝜉 =
J+p

∑
𝑙=1
∫
𝜉𝑙+1

𝜉𝑙
𝑁𝑗 (𝑁𝑟)

′ d𝜉 ; (6.20)

5In addition, nodal and modal treatments are identical for the linear flux case (e.g. advection equation); see §A.3.3.
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Figure 6.6: Approximate solution to Burgers equation at 𝑡 = 0.4 (periodic boundaries, Gaussian hump initial
condition at 𝑡 = 0), with (right) and without (left) AFC­based FCT limiting, for the modal (6.14) and quasi­nodal
(6.15) treatment of flux coefficients in IGA (i.e. single patch). Control points are shown as cross markers and the
exact solution as a black dashed curve. All cases approximate the solution as a quadratic 𝐶1 B­spline curve, made
up of 23 polynomial segments (breakpoint spans), resulting in a total degree of freedom count of 25. Time scheme
is SSP­RK3, with 𝛥𝑡 = 4 × 10−4.
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Figure 6.7: DGIGA version of the results in figure 6.6. The approximate solution is now globally 𝐶−1, divided into
5 𝐶1 B­spline patches, each in turn made up of 3 quadratic 𝐶∞ polynomials; the overall number of degrees of
freedom remains unchanged (25). All results still employ SSP­RK3, but this time with 𝜍 = 10−3 and 5 elements
(depicted in distinct colors), each with 𝛯𝑘 = {−1,−1,−1,−

1
3 ,

1
3 , 1, 1, 1}.



6.3. Discontinous Galerkin isogeometric analysis (DGIGA) 63

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
4.7

4.75

4.8

4.85

4.9
⋅10−1

𝑡

‖𝑢
ℎ ‖

2

Nodal, FCT­limited
Modal, FCT­limited
Nodal, unlimited
Modal, unlimited

(a) 𝐿2 norm of the approximate solution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8
⋅10−2

𝑡

‖𝑢
−
𝑢ℎ

‖ 2

Nodal, FCT­limited
Modal, FCT­limited
Nodal, unlimited
Modal, unlimited

(b) 𝐿2 norm of the approximate solution’s error

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1.8

2

2.2

2.4

2.6

𝑡

‖𝑢
ℎ ‖

TV

Exact ‖𝑢‖TV
Nodal, FCT­limited
Modal, FCT­limited
Nodal, unlimited
Modal, unlimited

(c) Estimated total variation of the approximate solution; see §8.1

Figure 6.8: Behavior of the approximate solution in time (sampled every 25 time­steps), for all cases in figure 6.6.
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Figure 6.9: Behavior of the approximate solution in time (sampled every 25 time­steps), for all cases in figure 6.7.
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followed by each span being brought to reference span coordinates:

∫
𝜉𝑙+1

𝜉𝑙
𝑁𝑗𝑁𝑟 d𝜉 = 𝜓′𝑙 ∫

1

−1
𝑁𝑗𝑁𝑟 d𝜎 , ∫

𝜉𝑙+1

𝜉𝑙
𝑁𝑗 (𝑁𝑟)

′ d𝜉 = 𝜓′𝑙 ∫
1

−1
𝑁𝑗 (𝑁𝑟)

′ d𝜎 ; (6.21)

and, finally, every knot span­wise integral is evaluated exactly using a unique set of p + 1 Gauss­
Legendre quadrature points (𝜎𝑛) and weights (𝑤𝑛) on the interval [−1, 1]:

∫
1

−1
𝑁𝑗𝑁𝑟 d𝜎 =

p+1

∑
𝑛=1

𝑁𝑗(𝜓𝑙(𝜎𝑛)) 𝑁𝑟(𝜓𝑙(𝜎𝑛)) 𝑤𝑛 , (6.22a)

∫
1

−1
𝑁𝑗 (𝑁𝑟)

′ d𝜎 =
p+1

∑
𝑛=1

𝑁𝑗(𝜓𝑙(𝜎𝑛)) (𝑁𝑟)
′(𝜓𝑙(𝜎𝑛)) 𝑤𝑛 . (6.22b)

Note that for the single breakpoint span case, the mapping (6.18) reduces to the identity and quadrature
is performed element­wise.

The mass matrix in DGIGA is known to be very badly conditioned (figure 6.10), and it is not diagonal
(unlike in the previous two methods); it instead has a bandwidth of 2p+1 (property 6.1). Nevertheless,
it is symmetric positive definite.

Proof. 𝓜𝑘 is symmetric because the product of B­spline basis functions is commutative: 𝑁𝑗𝑁𝑟 ≡ 𝑁𝑟𝑁𝑗.
For an arbitrary vector 𝒒̂ ∈ ℝJ, it will be positive definite if 𝒒̂⊺𝓜𝑘𝒒̂ ≥ 0 (with the equality implying the
trivial case) [16, §0.2]. This may be written as:

J

∑
𝑗=1

J

∑
𝑟=1

𝑞̂𝑗 (∫
𝛺𝑘
𝑁𝑗𝑁𝑟 d𝑥) 𝑞̂𝑟 = ∫

𝛺𝑘
(

J

∑
𝑗=1
𝑞̂𝑗𝑁𝑗)(

J

∑
𝑟=1

𝑁𝑟𝑞̂𝑟) d𝑥 ≡ ‖𝑞ℎ𝑘‖
2
𝐿2 , (6.23)

i.e. the square of the 𝐿2 norm of some arbitrary function in 𝑆ℎ, which is non­negative and zero only if
𝒒̂ = 0, as required.

The discrete gradient operator matrix, provided that p > 0 (otherwise the gradient operator is a
scalar and trivially zero), is quasi­skew­symmetric in the following sense:

𝑐𝑗𝑟 =

⎧
⎪

⎨
⎪
⎩

−12 if 𝑗 = 𝑟 = 1

+12 if 𝑗 = 𝑟 = J

−𝑐𝑟𝑗 otherwise

. (6.24)

Proof. It follows from the chain rule: ∫1−1𝑁𝑗 (𝑁𝑟)
′ d𝜉 = [𝑁𝑗𝑁𝑟]

1
−1 − ∫

1
−1𝑁𝑟 (𝑁𝑗)

′
d𝜉. If 𝑗 = 𝑟, since the

first and last B­splines in a patch are interpolatory at its respective edges:

[𝑁𝑗𝑁𝑗]
1
−1 = {

−1 if 𝑗 = 1
+1 if 𝑗 = J
0 otherwise

. (6.25)

Then:

• if 𝑗 = 1:

∫
1

−1
𝑁1 (𝑁1)

′ d𝜉 = −1 −∫
1

−1
𝑁1 (𝑁1)

′ d𝜉 ⟹ ∫
1

−1
𝑁1 (𝑁1)

′ d𝜉 = −12 (6.26)

• else, if 𝑗 = J:

∫
1

−1
𝑁J (𝑁J)

′
d𝜉 = 1 − ∫

1

−1
𝑁J (𝑁J)

′
d𝜉 ⟹ ∫

1

−1
𝑁J (𝑁J)

′
d𝜉 = 1

2 (6.27)
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• else:

∫
1

−1
𝑁𝑗 (𝑁𝑗)

′
d𝜉 = −∫

1

−1
𝑁𝑗 (𝑁𝑗)

′
d𝜉 ⟹ ∫

1

−1
𝑁𝑗 (𝑁𝑗)

′
d𝜉 = 0 (6.28)

Otherwise (if 𝑗 ≠ 𝑟), at least one of the two functions is zero at any given edge; therefore: [𝑁𝑗𝑁𝑟]
1
−1 = 0.

This implies skew­symmetry in all non­diagonal entries: ∫1−1𝑁𝑗 (𝑁𝑟)
′ d𝜉 = −∫1−1𝑁𝑟 (𝑁𝑗)

′
d𝜉.
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Figure 6.10: Condition number of the reference element mass matrix for various B­spline bases (also Lagrange,
see 4.2), as a function of the number of degrees of freedom per patch. This gives a rough idea of relative com­
putational cost vs. memory requirements between bases, regardless of accuracy. The condition number of the
Bernstein mass matrix keeps growing exponentially until assembly breaks down (reaching ≈7 × 1016 at J = 30).

6.4. Algebraic flux correction (AFC)
In [90], a B­spline based continuous Galerkin discretization is turned into a high­resolution scheme by
combining it with a limiting strategy in the context of algebraic flux correction [78]. This pairing is quite
synergistic, since it exploits the nonnegativity property of IGA bases to guarantee that the approximate
solution is local extremum diminishing6 (LED) in the presence of discontinuous features, regardless of
the degree of the basis. This is in contrast to Lagrange­based FEM, for which only the p = 1 case
is amenable to this methodology. Unlike typical shock capturing schemes for DG (see §8), such an
approach achieves sub­element resolution, i.e. the discontinuity is modeled across knot spans rather
than patches (see figure 6.12).

6.4.1. A predictor­corrector approach to high­resolution
Algebraic flux correction is based on a predictor­corrector strategy. Equation (6.16) defines a matrix of
uncorrected high­order residuals, namely:

𝓡̂𝑘 = (𝑭̂𝑘𝓒𝑘 − [𝒇̆𝑵⊺]𝜕𝛺𝑘)𝓜
−1
𝑘 . (6.29)

In combination with a B­spline basis, AFC is able to (algebraically) construct a low­order version of
these residuals such that, when used in conjunction with a strong stability preserving time­integration
scheme (see §7), no spurious oscillation are generated in the end­of­step solution [90]. These so­called
predictor residuals, are defined as:

𝓡̂𝐿𝑘≔(𝑭̂𝑘𝓒𝑘 − [𝒇̆𝑵⊺]𝜕𝛺𝑘 + 𝑭
𝐷
𝑘 ) (𝓜𝐿

𝑘)
−1

, (6.30)

6Local extremum diminishing (LED) and total variation diminishing (TVD) criteria are equivalent in one dimension [59]
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Figure 6.11: Reciprocal condition number of (6.13), for various degrees and control point distributions, as a func­
tion of the number of basis functions per patch. Smoothness class is 𝐶p−1 in all cases. Higher is better.

which differs from (6.29) in two aspects: the mass matrix is replaced by its lumped counterpart, and an
explicit numerical diffusion term is added.

From an implementation perspective, this can be seen as a replacement of the DGIGA operator with
a low­order counterpart—say, a DGIGA­AFC operator—which ensures a priori that no spurious oscil­
lations will appear in the solution as it is advanced a number of time­stages, until the next time­step.
All other routines remain unchanged (e.g. evaluation of internal and numerical fluxes, time­integration;
all the terms of (6.30) are re­evaluated using latest available predictor control variables at every inter­
mediate stage). Once all “transported and diffused”—advanced from 𝑡 to 𝑡 + 𝛥𝑡 using (6.30) instead
of (6.29)—sets of control values 𝑸̂𝐿𝑘(𝑡 + 𝛥𝑡) in 𝒯ℎ are available, a correction procedure takes care of
recovering high­order accuracy. This second step can be treated as an “a posteriori” limiter (or, more
precisely, an “anti­limiter”), and is described as such in §8.7. The process can then start again, and so
on.

6.4.2. Mass matrix lumping
The lumped mass matrix for DGIGA is:

𝓜𝐿
𝑘≔[

𝑚𝐿1𝑘 0
⋱

0 𝑚𝐿J𝑘
] , 𝑚𝐿𝑗𝑘≔

J

∑
𝑟=1

𝑚𝑗𝑟𝑘 ≡
𝛥𝑥𝑘
2 ∫

1

−1
𝑁𝑗 d𝜉 . (6.31)

Unlike high­order Lagrange polynomials in general, B­spline basis functions guarantee that all off­
diagonal entries of𝓜𝐿 are strictly positive [90]. Note that an added benefit of employing the lumped
mass matrix is that we recover a decoupled left­hand­side in (3.23), circumventing one of the disad­
vantages of the B­spline basis not being orthogonal.
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Figure 6.12: Inter­element vs. sub­element resolution of a shock (dashed line) using 2nd order DGIGA. Markers
denote control points; the twomeshes are identical (each color corresponds to a different patch). In both examples,
the shock has been projected onto the mesh; both limiters perform optimally in this situation.

6.4.3. Artificial viscosities
The term 𝑭𝐷𝑘 in (6.30) represents an array of net diffusive fluxes “going into” each given control point,
i.e. :

𝑭𝐷𝑘 ≔[𝒇𝐷1𝑘 𝒇𝐷2𝑘 ⋯ 𝒇𝐷J𝑘] . (6.32)

In AFC, an edge­based representation is common; in this sense, a so­called edge is a pair of distinct
control points with shared nonzero support. A simple general way to identify such edges is through the
sparsity graph of the (consistent) mass matrix: any component 𝑚𝑗𝑟𝑘 ≠ 0 implies that there is at least
one basis function that the pair of control points 𝑗 and 𝑟 falls within nonzero support of. Diffusive fluxes
are defined such that:

𝒇𝐷𝑟𝑘≔∑
𝑗≠𝑟
𝑫𝑟𝑗𝑘 (𝒒̂𝑗𝑘 − 𝒒̂𝑟𝑘) , (6.33)

to ensure a suitable predictor [90]. The matrix 𝑫𝑟𝑗𝑘 ∈ ℝI×I determines the contribution due to control
point 𝑗 to the net diffusion added to control point 𝑟. Various definitions for it are given in [78, §5]. I
propose the following as a compromise between robustness and accuracy.

Let 𝑨𝑟, 𝑨𝑗 and 𝑨̃ be the Jacobian matrices of the system of PDEs, evaluated at 𝒒̂𝑟𝑘, 𝒒̂𝑗𝑘 and the
Roe­averaged state (2.45) between the previous two (arithmetic average in Burgers), respectively. As
in [90]:

𝑫𝑟𝑗𝑘≔|𝑒𝑟𝑗𝑘| 𝑹̃ |𝜦̃| 𝑳̃ , 𝑒𝑟𝑗𝑘≔
𝑐𝑟𝑗 − 𝑐𝑗𝑟

2 , (6.34)

but, in advance, apply an entropy fix7 [64] to every entry of 𝜦̃:

𝜆𝑖 ←
𝜆2𝑖 + 𝜀2
2𝜀 if |𝜆𝑖| < 𝜀 , 𝜀≔max {0, 𝜆𝑖 − 𝜆𝑟𝑖 , 𝜆

𝑗
𝑖 − 𝜆𝑖} . (6.35)

Should (6.34) fail to prevent oscillations in the predicted solution, the following may be used instead
[78, equation 46]:

𝑫𝑟𝑗𝑘≔|𝑒𝑟𝑗𝑘| 𝑑𝑟𝑗𝑘𝑰 , 𝑑𝑟𝑗𝑘≔max {|𝜆𝑟1| , |𝜆𝑟2| , … , |𝜆𝑟I | , |𝜆𝑗1| , |𝜆𝑗2| , … , |𝜆𝑗I |} , (6.36)

which, according to Kuzmin et al. [78], is the most robust (but also most diffusive) of the alternatives
listed therein. Yet another option, more economical and comparable in accuracy to (6.34), is to employ
an arithmetic average (instead of Roe’s) [78, equation 44].
7Harten and Hyman’s first entropy fix; any other of those listed in [64] (or similar) could have been used instead.



7
Time Discretization

In the present thesis, the discretization of time is of no particular interest in itself. It merely has to satisfy
the following two basic requirements:

• Produce a consistent fully discrete conservation law; in particular, the spatial discretization error
should be dominant for sufficiently small time­step sizes (𝛥𝑡).

• Result in a stable numerical method when in combination with the spatial discretizations reviewed.

Temporal and spatial semi­discretizations are coupled together via the method of lines approach, pre­
viously brushed over in §3.3.1, now properly addressed in §7.1. Prime candidates for such a task are
the so­called strong stability preserving (SSP) time schemes (§7.2); relevant schemes of this type are
detailed in §7.3. Finally, a brief mention of alternatives present in the literature is made in §7.4.

7.1. The method of lines
Consider (2.1), the general conservation law in differential form. Up to this point, time has been a
continuous variable; let its discrete counterpart be henceforth defined as the sequence 𝑡0 ≤ 𝑡1 ≤
⋯ ≤ 𝑡𝑁 of 𝑁 + 1 discrete time levels (the first of which is assumed to correspond to a known initial
state), such that 𝛥𝑇≔𝑡𝑁 − 𝑡0 represents the total simulated time span—i.e. domain in the temporal
dimension in which (2.1) is to be solved. 𝛥𝑇 is divided into 𝑁 time­steps, not necessarily equal, such
that 𝛥𝑇 = ∑𝑁𝑛=1 𝛥𝑡𝑛. For ease of notation, I will omit the explicit indication that the time­step size is time
level–dependent: 𝛥𝑡𝑛 ≡ 𝛥𝑡.

Consider now the integral of (2.1) over an arbitrary time­step:

∫
𝑡𝑛+1

𝑡𝑛
(𝜕𝒒𝜕𝑡 +

𝜕𝒇
𝜕𝑥 ) d𝑡 = 0 , (7.1)

by the fundamental theorem of calculus1, it is equivalent to:

𝒒(𝑡𝑛+1, 𝑥) − 𝒒(𝑡𝑛 , 𝑥) = −∫
𝑡𝑛+1

𝑡𝑛

𝜕𝒇
𝜕𝑥 d𝑡 . (7.2)

Thus, the change in the solution across a discrete time­step is equal to the time­integral of the spatial
residuals (right­hand­side). This strategy is known as the method of lines [50, §8.3.2]. If we now
introduce approximate solution and residual vectors into (7.2),

𝒒ℎ(𝑡𝑛+1, 𝑥) = 𝒒ℎ(𝑡𝑛 , 𝑥) + ∫
𝑡𝑛+1

𝑡𝑛
𝓻(𝑡, 𝑥) d𝑡 , (7.3)

1If 𝑡 and 𝑥 are independent from each other, the following holds: ∫ 𝜕𝑞(𝑡,𝑥)
𝜕𝑡 d𝑡 = 𝑞(𝑡, 𝑥) + 𝐶(𝑥). For a definite integral, the

𝑥­dependent integration “constant” vanishes.
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Figure 7.1: Time discretization and indexing convention used for it in this report.

it becomes clear that the discretization of time is completely independent from that of space.
All that is left is to evaluate the right­hand­side integral in (7.3) numerically—this is the job of the

time­integration scheme. As an example, consider the right Riemann sum approximation:

𝒒ℎ(𝑡𝑛+1, 𝑥) = 𝒒ℎ(𝑡𝑛 , 𝑥) + 𝓻(𝑡𝑛+1, 𝑥)𝛥𝑡 . (7.4)

This is the backward Euler method, a 1st order implicit time scheme. Only explicit schemes, in particular
those of the Runge­Kutta family—see §7.3—, are used in this thesis’ numerical experiments (part II of
this report). These are methods which, unlike (7.4), require only the solution (and residuals) at the
current time level (𝑡𝑛) to approximate the solution at the next (𝑡𝑛+1).

7.1.1. Courant number
The Courant number represents a dimensionless time­step size, equal to the ratio between physical
and numerical information propagation speeds. In linear cases, the velocity of physical propagation of
information is unique and unambiguous (e.g. 𝒸 in the wave equation):

𝜍≔ 𝒸𝛥𝑡
min{𝛥𝑥𝑘}

K
𝑘=1

, (7.5)

where the smallest 𝛥𝑥𝑘 is chosen so that the resulting Courant number is largest (i.e.most restrictive2).
For the general case, consider an arbitrary element 𝛺𝑘 ∈ 𝒯ℎ; the solution of the Riemann problem

at its edges, 𝜕𝛺𝐿𝑘 and 𝜕𝛺𝑅𝑘 , produces two sets of eigenvalues: {𝜆𝐿𝑖𝑘}I𝑖=1 and {𝜆𝐿𝑖𝑘}I𝑖=1 (respectively). The
subsets 𝜆𝐿𝑖𝑘 > 0 and 𝜆𝑅𝑖𝑘 < 0 of the previous represent characteristic waves traveling into element
𝛺𝑘 (from the left and right, respectively). The most restrictive of these two (left and right) defines the
element’s component­wise Courant number; similarly, the largest among components is selected as
element­wise Courant number and, finally, the same is done mesh­wide. In other words:

𝜍≔max{𝜍𝑘}
K
𝑘=1 , 𝜍𝑘≔max{𝜍𝑖𝑘}

I
𝑖=1 , 𝜍𝑖𝑘≔

𝛥𝑡
𝛥𝑥𝑘

max{𝜆+𝑖𝑘 , −𝜆−𝑖𝑘} ; (7.6)

with:

𝜆+𝑖𝑘≔max{0, 𝜆𝐿𝑖𝑘} , 𝜆−𝑖𝑘≔min{0, 𝜆𝑅𝑖𝑘} . (7.7)

All results in this report use either a constant 𝛥𝑡, or a constant 𝜍 (or both, in linear cases).

7.1.2. Amplification factor
Some characteristics of numerical methods (such as stability) can be studied analytically for the linear
case (see §A.4). Relevant for our current discussion of time schemes is that said methodology involves
the linear spatial discretization being encoded into a linear operator (i.e. a matrix). The eigenvalues of
the discrete spatial operator describe its influence on the numerical error. The temporal scheme acts on
an arbitrary 𝑧 ∈ ℂ—one of such spatial operator eigenvalues, associated with some component of the
spatial discretization error. The actual values that 𝑧 takes depend entirely on the spatial discretization
and, as a scaling factor, the Courant number. Because of the independent treatment of time and space
in the method of lines, 𝑧 does not depend on the time scheme; the latter simply amplifies or dampens
the error encoded in each 𝑧 provided by the spatial scheme.

If the temporal discretization is itself linear, it is possible to define an amplification factor function
𝐺 ∶ ℂ → ℂ that quantifies the former’s influence on an arbitrary error component in the complex plane
(see §A.4.1 for details). Among the isocontours of |𝐺(𝑧)| that join together the values of 𝑧 that result
2If, for example, a method is stable for 𝜍 < 𝜍max, this definition ensures that all elements are within stability bounds.
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in certain amplification, the specific set of all 𝑧 for which |𝐺(𝑧)| = 1 defines the boundary of the time
scheme’s stability region, i.e. the set of all 𝑧 for which |𝐺(𝑧)| < 1. If the spatial discretization can be
shown to restrict the values of 𝑧 (possibly under some conditions on the time­step) so that they never
lie outside of the time scheme’s stability region, the numerical error is damped in every time step; the
method is, therefore, linearly stable. The amplification factor of (7.4), for instance, is:

𝐺(𝑧) = 1
1 − 𝑧 . (7.8)

Amplification factor functions of the time schemes used in this report are included with their definitions
in §7.3. Other examples can be found e.g. in [116, §B.3.2].
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Figure 7.2: Iso­contours of |𝐺(𝑧)| (i.e.magnitude of the amplification factor) of the implicit Euler scheme (7.4). Its
stability region includes the entire complex plane except for the circle centered around 𝑧 = 1 and radius 1. This
scheme is unconditionally stable in combination with any spatial discretization for which ℜ(𝑧) < 0.

7.2. Strong stability preserving (SSP) time discretization
The method of lines leads to a separate characterization of spatial and temporal operators. Gottlieb
and Shu [42] numerically showed that, even when a spatial discretization is proven to be stable in a total
variation sense (see §8.1), the method resulting from its combination with a time discretization may turn
out to be unstable in general. This is particularly important for discontinuous solutions of hyperbolic
conservation laws, for which a combination of time and space discretizations which is linearly stable
may become unstable [41]. Stability of a numerical method is addressed in §8. Ideas initially explored
by Shu and Osher [109] eventually culminated in a class of so­called strong stability preserving time
schemes3.

Temporal discretizations of the SSP kind are high­order generalizations of the forward Euler method,
which guarantee that “the nonlinear stability properties satisfied by the spatial discretization when cou­
pled with the forward Euler integration will be preserved when the same spatial discretization is coupled
with these higher order methods” [41, §1.1], provided that the time­step size is suitably restricted. In
more precise terms, assuming that there exists a 𝛥𝑡max such that:

‖𝒒ℎ(𝑡𝑛 , 𝑥) + 𝛥𝑡𝓻(𝑡𝑛 , 𝑥)‖ ≤ ‖𝒒ℎ(𝑡𝑛 , 𝑥)‖ for 0 ≤ 𝛥𝑡 ≤ 𝛥𝑡max , (7.9)

where ‖•‖ is some convex functional (e.g. a norm or semi­norm), a given (single step) temporal scheme
is said to be SSP if it produces a 𝒒ℎ(𝑡𝑛+1, 𝑥) such that:

‖𝒒ℎ(𝑡𝑛+1, 𝑥)‖ ≤ ‖𝒒ℎ(𝑡𝑛 , 𝑥)‖ whenever 𝛥𝑡 ≤ 𝑐SSP𝛥𝑡max , (7.10)
3Originally, these were known as TVD time schemes (by analogy with TVD spatial methods). Over time, this designation has
been phased out in favor of the the broader (and more accurate) term, SSP.
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for some 𝑐SSP > 0—its SSP coefficient. In the linear and constant coefficient case, the SSP coefficient
is replaced in the previous by a so­called threshold factor ; the latter is an upper bound on 𝑐SSP, and is
at most equal to the number of stages of the method [41, §1.4.1].

7.3. Explicit SSP Runge­Kutta methods (SSP­RK)
Most popular among explicit SSP time­integration methods is the Runge­Kutta family of schemes.
These methods generalize Euler’s method (1st order, explicit) to higher order through the addition
of intermediate sub­steps between every two discrete time instants, such that the solution is advanced
from an arbitrary time level 𝑡𝑛 to the next, 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡, in S stages:

𝑡𝑛+ 𝑠S ≔𝑡𝑛 + 𝛥𝑡
𝑠
S , for 𝑠 = 1, 2, … , S (7.11)

There is quite some flexibility in the way how each of these stages’ results is combined to give the
solution at the future time instant. Specific combinations are possible that ensure the SSP property; in
fact, the first SSP schemes discovered (§7.2) were of this kind. One prominent usage of these time
schemes is in the RKDG method of Cockburn and Shu (see §4). A selection of optimal4 SSP­RK
variants currently known is given next for completeness. Refer to [41, §2.1] for details.

Time scheme Order of
accuracy

Relative CPU
cost/step

Relative memory
cost/step

Effective SSP
coefficient

SSP­RK1(1) 1 1 1 1
SSP­RK2(2) 2 2 2 0.5
SSP­RK3(3) 3 3 2 0.333...
SSP­RK4(5) 4 5 3 ≈0.30
SSP­RK4(10) 4 10 2 0.6

Table 7.1: Comparison between various explicit SSP­RK methods considered optimal. The CPU cost of each
method is proportional to the number of stages per time­step, S, while the memory cost is proportional to the total
number of the degrees of freedom values stored simultaneously within a time­step. The effective SSP coefficient
is 𝑐SSP

S . Optimal explicit SSP­RK methods beyond 4th order do not exist [41, §2.1].

7.3.1. SSP­RK1(1) or Euler’s method: 1st order, 1 stage
Possibly the simplest way to approximate the integral in (7.2) is via a left Riemann sum:

∫
𝑡𝑛+1

𝑡𝑛
𝓻(𝑡, 𝑥) d𝑡 ≈ 𝓻(𝑡𝑛 , 𝑥)𝛥𝑡 ; (7.12)

equation (7.3) then becomes:

𝒒ℎ(𝑡𝑛+1, 𝑥) = 𝒒ℎ(𝑡𝑛 , 𝑥) + 𝛥𝑡𝓻(𝑡𝑛 , 𝑥) , (7.13)

which, written directly for the expansion coefficients of the solution and residual, is:

𝑸̂1 = 𝑸̂0 + 𝛥𝑡𝓡̂0 , (7.14)

where, for economy of notation, the following definitions are employed:

𝑸̂𝑠≔𝑸̂(𝑡𝑛+ 𝑠S ) , 𝓡̂𝑠≔𝓡̂(𝑡𝑛+ 𝑠S ) . (7.15)

Its amplification factor is simply:
𝐺(𝑧) = 𝑧 + 1 . (7.16)

4Optimal here refers to possessing the largest SSP coefficient among all explicit SSP­RK methods of a given order and number
of stages; see table 7.1.
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This approach is known as forward Euler method, to which the particular case of a Runge­Kutta
scheme with a single stage reduces. While attractive because of its simplicity, this method is only
first order accurate. Moreover, its stability region is relatively small and includes no purely imaginary
numbers. The latter implies that its combination with any non­diffusive spatial discretization (e.g. 2nd
order central finite differences) is guaranteed to be unconditionally unstable (see figure 7.3 and e.g. [82,
§4.5]).

7.3.2. SSP­RK2(2): 2nd order, 2 stages
Re­using (7.15), this scheme can be written as:

𝑸̂1 = 𝑸̂0 + 𝛥𝑡𝓡̂0 , (7.17a)

𝑸̂2 = 1
2𝑸̂

0 + 12𝑸̂
1 + 12𝛥𝑡𝓡̂

1 , (7.17b)

and its amplification factor is:

𝐺(𝑧) = 𝑧2
2 + 𝑧 + 1 . (7.18)

Despite having second order accuracy, the fact that this scheme uses two stages means that the
number of operations within a time step is twice that of SSP­RK1(1). Moreover, its SSP coefficient
remains the same, 𝑐SSP = 1 (reducing the effective SSP coefficient to one half), and it requires storing
all the degrees of freedom of the discretization at two time levels simultaneously. On the positive side,
the stability domain of this method is such that a finite portion of the imaginary axis is in its boundary
of marginal stability.

7.3.3. SSP­RK3(3): 3rd order, 3 stages
This is one of the most popular time schemes of this type, perhaps due to it being an “optimum among
optima” in the sense of it achieving 3rd order with only 3 stages (the number of stages starts growing
beyond the scheme’s order, from here on) and being the lowest order method to include part of the
imaginary axis inside its stability domain.

𝑸̂1 = 𝑸̂0 + 𝛥𝑡𝓡̂0 , (7.19a)

𝑸̂2 = 3
4𝑸̂

0 + 14𝑸̂
1 + 14𝛥𝑡𝓡̂

1 , (7.19b)

𝑸̂3 = 1
3𝑸̂

0 + 23𝑸̂
2 + 23𝛥𝑡𝓡̂

2 . (7.19c)

Its amplification factor is:

𝐺(𝑧) = 𝑧3
6 +

𝑧2
2 + 𝑧 + 1 . (7.20)

The cost per time­step is now three times that of forward Euler. Nevertheless, the theoretical memory
cost is still only twice that of the aforementioned (only two different time levels appear in each stage
update).

7.3.4. SSP­RK4(5): 4th order, 5 stages
Unfortunately, there is no optimal SSP­RKmethod with 4th order and only 4 stages [41, p. 271]; instead,
at least S = 5 are required. The optimal SSP­RK scheme of 5 stages and 4th order is:

𝑸̂1 = 𝑸̂0 + 0.391752226571890𝛥𝑡𝓡̂0 , (7.21a)
𝑸̂2 = 0.444370493651235𝑸̂0 + 0.555629506348765𝑸̂1 + 0.368410593050371𝛥𝑡𝓡̂1 , (7.21b)
𝑸̂3 = 0.620101851488403𝑸̂0 + 0.379898148511597𝑸̂2 + 0.251891774271694𝛥𝑡𝓡̂2 , (7.21c)
𝑸̂4 = 0.178079954393132𝑸̂0 + 0.821920045606868𝑸̂3 + 0.544974750228521𝛥𝑡𝓡̂3 , (7.21d)
𝑸̂5 = 0.517231671970585𝑸̂2 + 0.096059710526147𝑸̂3 + 0.063692468666290𝛥𝑡𝓡̂3

+ 0.386708617503269𝑸̂4 + 0.226007483236906𝛥𝑡𝓡̂4 , (7.21e)
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with the following amplification factor:

𝐺(𝑧) ≈ 0.00448 𝑧5 + 0.0417 𝑧4 + 0.167 𝑧3 + 0.5 𝑧2 + 𝑧 + 1 . (7.22)

This scheme has a larger 𝑐SSP ≈ 1.508, making it only slightly more CPU­intensive than SSP­RK3
per time­step (but an entire order more accurate). It requires at least one additional memory register,
however, and has irrational coefficients.

7.3.5. SSP­RK4(10): 4th order, 10 stages
Lastly, this is an alternative to (7.21) which goes up to S = 10, reaching 𝑐SSP = 6. It can be proven
optimal analytically (its SSP coefficient is equal to its threshold factor, thus reaching its theoretical upper
bound), and recovers the simple rational coefficients of the first three schemes in the family. Also, it can
be implemented such that each time step requires no more memory than SSP­RK2(2) and SSP­RK3(3)
[41, p. 274].

𝑸̂𝑠 = 𝑸̂𝑠−1 + 16𝛥𝑡𝓡̂
𝑠−1, 𝑠 = 1, 2, 3, 4, 6, 7, 8, 9 , (7.23a)

𝑸̂5 = 3
5𝑸̂

0 + 25𝑸̂
4 + 1

15𝛥𝑡𝓡̂
4 , (7.23b)

𝑸̂10 = 1
25𝑸̂

0 + 9
25𝑸̂

4 + 35𝑸̂
9 + 3

50𝛥𝑡𝓡̂
4 + 1

10𝛥𝑡𝓡̂
9 . (7.23c)

Its amplification factor function is:

𝐺(𝑧) = 𝑧10
251942400 +

𝑧9
4199040 +

𝑧8
155520 +

𝑧7
9720 +

7 𝑧6
6480 +

17 𝑧5
2160 +

𝑧4
24 +

𝑧3
6 +

𝑧2
2 + 𝑧 + 1 . (7.24)

7.4. Alternative time discretization schemes
Strong stability preserving Runge­Kutta methods are not, by any means, the only option when perform­
ing the integration of a semi­discrete conservation law. Other popular Runge­Kutta variants include
low­storage (LSRK) [95] and low dissipation–low dispersion (LDDRK) [52]. Moreover, an entirely inde­
pendent class of high­order time integration schemes are the linear multistep methods, some variants
of which can also be SSP [41]. All these are left outside of the scope of this thesis. The same applies
to implicit time schemes of any kind.
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8
Nonlinear Stabilization

The approximate solution in discontinuous methods is allowed to have jump discontinuities at element
edges. The larger these jumps are, the larger the error associated with the numerical flux across them
becomes. This error typically1 has a diffusive nature, and so the discretization will implicitly add more
numerical diffusion the less resolved the solution is—a convenient negative feedback loop. This is the
main stabilization mechanism of all discontinuous high­order schemes, and it is sufficient to guarantee
linear stability (when combined with an appropriate time discretization). Nevertheless, it is not enough
to ensure stability for the high­order case in general.

Godunov showed with his barrier theorem of 1959 (see [50, §8.3.3]) that only first­order linear
schemes for the advection equation can be monotone. Consequently, any linear high­order discretiza­
tion (DGSEM, FR/CPR and DGIGA included) will result in nonphysical oscillations appearing in the
approximate solution whenever its exact counterpart has a discontinuity—by the Gibbs phenomenon.
These wiggles will prevent the discretization from retaining its formal order of accuracy. Moreover,
for PDEs in which certain state quantities are physically bounded (e.g. density and total energy being
non­negative in the Euler equations), they may cause the method to diverge. It is for this reason that a
discontinuity capturing strategy is required in every of the methods addressed in this work.

Shock capturing consists on modeling a discontinuous feature of the solution (e.g. a shock wave,
which in an inviscid context could only be represented accurately with an infinitely fine discretization)
via a discrete solution feature of finite thickness that approximates it reasonably well, in a way that does
not hinder accuracy elsewhere in the domain. Seen at the higher level, shock capturing adds nonlinear
steps to the high­order discretization so that the premise of Godunov’s theorem no longer applies. Said
nonlinearity may introduce considerable complexity to the discretization.

The literature on stabilization methods for hyperbolic conservation laws is vast (figure 8.1). In this
chapter, I describe a selection of six limiters and two sensors; the performance of these is later studied
in part II. The goal here is to provide all necessary details to facilitate an eventual reproduction of any
such results. This choice of sensors and limiters is motivated, to a large extent, by the comparisons in
[102, 124, 135].

8.1. Total variation stability
Linear stability2 of a numerical method may be defined as the requirement that, for some simulated
time span 𝛥𝑇 ≡ 𝑡𝑁 − 𝑡0 (see §7.1) [82, §8.3.2]:

‖𝑺𝑛‖ ≤ 𝐶, for all 𝑛 ≤ 𝛥𝑇
𝛥𝑡 , (8.1)

where 𝐶 is a constant and 𝑺 is the matrix (i.e. linear operator) that advances the approximate solution
from 𝒒ℎ(𝑡, 𝑥) to 𝒒ℎ(𝑡 + 𝛥𝑡, 𝑥)—i.e. some norm of the 𝑛th power of 𝑺 is uniformly bounded from an
initial time 𝑡0 up to a final time 𝑡𝑁. The basics of linear stability analysis via the Von Neumann (or
1This is the case for all upwind numerical fluxes, such as those given by any of the Riemann solvers used in this report.
2Sometimes referred to as Lax­Richtmyer stability.
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Fourier) method for compact high­order spatial discretizations and explicit Runge­Kutta time schemes
are covered in appendix A.

Nonlinear stability refers instead to a nonlinear numerical method, regardless of the continuous
PDE that it tries to approximate being linear or not (e.g. if limiting is employed, the method itself may be
nonlinear even for a linear PDE). The previous notion of stability is lost, since 𝑺 no longer exists as a
matrix; in fact, no linear stability criterion is enough to ensure convergence in such cases [82, §8.3.5].
Intuitively, it is clear that even if the approximate solution remains bounded e.g. in terms of energy (𝐿2
norm), it can still experience nonphysical oscillations. Such spurious wiggles may be quantified through
the so­called total variation of the approximate solution, which can be used to define sufficient criteria
for nonlinear stability [82, §12.12].

The total variation acts similarly to a norm—it is a scalar associated with the (exact or approximate)
solution over the entire domain at a given time instant—measuring how oscillatory a given function is.
It is defined, for a scalar function 𝑞(𝑡, 𝑥) at some arbitrary time instant, as [82, §6.7]:

‖𝑞(𝑡, 𝑥)‖TV≔ sup
𝑁

∑
𝑛=1

|𝑞(𝑡, 𝑥𝑛) − 𝑞(𝑡, 𝑥𝑛−1)| , (8.2)

where sup indicates the supremum3 operator, taken over all partitions of the real line. This quantity
can only be finite if 𝑞(𝑡, 𝑥) approaches constant values as 𝑥 → ±∞ (even so, in some cases—e.g. if
the solution is periodic—it may be meaningful to define the total variation over a subset of the real line
instead). If 𝑞(𝑡, 𝑥) is differentiable4, (8.2) is equivalent to:

‖𝑞(𝑡, 𝑥)‖TV = ∫
∞

−∞
|𝜕𝑞𝜕𝑥 (𝑡, 𝑥)| d𝑥 . (8.3)

In the vector case, (8.2) and (8.3) can be evaluated either by replacing the absolute value with a vector
norm, or, alternatively, by measuring the total variation in characteristic variables [82, §15.8].

In all results shown in this report, I compute the approximate total variation of a given function (be
it continuous or not) by evaluating (8.2) for increasing numbers of sample points within each 𝛺𝑘 ∈ 𝒯ℎ.
For each 𝑁, a total variation estimate is obtained; 𝑁 is doubled (and the new sample points obtained
via bisection) iteratively, until the sequence of resulting estimates converges (to an absolute tolerance
of 1 × 10−10). To speed up this series convergence process, I employ Richardson extrapolation [12,
p. 375]. In non­scalar conservation laws, all norm­like quantities—TV included—are applied conserved
variable–wise to the solution (or error) vectors.

8.1.1. Total variation diminishing (TVD)
It can be shown that, even in the nonlinear scalar case, if the exact initial condition 𝑞(𝑡0, 𝑥) = 𝑞0(𝑥) has
finite total variation, the total variation of the exact solution does not increase in time [114, §13.6.1]:

‖𝑞(𝑡, 𝑥)‖TV ≤ ‖𝑞(𝑡0, 𝑥)‖TV for all 𝑡 > 𝑡0 , (8.4)

the previous is a condition known as total variation diminishing (TVD); it should be pointed out that
the total variation of such a function is actually non­increasing (rather than strictly diminishing) as time
progresses. It is possible to show that in linear systems of conservation laws, under a definition of
the total variation based on characteristic variables, the total variation of the exact solution remains
constant [82, §15.8.1]. In the nonlinear system case, the exact solution is not TVD even in such a
definition—even in one dimension [82, §15.8.2].

Typically, the total variation of the (scalar) exact solution remains constant until (in the Burgers case)
said solution develops into a shockwave—it then starts diminishing (see, for example, the results in [83,
§3]). This property of the exact solution becomes one additional aspect to be mimicked by the discrete
model. A numerical method is said to be TVD if the approximate solution it produces satisfies (8.4).
3The supremum of a set is the least upper bound of all its elements; it generalizes the concept of maximum. For example, the
set of all negative real numbers has no maximum—there is no element within the set (i.e. a negative real number) larger than
any other—yet, it has a supremum: zero.

4If 𝜕𝑞𝜕𝑥 is interpreted as the distribution derivative (i.e. constructed using Dirac Delta functions at each discontinuity point), (8.3)
applies even for non­differentiable functions [82, §6.7].
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The 1st order upwind finite volume spatial discretization (or, equivalently, any of the three high­order
methods reviewed in this report with p = 0), combined with the explicit 1st order Euler time scheme, is
the simplest example of a TVD method.

8.1.2. Monotonicity
The onset of Gibbs oscillations in an approximate solution will be accompanied by an increase in its
total variation. In fact, any approximate solution obtained by a fully discrete conservation law that does
not increase the total variation to the function it is applied to is necessarilymonotonicity­preserving [82,
p. 110]. This, in turn, means that for all 𝑥𝑛 < 𝑥𝑛+1 ∈ 𝛺 (two arbitrary sample locations in the domain)
and 𝑡1 > 𝑡0:

𝑞ℎ(𝑡0, 𝑥𝑛) ≥ 𝑞ℎ(𝑡0, 𝑥𝑛+1) ⟹ 𝑞ℎ(𝑡1, 𝑥𝑛) ≥ 𝑞ℎ(𝑡1, 𝑥𝑛+1) . (8.5)

In a monotonicity­preserving solution, no new local extrema can form as time advances. Moreover, in
the case of non­increasing total variation, any existing local extrema can only become less pronounced—
i.e.minima cannot decrease and maxima cannot increase. A TVD method, therefore, guarantees that
the approximate solution it provides will not achieve invalid values that could cause the numerical solver
routine to crash (e.g. negative densities or imaginary speeds of sound). There is, however, an impor­
tant disadvantage associated with a scheme being TVD: its accuracy in local extrema, even smooth
ones, can be at most 2nd order—regardless of its order in monotone smooth regions [108].

8.1.3. Total variation bounded (TVB)
An approximate solution component is said to be total variation bounded (TVB) [108] in [𝑡0, 𝑡𝑁] if it
satisfies:

‖𝑞ℎ𝑖 (𝑡𝑛 , 𝑥)‖TV ≤ 𝐵 for all 𝑡0 ≤ 𝑡𝑛 ≤ 𝑡𝑁 , (8.6)

where 𝐵 > 0 is a constant that only depends on ‖𝑞ℎ𝑖 (𝑡0, 𝑥)‖TV—i.e. that is unique for all possible 𝑛 and
𝛥𝑡 such that 𝑡𝑛 = 𝑡0 + 𝑛𝛥𝑡. Comparing (8.6) and (8.4), it is clear that TVD implies TVB. Total variation
stability of a method is guaranteed by it being TVB [108], [82, p. 250]; even in the nonlinear system
case—if a suitable TV definition is employed, see [26, p. 95].

8.1.4. Other nonlinear stability criteria
Even TVB is often too restrictive for nonlinear high­order discretizations—in the sense that, although
a given method may seem to be stable and convergent in practice, no actual TVB proof is known for
it. Such a qualitative notion of nonlinear stability is paradigmatic of essentially non­oscillatory (ENO)
methods; see §8.6.

It is typical for the total variation of a high resolution–high order approximate solution to oscillate
around a TV value slightly lower that of its exact counterpart, and converge towards it (from below) as
the number of degrees of freedom increases [83, §3]. Such behavior is suggestive of TV boundedness
as long as ‖𝑞ℎ‖TV ≤ ‖𝑞‖TV for all 𝑡, and can be attributed to a combination of:

• The total variation ‖𝑞ℎ‖TV being inexact, as it is evaluated at a finite number of sample points in
a subset of the real line.

• The discrete samples of the approximate solution, used in the TV estimation, not being exact
themselves.

Stability criterion Monotonicity­preserving High­order (in smooth regions) Non­linearly stable

TVD 3 7 3

TVB 7 3 3

ENO 7 3 7

Linearly stable 7 3 7

Table 8.1: Summary of the various stability criteria and the properties of the approximate solution that they guar­
antee (scalar one­dimensional case). Cross markers (7) indicate that a given stability criterion is insufficient to
ensure the corresponding property.
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8.2. Legendre­based limiting
Most limiters incorporated in the present thesis (all except §8.7), as well as the two shock sensors in
§8.3, are defined for a modal DG discretization (§4.2.1). This means that the expansion coefficients
of the approximate solution and flux are assumed to be associated with a Legendre polynomial basis,
spanning each element’s trial solution space 𝑆ℎ𝑘 (𝛺). These are obtained via 𝐿2 projection from the
actual J­dimensional trial function space—be it Lagrange polynomials (DGSEM and FR/CPR) or B­
splines (DGIGA)—onto a Legendre­based destination one with the same number of dimensions, as
follows. Once the limiting/sensing procedure is complete, the approximate solution is projected back
onto its original basis.

Due to the orthogonality of the Legendre basis, any higher­order expansion coefficients that may
seem undefined (e.g. because an element is using a lower approximation degree than its neighbors)
can be assigned values of zero without modifying the approximate solution. This facilitates limiting of
discretizations employing p­refinement.

Within this chapter, 𝑸̂𝑘 and 𝑸̌𝑘 are redefined as the matrices of Legendre and “original” (Lagrange
or B­spline) expansion coefficients, respectively. Assume that destination (𝒫𝑗−1, Legendre) and source
(𝜙𝑗, Lagrange or B­spline) basis functions are arranged into vectors, as in (3.9). Then, the state coef­
ficients of the two approximate solution representations are related by:

𝑸̂𝑘(𝑡)∫
1

−1
𝓟𝓟⊺ d𝜉 = 𝑸̌𝑘(𝑡)∫

1

−1
𝝓𝓟⊺ d𝜉 . (8.7)

For DGSEM and FR/CPR, the previous reduces to (4.19), i.e. :

𝑸̂𝑘(𝑡) = 𝑸̌𝑘(𝑡)𝓥−1 , (8.8)

while, for DGIGA—using (4.7):

𝑸̂𝑘(𝑡) = 𝑸̌𝑘(𝑡) (∫
1

−1
𝑵𝓟⊺ d𝜉)

⎡
⎢
⎢
⎢
⎣

1
2 0

3
2

⋱
0 2J−1

2

⎤
⎥
⎥
⎥
⎦

, (8.9)

with each entry in the ℝJ×J mixed inner product matrix being computed exactly via Gauss­Legendre
quadrature of J + 1 points at the breakpoint span level (see §6.3.2).

DGSEM and FR/CPR employ a polynomial trial function space. Hence, for these two methods, the
projection to and from Legendre is a mere change of basis; the approximate solution is unaffected. In
DGIGA, however, the smoothness of the approximate solution will generally not be preserved. Fur­
thermore, the degree of the Legendre­based version of the solution will be equal or higher than that of
its B­spline­based version (the overall number of degrees of freedom is kept the same).

8.3. Discontinuity sensing
Limiting adds non­negligible computational overhead to each residual evaluation; in addition, the ac­
curacy in limited elements is generally reduced. It would therefore be desirable to apply any given
limiter only to the smallest set of elements which require it. Shock sensors (also known as troubled cell
detectors) try to determine a priori which elements contain discontinuities and/or will result in undesir­
able spurious oscillations unless limited. Two sensors have been selected to complement the limiters
reviewed in the present study.

8.3.1. KXRCF sensor
Krivodonova et al. [68] propose a sensor that estimates the local order of accuracy of a DG discretization
at the inflow edge(s) of each element, and uses this information to determine whether or not to mark
it for limiting. It exploits the fact that the DG approximate solution is 𝒪(𝛥𝑥2p+1) and 𝒪(𝛥𝑥p+2) super­
accurate at smooth outflow and inflow element boundaries, respectively [4]. This shock detector is both
simple and free of user­defined parameters, and seems to be well­regarded in the literature [102].

The implementation I use in this thesis, slightly adapted from [68], is as follows:
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1. Consider an arbitrary 𝛺𝑘 ∈ 𝒯ℎ. Evaluate a PDE­dependent, velocity­like quantity5 at each of its
edges; let us denote these here as 𝑢𝐿𝑘 and 𝑢𝑅𝑘 . Then, use them to compute the indicator variable
𝐼𝑘 as follows:

(a) Initialize it to 𝐼𝑘 = 0.
(b) If 𝑢𝐿𝑘 > 0 (the left edge is an inflow boundary):

𝐼𝑘 ← 𝐼𝑘 + |𝑞ℎ1𝑘(−1) − 𝑞ℎ1𝑘−1(1)| . (8.10)

(c) If 𝑢𝑅𝑘 < 0, i.e. the right edge is (also) an inflow boundary:

𝐼𝑘 ← 𝐼𝑘 + |𝑞ℎ1𝑘(1) − 𝑞ℎ1𝑘+1(−1)| . (8.11)

For vector PDEs, I only consider the first state vector component (e.g. density for Euler).

2. Normalize it by a baseline convergence rate:

𝐼𝑘 ←
𝐼𝑘

|𝑞̂11𝑘|
𝛥𝑥−

p+1
2

𝑘 . (8.12)

3. It is shown in [68] that 𝐼𝑘 → 0 as either 𝛥𝑥𝑘 → 0 or p → ∞ if 𝑞1(𝑥) ∈ 𝐶∞ (locally), while 𝐼 → ∞ near
regions where 𝑞1(𝑥) ∉ 𝐶0. Therefore, if 𝐼𝑘 > 1 (once normalized), assume that 𝛺𝑘 is troubled
(i.e. it contains a discontinuity and/or needs to be limited).

8.3.2. AP­TVD sensor
This second sensor is due to Wang [124]. He argues that KXRCF has too much of a tendency to result
in false positives, a problem that this alternative marker is designed to correct. It is based on the TVD
generalized slope limiter of Cockburn and Shu (§8.4), but tries to avoid mistaking smooth extrema for
spurious oscillations caused by discontinuities without requiring user­defined parameters (similarly to
§8.5), hence its “accuracy­preserving” designation.

I use it in a slightly modified way from [124], which can be summarized as follows:

1. Consider 𝛺𝑘 ∈ 𝒯ℎ and the first, second and third Legendre coefficients of its approximate so­
lution vector (𝒒̂1𝑘, 𝒒̂2𝑘 and 𝒒̂3𝑘, respectively associated with 𝒫0, 𝒫1 and 𝒫2). This element is
preemptively assumed to require limiting if:

𝑞ℎ𝑖𝑗𝑘(𝜉𝑛) > 1.001max{𝒒̂1𝑘−1, 𝒒̂1𝑘 , 𝒒̂1𝑘+1} or 𝑞ℎ𝑖𝑗𝑘(𝜉𝑛) < 0.999min{𝒒̂1𝑘−1, 𝒒̂1𝑘 , 𝒒̂1𝑘+1} (8.13)

for any 𝑖 ∈ [1, I], 𝑗 ∈ [1, J] and 𝑛 ∈ [1, J+2], where 𝜉𝑛 ∈ {−1, 𝜉2, 𝜉3, … , 𝜉J+1, 1}, the set of coordinates
associated with the degrees of freedom (nodes or control points), augmented with the left and
right edge locations.

2. If 𝛺𝑘 was marked as troubled according to the previous step, compute:

𝒒̂∗3𝑘≔minmod(𝒒̂3𝑘 ,
𝒒̂2𝑘 − 𝒒̂2𝑘−1

3 , 𝒒̂2𝑘+1 − 𝒒̂2𝑘3 ) (8.14)

and, overriding step 1, 𝛺𝑘 is considered free of troubles if 𝒒̂3𝑘 = 𝒒̂∗3𝑘.

The second step, in which smooth extrema are unmarked, is done comparing element­averaged
derivatives of the approximate solution in [124]. My alternative formulation—using Legendre coeffi­
cients instead—is justified solely on its similarity with hierarchical limiters (§8.5); there seems to be no
reason why, it being effective in that situation, should no longer be so in this context.

5Advection: 𝑎; wave: 𝒸; Burgers: 𝑢2 ; Euler: 𝑢.
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8.4. Generalized slope limiting
Cockburn and Shu [23], aware of the limitations of their novel method in regards to nonlinear stability,
already included a simple (yet very effective) limiter in their original proposal of the Runge­Kutta Dis­
continuous Galerkin scheme. This limiter is applied to each troubled element (see §8.3) at the end of
every Runge­Kutta stage. Its role is to modify its Legendre coefficients 𝑸̂𝑘(𝑡) (in fact, it only limits the
columns for which 𝑗 > 1) in such a way that any spurious oscillations are removed from 𝒒ℎ𝑘(𝑡, 𝑥).

The DG slope limiter of Cockburn and Shu borrows a minmod­based6 TVD slope limiter from
MUSCL­type high­resolution finite volume schemes [82, §6.9] to instead enforce the weaker TVB cri­
terion on the limited approximate solution.

For a piece­wise constant approximate solution, (8.2) reduces to being evaluated at each element’s
mean value. This generalizes into a weaker stability indicator for high­order methods—TVM rather than
TV—but one that is much simpler (and economical) to evaluate [22, p. 424]:

‖𝑞ℎ(𝑡1, 𝑥)‖TVM≔
K+1

∑
𝑘=1

|𝑞̂1𝑘(𝑡1) − 𝑞̂1𝑘−1(𝑡1)| , (8.15)

where 𝑞̂1𝑘 is the first Legendre coefficient of the approximate solution on 𝛺𝑘 (see §8.2). The slope­
limited DG method is proven in [22] to satisfy the corresponding TVDM and TVBM criteria (when𝑀 = 0
and 𝑀 > 0, respectively; see §8.4), when combined with a strong stability–preserving Runge­Kutta
(SSP­RK) time scheme (see §7) for a small enough7 Courant number. Both TVDM and TVBM imply
TVB [26, p. 95]—this is one of the very few general stability results known for high­order methods.

8.4.1. Modified minmod function
Shu’s element­wise modified minmod function is defined as:

modminmod
𝑘

(𝑞1, 𝑞2, 𝑞3)≔ {
𝑞1 if |𝑞1| ≤ 𝑀𝛥𝑥2𝑘
minmod (𝑞1, 𝑞2, 𝑞3) otherwise

, (8.16)

with the conventional minmod function being:

minmod (𝑞1, 𝑞2, 𝑞3)≔ {
sign(𝑞1)min{𝑞1, 𝑞2, 𝑞3} if sign(𝑞1) = sign(𝑞2) = sign(𝑞3)
0 otherwise

. (8.17)

It is convenient to vectorize these functions, such that:

modminmod
𝑘

(𝒒1, 𝒒2, 𝒒3) =
⎡
⎢
⎢
⎢
⎣

modminmod𝑘 (𝑞11, 𝑞12, 𝑞13)
modminmod𝑘 (𝑞21, 𝑞22, 𝑞23)

⋮
modminmod𝑘 (𝑞I 1, 𝑞I 2, 𝑞I 3)

⎤
⎥
⎥
⎥
⎦

. (8.18)

The scalar 𝑀 ≥ 0 is a user­specified parameter8. For 𝑀 = 0, the limiter enforces TVD slopes on
any element which contains a critical point (i.e. location where the first derivative of the solution either
is zero or does not exist). This makes 𝒒∗(𝑡, 𝑥) TVDM (which implies TVB) but has the drawback of
greatly diffusing local maxima or minima, even if they are smooth, needlessly reducing accuracy to low
order in their neighborhood. By gradually increasing 𝑀, it is possible to reduce the activation threshold
of the limiter so that smooth extrema are excluded, and the limiter only diffuses actual discontinuities
(as intended). The resulting solution is TVBM (and, still, TVB) for 𝑀 > 0,. As 𝑀 → ∞, limiting stops.
6The minmod slope limiter can be regarded as the baseline TVD limiter, since it results in the most conservative slopes—
i.e. introduces the most numerical diffusion—among similar alternatives (e.g. superbee, MC, van Leer; see [82, §6.12]). Cock­
burn and Shu’s generalized slope limiter is actually built upon a slightly less restrictive one due to Osher (that also uses the
minmod function) [25, §2.4].

7The Courant number (𝜍) required for TVBM­stability is much larger than that necessary for linear stability when the order of the
SSP­RK time scheme is equal or smaller than that of the discretization [25, p. 198].

8In scalar conservation laws, the optimal 𝑀 corresponds to the supremum of the set of absolute values of the second derivative
of the solution at local extrema [25, p. 195].
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8.4.2. Local characteristic variables
In systems of conservation laws, generalized slope (and also moment, see §8.5) limiters are typically
applied to local characteristic variables, as this is necessary to ensure TVB behavior 9.

A given state vector 𝒒ℎ𝑘 may be projected to characteristic variables by left­multiplying it with some
left eigenvector matrix (as defined in §2). Inter­element limiters act on Legendre coefficients of the
solution on a compact stencil encompassing three elements, {𝑸̂𝑘−1, 𝑸̂𝑘 , 𝑸̂𝑘+1}. It is thus convenient
to employ such a local characteristic decomposition directly on the matrices of Legendre coefficients,
which simply means that any eigenvectors or eigenvalues are evaluated at the mean state of the middle
element in the stencil, i.e. {𝑳𝑘𝑸̂𝑘−1, 𝑳𝑘𝑸̂𝑘 , 𝑳𝑘𝑸̂𝑘+1} with:

𝑳𝑘≔𝑳([𝑞̂11𝑘 𝑞̂21𝑘 ⋯ 𝑞̂I 1 𝑘]
⊺
) , 𝑹𝑘≔𝑹([𝑞̂11𝑘 𝑞̂21𝑘 ⋯ 𝑞̂I 1 𝑘]

⊺
) . (8.19)

For further details and generalizations (e.g. to triangular elements), refer to [24].

8.4.3. TVB limiter
My implementation of the TVB slope limiter used in this thesis is based on [25, §2.4]. It consists on the
following steps:

1. Let us assume that, after applying stage 𝑠 of an S­stage Runge­Kutta time­scheme, 𝒒̃ℎ𝑘(𝑡𝑛+𝑠/S, 𝜉)
and 𝑸̂𝑘 (𝑡𝑛+𝑠/S) have just been computed at 𝑡𝑛+𝑠/S = 𝑡𝑛 + (𝑠/S)𝛥𝑡, for 𝛺𝑘 ∈ 𝒯ℎ ∪ 𝒢ℎ (ghost
elements included). Evaluate the following for every (troubled) element in 𝒯ℎ:

𝛥𝒒𝐿𝑘≔𝒒̂1𝑘 (𝑡𝑛+ 𝑠S ) − 𝒒̃
ℎ
𝑘 (𝑡𝑛+ 𝑠S , −1) , 𝛥𝒒𝑅𝑘≔𝒒̃ℎ𝑘 (𝑡𝑛+ 𝑠S , 1) − 𝒒̂1𝑘 (𝑡𝑛+

𝑠
S
) , (8.20a)

𝛥𝒒̄𝐿𝑘≔𝒒̂1𝑘 (𝑡𝑛+ 𝑠S ) − 𝒒̂1𝑘−1 (𝑡𝑛+
𝑠
S
) , 𝛥𝒒̄𝑅𝑘≔𝒒̂1𝑘+1 (𝑡𝑛+ 𝑠S ) − 𝒒̂1𝑘 (𝑡𝑛+

𝑠
S
) . (8.20b)

2. Compute corresponding left and right–sided, TVB­limited slopes (see §§ 8.4.1 and 8.4.2):

(𝛥𝒒𝐿𝑘)
∗≔𝑹𝑘modminmod

𝑘
(𝑳𝑘𝛥𝒒𝐿𝑘 , 𝑳𝑘𝛥𝒒̄𝐿𝑘 , 𝑳𝑘𝛥𝒒̄𝑅𝑘) , (8.21a)

(𝛥𝒒𝑅𝑘)
∗≔𝑹𝑘modminmod

𝑘
(𝑳𝑘𝛥𝒒𝑅𝑘 , 𝑳𝑘𝛥𝒒̄𝐿𝑘 , 𝑳𝑘𝛥𝒒̄𝑅𝑘) . (8.21b)

3. Compute safe slopes for the 𝐿2 projection of the approximate solution on a p = 1 space:

𝒒̂∗2𝑘 ≡ 𝑹𝑘modminmod
𝑘

(𝑳𝑘𝒒̂2𝑘 , 𝑳𝑘𝛥𝒒̄𝐿𝑘 , 𝑳𝑘𝛥𝒒̄𝑅𝑘) . (8.22)

4. Any component 𝑖 of the approximate solution for which (𝛥𝑞𝐿𝑖𝑘)
∗ ≠ 𝛥𝑞𝐿𝑖𝑘 or (𝛥𝑞𝑅𝑖𝑘)

∗ ≠ 𝛥𝑞𝑅𝑖𝑘 has
unsafe edge values. To correct this, replace it with its limited linear version by setting:

𝒒̂𝑖 2 𝑘 ← 𝒒̂∗𝑖 2 𝑘 , 𝒒̂𝑖𝑗𝑘 ← 0 for 𝑗 > 2 . (8.23)

Despite its robustness, simplicity and effectiveness (for a proper choice of 𝑀), this method has two
important shortcomings:

• It relies on a problem­dependent and generally unknown parameter to function effectively.

• When a solution component is limited, all information apart from its mean value is discarded.

8.5. Generalized moment limiting
Biswas et al. [13] pioneered an approach aimed at overcoming both weaknesses of the TVB slope
limiter (§8.4.3) at once. Their idea was to extend the slope limiting idea to higher­ordermoments of the
approximate solution. This was a breakthrough achievement, making it possible for high­order accuracy
to be retained—not only at smooth extrema, but also across linearly degenerate discontinuities and
9This is not enough, however, to guarantee that certain physical bounds will always be preserved; see §8.8.
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all the way up to the very close neighborhood of genuine nonlinear shocks—without any problem­
dependent constant to adjust. Over time, this method has developed into its own family of DG limiters
[17, 69, 124].

In the context of Legendre­based DG (see §4.2.1), the 𝑚th moment of a polynomial approximant
𝑞ℎ𝑖𝑘(𝑡, 𝜉) is:

∫
1

−1
𝑞ℎ𝑖𝑘𝒫𝑚 d𝜉 ≡ 2

2𝑚 + 1𝑞̂𝑖 𝑚+1𝑘 . (8.24)

If applied to a linear approximation 𝑞ℎ𝑖𝑘(𝜉) (so that its two non­zero moments are mean value and slope),
generalized moment limiting reduces to generalized slope limiting. It can be shown [69] that the 𝑚th
moment of a 𝐶∞ function defined over 𝛺𝑘—and therefore, in turn, the 𝑞̂𝑖 𝑚+1𝑘 Legendre coefficient of
its polynomial approximation—is proportional to its 𝑚th derivative sampled at any point of the element
(i.e. the zeroth coefficient is the mean value, the first one is associated with the slope, the second with
the curvature, and so on).

8.5.1. BDF limiter
This is the original generalized moment limiter due to Biswas, Devine, and Flaherty [13] (hence its
designation), the first of the three such limiters studied in this report. My implementation of it is as
follows; starting with 𝑖 = 1:
1. Let 𝒯∗ ⊆ 𝒯ℎ be the set of troubled 𝛺𝑘 ∈ 𝒯ℎ (§8.3); if no sensor is used, 𝒯∗ = 𝒯ℎ.
2. For every 𝑗 from J − 1 to 1:

(a) For every 𝛺𝑘 ∈ 𝒯∗, use (8.17) to compute a limited version of the 𝑗th Legendre coefficient (in
characteristic variables) associated with the 𝑖th state vector component of the approximate
solution:

(𝑳𝑘𝒒̂𝑗+1𝑘)
∗
𝑖 ≔minmod((𝑳𝑘𝒒̂𝑗+1𝑘)𝑖 ,

(𝑳𝑘 (𝒒̂𝑗 𝑘 − 𝒒̂𝑗 𝑘−1))𝑖
2𝑗 − 1 ,

(𝑳𝑘 (𝒒̂𝑗 𝑘+1 − 𝒒̂𝑗 𝑘))𝑖
2𝑗 − 1 ) . (8.25)

This generalizes (8.22) to modes 𝑗 ≥ 1.
(b) Exclude from 𝒯∗ any 𝛺𝑘 for which (𝑳𝑘𝒒̂𝑗+1𝑘)

∗
𝑖 = (𝑳𝑘𝒒̂𝑗+1𝑘)𝑖 or (𝑳𝑘𝒒̂𝑗+1𝑘)𝑖 = 0, and assume

that their remaining modes are safe—i.e. : (𝑳𝑘𝒒̂𝑟 𝑘)
∗
𝑖 ≔(𝑳𝑘𝒒̂𝑟 𝑘)𝑖 for 𝑟 = 2, 3, … , 𝑗. The limit­

ing process is thus stopped for the 𝑖th characteristic component of all elements which (are
assumed to) no longer require it.

This step gives rise to the notion of hierarchical limiting, in which higher­order modes are limited
using lower­order ones until no more limiting is required. Looping over 𝑗 from highest to lowest
ensures that only unlimited modes of each element’s left and right neighbors are used in each
iteration.

3. Advance to the next PDE component, 𝑖 ← 𝑖 +1. If 𝑖 ≤ I, go back to step 1 (i.e. repeat the process
for the next characteristic component of all troubled elements); otherwise, move on to the last
step.

4. For every (troubled) 𝛺𝑘, replace its unlimited expansion coefficients with limited ones (only unsafe
ones will actually be modified10):

𝑸̂𝑘 ← 𝑹𝑘 (𝑳𝑘𝑸̂𝑘)
∗
. (8.26)

8.5.2. BSB limiter
Burbeau, Sagaut, and Bruneau [17] proposed this limiter as a general improvement over BDF in terms
of overall accuracy. In essence, it consists on performing the following after step 2b in §8.5.1:

(c) Compute the following quantities:

𝛥𝒒̂𝐿𝑗𝑘≔𝒒̂𝑗 𝑘−1 + (2𝑗 − 1) 𝒒̂𝑗+1𝑘−1 , 𝛥𝒒̂𝑅𝑗𝑘≔𝒒̂𝑗 𝑘+1 − (2𝑗 − 1) 𝒒̂𝑗+1𝑘+1 . (8.27)
10In the DGIGA case, special care needs to be taken to make sure that, for any conservative variable that is not affected by the
limiter, the original B­spline expansion coefficients are maintained (instead of needlessly converting them back and forth).
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(d) Using the previous, evaluate:

(𝑳𝑘𝒒̂𝑗+1𝑘)
max
𝑖 ≔minmod((𝑳𝑘𝒒̂𝑗+1𝑘)𝑖 ,

(𝑳𝑘 (𝒒̂𝑗𝑘 − 𝛥𝒒̂𝐿𝑗𝑘))𝑖
2𝑗 − 1 ,

(𝑳𝑘 (𝛥𝒒̂𝑅𝑗𝑘 − 𝒒̂𝑗𝑘))𝑖
2𝑗 − 1 ) . (8.28)

(e) And, in turn, compute:

(𝑳𝑘𝒒̂𝑗+1𝑘)
∗∗
𝑖 ≔maxmod ((𝑳𝑘𝒒̂𝑗+1𝑘)

∗
𝑖 , (𝑳𝑘𝒒̂𝑗+1𝑘)

max
𝑖 ) , (8.29)

where:

maxmod (𝑞1, 𝑞2)≔ {
sign(𝑞1)max{|𝑞1| , |𝑞2|} if sign(𝑞1) = sign(𝑞2)
0 otherwise

, (8.30)

which is applied in vectorized fashion, in the same manner as (8.17) earlier.

(f) Repeat step 2b in 8.5.1, this time searching for elements such that (𝑳𝑘𝒒̂𝑗+1𝑘)
∗∗
𝑖 = (𝑳𝑘𝒒̂𝑗+1𝑘)𝑖.

In step 4, (𝑳𝑘𝑸̂𝑘)
∗∗
is used instead of the more conservative (𝑳𝑘𝑸̂𝑘)

∗
. Numerical experiments in [17]

suggest that this modification does indeed lower numerical diffusion, while still maintaining nonlinear
stability in practice.

8.5.3. Krivodonova’s limiter
Yet another variant of the generalized moment limiter for DG was proposed by Krivodonova [69]. She
claims that her recipe leads to reduced numerical diffusion in the limited solution without compromising
stability (in most practical situations, at least). While this is similar to BSB, her approach is substantially
simpler.

The reasoning behind this limiter is as follows. When generalizing (8.22) from slope to any arbitrary
higher order moment, consider limiting solution derivatives directly (instead of inner products between
solution and each Legendre basis function). Assuming that 𝑞ℎ𝑖𝑘(𝑡, 𝑥) ∈ 𝐶∞, comparison between its
Taylor series and Legendre polynomial expansion reveals that [69]:

𝑞̂𝑖𝑗𝑘(𝑡) ≈ 𝐶𝛥𝑥𝑗𝑘
𝜕𝑗𝑞ℎ𝑖𝑘
𝜕𝑥𝑗 (𝑡, 𝜁), 𝜁 ∈ 𝛺𝑘 . (8.31)

i.e. each Legendre coefficient is an estimate (up to a scaling factor, 𝐶 ∈ ℝ+) of the spatial derivative of
matching order of the approximate solution, sampled at any point of the element. This eventually leads
to [69]:

𝑞̂𝑖 𝑗+1𝑘 =
𝑞̂𝑖 𝑗 𝑘 − 𝑞̂𝑖 𝑗 𝑘−1
2 (2𝑗 − 1) + 𝒪 (𝛥𝑥𝑗+2) =

𝑞̂𝑖 𝑗 𝑘+1 − 𝑞̂𝑖 𝑗 𝑘
2 (2𝑗 − 1) + 𝒪 (𝛥𝑥𝑗+2) , 𝑗 = 1, 2, 3, … , J , (8.32)

which is smaller than the approximation employed by Biswas et al. [13] in the BDF limiter (§8.5.1) by a
factor of 1/2 in the leading term of every mode. As an entirely ad hoc modification, Krivodonova [69]
then proposes to replace (8.25), in step 2a of §8.5.1, with the following:

(𝑳𝑘𝒒̂𝑗+1𝑘)
∗
𝑖 ≔minmod((𝑳𝑘𝒒̂𝑗+1𝑘)𝑖 ,

(𝑳𝑘 (𝒒̂𝑗 𝑘 − 𝒒̂𝑗 𝑘−1))𝑖
𝛼𝑗

,
(𝑳𝑘 (𝒒̂𝑗 𝑘+1 − 𝒒̂𝑗 𝑘))𝑖

𝛼𝑗
) . (8.33)

For 𝛼𝑗 = 2𝑗 − 1, Krivodonova’s limiter becomes identical to BDF. However, if 𝛼𝑗 = 2 (2𝑗 − 1)
(i.e. strictly as derived), it turns out to be too conservative for practical purposes (it becomes unneces­
sarily diffusive). This suggests that, actually, BDF’s overestimation of the modal expansion coefficients
is itself an ad hoc compromise between stability and accuracy, made implicitly through the design deci­
sion of limiting Legendre moments (rather than solution derivatives). Krivodonova’s contribution is the
realization that this can be taken one step further by using an even more aggressive set of 𝛼𝑗 values
in (8.33). More specifically, any values in the range:

1 ≤ 𝛼𝑗 ≤ 2 (2𝑗 − 1) , (8.34)
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are claimed to maintain stability11 in all numerical tests performed in [69]. Consequently, the simplest
case 𝛼𝑗 = 1—corresponding to the mildest possible limiting—seems to be optimal. Only this value is
employed in the present report.
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Figure 8.2: Krivodonova’s range of 1
𝛼𝑗

scaling factors as functions of 𝑗, in comparison with BDF’s ones. The
reduction in limiting intensity of 𝛼𝑗 = 1, in relation to (8.32), becomes more pronounced at high modes, possibly
leading to some amount of small­wavelength oscillations not being removed by the limiter.

8.6. Weighted essentially non­oscillatory (WENO) limiting
A more recent trend exists in the literature trying to bring the ENO and/or WENO machinery, well­
established in the contexts of finite differences and finite volumes, to discontinuous Galerkin. For
details on this kind of high resolution schemes, see [43, 62, 110] and references therein.

This “(W)ENO for DG” initiative seems to have started with the series of papers [101, 103, 136],
in which the so­called Hermite WENO (HWENO) approach is developed. HWENO schemes have a
more compact stencil than traditional variants for a given order, making them better suited to DG. Other
examples of HWENO limiters for DG are [84, 87, 134]. The main downsides of WENO limiters are their
relative complexity and associated computational cost. The latter, however, can be mitigated with the
use of sensors (§8.3).

8.6.1. HWENO limiter
In the present thesis, I consider a particularly simple HWENO limiter originally due to Zhong and Shu
[134], later extended to FR/CPR in [29] and improved in [137]. I apply it in the following way, which
incorporates the improvements of Zhu et al. [137] by exploiting the fact that, when undergoing limiting,
all solution components exist in a Legendre­based space (see §8.2).

Consider, once again, the set of troubled elements 𝒯∗ ⊆ 𝒯ℎ. Now, for every 𝛺𝑘 ∈ 𝒯∗:

1. The local ENO/WENO stencil centered on 𝛺𝑘 contains three polynomial vectors, namely: 𝒒ℎ𝑘−1,
𝒒ℎ𝑘 and 𝒒ℎ𝑘+1. For ease of notation, let us define their respective projections to local characteristic
variables as:

𝓺0≔𝑳𝑘𝒒̃ℎ𝑘−1 , 𝓺1≔𝑳𝑘𝒒̃ℎ𝑘 , 𝓺2≔𝑳𝑘𝒒̃ℎ𝑘+1 . (8.35)

Replace the mean values (i.e. 1st Legendre coefficient) of the left and right approximate solu­
tion polynomials in characteristic variables by those of the approximate solution polynomial, in

11As with the rest of moment limiters, there is no known TVB guarantee of nonlinear stability linked with this range. Krivodonova
[69] herself admits that the choice 𝛼𝑗 = 1 allows (minor) oscillations to appear in highest order derivatives. This is similar to
the essentially non­oscillatory (ENO) requirement, under which some degree of non­monotonicity is considered acceptable.
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characteristic variables, of 𝛺𝑘:

𝓺̂10 ← 𝓺̂11 , 𝓺̂12 ← 𝓺̂11 . (8.36)

This ensures that any convex combination12 of these three vectors’ components will preserve the
unlimited element­wise solution component averages.

2. Construct a limited version of 𝓆𝑖 1,

(𝑳𝑘𝒒̃ℎ𝑘)
∗
𝑖 ≔𝜔0𝓆𝑖 0 + 𝜔1𝓆𝑖 1 + 𝜔2𝓆𝑖 2 , (8.37)

using normalized nonlinear weights, {𝜔𝑙}2𝑙=0, obtained as follows. For 𝑖 = 1, 2, … , I:

(a) Estimate the smoothness of 𝓆𝑖𝑙, for 𝑙 = 0, 1, 2. Since it is a Legendre­based polynomial of
degree p, the smoothness indicator suggested in [134]—which, in turn, was first proposed
in [62]—becomes:

𝛽𝑙≔
p

∑
𝜅=1

22𝜅−1∫
1

−1
(

J

∑
𝑗=1
𝓆̂𝑖𝑗𝑙

d𝜅𝒫𝑗−1
d𝜉𝜅 )

2

d𝜉 . (8.38)

The integrand in (8.38) is a product of two polynomials, each of degree ≤ p − 1; it is hence
also a polynomial, but of degree ≤ 2p − 2. Its integral can therefore be computed exactly
using e.g.≥ p–point Gauss­Legendre quadrature (see table 4.2).

(b) Use the previous to compute corresponding non­normalized nonlinear weights. For 𝑙 =
0, 1, 2:

𝜔̄𝑙≔
𝛾𝑙

(𝜀 + 𝛽𝑙)
𝑟 , (8.39)

where 𝛾𝑙 is an element of the triplet of linear weights subject to the condition ∑
2
𝑙=0 𝛾𝑙 = 1. In

order to bias the stencil toward the middle element, it is typical to choose 𝛾1 ≫ 𝛾0, 𝛾1 ≫ 𝛾2—
in fact, the larger the ratios 𝛾1

𝛾0
and 𝛾1

𝛾2
are, the more accurate the limited solution polynomial

is in smooth regions but, also, the more oscillatory it remains near discontinuities. Imitating
[134], I employ 𝜀 = 10−6, 𝑟 = 2 and the following linear weights:

𝛾0 = 0.001 , 𝛾1 = 0.998 , 𝛾2 = 0.001 . (8.40)

(c) Normalize the nonlinear weights obtained in the previous step; for 𝑙 = 0, 1, 2:

𝜔𝑙≔
𝜔̄𝑙

∑2𝑙=0 𝜔̄𝑙
. (8.41)

Once the previous steps have been completed, i.e.∃ (𝑳𝑘𝒒̃ℎ𝑘)
∗ ∀𝑘 ∶ 𝛺𝑘 ∈ 𝒯∗, the unlimited approximate

solution in conservative variables is overridden by its limited counterpart by setting, for every 𝛺𝑘 ∈ 𝒯∗:

𝒒̃ℎ𝑘 ← 𝑹𝑘 (𝑳𝑘𝒒̃ℎ𝑘)
∗
. (8.42)

8.7. Flux corrected transport (FCT) limiting
As explained in §6.4, it may be advantageous for DGIGA to apply limiting in a predictor­correction
approach, where AFC is used to generate a suitable predictor. In what follows, I propose a modified
version of the FCT limiter in [77] that corrects said predicted solution, recovering a compromise between
high­order and high­resolution. This method assumes the discretization to be of the type (6.30); it is
not applicable to the other methods, (6.16) included. Also, unlike the rest of limiters in this chapter, it
is used only once per time­step (and not after every time­stage)13.
12A convex combination is a sum of weighted terms in which the sum of said weights is exactly 1. In the HWENO limiter case,
this means that ∑2𝑙=0𝜔𝑖𝑙 = 1 for every 𝑖.

13Only the predictor is advanced stage by stage, and is corrected, only once, at the end of the step.
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8.7.1. Linearized antidiffusive fluxes
Having constructed (6.30)—a low­order predictor—via AFC, the theory of flux corrected transport (FCT)
ensures that, for every control point 𝑟, there must exist a vector of high­order net antidiffusive fluxes,
𝒇𝐻𝑟𝑘, that relates the degrees of freedom of the low­order predictor with those of its unlimited high­order
(possibly oscillatory) counterpart, such that:

(𝑸̂𝐻𝑘 − 𝑸̂𝐿𝑘)𝓜𝐿
𝑘 = 𝑭𝐻𝑘 , 𝑭𝐻𝑘 ≔[𝒇𝐻1𝑘 𝒇𝐻2𝑘 ⋯ 𝒇𝐻J𝑘] . (8.43)

In an analogous manner to (6.33), each net flux vector is associated to a control point and includes
contributions from all other ones within nonzero basis function support, each being referred to as a raw
antidiffusive flux vector, 𝙛𝑟𝑗𝑘. These are defined such that:

𝒇𝐻𝑟𝑘≔∑
𝑗≠𝑟
𝙛𝑟𝑗𝑘 , 𝙛𝑟𝑗𝑘 ≡ 𝙛𝑗𝑟𝑘 , (8.44)

as in (6.33), the summation can be made over all control points, but the only nonzero contributions will
be due to those 𝑁𝑗 with nonzero support overlapping that of 𝑁𝑟 (itself excluded).

Explicit time­marching solvers such as those considered in this report (§7) are best suited to a
linearized variant of FCT. Each raw antidiffusive flux is approximated as [90]:

𝙛𝑟𝑗𝑘 ≈ 𝛥𝑡 ((𝓻̂𝐿𝑟𝑘 − 𝓻̂𝑗𝑘
𝐿)𝑚𝑗𝑟𝑘 +𝑫𝑟𝑗𝑘 (𝒒̂𝐿𝑟𝑘 − 𝒒̂𝐿𝑗𝑘)) , (8.45)

in which every term on the right­hand­side is evaluated using the low­order approximate solution at 𝑡 +
𝛥𝑡—including, in particular, the residual vectors. This implies one additional evaluation of the predictor
residuals in (6.30), done after the time­scheme has finished advancing the discretization to the next
time­step (if the limiter is being applied in an initialization step, see 8.7.3).

8.7.2. Synchronized sequential FCT limiter
In the context of FCT, limiting consists on reducing the magnitude of each antidiffusive flux by a factor
0 ≤ 𝛼𝑟𝑗𝑘 ≤ 1, such that replacing them in (8.44) and propagating the result via (8.43), leads to a set of
matrices of limited high­order control values which encode the sought­after high­resolution approximate
solution:

𝑸̂𝑘≔𝑸̂𝐿𝑘 + 𝑭𝐿𝑘 (𝓜𝐿
𝑘)
−1

, 𝒇𝐿𝑟𝑘≔∑
𝑗≠𝑟
𝛼𝑟𝑗𝑘𝙛𝑟𝑗𝑘 , 𝛼𝑟𝑗𝑘 ≡ 𝛼𝑗𝑟𝑘 . (8.46)

These limiting coefficients can be obtained in a generalized version of Zalesak’s algorithm [77], [78,
§9.2]. Said limiter was designed for low­order Lagrange basis functions, but can be applied in IGA
by essentially treating control points as as if they were nodes [90]. The limiting procedure used for
DGIGA­AFC in this report consists on the following steps:

1. Prelimit raw antidiffusive fluxes as in [75, §6.4.1] (in conservative variables), i.e. set 𝘧𝑖𝑟𝑗𝑘 = 0
for every 𝑖, 𝑟, 𝑗, 𝑘 for which 𝘧𝑖𝑟𝑗𝑘 (𝑞̂𝐿𝑖𝑗𝑘 − 𝑞̂𝐿𝑖𝑟𝑘) > 0 (if this product is positive, the associated raw
antidiffusive flux is actually diffusive).

2. Determine upper and lower bounds for each control value in the high­resolution approximation.
For DGIGA­AFC, I propose to do so as follows:

(a) First, determine element­local extrema (ghost elements included) in the control polygon of
each primary variable’s low­order predictor :

𝘷̂max
𝑖𝑟𝑘 ≔max {𝘷̂𝐿𝑖 𝑟−p𝑘 , … , 𝘷̂𝐿𝑖 𝑟+p𝑘} , 𝘷̂min

𝑖𝑟𝑘 ≔min {𝘷̂𝐿𝑖 𝑟−p𝑘 , … , 𝘷̂𝐿𝑖 𝑟+p𝑘} . (8.47)

Control values in primary variables are obtained from conservative ones via left­multiplication
with 𝙏(𝒒̂𝐿𝑟𝑘), defined by (2.44) for Euler (or the identity matrix otherwise).

(b) Then, communicate extrema across element edges (for 𝑘 = 0,…K), i.e. :

𝘷̂max
𝑖J𝑘 = 𝘷̂max

𝑖 1 𝑘+1 =max {𝘷̂max
𝑖 J 𝑘 , 𝘷̂max

𝑖 1 𝑘+1} , 𝘷̂min
𝑖J𝑘 = 𝘷̂min

𝑖 1 𝑘+1 =min {𝘷̂min
𝑖 J 𝑘 , 𝘷̂min

𝑖 1 𝑘+1} . (8.48)
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(c) Finally, propagate them inwards of each 𝛺𝑘 ∈ 𝒯ℎ; starting e.g. with 𝑟 = 2, 3, … , p + 1 (basis
functions that have shared nonzero support with the left­most one):

𝘷̂max
𝑖𝑟𝑘 =max {𝘷̂max

𝑖1𝑘 , 𝘷̂max
𝑖𝑟𝑘 } , 𝘷̂min

𝑖𝑟𝑘 =min {𝘷̂min
𝑖1𝑘 , 𝘷̂min

𝑖𝑟𝑘 } . (8.49)

and for 𝑟 = J − 1, J − 2,… , J − p (analogously, with the right­most one):

𝘷̂max
𝑖𝑟𝑘 =max {𝘷̂max

𝑖J𝑘 , 𝘷̂max
𝑖𝑟𝑘 } , 𝘷̂min

𝑖𝑟𝑘 =min {𝘷̂min
𝑖J𝑘 , 𝘷̂min

𝑖𝑟𝑘 } . (8.50)

This recipe reduces to sharing local maxima and minima among all control points within shared
nonzero basis function support of each other, treating the two nonzero basis functions at every
patch interface as if they where one. Preliminary numerical results (figure 8.3) suggest that this
approach is at least not worse than no coupling at all.

3. Compute synchronized limiting coefficients for each raw antidiffusive flux. This requires casting
the raw antidiffusive fluxes to primitive variables, which for the Euler equations (2.39) can be done
via control­point­based transformations as:

𝘧𝜌𝑟𝑗𝑘≔𝘧1𝑟𝑗𝑘 , (8.51a)

𝘧𝑢𝑟𝑗𝑘≔
𝘧2𝑟𝑗𝑘 − 𝑢̂𝑟𝑘𝘧𝜌𝑟𝑗𝑘

𝜌̂𝑟𝑘
, (8.51b)

𝘧𝑝𝑟𝑗𝑘≔(𝛾 − 1) (𝘧3𝑟𝑗𝑘 +
1
2𝑢̂

2
𝑟𝑘𝘧

𝜌
𝑟𝑗𝑘 − 𝑢̂𝑟𝑘𝘧2𝑟𝑗𝑘) . (8.51c)

For the other conservation laws, no such conversion is necessary: there is no distinction between
primary and conservative variables.
In synchronized FCT, a single limiting coefficient acts on all components of 𝙛𝑟𝑗𝑘. Yet, it is possible
to apply multiple such coefficients sequentially, each corresponding to one loop over the following
algorithm; starting with 𝑖 = 1 and assuming, without loss of generality, that all primary variables
are to be limited:

(a) Use (8.51) to compute 𝘧𝘷𝑟𝑗𝑘, the raw antidiffusive flux corresponding to 𝘷𝑖𝑟𝑗𝑘.
(b) Compute positive/negative contributions to the net antidiffusive flux at control point 𝑟:

𝑓+𝑟𝑘≔∑
𝑗≠𝑟

max {0, 𝘧𝘷𝑟𝑗𝑘} , 𝑓−𝑟𝑘≔∑
𝑗≠𝑟

min {0, 𝘧𝘷𝑟𝑗𝑘} . (8.52)

(c) Compute distances to the local maxima/minima determined earlier:

𝛥𝘷̂+𝑟𝑘≔𝘷̂max
𝑖𝑟𝑘 − 𝘷̂𝐿𝑖𝑟𝑘 , 𝛥𝘷̂−𝑟𝑘≔𝘷̂min

𝑖𝑟𝑘 − 𝘷̂𝐿𝑖𝑟𝑘 . (8.53)

(d) Compute positive/negative control value correction factors:

𝛼+𝑟𝑘≔min {1,𝑚𝐿𝑟
𝛥𝘷̂+𝑟𝑘
𝑓+𝑟𝑘

} , 𝛼−𝑟𝑘≔min {1,𝑚𝐿𝑟
𝛥𝘷̂−𝑟𝑘
𝑓−𝑟𝑘

} . (8.54)

(e) Use the previous to compute 𝛼𝘷𝑟𝑗𝑘 ≡ 𝛼𝘷𝑗𝑟𝑘, as:

𝛼𝘷𝑟𝑗𝑘≔min {𝛼∗𝑟𝑗𝑘 , 𝛼∗𝑗𝑟𝑘} , 𝛼∗𝑟𝑗𝑘≔{
𝛼+𝑟𝑘 if 𝘧𝘷𝑟𝑗𝑘 ≥ 0
𝛼−𝑟𝑘 if 𝘧𝘷𝑟𝑗𝑘 < 0

. (8.55)

(f) Apply 𝛼𝘷𝑟𝑗𝑘 to the antidiffusive flux vector in conservative variables:

𝙛𝐿𝑟𝑗𝑘≔𝛼𝘷𝑟𝑗𝑘𝙛𝑟𝑗𝑘 . (8.56)

(g) If 𝑖 < I, set 𝑖 ← 𝑖 + 1 and go back to step (a) but replace 𝙛𝑟𝑗𝑘 with 𝙛𝐿𝑟𝑗𝑘, i.e. use the partially
limited 𝙛𝐿𝑟𝑗𝑘 to compute the next 𝘧𝘷𝑟𝑗𝑘 and, from it, limit 𝙛𝐿𝑟𝑗𝑘 further. Otherwise, stop: 𝙛𝐿𝑟𝑗𝑘 is
fully limited.
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Limited net antidiffusive fluxes can finally be obtained using (8.46) by setting, e.g. for the Euler
equations, 𝛼𝑟𝑗𝑘 = 𝛼𝑝𝑟𝑗𝑘𝛼𝑢𝑟𝑗𝑘𝛼

𝜌
𝑟𝑗𝑘. Or, more conveniently, simply by replacing 𝙛𝑟𝑗𝑘 with 𝙛𝐿𝑟𝑗𝑘 in (8.44),

after the limiter has been fully applied [77]:

𝒇𝐿𝑟𝑘 =∑
𝑗≠𝑟
𝙛𝐿𝑟𝑗𝑘 . (8.57)

With the Euler equations, it is critical to ensure that neither density nor pressure attain negative values,
making these two a sensible choice of primary variables to limit. It should also be pointed out that, in
this sequential approach, the order in which the selected primary variables are limited will generally
influence the final value of 𝛼𝑟𝑗𝑘. Unless specified otherwise, this limiter is applied in this report to all
PDE components, in their natural order (i.e. as defined in §2).

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑞ℎ
(𝑥
)

(a) AFC predictor (no FCT)

−1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

𝑥

𝑞ℎ
(𝑥
)

(b) FCT with no coupling between patches
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(c) FCT with proposed inter­patch coupling
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(d) Consistent 𝐿2 projection

Figure 8.3: Comparison between four ways of projecting a Gaussian hump, 𝑞(𝑥) = exp (− 9𝜋𝑥2

4 ), into a DGIGA
discretization with 15 degrees of freedom, K = 3, p = 2 and J = 5 (3 breakpoint spans per patch). Markers are
control points of 𝑞ℎ(𝑥), and the dashed line is the exact 𝑞(𝑥).

8.7.3. Constrained initialization
The FCT limiter presented above depends on the existence of some set of antidiffusive fluxes so that the
relation (8.43) can be established. Yet, (8.45) has only been defined so far for a time­matching context.
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(b) Unlimited DGIGA
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(c) Lumped 𝐿2 projection
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(d) DGIGA­AFC predictor
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(e) Constrained 𝐿2 projection
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(f) DGIGA­AFC + FCT limiter

Figure 8.4: Unlimited, predictor and FCT­corrected initial condition projection (left) and approximate solution at
𝑡 = 0.45 (right) of Burgers equation in 𝛺 = [−1, 1], subject to periodic boundary conditions. Spatial discretization
consists of 3 elements (blue, red and green), each with 11 uniformly distributed breakpoints, p = 2 and no repeated
interior knots (J = 12), resulting in a total of 36 degrees of freedom. Time­scheme is SSP­RK3 with 𝜍 = 10−3. Cross
markers correspond to control points of the approximate solution; dashed line is the exact solution.
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All conservation laws in this report are time­dependent, and only unsteady solutions are considered.
Even so, there is a special case in which the approximate solution might need to be limited in a steady­
state fashion: when it is obtained by projecting a given initial condition (see §3.5).

The consistent 𝐿2 projection of an initial condition 𝒒0(𝑥) onto 𝛺𝑘, an arbitrary DGIGA element,
implies:

(∫
𝛺𝑘
𝒒0𝑵⊺ d𝑥) = 𝑸̂𝐻𝑘𝓜𝑘 . (8.58)

Doing the same on a DGIGA­AFC element, gives rise to a lumped 𝐿2 projection:

(∫
𝛺𝑘
𝒒0𝑵⊺ d𝑥) = 𝑸̂𝐿𝑘𝓜𝐿

𝑘 . (8.59)

It follows that:
𝑸̂𝐻𝑘𝓜𝑘 = 𝑸̂𝐿𝑘𝓜𝐿

𝑘 . (8.60)

Meaning that the high­order solution can be constructed algebraically from the low­order one.
This fact can be exploited to determine the antidiffusive fluxes needed for FCT—even avoiding, in

this case, any linearization. In practice, the limiting procedure described above can still be applied, the
only difference being in the definition of raw antidiffusive fluxes (8.45), which is replaced by [77, §8]:

𝙛𝑟𝑗𝑘≔𝑚𝑗𝑟 (𝒒̂𝐻𝑟𝑘 − 𝒒̂𝐻𝑗𝑘) . (8.61)

8.7.4. Troubled element detection
By construction, no discontinuity sensor should activate if applied to a DGIGA­AFC element before
FCT limiting (since it contains a TVD predictor solution, at that point). The straight­forward way to com­
bine a sensor with this limiter is to first approximate the unlimited high­order solution using linearized
antidiffusive fluxes, and determine the presence of discontinuities in it. The limiter is then applied as
originally, but only to those 𝙛𝘷𝑟𝑗𝑘 for which 𝛺𝑘 has been determined to be troubled.

8.8. Fail­safe limiting for the Euler equations
The Euler system of equations has some additional constraints on the values of primitive variables:
neither density nor pressure can ever be negative. This makes perfect sense from a physical point of
view on its own, but it is also important from a numerical perspective, as it ensures that the speed of
sound remains real­valued. Should that not be the case, even if only at one degree of freedom and by a
small amount, any nonzero imaginary part would propagate and eventually render the entire numerical
solution meaningless—assuming that the implementation supports complex numbers in the first place.

All limiters considered in this study except FCT are meant to be applied in local characteristic vari­
ables (when these are defined, as in the Euler case). It is possible that, even when local characteristic
variables are TVDM, density and/or pressure experience small fluctuations. Nothing prevents these
from reaching negative values14. I propose to do so, in line with e.g. [69], by applying two additional
limiting steps (which can be seen and used as separate limiters), according to the following sequence:

1. Apply a RK stage

2. Apply the main limiter

3. Apply the first fail­safe limiter (§8.8.1; optional)

4. Apply the second fail­safe limiter (§8.8.2)

5. Repeat

The FCT limiter of §8.7.2 acts on primary variables, so it should not experience this issue. Never­
theless, the correction procedure employs a linealization; this is believed to be the reason why invalid
density and pressure values may still arise in the constrained solution [77]. In situations with very
14I should mention, however, that there are limiters specifically designed to preserve positivity in this sense; see figure 8.1.
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strong shocks, I have observed that control values in B­spline–based DG discretizations can reach in­
valid density and pressure values even when the actual primitive variable function they are associated
with remains positive (e.g. figure 8.5a).

This might, at first, seem to be a feature of the B­spline basis: there is no reason (a priori) why
control values themselves should be non­negative—what matters is the actual solution. Negative con­
trol values “pull” the latter towards zero, actually making the discontinuity sharper; should the solution
become invalid, fail­safes in §§8.8.1 and/or 8.8.2 would take care of the problem (assuming DGIGA
proper, i.e.multiple IGA patches). Nevertheless, most diffusion functions used in the AFC procedure,
including both (6.34) and (6.36), happen to fail in the presence of “invalid” control values (in the pre­
vious sense). This is because they perform a decomposition into local characteristic variables at the
control point level, and this fails if pressure and/or density is negative.

To overcome this impasse reliably, I employ the alternative fail­safe strategy of §8.8.4 with DGIGA­
AFC (6.30) basis types, rather than the two (much simpler) fail­safe limiters presented next. I use it as
follows:

1. Apply all RK stages (to the DGIGA­AFC predictor)

2. Apply the main FCT limiter (§8.7.2)

3. Apply the fail­safe FCT limiter (§8.8.4)

4. Repeat for the next step

8.8.1. Fail­safe slope limiter
If a given element is considered troubled by a sensor, and is subsequently limited using one of the hier­
archical limiters (BDF, BSB, Krivodonova’s or HWENO), it is possible that only higher order Legendre
coefficients have been adjusted, yet unlimited lower order ones are still causing nonphysical primary
variable values. This first fail­safe step consists on detecting any of such invalid states that may have
remained after applying the main limiter. If found, set 𝒒̂3𝑘 = 𝒒̂4𝑘 = … = 𝒒̂J 𝑘 = 0 (𝛺𝑘 is the offend­
ing element), limit 𝒒̂2𝑘 (slope) according to (8.25) or (8.33), and leave 𝒒̂1𝑘 (element­wide average)
untouched.

8.8.2. Last­resort fail­safe limiter
Given that the first fail­safe step (§8.8.1) is also done in characteristic variables, the problem might still
persist. If so, a last resort is to set every Legendre coefficient above 𝑗 = 1 to zero. As long as the
main limiter is able to ensure that the approximate solution is TVDM, this is guaranteed to result in valid
states—at the cost of reducing the offending element to first order (although only temporarily, until the
next stage). This is nothing else than degree­adaptation.

8.8.3. Invalid element criteria for inter­cell fail­safe limiters
I propose the following criteria to determine which elements incur into invalid Euler states.

1. First consider each edge in the mesh, 𝜕𝛺𝑘, and the two elements sharing it: 𝛺𝐿 and 𝛺𝑅; if any of
the following holds, flag it as invalid.

• The density or pressure (either side) is negative:

𝜌𝐿 < 0 ∪ 𝜌𝑅 < 0 ∪ 𝑝𝐿 < 0 ∪ 𝑝𝑅 < 0 . (8.62)

• The Riemann problem at this edge would “generate vacuum” [114, equation 4.40]:

𝑢𝑅 − 𝑢𝐿
2 ≥ 𝒸𝐿 + 𝒸𝑅

𝛾 − 1 . (8.63)

2. Then, flag as invalid both elements, 𝛺𝑘−1 and 𝛺𝑘, adjacent to every invalid edge 𝜕𝛺𝑘 (as detected
in the previous step).

3. Last, flag each of the remaining elements, 𝛺𝑘, in which 𝑞̂𝑖𝑗𝑘 < 0 for 𝑖 = 1, 3 and 𝑗 = 1, 2, … , J.
These represent, either:
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• Nodal values, if the basis functions are nodal (DGSEM and FR/CPR)
• Control values, if the basis functions are B­splines (DGIGA)

The requirement that density and pressure control values be non­negative can be overly conser­
vative and may lead to unnecessary limiting. Yet, I have found this to be necessary to ensure a
valid AFC predictor.

8.8.4. Sub­cell FCT fail­safe limiter
I propose the following straight­forward extension to B­spline basis functions of the fail­safe limiter
detailed in [77, §5] (also mentioned in [78, page 15]). In essence, this algorithm consists on gradually
reducing the magnitude of antidiffusive fluxes to be applied to the low­order predictor, until no invalid
control values remain; in the worst case scenario, the FCT correction is undone entirely. Note that
negative pressures and densities are not targeted explicitly: any over/undershoot with respect to the
predictor’s local maxima/minima is to be removed.

Let 𝑀 ∈ ℤ+ be a number of limiting stages15. The rest of variables are carried over from §8.7. For
𝑚 = 1, 2, … ,𝑀, and for all 𝑘 in need of limiting (e.g. designated by a sensor), do:

1. Set 𝑖 to the vector component associated to a desired control variable16

2. Compute a limiting coefficient associated to each pair of control points within mutual nonzero
basis function support, with indices 𝑟 and 𝑗, as follows:

𝛽(𝑚)𝑖𝑟𝑗𝑘 = {
𝛽(𝑚−1)𝑖𝑟𝑗𝑘 if (𝘷̂min

𝑖𝑟𝑘 − 𝜖 ≤ 𝘷̂𝑖𝑟𝑘 ≤ 𝘷̂max
𝑖𝑟𝑘 + 𝜖) ∩ (𝘷̂min

𝑖𝑗𝑘 − 𝜖 ≤ 𝘷̂𝑖𝑗𝑘 ≤ 𝘷̂max
𝑖𝑗𝑘 + 𝜖)

𝑚
𝑀 otherwise

, (8.64)

where 𝛽(0)𝑖𝑟𝑗𝑘≔0 and 𝜖 = 10−6.

3. Limit state vector control values by one stage, using the limiting coefficients just obtained in the
previous step:

𝑞̂𝑖𝑟𝑘 ← 𝑞̂𝑖𝑟𝑘 −∑
𝑗≠𝑟
𝛽(𝑚)𝑖𝑟𝑗𝑘

𝑓𝐿𝑖𝑟𝑗𝑘
𝑚𝐿𝑟𝑘

. (8.65)

4. Repeat for the next control variable, and so on.

Bear in mind that this fail­safe limiter, as well as FCT correction itself, assumes the predictor to
be free of invalid control values in the first place. In some cases (for modal DGIGA­AFC, at least) I
have found that the control points of the low­order predictor itself can attain invalid values of density
and/or pressure. An example is shown in figure 8.5a. Despite the approximate pressure itself being
everywhere positive, one of its expansion coefficients has reached a negative value (𝑝 ≈ −0.0058,
encircled and magnified); this will cause the simulation to fail as soon as the solver attempts to compute
new antidiffusive fluxes “into” or “out from” this particular control point. This can be avoided by fail­safe
limiting the predictor control values as in §8.8.2, leading to the approximate solution shown in subfigure
8.5b.

I have been unable to reproduce this problem (the presence in the AFC predictor of negative control
values for pressure or density) with nodal DGIGA­AFC; it seems to be immune or, at least, less prone
to it. Nevertheless, both nodal and modal treatments do require, in addition, fail­safe FCT limiting
(§8.8.4) after performing the correction to high­order as detailed in §8.7. Therefore, to ensure stability
with AFC­limited DGIGA, it seems necessary that one must apply the inter­cell fail­safes (§8.8.1 and/or
§8.8.2) on the low­order predictor, once per time­scheme stage, as well as the sub­cell FCT fail­safe
(§8.8.4) to the corrected approximate solution, at the end of each time­step.

15It is possible that this fail­safe strategy over­corrects one control value at the expense of making some other one invalid; I have
found that using multiple stages prevents this (based on my own experiments, 2 or 3 stages seem to be enough).

16For the Euler equations, Kuzmin et al. [77, equation 13] seem to favor the following order: density, pressure and velocity.
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(a) No failsafe
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(b) Patch­wide failsafe, p = 0

Figure 8.5: A very strong shock wave, discretized via DGIGA­AFC (2 knot spans, p = 3, 𝐶1; modal treatment)
using the most robust diffusion function (6.36), without attempting to perform the FCT correction to high­order
(i.e. the uncorrected low­order predictor is the approximate solution). The numerical solution at 𝑡 = 1.80 × 10−4 is
represented with solid lines; cross markers denote control points and vertical line ones are break points. A change
of color indicates a separate patch. The dotted black line is the exact solution at 𝑡 = 0.



II
Experiments

97





9
Methodology

Part II contains the bulk of numerical results of this report. They can be split in two categories: solu­
tion to test cases and semi­analytical modified wavenumber analysis results. The former are always
accompanied by a test matrix, in which each test’s conditions are summarized. The latter are detailed
case­by­case; the general formulation of the approach and all related magnitudes are described in
appendix A.

Each of the three research objects under study—DGSEM (§4), FR/CPR (§5) and DGIGA (§6)—has
multiple free parameters. The experimental campaign of this thesis is envisioned as a search for opti­
mum configurations of each of these methods, when applied in high­speed, turbulent flow simulations
(but remaining within scope, i.e. one spatial dimension and inviscid flow). Each of these optima is a
point in the “design” or “parameter” space of the family of methods it belongs. All results assume a
uniform discretization, i.e. 𝑆ℎ𝑘 and 𝛥𝑥𝑘 are the same for all 𝑘. In the DGIGA case, the distribution of
breakpoints is uniform as well (but not the distribution of knots, which may still have multiplicity).

9.1. MATLAB implementation
All results shown in this thesis have been obtained using my own implementation of the formulation of
the various schemes presented in part I. The code, written for MATLAB 2017b, is publicly available at
https://github.com/mikiandh/dg­matlab­scripts. It also includes all scripts used to obtain
the experimental results in this second part of the report.

9.2. Test matrices
Every data point in these results corresponds to a numerical solution of a particular model problem—
this I will refer to as a run1. Associated to each run is a set of parameters, uniquely defining every
detail of the computation, from the temporal and spatial discretizations to the limiter employed (if any);
these are summarized in test matrices, tables each row of which uniquely specifies one run (or batch
of related runs). Whenever a column is empty, it should be interpreted as having the same value as in
the previous row. Every test matrix has the following categories:

Table 9.1: Empty test matrix, for example purposes.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

• Figure: the figure in which the corresponding run (marker) and batch (plot line) is shown

• Problem: the initial­boundary value problem solved, among those in §9.3
1To clarify, consider for example figure 10.1. In it, each point corresponds to the 𝐿2 error obtained after simulating 2 units of
time with a given time­step size. This means that over a hundred simulation runs have been necessary to obtain its data—and,
reciprocally, over a hundred simulation results are neatly summarized into one single picture.
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• Time discretization

– RK: which of the SSP­RK schemes in §7.3 is used (order and number of stages)
– 𝛥𝑡: time­step size (can be either fixed or relative to largest stable one)
– 𝛥𝑇: simulated span of time, i.e. 𝑡 − 𝑡0 at the instant when results are obtained

• Space discretization

– Method: DGSEM, FR/CPR or DGIGA (modal formulation, unless indicated otherwise)
– Ndofs: total number of degrees of freedom, per equation
– K: number of elements in the mesh

⋄ Ndofs≔JK, where J is the number of basis functions per element
– p: polynomial degree

⋄ If J > p + 1, the discretization method is DGIGA
– 𝜂: correction function parameter; only specified2 for FR/CPR
– k: number of breakpoint spans per element; only DGIGA can have k > 1
– 𝜘: smoothness of the approximate solution within an element (differentiability class 𝐶𝜘)

⋄ For DGIGA, 𝜘 < p; in particular, 𝜘 = p − 1 ⟹ J = k + p
• Limiting.

– Limiter: if any, one of those in §8
– Sensor: idem, for §8.3

Several runs are grouped into a batch—a row of the test matrix—and are associated with a figure
(as indicated). Every one of such batches shows the change in one dependent quantity (e.g. a measure
of the error) as some parameter of the run changes discretely (i.e. independent variable, indicated as a
range), for fixed values of the remaining free parameters. These can be seen as a series of 2D slices
of some multidimensional function the domain of which is the parameter space of the method.

9.3. List of model problems
The following are all combinations of boundary conditions (BC), initial condition (IC) and conservation
law (PDE) used in this thesis. In all cases 𝑡0 = 0 (time starts at zero).

9.3.1. Monochromatic wave (linear)
A sinusoidal signal of wavenumber 𝜅 = 𝑛𝜋 (𝑛 ∈ ℤ), centered around the unit amplitude:

PDE ∶ (2.19), 𝑎 = 1 , (9.1a)
IC ∶ 𝑞0(𝑥) = 1 + 0.1 sin (𝑛𝜋𝑥) , (9.1b)
BC ∶ Periodic, 𝛺 = [−1, 1] , (9.1c)

which travels unmodified at a rate of one domain length every two time units, towards +∞. Equation
(8.3) indicates that the total variation of the exact solution per period is 2𝑛

5 .

9.3.2. Monochromatic wave (nonlinear)
The same initial and boundary conditions as (9.1), but evolved according to the inviscid Burgers equa­
tion instead:

PDE ∶ (2.29) , (9.2a)
IC ∶ 𝑢0(𝑥) = 1 + 0.1 sin (𝑛𝜋𝑥) , (9.2b)
BC ∶ Periodic, 𝛺 = [−1, 1] . (9.2c)

According to (2.30), the solution of this case breaks at 𝑡shock =
10
𝑛𝜋 . Until then, the total variation of the

exact solution is preserved and, hence, equal to that of (9.1).
2The symbol ‘­’ indicates that some parameter is not defined for the current run—in the case of limiters and sensors, it simply
means that none have been used.
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9.3.3. Monochromatic wave (Euler)
Setup for the Euler equations that mimics problem (9.3.1)—density is a monochromatic wave under­
going linear advection. The actual value of pressure is irrelevant; it is only necessary that it is uniform
across the domain. Other initial density distributions and (uniform) initial velocities would have been
equally valid; these reproduce (9.1) specifically.

PDE ∶ (2.39) , (9.3a)

IC ∶ 𝙫(𝑥) = [
𝜌0(𝑥)
𝑢0
𝑝0

] = [
1 + 0.1 sin (𝑛𝜋𝑥)

1
1

] , (9.3b)

BC ∶ Periodic, 𝛺 = [−1, 1] . (9.3c)

This initial condition is borrowed from [48, appendix C]. The exact solution to this problem is:

𝙫(𝑡, 𝑥) = [
𝜌0(𝑥 − 𝑡)

1
1

] . (9.4)

Proof. Clearly, 𝙫(𝑡, 𝑥) satisfies the initial and boundary conditions of (9.3). It also satisfies (2.39), since:

𝜕𝜌
𝜕𝑡 = −

d𝜌0
d𝑥 ,

𝜕𝜌
𝜕𝑥 =

d𝜌0
d𝑥 , (9.5)

and:

𝒒 = [
𝜌
𝜌

1
2𝜌 +

1
𝛾−1

] , 𝒇 = [
𝜌

𝜌 + 1
1
2𝜌 +

𝛾
𝛾−1

] . (9.6)

And, because 𝜌0(𝑥) is analytic, this solution is unique [114, §19.3].

9.3.4. Gaussian hump (linear)
The linear advection equation with periodic boundary conditions, and the following initial condition:

PDE ∶ (2.19), 𝑎 = 1 , (9.7a)

IC ∶ 𝑢0(𝑥) = e−
9𝜋
4 𝑥

2
, (9.7b)

BC ∶ Periodic, 𝛺 = [−1, 1] , (9.7c)

which is a Gaussian bell curve of variance 𝜎 = 1
3√

2
𝜋 , chosen so that ∫

∞
−∞ 𝑢0 d𝑥 =

2
3 (>99.98% of this

area is contained in 𝛺).

9.3.5. Gaussian hump (nonlinear)
Identical to problem (9.7), but for the Burgers equation:

PDE ∶ (2.29) , (9.8a)

IC ∶ 𝑢0(𝑥) = e−
9𝜋
4 𝑥

2
, (9.8b)

BC ∶ Periodic, 𝛺 = [−1, 1] . (9.8c)

Using (8.3), ‖𝑢0‖TV = 2; until the breaking time, the total variation per period of the exact solution
is >99.80% of the previous. According to (2.30), this problem’s solution becomes discontinuous at

𝑡shock =
1
3√

2e
𝜋 ≈ 0.4385.
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9.3.6. Triangular pulse (linear)
Analogous to (9.7), but with a triangular initial condition (instead of a smooth hump):

PDE ∶ (2.19), 𝑎 = 1 , (9.9a)
IC ∶ 𝑞0(𝑥) = 1 − |𝑥| , (9.9b)
BC ∶ Periodic, 𝛺 = [−1, 1] . (9.9c)

Note that the exact solution of this problem is continuous but non­smooth. Its total variation per period
is ‖𝑞0‖TV = 2.

9.3.7. Triangular pulse (nonlinear)
Counterpart to (9.9) for the Burgers equation and analogue, in turn, to (9.8), i.e. :

PDE ∶ (2.29) , (9.10a)
IC ∶ 𝑢0(𝑥) = 1 − |𝑥| , (9.10b)
BC ∶ Periodic, 𝛺 = [−1, 1] . (9.10c)

My interest in this problem stems from the fact that its exact solution can be deduced for all times, 𝑡 >
𝑡shock included. The method of characteristics readily shows that the initial triangular pulse deforms—
maintaining its amplitude—until it attains a sawtooth or N­wave shape, at 𝑡shock = 1, which is then
retained. It can be shown that such an N­wave experiences a decay in amplitude such that, for all 𝑥,
𝑢(𝑡, 𝑥) ∝ 1/𝑡 [112, theorem 16.14, page 298]. Thanks to the simple geometry of this solution, I have
been able to determine this damping rate exactly through careful numerical experimentation; it is such
that the total variation within 𝛺 is 2

𝑡+1 for 𝑡 ≥ 1. All in all, the exact solution to (9.10) can be expressed
as:

𝑢(𝑡, 𝑥) =

⎧
⎪

⎨
⎪
⎩

1+𝑥
1+𝑡 if 𝑥 ≤ 𝑡 < 1 ,
1−𝑥
1−𝑡 if 𝑥 > 𝑡 < 1 ,

1
2 +

((𝑥+ 32−
𝑡
2 )mod 2)−1
1+𝑡 if 𝑡 ≥ 1 .

(9.11)

9.3.8. Jiang­Shu problem
An initial condition for the linear advection equation first proposed by Jiang and Shu [62], made up (left
to right) of a superposition of three Gaussians, a square pulse, a triangular pulse, and a superposition
of three half­ellipses.

PDE ∶ (2.19), 𝑎 = 1 , (9.12a)

IC ∶ 𝑞0(𝑥) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1
6 (𝐺(𝑥, 𝛼 − 𝛿) + 4𝐺(𝑥, 𝛼) + 𝐺(𝑥, 𝛼 + 𝛿)) if − 0.8 ≤ 𝑥 ≤ −0.6

1 if − 0.4 ≤ 𝑥 ≤ −0.2

1 − 10 |𝑥 − 0.1| if 0 ≤ 𝑥 ≤ 0.2
1
6 (𝐹(𝑥, 𝛽 − 𝛿) + 4𝐹(𝑥, 𝛽) + 𝐹(𝑥, 𝛽 + 𝛿)) if 0.4 ≤ 𝑥 ≤ 0.6

0 otherwise

, (9.12b)

BC ∶ Periodic, 𝛺 = [−1, 1] , (9.12c)

where 𝐺(𝑥, 𝛼) = e−
ln2
36𝛿2 (𝑥−𝛼)

2
, 𝐹(𝑥, 𝛽) = √max{0, 1 − 100(𝑥 − 𝛽)2}, 𝛼 = −0.7, 𝛽 = 0.5 and 𝛿 = 0.005.

This problem’s exact solution involves the transport of piece­wise sharp yet smooth features, joined
together in either 𝐶−1 or 𝐶0 fashion. It is a rather challenging test case, especially if simulated over long
times, as its extrema tend to be (wrongfully) targeted by sensors and limiters.
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9.3.9. Toro’s transonic shock tube
Aminor modification of the classical shock tube test case for the Euler equations due to Sod [113], used
in [114]. The solution includes, left to right, a left­going expansion wave (along which the flow speed
crosses the speed of sound, inducing nonphysical expansion shocks in some Riemann solvers), a
contact discontinuity and a shock wave (both moving towards the right).

PDE ∶ (2.39) , (9.13a)

IC ∶ 𝙫0(𝑥) =
⎧

⎨
⎩

[1 0.75 1]
⊺

if 0 ≤ 𝑥 ≤ 0.5

[0.125 0 0.1]
⊺

if 0.5 < 𝑥 ≤ 1
, (9.13b)

BC ∶ Farfield, 𝛺 = [0, 1] ∶ 𝙫(𝑡, 𝑥) = 𝙫0(𝑥) for 𝑥 ∈ 𝜕𝛺 . (9.13c)

All problems for the Euler equations the initial condition of which is a pair of piece­wise constant states
can be solved exactly by means of an exact Riemann solver. For this purpose, I have implemented (in
MATLAB) an exact Riemann solver based on the FORTRAN code in [114, §4.9].

9.3.10. The 1­2­3 problem
Another test case for the Euler system, due to Einfeldt et al. [33], known as the “1­2­3” problem because
of its initial state vector. In it, the exact solution consists on two strong rarefaction waves moving
away from each other, leaving a near­vacuum state in the middle. The goal in this case is to test the
robustness of a discretization by forcing it to approximate near­zero densities and pressures; some
Riemann solvers (e.g. Roe’s) are known to fail under these conditions.

PDE ∶ (2.39) , (9.14a)

IC ∶ 𝒒0(𝑥) =
⎧

⎨
⎩

[1 −2 3]
⊺

if 0 ≤ 𝑥 ≤ 0.5

[1 2 3]
⊺

if 0.5 < 𝑥 ≤ 1
, (9.14b)

BC ∶ Farfield, 𝛺 = [0, 1] ∶ 𝒒(𝑡, 𝑥) = 𝒒0(𝑥) for 𝑥 ∈ 𝜕𝛺 . (9.14c)

Regarding this problem’s exact solution, the same as in 9.3.9 applies.

9.3.11. Blast wave interaction
The term “blast wave” is used to refer to a region of increased pressure moving away supersonically
from an origin point (essentially, a very strong shock wave). These can be the result of a sudden and
concentrated release of a large amount of energy, i.e. an explosion, hence their name.

This problem, often referred by the name of the authors that first studied it at length, Woodward and
Colella [131], simulates the frontal collision between two of such blast waves.

PDE ∶ (2.39) , (9.15a)

IC ∶ 𝙫0(𝑥) =

⎧
⎪⎪

⎨
⎪⎪
⎩

[1 0 1000]
⊺

if 0 ≤ 𝑥 < 0.1

[1 0 0.01]
⊺

if 0.1 ≤ 𝑥 < 0.9

[1 0 100]
⊺

if 0.9 ≤ 𝑥 ≤ 1

, (9.15b)

BC ∶ Reflective, 𝛺 = [0, 1] . (9.15c)

This is a very challenging test case, requiring robust nonlinear stabilization techniques if attempted
with a high­order discretization. Unlike the previous two, its exact solution is not available (the exact
Riemann solver mentioned in 9.3.9 is no longer suitable). In its place, I simply use a very fine numerical
solution3.
3Discretized into 2500 DGSEM linear elements (Ndofs = 5000), and obtained employing the TVD limiter (§8.4) in combination
with the KXRCF sensor (§8.3.1).
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9.3.12. Acoustic wave–shock wave interaction
A test case simulating the interaction between a right­moving shock wave and a stationary density
fluctuation of sinusoidal form. This roughly mimics a shock­turbulence interaction. Attributed to Shu
and Osher [110].

PDE ∶ (2.39) , (9.16a)

IC ∶ 𝙫0(𝑥) =
⎧

⎨
⎩

[3.857143 2.629369 10.33333]
⊺

if 𝑥 < −4

[1 + 0.2 sin(5𝑥) 0 1]
⊺

if 𝑥 ≥ −4
, (9.16b)

BC ∶ Farfield, 𝛺 = [−5, 5] ∶ 𝙫(𝑡, 𝑥) = 𝙫0(𝑥) for 𝑥 ∈ 𝜕𝛺 . (9.16c)

This problem is often used to test the degree to which a nonlinear stabilization strategy hinders accuracy
in smooth regions. It is hence similar to (9.12) in spirit, but using more realistic (nonlinear) physics.
No exact solution exists for this case either. Instead, I show a numerical reference solution—same
discretization as that of (9.15).



10
Order of Accuracy

In this chapter, the parameter space of each method is explored by observing how each of their pa­
rameters affects the numerical error, on a smooth solution test case. This encompasses:

• Order of accuracy in time for all SSP­RK methods, in §10.1 (only for a particular DGIGA config­
uration and in a linear setting).

• Accuracy vs. time­step size and number of degrees of freedom (changing either p or K) for
DGSEM (§10.2), in the nonlinear setting of Burgers equation (2.29).

• Idem for FR/CPR, adding one dimension: the choice of correction function (§10.3).

• Idem for DGIGA, but with two additional dimensions over DGSEM: number of breakpoint spans
and smoothness class (§10.4).

Most results in this chapter involve the computation of the 𝐿2 norm of the error between exact and
discrete solutions. This norm, for a given time 𝑡, is defined as [129, p. 816 (bottom)]:

‖𝑞(𝑡, 𝑥) − 𝑞ℎ(𝑡, 𝑥)‖2≔√
∫𝛺 (𝑞(𝑡, 𝑥) − 𝑞ℎ(𝑡, 𝑥))

2 d𝑥
∫𝛺 d𝑥 . (10.1)

The integral in the numerator is approximated using breakpoint span–wise adaptive Gauss­Kronrod
quadrature [106] with 10−13 and 10−9 absolute and relative tolerances1, respectively (also when pro­
jecting initial conditions, see §3.5).

10.1. Time schemes
The order of accuracy in time (i.e. for varying 𝛥𝑡) of each SSP­RK scheme (see §7.3) is verified nu­
merically for the setup summarized in table 10.1. It is seen to match the formal one in every case—for
the particular spatial discretization and (linear) problem tested. Since the implementation of temporal
schemes is unique, any deviations from these trends observed in upcoming results will be attributed to
the spatial discretization used and/or the test case solved.

1All reported 𝐿2 error results stagnate near a common lower bound; I attribute this to said integration tolerance, given the fact that
√10−13 ≈ 10−7. Note, however, that lowering this further (to machine precision) would not bemuch better, since√10−16 ≈ 10−8.
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Table 10.1: Verifying the order of accuracy of the SSP­RK schemes.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 10.1 (9.7) 1(1) 10−6–10−1 2 DGIGA 30 1 3 ­ 27 2 ­ ­
2 2(2) 10−4–10−1
3 3(3) 10−3–10−1
4 4(5) 10−2–1
5 4(10) 10−2–1

10.2. DGSEM
This section’s test matrix is table 10.2. Runs are divided into 12 batches; the first 6 show the time­
independence of the rest. Three of the remaining 6 explore the K dimension, and the remaining three
focus instead on refining p at fixed values of K. DGSEM is found to achieve its formal order of p+1, at
least for degrees up to 4; the exponential convergence associated with p­refinement is also observed.
Notice that Lagrange polynomial basis functions can reach degrees as high as 119 without issues.

Table 10.2: Exploring DGSEM’s parameter space.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 10.2 (9.8) 3(3) 10−5–10−2 0.25 DGSEM 900 300 2 ­ 1 ∞ ­ ­
2 225 3
3 180 4
4 120 20 5
5 10 11
6 1 119
7 10.3 10−4 3–900 1–300 2
8 4–900 1–225 3
9 5–900 1–180 4
10 10.4 20–120 20 0–5
11 10–120 10 0–11
12 1–120 1 0–119

10.3. FR/CPR
Table 10.3 expands upon the previous by incorporating the four main correction functions of FR/CPR.
It is quite apparent for this method that the larger 𝜂 is, the lower the accuracy for a given Ndofs, with

𝜂−
2

and 𝜂DG (i.e. DGSEM) results being very close to each other.

Table 10.3: Exploring FR/CPR’s parameter space.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 10.5 (9.8) 3(3) 10−5–10−2 0.25 FR/CPR 900 180 4 𝜂−/2 1 ∞ ­ ­
2 𝜂Ga
3 𝜂2
4 𝜂∞
5 120 10 11 𝜂−/2
6 𝜂Ga
7 𝜂2
8 𝜂∞
9 10.6 10−4 3–900 1–300 2 𝜂−/2
10 𝜂Ga
11 𝜂2
12 𝜂∞
13 4–900 1–225 3 𝜂−/2
14 𝜂Ga

(continues in the next page)
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Table 10.3: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

15 𝜂2
16 𝜂∞
17 5–900 1–180 4 𝜂−/2
18 𝜂Ga
19 𝜂2
20 𝜂∞
21 10.7 20–120 20 0–5 𝜂−/2
22 𝜂Ga
23 𝜂2
24 𝜂∞
25 10–120 10 0–11 𝜂−/2
26 𝜂Ga
27 𝜂2
28 𝜂∞
29 1–120 1 0–119 𝜂−/2
30 𝜂Ga
31 𝜂2
32 𝜂∞

10.4. DGIGA
DGIGA expands considerably the design space of the discretization, and so table 10.4 is rather long;
hopefully helpful in better transmitting the concept of DGIGA’s “4­dimensional refinement space” is
the comparison between batches 46 to 49 (figure 10.12). As before, all spatial refinement results are
checked to be 𝛥𝑡­independent (batches 1 to 46). The former are divided into:

• K or 𝛥𝑥–refinement: increasing the number of DG elements—i.e. patches—in the domain.

• k­refinement: adding more polynomial segments to the B­spline basis functions, keeping their
degree and smoothness fixed; sometimes referred to in the IGA literature as knot insertion [28,
§2.1.4.1].

• p­refinement (i.e. order elevation [28, §2.1.4.2]): increase the degree of the basis functions while
adding knot multiplicities to preserve their smoothness.

• 𝜘­refinement (necessarily combined with increased p): both degree and smoothness are in­
creased, with no addition of knots [28, §2.1.4.3].

In contrast to the previous two methods, DGIGA seems to become unstable under some combi­
nations of its parameters (unrelated to time­step size limitations). It appears to experience a weak
(nonlinear) instability for high 𝜘 and p > 2, and which seems less pronounced if multiple patches are
used. Note that this can not be attributed directly to the ill­conditioning of the discrete operators in
DGIGA (e.g. Vandermonde matrix, see figure 6.11), because it occurs even for moderate condition
numbers.

Lastly, the direct comparisons with its modal counterpart (6.14) clearly show that the nodal approach
(6.15) is unsuitable for high­order approximations; these results indicate that the latter is so diffusive
that it reduces to second order, regardless of the basis function degree (in the unlimited, nonlinear,
smooth­solution case under consideration).

Table 10.4: Exploring DGIGA’s parameter space.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 10.8 (9.8) 3(3) 10−5–10−2 0.25 DGIGA 40 10 2 ­ 2 1 ­ ­
2 120 30
3 10 6
4 2 10

(continues in the next page)
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Table 10.4: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

5 10 2 9
6 10.9 900 300 2 1 ∞
7 100 4 0
8 150 1
9 891 27 16 0
10 900 50 1
11 225 3 ∞
12 897 69 4 0
13 896 128 2
14 882 18 16 0
15 893 47 2
16 180 4 ∞
17 884 52 4 0
18 896 112 3
19 845 13 16 0
20 900 45 3
21 10.10 899 1 2 449 0
22 900 898 1
23 890 10 44 0
24 87 1
25 900 20 22 0
26 43 1
27 898 1 3 299 0
28 56 53 2
29 790 10 26 0
30 360 33 2
31 860 20 14 0
32 760 35 2
33 897 1 4 224 0
34 13 9 3
35 890 10 22 0
36 200 16 3
37 900 20 11 0
38 400 16 3
39 10.11 340 20 16 1 ∞
40 620 15 2 0
41 900 11 4 0
42 820 5 8 0
43 280 12 2 11
44 300 11 4 10
45 280 6 8 5
46 10.12 10−4 40–120 10–30 2 2 1
47 10 2–6
48 2 2–10
49 𝜘 + 1 2 1–9
50 10.13 3–900 1–300 2 1 ∞
51 4–900 1–225 3
52 5–900 1–180 4
53 (nodal) 3–900 1–300 2
54 4–900 1–225 3
55 5–900 1–180 4
56 10.14 (modal) 3–900 1–300 2
57 9–900 1–100 4 0
58 6–900 1–150 1
59 33–891 1–27 16 0
60 18–900 1–50 1
61 10.15 4–900 1–225 3 1 ∞
62 13–897 1–69 4 0
63 7–896 1–128 2
64 49–882 1–18 16 0

(continues in the next page)
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Table 10.4: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

65 19–893 1–47 2
66 10.16 5–900 1–180 4 1 ∞
67 17–884 1–52 4 0
68 8–896 1–112 3
69 65–845 1–13 16 0
70 100–900 5–45 3
71 10.17 2–900 1 1 1–899 0
72 3–899 2 1–449
73 4–898 3 1–299
74 5–897 4 1–224
75 (nodal) 3–899 2 1–449
76 4–898 3 1–299
77 5–897 4 1–224
78 10.18 (modal) 2–900 1 1–899
79 3–900 2 1–898 1
80 4–900 3 1–897 2
81 5–900 4 1–896 3
82 (nodal) 3–900 2 1–898 1
83 4–900 3 1–897 2
84 5–900 4 1–896 3
85 10.19 (modal) 3–899 2 1–449 0
86 3–900 1–898 1
87 30–890 10 1–44 0
88 30–890 1–87 1
89 60–900 20 1–22 0
90 60–900 1–43 1
91 10.20 4–898 1 3 1–299 0
92 4–56 1–53 2
93 40–790 10 1–26 0
94 40–360 1–33 2
95 80–860 20 1–14 0
96 80–760 1–35 2
97 10.21 5–897 1 4 1–224 0
98 5–13 1–9 3
99 50–890 10 1–22 0
100 50–200 1–16 3
101 100–900 20 1–11 0
102 100–400 1–16 3
103 10.22 2–9 1 1–8 1 0
104 3–17 2
105 5–61 1–15 4
106 9–129 1–16 8
107 40–340 20 1
108 60–620 1–15 2
109 100–900 1–11 4
110 180–820 1–5 8
111 10.23 40–260 𝜘 + 1 1 0–11
112 60–280 2 0–11
113 100–320 4 0–10
114 180–280 8 0–5
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Figure 10.1: Order of accuracy of the SSP­RK schemes (table 10.1).
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Figure 10.2: DGSEM, time­step size independence (table 10.2, batches 1–6).
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Figure 10.3: DGSEM, 𝛥𝑥 refinement (table 10.2, batches 7–9).
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Figure 10.4: DGSEM, p refinement (table 10.2, batches 10–12).
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Figure 10.5: FR/CPR, time­step size independence (table 10.3, batches 1–8).
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Figure 10.6: FR/CPR, 𝛥𝑥 refinement (table 10.3, batches 9–20).
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Figure 10.7: FR/CPR, p refinement (table 10.3, batches 21–32).
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Figure 10.8: DGIGA’s four refinement directions, time­step size independence (table 10.4, batches 1–5).
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Figure 10.9: DGIGA, K ≫ 1, time­step size independence (table 10.4, batches 6–20).
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Figure 10.10: DGIGA, k ≫ 1, time­step size independence (table 10.4, batches 21–38).
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Figure 10.11: DGIGA, p ≫ 1, time­step size independence (table 10.4, batches 39–45).
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Figure 10.12: DGIGA’s four refinement directions (table 10.4, batches 46–49).
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Figure 10.13: DGIGA, k = 1, 𝛥𝑥 refinement (table 10.4, batches 50–55).
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Figure 10.14: DGIGA, p = 2, 𝛥𝑥 refinement (table 10.4, batches 56–60).
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Figure 10.15: DGIGA, p = 3, 𝛥𝑥 refinement (table 10.4, batches 61–65).
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Figure 10.16: DGIGA, p = 4, 𝛥𝑥 refinement (table 10.4, batches 66–70).
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Figure 10.17: CG, k refinement (table 10.4, batches 71–77).
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Figure 10.18: IGA, k refinement (table 10.4, batches 78–84).
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Figure 10.19: DGIGA, p = 2, k refinement (table 10.4, batches 85–90).
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Figure 10.20: DGIGA, p = 3, k refinement (table 10.4, batches 91–96).
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Figure 10.21: DGIGA, p = 4, k refinement (table 10.4, batches 97–102).
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Figure 10.22: DGIGA, p refinement (table 10.4, batches 103–110).
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Figure 10.23: DGIGA, combined p and 𝜘 refinement (table 10.4, batches 111–114).



122 10. Order of Accuracy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑥

𝑢

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

𝑥

|𝑢
−
𝑢ℎ

|
DGSEM 𝛥𝑡 ‖𝑢‖TV ‖𝑢‖2 ‖𝑢 − 𝑢ℎ‖2

0.000106 1.998181 0.485492 4.624708 × 10−7
0.015118 1.998089 0.485490 3.321760 × 10−5
0.019145 2.941220 0.485381 0.011802

Figure 10.24: DGSEM, selected runs of figure 10.2 (batch 5).
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Figure 10.25: DGSEM, selected runs of figure 10.3 (batch 9).
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Figure 10.26: DGSEM, selected runs of figure 10.4 (batches 10–12).
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Figure 10.27: FR/CPR, selected runs of figure 10.6 (batches 9–12).
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Figure 10.28: FR/CPR, selected runs of figure 10.6 (batch 17).
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Figure 10.29: DGIGA, selected runs of figure 10.12 (batches 46–49).
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Figure 10.30: DGIGA, selected runs of figure 10.12 (batches 47 and 49).
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Figure 10.31: DGIGA, selected runs of figure 10.16 (batch 70).
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Figure 10.32: DGIGA, selected runs of figure 10.18 (batches 79 and 80).
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Figure 10.33: DGIGA, selected runs of figure 10.22 (batch 106).
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Figure 10.34: DGIGA, selected runs of figure 10.23 (batch 114).
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Dispersion, Dissipation and Linear

Stability
Equation (2.19), the linear scalar hyperbolic conservation law, allows the characterization of dissipative,
dispersive and linear stability properties of a given (linear) spatial discretization method in an analyti­
cal, a priori, approach (all details are given in appendix A). The main motivation behind these results
is to identify regions in the parameter space of each method under study which result in promising dis­
cretizations for a scale­resolving context (to be placed under further scrutiny in subsequent chapters).

In all figures, the exact dispersion/dissipation relation (§A.2.1) is shown as a thick, solid line. Also,
in the complex plane graphs, the boundary of the stability region of SSP­RK3(3) is shown in black. All
Fourier footprints shown are scaled by the largest linearly stable1 Courant number; these are listed in
each figure, for every basis analyzed.

11.1. DGSEM
A priori modified wavenumber results are for 𝛥𝑥 → 0. DGSEM discretizations, therefore, have only
one free parameter: the polynomial degree, p. For this method, spurious eigenmodes seem to always
retain exactly the same shape as the physical one—their footprints in the complex plane coincide, see
e.g. figures 11.1, 11.2 and 11.3. Focusing only on the physical eigenmode, figures 11.4 and 11.5 show
a clear trend: the higher the degree, the more wavenumbers per basis function that are accurately
resolved. In all cases, there is an overshoot in the modified dispersion relation. It becomes stronger as
p increases. This occurs at the same wavenumbers for which dissipation rate increases rather sharply;
this onset of numerical dissipation becomes both stronger and more sudden with increasing p. These
results match those found in the literature, e.g. [116, §8.1.5] and [38].

11.2. FR/CPR
Flux reconstruction adds a new parameter, the correction function. Just like in DGSEM, the spurious
eigenmodes of all2 FR/CPR discretizations appear to correspond to phase shifts applied to the physical
one—evidence of that is provided in figures 11.6–11.15. Figures 11.16–11.20 focus on the behavior of
the physical eigenmode as p increases, for each correction function separately. Reciprocally, various
correction functions are compared to each other at a fixed degree in figures 11.21–11.25. These figures
show that the overshoot in the dispersion relation can be mitigated by using a stronger correction, for
moderate degrees—this effect is very modest for high degrees, and increasing 𝜂 to arbitrarily high
values is not enough to reduce said overshoot further; also, this simultaneously pulls the onset of
non­negligible numerical dissipation towards lower wavenumbers.

Vincent et al. [120] carried out a similar analysis, the results of which are consistent with those
presented here. They performed a very detailed study on the optimal choice of the 𝑐 or 𝜂 parameters,
and concluded that:
1See §A.4.
2Except for 𝜂∞, for which one of the eigenmodes is constant and equal to zero—see 11.10 and 11.15.
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• Values close to the extrema (𝜂− and 𝜂∞), at high wavenumbers, admit large dispersion errors with
little damping and, therefore, should be avoided.

• It is possible to maximize the range of wavenumbers over which the exact dispersion relation is
approximated accurately, by using 𝜂 > 0 (e.g. 𝜂Ga is optimal in this sense for p = 3).

• A second local optimum is in global order of accuracy per degree of freedom, and is achieved by
𝜂DG (a justification can be found in [120]).

• A third local optimum exists in the form of the 𝜂 that maximizes the maximum allowable time­step
size for a fixed degree (refer to [120] for details).

11.3. DGIGA
A B­spline–based trial space has three free parameters able to influence its spectral response: the
number of breakpoint spans per patch (k > 0), the degree of the piecewise polynomials within each
span (p ≥ 0), and the continuity class of its basis functions across spans (𝐶𝜘 ∶ 0 ≤ 𝜘 ≤ p − 1). A
crucial difference that I have observed DGIGA has with DGSEM and (most) FR/CPR cases is the
tendency—as the number of basis functions per patch, J, increases—of its Fourier footprint to split into
more than one contour (compare figures 11.26 and 11.27). This process, which seems to occur for
k > 1 once J (the number of basis functions per patch) is high enough, is reminiscent to how bubbles
are made when blowing onto a soap film. It starts with the main (and only, up to that point) contour
developing a pair of protrusions (one in each side of the real axis); these elongate such that the region
that connects themwith themain contour gets thinner, until it eventually closes, resulting in three distinct
contours: the main one, traced by the the physical eigenmode and its “resonant eigenmodes”, and two
isolated “bubbles”—traced, in every single case encountered, by a single (spurious) eigenmode each.
This process continues as J keeps increasing, with additional “bubbles” forming on each of the new
contours, and so on.

The influence of the degree is shown first, in figures 11.28–11.35. Figures 11.36–11.43 do the
same for k. These reveal an interesting aspect of the k = 1 discretizations: their dispersion/dissipation
relations and Fourier footprint are identical to those of DGSEM with equal degree3. Therefore—in
the linear case, at least—this particular version of DGIGA is essentially equivalent to DGSEM4. The
effect of the smoothness of the basis functions is explored for various break span numbers at p = 4 in
figures 11.44–11.46. Lastly, in figure 11.47, various combinations of parameters resulting in J = 22 are
compared to each other.

To my knowledge, no extensive exploration of the spectral properties of the DGIGA discretization
such as the present one exists in the literature. There is some degree of overlap, however, with [21,
figure 22a]. The aforementioned is consistent with my results—specifically, figure 11.42.

3Differences start being non­negligible at sufficiently high degree (p > 25, not shown); I hypothesize this to be a numerical artifact,
due to the ill­conditioning of such DGIGA bases resulting in large errors in the computation of their modified wavenumbers.

4Notice that the finite dimensional space spanned by these basis functions coincides with the trial and test spaces of DGSEM—
see §6.2.2.
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Figure 11.1: Modified wavenumbers (all eigenmodes); DGSEM, p = 2.
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Figure 11.2: Modified wavenumbers (all eigenmodes); DGSEM, p = 3.
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Figure 11.3: Modified wavenumbers (all eigenmodes); DGSEM, p = 4.
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Figure 11.4: Modified wavenumbers (physical eigenmode only) of various DGSEM bases at low to moderate
degrees.
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Figure 11.5: Modified wavenumbers (physical eigenmode only) of various DGSEM bases at moderate to high
degrees.
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Figure 11.6: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂−2 .
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Figure 11.7: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂DG.
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Figure 11.8: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂Ga.
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Figure 11.9: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂2.
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Figure 11.10: Modified wavenumbers (all eigenmodes); FR/CPR, p = 2, 𝜂∞.
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Figure 11.11: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂−2 .
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Figure 11.12: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂DG.
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Figure 11.13: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂Ga.
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Figure 11.14: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂2.
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Figure 11.15: Modified wavenumbers (all eigenmodes); FR/CPR, p = 3, 𝜂∞.
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Figure 11.16: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂−
2 .



11.3. DGIGA 145

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

4

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−6

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (𝜅̃)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

FR/CPR p 𝜂 J 𝑎 𝛥𝑡
𝛥𝑥

2 0.000000 3 0.209757
3 0.000000 4 0.130094
4 0.000000 5 0.089687
5 0.000000 6 0.066100

Figure 11.17: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂DG.
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Figure 11.18: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂Ga.
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Figure 11.19: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂2.
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Figure 11.20: Modified wavenumbers (physical eigenmode) of FR/CPR at various degrees, with 𝜂 = 𝜂∞.
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Figure 11.21: Modified wavenumbers (physical eigenmode) of 3rd order FR/CPR, for several correction functions.
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Figure 11.22: Modified wavenumbers (physical eigenmode) of 4th order FR/CPR, for several correction functions.
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Figure 11.23: Modified wavenumbers (physical eigenmode) of 5th order FR/CPR, for several correction functions.
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Figure 11.24: Modified wavenumbers (physical eigenmode) of 6th order FR/CPR, for several correction functions.
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Figure 11.25: Modified wavenumbers (physical eigenmode) of high order FR/CPR, for several correction functions.



154 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−2

0

2

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

−4

−2

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−2

−1

0

1

2

𝑎𝛥𝑡ℑ (𝜅̃)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

Figure 11.26: Physical (1) and spurious (14) eigenmodes of DGIGA, k = 2, p = 7, 𝐶0 (cf. 11.27).
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Figure 11.27: Physical (1), “bubble” (2) and spurious (14) eigenmodes of DGIGA, k = 2, p = 8, 𝐶0 (cf. 11.26).
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Figure 11.28: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 2 breakpoint
spans per patch and minimal smoothness.
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Figure 11.29: Effect of the degree to the modified wavenumbers (physical and “bubble” eigenmodes) in DGIGA,
for 4 breakpoint spans per patch and minimal smoothness.
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Figure 11.30: Effect of the degree to the modified wavenumbers (physical and “bubble” eigenmodes) in DGIGA,
for 8 breakpoint spans per patch and minimal smoothness.
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Figure 11.31: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 2 breakpoint
spans per patch and maximal smoothness.
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Figure 11.32: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 4 breakpoint
spans per patch and maximal smoothness.
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Figure 11.33: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 8 breakpoint
spans per patch and maximal smoothness.
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Figure 11.34: Effect of the degree to the modified wavenumbers (physical eigenmode) in DGIGA, for 16 breakpoint
spans per patch and maximal smoothness.
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Figure 11.35: Effect of the degree to the modified wavenumbers (physical and “bubble” eigenmodes) in DGIGA,
for 32 breakpoint spans per patch and maximal smoothness.
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Figure 11.36: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical
eigenmode) in 3rd order, 𝐶0, DGIGA.
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Figure 11.37: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical and
“bubble” eigenmodes) in 4th order, 𝐶0, DGIGA.
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Figure 11.38: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical and
“bubble” eigenmodes) in 5th order, 𝐶0, DGIGA.
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Figure 11.39: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical and
“bubble” eigenmodes) in 6th order, 𝐶0, DGIGA.
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Figure 11.40: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical and
“bubble” eigenmodes) in 3rd order, 𝐶1, DGIGA.



168 11. Dispersion, Dissipation and Linear Stability

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (𝜅̃)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 3 ∞ 4 0.130094
2 3 2 5 0.108055
4 3 2 7 0.079422
8 3 2 11 0.058830
16 3 2 19 0.045109
32 3 2 35 0.023982

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
0

1

2

3

𝜅𝛥𝑥/J

ℜ
( 𝜅
)𝛥

𝑥 /J

0 𝜋/4 𝜋/2 3𝜋/4 𝜋
−5

−4

−3

−2

−1

0

𝜅𝛥𝑥/J

ℑ
( 𝜅
)𝛥

𝑥 /J

−2 −1 0

−3

−2

−1

0

1

2

3

𝑎𝛥𝑡ℑ (𝜅̃)

−𝑎
𝛥𝑡
ℜ
( 𝜅
)

DGIGA k p 𝜘 J 𝑎 𝛥𝑡
𝛥𝑥

1 3 ∞ 4 0.130094
2 3 2 5 0.108055
4 3 2 7 0.079422
8 3 2 11 0.058830
16 3 2 19 0.045109
32 3 2 35 0.023982

Figure 11.41: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical
eigenmode) in 4th order, 𝐶2, DGIGA.
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Figure 11.42: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical
eigenmode) in 5th order, 𝐶3, DGIGA.
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Figure 11.43: Influence of the number of breakpoint spans per patch to the modified wavenumbers (physical
eigenmode) in 6th order, 𝐶4, DGIGA.
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Figure 11.44: Fourth order DGIGA’s modified wavenumbers (physical eigenmode), for 2 breakpoint spans per
patch and all possible smoothnesses.
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Figure 11.45: Fourth order DGIGA’s modified wavenumbers (physical eigenmode), for 4 breakpoint spans per
patch and all possible smoothnesses.
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Figure 11.46: Fourth order DGIGA’s modified wavenumbers (physical and “bubble” eigenmodes), for 8 breakpoint
spans per patch and all possible smoothnesses.
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Figure 11.47: Modified wavenumbers (physical and “bubble” eigenmodes) of several combinations of parameters
leading to DGIGA discretizations with 22 basis functions per patch.



12
Optimal FR/CPR and DGIGA

Configurations
Recall that either DGSEM, FR/CPR or DGIGA possess the freedom to still allow an infinite number
of semi­discretization variants each (a full breakdown is given §9.2). The spectral characteristics of
the various methods under consideration have been explored in §11, showcasing the effect of each
method’s parameters in a more qualitative manner. My intention in this section is to go one step further
and select the instance of each of these classes of schemes that, in some sense, is best suited to the
resolution of turbulent flows.

Turbulent flows are characterized by a broad range of scales coexisting in a flow. In a scale­resolving
context (LES or DNS), the goal is to compute the dynamics of a large number of these small­scale
features accurately, while simultaneously solving the larger scales as well. The goal of this chapter is
to identify promising configurations of the FR/CPR and DGIGA schemes for such applications. I shall
do so in in the context of linear advection of a wave of given wavenumber1, for which it is possible to
predict resolution errors (dispersion and dissipation) analytically. Promising configurations of FR/CPR
and DGIGA are first identified in §12.1. Then, the following additional aspects of the previously selected
methods are studied:

• A priori dispersion and dissipation errors, as a function of time and wavenumber (§12.2)

• Potential suitability for implicit LES (§12.3)

• Estimated computational cost, given a largest­to­smallest resolved wavelength ratio (§12.4)

12.1. Identification of optimal configurations
I choose to treat this selection process as a an optimization problem. Such an approach naturally leads
to a quantitative way of comparing any two methods (the value of the objective function), and removes
any ambiguity in the selection process. The downside, however, is that the entire responsibility of the
selection being meaningful falls on the choice of said objective function. I propose the following one,
borrowed from Asthana and Jameson [7], but modified slightly with the use of combined­mode phase
shift and amplification factors (see §A.2.5) instead of a weighted average of eigenmodal contributions
(akin to that employed in §A.5.4).

12.1.1. Objective function
Consider, as the exact solution, a monochromatic complex­valued wave:

𝑞(𝑥, 𝑡, 𝜅) = ei𝜅(𝑥−𝑎𝑡) , (12.1)

and let the following represent dimensionless versions of space, time and wavenumber:

𝑥∗≔ 𝑥
𝛥𝑥 , 𝑡∗≔ 𝑎

𝛥𝑥 𝑡 , 𝜅∗≔𝜅𝛥𝑥 , (12.2)

1Admittedly, a rather crude approximation to an actual turbulent flow.
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so that we may rewrite the previous as:

𝑞(𝑥∗, 𝑡∗, 𝜅∗) = ei𝜅∗(𝑥∗−𝑡∗) . (12.3)

Let us assume, for the sake of this argument, that the numerical solution has a similar form, but is
afflicted with:

• A reduced amplitude, 𝐺(𝑡∗, 𝜅∗) ∈ [0, 1] (the effect of numerical dissipation)
• A modified phase angle 𝛹(𝑡∗, 𝜅∗)≔𝜅∗𝑡∗ − 𝛥𝛹(𝑡∗, 𝜅∗), 𝛥𝛹 being the phase angle by which the
approximate solution is lagging behind the exact one (as a consequence of numerical dispersion)

These two quantities are defined by (A.36) and (A.35), respectively, for any specific semi­discretization
and wavenumber as functions of 𝑡∗. The result is:

𝑞ℎ(𝑥∗, 𝑡∗, 𝜅∗) = 𝐺(𝑡∗, 𝜅∗)ei(𝜅∗𝑥∗−𝛹(𝑡∗ ,𝜅∗)) . (12.4)

After some simple algebra2, the magnitude of the combined­mode spectral error between exact and
numerical solutions, at any position 𝑥, simplifies to:

|𝑞 − 𝑞ℎ| = |1 − 𝐺(𝑡∗, 𝜅∗)ei𝛥𝛹(𝑡∗ ,𝜅∗)| . (12.5)

From (12.5), I define an objective function, 𝐹 ∶ ℝ → ℝ, as:

𝐹(𝑡∗)≔ 1
J𝜋 ∫

J𝜋

0
|1 − 𝐺(𝑡∗, 𝜅∗)ei𝛥𝛹(𝑡∗ ,𝜅∗)|d𝜅∗ , (12.6)

i.e. the 𝐿1 norm of (12.5), taken over all (positive) wavenumbers up to the Nyquist limit (see §A.1 for
more details), which I evaluate at a very large time, 𝑡∗ = 100 (the time necessary for the exact solution to
travel across 100 elements or patches), imitating [7]. I do so via MATLAB’s built­in adaptive quadrature
routine3, with default tolerances (1 × 10−10 absolute, 1 × 10−6 relative).

For DGSEM, I have observed (not shown) that (12.5) is almost identical to the integrand used in [7],
provided that 𝑡∗ ≫ 1. Regardless, based on [5, 117], I would argue that (12.6) can be expected to be
more (or, at least, equally) representative of the spectral error of any given scheme, in general, than
the aforementioned.

12.1.2. Optimization problems
An optimization problem can then be defined for each method, at a given number of degrees of freedom
per patch or element, J. In the FR/CPR case, it is simply:

min
𝜂

𝐹(100) , (12.7a)

subject to − 1 < 𝜂 , (12.7b)

where the constraint on 𝜂 restricts the search to linearly stable schemes. To solve (12.7), I use MAT­
LAB’s single­variable minimization over an interval built­in routine4, with default settings and 𝜂 ≤ 5 as
upper bound.

With DGIGA, in turn, I tackle the slightly more complicated:

min
k,p,𝜘

𝐹(100) , (12.8a)

subject to 1 ≤ k , (12.8b)
1 ≤ p ≤ J − 1 , (12.8c)
0 ≤ 𝜘 ≤ p , (12.8d)
J = kp + (1 − k)𝜘 + 1 . (12.8e)

This is a discrete (nonlinear) optimization, since k, p, 𝜘 ∈ ℤ. To solve it, I resort to evaluating (12.6) for
every single combination of these three parameters that satisfy the indicated constraints; each one of
such combinations represents a candidate method, and that with the lowest 𝐹(100) value is optimal.
2In particular, note that |ei𝑥| = 1 for any 𝑥 ∈ ℝ.
3https://nl.mathworks.com/help/matlab/ref/integral.html
4https://nl.mathworks.com/help/matlab/ref/fminbnd.html

https://nl.mathworks.com/help/matlab/ref/integral.html
https://nl.mathworks.com/help/matlab/ref/fminbnd.html
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12.1.3. Optimization results and discussion
The results of the optimization problems (12.7) and (12.8), for a selection of J, are detailed in tables 12.2
and 12.3, respectively. Additionally, table 12.4 complements the latter by including all configurations
(not only optimal ones) evaluated when solving (12.8). For added clarity, I report the characteristics of
the optimized methods in terms of changes over the DGSEM scheme of equal J, which I shall consider
the baseline methods; these are detailed in table 12.1. Besides the “badness” (lower is better) measure
given by (12.6), I shall also judge the quality of each optimal semi­discretization through the following
magnitudes (all of them are defined and detailed in appendix A):

• Theoretical order of convergence, 𝐴𝑇 (A.65).
• Highest well­resolved wavenumber (dispersion plus dissipation, 1% threshold), 𝜅𝑓 (A.66).
• Cutoff wavenumber (dissipation only, 1% threshold), 𝜅1% (A.68).

In addition, themaximum allowable Courant number (as well as the condition number of its massmatrix,
in the DGIGA case) of each optimum is also included in these results.

Table 12.2 shows that, for every J tested, the optimal FR/CPR discretization fails to achieve barely
any improvement over DGSEM in terms of 𝐹(100). Furthermore, all metrics other than linear stability
indicate a slight decrease in performance with respect to the baseline, while the increase in maximum
allowable Courant number—between 2% and 8%—is rather moderate in comparison to that obtained
if optimizing FR/CPR for stability, which yields improvements in the 100% to 200% range [120] (results
which I have verified, even though I do not show them). All in all, these results suggest that FR/CPR
methods of the VCJH class offer little to no intrinsic advantage over DGSEM in terms of reduced spec­
tral errors, theoretical order of convergence, resolution efficiency and stability. The same conclusion
is reached in [7], although I deem it worth mentioning that I could not reproduce the improvements
reported there for FR/CPR (my results seem to be more conservative).

For DGIGA (table 12.3), the three lowest J considered behave in the same way as just described
for FR/CPR: the optimum corresponds to the scheme which reduces to DGSEM—that is, Bernstein­
based DG (DGIGA with Bsplines made up of a single polynomial segment of degree J − 1). This is
not surprising, as it results in the highest possible polynomial degree for a given number of degrees
of freedom. Interestingly, however, this is not longer optimal for J = 6 and above5. From then on, all
optima (up until J = 20, at least) correspond to bases that employ precisely two breakpoint spans per
patch (k = 2). Moreover, and in contrast to FR/CPR, the optimized DGIGA schemes achieve significant
improvements, 3% to 12% in 𝐹(100) and 50% to 30% in 𝜍max, while simultaneously increasing (albeit
only moderately) their resolving efficiency.

There is a considerable loss in theoretical order of accuracy, reaching up to 23% (for which the
optimum is of degree p = 7, in contrast to the baseline’s p = 10). Although substantial, this reduction
can be easily attributed to the lower B­spline degree. In fact, it is quite remarkable that higher spectral
accuracy and resolving efficiency can be achieved with a significantly lower degree. This reduction
of p for a fixed J, leads to the conditioning of the B­spline basis being greatly improved; additionally,
the bandwidth of the gradient and residual matrices (which only depends on p for both DGSEM and
DGIGA) is thus lower in the optimum than in the baseline. The fact that k = 2 is optimal for all tested
J > 5 could be due to it representing the minimum number of breakpoints (a single one) across which
the smoothness of the basis, 𝐶𝜘, can be varied—any additional breakpoint would force an even lower
degree (since J needs to be preserved), while one breakpoint fewer would result in 𝐶∞ smoothness
within the patch (and, hence, no possibility of balancing degree and smoothness). Table 12.4 shows
that, for sufficiently high J, there are still multiple DGIGA configurations superior to the baseline, some of
them only slightly worse than the optimum. It is possible, therefore, to exploit the benefits of a reduced
B­spline degree even further, should it be necessary or desirable to do so, by selecting a slightly less
optimal basis of even lower degree.

12.2. Combined­mode dispersion and dissipation errors
Complementing the error norm that is (12.6), figures 12.1 to 12.5 show the semi­discrete combined­
mode behavior in terms of phase and amplitude errors (between the result of using a given scheme and
5I have verified that Bernstein­based DGIGA and DGSEM give almost identical results for all magnitudes shown in the tables, up
to J = 20. This means that the ill­conditioning of the former is not sufficient to compromise the optimization procedure (Bernstein
is the worst­conditioned of all DGIGA bases of a given J).
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Table 12.1: Comparison, according to several criteria (higher is better), between DGSEM schemes of varying
degree. The relative increase in “goodness” (negated objective function value) is evaluated with respect to that of
the first row, p = 0 (first order upwind FVM).

J p −𝐹(100) −𝛥𝐹(100)𝐹(100) 𝐴𝑇
𝛥𝑥
J𝜋 𝜅𝑓

𝛥𝑥
J𝜋 𝜅1% 𝜍max

1 0 −0.96 +0 1 0.006 0.045 1.256
2 1 −0.867 +0.097 2.999 0.145 0.179 0.41
3 2 −0.796 +0.171 4.999 0.263 0.278 0.21
4 3 −0.744 +0.225 6.988 0.34 0.345 0.13
5 4 −0.706 +0.265 8.962 0.392 0.392 0.09
6 5 −0.675 +0.297 10.948 0.429 0.428 0.066
8 7 −0.631 +0.342 14.787 0.479 0.478 0.041
11 10 −0.589 +0.386 20.348 0.523 0.524 0.024
15 14 −0.553 +0.425 28.452 0.557 0.561 0.014
20 19 −0.523 +0.455 34.08 0.581 0.589 0.008

Table 12.2: FR/CPR semi­discretizations that, for each number of basis functions per element (J), minimize the
objective function (12.6). The only free parameter is 𝜂 (or, equivalently, 𝑐). Relative changes are increments
over the DGSEM method of the same degree (table 12.1); in all magnitudes, a positive increment represents an
improvement.

J p 𝜂 𝑐 −𝛥𝐹(100)𝐹(100)
𝛥𝐴𝑇
𝐴𝑇

𝛥𝜅𝑓
𝜅𝑓

𝛥𝜅1%
𝜅1%

𝛥𝜍max
𝜍max

3 2 0.023 0.001 +0 −0.029 −0.002 −0.007 +0.019
4 3 0.035 4.457 ⋅ 10−5 +0.001 −0.034 −0.002 −0.01 +0.027
5 4 0.047 9.492 ⋅ 10−7 +0.001 −0.037 −0.002 −0.011 +0.035
6 5 0.058 1.181 ⋅ 10−8 +0.001 −0.039 −0.002 −0.012 +0.041
8 7 0.079 5.745 ⋅ 10−13 +0.002 −0.03 −0.002 −0.014 +0.051
11 10 0.103 2.286 ⋅ 10−20 +0.002 −0.033 −0.002 −0.016 +0.062
15 14 0.128 1.944 ⋅ 10−31 +0.003 −0.041 −0.002 −0.017 +0.073
20 19 0.152 1.161 ⋅ 10−46 +0.003 −0.037 −0.002 −0.017 +0.081

Table 12.3: DGIGA semi­discretizations that minimize (12.6). Each optimal scheme has been selected among all
possible combinations of k, p, 𝜘 (number of breakpoint spans, degree, smoothness) that result in a given J (number
of basis functions per patch). Relative changes are increments with respect to the DGSEM method of equal J in
table 12.1; positive increments imply improvements over the baseline.

J k p 𝜘 cond (𝓜̃) −𝛥𝐹(100)𝐹(100)
𝛥𝐴𝑇
𝐴𝑇

𝛥𝜅𝑓
𝜅𝑓

𝛥𝜅1%
𝜅1%

𝛥𝜍max
𝜍max

3 1 2 1 10 −7 ⋅ 10−15 +6 ⋅ 10−6 −1 ⋅ 10−14 −4 ⋅ 10−15 +2 ⋅ 10−10
4 1 3 2 35 −3 ⋅ 10−14 +0.017 +1 ⋅ 10−14 +2 ⋅ 10−14 −5 ⋅ 10−11
5 1 4 3 126 −5 ⋅ 10−14 +0 +7 ⋅ 10−15 +5 ⋅ 10−15 −1 ⋅ 10−11
6 2 3 1 34.92 +0.028 −0.111 +0.03 +0.011 +0.53
8 2 5 3 326 +0.033 −0.061 +0.025 −0.01 +0.298
11 2 7 4 3,507.34 +0.086 −0.228 +0.062 +0.023 +0.348
15 2 10 6 1.5 ⋅ 105 +0.107 −0.121 +0.074 +0.034 +0.331
20 2 14 9 2.8 ⋅ 107 +0.119 −0.209 +0.072 +0.031 +0.29
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Table 12.4: All DGIGA candidates involved in the solution of (12.8), sorted from best to worst.

J k p 𝜘 𝐹(100)

20 2 14 9 0.461
20 5 7 4 0.477
20 2 12 5 0.486
20 2 15 11 0.487
15 2 10 6 0.493
20 3 11 7 0.496
20 2 16 13 0.506
20 4 10 7 0.507
20 7 7 5 0.515
20 2 17 15 0.517
20 2 11 3 0.52
15 3 8 5 0.52
15 2 11 8 0.522
20 2 18 17 0.522
20 1 19 18 0.523
20 3 13 10 0.524
20 8 5 3 0.526
20 6 9 7 0.528
15 2 9 4 0.529
20 3 17 16 0.534
20 3 15 13 0.536
11 2 7 4 0.538
20 5 11 9 0.542
15 2 12 10 0.542
15 2 8 2 0.544
20 4 16 15 0.544
20 4 13 11 0.544
20 2 13 7 0.545
20 13 7 6 0.546
20 14 6 5 0.548
15 5 6 4 0.55
20 12 8 7 0.551
15 2 13 12 0.551
20 5 15 14 0.552
15 1 14 13 0.553
20 11 9 8 0.558
20 6 14 13 0.56
15 4 8 6 0.561

J k p 𝜘 𝐹(100)

15 6 4 2 0.561
15 3 10 8 0.561
20 10 10 9 0.564
20 7 13 12 0.565
20 15 5 4 0.565
15 3 12 11 0.566
20 9 11 10 0.567
20 8 12 11 0.568
11 2 8 6 0.573
20 3 7 1 0.576
15 4 11 10 0.577
11 4 4 2 0.582
11 3 6 4 0.582
15 5 10 9 0.586
20 2 10 1 0.587
11 2 9 8 0.588
11 1 10 9 0.589
15 9 6 5 0.59
15 6 9 8 0.592
15 8 7 6 0.592
15 7 8 7 0.594
15 10 5 4 0.594
20 3 9 4 0.597
20 16 4 3 0.598
11 3 8 7 0.606
8 2 5 3 0.611
15 11 4 3 0.617
11 4 7 6 0.618
15 2 7 0 0.62
11 5 6 5 0.626
11 6 5 4 0.631
8 2 6 5 0.631
8 1 7 6 0.631
11 7 4 3 0.643
8 3 3 1 0.647
20 4 7 3 0.648
8 3 5 4 0.651
11 2 5 0 0.656

J k p 𝜘 𝐹(100)

6 2 3 1 0.656
15 3 6 2 0.659
20 17 3 2 0.664
15 12 3 2 0.666
8 4 4 3 0.668
8 2 4 1 0.674
11 2 6 2 0.675
6 1 5 4 0.675
11 8 3 2 0.678
6 2 4 3 0.68
8 5 3 2 0.694
5 1 4 3 0.706
6 3 3 2 0.708
20 9 3 1 0.716
5 2 3 2 0.716
15 4 5 2 0.731
4 1 3 2 0.744
11 9 2 1 0.752
8 6 2 1 0.756
11 3 4 1 0.756
15 13 2 1 0.758
6 4 2 1 0.759
5 3 2 1 0.764
20 18 2 1 0.767
4 2 2 1 0.769
20 6 4 1 0.778
3 1 2 1 0.796
15 7 2 0 0.825
5 4 1 0 0.839
4 3 1 0 0.84
6 5 1 0 0.848
3 2 1 0 0.85
8 7 1 0 0.853
11 10 1 0 0.864
15 14 1 0 0.875
5 2 2 0 0.884
11 5 2 0 0.886
20 19 1 0 0.887
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the exact solution; details are in §A.2.5). These correspond to the optima found in §12.1.2 to improve
significantly over their baseline methods—i.e. (some) DGIGA discretizations.

Starting with dispersion, compared to the baseline, the optimal schemes incur in higher error at low
wavenumbers; this difference reduces with increasing wavenumber, and it eventually reverses. The
DGIGA schemes thus end up maintaining a lower phase shift than DGSEM for a majority of the spec­
trum. In addition, this crossover occurs (for all methods considered) within the well­resolved wavenum­
ber range; this suggests that the increased error up to that point is negligible.

When it comes to dissipation, the optimal methods appear to allow higher dissipation both in the
well­resolved range and in the later portion of the underresolved range. For a small portion at the
middle of the spectrum, however, the situation reverses, and dissipation can be clearly observed to be
lower for the optimal DGIGA scheme than for the DGSEM baseline.

All in all, it seems that the benefit of the optimal DGIGA schemes stems from a redistribution of
both dispersion and dissipation errors away from the early portion of the underresolved range, which
is pushed to the lower (where it makes little difference, since both it and the baseline are very accurate
there) and higher (where a higher numerical dissipation might be beneficial, as will be argued in §12.3)
wavenumber extremes. As a final note, recall that this qualitative analysis is not used to justify these
semi­discretizations as being optimal; on the contrary, this is an explanation of why these can be better
than the baseline, a fact that is a direct consequence of the choice of objective function. Hence the
importance of choosing a sensible one—which I have argued as so due to it being associated with a
theoretical error norm, as well as having been used (in a very similar form) in the literature.
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Figure 12.1: Combined­mode errors, as functions of the wavenumber, for J = 6 and several (nondimensional)
time instants. Optimum: DGIGA with k = 2, p = 3 and 𝐶1 smoothness. Baseline: DGSEM with p = 5. Lower is
better.

12.3. Balance between dispersion and dissipation
Results discussed in §12.2 suggest an additional advantage of the optimal DGIGA: increased dissipa­
tion in the underresolved range. Numerical dissipation is typically undesirable, since it causes details
of the solution to diffuse away. In some cases, however, one can take advantage of this effect and use
it as a numerical filter in an implicit LES approach: the numerical dissipation itself ensures that there
is no nonphysical back­scatter of the energy that would have been dissipated by molecular viscosity
should the discretization have been fine enough to resolve the small flow structures where that process
takes place; this is in contrast to explicit LES, in which dissipation of unresolved scales is accomplished
using a dedicated sub­grid­scale model.

Figure 12.6 shows the amount of dissipation introduced at each wavenumber, in proportion to how
badly the same wavenumber is affected by dispersion, for each optimum and its baseline. This ratio
between dispersion and dissipation, 𝜒, is defined by (A.73) and can be interpreted as amean lifetime (in
terms of degrees of freedom crossed) of any spurious wave packet, present in the numerical solution,
centered at a given wavenumber (further details are given in §A.5.4). It is shown for the underresolved
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Figure 12.2: Same as figure 12.1, for J = 8. Optimum: DGIGA with k = 2, p = 5, 𝐶3. Baseline: p = 7 DGSEM.

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

20

40

60

𝜅𝛥𝑥/J

| 𝛥
𝛹
|

𝑡∗ Optim. Base.
1
10
100

0 𝜋/4 𝜋/2 3𝜋/4 𝜋

0

0.2

0.4

0.6

0.8

1

𝜅𝛥𝑥/J

1−
𝐺

Figure 12.3: Idem for J = 11. DGIGA: k = 2, p = 7, 𝐶4. DGSEM: p = 10.
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Figure 12.4: Idem for J = 15. DGIGA: k = 2, p = 10, 𝐶6. DGSEM: p = 14.
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Figure 12.5: Idem for J = 20. DGIGA: k = 2, p = 14, 𝐶9. DGSEM: p = 19.

range (as defined in §A.5.2) of each scheme only; hence, figure 12.6 also compares their resolving
efficiencies (recall that the Nyquist wavenumber of a DG­like scheme is 𝜅 = J𝜋/𝛥𝑥). In addition, its norm
(A.74) for these same cases is listed in table 12.5.

Fixed the number of degrees of freedom, the optimized DGIGA semi­discretization has higher dissi­
pation than its DGSEM counterpart for a given amount of dispersion (at small wavelengths). Moreover,
it can also be seen that the divide between well­resolved and underresolved ranges is pushed to higher
wavenumbers in the former. It can be argued quite conclusively, therefore, that the optima found are
not only still suitable but also even superior than DGSEM for use in implicit LES. Note that the FR/CPR
optima do show a reduction (up to 24%) over the baseline in this metric—see table 12.5; the DGIGA
optima, however, do so much more significantly (47% to 72% improvement).
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Figure 12.6: Mean lifetime of a spurious wave packet as a function of its wavenumber (A.73), for each optimal
DGIGA method with k ≠ 1 and its DGSEM baseline. Lower is better; plotted over the underresolved range only
(the furthest to the right the graph starts, the more resolution).

12.4. Relative cost at a fixed resolution
As a final criterion through which to judge the results of the optimization, I propose to compare the
computational cost in terms of number of floating point operations (i.e. time complexity), for a fixed
resolution, in the following way. Consider the linear advection (2.19) of some range of scales—let the
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Table 12.5: Mean lifetime of spurious a wave packet, in degrees of freedom crossed, averaged over the under­
resolved wavenumber range of each semi­discretization. The lower this lifetime, the sooner spurious energy is
removed from the numerical solution; hence, lower is better (i.e. negative increments represent an improvement,
in this case). Relative changes are with respect to either the p = 0 case (DGSEM) or the DGSEM scheme of equal
J (FR/CPR and DGIGA).

(a) DGSEM

J ‖𝜒‖ 𝛥‖𝜒‖
‖𝜒‖

1 1 0
2 1 0
3 1.47 0.47
4 2.01 1.01
5 2.62 1.62
6 3.3 2.29
8 4.77 3.76
11 6.93 5.92
15 9.36 8.35
20 12.66 11.65

(b) FR/CPR

J ‖𝜒‖ 𝛥‖𝜒‖
‖𝜒‖

3 1.36 −0.07
4 1.82 −0.09
5 2.32 −0.11
6 2.87 −0.13
8 4.01 −0.16
11 5.64 −0.19
15 7.35 −0.21
20 9.62 −0.24

(c) DGIGA

J ‖𝜒‖ 𝛥‖𝜒‖
‖𝜒‖

3 1.45 −0.01
4 1.95 −0.03
5 2.47 −0.06
6 0.93 −0.72
8 2.04 −0.57
11 2.9 −0.58
15 4.44 −0.53
20 6.67 −0.47

smallest of these be denoted 𝜆—over a periodic domain of length 𝐿, at a rate 𝑎. Suppose that we are
interested in the solution after some arbitrary amount of simulated time, 𝛥𝑇 > 0, has passed. In order to
obtain this solution numerically, we will employ K ∈ ℤ+ spatial elements or patches (either DGSEM, FR
or DGIGA), each of size 𝛥𝑥 and with J ∈ ℤ+ degrees of freedom, in combination with the SSP­RK3(3)
time scheme.

12.4.1. Number of time­steps
The number of time­steps of size 𝛥𝑡 necessary to reach 𝛥𝑇 is:

Nsteps = ⌈
𝛥𝑇
𝛥𝑡 ⌉ , (12.9)

which accounts for the size of the last time­step possibly being truncated so that Nsteps ∈ ℤ+. Assume
that we use the largest possible time­step size that is linearly stable in combination with each given
spatial scheme. Since 𝐿 = K𝛥𝑥, it follows that:

𝛥𝑡 =
𝜍max
𝑎/𝛥𝑥 ⟹ Nsteps = ⌈

K
𝜍max

𝛥𝑇
𝐿/𝑎⌉ . (12.10)

12.4.2. Number of elements or patches
Next, assume6 that the minimum amount of resolution required to accurately resolve the smallest scale
present in the solution is given by the relationship:

2𝜋
𝜆 = 𝜅𝑓 , (12.11)

i.e. the smallest scale present in the solution is precisely at the boundary between well­resolved and
underresolved portions of any given spatial scheme’s wavenumber spectrum. Consequently, the fol­
lowing relationship holds:

𝐿
𝜆 =

𝜅𝑓𝛥𝑥
J𝜋

JK
2 , (12.12)

6This, of course, is merely a convention: recall that the threshold selected for the definition of 𝜅𝑓 (§A.5.2) is arbitrary, and that
the time scheme introduces additional errors not taken into account.
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and, therefore, the minimum number of elements or patches (which has to be a positive integer) nec­
essary to ensure sufficient resolution is:

K = ⌈2J
J𝜋
𝜅𝑓𝛥𝑥

𝐿
𝜆 ⌉ , (12.13)

which only depends on 𝐿/𝜆, for a given spatial scheme.
A first guess on the typical range for this ratio may be made based on turbulence theory [100], via

the relationship 𝐿/𝜆 ≈ Re
3/4
𝐿 —Re𝐿 is the Reynolds number referred to the integral length scale, which

for estimation purposes can be assumed approximately equal to 𝐿. Once a value for this ratio has
been selected, both K and Nsteps become fixed—resolution efficiency and maximum Courant numbers
of each scheme are listed in tables 12.1, 12.2 and 12.3.

12.4.3. Cost model
The total number of floating­point operations made throughout a simulation is given by the product:

Nflops = Nflops/stepNsteps , (12.14)

where the number of operations per step, Nflops/step, depends on the spatial and temporal discretizations
and on how they are implemented. For my particular implementation of these methods, I estimate the
following costs per step7:

NDGSEMflops/step = 6J2K + 45JK + 24J + 18K + 15 , (12.15a)

NFR/CPRflops/step = 6J2K + 51JK + 24J + 24K + 15 , (12.15b)

NDGIGAflops/step = 12Kkp2 − 12Kk𝜘2 + 6J2K − 6Kp2 + 12K𝜘2 + 12JKp + 12Kkp − 12Kk𝜘
+ 36JK − 6Kp + 12K𝜘 + 24J + 36K + 15 .

(12.15c)

Appendix B details how these have been obtained.
Even though I have chosen to use FLOPs as a measure of time complexity by which to compare

the various schemes, the reader should keep in mind that this magnitude is regarded as a bad estimate
of performance in modern computers: it is entirely possible for an algorithm that requires much fewer
FLOPs to be slower than an alternative, if the latter has better memory management (recall figure 1.2).

12.4.4. Results and discussion
Figure 12.7 shows the cost predicted under the assumptions of §§12.4.1–12.4.3 for DGSEM. Among
those tested, degrees p = 4 and p = 5 achieve (an almost identical) lowest overall cost per unit of
simulated time, throughout the range of 𝐿/𝜆 ratios sampled. Both higher and lower degrees are sub­
optimal according to this metric: p = 3 and p = 7 are about 10%worse; p = 2 and p = 10 are both 38%
more costly; p = 1 and p = 19 require, respectively, 2.30 and 1.50 times more FLOPs than p = 4. The
DGSEM equivalent of first order upwind FVM, despite its cost being minimal, clearly performs much
worse (>1000 times more FLOPs) than the rest; this can be attributed to its poor resolution efficiency.

The optimal FR/CPR semi­discretizations shown in figure 12.8 are all about as costly as their base­
lines. Despite being slightly (up to 10%) more expensive than the baseline for J < 11, the two highest
order schemes tested are actually slightly more cost­effective than their baselines under equal reso­
lution requirements—which suggests that the increase in allowable Courant number gained by using
𝜂 > 0 can outweigh the price, in terms of added computational complexity, invested in supporting the
correction procedure. That being said, this improvement is very small (<5%).

Lastly, figure 12.9 shows that the DGIGA optima fail to outperform DGSEM in regards to cost­
efficiency, even when possessing both larger maximum Courant number and resolving efficiency. This
can only be attributed to a significantly increased cost per time­step of DGIGA with respect to DGSEM.
The DGIGA optima closest to its baseline (according to this metric) is J = 8, with both higher and lower
J schemes being worse in relation to their respective baselines. Note that this results already take into
account the fact that DGIGA’s operators can be sparser than their DGSEM counterparts for an equal
number of degrees of freedom per patch (see B.2).
7Note that NDGSEM

flops/step < NFR/CPR
flops/step , the latter requiring 2(J + 1) additional FLOPs per stage and element (in my implementation).
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Figure 12.7: Estimated cost of solving the advection equation with SSP­RK3(3) and DGSEM, in terms of number
of FLOPs per dimensionless unit of simulated time. Even though this cost increases strongly with the resolu­
tion requirement (note the logarithmic axis scales), the relative differences between orders remain approximately
constant.
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Figure 12.8: Cost of the FR/CPR optima of indicated order, relative to their DGSEM counterparts (figure 12.7).
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Figure 12.9: Relative cost of the DGIGA optima with respect to their baselines (DGSEM of equal number of
degrees of freedom per element/patch).



13
Nonlinear Physics

All results shown and discussed in chapter 12 were based on a priori analytical considerations valid only
for the linear advection equation. The extent to which any conclusions reached in such a setting can be
generalized to more realistic flows is unclear. In this chapter, I verify numerically whether the optimal
configurations found previously are actually so in practice, starting with the linear advection case, and
compare their behavior when switching to the nonlinear advection that the inviscid Burgers equation
represents (§13.1). Then, as a preliminary to chapter 14, I consider the Euler equations without using
limiters, studying them via a posteriori modified wavenumber analysis (§13.2).

13.1. Burgers equation
The combined­mode analysis employed in §12.2 does not generalize easily to the nonlinear case. A
simple alternative is to compare the growth of the numerical error as the simulation progresses, for
each triplet of schemes of given J—these being: DGSEM baseline, FR/CPR optimum and DGIGA
optimum (which, in addition, I consider in both its modal and nodal variants), as established in chapter
12. This strategy, purely experimental and a posteriori (as opposed to the analytically obtained a priori
combined­mode analysis) has the downside of only detecting the combined effect of both dispersion
and dissipation, and for all wavenumbers present in the numerical solution at once. I consider test
problems (9.2), (9.8) and (9.10), and compare the 𝐿2 norm of their error, as a function of time, with that
of their linear advection counterparts: (9.1), (9.7) and (9.9).

13.1.1. Verification of combined­mode analysis results
In this subsection, I focus on comparing baseline and optimized spatial schemes in the latter’s “design
conditions”—i.e. for a marginally resolved monochromatic wave, advected in a linear fashion. The
following test matrix details the setup of the experiments from which the results I discuss below have
been obtained.

Table 13.1: Confirming the advantage of optimized schemes (most favorable conditions).

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 13.4a (9.1), 𝑛 = 7 3(3) 10−3 20 DGSEM 60 20 2 ­ ­ ∞ ­ ­
2 FR/CPR 0.023
3 DGIGA ­ 1 1
4 (nodal)
5 13.6a 𝑛 = 12 DGSEM 10 5 ­ ∞
6 FR/CPR 0.058
7 DGIGA 3 ­ 2 1
8 (nodal)
9 13.8a 𝑛 = 16 DGSEM 3 19 ­ ∞
10 FR/CPR 0.152
11 DGIGA 14 ­ 2 9

(continues in the next page)
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Table 13.1: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

12 (nodal)

All runs of table 13.1 indicate that the theoretical combined­mode analysis results also occur in
practice. The sinusoidal initial condition (see figure 13.1a) in these three sets of runs has been selected
such that 𝑛 ∈ ℤ (i.e. an integer number of wavelengths fit in the domain) at the same time that it results
in a wavenumber≈90% of the well­resolved threshold for DGSEM of degree 2, 5 and 19 (respectively);
in this way, I target the range where the combined­mode response of each DGIGA optimum differs the
most from its respective baseline (see §12.2). For J = 3 (figure 13.4a), the optimal DGIGA basis (runs
3 and 4) spans the same function space as the DGSEM one (run 1)—see §6.2.2 for details—hence we
observe no difference between the two (in this linear context). The same applies to J = 4 and 5 (not
shown). Whenever the optimized spatial scheme differs from the baseline, however, the former’s error
grows at a reduced rate as the simulation progresses, in relation to the latter; this suggests a reduced
numerical dispersion and/or dissipation, as predicted (see figures 12.1 and 12.5). The advantage of the
optimized basis over the baseline in this regard is more pronounced the higher the J gets, as expected
(this also holds for the rest of J, which are not shown for conciseness). Likewise, the FR/CPR optimum
is less so than the DGIGA one in every case. All in all, these results confirm that the optimization
procedure, including the choice of objective function, is sensible (in the linear case)—at least, for a
solution containing a wide range of scales over a long time. Note that in all linear cases, nodal and
modal versions of DGIGA give identical results.

13.1.2. Influence of the initial condition
Considering still the linear advection equation, let us now investigate whether or not the previous ob­
servations can be extended to less favorable initial conditions.

Table 13.2: Testing the advantage of optimized schemes (unfavorable conditions).

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 13.4b (9.7) 3(3) 10−3 20 DGSEM 60 20 2 ­ ­ ∞ ­ ­
2 FR/CPR 0.023
3 DGIGA ­ 1 1
4 (nodal)
5 13.6b DGSEM 10 5 ­ ∞
6 FR/CPR 0.058
7 DGIGA 3 ­ 2 1
8 (nodal)
9 13.8b DGSEM 3 19 ­ ∞
10 FR/CPR 0.152
11 DGIGA 14 ­ 2 9
12 (nodal)
13 13.4c (9.9) DGSEM 20 2 ­ ∞
14 FR/CPR 0.023
15 DGIGA ­ 1 1
16 (nodal)
17 13.6c DGSEM 10 5 ­ ∞
18 FR/CPR 0.058
19 DGIGA 3 ­ 2 1
20 (nodal)
21 13.8c DGSEM 3 19 ­ ∞
22 FR/CPR 0.152
23 DGIGA 14 ­ 2 9
24 (nodal)

For a Gaussian initial condition, figure 13.6b suggests that the optimized bases (both FR and
DGIGA) may lose their advantage over DGSEM at large scales—note that a Gaussian signal contains



13.1. Burgers equation 189

most of its energy in the smallest wavenumbers (see figure 13.1b). Nevertheless, this is no longer
the case in figure 13.8b (I have observed the same to occur for J = 8, 11, 15, 20 as well): the DGIGA
optimum returns to being the most accurate. The FR/CPR optima differ only very slightly from their
baselines for all J. Be it as it may, these results show that for a smooth and well­resolved solution of the
advection equation, any of the three types of bases produce very small errors, even for long simulation
times (10 domain lengths in this case).

With problem (9.9), a similar situation as for the Gaussian initial condition occurs (note the similarity
between figures 13.1b and 13.1c). In this case, however, the error norm associated with DGIGA is
always equal or lower than that of DGSEM (figures 13.4c, 13.6c and 13.8c; also for the rest of values,
not shown). Note that the initial condition is now only 𝐶0 smooth; the dominant contributions to the error
in this test case are the greatly diffused regions of the approximate solution around the sharp extrema
of its exact counterpart.

13.1.3. Linear vs. nonlinear advection
To conclude this section, I repeat all the previous simulations for the Burgers equation and consider
the question: do the optimized methods retain their advantage in this (scalar) nonlinear context?

Table 13.3: Exploring the behavior of optimized schemes applied to the Burgers equation.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 13.5a (9.2), 𝑛 = 7 3(3) 10−3 0.409 DGSEM 60 20 2 ­ ­ ∞ ­ ­
2 FR/CPR 0.023
3 DGIGA ­ 1
4 (nodal)
5 13.7a 𝑛 = 12 0.239 DGSEM 10 5 ­
6 FR/CPR 0.058
7 DGIGA 3 ­ 2 1
8 (nodal)
9 13.9a 𝑛 = 16 0.179 DGSEM 3 19 ­ ∞
10 FR/CPR 0.152
11 0.06 (unstable) DGIGA 14 ­ 2 9
12 0.034 (unstable) (nodal)
13 13.5b (9.8) 0.4 DGSEM 20 2 ­ ∞
14 FR/CPR 0.023
15 DGIGA ­ 1 1
16 (nodal)
17 13.7b DGSEM 10 5 ­ ∞
18 FR/CPR 0.058
19 DGIGA 3 ­ 2 1
20 (nodal)
21 13.9b DGSEM 3 19 ­ ∞
22 FR/CPR 0.152
23 0.208 (unstable) DGIGA 14 ­ 2 9
24 0.284 (unstable) (nodal)
25 13.5c (9.10) 7 DGSEM 20 2 ­ ∞
26 FR/CPR 0.023
27 DGIGA ­ 1 1
28 (nodal)
29 13.7c DGSEM 10 5 ­ ∞
30 FR/CPR 0.058
31 DGIGA 3 ­ 2 1
32 1.229 (unstable) (nodal)
33 13.9c DGSEM 3 19 ­ ∞
34 FR/CPR 0.152
35 0.171 (unstable) DGIGA 14 ­ 2 9
36 0.111 (unstable) (nodal)

Let us first return to the sinusoidal initial condition. The significant advantage that DGIGA had over
DGSEM in the linear situation is lost (compare figures 13.6a and 13.7a). Moreover, nodal and modal
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versions of it are no longer identical, and the former experiences significantly higher errors than its
modal counterpart for all J (which is consistent with the increased numerical dissipation that I attribute
to it, see §6.3.1). Similarly, DGIGA and DGSEM no longer produce identical results for J = 3, 4, 5 (only
the first is shown), with DGIGA being always worse (figure 13.5a, lower J not shown).

For problems (9.8) and (9.10), modal DGIGA (when stable) is on par with the baseline, perhaps
even marginally better for some J (runs 17 to 20 and 29 to 31; see also figure 13.3). I attribute this to
the fact that the DGIGA optima have lower order than their DGSEM baselines; this, in turn, results in
less pronounced spurious oscillations near steep gradients. This same effect is even more pronounced
in nodal DGIGA, yet it appears that the increased numerical dissipation ends up being excessive: its 𝐿2
errors are much larger than for its modal counterpart in nonlinear cases. The advantage over DGSEM
that the FR/CPR optima possess appears to be minimal.

Runs 11, 12, 23, 24, 32, 35 and 36 experience numerical instability. I do not fully understand what
is causing this phenomenon; all I can offer are the following observations:

• All schemes that experience instability in the Burgers equation are linearly stable (confirmed both
theoretically and numerically).

• The only difference between stable and unstable spatial schemes, not only conceptually but also
at the implementation level (see appendix B), is the computation of the spatial residuals; this
instability, therefore, must have to do with the particularities of the B­spline basis itself.

• The higher the number of degrees of freedom per patch, the more prone to instability a basis is.
This coincides with more ill­posed mass, gradient and residual matrices, but that alone does not
explain the crashes (while the condition number of the mass matrix of optimal J = 20 DGIGA is
≈4 × 107, it is only ≈53 for J = 6).

• Increasing the number of patches, even if keeping each one’s basis fixed, can counteract this
instability.

• Nonlinear stabilization via limiters seems to correct the problem (see table 13.4 and associated
figures).

Table 13.4: Investigating the unexplained nonlinear instability of DGIGA.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 13.2a (9.8) 3(3) 10−3 0, 0.1, 0.2, 0.3, 0.43 DGSEM 60 20 2 ­ ­ ∞ ­ ­
2 DGIGA 2 1
3 (nodal)
4 DGIGA­AFC AFC
5 (nodal)
6 13.2b 0, 0.1, 0.16, 0.22, 0.33, 0.43 DGSEM 3 19 ­ ∞ ­
7 0, 0.1, 0.16 (unstable) DGIGA 14 2 9
8 0, 0.1, 0.16, 0.22 (unstable) (nodal)
9 0, 0.1, 0.16, 0.22, 0.33, 0.43 DGIGA­AFC AFC
10 (nodal)
11 13.3 (9.10) 1, 2, 3 DGSEM 10 5 ­ ∞ ­
12 DGIGA 3 2 1
13 1 (unstable) (nodal)

The main conclusion to be extracted from the comparison between linear and nonlinear scalar
conservation laws is that the schemes optimized for high resolution in the linear advection and assuming
a smooth solution, lose most of their advantage over plain DGSEM if applied to the Burgers equation.
And, not only that, they can even become unstable.

13.2. Euler equations
For the Euler equations, spurious oscillations of the solution—unlike in the Burgers equation—can
easily cause the numerical solution to attain invalid states (e.g. negative density and/or imaginary speed
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Figure 13.1: Fourier transform of the initial conditions of problems (9.7), (9.8), (9.9) and (9.10). Defined as:
ℱ (𝑞(𝑥))≔∫+∞−∞ 𝑞(𝑥)e−i𝜅𝑥 d𝑥. Vertical axes show its magnitude (that of figure 13.1a is clipped).
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Figure 13.2: Solution at multiple time instants of batches 1 to 5 (top) and 6 to 10 (bottom), of table 13.4.
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𝑡 = 1; 𝑥 = 0, 𝑡 = 3).

of sound), typically causing the solver algorithm to fail. In order to compare the accuracy of the different
spatial schemes in the same manner as in §13.1, an exact solution that remains smooth (and, hence,
free of said oscillations) for some period of time is required1.

Unfortunately, exact solutions of this type are very scarce, even in one dimension. Yet, there is
one case (albeit rather trivial) which does fulfill these requirements: problem (9.3). The solution of this
problem consists on the propagation of the initial density profile, unmodified in amplitude nor frequency,
at a phase speed of 𝑢0 = 1; it is identical to the solution of the linear advection equation. Because
there is essentially no nonlinear phenomena in this solution, I do not repeat here the comparison be­
tween spatial bases of §13.1—expecting similar results as for the linear case. Instead, I shall use
the methodology proposed in [48, appendix C], which provides separate measures of dispersion and
dissipation2.

13.2.1. Modified wavenumber analysis a la Hickel et al.
Hickel et al. [48] refer to this approach as an a posteriori modified wavenumber analysis. This stems
from the fact that, in it, one evaluates a modified wavenumber associated with each given baseline
wavenumber (see §A.2.2) using the spatial residual functions, once these have been computed by the
numerical scheme just as if in the middle of any time­stage update. In all a posteriori results, I use
100 elements or patches and 100 samples in each (i.e. 10000 mesh­wide), to compute every modified
wavenumber from the first component (i.e. density) of residual and state vectors (transformed to Fourier
domain using Matlab’s FFT routine3).

A feature of this approach is that it does not require the semi­discretization it is applied to to be linear
(be it because the PDE is nonlinear or because e.g. limiters have been used). An immediately apparent
shortcoming that I have observed in its high­order generalization, is that the modified wavenumber is
misspredicted—there is a sudden spike in the dispersion relation—whenever two eigenmodes coincide
on the same wavenumber. This, of course, cannot happen if there is no multiplicity of eigenmodes, i.e. if
J = 1. As a matter of fact, I argue in the following subsection (§13.2.2) that the presence of multiple
modified wavenumbers for each baseline wavenumber means that this approach is not suitable for
studying high­order schemes.

1I postpone all numerical experiments involving limiters for the Euler equations until chapter 14.
2A posteriori modified wavenumber analysis is presented in [48] for finite volume schemes. Nevertheless, its generalization to
DG­like schemes is straight­forward.

3https://nl.mathworks.com/help/matlab/ref/fft.html

https://nl.mathworks.com/help/matlab/ref/fft.html
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Figure 13.4: Solution at 𝑡 = 𝛥𝑇 (left) and 𝐿2 norm of the error as a function of time (right) of all K = 20 ⟺ J = 3
runs in test matrices 13.1 and 13.2.
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Figure 13.6: Idem, for all K = 10 ⟺ J = 6 runs of test matrices 13.1 and 13.2.
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Figure 13.7: Idem for test matrix 13.3.
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Figure 13.8: Idem, for all K = 3 ⟺ J = 20 runs of test matrices 13.1 and 13.2.
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13.2.2. A posteriori vs. combined­mode analyses
The comparisons in figure 13.10 strongly suggest that a posteriori modified wavenumber analysis is not
a good predictor of the long­term spectral characteristics of high­order DG­like schemes. After all, this
procedure attempts to characterize the dispersion and dissipation of the spatial scheme via a single
(complex­valued) function, analogously to the analytical a priori approach used extensively in chapter
11. I would argue, therefore, that is has the same fundamental problem as the latter: for high­order
schemes, a single modified wavenumber can not be expected to encode these properties accurately
[5]. Of course, this conclusion is only supported by the aforementioned numerical evidence as long as
combined­mode analysis is representative of the true behaviour of the scheme (this is supported by
the literature [5, 117]).

There are, nevertheless, three details worth pointing out. First, that a priori (combined­mode) and a
posteriori approaches coincide for the lowest­order case (figure 13.10a); this is so because, in the J = 1
case, there is no multiplicity of eigenmodes. Second: they differ more strongly the higher p becomes
(the more basis components, the larger the discrepancy). And, third, that the two predictions become
closer to each other as 𝑡∗ → 0, especially for 𝜅 ≈ 𝜅𝑓, for p > 0.

13.2.3. Spatial schemes
Figure 13.11 shows a posteriori dispersion and dissipation relations of DGSEM, FR/CPR and DGIGA
of a given J. According to the conclusions of the previous subsection, I do not consider these results
representative of the long­time behaviour of the schemes considered. That being said, they are actually
consistent with those of the linear case.

13.2.4. Riemann solvers
Figure 13.12 shows a new set of results of a posteriori modified wavenumber analysis, this time for a
number of different Riemann solvers of the Euler equations all used in conjuction with p = 5 DGSEM.
This comparison can be interpreted as a direct measure of the amount of numerical dispersion/dissipa­
tion introduced by each Riemann solver in one time­stage; therefore, the concerns about the reliability
of the a posteriori approach are mitigated—it is not the long­time behaviour of the discretization that is
being assessed, but the relative effect per time­stage of each solver.

Taking these results at face value, I would place HLLC as the optimal Riemann solver, due to
it possessing the second­lowest dispersion and lowest (nonzero) dissipation of the set, in addition to
being simple and efficient (it is as accurate as Roe’s and exact solvers, yet these two require an entropy
fix or/and are not as cost­effective). Figure 13.12 can also be used to justify the following fallback
strategy: should HLLC fail to produce a stable solution, the next best option would be HLL, then HLLE,
and, as a last resort, LLF. The central numerical flux (KEP), which renders the discretization completely
nondissipative, is not of interest in this work because numerical dissipation (at high wavenumbers) is
a desirable feature in scale­resolving flow simulations (see §12.3).
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Figure 13.10: Predicted errors in dispersion (phase angle, left) and dissipation (damping factor, right) for DGSEM
of degree p, according to both a posteriori modified wavenumber analysis (markers) and combined­mode semidis­
crete analysis (lines, see §A.2.5). Dashed grid lines indicate 𝜅 = 𝜅𝑓.
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Figure 13.11: Dispersion (left) and dissipation (right) relations obtained from a posteriori modified wavenumber
analysis, for DGSEM and the optimized schemes from §12 in combination with the exact Riemann solver.
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Figure 13.12: Idem to figure 13.11b, for DGSEM (of degree 5) in combination with various Riemann solvers (see
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they are indistinguishable from HLLC. Consistent results can be obtained for other J, as well as FR/CPR and
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case.



14
Non­smooth Solutions, Sensors and

Limiters
The aim of this chapter is to judge the extend to which each of the types of schemes under consideration
are able to deal with problems the exact solution of which contains discontinuities. My approach of doing
so has been to test several promising combinations of limiters, sensors and discretization bases in a
battery of test cases which I myself have selected from the literature. The hope is that, when analyzed
together, any conclusions extracted from their results will be reasonably representative of each studied
configuration.

This last set of numerical experiments is split into a total of 7 batches, each corresponding to a
separate section. In §14.1, I compare (for DGSEM only) the performance of the Legendre­based lim­
iters introduced in §§8.4.3 and 8.5. The most successful of those is then coupled, in §14.2, with each
of the two sensors described in §8.3, and each combination is compared with the limiter used alone
(without any sensor). Section 14.3 focuses on the AFC/FCT limiter (applicable to DGIGA­AFC only),
with and without sensors, and compares its results to those of the best hierarchical limiter applied to
DGIGA. These DGIGA­AFC results are complemented with those of §14.4, which instead considers
IGA­AFC. A final comparison (of sorts) between DGSEM, FR/CPR, DGIGA and DGIGA­AFC bases
and their best limiter/sensor combinations is done in §14.5. Section 14.6 adds to the results of the
said final comparison by explicitly testing the influence of the balance between patches and breakpoint
spans (i.e. between DG and CG elements) in FCT­limited DGIGA­AFC. Finally, §14.7 closes the chap­
ter by exploring the relationship between high order discretizations and limiters. In it, first, I explicitly
test which of the limiters considered preserve the order of the discretization at smooth extrema (often
considered the most basic requirement of any successful limiting strategy in the literature); then, I use
an example to discuss whether that really matters in practice.

In all figures of this chapter, the left vertical axis represents either the scalar unknown of the advec­
tion equation, or the density in the Euler case. Element and patch interfaces are indicated with minor
grid lines (when applicable). Its approximate solution is represented with solid lines, each color asso­
ciated to a particular run of the current batch (see each figure’s legend). The right vertical axis, when
shown, corresponds to the instantaneous limiter activation ratio—denoted 𝑃limiter(𝑞)—which measures
how many, out of all degrees of freedom of quantity 𝑞 in an element/patch, have been limited1. This
quantity is meant to indicate where limiting is being applied at any given instant, and at what strength.
It is represented in the figures by a single point located at the centroid of each element/patch; each run
has a different marker type to make visualization possible.

A more representative measure of how much limiting has been applied overall is the mean limiter
activation ratio. I define it as:

𝑃limiter≔
1
𝑁

𝑁

∑
𝑛=1

I

∑
𝑖=1
𝑃(𝑛)limiter (𝑞𝑖) , (14.1)

1Note that with hierarchical and slope limiters the maximum number of limitable degrees of freedom per element/patch is J − 1
(the 1st Legendre coefficient, associated with the element­wise mean, is never modified); for these, therefore, 𝑃limiter < 1. For
AFC/FCT, since all J control values may be modified, 𝑃limiter ≤ 1.
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where 𝑁 denotes the total number of times the limiter has been applied up to the measured instant
(usually once per time­scheme stage). This quantity is displayed in all tables of this chapter, together
with the 𝐿1 norm of the error (when applicable), the total variation of the approximate solution component
(or its ratio with that of the exact solution, if available) and the wall­clock time required for the run to
complete2. I define the 𝐿1 norm as:

‖𝑞(𝑡, 𝑥) − 𝑞ℎ(𝑡, 𝑥)‖1≔
∫𝛺 |𝑞(𝑡, 𝑥) − 𝑞ℎ(𝑡, 𝑥)| d𝑥

∫𝛺 d𝑥 . (14.2)

The integral in the numerator is approximated in the same manner as in (10.1).

14.1. Hierarchical limiters
Test matrix 14.1 summarizes the runs intended to reveal whether any one of the limiters of §8.5 is
clearly superior to the rest. These results include two baseline configurations: that of no limiter (which
results in oscillations due to the Gibbs phenomena) and that associated with the TVB slope limiter
(§8.4.3), used in its TVDM mode. On top of that, all runs are first fail­safe limited as in §8.8.1, and
then as in §8.8.2. Note that the time­step size indicated in 14.1 is half of 𝛥𝑡max; this indicates that the
Courant number is fixed (and not the time­step size itself), at a value equal to 𝜍 = 𝜍max/2—i.e. half of
the maximum linearly stable Courant number for the basis in question, as predicted from linear stability
analysis (see chapter 11 and §A.4).

Results of runs 1 to 12, both qualitative and quantitative, show that Krivodonova’s limiter is superior
to the rest for the Jiang­Shu problem (9.12), displaying a clear advantage at smooth extrema (I focus
on this particular aspect in §14.7). Also distinguished, but in the opposite sense, is the behavior of the
HWENO limiter (§8.6): it starts with sub­par performance for the p = 2 discretization, and becomes
completely outclassed, even by the TVB limiter, when the degree is increased to p = 5. The other two
hierarchical limiters, BDF (§8.5.1) and BSB (§8.5.2), are tied in second place with the former seemingly
being superior near discontinuous features yet slightly inferior in smooth ones—which is interesting, as
that the latter is considered an improvement over the former in the literature.

The advantage of krivodonova’s limiter is not as clear in the rest of test cases. I attribute this to these
other problems having relatively short simulated time spans and not as rich solutions. Interestingly, the
unlimited case is able to resolve contact discontinuities much more sharply than any of the limiters, in
all test cases, and even more so the higher the degree. In fact, despite its spurious oscillations, the
unlimited approximate solution is more accurate in the 𝐿1 norm than any of the limited ones for the
Jiang­Shu and Toro’s shock tube problems, for both J = 3 and J = 6.

Table 14.1: Comparing inter­cell limiters used in combination with DGSEM.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.2a (9.12) 4(10) 𝛥𝑡max/2 8 DGSEM 300 100 2 ­ ­ ∞ ­ ­
2 TVB, M = 0 (§8.4) ­
3 BDF (§8.5.1) ­
4 BSB (§8.5.2) ­
5 Krivodonova (§8.5.3) ­
6 HWENO (§8.6) ­
7 14.3a 600 5 ­ ­
8 TVB, M = 0 ­
9 BDF ­
10 BSB ­
11 Krivodonova ­
12 HWENO ­
13 14.2b (9.13) 0.2 300 2 ­ ­
14 TVB, M = 0 ­

(continues in the next page)

2I need to insist that these timings may not be representative at all of the actual computational cost associated with the schemes,
as my implementation has not been designed for performance. A slightly more rigorous (albeit still imperfect) cost estimation
is provided in §12.4 (see also appendix B).
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Table 14.1: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

15 BDF ­
16 BSB ­
17 Krivodonova ­
18 HWENO ­
19 14.3b 600 5 ­ ­
20 TVB, M = 0 ­
21 BDF ­
22 BSB ­
23 Krivodonova ­
24 HWENO ­
25 14.2c (9.14) 0.15 300 2 ­ ­
26 TVB, M = 0 ­
27 BDF ­
28 BSB ­
29 Krivodonova ­
30 HWENO ­
31 14.3c 600 5 ­ ­
32 TVB, M = 0 ­
33 BDF ­
34 BSB ­
35 Krivodonova ­
36 HWENO ­
37 14.2d (9.15) 0.038 600 200 2 ­ ­
38 TVB, M = 0 ­
39 BDF ­
40 BSB ­
41 Krivodonova ­
42 HWENO ­
43 14.3d 1200 5 ­ ­
44 TVB, M = 0 ­
45 BDF ­
46 BSB ­
47 Krivodonova ­
48 HWENO ­

14.2. Sensors
Having established Krivodonova’s limiter to be the best among those tested, this next batch is aimed
at doing the same for the two sensors under consideration. To do so, I try each of them in combination
with the aforementioned limiter, for the same set of test cases. The unlimited case is repeated from
§14.1.

This time, however, the comparison remains inconclusive: no sensor is consistently better than the
other, nor than using none at all. Therefore, I include both sensors in the comparisons of §§14.3 and
14.5. Purely from an activation perspective (see table 14.9), both sensors are able to reduce the limiter
usage (with KXRCF being very effective for p = 2, but seemingly conceding its advantage to AP­TVD
for p = 5). Nevertheless, the actual improvement that this has on accuracy is barely noticeable.

That being said, results in §14.5 do seem to reveal KXRCF as the superior choice, in terms of
precise location of discontinuities (although any improvement on accuracy remains minimal), for the
Shu­Osher test case at least (which has not been part of the current batch).

Table 14.2: Comparing sensors, against each other and none at all, for DGSEM.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.4a (9.12) 4(10) 𝛥𝑡max/2 8 DGSEM 300 100 2 ­ ­ ∞ Krivodonova ­
2 KXRCF (§8.3.1)
3 AP­TVD (§8.3.2)

(continues in the next page)
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Table 14.2: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

4 14.5a 600 5 ­
5 KXRCF
6 AP­TVD
7 14.4b (9.13) 0.2 300 2 ­
8 KXRCF
9 AP­TVD
10 14.5b 600 5 ­
11 KXRCF
12 AP­TVD
13 14.4c (9.14) 0.15 300 2 ­
14 KXRCF
15 AP­TVD
16 14.5c 600 5 ­
17 KXRCF
18 AP­TVD
19 14.4d (9.15) 0.038 600 200 2 ­
20 KXRCF
21 AP­TVD
22 14.5d 1200 5 ­
23 KXRCF
24 AP­TVD

14.3. DGIGA­AFC
Next is the turn of the AFC/FCT limiting approach. I consider, in this section, the optimal DGIGA
bases of 3 and 6 basis functions per patch (see §12.1) and compare the results of using no limiter,
Krivodonova’s limiter, and the FCT limiter (with each sensor as well as with none). All runs employ a
modal treatment of DGIGA (6.14). Also, all runs use the hierarchical fail­safe limiters (as in previous
batches) but FCT ones additionally employ the FCT fail­safe (§8.8.4); moreover, the latter apply the hi­
erarchical fail­safe on control values and both after every step (i.e. on the predictor) and stage (i.e. after
the FCT correction).

There are two observations to be made about these batch’s results. First, DGIGA­AFC with FCT
limiting is very clearly outclassed by DGIGA coupled with Krivodonova’s sensor in terms of how diffused
its numerical solution ends up. This is most striking in the Jiang­Shu problem (the initial condition is no
longer recognizable after crossing the domain 4 times), but is also present in the rest of test cases in
the form of a less sharp capture of discontinuities and kinks. A possible explanation for this excessive
diffusion might be found in the relatively large jumps that can be seen to exist across patch interfaces
in all AFC runs (recall that the only mechanism capable of introducing numerical diffusion in DG is the
Riemann solver used at every element or patch interface [120]).

And second: unlimited DGIGA experiences what appears to be a very strong entropy shock in the
expansion region at the left of Toro’s shock tube. This was not present in any of the unlimited DGSEM
cases; its cause must associated with some particularity of the B­spline basis itself. Note that this
occurs even in the J = 3 run, for which DGIGA reduces to 3rd order, Bernstein polynomial­based, DG.
I am inclined to believe that this is another symptom of the same underlying issue that caused the
unexplained stability issues in the Burgers equation, in §10.4. Furthermore, notice how the position of
the right­most shock in the numerical solution of runs 36 and 37 is clearly biased to the left. I am not
able to provide an explanation for this either; perhaps it is yet another manifestation of the previously
mentioned issue.

Table 14.3: Comparing AFC against the best inter­cell limiter, for DGIGA.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.6a (9.12) 4(10) 𝛥𝑡max/2 8 DGIGA 300 100 2 ­ 1 ∞ ­ ­
2 Krivodonova
3 DGIGA­AFC FCT (§8.7.2)

(continues in the next page)
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Table 14.3: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

4 KXRCF
5 AP­TVD
6 14.7a DGIGA 600 3 2 1 ­ ­
7 Krivodonova
8 DGIGA­AFC FCT
9 KXRCF
10 AP­TVD
11 14.6b (9.13) 0.2 DGIGA 300 2 1 ∞ ­ ­
12 Krivodonova
13 DGIGA­AFC FCT
14 KXRCF
15 AP­TVD
16 14.7b DGIGA 600 3 2 1 ­ ­
17 Krivodonova
18 DGIGA­AFC FCT
19 KXRCF
20 AP­TVD
21 14.6c (9.14) 0.15 DGIGA 300 2 1 ∞ ­ ­
22 Krivodonova
23 DGIGA­AFC (6.36) FCT
24 KXRCF
25 AP­TVD
26 14.7c DGIGA 600 3 2 1 ­ ­
27 Krivodonova
28 DGIGA­AFC (6.36) FCT
29 KXRCF
30 AP­TVD
31 14.6d (9.15) 0.038 DGIGA 600 200 2 1 ∞ ­ ­
32 Krivodonova
33 DGIGA­AFC FCT
34 KXRCF
35 AP­TVD
36 14.7d DGIGA 1200 3 2 1 ­ ­
37 Krivodonova
38 DGIGA­AFC FCT
39 KXRCF
40 AP­TVD

14.4. IGA­AFC
In §14.3, AFC limiting turned out to be sub­par due to its very high numerical diffusion. I attribute this
excess of diffusion to the relatively large differences between Riemann problem left and right states. If
that is indeed the case, one would expect a reduction of said diffusion the lower the number of patches
employed. To confirm this, I now test IGA­AFC at all degrees and smoothnesses up to p = 3. Note
in test matrix 14.4 that some runs employ nodal DGIGA; this is because the modal treatment in them
is unfeasible, due to either conditioning issues (see figure 14.1) and/or the presence of invalid control
point values (in the sense of figure 8.5a). This is the only option to help stabilize them, as IGA is
incompatible with inter­cell fail­safe limiting (the entire mesh is one cell), so none of these runs can use
it. FCT fail­safe is still employed.

Comparison between figures 14.8a and 14.6a (and associated tables) confirms that IGA­AFC is not
as diffusive as DGIGA­AFC for a given total number of degrees of freedom, at least in the case of the
latter using a single breakpoint span (i.e. opposite extremes) and p = 2. For this test case, the most
accurate basis is that of run 3 (piece­wise polynomials of degree 2, joined at breakpoints in 𝐶1 fashion;
modal treatment). In the rest of test cases the difference is less clear, but this can be attributed to
their exact solutions being simpler. An interesting deviation is that of run 11 (degree 3, smoothness 𝐶1,
modal treatment); in it, the contact discontinuity in Toro’s shock tube is markedly more sharply resolved
than all other bases. This suggests that the optimal ratio between degree and smoothness in terms of
discontinuous features might not be at either extreme (neither 𝐶0 nor 𝐶p−1). I do not pursue this line of
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research further in the present work.

Table 14.4: Attempting IGA­AFC, the extreme case of DGIGA with a single patch.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.8a (9.12) 4(10) 10−2 8 DGIGA­AFC 300 1 1 ­ 299 0 FCT ­
2 301 2 150
3 300 298 1
4 301 3 100 0
5 300 149 1
6 (nodal) 297 2
7 14.8b (9.13) 10−3 0.2 (modal) 1 299 0
8 301 2 150
9 300 298 1
10 301 3 100 0
11 300 149 1
12 (nodal) 297 2
13 14.8c (9.14) 0.15 (modal; 6.36) 1 299 0
14 301 2 150
15 300 298 1
16 301 3 100 0
17 300 149 1
18 (nodal; 6.36) 297 2
19 14.8d (9.15) 10−4 0.038 (nodal; 6.34) 600 1 599 0
20 601 2 300
21 600 598 1
22 601 3 200 0
23 600 299 1
24 597 2
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Figure 14.1: Condition number of the control Vandermonde matrix (6.13) of an IGA patch of smoothness 𝐶𝜘,
for increasing degrees. When the number of breakpoint spans is large, the modal treatment (6.14) becomes
unfeasible for 𝜘 > 1. The nodal formulation (6.15), which does not use this matrix, is unaffected.

14.5. Final comparison
The Shu­Osher problem is a very interesting test case from a practical point of view, as it combines the
resolution requirements of e.g. the Jiang­Shu problemwith the presence of discontinuities and nonlinear
physics. In it, an ideal method would resolve the smooth features accurately, while capturing the shock
sharply yet without spurious oscillations. This section continues with the direct comparison between
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the two optimal bases (FR and DGIGA) and DGSEM (see chapters 12 and 13), now incorporating the
usage of limiters and sensors. As indicated in test matrix 14.5, all runs use the same total number of
degrees of freedom.

Except for run 35, results of each of the three bases limited via Krivodonova’s scheme essentially
coincide for a given J and sensor. The deviation of run 35 is due to the action of the inter­cell fail­safe.
This suggests that limiting destroys all of the inherent advantage in terms of lowered dispersion and
dissipation errors studied in chapter 12. I insist on this issue in section 14.7.

The FCT limiter, applied to DGIGA­AFC, remains clearly inferior to the hierarchical one for J = 3, 6.
For J = 20 the situation reverses, but only because all four discretizations turn out to be exceedingly
inaccurate. Note how the higher J, the more diffused the approximate solution becomes at the left of the
shock. This is because, having fixed Ndofs, a higher J implies fewer yet larger patches. Once the shock
reaches a given element/patch, it forces the limiter to reduce the order of the approximation locally.
Inevitably, then, any information associated with the higher modes is lost; the element size becomes
the dominant factor influencing accuracy.

Interestingly, the KXRCF sensor happens to be very effective with respect to both AP­TVD and
the control case for all J = 3 and J = 6 runs, targeting only those elements actually near to the highest
gradients in the approximate solution and reducing 𝑃limiter(𝑞1) and 𝑃limiter very significantly. This breaks
the ambiguity of the results of section 14.2, bringing me to lean in favor of KXRCF. In fact, it turns out
to be cheaper to use this sensor than to use no sensor at all (this can be seen in table 14.12). This
is evidence that the overhead of sensing can be compensated by the consequently reduced number
of times that the limiter needs to be applied. Notice as well that both sensors are able to reduce the
large jumps across patches in the DGIGA­AFC discretization. In the region left of the shock, however,
neither of the sensors is able to impact accuracy significantly. Finally, it might be worth highlighting that
AFC, despite being very diffusive regardless, does manage to explicitly target only the region around
the shock, even for J = 20, suggesting the possibility of using it as a (sub­cell) sensor instead.

Table 14.5: Comparing optimal vs. baseline DG bases, for J = 3, 6, 20.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.9a (9.16) 4(10) 𝛥𝑡max/2 1.8 DGSEM 1200 400 2 ­ ­ ∞ Krivodonova ­
2 FR/CPR 0.023
3 DGIGA ­
4 DGIGA­AFC FCT
5 14.9b DGSEM Krivodonova KXRCF
6 FR/CPR 0.023
7 DGIGA ­
8 DGIGA­AFC FCT
9 14.9c DGSEM Krivodonova AP­TVD
10 FR/CPR 0.023
11 DGIGA ­
12 DGIGA­AFC FCT
13 14.10a DGSEM 200 5 ­ ∞ Krivodonova ­
14 FR/CPR 0.058
15 DGIGA 3 ­ 2 1
16 DGIGA­AFC FCT
17 14.10b DGSEM 5 ­ ∞ Krivodonova KXRCF
18 FR/CPR 0.058
19 DGIGA 3 ­ 2 1
20 DGIGA­AFC FCT
21 14.10c DGSEM 5 ­ ∞ Krivodonova AP­TVD
22 FR/CPR 0.058
23 DGIGA 3 ­ 2 1
24 DGIGA­AFC FCT
25 14.11a DGSEM 60 19 ∞ Krivodonova ­
26 FR/CPR 0.152
27 DGIGA 14 ­ 2 9
28 DGIGA­AFC FCT
29 14.11b DGSEM 19 ­ ∞ Krivodonova KXRCF

(continues in the next page)
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Table 14.5: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

30 FR/CPR 0.152
31 DGIGA 14 ­ 2 9
32 DGIGA­AFC FCT
33 14.11c DGSEM 19 ­ ∞ Krivodonova AP­TVD
34 FR/CPR 0.152
35 DGIGA 14 ­ 2 9
36 DGIGA­AFC FCT

14.6. DGIGA­AFC revisited
In light of the observation made in §§14.3 and 14.5, consider this: could there be an optimum number
of patches for which DGIGA­AFC with FCT limiting becomes competitive with the hierarchical limiter? I
aim to test this hypothesis for the Shu­Osher test case, as I consider it the most representative of a flow
of engineering interest, via test matrix 14.6. None of these runs apply either of the inter­cell fail­safe
limiters; as a consequence, run 6 (which turns out to incur in invalid control values) fails.

Figure 14.12 reveals that for a fixed degree, smoothness and total number of degrees of freedom,
the more DGIGA­AFC patches, the more diffusion (regardless of any sensor being used or not). More­
over, comparison between it and figure 14.9 shows that even IGA­AFC remains inferior to DGIGA
coupled with krivodonova’s limiter. This was the last opportunity for AFC/FCT to prove itself competi­
tive when applied in a DG context; in the form I have proposed to use it at least (§8.7.2), AFC is not a
good alternative to Krivodonova’s limiter for B­spline based DG.

Table 14.6: Isolating the effect of the number of patches in FCT­limited DGIGA­AFC.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.12a (9.16) 4(10) 10−3 1.8 DGIGA­AFC 1200 1 2 ­ 1198 1 FCT ­
2 10 118
3 100 10
4 200 4
5 400 1 ∞
6 14.12b (crashes) 10 118 1 KXRCF
7 1.8 100 10
8 200 4
9 400 1 ∞
10 14.12c 10 118 1 AP­TVD
11 100 10
12 200 4
13 400 1 ∞

14.7. Do limiters preserve high order?
In §14.5, I touched upon the fact that higher order may not lead to higher accuracy when limiters
are involved. With this final batch of experiments, I aim to verify experimentally whether said order
is preserved by Krivodonova’s and AFC/FCT limiters. I shall do so first in the linear case and for a
smooth solution (which is the situation most often assumed when addressing this issue in the literature),
and then in the Shu­Osher problem—this time for a fixed number of patches, i.e. the most favorable
condition. Runs that use the TVD limiter, known to not preserve it, are also included for comparison
purposes.

Data from table 14.14 confirms that Krivodonova’s limiter preserves accuracy at smooth extrema,
and is consistent with [69]. This happens both for DGSEM and DGIGA bases, which give practically
indistinguishable results in this category. The FCT limiter, however, clearly does not. With IGA­AFC,
the discretization seems to maintain second order accuracy regardless of the B­spline degree; this
is similar to the TVB limiter (when used in TVDM fashion), both according to these results and the
literature [26]. With DGIGA­AFC, tested here in the most diffusive case (single breakpoint span per
patch), this effect is even more pronounced: accuracy degrades to, at best, first order. This explains
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why most DGIGA­AFC results in this chapter were much less accurate than their respective inter­cell
limited counterparts.

The question remains of whether a high­order preserving limiter facilitates that a DG discretization
will approximate a solution combining underresolved and discontinuous features more accurately the
higher its number of basis functions per element/patch. Results shown in figure 14.13 indicate that this
is actually not the case: Krivodonova’s limiter fails to facilitate an accuracy improvement in the Shu­
Osher test problem when refining in p only, even if the number of elements/patches is kept constant
(the most generous situation possible—compare it with that of batch 14.12, in which the total number
of degrees of freedom was maintained instead). As a matter of fact, they suggest that the TVB limiter
can be about as accurate if coupled with an effective sensor. And yet, DGIGA­AFC with FCT limiting is
still very much worse than either—while IGA­AFC should perform better, recall that higher that second
degree discretizations are generally unfeasible due to conditioning issues (see §14.4).

All in all, these results are consistent with the idea that high order preservation at smooth extrema
is necessary but not sufficient to maintain high order in practice. I will go even further; as I see it, the
missing ingredient is h­refinement: via hp­adaptation (to solution gradients), it should in principle be
possible to reduce the discretization all the way to first order locally (this ensures a monotone capture
of the shock) at the same time that accuracy is maintained by concentrating more elements around
the discontinuity. This view is already taking shape in the literature, an example being the limiter by
Dumbser and Loubère [30]. Unfortunately, the much increased complexity of such an approach has
forced me to leave it out of the scope of the present work.

Table 14.7: Checking whether the three main limiters considered preserve accuracy.

Time discr. Space discretization Limiting
Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

1 14.14a (table) (9.7) 4(10) 𝛥𝑡max/2 8 DGIGA 48 24 1 ­ 1 ∞ TVB, 𝑀 = 0 ­
2 72 36
3 96 48
4 14.14b (table) 48 16 2
5 72 24
6 96 32
7 14.14c (table) 48 12 3
8 72 18
9 96 24
10 14.14d (table) 48 24 1 Krivodonova
11 72 36
12 96 48
13 14.14e (table) 48 16 2
14 72 24
15 96 32
16 14.14f (table) 48 12 3
17 72 18
18 96 24
19 14.14g (table) DGIGA­AFC 48 24 1 FCT
20 72 36
21 96 48
22 14.14h (table) 48 16 2
23 72 24
24 96 32
25 14.14i (table) 48 12 3
26 72 18
27 96 24
28 14.14j (table) DGSEM 48 24 1 Krivodonova
29 72 36
30 96 48
31 14.14k (table) 48 16 2
32 72 24
33 96 32
34 14.14l (table) 48 12 3
35 72 18

(continues in the next page)
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Table 14.7: (continued)

Fig. Prob. RK 𝛥𝑡 𝛥𝑇 Method Ndofs K p 𝜂 k 𝜘 Limiter Sensor

36 96 24
37 14.14m (table) DGIGA­AFC 48 1 1 47 0 FCT
38 72 71
39 96 95
40 14.14n (table) 48 2 46 1
41 72 70
42 96 94
43 14.14o (table) 48 3 45 2
44 72 69
45 96 93
46 14.13a (9.16) 1.8 DGIGA 600 300 1 1 ∞ TVB, 𝑀 = 0 KXRCF
47 900 2
48 1200 3
49 14.13b 600 1 Krivodonova
50 900 2
51 1200 3
52 14.13c DGIGA­AFC 600 1 FCT
53 900 2
54 1200 3
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(a) Jiang­Shu problem (runs 1 to 6); see also table 14.8a
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(b) Toro’s transonic shock tube (runs 13 to 18); see also table 14.8c
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(c) The 1­2­3 problem (runs 25 to 30); see also table 14.8e
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(d) Blast wave interaction (runs 37 to 42); see also table 14.8g

Figure 14.2: Solution and instantaneous limiter activation for all p = 2 runs in table 14.1.
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(a) Jiang­Shu problem, (runs 7 to 12); see also table 14.8b
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(b) Toro’s transonic shock tube (runs 19 to 24); see also table 14.8d
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(c) The 1­2­3 problem (runs 31 to 36); see also table 14.8f
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(d) Blast wave interaction (runs 43 to 48); see also table 14.8h

Figure 14.3: Idem, for all p = 5 runs in table 14.1.
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(a) Jiang­Shu problem (runs 1 to 3); see also table 14.9a
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(b) Toro’s transonic shock tube (runs 7 to 9); see also table 14.9c
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(c) The 1­2­3 problem (runs 13 to 15); see also table 14.9e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(d) Blast wave interaction (runs 19 to 21); see also table 14.9g

Figure 14.4: Solution and instantaneous limiter activation for all p = 2 runs in table 14.2.
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(a) Jiang­Shu problem, (runs 4 to 6); see also table 14.9b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(b) Toro’s transonic shock tube (runs 10 to 12); see also table 14.9d
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(c) The 1­2­3 problem (runs 16 to 18); see also table 14.9f
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(d) Blast wave interaction (runs 22 to 24); see also table 14.9h

Figure 14.5: Idem, for all p = 5 runs in table 14.2.
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(a) Jiang­Shu problem (runs 1 to 3); see also table 14.10a
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(b) Toro’s transonic shock tube (runs 7 to 9); see also table 14.10c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.5

1

𝑃 lim
ite

r(𝑞
1)

𝑥

𝑞 1

(c) The 1­2­3 problem (runs 13 to 15); see also table 14.10e
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(d) Blast wave interaction (runs 19 to 21); see also table 14.10g

Figure 14.6: Solution and instantaneous limiter activation for all J = 3 runs in table 14.3.
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(a) Jiang­Shu problem, (runs 4 to 6); see also table 14.10b
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(b) Toro’s transonic shock tube (runs 10 to 12); see also table 14.10d
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(c) The 1­2­3 problem (runs 16 to 18); see also table 14.10f
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(d) Blast wave interaction (runs 22 to 24); see also table 14.10h

Figure 14.7: Idem, for all J = 6 runs in table 14.3.



14.7. Do limiters preserve high order? 219

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

𝑥

𝑞 1
Exact solution p = 1, 𝐶0 p = 2, 𝐶0 p = 2, 𝐶1 p = 3, 𝐶0 p = 3, 𝐶1 p = 3, 𝐶2

(a) Jiang­Shu problem (runs 1 to 6); see also table 14.11a
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(b) Toro’s transonic shock tube (runs 7 to 12); see also table 14.11b
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(c) The 1­2­3 problem (runs 13 to 18); see also table 14.11c
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(d) Blast wave interaction (runs 19 to 24); see also table 14.11d

Figure 14.8: Solution of all the runs in table 14.4; these correspond to IGA­AFC, i.e. single­patch DGIGA limited
via AFC. The total (mesh­wide) number of degrees of freedom is the same as in figures 14.2, 14.4 and 14.6.
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(a) No sensor (runs 1 to 4); see also table 14.12a
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(b) KXRCF sensor (runs 5 to 8); see also table 14.12b
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(c) AP­TVD sensor (runs 9 to 12); see also table 14.12c

Figure 14.9: Solution and instantaneous limiter activation for all J = 3 runs in table 14.5.



14.7. Do limiters preserve high order? 221

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

𝑃 lim
ite
r(𝑞

1)

Reference solution DGSEM FR DGIGA DGIGA­AFC

𝑥

𝑞 1

(a) No sensor (runs 13 to 16); see also table 14.12d
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(b) KXRCF sensor (runs 17 to 20); see also table 14.12e
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(c) AP­TVD sensor (runs 21 to 24); see also table 14.12f

Figure 14.10: Idem, for all J = 6 runs in table 14.5.
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(a) No sensor (runs 25 to 28); see also table 14.12g
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(b) KXRCF sensor (runs 29 to 32); see also table 14.12h
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(c) AP­TVD sensor (runs 33 to 36); see also table 14.12i

Figure 14.11: Idem, for all J = 20 runs in table 14.5.



14.7. Do limiters preserve high order? 223

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

𝑥

𝑞 1
Reference solution K = 1 K = 10 K = 100 K = 200 K = 400

(a) No sensor (runs 1 to 5); see also table 14.13a

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

𝑥

𝑞 1

(b) KXRCF sensor (runs 6 to 9); see also table 14.13b
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(c) AP­TVD sensor (runs 10 to 13); see also table 14.13c

Figure 14.12: Solution for all runs in table 14.6.
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(a) TVB limiter + KXRCF sensor (runs 46 to 48); see also table 14.15a
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(b) Krivodonova’s limiter + KXRCF sensor (runs 49 to 51); see also table 14.15b
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(c) AFC/FCT limiter + KXRCF sensor (runs 52 to 54); see also table 14.15c

Figure 14.13: Solution and instantaneous limiter activation for all runs in table 14.5.



14.7. Do limiters preserve high order? 225

Table 14.8: Additional quantitative comparison among the various limiters (test matrix 14.1).

(a) Jiang­Shu problem, p = 2 (figure 14.2a)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.6 ⋅ 10−2 1.118 0.0 108
TVB 8.5 ⋅ 10−2 0.707 39.8 207
BDF 5.6 ⋅ 10−2 0.830 25.4 211
BSB 6.6 ⋅ 10−2 0.768 19.2 214
Kriv. 3.4 ⋅ 10−2 0.941 10.5 199

HWENO 9.0 ⋅ 10−2 0.801 64.2 200

(b) Jiang­Shu problem, p = 5 (figure 14.3a)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 6.7 ⋅ 10−3 1.188 0.0 289
TVB 8.8 ⋅ 10−2 0.676 35.0 570
BDF 5.6 ⋅ 10−2 0.829 44.9 625
BSB 5.7 ⋅ 10−2 0.824 46.2 639
Kriv. 2.2 ⋅ 10−2 0.973 36.3 637

HWENO 2.1 ⋅ 10−1 0.491 80.8 641

(c) Toro’s transonic shock tube, p = 2 (figure 14.2b)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 3.6 ⋅ 10−3 1.866 0.0 48
TVB 4.0 ⋅ 10−3 1.042 26.0 65
BDF 3.7 ⋅ 10−3 1.023 25.5 63
BSB 3.7 ⋅ 10−3 1.027 21.2 61
Kriv. 3.6 ⋅ 10−3 1.109 20.0 62

HWENO 7.2 ⋅ 10−3 1.055 34.0 61

(d) Toro’s transonic shock tube, p = 5 (figure 14.3b)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.9 ⋅ 10−3 2.654 0.0 133
TVB 4.0 ⋅ 10−3 1.041 30.9 180
BDF 3.7 ⋅ 10−3 1.025 33.4 176
BSB 3.8 ⋅ 10−3 1.024 32.2 178
Kriv. 3.4 ⋅ 10−3 1.060 30.7 176

HWENO 8.5 ⋅ 10−3 1.169 40.4 174

(e) The 1­2­3 problem, p = 2 (figure 14.2c)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.3 ⋅ 10−2 1.035 0.0 33
TVB 6.2 ⋅ 10−3 1.019 29.2 48
BDF 5.7 ⋅ 10−3 1.006 34.3 45
BSB 5.9 ⋅ 10−3 1.006 25.0 44
Kriv. 5.8 ⋅ 10−3 1.008 18.5 44

HWENO 9.3 ⋅ 10−3 1.007 43.3 46

(f) The 1­2­3 problem, p = 5 (figure 14.3c)

Limiter ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.1 ⋅ 10−2 1.039 0.0 93
TVB 6.2 ⋅ 10−3 1.019 34.8 130
BDF 5.4 ⋅ 10−3 1.007 45.5 140
BSB 5.5 ⋅ 10−3 1.007 41.3 139
Kriv. 6.2 ⋅ 10−3 1.005 30.6 140

HWENO 1.4 ⋅ 10−2 1.099 57.0 141

(g) Blast wave interaction, p = 2 (figure 14.2d)

Limiter TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

− 23.06 0.0 545
TVB 12.41 34.9 678
BDF 12.50 24.4 683
BSB 12.58 24.7 660
Kriv. 13.19 19.6 675

HWENO 10.26 48.8 650

(h) Blast wave interaction, p = 5 (figure 14.3d)

Limiter TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

− 33.39 0.0 1,153
TVB 12.31 42.5 1,767
BDF 12.21 45.9 1,687
BSB 12.66 44.1 1,869
Kriv. 13.31 38.8 1,590

HWENO 12.48 60.5 1,428
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Table 14.9: Additional quantitative comparison among the various DGSEM sensors (test matrix 14.2).

(a) Jiang­Shu problem, p = 2 (figure 14.4a)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 3.4 ⋅ 10−2 0.941 10.5 176
KXRCF 3.3 ⋅ 10−2 0.954 7.3 198
AP­TVD 3.4 ⋅ 10−2 0.939 10.6 210

(b) Jiang­Shu problem, p = 5 (figure 14.5a)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.2 ⋅ 10−2 0.973 36.3 505
KXRCF 2.2 ⋅ 10−2 0.979 36.2 643
AP­TVD 2.0 ⋅ 10−2 0.977 4.9 619

(c) Toro’s transonic shock tube, p = 2 (figure 14.4b)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 3.6 ⋅ 10−3 1.109 20.0 51
KXRCF 3.5 ⋅ 10−3 1.065 6.5 45
AP­TVD 3.6 ⋅ 10−3 1.057 13.9 59

(d) Toro’s transonic shock tube, p = 5 (figure 14.5b)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 3.4 ⋅ 10−3 1.060 30.7 147
KXRCF 3.5 ⋅ 10−3 1.055 23.7 132
AP­TVD 3.5 ⋅ 10−3 1.100 17.7 160

(e) The 1­2­3 problem, p = 2 (figure 14.4c)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 5.8 ⋅ 10−3 1.008 18.5 38
KXRCF 7.8 ⋅ 10−3 1.011 7.0 35
AP­TVD 5.9 ⋅ 10−3 1.007 7.4 41

(f) The 1­2­3 problem, p = 5 (figure 14.5c)

Sensor ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 6.2 ⋅ 10−3 1.005 30.6 110
KXRCF 6.1 ⋅ 10−3 1.009 29.7 112
AP­TVD 6.7 ⋅ 10−3 1.004 11.0 117

(g) Blast wave interaction, p = 2 (figure 14.4d)

Sensor TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

− 13.19 19.6 562
KXRCF 12.95 6.2 495
AP­TVD 13.13 13.1 608

(h) Blast wave interaction, p = 5 (figure 14.5d)

Sensor TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

− 13.31 38.8 1,447
KXRCF 13.30 34.3 1,479
AP­TVD 13.25 19.0 1,673
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Table 14.10: Quantitative comparison between limiters for DGIGA, with and without sensors (test matrix 14.3).

(a) Jiang­Shu problem, J = 3 (figure 14.6a)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.6 ⋅ 10−2 1.118 0.0 109
Kriv. 3.4 ⋅ 10−2 0.939 10.6 912
FCT 2.9 ⋅ 10−1 0.160 9.7 383

KXRCF 2.9 ⋅ 10−1 0.161 6.8 398
AP­TVD 2.9 ⋅ 10−1 0.161 0.3 452

(b) Jiang­Shu problem, J = 6 (figure 14.7a)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 7.1 ⋅ 10−3 1.247 0.0 237
Kriv. 2.4 ⋅ 10−2 0.965 35.5 3,287
FCT 2.1 ⋅ 10−1 0.461 8.0 1,858

KXRCF 2.1 ⋅ 10−1 0.461 8.0 1,819
AP­TVD 2.1 ⋅ 10−1 0.467 1.4 1,921

(c) Toro’s transonic shock tube, J = 3 (figure 14.6b)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.6 ⋅ 10−2 2.123 0.0 48
Kriv. 3.8 ⋅ 10−3 1.048 21.5 155
FCT 7.5 ⋅ 10−3 1.056 6.3 138

KXRCF 7.5 ⋅ 10−3 1.057 5.4 122
AP­TVD 7.4 ⋅ 10−3 1.079 3.4 130

(d) Toro’s transonic shock tube, J = 6 (figure 14.7b)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 2.9 ⋅ 10−2 3.641 0.0 96
Kriv. 3.3 ⋅ 10−3 1.076 30.0 513
FCT 5.1 ⋅ 10−3 1.138 4.6 627

KXRCF 5.1 ⋅ 10−3 1.138 4.6 604
AP­TVD 5.1 ⋅ 10−3 1.148 4.5 635

(e) The 1­2­3 problem, J = 3 (figure 14.6c)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.2 ⋅ 10−2 1.046 0.0 36
Kriv. 5.4 ⋅ 10−3 1.008 20.0 119
FCT 1.7 ⋅ 10−2 1.120 1.9 98

KXRCF 1.8 ⋅ 10−2 1.121 2.0 83
AP­TVD 1.7 ⋅ 10−2 1.120 1.8 89

(f) The 1­2­3 problem, J = 6 (figure 14.7c)

Limiter/
sensor ‖𝑞ℎ1 − 𝑞1‖1

TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

− 1.1 ⋅ 10−2 1.035 0.0 79
Kriv. 6.1 ⋅ 10−3 1.005 34.1 394
FCT 9.2 ⋅ 10−3 1.146 0.9 348

KXRCF 1.3 ⋅ 10−2 1.147 1.4 319
AP­TVD 9.2 ⋅ 10−3 1.146 0.8 329

(g) Blast wave interaction, J = 3 (figure 14.6d)

Limiter/
sensor TV (𝑞ℎ1 ) 𝑃limiter

(%)
Elapsed
time (s)

− 24.26 0.0 566
Kriv. 12.90 21.9 1,681
FCT 12.07 7.5 1,531

KXRCF 12.07 5.7 1,469
AP­TVD 12.21 4.7 1,514

(h) Blast wave interaction, J = 6 (figure 14.7d)

Limiter/
sensor TV (𝑞ℎ1 ) 𝑃limiter

(%)
Elapsed
time (s)

− 23.02 0.0 1,219
Kriv. 13.06 38.3 4,851
FCT 15.34 6.0 5,972

KXRCF 15.38 5.8 5,681
AP­TVD 15.42 5.3 5,240
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Table 14.11: Quantitative results for the IGA­AFC runs of test matrix 14.4.

(a) Jiang­Shu problem (figure 14.8a)

Degree Smoothness class ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

1 𝐶0 1.0 ⋅ 10−1 0.655 60.8 161
2 𝐶0 1.1 ⋅ 10−1 0.652 56.2 218
2 𝐶1 9.0 ⋅ 10−2 0.716 44.4 524
3 𝐶0 1.3 ⋅ 10−1 0.605 53.6 301
3 𝐶1 1.1 ⋅ 10−1 0.668 48.5 359
3 𝐶2 9.9 ⋅ 10−2 0.694 44.1 595

(b) Toro’s transonic shock tube (figure 14.8b)

Degree Smoothness class ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

1 𝐶0 6.9 ⋅ 10−3 1.001 4.8 130
2 𝐶0 6.4 ⋅ 10−3 1.032 5.0 194
2 𝐶1 5.5 ⋅ 10−3 1.001 6.5 394
3 𝐶0 6.9 ⋅ 10−3 1.014 6.6 252
3 𝐶1 4.5 ⋅ 10−3 1.010 5.6 273
3 𝐶2 6.5 ⋅ 10−3 1.000 7.0 452

(c) The 1­2­3 problem (figure 14.8c)

Degree Smoothness class ‖𝑞ℎ1 − 𝑞1‖1
TV (𝑞ℎ1)
TV (𝑞1)

𝑃limiter
(%)

Elapsed
time (s)

1 𝐶0 4.1 ⋅ 10−3 0.999 1.4 71
2 𝐶0 5.9 ⋅ 10−3 0.994 2.6 103
2 𝐶1 5.1 ⋅ 10−3 0.996 2.0 138
3 𝐶0 6.8 ⋅ 10−3 0.992 3.2 106
3 𝐶1 5.7 ⋅ 10−3 0.995 2.3 122
3 𝐶2 5.1 ⋅ 10−3 0.998 1.9 145

(d) Blast wave interaction (figure 14.8d)

Degree Smoothness class TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (s)

1 𝐶0 12.09 11.5 644
2 𝐶0 11.88 13.6 1,031
2 𝐶1 13.17 11.6 1,425
3 𝐶0 11.59 16.5 1,376
3 𝐶1 12.32 13.2 1,014
3 𝐶2 12.60 12.0 1,130
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Table 14.12: Quantitative comparison between basis types, with compatible limiters and sensors (test matrix 14.5).

(a) No sensor, J = 3 (figure 14.9a)

Basis TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

DGSEM 18.99 10.6 0.4
FR/CPR 18.98 10.3 0.4
DGIGA 18.80 9.6 1

DGIGA­AFC 10.19 1.5 0.9

(b) KXRCF, J = 3 (figure 14.9b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

19.74 0.8 0.3
20.02 0.8 0.3
19.63 0.8 0.5
10.31 1.0 0.8

(c) AP­TVD, J = 3 (figure 14.9c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

19.64 6.1 0.4
19.84 5.9 0.4
19.64 5.6 1.4
10.27 0.9 1

(d) No sensor, J = 6 (figure 14.10a)

Basis TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

DGSEM 15.04 22.2 0.3
FR/CPR 14.92 22.1 0.3
DGIGA 14.63 22.2 0.9

DGIGA­AFC 11.22 1.8 1

(e) KXRCF, J = 6 (figure 14.10b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

15.40 5.2 0.2
15.29 5.2 0.2
14.83 5.8 0.3
11.30 1.7 1

(f) AP­TVD, J = 6 (figure 14.10c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

14.97 8.8 0.3
14.63 9.2 0.3
14.38 9.9 0.8
11.76 1.5 0.9

(g) No sensor, J = 20 (figure 14.11a)

Basis TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

DGSEM 7.50 41.0 0.2
FR/CPR 7.51 40.3 0.2
DGIGA 7.06 40.7 6.8

DGIGA­AFC 9.62 1.6 7.3

(h) KXRCF, J = 20 (fig. 14.11b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

7.47 34.4 0.2
7.60 33.7 0.2
7.03 35.0 3.3
9.63 1.5 8.2

(i) AP­TVD, J = 20 (fig. 14.11c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

7.36 21.2 0.2
7.42 20.4 0.2
5.66 27.2 4.8
9.75 1.6 7.6

Table 14.13: Quantitative comparison of third order DGIGA­AFC discretizations, with and without sensors, for
varying numbers of patches (test matrix 14.6).

(a) No sensor (figure 14.12a)

K TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

10 14.61 1.2 1.7
100 13.44 1.4 1.5
200 12.20 1.4 1.5
400 10.10 1.1 1.6

(b) KXRCF (figure 14.12b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

­ ­ ­
13.38 1.3 1.4
12.28 1.4 1.4
10.19 0.8 1.1

(c) AP­TVD (figure 14.12c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (h)

14.62 1.2 1.7
13.89 1.3 1.3
13.03 1.3 1.5
10.18 0.6 1.4
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Table 14.14: 𝐿1 error, its measured rate of convergence (with increasing Ndofs) and averaged limiter activation;
runs 1 to 45 of test matrix 14.7.

(a) DGIGA, TVB limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 3.7 ⋅ 10−2 18.8
72 1.5 ⋅ 10−2 −2.28 12.7
96 7.4 ⋅ 10−3 −2.34 9.6

(b) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

6.9 ⋅ 10−2 40.3
3.5 ⋅ 10−2 −1.67 26.1
1.9 ⋅ 10−2 −2.13 20.1

(c) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

1.2 ⋅ 10−1 50.1
6.0 ⋅ 10−2 −1.74 35.7
3.4 ⋅ 10−2 −1.93 26.6

(d) DGIGA, Krivodonova’s limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 3.7 ⋅ 10−2 18.8
72 1.5 ⋅ 10−2 −2.28 12.7
96 7.4 ⋅ 10−3 −2.34 9.6

(e) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

3.5 ⋅ 10−3 6.3
8.6 ⋅ 10−4 −3.51 4.3
3.4 ⋅ 10−4 −3.18 3.3

(f) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

1.1 ⋅ 10−3 9.8
1.9 ⋅ 10−4 −4.4 6.9
5.7 ⋅ 10−5 −4.18 5.6

(g) DGIGA­AFC, FCT limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 1.9 ⋅ 10−1 20.8
72 1.5 ⋅ 10−1 −0.58 13.1
96 1.3 ⋅ 10−1 −0.65 9.0

(h) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

2.1 ⋅ 10−1 25.4
1.6 ⋅ 10−1 −0.56 16.0
1.4 ⋅ 10−1 −0.63 10.9

(i) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

2.1 ⋅ 10−1 25.6
1.7 ⋅ 10−1 −0.57 15.1
1.4 ⋅ 10−1 −0.63 10.0

(j) DGSEM, Krivodonova’s limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 3.7 ⋅ 10−2 18.8
72 1.5 ⋅ 10−2 −2.28 12.7
96 7.4 ⋅ 10−3 −2.34 9.6

(k) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

3.5 ⋅ 10−3 6.3
8.6 ⋅ 10−4 −3.51 4.3
3.4 ⋅ 10−4 −3.18 3.3

(l) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

1.1 ⋅ 10−3 9.8
1.9 ⋅ 10−4 −4.4 6.9
5.7 ⋅ 10−5 −4.18 5.6

(m) IGA­AFC, FCT limiter; p = 1

Ndofs ‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

48 5.2 ⋅ 10−2 60.1
72 2.4 ⋅ 10−2 −1.89 36.1
96 1.3 ⋅ 10−2 −2.07 23.0

(n) Idem, p = 2

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

4.8 ⋅ 10−2 48.2
2.0 ⋅ 10−2 −2.15 27.7
9.8 ⋅ 10−3 −2.48 17.6

(o) Idem, p = 3

‖𝑞ℎ1 − 𝑞1‖1 Rate 𝑃limiter
(%)

5.5 ⋅ 10−2 48.2
2.4 ⋅ 10−2 −2.08 29.2
1.2 ⋅ 10−2 −2.49 17.1

Table 14.15: Quantitative comparison of the numerical solutions of (9.16), obtained with a fixed number of second,
third and fourth­order DGIGA/DGIGA­AFC patches (runs 46 to 54 of test matrix 14.7).

(a) TVB (𝑀 = 0) + KXRCF (fig. 14.13a)

p TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (min)

1 18.31 0.5 5.3
2 18.66 0.9 11.7
3 16.50 2.3 21.2

(b) Kriv. + KXRCF (fig. 14.13b)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (min)

18.31 0.5 6.5
19.63 0.9 13.5
18.41 1.4 17.1

(c) FCT + KXRCF (fig. 14.13c)

TV (𝑞ℎ1 ) 𝑃limiter
(%)

Elapsed
time (min)

8.95 0.8 6.8
9.60 1.2 21.1
10.12 1.2 48.9



15
Conclusions

This thesis has been concerned with the potential of high­order methods for application to scale­
resolving simulations of high­speed, possibly turbulent, flows. Rather than targeting a turbulent high­
speed flow in itself, I have instead studied the most fundamental aspects of three discontinuous finite
element methods (DGSEM, FR/CPR and DGIGA) in the relatively simple context of one­dimensional
hyperbolic transport equations (linear advection, inviscid Burgers equation and Euler equations). The
suitability for LES and DNS of the latter scheme, in relation to the former two, has thus been evaluated
indirectly.

In what follows, I express my conclusions based on the results discussed in each of the previous
chapters. Additionally, I highlight the most important shortcomings of the work and provide recommen­
dations for future research. This chapter is divided into five sections, the first four corresponding to
each of the research sub­questions posed in the introduction chapter. These double as an account,
chapter by chapter, of all tasks carried out. I then end with a final answer to the main research question
of this project that takes into account all previous considerations.

15.1. Order of accuracy
I started by verifying that all three spatial schemes, applied to Burgers equation, were indeed high
order. DGSEM, FR/CPR and (most configurations of) DGIGA are able to achieve their formal order
of accuracy, at least up to degree 4 and order 5. I was also able to detect an exponential type of
convergence when refining in polynomial/B­spline degree. For FR/CPR, I confirmed that the correction
parameter 𝜂 > 0 can only reduce the global order of accuracy with respect to that of DGSEM. I also
checked that all optimal explicit time­schemes of the SSP­RK type converged at their expected rates
as 𝛥𝑡 was reduced. The fact that all these results are consistent with the literature and/or theory is an
indication that, to some extent, the implementation used is error­free.

In relation to the research questions of this project, I found that DGIGA is able to achieve high order
in the same sense that DGSEM and FR/CPR do, albeit with the following caveats:

• This is only true for the modal treatment of DGIGA; nodal DGIGA reaches only second order
accuracy, regardless of its degree.

• Even though all DGIGA configurations show the expected order of accuracy when refining in 𝛥𝑥,
increasing the number of breakpoint spans (i.e. refining “in a CG way”) improves said order even
further, in some cases.

• Some configurations of DGIGA simply fail—in the sense that the algorithm executing them is
unstable. Neither linear stability limits nor condition number issues are able to explain this phe­
nomenon in all cases that it occurs.

For DGIGA, results suggest that the best way of extracting the most accuracy per degree of freedom
is to increase both B­spline degree and smoothness simultaneously. The next best options would be
to increase degree only (at a fixed smoothness), then number of breakpoint spans, and, lastly, number
of patches.

231
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15.1.1. Limitations
Only orders up to 5 could be confirmed. To measure the order of convergence, I qualitatively compared
the slope of a rectilinear (in logarithmic axes) portion of the error vs. degrees of freedom plot with the
formal order of accuracy of the scheme in question, based on its degree. However, I found that for
orders higher than 5 there were no linear portions in said plot. I am under the impression that this is
because the error stagnates (it does not reduce any further) before this linear portion can appear.

Also, no indication of superconvergence (orders of accuracy higher than p+1) was found for DGSEM
nor FR/CPR. I attribute this to the way in which I measure the numerical error and its norm.

15.1.2. Recommendations
All things considered, these results were evidence that higher order can lead to higher accuracy for
a fixed number of degrees of freedom, even in the nonlinear case of Burgers equation, as long as
no limiters and/or discontinuous solution are involved. Yet, it remains to be seen if, and under which
conditions, this translates into lower overall cost for a given accuracy; this is a possible direction of
future research.

An alternative way to define the numerical error would have been as the difference between the
approximate solution and the projection of the exact solution to the same finite dimensional space as
the former. Because the exact solution is generally not a piecewise polynomial, it would make sense
that the definition of the error used in this work can only ever reach orders of convergence up to p+1. In
the alternative definition, however, the error would only be dependent on the dispersive and dissipative
characteristics of the discretization. The fact that the theoretical order of accuracy estimate (A.65),
which predicts better­than­optimal orders, is based on spectral properties suggests that this way to
define the error would have led to the detection of superaccuracy. Moreover, this approach would
allow the computation of the error norm to be made directly by subtracting nodal or control point–wise
values (because both functions involved would then share a common discretization), thus avoiding the
need to numerically integrate the error. Nevertheless, one would still need to use quadrature to project
the exact solution into the approximate one’s trial space.

It might also be interesting to clarify the complicated relation that order of convergence seems
to have with the various refinement directions in DGIGA. Any insight on the unexplained nonlinear
instability could prove valuable as well.

15.2. Dispersion, dissipation and linear stability
Next, I studied the wave propagation behavior of the three schemes. I did this through an a priori
modified wavenumber analysis, valid only for a linear discretization. Time­step size bounds for liner
stability were also obtained.

In DGSEM, the higher the order, the wider the range of wavenumbers that are well resolved. The
catch, however, is that, simultaneously, there is a localized increase in dispersion error in the middle
portion of the underresolved wavenumber range. FR/CPR has one extra free parameter, the correction
factor 𝜂, which I simply sampled across its full range for each degree. Results for DGSEM and FR/CPR
once more matched the literature, indicating that the methodology used and its implementation was
sound.

Characterizing DGIGA was challenging due to it having three (constrained) parameters for a given
number of basis function per patch: degree, number of breakpoint spans and smoothness. I opted
to study the effect that each of these parameters had while keeping the other two fixed. While not
exhaustive, I consider that this has allowed me to provide a representative picture of DGIGA.

DGIGA presents the same trends as DGSEM when degree and smoothness are increased simulta­
neously; they even coincide for the Bernstein case (single breakpoint span). Balancing degree, smooth­
ness and/or number of breakpoint spans, I realized that it was possible to influence the dispersion and
dissipation curves of a given J more effectively than in FR/CPR. I also discovered a curious “bubbling”
phenomenon for DGIGA: as the number of degrees of freedom per patch increases (also influenced
by the rest of basis parameters) its Fourier footprint, usually a single contour, splits into three; the two
new ones split again, and so on. These “bubble” eigenmodes are reminiscent of those observed when
using a non­dissipative numerical flux across elements in DGSEM.

In all three schemes, a higher polynomial/B­spline degree was found to be associated with a more
restrictive Courant number. This bound can be relaxed mildly in FR/CPR, by increasing the correction
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factor. In DGIGA, since the number of degrees of freedom per patch is no longer dependent on degree
only, the potential for a much laxer linear stability constraint exists.

A striking feature of DGIGA is that its dispersion and dissipation relations for equal number of de­
grees of freedom, yet different degree, are comparable. This has powerful implications for the potential
of high­order schemes in LES and DNS: for a fixed number of degrees of freedom, lower­order DGIGA
offers dispersion and dissipation characteristics comparable to those of higher­order DGSEM.

15.2.1. Limitations and recommendations
The spectral characteristics reported focused mostly on the so­called primary or physical eigenmode,
which is representative only in the lower range of wavenumbers. In general, all eigenmodes contribute
to the wave propagation characteristics. Combined­mode analysis would have been a more reliable
way to measure the spectral response of high order schemes.

A more exhaustive exploration of the DGIGA configuration space is still possible. I doubt, however,
that it would add much additional insight. More general kinds of FR/CPR correction functions could
have been considered as well; recall that only the VCJH class was considered in this work.

15.3. Optimal FR/CPR and DGIGA configurations
The realization that DGIGA (also FR/CPR, but only to a minor extent) allowed the freedom to influence
dispersion, dissipation and linear stability independently from degree and/or order of accuracy, led me
to the inclusion of an additional chapter (and associated research sub­question) in the thesis. My goal
was simple: determine, for a given number of degrees of freedom per element/patch, the best (in some
sense) possible configuration of DGIGA and FR/CPR.

I had to establish a criterion through which to measure the quality of a discretization. This ended
up being the overall spectral error (both dispersive and dissipative contributions) across the entire
range of resolved wavenumbers, after an arbitrary simulation time, determined via a combined­mode
analysis approach. In addition, alternative criteria (theoretical order of accuracy, resolving efficiency,
ratio between dispersion and dissipation, and computational cost estimation) were also considered.
These, however, were not used as objective functions; they were only evaluated afterwards.

Optimized DGIGA turned out to possess advantageous spectral characteristics with respect to
DGSEM, starting from 6 degrees of freedom per patch. Interestingly, from that point on, the opti­
mal DGIGA patch happens to always be the one with a single breakpoint inside it. For FR/CPR, on
the other hand, no optima had barely any advantage over DGSEM in terms of the chosen objective
function; a result consistent with the literature, once more giving validity to the approach employed. In
addition, the following features of DGIGA optima were revealed:

• The ratio between their numerical dispersion and dissipation appears to be particularly favorable
for LES and/or DNS applications (the scheme has an increased inherent tendency to dissipate
its own dispersion errors).

• Their resolving efficiency (largest well­resolved wavenumber) is higher than DGSEM’s—despite
the former having a lower order of accuracy.

• They posses significantly (up to 70%) larger stability limits than DGSEM.

These findings suggest that DGIGA possesses inherently superior spectral characteristics com­
pared to DGSEM, at least based on the indirect metrics considered in this work. Said advantage is
clearly greater for DGIGA than for FR/CPR. It appears that that the true strength of high­order methods
might not actually be their order in itself, but rather the reduced dissipation and diffusion over a range of
wavenmumbers that usually—but not necessarily—comes with it. DGIGA, unlike FR/CPR (of the VCJH
type) and DGSEM, possesses the necessary freedom to exploit this. At the same time, nevertheless,
the higher resolving efficiency and stability limits of DGIGA seem not to be enough to compensate for
its extra cost in terms of floating point operations compared to DGSEM.

15.3.1. Limitations
Despite the promising features of optimal DGIGA schemes discovered, it must be pointed out that these
only occur for relatively high values of J, which could be impractical. Moreover, as in every optimization
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problem, these results were entirely dependent on the chosen objective function. Furthermore, the cost
model employed is based on number of floating point operations; this has two major limitations:

• It is entirely dependent on the implementation in question.

• More FLOPs are not necessarily correlated with higher computational cost (CPU­hours).

15.3.2. Recommendations
A high resolving efficiency was assumed to be beneficial in scale resolving simulations. Rigorously
testing the extent to which this is the case could be a promising direction for future work. The same
applies to the ratio between dispersion and dissipation as an indication of LES/DNS potential. It would
also be interesting to further clarify the role and relative importance of order of accuracy and spectral
properties in scale resolving simulations.

A more meaningful measure of computational cost could be based on the idea in [129, §3.2]. It con­
sists on expressing the cost associated with a specific implementation of a method as a nondimensional
value; the reference value used to nondimensionalize said cost is the one associated with a particular
run of the benchmark code TauBench [1]. Cost, in this approach, is actual wall­clock time (e.g. CPU­
hours) necessary to obtain a result with certain accuracy. The influence of hardware is minimized by
making the magnitude dimensionless.

15.4. Nonlinear physics
Both a priori modified wavenumber analysis and combined­mode analysis are semi­analytical tools
that quantify linear wave propagation physics. Next, I set out to show that the error in the solution
is influenced by the spectral properties predicted via combined­mode analysis. I was able to confirm
this for the linear advection equation. For Burgers equation, however, the advantage was barely per­
ceptible, if at all. This aspect of the thesis, i.e. whether the linear wave propagation characteristics of
DGIGA, FR/CPR and DGSEM can be used to predict suitability for scale resolving simulations, remains
inconclusive.

A posteriori modified wavenumber was generalized from finite volumes to DG (FR/CPR and DGIGA
included), and applied to the Euler system. I had hoped that this would allow a characterization of the
spectral properties of a discretization directly for the nonlinear case. However, I was able to show that its
predictions are incompatible with those of combined­mode analysis in the higher­than­first­order case
(whenever there is a multiplicity of eigenmodes). I therefore decided not to pursue this idea further.

15.4.1. Limitations and Recommendations
The fact that I was unable to detect a clear advantage for DGIGA in the nonlinear case is not evidence
that said advantage is not there. I would suggest the Taylor­Green vortex (a two­dimensional problem
for the Euler equations) as a more conclusive test case in that regard, based on the amount of attention
it has received in the high­order literature.

15.5. Discontinuous solutions, limiters and sensors
In the last chapter of this thesis, I finally turned my attention to the Euler equations and the issue of
limiting. I compared the TVB slope limiter, three hierarchical modal limiters, a simple WENO one, as
well as algebraic flux correction (for DGIGA). The hierarchical moment limiter of Krivodonova was found
to be the best of these. Among Legendre­based limiters, HWENO performed worst by far.

When used in combination with Krivodonova’s limiter, optimal DGIGA results were comparable to
those of DGSEM and optimal FR/CPR.

Using the proposed formulation, no DGIGA­AFC configuration is able to even compare against
Krivodonova’s hierarchical limiter. The least diffusive configuration corresponded to using a single patch
throughout the whole domain (IGA­AFC). Even then, however, accuracy was sub­par; comparable
to that of the TVDM slope limiter, which is regarded as outright unusable in the literature, due to its
tendency of needlessly diffusing smooth extrema.

I additionally tested two sensors, and found one of them, KXRCF, to be beneficial in relation to using
none at all. However, this seemed to depend on the specific test case being solved. For a test case
roughly mimicking a shock wave–turbulence interaction, I found that the combination of DGSEM with
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the KXRCF sensor and the TVDM limiter was about as accurate as the same scheme and sensor but
with Krivodonova’s limiter instead. Yet, DGIGA­AFC in combination with this same sensor, was much
less accurate.

Lastly, I showed that, even with the best sensor­limiter combinations, increasing the order of accu­
racy alone is not an effective way to increase accuracy in solutions that contain shocks or other dis­
continuous features. I blame this on the lack of h­refinement that would compensate the p­coarsening
around discontinuities.

15.5.1. Limitations and recommendations
No limiter currently seems to exists that is entirely satisfying; this is clear among the numerically tested
ones, and there is consensus in the literature in this regard. Popular approaches not considered in
this work include artificial viscosity, as well as more elaborate WENO limiters. An even more promis­
ing approach, albeit significantly more involved, would be to capture discontinuities by adapting both
discretization degree and mesh cell size around them.

15.6. Is DGIGA­AFC well­suited to LES of high­speed flows?
Regarding the DGIGA­AFC combination, results are conclusive: the proposed formulation is a failure.
AFC diffuses sharp features excessively and it does not preserve accuracy at smooth extrema. While
not as pronounced, this also happens in IGA (i.e. single patch DGIGA) and is, therefore, not a conse­
quence of my extension of AFC from IGA to DGIGA only. My impression, in light of the fact that AFC is
much more successful when used as a means of constraining the 𝐿2 projection of an initial condition,
is that it is the linearized version of AFC that is at fault.

When it comes to DGIGA on its own, however, my answer is more nuanced: I have found no strong
reason to discard it as a valid alternative to either DGSEM nor FR/CPR. In fact, DGIGA does offer the
promise of significant advantages for application in LES and DNS if we take at face value its numerical
dissipation and dispersion properties. Keeping in mind that lower degree implies reduced bandwidth
in the discrete operator matrices and larger maximum stable time­step sizes, the possibility of DGIGA
being able to use a lower degree than DGSEM and FR without compromising wave propagation accu­
racy could, in principle, be used to justify it as a better method. Recall, too, that the condition number
of B­spline mass and control Vandermonde matrices grows exponentially with B­spline degree—the
previous consideration thus also mitigates this problem. That being said, the only evidence I could
find in support of the idea that the good wave propagation properties observed in the linear advection
case actually carry over to nonlinear ones, was the fact that all three schemes (even with DGIGA being
of lower degree) produce practically identical results in the Shu­Osher test case when stabilized with
the hierarchical limiter of Krivodonova. Furthermore, in my implementation at least, DGIGA remains
significantly more costly per degree of freedom than both alternatives considered.

The weak inter­patch coupling proposed for IGA in this work has been shown to be effective for
the most part—the unexplained nonlinear instability issue notwithstanding. This is also very relevant,
because of the ill­conditioning of the control Vandermonde matrix1 becoming exponentially more pro­
nounced as the number of breakpoints per patch grows (figure 6.11; note that this is not the case
for the mass matrix, though, as seen in figure 6.10). By subdividing the domain into 𝐶−1­coupled
(DG) patches, themselves divided in turn into 𝐶0–𝐶p−1­coupled breakpoint spans, moderately high ap­
proximation degrees (p ≤ 10) and associated orders can be achieved while maintaining reasonable
condition numbers, both patch­wide and mesh­wide.

15.7. Recommendations for future work
The possibility remains that aspects not studied in this thesis, most relevant the advantages of an isoge­
ometric formulation in relation to meshing, could outweigh its cost overhead—which is the most salient
limitation encountered in this work for DGIGA itself. It is for this reason that I encourage future research
on IGA to be carried out in two or three dimensions, and for Euler or even Navier­Stokes physics di­
rectly: so that focus is placed on its geometric representation advantages, and that any comparisons
with more conventional schemes can be made directly for the relevant, nonlinear physics. Alternatively,

1The control Vandermonde matrix is a necessary ingredient of the modal formulation of IGA I have proposed; recall that I have
also shown that the nodal treatment is first­order­accurate only.
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if interest is on large eddy simulation, study of the one­dimensional viscous Burgers equation could also
be a very adequate next step.



A
Modified Wavenumber Analysis

This appendix describes the procedure used in this work to characterize the wave propagation (i.e.
diffusion and dispersion) and linear stability properties of the three methods studied in detail, namely:
discontinuous Galerkin spectral element method (DGSEM), flux reconstruction (FR/CPR) and discon­
tinuous Galerkin isogeometric analysis (DGIGA). It is largely based on the excellent account of the
approach given in [116, appendix B], with the notion of a modified wavenumber incorporated from [48,
appendix C]. The same approach particularized for modal DG and FR/CPR, along with results, can be
found in [53] and [120], respectively.

A.1. Discrete wavenumbers
Fundamentally, the approach described in this appendix can be regarded as a generalization of Von
Neumann analysis [50, §7.2] from a low­order finite volume context to a high­order finite element one.
Accordingly, the aim is to study the evolution in time of a monochromatic Fourier wave (in a fully lin­
ear setting and with no influence from boundary conditions) by comparing the exact (i.e. continuous)
and approximate (i.e. discrete) situations. In the continuous case, one may consider an infinite one­
dimensional domain 𝑥 ∈ [−∞,∞] in which any function satisfying certain conditions (see e.g. [19,
section 2.1]) can be represented as:

𝑞(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑞(𝜅)ei𝜅𝑥 d𝜅 , (A.1)

where i = √−1. The previous can be regarded as defining 𝑞(𝑥)∶ ℝ → ℝ as the inverse Fourier transform
of 𝑞(𝜅)∶ ℂ → ℂ. The wavenumber, defined as the number of wavelengths (𝜆) in a 2𝜋 period, takes any
real value, 𝜅 ∈ ℝ, in accordance to the wavelengths ranging continuously from infinity to zero, and
every Fourier wave having two possible orientations (each associated to a sign) except for 𝜅 = 0,
which represents a constant mode.

A discrete version of the situation described in the previous paragraph is required. The first step
is to construct a version of the previous infinite domain in such a way that does not require an infinite
number of degrees of freedom. This is possible if we instead consider a particular domain, 𝛺, and
let it repeat periodically to cover the entire real line. From here on, 𝑞(𝑥) is defined over 𝑥 ∈ 𝛺. As
a consequence, only a discrete number (yet still infinitely many) of wavenumbers are allowed, with a
maximum wavelength and minimum wavenumber (both corresponding to the 1st wavemode) equal to:

𝜆1 = 𝐿 ⟺ 𝜅1 =
2𝜋
𝐿 , (A.2)

where 𝐿 is the size of 𝛺. All other modes will be multiples of this fundamental wavenumber1, except
for the trivial case of a constant 𝑞(𝑥)—for which we reserve the zeroth wavemode:

𝜆0 = ∞ ⟺ 𝜅0 = 0 . (A.3)
1Note that the present derivation discards any wave that does not repeat itself in a period of 𝐿. This is not the same as having
periodic boundary conditions on the edges of 𝛺—in the latter situation, wavelengths 2𝐿, 2/3𝐿, 2/5𝐿,… would be allowed.
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Equation (A.1) is thus replaced by the Fourier series:

𝑞(𝑥) =
∞

∑
𝑛=−∞

𝑞𝑛ei𝜅𝑛𝑥 , (A.4)

with 𝑛 ∈ ℤ. Equation A.4 can be readily interpreted as the original function being expanded into the
infinite­dimensional space spanned by the complex exponential functions (i.e. Fourier basis functions).
Still, there is no lower bound for the wavelength—i.e. upper bound for the wavenumber.

Next, a uniform discontinuous finite element discretization is applied. For all discretization methods
considered in this work, the fundamental repeating unit is the sub­domain 𝛺𝑘, discontinuously coupled
to its two neighbors through a numerical flux. Any such element or patch is designated the generating
pattern of the discretization. For the discretization to be amenable to a Fourier representation, unifor­
mity is required at the generating pattern level. It must be both geometrical (i.e. all generating patterns
need to have the same size) as well as in terms of the finite dimensional spaces used in each one of
them. Within a generating pattern, however, no such restriction applies; therefore, nonuniform knot
vectors are not excluded from the analysis. Accordingly, 𝛺 is subdivided into K patches; not only is ev­
ery patch (𝛺𝑘) geometrically identical the the rest, but also each employs the same trial and test function
spaces as every other. The number of dimensions of these is J. All in all, there are Ndofs≔JK degrees
of freedom in every spatial period of the discrete signal, 𝐿 = K𝛥𝑥, and 𝛥𝑥/J represents a characteristic
length associated with the distance between two degrees of freedom.

Once more, the allowable wavenumbers in the approximate solution have been restricted. This
time, however, an upper bound to the wavelength appears: by the Nyquist­Shannon sampling theo­
rem, a minimum of two degrees of freedom are required to capture any given frequency [117]. As a
consequence, the smallest (positive) wavelength and largest wavenumber resolvable are:

𝜆Nyq =
2𝛥𝑥
J ⟺ 𝜅Nyq =

J𝜋
𝛥𝑥 . (A.5)

At this point, finally, 𝜅 has become both bounded and discrete. The wavenumbers that can be resolved
within a spatial period (domain 𝛺), split into an even number of patches K, each of them employing J
basis functions, are:

𝜅𝑛 = 𝑛
2𝜋
𝐿 ≡ 𝑛 2𝜋K𝛥𝑥 ≡ 𝑛

J𝜋
𝛥𝑥Ndofs2

, 𝑛 ∈ [−Ndofs2 , Ndofs2 ] ⊂ ℤ . (A.6)

A conventional discrete version of A.4, assuming Ndofs is even, is [19, p. 48]:

𝑞ℎ(𝑥) =
Ndofs/2−1

∑
𝑛=−Ndofs/2

𝑞ℎ𝑛ei𝜅𝑛𝑥 , (A.7)

or, if Ndofs is odd:

𝑞ℎ(𝑥) =
(Ndofs−1)/2

∑
𝑛=−(Ndofs−1)/2

𝑞ℎ𝑛ei𝜅𝑛𝑥 . (A.8)

In these, the total number of degrees of freedom, Ndofs, is preserved: the total number of distinct
wavemodes (including both orientations, positive and negative) that can be resolved in the periodically
bounded domain is also equal to Ndofs. Equations (A.7) and (A.8) express the approximate solution in
𝛺 as the linear combination of Ndofs Fourier waves.

A.2. Wave propagation
Let us consider the simplest hyperbolic problem—the advection equation (2.19)—written in dimension­
less form as follows:

𝜕𝑞
𝜕𝑡∗ +

𝜕𝑞
𝜕𝑥∗ = 0 , (A.9)
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Figure A.1: Fourier waves (dashed, black lines) and 𝐿2­projected discrete counterparts, for a periodic domain
discretized into 2 DGIGA patches (blue and red) of 3 degrees of freedom—in this case, control points—each
(cross markers). The fourth mode, which cannot be resolved with the available degrees of freedom, is aliasing the
second. The knot vector of each patch is: 𝛯 = [−1 −1 −1 1 1 1].
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Figure A.2: Smallest wavelength Fourier mode resolvable (top, dashed) and its 𝐿2 projection into finite­element
space (top, solid), along with the latter’s single­sided discrete Fourier spectrum2 (bottom); for three DGIGA dis­
cretizations of 𝛺 = [0, 2𝜋], each using 2 patches with knot vector 𝛯.

with a nondimensionalization such that:

𝑡 = 𝛥𝑥
𝑎 𝑡

∗ , 𝑥 = 𝛥𝑥𝑥∗ , (A.10)

𝛥𝑥 being the size of each patch in the uniform discretization, 𝑎 the advection velocity, and 𝑞(𝑥∗, 𝑡∗) the
scalar quantity being advected (assumed dimensionless without significant loss of generality).

A.2.1. Exact dispersion relation
By the principle of superposition, it is sufficient to focus on an exact solution function that consists of a
single (real­valued) Fourier wave in space:

𝑞(𝑡∗, 𝑥∗) = 𝑞(𝑡∗, 𝜅∗)ei𝜅∗𝑥∗ , (A.11)

all information regarding amplitude and phase as a function of time is contained in 𝑞 ∶ (ℝ,ℝ) → ℂ. One
way to encode this dependence is to define ̂̂𝑞 ∶ ℝ → ℂ such that:

𝑞(𝑡∗, 𝜅∗) = ̂̂𝑞(𝜅∗)e𝜃∗𝑡∗ , (A.12)

with 𝜃∗ ∈ ℂ (at least, a priori). Plugging (A.11) into (A.9) gives:

𝜃∗ + i𝜅∗ = 0 , (A.13)

a result known as the exact dispersion relation (in dimensionless form). Cast back in dimensional terms,
it reads 𝜃 = −i𝜅𝑎 ⟺ 𝜅 = i𝜃/𝑎. The exact behavior of a Fourier mode of wavenumber 𝜅 subject to
2Obtained by applying the fast Fourier transform (FFT) algorithm to a uniform J points­per­patch sampling of the approximate
solution, 𝑞ℎ(𝑥).
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linear advection is, therefore, described by the function:

𝑞(𝑡, 𝑥) = ̂̂𝑞(𝜅)ei𝜅(𝑥−𝑎𝑡) . (A.14)

In the literature, ℜ(𝜃) is known as the exact dissipation rate, and it being zero implies that the exact
solution does not change in amplitude as time goes on; this is the ideal non­dissipative behavior. In turn,
−ℑ(𝜃) is the exact angular frequency; (A.14) reveals that it being equal to 𝑎𝜅 implies that the exact
solution is advected with speed 𝑎 (regardless of the wavenumber)—the ideal non­dispersive case.
The previous considerations give rise to the modified wavenumber analysis, in which the imaginary
and real parts of 𝜅̃∗ = i𝜃̃∗ (the analogue to 𝜅∗, corresponding to the solution obtained with a particular
spatial discretization method) are compared with these exact ones. This quantity, 𝜅̃, is the modified
wavenumber.

A.2.2. Modified wavenumber
Let us consider the arbitrary instant 𝑡, and the wavenumber 𝜅𝑛 (the 𝑛 subscript indicates the specific
instance associated to this wavemode). The exact solution (A.14), projected3 into the finite­dimensional
trial space 𝑆ℎ𝑘 (𝛺), will define a vector of time­dependent degrees of freedom, 𝒒̂𝐿

2
𝑘 ∶ ℝ → ℝJ×1, such that:

∫
1

−1
̂̂𝑞(𝜅∗𝑛)ei𝜅

∗𝑛(𝑘+
1+𝜉
2 −𝑡∗)𝝓 d𝜉 = 𝓜̃𝒒̂𝐿2𝑘 (𝑡∗) , (A.15)

where 𝝓 = [𝜙1(𝜉), … , 𝜙J(𝜉)]
⊺
is the (column) vector of basis functions that span 𝑆ℎ𝑘 (𝛺). The mapping

to/from reference element space is explained in §3.1.1; the element index appears in the exponent
because 𝑥𝑘/𝛥𝑥 = 𝑘 (hence assuming, without loss of generality, that 𝑥1 = 𝛥𝑥). We can then define the
following vectors of degree of freedom–wise amplitudes (time­dependent and not, respectively):

𝒒̂𝐿2𝑛 (𝑡∗)≔ ̂̂𝒒𝐿2𝑛 e−i𝜅
∗𝑛𝑡∗ , ̂̂𝒒𝐿2𝑛 ≔ ̂̂𝑞(𝜅∗𝑛) (𝓜̃)−1∫

1

−1
ei𝜅

∗𝑛(
1+𝜉
2 )𝝓 d𝜉 , (A.16)

and use them to express the degrees of freedom of the projection of the exact solution into finite­element
space, in direct analogy with (A.11) and (A.14), as:

𝒒̂𝐿2𝑘 (𝑡∗) = 𝒒̂𝐿
2
𝑛 (𝑡∗)ei𝜅

∗𝑛𝑘 = ̂̂𝒒𝐿2𝑛 ei𝜅
∗𝑛(𝑘−𝑡∗) . (A.17)

It is reasonable to seek an approximate solution similar to (A.17), in the sense of its degrees of
freedom satisfying:

𝒒̂𝑘(𝑡∗) = 𝒒̂𝑛(𝑡∗)ei𝜅
∗𝑛𝑘 , (A.18)

i.e. such that any errors due to the discrete spatial derivative operator4 are concentrated in the still
time­dependent (and now also wavenumber­dependent) but no longer element­local, array of degrees
of freedom, 𝒒̂𝑛(𝑡∗). This makes it possible to represent the spatial residual operator as a matrix (recall
that we are dealing with a linear problem) 𝓡∗𝑛 ∈ ℂJ×J; its derivation is detailed in §A.3. With it, the
semi­discrete advection equation (A.9) becomes:

d𝒒̂𝑘
d𝑡∗ = 𝓡

∗
𝑛𝒒̂𝑘 . (A.19)

The eigendecomposition of 𝓡∗𝑛 results in a matrix of (right, column) eigenvectors and a diagonal
matrix of eigenvalues,

𝑽∗𝑛 = [𝒗∗1𝑛 𝒗∗2𝑛 … 𝒗∗J 𝑛] , 𝜣∗𝑛 = [
𝜃̃∗1𝑛 0

⋱
0 𝜃̃∗J 𝑛

] , (A.20)

such that:
𝓡∗𝑛𝑽∗𝑛 = 𝑽∗𝑛𝜣∗𝑛 . (A.21)

3Details are in §§3.2 and 3.5; for FR/CPR, trial functions (instead of test functions) are used in the projection, for the reasons
given in §5.3.1.

4Note that time is kept continuous in the present semi­discrete wave propagation analysis, i.e. it approximates the limit 𝛥𝑡 → 0.
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Let us use (A.18) and this factorization, (A.20), to re­state (A.19) as:

d
d𝑡∗ ((𝑽

∗
𝑛)
−1 𝒒̂𝑛(𝑡∗)) = 𝜣∗𝑛 ((𝑽∗𝑛)

−1 𝒒̂𝑛(𝑡∗)) , (A.22)

which is actually a trivial system of ODEs, in which each equation is decoupled from the rest; a solution
vector that satisfies it, and has the form of (A.12), is:

(𝑽∗𝑛)
−1 𝒒̂𝑛(𝑡∗) = [

̂̂𝓆1𝑛e𝜃̃
∗
1𝑛𝑡∗

⋮
̂̂𝓆J𝑛e𝜃̃

∗
J𝑛𝑡∗

] , (A.23)

with ̂̂𝓆𝑗𝑛 ∈ ℂ. At some initial instant (𝑡∗ = 0, without loss of generality), it must hold that 𝒒̂𝐿
2
𝑘 (0) = 𝒒̂𝑘(0).

The array of eigenmode­wise amplitudes, therefore, must be:

̂̂𝓺𝑛≔[
̂̂𝓆1𝑛
⋮
̂̂𝓆J𝑛
] = (𝑽∗𝑛)

−1 ̂̂𝒒𝐿2𝑛 . (A.24)

Comparing equations (A.23) and (A.12) leads to the conclusion that each of the eigenvalues of
the residual matrix, 𝜃̃∗𝑗𝑛, plays a similar role as 𝜃∗ does in the exact dispersion relation (§A.2.1). This
justifies the definition of a set of modified wavenumbers (one for each eigenvalue) that contain all
information related to the wave propagation properties of a given spatial semi­discretization. Each
modified wavenumber is defined, by analogy with (A.13), so that:

𝜅̃∗𝑗𝑛≔ i𝜃̃∗𝑗𝑛 . (A.25)

All in all, we now have an expression in which the degrees of freedom of the approximate solution are
the result of J eigenvector­shaped contributions (hence my use of the term eigenmodes5), each of the
form of (A.17) and (A.14):

𝒒̂𝑘(𝑡∗) =
J

∑
𝑗=1
𝒗∗𝑗𝑛 ̂̂𝓆𝑗𝑛e

i(𝜅∗𝑛𝑘−𝜅̃∗𝑗𝑛𝑡∗) , (A.26)

and so, we see that the degree of freedom–wise Fourier coefficients in (A.18) must satisfy:

𝒒̂𝑛(𝑡∗) = 𝑽∗𝑛𝓺̂𝑛(𝑡∗) , (A.27)

if we define 𝜿̃∗𝑛≔[𝜅̃∗1𝑛 … 𝜅̃∗J𝑛]
⊺
, and:

𝓺̂𝑛(𝑡∗)≔ ̂̂𝓺𝑛⊙ e−i𝜿̃∗𝑛𝑡∗ , (A.28)

where ⊙ represents the Hadamard (i.e. element­wise) product between two vectors or matrices, and
the exponential function applied to a vector is to be understood as the vector of element­wise expo­
nentials. It is worth pointing out that:

(𝑽∗𝑛 ̂̂𝓺𝑛)⊙ e−i𝜿̃∗𝑛𝑡∗ ≠ 𝑽∗𝑛 (̂̂𝓺𝑛⊙ e−i𝜿̃∗𝑛𝑡∗) . (A.29)

A.2.3. Multiplicity of eigenmodes
Van den Abeele [116, p. 229] explains the presence of multiple modified wavenumbers in the discrete
version of an exact solution that only contains a single one, with the fact that the characteristic poly­
nomial of the residual operator matrix has periodicity 2𝜋. The dimensionless wavenumber ranges (in
line with the bounds addressed in §A.1) within the interval −J𝜋 ≤ 𝜅∗𝑛 ≤ J𝜋. This allows for J modified
wavenumbers being associated to each baseline wavenumber, 𝜅𝑛, such that 𝜅̃∗𝑛 = 𝜅∗𝑛+2𝑙𝜋, with 𝑙 ∈ ℤ.

Moura et al. [92] point out that a single Fourier basis function will not—in general—correspond to
a single basis function of the semi­discretization’s trial space; the projection of the initial condition can
5Note that there are two kinds of “modes” present in this analysis: eigenmodes (index 𝑗) and wavemodes (index 𝑛).
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therefore energize various modes in a finite element’s eigenspace, and each of them will disperse
and dissipate in accordance to each own’s modified wavenumber. The combined effect of all these
eigenmodes could therefore be defined as the “true” spectral response of the method [5].

In the present report, I use the term physical eigenmode to refer to the single 𝜅̃∗𝑛 (among all 𝜅̃∗𝑗𝑛)
that best approximates the exact dispersion relation in the well­resolved6 range of wavenumbers. A
simple way to obtain it for every 𝜅∗𝑛 > 0 is as follows:

1. Set 𝑛 = 0 (zeroth wavemode).

2. Compute 𝜅∗𝑛 = 𝑛
2𝜋
K .

3. Compute all 𝜅̃∗𝑗𝑛 associated to 𝜅∗𝑛.

4. Set 𝜅̃∗𝑛 to the 𝜅̃∗𝑗𝑛 for which |𝜅̃∗𝑗𝑛 − 𝜅∗𝑛| is closest to zero (assume it is the physical eigenmode).

5. Set 𝑛 = 𝑛 + 1 (next wavemode).

6. Repeat steps 2 and 3.

7. Set 𝜅̃∗𝑛 to the 𝜅̃∗𝑗𝑛 for which |𝜅̃∗𝑗𝑛 − 𝜅̃∗𝑛−1| is closest to zero.

8. Repeat from step 5 while 𝑛 ≤ Ndofs
2 , then stop.

a strategy similar in spirit to that used by Hu et al. [53].

A.2.4. Dominant eigenmode
With some discretizations—such as DGwith centered numerical fluxes (𝛽 = 0)—the notions of physical
and spurious (or parasitic7) modes are not particularly useful [7, 92]. Instead, it is more convenient to
distinguish between primary and secondary eigenmodes, with the addendum that it is not always the
case that the primary mode dominates the spectral response of the scheme.

Asthana and Jameson [7] propose a simple way to determine which eigenmode is the dominant one,
at any given wavenumber, by measuring how the approximate solution’s energy is distributed among
them. The energy of a Fourier mode is associated with its amplitude squared; by similarity with (A.17),
the amplitudes associated with each eigenmode are the ̂̂𝓆𝑗𝑛 coefficients given by (A.24). The relative
contribution of each eigenmode to the approximate solution’s 𝑛­th wavemode can then be expected to
be equal to each one’s relative energy content, defined as:

𝛤𝑗𝑛≔
|̂̂𝓆𝑗𝑛|

2

∑J𝑟=1 | ̂̂𝓆𝑟𝑛|
2 ∈ [0, 1] . (A.30)

Alhawwary and Wang [5] report results supporting the hypothesis that the most energized mode is
representative of the “true” spectral behavior of the semidiscretization at wavenumbers such that 𝛤𝑗𝑛 ≫
𝛤𝑟𝑛, for 𝑟 ≠ 𝑗.

A.2.5. Combined mode semi­discrete analysis
A definitive answer to the question of which eigenmode, if any, should be taken as representative
of the spectral behavior of the discretization can be found in the approach of Vanharen et al. [117].
These researchers forgo the notion of modified wavenumbers altogether; instead they focus directly
on the effects of dispersion and dissipation—phase shift and energy loss, respectively, of the numerical
solution in relation to its exact counterpart—for any resolvable wavenumber, at some given time instant.
For a matter of consistency with the rest of this appendix, I shall present the semi­discrete version of
this approach [5], which neglects any dispersion or dissipation due to the temporal discretization.

6Section A.5.3 establishes the criterion used in this work to define this range.
7Designating secondary modes as parasitic is particularly misleading, since these can actually be beneficial [92]—analyzing the
physical or primary mode exclusively, can lead to an underestimation of the discretization’s performance.
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We have seen so far that the numerical solution to the linear advection problem with an initial con­
dition of wavenumber 𝜅∗𝑛, over the arbitrary generating pattern 𝛺𝑘, may be expressed as:

𝑞ℎ𝑘 (𝑡∗, 𝜉) = 𝝓⊺(𝜉)𝒒̂𝑛(𝑡∗)ei𝜅
∗𝑛𝑘 = 𝝓⊺(𝜉)𝑽∗𝑛 (̂̂𝓺𝑛⊙ e−i𝜿̃∗𝑛𝑡∗) ei𝜅∗𝑛𝑘 , (A.31)

while the 𝐿2 projection, into this same discrete solution space, of its exact counterpart is:

𝑞𝐿2𝑘 (𝑡∗, 𝜉) = 𝝓⊺(𝜉)𝒒̂𝐿
2
𝑛 (𝑡∗)ei𝜅

∗𝑛𝑘 = 𝝓⊺(𝜉)̂̂𝒒𝐿2𝑛 (𝑡∗)ei𝜅
∗𝑛(𝑘−𝑡∗) . (A.32)

Recall that the actual (i.e. not projected) exact solution, restricted to 𝑥 ∈ 𝛺𝑘, was:

𝑞𝑘(𝑡∗, 𝜉) = 𝑞(𝑡∗, 𝜅∗𝑛)ei𝜅
∗𝑛
𝜉+1
2 ei𝜅∗𝑛𝑘 = ̂̂𝑞(𝜅∗𝑛)ei𝜅

∗𝑛
𝜉+1
2 ei𝜅∗𝑛(𝑘−𝑡∗) . (A.33)

All three, in general, are functions of dimensionless time and space (in reference element coordinates).
In fact, let us say that they belong to the space 𝐿2(𝛺), of all complex­valued functions over the reference
element. Let us then introduce the following complex scalar product operator between two functions
of this kind:

∀(𝑓, 𝑔) ∈ (𝐿2 (𝛺))2 ⟨𝑓, 𝑔⟩≔∫
1

−1
𝑓(𝜉) conj (𝑔 (𝜉)) d𝜉 . (A.34)

This operator (A.34), on one hand, can be used to determine the phase shift between two functions.
In particular, the (dimensionless) phase lag8 between approximate and projected solutions is [5]:

𝛥𝛹∗𝑛(𝑡∗)≔arg (⟨𝑞ℎ𝑘 (𝑡∗, 𝜉), 𝑞𝐿
2
𝑘 (𝑡∗, 𝜉)⟩) . (A.35)

From it, wemay define phase lead as−𝛥𝛹∗𝑛 , and phase shift as |𝛥𝛹∗𝑛|. On the other hand, (A.34) defines
an energy norm for 𝐿2(𝛺) that can be used to evaluate the amplification factor of the approximate
solution [5]:

𝐺𝑛(𝑡∗)≔
‖𝑞ℎ𝑘 (𝑡∗, 𝜉)‖
‖𝑞𝐿2𝑘 (𝑡∗, 𝜉)‖

= √
⟨𝑞ℎ𝑘 (𝑡∗, 𝜉), 𝑞ℎ𝑘 (𝑡∗, 𝜉)⟩
⟨𝑞𝐿2𝑘 (𝑡∗, 𝜉), 𝑞𝐿

2
𝑘 (𝑡∗, 𝜉)⟩

. (A.36)

These two quantities represent one additional way to measure numerical dispersion and dissipation
errors (respectively). The advantage of this approach is that it takes into account the influence of all
eigenmodes in “the right way” [117], and can thus be considered to describe the true spectral response
of the spatial scheme [5]. For comparison purposes, the phase shift and amplification factor for a single
eigenmode (e.g. physical or dominant) of modified wavenumber 𝜅̃∗𝑛 are given by:

𝛥𝛹∗𝑛(𝑡∗) = (𝜅∗𝑛 −ℜ(𝜅̃∗𝑛)) 𝑡∗ , 𝐺𝑛(𝑡∗) = eℑ(𝜅̃∗𝑛)𝑡∗ , (A.37)

while those of the exact solution would be:

𝛥𝛹∗𝑛(𝑡∗) = 0 , 𝐺𝑛(𝑡∗) = 1 . (A.38)

It is worth highlighting that scalar products of the type (A.34) between two discrete functions can be
conveniently evaluated as follows. Consider, for example, (A.35). Note that:

⟨𝑞ℎ𝑘 (𝑡∗, 𝜉), 𝑞𝐿
2
𝑘 (𝑡∗, 𝜉)⟩ = ∫

1

−1
(

J

∑
𝑟=1

𝜙𝑟(𝜉)𝑞̂𝑟𝑘(𝑡∗)) conj(
J

∑
𝑗=1
𝜙𝑗(𝜉)𝑞̂𝐿

2
𝑗𝑘(𝑡∗)) d𝜉 . (A.39)

The complex conjugate operator is distributive both in addition and multiplication; therefore:

conj(
J

∑
𝑗=1
𝜙𝑗(𝜉)𝑞̂𝐿

2
𝑗𝑘(𝑡∗)) =

J

∑
𝑗=1
𝜙𝑗(𝜉) conj (𝑞𝐿

2
𝑗𝑛(𝑡∗)) e−i𝜅

∗𝑘 . (A.40)

8For any given 𝑧 ∈ ℂ, the operation arg(𝑧) extracts its phase angle; it is equivalent to ℑ (ln(𝑧)).
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Moreover, the product of sums can be expanded as the double sum over all term­by­term products,
i.e. :

(
J

∑
𝑟=1

𝜙𝑟(𝜉)𝑞ℎ𝑟𝑛(𝑡∗)ei𝜅
∗𝑘)(

J

∑
𝑗=1
𝜙𝑗(𝜉) conj (𝑞𝐿

2
𝑗𝑛(𝑡∗)) e−i𝜅

∗𝑘) =
J

∑
𝑟=1

J

∑
𝑗=1
𝜙𝑟(𝜉)𝑞ℎ𝑟𝑛(𝑡∗)𝜙𝑗(𝜉) conj (𝑞𝐿

2
𝑗𝑛(𝑡∗)) .

(A.41)
Hence, the scalar product between these two discrete functions ends up being equivalent to:

⟨𝑞ℎ𝑘 (𝑡∗, 𝜉), 𝑞𝐿
2
𝑘 (𝑡∗, 𝜉)⟩ ≡

J

∑
𝑟=1

J

∑
𝑗=1
𝑞ℎ𝑟𝑛(𝑡∗) conj (𝑞𝐿

2
𝑗𝑛(𝑡∗))∫

1

−1
𝜙𝑟(𝜉)𝜙𝑗(𝜉) d𝜉 , (A.42)

and an analogous result holds for the other two pairs of functions that appear in (A.36).

A.3. Residual operators in matrix form
Any spatial semi­discretization can be seen as an operator—the residual—being applied to the degrees
of freedom (each a function of time only) to give the time­derivative of the same. In the particular case of
a linear differential equation and a linear discretization (including a linear numerical flux function and no
limiting), this residual can be written as a linear combination of the degrees of freedom within the spatial
stencil. Furthermore, if the approximate solution happens to be periodic and one employs a perfectly
uniform discretization to represent it, it becomes possible to relate the degrees of freedom across
various generating patterns; the result is that a single matrix is sufficient to encode the entire spatial
semi­discretization operator. This is essentially an extension of the Fourier/von Neumann method to
high­order methods.

In what follows, a semi­discretization matrix 𝓡∗𝑛—to be used in (A.19)—for each of the research
objects of this work is deduced. Said matrix, in all three cases, can be factored as:

𝑴𝓡∗𝑛 = 2𝑪 + 𝑬 + e−i𝜅∗𝑛𝑬− + ei𝜅∗𝑛𝑬+ , (A.43)

with 𝑴,𝑪, 𝑬, 𝑬± ∈ ℝJ×J defined by (A.51) in DG, and (A.55) in FR/CPR.

A.3.1. DGSEM
The DGSEM semi­discretization (4.25), particularized to the advection equation, reads:

d𝒒̌⊺𝑘
d𝑡 𝓜𝑘 + [𝑎𝑞̆𝒍⊺𝑘]𝜕𝛺𝑘 = 𝑎𝒒̌

⊺
𝑘𝓒𝑘 , (A.44)

where 𝒒̌⊺𝑘 ∈ ℝ1×J is the vector of unknown Lagrange basis function coefficients, as this is a scalar
conservation law. Taking advantage of the fact that the spatial discretization is uniform (see §A.1), and
applying (A.10), the previous is equivalent9 to:

1
2𝓜̃

d𝒒̌𝑘
d𝑡∗ + [𝑞̆𝒍]𝜕𝛺𝑘 = 𝓒

⊺𝒒̌𝑘 . (A.45)

The boundary flux term is:
[𝑞̆𝒍]𝜕𝛺𝑘 = 𝑞̆

𝑅
𝑘 𝒍(1) − 𝑞̆𝐿𝑘𝒍(−1) , (A.46)

with 𝑞̆ being associated with a linear numerical flux function, such as the following:

𝑞̆ (𝑞𝐿 , 𝑞𝑅) = 1 + 𝛽
2 𝑞𝐿 + 1 − 𝛽2 𝑞𝑅 , (A.47)

in which the value of 𝛽 ∈ ℝ determines the amount of upwinding. All methods studied in this report
employ the fully upwind Riemann flux10, which is reproduced by setting 𝛽 = 1. In favor of generality,
9Note that 𝛥𝑥𝑘2 𝓜̃𝑘 =𝓜𝑘.
10Typically, 0 ≤ 𝛽 ≤ 1 (central to upwind).
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𝛽 will be kept arbitrary in this appendix; for an arbitrary element 𝛺𝑘, the left and right numerical fluxes
are:

𝑞̆𝑅𝑘 =
1 + 𝛽
2 𝒍⊺(1)𝒒̌𝑘 +

1 − 𝛽
2 𝒍⊺(−1)𝒒̌𝑘+1 , 𝑞̆𝐿𝑘 =

1 + 𝛽
2 𝒍⊺(1)𝒒̌𝑘−1 +

1 − 𝛽
2 𝒍⊺(−1)𝒒̌𝑘 . (A.48)

It is now possible to write the semi­discrete advection equation as:

𝓜̃d𝒒̌𝑘
d𝑡∗ = (2𝓒

⊺ + 𝑬) 𝒒̌𝑘 + 𝑬−𝒒̌𝑘−1 + 𝑬+𝒒̌𝑘+1 . (A.49)

Note that, in general, all degrees of freedom in the three patches within the stencil of the discretiza­
tion appear in the previous system of ODEs. In order to simplify the problem further, it is necessary
to exploit the periodicity of the discretization such that a relationship between the degrees of freedom
across multiple patches can somehow be encoded in the matrix of coefficients of the system. Recalling
(A.18),

𝒒̌𝑘(𝑡∗) = 𝒒̂𝑛(𝑡∗)ei𝜅
∗𝑛𝑘 , (A.50)

and by the properties of the exponential function, 𝒒̌𝑘±1 ≡ 𝒒̌𝑘e±i𝜅
∗𝑛 . Equation (A.49) can therefore be

rewritten in the form of (A.43), defining:

𝑴≔𝓜̃ , (A.51a)
𝑪≔𝓒⊺ , (A.51b)
𝑬≔(1 − 𝛽)𝒍(−1)𝒍⊺(−1) − (1 + 𝛽)𝒍(1)𝒍⊺(1) , (A.51c)
𝑬−≔(1 + 𝛽)𝒍(−1)𝒍⊺(1) , (A.51d)
𝑬+≔(−1 + 𝛽)𝒍(1)𝒍⊺(−1) . (A.51e)

A.3.2. FR/CPR
Equation (5.14), when particularized for the scalar advection equation, becomes11:

d𝒒̌⊺𝑘
d𝑡 + 2𝑎

𝛥𝑥𝑘
(𝒒̌⊺𝑘𝓓+ 𝛥𝑞̆𝐿𝑘𝜶⊺𝐿 + 𝛥𝑞̆𝑅𝑘𝜶⊺𝑅) = 0 , (A.52)

which, once transposed and in dimensionless form, simplifies to:

d𝒒̌𝑘
d𝑡∗ + 2 (𝓓

⊺𝒒̌𝑘 + 𝜶𝐿𝛥𝑞̆𝐿𝑘 + 𝜶𝑅𝛥𝑞̆𝑅𝑘 ) = 0 . (A.53)

This time, it is the difference between corrected and uncorrected fluxes at each edges that needs to be
expanded in terms of the (nodal) degrees of freedom of the local stencil:

𝛥𝑞̆𝐿𝑘 = 𝑞̆𝐿𝑘 − 𝑞ℎ𝑘 (𝑡∗, −1) =
1 + 𝛽
2 𝒍⊺(1)𝒒̌𝑘−1 −

1 + 𝛽
2 𝒍⊺(−1)𝒒̌𝑘 , (A.54a)

𝛥𝑞̆𝑅𝑘 = 𝑞̆𝑅𝑘 − 𝑞ℎ𝑘 (𝑡∗, 1) =
1 − 𝛽
2 𝒍⊺(−1)𝒒̌𝑘+1 −

1 − 𝛽
2 𝒍⊺(1)𝒒̌𝑘 . (A.54b)

Proceeding as in the previous subsection, 𝓡∗𝑛 in the FR/CPR case is found to adhere to (A.43) if:

𝑴≔𝓜̃ ≡ 𝑰 , (A.55a)
𝑪≔−𝓒⊺ ≡ −𝓓⊺ , (A.55b)
𝑬≔(1 + 𝛽)𝜶𝐿𝒍⊺(−1) + (1 − 𝛽)𝜶𝑅𝒍⊺(1) , (A.55c)
𝑬−≔−(1 + 𝛽)𝜶𝐿𝒍⊺(1) , (A.55d)
𝑬+≔−(1 − 𝛽)𝜶𝑅𝒍⊺(−1) . (A.55e)

11For economy of notation, let 𝜶⊺≔𝑔′(𝝃⊺) ∈ ℝ1×J.
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A.3.3. DGIGA
Equation (6.14)—which I refer to as the modal flux treatment—becomes, for the advection equation:

𝑭̂𝑘 = (𝑎𝑸̂𝑘𝑵(𝝃⊺)) (𝑵(𝝃⊺))
−1 ≡ 𝑎𝑸̂𝑘 , (A.56)

i.e. it is identical to (6.15), the nodal flux treatment. Once particularized to the current case, the general
semi­discrete conservation law for DGIGA, (6.16), becomes precisely analogous to that of DGSEM—
the only difference being the type of basis functions employed (B­splines, in this case):

1
2𝓜̃

d𝒒̂𝑘
d𝑡∗ + [𝑞̆𝑵]𝜕𝛺𝑘 = 𝓒

⊺𝒒̂𝑘 . (A.57)

Consequently, the matrices in (A.43) for DGIGA are defined analogously to the DGSEM ones, (A.51).

A.4. Linear stability
Consider (A.22) again. Each of its components encodes advection for a single eigenmode, with all
information associated with the spatial derivative of the solution contained in 𝜃̃∗𝑗𝑛. Linear stability anal­
ysis, for high­order schemes, consists on determining the conditions (i.e. time­step size) under which
the contribution to the solution due to the 𝑗­th eigenmode reduces (stability), increases (instability) or
remains the same (equilibrium) in magnitude, as time advances. In the method of lines (see §7.1), the
role of a time integration scheme is to approximate the term at the right­hand­side of:

𝓆𝑗𝑛(𝑡∗ + 𝛥𝑡∗) − 𝓆𝑗𝑛(𝑡∗) = 𝜃̃∗𝑗𝑛∫
𝑡∗+𝛥𝑡∗

𝑡∗
𝓆𝑗𝑛(𝑡∗)d𝑡∗ , (A.58)

an equation that arises when integrating a component of (A.22) in time, from the current instant, 𝑡∗ (in
which the solution is known), to the next, 𝑡∗ + 𝛥𝑡∗.

As an example, consider the implicit Euler time­scheme (which also corresponds to the first­order
implicit finite­difference approximation to the first time derivative). The integral in question is approxi­
mated as:

∫
𝑡∗+𝛥𝑡∗

𝑡∗
𝓆𝑗𝑛(𝑡∗)d𝑡∗ ≈ 𝛥𝑡∗𝓆𝑗𝑛(𝑡∗ + 𝛥𝑡∗) . (A.59)

Using this approximation in (A.58), we obtain:

𝓆𝑗𝑛(𝑡∗ + 𝛥𝑡∗)
𝓆𝑗𝑛(𝑡∗)

=
̂̂𝓆𝑗𝑛e𝜃̃

∗
𝑗𝑛(𝑡∗+𝛥𝑡∗)

̂̂𝓆𝑗𝑛e𝜃̃
∗
𝑗𝑛𝑡∗

= e𝜃̃
∗
𝑗𝑛𝛥𝑡∗ ≈ 1

1 − 𝛥𝑡∗𝜃̃∗𝑗𝑛
. (A.60)

This shows that:

• Nontrivial initial conditions ( ̂̂𝓆𝑗𝑛 ≠ 0) have no effect on linear stability.

• Exact time integration modifies the solution by a factor of e𝜃̃
∗
𝑗𝑛𝛥𝑡∗ , per time­step.

• The use of an approximate time integration scheme results in some approximation to the previous.

A.4.1. Amplification factor
It is always possible (for any linear time­scheme) to follow these same steps and define an amplification
factor function, 𝐺 ∶ ℂ → ℂ, such that:

𝐺(𝑧) ≈ e𝑧 . (A.61)

This function only depends on the time scheme (not on the spatial operator) as long as 𝑧 is allowed to
take any value in the complex plane, to which 𝐺 associates a complex value. In fact, the role of the
spatial scheme is to restrict such values to 𝑧 = 𝛥𝑡∗𝜃̃∗𝑗𝑛.

By treating 𝑧 ∈ ℂ as an independent variable, it is possible to study the stability of each semi­
discretization separately. An iso­contour of |𝐺(𝑧)| joins together the values of 𝑧 that result in certain
amplification. The set of all 𝑧 for which |𝐺(𝑧)| = 1 enclose the stability region of the scheme, which
is the collection of all 𝑧 for which |𝐺(𝑧)| < 1, and for which the time­integration is stable. For implicit
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Euler, the amplification factor function gives a stability region encompassing the entire complex plane
except for the circle tangent to the imaginary axis with center at 𝑧 = 1. An equivalent expression can
be obtained for any linear scheme, including those with multiple stages (e.g. Runge­Kutta) or steps
(e.g. Adams­Bashforth). Amplification factor functions of several SSP Runge­Kutta schemes are listed
in §7.3.

A.4.2. Fourier footprint
The collection of all eigenvalues of a spatial discretization—all eigenmodes, all wavenumbers—is fre­
quently referred to as its Fourier footprint. These may be thought of as curves12 in the complex plane13.
The (nondimensional) time­step size acts as a scaling factor for said curves. All such figures in this
report are scaled so that all eigenvalues are within the |𝐺(𝑧)| = 1 contour (also shown) for a particular
time scheme (3­stage, 3rd order strong­stability­preserving Runge­Kutta).
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Figure A.3: Dispersion relation (top, left), dissipation relation (bottom, left) and Fourier footprint (right) of the
upwind ( ) and centered ( ), p = 0 discretizations. Their footprints are shown scaled by the Courant numbers
1.256 and 1.732, respectively.

A.4.3. Time­step size limits
The influence that the spatial semi­discretization scheme has on stability is thus encoded in the set
of points in the complex plane—the eigenvalues of its spatial operator—which, in combination with an
amplification factor function, will result in certain amplification factor magnitude. For a given Fourier
mode to be stable, none of the eigenmodes associated to it can have an amplitude factor greater than
one. Linear stability of a full discretization is therefore guaranteed whenever the entire Fourier footprint
of the spatial semi­discretization, scaled by the dimensionless time­step size, lies within the stability
region of the time­integration scheme it is paired with.

12These curves correspond to the limit as 𝛥𝑥 → 0. In practice, they are sampled at KJ wavenumbers, uniformly distributed
around (and including) 𝜅 = 0; K is the number of generating patterns (i.e. patches or elements) within 𝛺, and J is the number
of basis function in each.

13Alternatively, one can regard the previous as projections onto the complex plane of the three­dimensional curves shown in
figure A.4.
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Figure A.4: Modified wavenumbers of figure A.3 (dimensionless, but with no scaling), now seen as so­called Bloch
waves [121].

This dimensionless time­step size expresses a ratio between the physical and numerical speeds of
propagation of information, and thus can be seen as a Courant number (𝜍). More precisely, the current
nondimensionalization gives:

𝛥𝑡∗ = 𝑎
𝛥𝑥/𝛥𝑡 ≡ 𝜍 , (A.62)

which matches the definition of the Courant number used in this report. Every combination of time and
space semi­discretizations will have a maximum stable Courant number, defined as

𝜍max ≡ 𝛥𝑡∗max≔ inf {𝛥𝑡∗ ≥ 0 : ∀𝑗, 𝑛 |𝐺 (𝛥𝑡∗𝜃̃∗𝑗𝑛)| = 1} , (A.63)

i.e. the largest 𝜍 for which no point of the Fourier footprint of the spatial scheme falls outside the stability
region of the time scheme. It is possible, nevertheless, that a discretization has 𝜍max = 0; it is then said
to be unconditionally unstable.

A.5. Quantifying dispersion and dissipation
With (A.25) as the definition of the modified wavenumber, the definitions of modified dissipation rate
and modified angular frequency arise naturally as analogues to their exact counterparts, derived from
(A.13). Assuming that a single representative 𝜅̃∗𝑛 modified wavenumber can be found for every wave­
mode, it is conventional in the literature to qualitatively judge the spectral performance of a scheme by
plotting ℜ(𝜅̃∗𝑛) and ℑ (𝜅̃∗𝑛) against 𝜅∗𝑛, for 𝑛 ≥ 0. This leads to the definition of 𝜅̃∗ ∶ ℝ → ℂ as a (dimen­
sionless) modified wavenumber associated to the (also dimensionless) exact wavenumber 𝜅∗. With
high­order discretizations, it is typical to normalize the exact and modified (dimensionless) wavenum­
bers by J, the number of basis functions (i.e. degrees of freedom) per patch/element; this is because
𝜅∗ ∈ [−𝜋J, 𝜋J]. Moreover, the following symmetry around the origin holds: 𝜅̃∗(𝜅∗) = − conj 𝜅̃∗(−𝜅∗)
(real parts are antisymmetric, imaginary parts are symmetric).

A.5.1. Order of accuracy
The ability of a method to approximate the exact dispersion and dissipation relations can be measured
by taking the absolute value of the (complex) difference between exact and modified wavenumbers:

𝐸𝑇(𝜅∗)≔ |𝜅̃∗(𝜅∗) − 𝜅∗| . (A.64)

Following [55] and [120], one may compute the following theoretical order of accuracy associated to
the dispersion and dissipation errors of a spatial semi­discretization by evaluating (A.64) at a pair of
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well­resolved wavenumbers, 𝜅∗ and 𝜅∗
2 :

𝐴𝑇≔
ln (𝐸𝑇 (𝜅∗)) − ln (𝐸𝑇 (

𝜅∗
2 ))

ln (2) − 1 . (A.65)

A piecewise polynomial solution discretization of degree p, in general, can be expected to converge
such that |𝑞ℎ − 𝑞| = 𝒪 (𝛥𝑥p+1). In practice, however, it is sometimes the case that quantities such as
the period of oscillation in an unsteady wake, or even—hypotetically—a boundary layer profile around
a sufficiently smooth geometry, are superaccurate [8], in the sense that their error reduces at a higher­
than­expected rate as themesh is refined—typically, for DG,𝒪 (𝛥𝑥2p+1). The quantity𝐴𝑇 is a theoretical
estimate of said superconvergence order [55, 120]14.

A.5.2. Resolving efficiency
As the discretization is refined—or, equivalently, for low enough wavenumbers—𝜅̃∗ ≈ 𝜅∗. The highest
wavenumber that a given discretization can resolve accurately is another important indicator of its
performance (the higher the better). Lele [81] proposed to define as the so­called resolving efficiency of
a scheme as the fraction between its highest well­resolved wavenumber, and its highest resolvable one.
This, however, still requires some criterion to distinguish between well­resolved and badly­resolved
wavenumbers.

Typically, the highest well­resolved (dimensionless) wavenumber is simply defined as:

𝜅∗𝑓≔ sup{𝜅∗ > 0 : 𝐸𝑇(𝜅
∗)

𝜅∗ ≤ 𝜀} , (A.66)

with an error threshold in the range 0.001 ≤ 𝜀 ≤ 0.1 [7, 81]—I use 𝜀 = 0.01. Any 𝜅∗ < 𝜅∗𝑓 is considered
to be well­resolved, and the resolving efficiency is:

𝑒1≔
𝜅∗𝑓
𝜋J . (A.67)

The larger 𝑒1 is, the more wavelengths can be resolved accurately per degree of freedom.

A.5.3. Numerical cutoff wavenumber
Different from the resolution threshold set by 𝜅∗𝑓, but also of interest, is the wavenumber at which
numerical dissipation starts to become significant. Numerical dissipation can act as an implicit sub­
grid­scale model in LES, damping any scales beyond some specific wavenumber.

Moura et al. [92] argue for what they refer to as the “1% rule”, a rule­of­thumb criterion used to
define this cutoff threshold. Given a semi­discretization, let:

𝜅∗1%≔ sup{𝜅∗ > 0 : 1 − e
ℑ(𝜅̃∗)
J ≤ 0.01} , (A.68)

i.e. the wavenumber at which any propagating wave (regardless of its speed) has its amplitude scaled
to 99%, per degree of freedom crossed15. Numerical evidence suggests that this criterion is able to
accurately predict the beginning of the numerically induced dissipation range in underresolved turbulent
flow simulations, at least for DG schemes [93].

A.5.4. Dispersion to dissipation ratio
Within the well­resolved range, it is desirable for a semi­discretization to minimize 𝐸𝑇. As dispersion
errors start to become important, however, it is no longer optimal to have the least amount of dissipation
possible (at least in LES, there will—by definition—be some underresolved wavenumbers present in
the simulation). Instead, it would be desirable to have large numerical dissipation acting only on those
waves that are being advected at erroneous speeds, leaving the well­resolved ones untouched. One
may quantify this as follows, a slight generalization of the ideas in [3].
14Assuming that the Courant number is kept constant as 𝛥𝑥 is refined [8, p. 6].
15See §A.5.4.
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Consider, as the exact solution, a monochromatic wave of the form of (A.33), with (dimensionless)
wavenumber 𝜅∗. In any such wave, energy (and, equivalently, information) propagates through the
domain at the so­called group velocity [85, 115, 119]:

𝑣∗𝑔≔
d𝜅∗
d𝜅∗ ≡ 1 . (A.69)

This speed, defined as the derivative of the angular frequency with respect to the wavenumber, is
identically equal to unity for the exact advection problem under the current non­dimensionalization
(A.10). In the exact solution, any perturbation (regardless of 𝜅∗) travels along the domain at a rate of “J
degrees of freedom per dimensionless unit of time”, with no change in amplitude.

In the discrete case, we have seen that multiple eigenmodes arise (§A.2.2). Any energy present
initially in the numerical solution will be distributed among all these modes (see §A.2.4). It is reasonable
to assume, then, that the fraction of the initial energy associated with a given eigenmode—e.g. the 𝑗­th
one—will affect the solution independently of the others, and in accordance to this eigenmode’s wave
equation. Each of these “eigenwaves” will then carry a fraction of the total energy initially available in
the solution at its own modified group velocity:

𝑣̃∗𝑔,𝑗≔ℜ(
d𝜅̃∗𝑗
d𝜅∗ ) . (A.70)

If the numerical scheme is dispersive, 𝑣∗𝑔 ≠ 𝑣̃∗𝑔,𝑗. This means that, as time progresses, the energy
content of the 𝑗­th eigenmode gets further and further away from its desired position (that which would
correspond to the exact solution). We may, in that case (significant dispersion), associate said energy
to an undesired perturbation traveling at a dimensionless speed of 𝑣∗𝑔−𝑣̃∗𝑔,𝑗 along the domain. In terms
of number of degrees of freedom—of which, on average, there are J per every dimensionless unit of
distance (i.e. patch width)—the reach of this spurious perturbation, as a function of (dimensionless)
time and wavenumber, is: J|𝑣∗𝑔 − 𝑣̃∗𝑔,𝑗|𝑡∗.

Nevertheless, if, in addition to being dispersive, a given semi­discretization is also dissipative, the
amplitude of the aforementioned perturbation will also be subjected to damping. This is an exponential
decay process (ℑ(𝜅̃∗𝑗) < 0 is assumed); the time it takes for the amplitude to reduce to a given fraction
1/𝑟 of its initial value is:

1
𝑟 = eℑ(𝜅̃

∗
𝑗 )𝑡∗1/𝑟 ⟹ 𝑡∗1/𝑟≔

− ln(𝑟)
ℑ (𝜅̃∗𝑗)

, (A.71)

and, for simplicity, let us define 𝑡1/e (𝑟 = e) to be the lifetime16 of this perturbation. In conclusion, the
mean lifetime—in terms of number of degrees of freedom “polluted”—of any spurious energy content
in the numerical solution associated to the 𝑗­th eigenmode, is:

𝜒𝑗(𝜅∗)≔
J |1 − ℜ(d𝜅̃

∗
𝑗

d𝜅∗ )|

−ℑ (𝜅̃∗𝑗)
, (A.72)

a function of the (dimensionless) wavenumber only.
Furthermore, since each eigenmode may have a different amount of energy, let us define the overall

effect of all eigenmodes as the weighted average between the relative energy content of each pertur­
bation, and its lifetime:

𝜒(𝜅∗)≔
J

∑
𝑗=1
𝛤𝑗𝜒𝑗(𝜅∗) . (A.73)

The largest the spurious energy content, and the largest its lifetime, the worse. Therefore, I would argue
that 𝜒 should be as low as possible in the underresolved wavenumber range. A concise way to mea­
sure this effect is through the following quantity—the mean lifetime, averaged over all underresolved
wavenumbers:

‖𝜒‖≔ 1
J𝜋 − 𝜅∗𝑓

∫
J𝜋

𝜅∗𝑓
𝜒(𝜅∗)d𝜅∗ , (A.74)

16This definition is a standard convention, alternative to the perhaps more familiar half­life, 𝑡1/2 (𝑟 = 2).
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using 𝜅∗𝑓 from §A.5.2. Equation (A.74) purposefully excludes the well­resolved wavenumber range, for
which 𝜒 is meaningless; in practice, this means that any indetermination in 𝜒𝑗 as 𝜅∗ → 0 is avoided.
Adaptive quadrature can be used to compute (A.74); however, because the integrand happens to be
highly non­smooth, I use the rather coarse adaptation tolerances 1 × 10−5 (absolute) and 1 × 10−3
(relative).



B
Time Complexity Estimation

This appendix details the estimation of cost per step (in FLOPs) used in §12.4. The approach, based on
my implementation in particular, simply consists on selecting those methods representative of the cost
of a time step (indicated in listing B.1), and tracking the number of floating point operations involved in
every subroutine invoked by these. Its outcome is the cost model encoded by (12.15).

In what follows, I list every method involved in advancing the numerical solution from one step
to the next, highlight those nested functions the cost of which I take into account, and indicate the
number of floating­point operations made in every line of their source code—summation, subtraction,
multiplication or division between two floating­point scalars; each of these counts as one FLOP. These
estimates assume that the PDE being solved is the linear advection equation (2.19), such that the
solution over a given element or patch is encoded by a single vector of J entries. Moreover, the time­
scheme is SSP­RK3(3) from §7.3.3 (every time­step is subdivided into three stages), and periodic
boundary conditions are employed at both ends of the domain.

Listing B.1: Fragment of the Solver.stepForwardmethod (inherited by SSP_RK3) that advances the solution by
one time­step. Only the two highlighted methods (and their nested function calls) will be taken into account in the
cost estimation.

1 function STOP = stepForward(this,mesh)
2 ⟨...⟩
3 % Advance one time‐step:
4 this.stageNow = 0; % reset stage counter
5 while this.stageNow < this.stageCount
6 % Advance stage counter:
7 this.stageNow = this.stageNow + 1;
8 % Evaluate solution residuals:
9 mesh.computeResiduals(this.physics,this) See B.2
10 % Advance solution by one stage:
11 for element = mesh.elements
12 this.applyStage(element) 4JFLOPs (B.16)
13 end
14 % Apply limiter after each stage:
15 this.limiter.applyStage(mesh,this)
16 end
17 % Apply limiter after a full time step (one additional time):
18 this.limiter.applyStep(mesh,this)
19 ⟨...⟩
20 end

The software these estimates will be deduced for (see §9.1) makes use of the object­oriented
paradigm, meaning that the step update has been designed into separate and non­overlapping log­
ical entities. As a consequence, all differences between DGIGA, FR/CPR and DGSEM (all of them
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derived from a common parent class) are concentrated into the one method that computes the numeri­
cal residual’s expansion coefficients. All computations made within a single time­scheme stage update
can be grouped into the following three categories:

• Discontinuous coupling of the current solution across element interfaces

• Computation of the current numerical residual

• Computation of the numerical solution at the following time­stage

Any other costs, most of which occurring only once per simulation (e.g. projection of initial conditions,
assembly of mass and gradient matrices), will be neglected. So will any overheads associated with
function calls, memory access, pointer arithmetic, and similar.

B.1. Discontinuous coupling
In DG methods the coupling between elements is made via a numerical flux, typically obtained by solv­
ing a Riemann problem (see §3.3.3). This section details the cost of all methods involved in computing
said interface fluxes—including the treatment of boundary conditions, which are enforced weakly (§3.6).
Note that most methods in this section require knowledge of each element’s two immediate neighbors,
as well as the edge that each pair of elements share.

Listing B.2: Method computeResiduals of the Mesh class. Called in B.1, once per stage.

1 function computeResiduals(this,physics,solver)
2 % Updates the residuals of all cells in a mesh, using the
3 % spatial discretization scheme assigned to the mesh.
4 %
5 % Compute the state at both edges of each element:
6 [this.elements.localTimeDelta] = deal(inf);
7 this.elements.interpolateStateAtEdges 4JKFLOPs (B.3)
8 % Also for ghost elements:
9 this.boundaries.apply(physics,solver) 8JFLOPs (B.4)
10 % Compute the Riemann flux at each edge:
11 this.edges.computeFlux(physics) 5(K + 1)FLOPs (B.6)
12 % Apply the spatial discretization operator to each element:
13 this.elements.computeResiduals(physics) See B.9
14 end

Listing B.3: Method interpolateStateAtEdges of the Element class. Called in B.2 and B.5.

1 function interpolateStateAtEdges(these)
2 % Evaluates and stores the state vector at these elements' edges.
3 % Vector input.
4 for this = these
5 this.stateL = this.states*this.basis.left; 2JFLOPs
6 this.stateR = this.states*this.basis.right; 2JFLOPs
7 end
8 end

Listing B.4: Method apply of the Boundary class. Its role is to enforce boundary conditions in a generic manner.
Called by B.2.

1 function apply(these,physics,solver)
2 % Updates the ghost element of each of these boundaries
3 % according to each's scalar apply method.
4 these(1).apply_scalar(physics,solver,true) 4JFLOPs (B.5)
5 these(2).apply_scalar(physics,solver,false) 4JFLOPs (B.5)
6 end
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Listing B.5: Method apply_scalar of the Periodic class, a particular type of Boundary. It particularizes the
ghost element approach of imposing boundary conditions to the periodic case. Used twice in B.4—once for each
boundary of the mesh.

1 function apply_scalar(this,varargin)
2 % Updates the ghost element's states with those of its ”real”
3 % counterpart (i.e. the copy of it owned by the mesh).
4 this.ghostElement.states = this.oppositeBoundElement.states;
5 this.ghostElement.interpolateStateAtEdges 4JFLOPs (B.3)
6 end

Listing B.6: Method computeFlux of the Edge class, called in B.2.

1 function computeFlux(these,physics)
2 % Computes and sets numerical fluxes (i.e. solutions of the
3 % Riemann problem at an edge) on both elements sharing each of
4 % these edges, including a conventional sign. Also sets a local
5 % time‐step size based on each Riemann problem's characteristic
6 % speeds. Vector input.
7 for this = these
8 [flux,waveSpeeds] = physics.riemannFlux(...
9 this.elementL.stateR,this.elementR.stateL); 1FLOPs (B.7)
10 this.elementL.riemannR = flux; % 'normal vector' = +1
11 this.elementR.riemannL = ‐flux; % 'normal vector' = ‐1 1FLOPs
12 this.computeTimeDeltas(waveSpeeds); 3FLOPs (B.8)
13 end
14 end

Listing B.7: Method riemannFlux of the Advection class. It particularizes the generic Riemann solver (the
outputs of which are a numerical flux and a vector of wave speeds) to the simple case of linear advection. It is
called in B.6, for every edge in the mesh (boundaries included).

1 function [flux,S] = riemannFlux(this,stateL,stateR)
2 S = this.advSpeed;
3 if S > 0
4 flux = S*stateL; 1FLOPs
5 else
6 flux = S*stateR; 1FLOPs
7 end
8 end

Listing B.8: Method computeTimeDeltas of the Edge class. I use it to determine candidate time­step sizes for
the next time­step. It is called in B.6, once per edge.

1 function computeTimeDeltas(this,waveSpeeds)
2 % Sets local time‐step sizes based on characteristic speeds and
3 % element sizes, such that each local Courant number is unity.
4 % Does not override more conservative existing values.
5 this.elementL.localTimeDelta = min(...
6 [this.elementL.localTimeDelta
7 ‐this.elementL.dx./waveSpeeds(waveSpeeds < 0)]); 2FLOPs
8 this.elementR.localTimeDelta = min(...
9 [this.elementR.localTimeDelta
10 this.elementR.dx./waveSpeeds(waveSpeeds > 0)]); 1FLOPs
11 end
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Listing B.9: Method computeResiduals of the Element class. Used in B.2.

1 function computeResiduals(these,physics)
2 for this = these
3 this.basis.computeResiduals(this,physics); See B.10, B.13 and B.15
4 end
5 end

B.2. Residual evaluation (spatial schemes)
Once the numerical fluxes ensuring a coupled solution have been made available to each element, its
residuals can be evaluated completely independently from the rest. In fact, from this point onward, all
methods are applied element­wise.

B.2.1. DGSEM
The first of the three types of spatial schemes under consideration is DGSEM (§4). Since its trial and
test spaces are spanned by an orthogonal basis, the inverse of its diagonal mass matrix is trivial (it
is applied as a vector of weighting factors). Its derivatives matrix, however, is full—hence the cost
indicated for the matrix­vector product in line 3 of listing B.10.

Listing B.10: Method computeResiduals of the DGSEM class, a subtype of the Basis superclass. Called in B.9,
for every element.

1 function computeResiduals(this,element,physics)
2 element.computeFluxesFromStates(physics); JFLOPs (B.11)
3 element.residuals =
4 element.fluxes*this.derivatives 2J2 FLOPs
5 + JFLOPs
6 (element.riemannR.*this.right' JFLOPs
7 + JFLOPs
8 element.riemannL.*this.left') JFLOPs
9 ./this.nodeWeights'; JFLOPs
10 element.residuals = ‐ 2/element.dx*element.residuals; J + 1FLOPs
11 end

Listing B.11: Method computeFluxesFromStates of the Element class. Called by B.10 and B.13.

1 function computeFluxesFromStates(this,physics)
2 this.fluxes = physics.flux(this.states); JFLOPs (B.12)
3 end

Listing B.12: Method flux of the Advection class, a particular type of Physics. Used in B.11 and B.15.

1 function flux = flux(this,state)
2 flux = this.advSpeed*state; JFLOPs
3 end

B.2.2. FR/CPR
The second type of spatial semi­discretization, FR/CPR (detailed in §5), takes it one step further: not
only is its mass matrix diagonal, it is the identity. Its discrete gradient operator is, nevertheless, a full
matrix (as for DGSEM). However, due to the need of evaluating the uncorrected fluxes at the element
edges (these are required for the flux correction procedure), FR ends up requiring 2(J + 1)FLOPs
more than DGSEM for every residual evaluation, making this scheme slightly more costly1. This can
be observed by comparing lisitings B.13 and B.10.
1Note that this would not have been the case if e.g. the distribution of nodes were Gauss­Lobatto; if the value of the fluxes was
available at element edges by design, both in DGSEM and FR, the latter would be the cheapest of the two.
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Listing B.13: Method computeResiduals of the FR class, another descendant of Basis. Called in B.9, for every
element.

1 function computeResiduals(this,element,physics)
2 element.computeFluxesFromStates(physics); JFLOPs (B.11)
3 element.interpolateFluxAtEdges; 4JFLOPs (B.14)
4 element.residuals =
5 element.fluxes*this.derivatives 2J2 FLOPs
6 + JFLOPs
7 (‐element.riemannL ‐ element.fluxL)*this.correctionsL J + 1FLOPs
8 + JFLOPs
9 (element.riemannR ‐ element.fluxR)*this.correctionsR; J + 1FLOPs
10 element.residuals = ‐2/element.dx*element.residuals; J + 1FLOPs
11 end

Listing B.14: Method interpolateFluxAtEdges of the Element class. Used in B.13.

1 function interpolateFluxAtEdges(this)
2 % Evaluates and stores the flux vector at the element's edges.
3 this.fluxL = this.fluxes*this.basis.left; 2JFLOPs
4 this.fluxR = this.fluxes*this.basis.right; 2JFLOPs
5 end

B.2.3. DGIGA
Lastly, the costs of the DGIGA scheme (presented in §6) are shown in listing B.15. Unlike the previous
two, this semi­discretization’s operators can be sparse—their half­bandwidth is at most p ≤ J − 1. This
is also the case for the mass matrix, which is therefore banded (rather than diagonal) for DGIGA. A
sparse matrix­vector product requires twice as many FLOPs as the number of nonzero entries in said
matrix [91]. For a B­spline basis of k ≥ 1 breakpoint spans, degree p > 0 and smoothness 𝐶𝜘 ∶ 𝜘 < p
(all three of them integers), it can be shown that the number of non­zeroes in both massMatrix and
gradientMatrix (i.e.𝓜 and 𝓒, respectively) is:

nnz (𝓜) = nnz (𝓒) = k (p + 1)2 − (k − 1) (𝜘 + 1)2 . (B.1)

The fact that DGIGA employs a modal basis adds complexity to the computation of fluxes in the
interior of the element. I do so—as explained in §6.3.1—by first evaluating the state function at the
control point locations (line 2 of listing B.15), then evaluating the flux function there (line 3 of listing
B.15), and finally deducing the modal flux coefficients that would produce the control point flux values
just obtained (lines 4 to 7 of listing B.15). As shown in the listing, this is encoded by a multiplication
with the controlVandermonde matrix, 𝑵(𝝃⊺) (defined by equation 6.13) and its inversion. The number
of nonzero entries in 𝑵(𝝃⊺) bounded by (this underestimates the number of zeros by roughly up to 35%
for p ≤ 20 and k ≤ 5):

nnz (𝑵(𝝃⊺)) ≤ k (p2 + 1) − (k − 1) (𝜘2 + 1) . (B.2)
I estimate the cost of the inverse projection—from control location samples tomodal expansion coefficients—
by assuming that said controlVandermonde matrix has previously been factored into lower and up­
per triangular full2 matrices, upperControlVandermonde and lowerControlVandermonde respec­
tively. Each of the two triangular system inversions associated with these matrices, therefore, requires
J2 FLOPs—J being, as in DGSEM and FR, the total number of rows or columns of 𝓜, 𝓒 and 𝑵(𝝃⊺).
As a side note: recall that for linear advection this projection to/from control locations is unnecessary
altogether (see §6.3.1, equation 6.15); however, I consider that not taking the cost of these steps into
account would overestimate the performance of DGIGA in a misleading way.

DGIGA’s trial and test basis functions are not orthogonal. This manifests in yet another added cost,
this time associated with inverting its mass matrix. On the upside, massMatrix is guaranteed to be
2Unfortunately, controlVandermonde is non­symmetric; pivoting might hence be required to ensure a stable factorization, which
will lead to the lower/upper bandwidth of its lower/upper triangular factors being increased, possibly, all the way up to J − 1.
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symmetric­positive­definite; it is possible, therefore, to factorize it (via the Cholesky algorithm, without
pivoting) into a pair of triangular matrices (choleskyMassMatrix and its transpose) which preserve the
bandwidth of massMatrix (i.e. upper/lower bandwidth equal to p). Assuming, as previously, that said
Cholesky factor has been computed beforehand, it can quite easily be shown3 that the cost of each of
the two sparse triangular system solves (lines 12 and 13 of listing B.15) is as indicated.

Listing B.15: Method computeResiduals of DGIGA, also derived from Basis. Called in B.9, once per element.

1 function computeResiduals(this,element,physics)
2 element.residuals = element.states*this.controlVandermonde;

≤ 2k (p2 + 1) − 2 (k − 1) (𝜘2 + 1)FLOPs
3 element.fluxes = physics.flux(element.residuals); JFLOPs (B.12)
4 % Overcomplicated control Vandermonde matrix inversion...
5 element.fluxes = element.fluxes(:,this.colPivotIdsControlVandermonde)/

this.upperControlVandermonde; J2 FLOPs
6 element.fluxes(:,this.rowPivotIdsControlVandermonde) = element.fluxes/

this.lowerControlVandermonde; J2 FLOPs
7 % ...done.
8 element.residuals = element.fluxes*this.gradientMatrix;

2k (p + 1)2 − 2 (k − 1) (𝜘 + 1)2 FLOPs
9 element.residuals(:,[1 end]) = element.residuals(:,[1 end])...
10 ‐ [element.riemannL element.riemannR]; 2FLOPs
11 % Overcomplicated mass matrix inversion...
12 element.residuals = element.residuals/this.choleskyMassMatrix;

J (2p + 1) − p (p + 1)FLOPs
13 element.residuals = element.residuals/this.choleskyMassMatrix.';

J (2p + 1) − p (p + 1)FLOPs
14 % ...done.
15 element.residuals = element.residuals*2/element.dx; J + 1FLOPs
16 end

B.3. Solution update (time scheme)
Once both solution and residuals are available for each element, the former can be advanced one stage
towards the next time­step. This is done by the time­scheme, e.g. SSP­RK3(3). From listing B.16, it is
clear that each stage update requires 4JFLOPs (on average).

Listing B.16: Method applyStage of the SSP_RK3 class, implementing this particular type of Solver (its parent
class). It is called in B.1, three times (once per stage) for each element.

1 function applyStage(this,element)
2 switch this.stageNow
3 case 1
4 element.extraStates = element.states;
5 element.states = element.states + this.timeDelta*

element.residuals; 2JFLOPs
6 case 2
7 element.states = 0.75*element.extraStates + 0.25*(

element.states + this.timeDelta*element.residuals); 5JFLOPs
8 otherwise
9 element.states = element.extraStates/3 + (element.states +

this.timeDelta*element.residuals)/1.5; 5JFLOPs
10 end
11 end

3Consider an upper triangular matrix 𝑨 ∈ ℝJ×J of upper bandwidth p, i.e.𝑎𝑖𝑗 = 0 if 𝑗 − 𝑖 > p ∪ 𝑗 < 𝑖. We wish to solve 𝑨𝒙 = 𝒃.
We start with 𝑥J = 𝑏J/𝑎JJ (1 FLOP). Next, 𝑥J−1 = (𝑏J−1 − 𝑎J−1 J𝑥J)/𝑎J−1 J−1 (3 FLOPs); then 5, 7, and so on—until reaching 𝑖 = J−p. From
then on, each row has p + 1 non­zeros; the cost is 1 + 2pFLOPs per remaining row.
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