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ABSTRACT 
 
One of the challenges in designing recycled asphalt mixtures with a high amount of RAP is to 
estimate the blending degree between RAP binder and the added virgin bitumen. The extent of 
blending is crucial in this case as asphalt concrete response is influenced by the final binder 
properties. This paper focuses on the evaluation of interaction and extent of blending between RAP-
binder and virgin bitumen by studying the microstructures of the ‘blending zone’ with atomic force 
microscopy (AFM). AFM is used to probe the change of microstructural properties from a RAP-
binder and virgin bitumen to the blending zone of these two. Averaged microstructural properties 
have been observed in thin film blends of RAP-binder and pure bitumen. The morphology of the 
blending zone (spatial extent of about 50 µm) exhibits domains of a wide range of microstructure 
sizes from 160 nm to 2.07 µm and can be considered to be a completely blended ‘new material’ 
which has been observed directly for the first time. The fully blended binder properties are found to 
be in between those of the two individual binders, as could be inferred from the averaged 
microstructural properties as derived from AFM-images of the blending zone. This is also consistent 
with the results of mechanical tests by dynamic shear rheometer on the same materials. Finally a 
design formula is proposed that relates the spatial dimensions of the blending zone to temperature 
and mixing time. This relation will eventually allow for translating the results of this study from 
small length scales up to the engineering level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Nahar, Mohajeri, Schmets, Van de Ven, Scarpas and Schitter 3 
 
 
INTRODUCTION 
 
The use of reclaimed asphalt pavement (RAP) as a recycling component in new hot mix asphalts 
(HMA) is common practice nowadays. From environmental and economic perspective the use of 
RAP as an ingredient in new asphalt mixes is a very attractive development. It reduces the problem 
of waste disposal of road construction materials, and also reduces the use of scarce raw materials. For 
example, in the Netherlands approximately 4 million tons of reclaimed asphalt became available in 
2010 of which approximately 75% was recycled into new hot mix asphalt (1). Today, the asphalt 
industry is facing the challenge to increase the RAP content to 70% without compromising the 
mechanical and other desired properties of the asphalt structure (currently in the Netherlands a 
maximum RAP content of 50% is allowed, and only 20% in the surfacing of porous asphalt,). 
Meanwhile there exists a growing need to increase the amount of RAP in porous asphalt concrete 
mixtures, as in the near future major maintenance works on highway pavements will be carried out, 
which leads to an increased availability of porous asphalt concrete derived RAP. Similar 
developments are seen all over Europe, in the USA (2), and Asia. 

Crucial for the use of high quantities of RAP within asphalt mixtures for new pavement 
structures is the requirement that the overall performance of the system should be at least at the level 
of the material without RAP added. This is a severe constraint, especially because the bituminous 
binder in the RAP has aged, thus has chemically changed, a process that is not anticipated to reverse 
by only mixing it with a virgin – i.e. non-recycled - material. Therefore significant research efforts 
have been directed towards the performance of asphalt mixtures as a function of RAP content (for a 
literature review see (3)). The main performance characteristics that are considered in these studies 
are fatigue, rutting, low temperature cracking and raveling.  

It has been claimed that addition of up to 50% RAP leads to an increase of elastic modulus, 
tensile strength and improved rutting resistance of the mixtures (4). Hence asphalt concrete mixtures 
containing RAP perform equally or better than mixtures with only virgin aggregates (4,5). Other 
authors found that up to addition of 15% RAP no effect on low temperature (cracking) behavior can 
be observed (6). Field studies show similar trends: application of up to 30% RAP in mixtures showed 
equal or better performance than virgin mixes, though it was noted that the material performed worse 
with respect to fatigue (7). In another field study (7,8) it was found that warm-mix asphalt (WMA) 
containing RAP is softer (lower dynamic modulus) than a HMA containing the same amount of 
RAP. The authors attributed this to incomplete blending of the RAP and virgin binders. 

Thus two issues come up in relation to the recycling of asphalt that needs further 
investigation: the fatigue behavior of RAP-mixes, the degree of blending of RAP and virgin binders, 
and how this would affect the performance of the mixtures. To avoid premature failure of HMA due 
to fatigue, recycling requires to soften the aged and stiff RAP binder by adding softer virgin bitumen 
or a rejuvenator. In this way the fatigue characteristics of RAP-mixtures may relate directly to the 
degree of blending. However, there is a lack of knowledge on the degree of blending of the RAP-
binder with virgin bitumen. To determine the blending degree of virgin bitumen in recycled asphalt 
mixtures, blending charts and equations such as the log-pen rule are used (2,9,10). In this design 
method it is assumed that RAP binder is homogeneously and completely blended with virgin bitumen 
during the mixing process (5): the so-called linear blending scheme. Other ways of estimating the 
degree of blending of RAP and virgin binder are based on the mechanical response of the RAP-
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mixture (stiffness as a function of percentage RAP, viscosity, BBR, cracking and rutting parameters), 
which is then interpreted with an appropriate model (11).  

Thus, the assumption of a homogeneously blended mix is seldom valid as concluded by the 
laboratory and field studies mentioned before. On the contrary, some designers consider RAP as a 
black rock and assume no blending at all. These two extreme assumptions can eventually lead to the 
wrong estimation of design parameters (12,13,14). Moreover it is still unresolved whether a 
homogeneous or a partial blending of the binders are required for an improved fatigue life. Thus it is 
necessary to quantify the degree of blending between RAP binder and virgin bitumen to setup a 
correct mix-design approach. 

To study the details of the blending process and the blending result of mixing a neat and RAP 
derived binder, new nanotechnology based methodologies will be explored. Direct observation of 
RAP binder and virgin bitumen is one of the several techniques which has been used in studying the 
blending degree. Among those methods, using nano-indentation was yet not successful in measuring 
and characterizing the blending zone (15). In this contribution atomic force microscopy (AFM) is 
being explored to gain insight in the blending of RAP and virgin bitumen. 

It has been known for a long time that bitumen exhibit unique properties at the micron and 
nanometer length scales. AFM-images of bitumen show that a rich variety of microstructure can 
develop on its surface (16,17,18,19). The observed microstructure can develop to different degrees 
and in different microstructural details depending on the crude origin of the bitumen, the thermal 
history of the sample, etc. The microstructure has earlier been proven to be a unique and reproducible 
property of a bitumen (19,20), therefore it is a tool worth exploring in RAP research.  

The specific details of the microstructure are believed to originate from bitumen chemistry: a 
variety of intermolecular associations driven by molecular polarity, size or shape could explain the 
observed structuring at the micro meter scale. Changes in the molecular composition or ordering, or 
both, will result in significant changes in the microstructural properties. Furthermore, also chemo-
mechanical and structural properties of the material will relate to details of the microstructure 
(21,22), which makes AFM a versatile research tool for a material as complex as bitumen. Within the 
research that is reported here, the AFM-derived microstructure of bitumen is used as a probe for the 
degree of blending of the RAP and virgin binders. Here it is assumed that the surface microstructural 
properties represent also the bulk material properties. 

One of the dynamic modes of AFM, tapping-mode (23), is used to characterize surface 
microstructural morphology and to evaluate the interaction and extent of blending between the aged 
RAP-binder and virgin bitumen. It is known that microstructure strongly relates to a material’s 
macroscopic mechanical response. Spatial variations in local material properties observed with AFM 
will also affect the material’s macroscopic mechanical properties. The goal of this study is to image 
and understand the extent of blending and its transitional mechanical properties. It is expected that 
this can be used to establish improved and standardized mixing procedures for RAP and virgin 
binders. Eventually, this may lead to new reliable design parameters to enhance the durability of the 
recycled pavement materials. Finally it should be noticed that the present study only considers a 
better understanding of the degree of blending on the binder scale for one particular type of virgin 
binder. The effect of the choice of virgin binder and the impact of the extent of blending on the 
mechanical properties at the mastic and asphalt concrete level will be subject to further study. 
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MATERIALS & METHODS 

Preparation And Rheology of the Binders 
 
To derive bitumen from RAP common solvent extraction (EN 12697-1) and rotatory evaporation 
(EN 12697-3) methods were utilized. In this research, methylene chloride has been used as the 
solvent. The bitumen recovered from the RAP had a penetration of 21 (at 25 °C), a softening point of 
60 °C and a mass density of 1.035 g.cm-3. A soft binder (penetration grade 160-220) was selected to 
represent virgin bitumen in the blending process. For this bitumen the penetration (measured in 0.1 
mm units) was 144 (at 25 °C), the softening point of 43 °C and mass density of 1.020 g.cm-3. The 
rheological properties of these two binders, as well as their mixture, were characterized with a 
dynamic shear rheometer (DSR). To perform the DSR test, 100 gram of the RAP binder and the same 
amount of virgin bitumen (1:1 ratio) were blended for 5 minutes at 160 °C to achieve a 
homogenously blended bitumen. This blended binder was used to characterize the rheological 
properties in comparison with the other binders. The rheological properties of the three binders were 
characterized with DSR. G* and phase angles were shifted to 25 °C to obtain master curves as shown 
in Figure 1. From the DSR data one can observe that the rheological properties of the blend is in 
between those of the binder recovered from RAP and the virgin binder. However, only based on 
these rheology data it is difficult to draw conclusions about the extent of the blending process. 
 

Imaging with Atomic Force Microscopy 
 
Atomic force microscopy (AFM) is a scanning probe technique that allows to reveal surface 
topography and heterogeneity of materials with high spatial resolution (24,25,26,27). In AFM 
imaging, a cantilever with an extremely sharp tip (nominal tip radius of 8 nm ) located on its free end 
is scanned over the sample surface utilizing a piezoelectric scanner (see Figure 2). The changes in 
tip-sample interactions result in deflection of the cantilever which is measured by an optical-lever 
detection system. In this system a laser beam is focused onto the back side of the cantilever and the 
reflected beam is detected with a position sensitive photodiode. While scanning, a specific operating 
parameter is kept constant by a feedback loop between the optical detection system and the 
piezoelectric scanners. Measurements are being recorded electronically. The data acquired build up a 
map of the surface topography, which is representative of variations in the tip sample interaction. 

Tapping-mode AFM (23) was used to characterize RAP binder, virgin bitumen and their 
blending zone. In the tapping-mode the probe is modulated near its first resonant frequency while it 
is scanned across the sample. Thus the tip maintains an intermittent contact over the sample surface, 
keeping the tapping force low and the lateral forces negligible. This moderate force exerted on the 
surface leads to scanning in a non-invasive manner, which is ideal for soft material surfaces such as 
bitumen (23,26). 

Since the probe is oscillating, it experiences attractive and repulsive forces depending on its 
position in the cycle. As the tip approaches the sample, the tip-sample interactions alter the 
amplitude, resonance frequency, and phase angle of the oscillating cantilever. During scanning, the 
amplitude at the operating frequency is maintained at a constant level, called the set-point amplitude, 
by adjusting the relative position of the tip with respect to the sample.  
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The oscillating cantilever dissipates various amounts of energy as it interacts with material 
heterogeneities on the sample surface. In tapping-mode the instrument provides three different types 
of data simultaneously: topography, phase-contrast, and amplitude error. Each of the image types 
provides specific information with respect to the sample surface. Topography images provide 
information of relative height of the various features as the probe tip is raster scanned across the 
sample surface. Phase Imaging creates images of the phase of the tapping response, which is a 
function of the forces that the tip is experiencing; in other words the relative damping of an 
oscillating cantilever tip as it experiences heterogeneity in material response of the surface. Error 
images provide a record of any variations from constant deflection of the cantilever as the tip is 
scanned over the surface, which represents the high frequency contrast of the topography signal 
indicating areas where topography is changing rapidly. All of these image types are obtained 
simultaneously and need all to be considered for the interpretation of tapping-mode AFM results. 

 
AFM Instrumental Settings, Sample Preparation and Measuring Environment 
 
The ‘Multimode-V Atomic Force Microscope’ from Bruker (Santa Barbara, USA) was used for this 
study. Steel sample disks (12 mm) were used as sample substrates for the AFM-measurements. 
Commercially available High-Resolution Tapping-Mode silicon cantilevers ‘RTESPA’ (Bruker) 
were used for tapping-mode AFM. These cantilevers have a nominal resonant frequency of 330 kHz 
and a nominal force constant of 40 N/m. The cantilever material is Antimony (n) doped Silicon 
which has 40±10 nm aluminum reflective coating on its backside. The reflective coating helps to 
increase the laser signal as well as protects the bitumen sample from softening by laser exposure. The 
nominal cantilever dimensions were 120×35×3 µm. The cantilever has a chemically etched rotated 
silicon tip on its edge to provide a more symmetric representation of features over 200 nm. The tip 
height is in the range of 15-20 µm and it has nominal tip radius of 8 nm. 

For compositional imaging of a multiphase material like bitumen the most pronounced phase 
contrast is usually achieved at hard tapping. The probe scan rate was chosen to be 1.0 Hz (1 Line/s) 
and morphological details were recorded at 30×30 µm scan size with a pixel resolution of 512×512. 
The study of the microstructure morphology of RAP-binder, virgin bitumen and their blending zone 
was performed at ambient conditions and in air.  

The pure bitumen samples for the study with AFM were prepared by applying a film of liquid 
bitumen of 100 °C on a 12 mm metal sample disk. The film thickness was calculated by measuring 
the weights of the sample disks and using the known mass density of the materials. The layer 
thickness was found to be 0.4±0.05 mm, so the thickness is about a hundred times larger than a 
typical microstructural dimension of the bitumen. The specimen for studying the blending of RAP 
and virgin bitumen was prepared by applying a bead of 15 mg RAP-binder by a spatula on one side 
of the 12 mm metal sample substrate (0.5 mm thickness) and the same amount of virgin bitumen 
from the other side. Then the specimen was heated for 40 seconds at 130 °C on a heater plate. In this 
case the heater plate conductively heated the steel substrate and thus the sample attached to it. The 
temperature and the heating time were sufficient to melt the bitumen from both sides, which allowed 
to form two drops of different bitumen to spread on the surface creating a thin film with a fused 
interfacial zone in the middle. At a constant temperature (130 °C) the rate of flow of soft-virgin 
bitumen was relatively faster than that of the RAP binder, but this didn’t lead notable difference 
(observed macroscopically) in film thickness between these two zones. While probing with AFM, the 
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thickness difference at the fused interfacial zone was found to be lower than 100 nm. Prior to AFM 
imaging, the samples were allowed to equilibrate at the imaging temperature of 25°C for 24 hours. 

EXPERIMENTAL RESULTS 
 
The surface morphology of the thin film bituminous materials were characterized by AFM for 
samples prepared according to the procedure described above. A basic tapping-mode AFM 
experiment measures three datasets at a time: i) the height image measures the surface topography of 
the bitumen surface, ii) the phase image measures a mapping of the local mechanical properties of 
the surface, hence it will discriminate between regions with distinct mechanical properties (stiffness, 
adhesion etc.), thus different ‘materials’. Finally the iii) amplitude error signal detects high frequency 
features in the topography of the image. The latter will not be considered in the current study, 
because the features of interest are in the order of micrometers (spatial resolution along surface is 
about 50 nanometers and in the order of several nanometers in the z-direction perpendicular to the 
bitumen surface), which is much larger than the length scale monitored by the amplitude error signal. 
The scan speed (1.0 Hz) over the surface was slow enough to resolve all features of interest. 
 
Qualitative AFM Results  
 
The AFM images obtained for a representative (at least for the virgin and RAP binders) surface scan 
of 30×30 µm for the virgin bitumen, the RAP and the interfacial zone between the RAP and virgin 
binder are shown in Figure 3. The virgin and RAP binder images are from separately prepared 
samples. The interface between virgin and RAP binder has been found with a range of successive 
scans along a line perpendicular to the presumed interface between RAP and virgin binder, see 
Figure 4. The interface between the two binders could be identified by following the gradual change 
of microstructure along the scan-line (Figure 4). Initially the microstructure was found resembling 
qualitatively the images in Figure 3b, while at the end of the scanning line the microstructure looked 
very similar to those in Figure 3a.  

There was just a single image that clearly showed a very distinct pattern, as in Figure 3c, 
which also happened to be in the middle part of the sample disc. Altogether this provides enough 
evidence to confidently identify Figure 3c as the interfacial blending zone between RAP and virgin 
binder, observed here for the first time directly. 
Some immediate observations  these images (Figures 3 and 4) are the following: 

• All bitumen show a microstructure which is different; 
• The topography and phase images are congruent, i.e. that clusters of different ‘material’ 

(phase) differ in topography as well; 
• The microstructure consists of domains with a slightly elongated, oval shape (elliptical in 

first approximation), with height oscillations perpendicular to the surface and along the long 
axis of the microstructural unit (the phase outside these domains is referred to as continuous 
phase); 

• The elliptical domains (white areas in the phase images) are the largest for the virgin binder 
and smallest for the RAP. The blending zone is more polydisperse and somehow intermediate 
to the two; 
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• The surface coverage by elliptical domains is largest for the virgin bitumen, i.e. the phase 
fraction of the continuous phase is smallest here. 

Quantitative Comparison of the Microstructures  
 
Comparing the observed morphologies between three different regions (Figure 4), provides 
information about the nature of the blending process. The software package Gwyddion (28) was used 
to derive objective measures for the size distribution, shape and phase fraction of elliptical domains, 
which together characterize the microstructure in a quantitative way. Statistical analysis was used on 
the distinct quantities, where N will signify the number of observations. In order to distinguish the 
microstructures from an amorphous background, images were converted to binary images and from 
that phase fractions were calculated; these are consistent with other ways of calculating the phase 
fraction (ellipsoid approximation).  

The topography and phase images of pure bitumen show microstructures that in the 
approximation of ellipsoidal shape possess long axes that range from 460 nm to 4.77 µm, whereas 
this range for the RAP-binder is from 70 nm to 1.71 µm and for the blending zone 160 nm to 2.07 
µm. Other quantities that could be derived were the short axes, surface coverage (or phase fraction φ) 
and the aspect ratio A (or eccentricity e = 1-A2) of the short to long axis. The closer the aspect ratio is 
to unity, the more the elliptic domain approaches a perfect circular shape, whereas an aspect ratio 
approaching zero signifies a needle-like shape.  

The microstructural sizes (lengths of longer axis) were obtained from the AFM phase images 
of the three different binder regions and statistical quantities were derived from these lengths. 
Typical distributions that quantify the microstructure are presented in Figure 5. As mentioned earlier, 
the height profile shows regular topographical variations along the longer axis which reveals that 
micro-structural features exhibit a wrinkling pattern along that axis. Some examples of this are 
shown in Figure 6. The main features of the wrinkling profile are the wavelength λ and the maximum 
amplitude. The wavelength appears to be a very constant quantity for each bitumen type. This has 
been proven by connecting for each binder all profiles, and taking the Fourier transform of the 
connected profiles: a single reasonably sharp peak appears in the Fourier transform, which proves the 
constancy of the wrinkling wavelength. For virgin bitumen the wavelength is found to be around 0.55 
µm (amplitude 16 nm), whereas it is around 0.30 µm (amplitude 11 nm) for RAP and 0.4 µm 
(amplitude 18 nm) in the interfacial mixing zone. All results derived from extensive statistical image 
analysis are summarized in Table 1. It should be noted that the (maximum) amplitude has a rather 
large uncertainty, reflecting the spread in measured amplitudes. Though, when plotting the amplitude 
results for a single material one observes a statistical spread, but the differences between individual 
amplitudes are very close to an integer multiple of a characteristic distance, a number between 4 and 
6 nanometer. This is a remarkable finding which may relate to the molecular make-up of the 
microstructural features. It is too large for single molecular features, but could reflect an ordered 
(crystalline) structure with a typical repeat distance (lattice parameter) of 4-6 nanometer. This 
distance is in the range of the two smallest lattice parameters of typical paraffin (alkane) waxes, 
which are found to be between 5 and 8 nanometers (29).This is also in agreement with the hypothesis 
that the elliptical domains present in the microstructure of bitumen possess crystalline features that 
can be identified with wax (30). 
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DISCUSSION AND CONCLUSIONS 
 
The case of mixing and blending of a soft virgin binder with a RAP derived binder has been studied 
by means of following the material’s microstructure with AFM. The original binders display very 
distinct surface morphology and could thus be identified by their microstructure. The aspect ratios, 
sizes, areal coverage and profiles of the elliptical domains, that characterize the microstructure,  have 
been derived by statistical means from the AFM-images, Table 1. From this it is concluded that these 
parameters can be considered as a fingerprint of the distinct bitumen grades. The presence of a 
blending zone at the interface of the two bitumen grades was found by consecutively recording AFM 
images in the lateral direction of the sample surface (Figure 4), while observing the change in 
microstructure. It is the first time that in this way the interfacial zone, where blending between two 
bitumen grades occurs, is observed in a direct way. The extent of the blending zone, d (Figure 7a), is 
in the order of tens of micrometers (estimated 50 µm). Thus, bringing two binders of very different 
stiffness (Pen-grade) into contact at about 130 °C will lead to a blending zone with a new 
microstructure; i.e. if two aggregates with a bitumen film of about 25 µm are brought into contact at 
130 °C all material at both sides of the interface will be ‘consumed’ to form a new uniform phase that 
is termed as the blending zone. In this scenario one may speak of ‘complete blending’. The extent of 
the blending zone, d, will most likely depend on parameters such as temperature, contact time and 
type of bitumen at either side of the interface, thus in first approximation one may write d = d(T,t). 
The details of d(T,t) would provide valuable engineering information on optimal process 
temperatures, residence times in the mixing drums. Also contact time and temperature during 
transport and storage should then be taken into account. In conclusion, when the average bitumen 
coating thickness D on the aggregates is known, a combination of temperature T and residence time t 
could be selected such that complete blending occurs before the material is applied to the road. Then 
complete blending will occur as long D ≤ ½d(T,t).  

The properties of the blended bitumen is found to be in between the values for the bitumen at 
either site of the interface (Table 1). This is the case for the microstructural parameters size, surface 
coverage, aspect ratio and wavelength of the profile. The only parameter that behaves different is the 
amplitude of the wrinkling profile: for a softer material a higher amplitude is expected than for the 
stiffer material. This has also been found in the current context: the softer, virgin binder was found to 
possess a larger wrinkling amplitude than the RAP binder. Therefore, one would expect the 
amplitude of the ‘blended binder’ to be in between the respective amplitudes of the virgin and RAP 
binders. However, it happened to possess the largest amplitude instead. This anomalous behavior  
might be explained by the long tail in the size distribution of the blended sample (Figure 5b). A 
scaling relation between microstructural size and amplitude may exist, but this has not been worked 
out any further in the context of this research. 

From the DSR data of the three bitumen (Figure 1) it is evident that the mechanical properties 
of the blend are in between those of the non-blended binders. As corresponding behavior is found for 
the AFM derived microstructural parameters, this may hint to the conclusion that microstructure has 
a direct link to mechanical properties of the binder. This relation of microstructure to mechanical 
properties can also be inferred from the microstructural profile data (Figure 6). The ‘wrinkles’ could 
originate from a mismatch in coefficient of thermal expansion of both phases in the microstructure. 
Upon solidification stresses will lead to buckling of the elliptical domains: the observed wavy profile 
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pattern. Details of this pattern may eventually be directly translated into mechanical properties 
(31,32), though more research is needed to firmly establish this link. 

Another surprising finding is that mixing of virgin and RAP bitumen results into a 
completely new material (from the microstructural point of view). If the process involved was merely 
mixing of two distinct colloidal fluids, the colloidal particles of both materials should be present in 
their mix as well. However, here a completely new ‘colloidal’ material is found; no traces of the 
original material’s microstructure is present anymore in the ‘mixed zone’. The two possible scenarios 
for mixing are sketched in Figure 7b; obviously scenario B is closest to the observations, hence one 
should speak about blending rather than mixing: the identity of the individual mixing components is 
lost, instead a new ‘material’ is found. This also sheds a new light on the proposed colloidal structure 
of bitumen (33): it may still be a colloidal system, but with unstable colloidal particles, which are 
prone to rearranging themselves into new assemblies.  

We conclude that at the interface of RAP and virgin bitumen complete blending has been 
observed. However, this does not yet rule out the ‘black rock’ hypothesis (3), because the RAP 
bitumen was chemically extracted from the RAP. The challenge remains to proof the same for RAP 
coated aggregates that are mixed with fresh, soft bitumen. Finally, the results obtained in this study 
are also very useful to screen and understand the processes that occur when rejuvenators are used to 
enhance service life of aged asphalt. A similar approach could be used to explore the blending of 
RAP containing Polymer Modified Bitumen (PMB) with soft binders. 
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FIGURE 7 (a) Possibilities for the formation of a blended zone between RAP and virgin aggregates. 
(b) Scenarios for mixing or blending of microstructural properties at the interface of RAP and virgin 
bitumen. 
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TABLE 1 Quantitative details of the observed bitumen microstructures 
 
 
 

 Domain size Domain shape Wrinkling 

 maximum 

(µm) 

minimum 

(µm) 

mean 

(µm) 

aspect ratio phase 

fraction 

(%) 

λ 

(µm) 

amplitude 

(nm) 

virgin-bitumen 4.77 0.46 2.39±1.0 0.68±0.15 53.77 0.6 16±5 

RAP-binder 1.71 0.07 0.57±0.4 0.81±0.14 9.92 0.3 11±3 

blended-binder 2.07 0.16 0.66±0.4 0.75±0.17 26.43 0.4 18±6 
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FIGURE 1 Master curves for G* and phase angle (δ)  from DSR measurements. 
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FIGURE 2 AFM instrumental set-up and operation principle: a) Multimode-V AFM set-up, b) 
schematic diagram of tapping mode AFM. 
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FIGURE 3 AFM tapping mode topography (left-hand) and phase (right-hand) ; 30×30 µm scan size  
images revealing the microstructure morphology of (a) virgin bitumen (b) RAP-binder and (c) 
blending zone of virgin and RAP-binder.  
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FIGURE 4 Schematic representation of AFM-probe trajectory from RAP-bitumen towards virgin-
bitumen. A, B, C, D are 30×30 µm AFM-scans of RAP-bitumen, blended zone, transition zone and 
virgin-bitumen, respectively. 
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FIGURE 5 Relative frequency of microstructural domain size (long axis) and aspect ratio (length of 
short axis/long axis) of (a)  virgin-bitumen (b) blended-bitumen (c) RAP-bitumen. 
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FIGURE 6 Height profile of microstructure topography along the long axes of an elliptic domain; for 
clarity of presentation the graphs have been shifted relative to each other. The inset shows the 
direction along which the profiles have been measured. The number ‘113 of 130’ signifies that the 
113th profile out of 130 (N) is presented. 
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FIGURE 7 (a) Possibilities for the formation of a blended zone between RAP and virgin aggregates. 
(b) Scenarios for mixing or blending of microstructural properties at the interface of RAP and virgin 
bitumen. 


