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Chapter 1

Introduction

This thesis falls within the area of applied mathematicsaikes various problems within
the area of game theory and offers mathematical solutiotieto.

In this chapter we present the background and the motiv&ticthe research presented
in this thesis. In Sectidn 1.1 we first introduce game theerg theoretical topic of this the-
sis and as a tool to formalize and solve complex decision mggioblems. In Sectidn 1.2
we introduce the applications that we consider in this theBhe optimal toll design prob-
lem, the problem of energy market liberalization, and ttemtly of incentives. We conclude
the chapter with an overview and road map of this thesis, ahaey of the contributions
to the state of the art in Sectibn1..3.

1.1 Introduction to game theory

1.1.1 The basics of game theory
What is game theory?

Game theory is a branch of applied mathematics used, ambegsotn the social sciences
(most notably economics), biology, political science, pater science, and philosophy.
Game theory attempts to mathematically capture behavistrategic situations (so—called
game}, in which an individual’s success in making choices mayetepon the choices of
others. Game theory was initially developed in order to yweatompetitions in which one
individual does better at another’s expense (zero sum gdiiges Later on, game theory
was expanded in order to treat a much wider class of intemrsti

Traditional applications of game theory attempt to find gamailibria, i.e., sets of
strategies in which individuals are unlikely to change itheghavior. Many equilibrium
concepts have been developed (e.g., the well-known Nasiibegum [61], the Stackel-
berg equilibrium|[92], and the Pareto equilibriumI[93]) in attempt to capture this idea.
These equilibrium concepts are motivated differently aelireg on the field of application,
although they often overlap or coincide.

Game theory has been widely recognized as an importantriowmlainy fields. Eight
game theorists have won The Nobel Prize in economics, and Maynard Smith was

1



2 1 Introduction

awarded the Crafoord prize for his application of game théombiology.

The established names of “game theory” (developed fromaqimately 1930) and
“theory of differential games” (developed from approxielsit1950, parallel to that of op-
timal control theory) are somewhat unfortunate. “Game tie@specially, appears to be
directly related to board games; of course it is, but theamotihat it is only related to such
games is far too restrictive. The term “differential gametame a generally accepted name
for games in which differential equations play an importaté¢. Nowadays the term “dif-
ferential game” is also being used for other classes of gdareshich the more general
term “dynamic games” would be more appropriate.

The most widely accepted origin of game theory as stateckilitdrature is found in the
year 1944, when the bodkheory of Games and Economic BehawgrJohn von Neumann
and Oskar Morgenstern [91] was published. This theory wasldped extensively in the
1950s by many scholars. Game theory was later explicithiegpo biology in the 1970s.

Applications of game theory

The applications of “game theory” and the “theory of diffietial games” mainly deal with
economic and political conflict situations, worst-caseigies evolution problems in biol-
ogy, as well as modeling of war games. However, it is not ohgy dpplications in these
fields that are important; equally important is the develephof suitable concepts to de-
scribe and understand conflict situations. It turns outirfstance, that the role of informa-
tion - what one player knows compared to others - is very atucisuch problems.

Scientifically, dynamic game theory can be viewed as theodfig of game theory and
optimal control theory. Its character, however, is mucheicthan that of its parents, since
it involves a dynamic decision process evolving in (disem@tcontinuous) time, with more
than one decision maker, each with his/her own cost funetimhpossibly having access to
different information.

Conflict as the origin of game theory

The problems of game theory are often connected with a costftication. Although the
notion of conflict is as old as mankind, the scientific apphodealing with conflict situ-
ations began relatively recently, around the 1930's, tegpin a still growing stream of
scientific publications. More and more scientific discipbrdevote time and attention to the
analysis of conflict situations. These disciplines incl(ajgplied) mathematics, economics,
engineering, aeronautics, sociology, politics, and nratitecal finance.

In a conflict situation an individual, also callecblayer, agent decision makeractor,
or simply person has to make a decision and each possible decision may |eadifferent
outcome, which is valued differently by that individual.i¥mdividual may not be the only
one deciding in favor of a particular outcome; a series ofgi@es made by several individ-
uals may be necessary. If some of the individuals value tissible outcomes differently,
the seeds of conflict have been sown.

The individuals involved do not always have complete cdrmiver the outcome. Some-
times there are uncertainties that influence the outcomeumpredictable way. Under such
circumstances, the outcome is (partly) based on data ndingstn and not determined by
the other players’ decisions. Sometimes it is said that slath are under the control of



1.1 Introduction to game theory 3

“nature” or “God”, and that every outcome is caused by thatjor individual actions of
human beings and “nature” (“God”).

Basic notions

So far we have used terms like “decision” and “strategy” withexplaining them properly,
assuming that their meaning is intuitively clear. Howewame precision is necessary to
avoid ambiguities.

In the following simple example the concepts of decisiortjoac and strategy (also
called “decision rule”) will be introduced.

Consider a person who has to decide what to do on a Sundag@dterand the options
are running outdoors or working out in a fitness club. A pdssilrategyof this individual
can be framed in these terms: “If the weather is nice, therlllrum outside, otherwise |
will work out.” This is astrategyor adecision rule what actually will be done depends
on quantities not yet known and not controlled by the denisiaker; the decision maker
cannotinfluence the course of the events further, once dbahfixed his/her strategy. (We
assume that the decision maker will stick to his/her stgaje8ny consequence of such a
strategy, after the unknown quantities are realized, ieda@naction In a sense, a constant
strategy (such as an irrevocable decision to go running mecahat may) coincides with
the notion of action.

In the example above, the alternative actions are to runomusdand to work out, and
the actions to be implemented depend on information (theheegn which has to be known
at the time it is carried out. In general, such information & of different types. It
can, for instance, comprise the previous actions of all theroplayers. As an example,
consider the following sequence of actions: If he/she ie taane, | will be nice to him/her.
The information can also be of a stochastic nature, such teeirunning example. Then,
the actual decision (action) is based on data not yet knowinnam controlled by other
players, but instead determined by “nature”. If this “natyplays no role, the problem is
deterministic.

Static versus dynamic game theory

There is, in fact, no uniformly accepted line of separatietwieen static games, on the one
hand, and dynamic games, on the other. We shall choose ta gathedynamicif at least
one player is allowed to use a strategy that depends on pigugittions of other players or
the player herself/himself. If a game is not dynamic, tistic

What does “optimality” mean?

In game theoretic problems, the aim is often to find an optstrategy for one or more play-
ers. Optimality, in itself, is not a well defined concept. bmnAcooperative games a solution
in terms of the Nash equilibrium is a specific form of optimalBuch a solution is reached
if one player cannot improve his/her outcome by alteringhleisdecision unilaterally.
Another concept of solution is the one that involves a hirmain decision making: one
or more of the players declare and announce their stratdgyebtihe other players choose
their strategy and the declaring players are in a positi@nforce their own strategy upon
the other players. Such games in which one or more playelteddheleaders declare
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their strategy first and impose this strategy upon the otlaseps, called théollowers are
referred to astackelberg games

If, however, the leaders announce their strategy as a mgjyam the followers’ deci-
sion space into their own decision space, we talk abwdrse Stackelberg gameSxam-
ples of inverse Stackelberg games are:

e Think of the leader as the government and of the follower atizen. The govern-
ment fixes how much income tax the citizen has to pay and tkisvithdepend on
the income of the citizen. It is up to the citizen to choose mouch money he/she
will earn (by working harder or not). The income tax the goweent will receive is
an increasing function of the citizen’s earnings, wherg thx rule (in many countries
piecewise linear) was made known ahead of the citizen'ssietias to how hard to
work and, hence, how much to earn.

e The leader is a bank and the follower an investor. The investo buy stocks, the
bank acting as an intermediary, with the money he/she has/imen savings account.
Suppose he/she buys stocks worth a certain amount of euen. thib bank will charge
him/her transaction costs depending on this amount. Thsdidion costs rule has
been made known by the bank before the actual transacties fdéce.

e The leader is a producer of electricity in a liberalized neand the follower is the
market (a group of clients) itself. The price of electridyset as a function of the
amount of electricity traded [64].

e The leader is a road authority and the followers are drivethe road network. The
road authority optimizes system performance by settinig tmh some of the links
in the network, the drivers make their travel decisions ideorto minimize their
perceived travel time. The travel decisions of the drivetednine their traffic flows
in the network. If the road authority defines the tolls setia hetwork as functions
of the traffic flow in the network, the problem is of the inve&tackelberg type.

e The leader is a road authority and drivers in a given road oshare the followers.
While the leader sets tolls on some links in the network, tiieeds make their travel
decisions in order to minimize their perceived travel co$teeir travel choices deter-
mine the traffic flows in the network. If the link tolls are calated as mappings of
the traffic flows in the network, this game is of the inverseckgiberg type.

1.2 Introduction to the applications studied in this thesis

In this section the three applications considered in tresighwill be briefly introduced: the
optimal toll design problem in Sectign 1.2.1, the problerelettricity market liberalization
in SectiorL 1.Z.R2, and the theory of incentives in Sedfior3lL.2

1.2.1 Optimal toll design

Let us imagine a road network containing cities and routesieoting them. Individual
routes have different properties. Some routes, like higisware wider, have rather high
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capacities, and have a rather high speed limit, too, wherth&s routes, like local ones, are
narrower, with lower capacities, and have a rather low stiegtl Clearly, the local roads
will clog easier than the highways.

Some routes may be tolled. The toll is set by a road authavitich tries to reach its
own goal, by choosing the routes to be tolled and the amoumioofey the drivers have to
pay.

Within the considered network drivers depart from theigoricities to their destination
cities, for example, from the city where they live to the aithere they work. Each driver
chooses among the routes available the one that would bealgtr him/her.

Here the word “optimal” can have a different meaning forefiént drivers. Some drivers
need to depart and arrive within a certain time horizon, amndat mind if they have to pay
toll fees, as long as they do not end up on a congested roaddesegrs traveling to work
everyday, with fixed office hours). For other drivers it is mportant when they leave and
when they arrive, as long as their total travel time is nothiggh. There are also drivers
for whom the most important consideration is not to pay atig,tno matter how slow their
journey is. Still other drivers pick the most scenic route.

For each of the drivers a dynamic cost function can be defiriHus cost function
contains a travel-time dependent part, and a part contpthimtolls the traveler has to pay
when traveling from his/her origin to his/her destinatidhe cost function can also contain
additional terms, like penalty for deviation from the preéel departure time and penalty for
deviation from the preferred arrival time. Such a cost fisrctvas considered in, e.d., [45].
Each of the travelers chooses his/her route and his/hertdepdime so as to minimize
his/her cost function. The travelers’ choices will deterenhow the traffic spreads over
the network. In an equilibrium state, no traveler can imprbis/her perceived travel costs
by unilateral change of his/her route or departure time.s Thincides with the so-called
dynamic stochastic user equilibrium [58], or the dynamitedainistic user equilibrium
[10,/94] in the complete information case.

The road authority can set tolls in various manners. In thésis we compare two
possible approaches:

e The road authority sets tolls that can vary in time (dynamii},tbut are not directly
mapped to the rate of usage of individual routes (traffic-flovariant toll). The game
between the road authority setting tolls to reach its godltaavelers attempting to
minimize their perceived travel costs is defined and sohsed Stackelberg game.
Many researchers have been dealing with the optimal toigdgsoblem in this set-
ting [46,/53) 84].

e The road authority sets dynamic tolls that &adfic-flow dependentThe problem is
to find optimal toll mappings that would minimize the totavel time of the system
or maximize the total toll revenue. The game between the aoddbority setting toll
mappings to reach its goal and travelers attempting to midrtheir travel costs is
defined and solved as an inverse Stackelberg game. In tlicitwith second-best
pricing, i.e., when the toll is not set on all links in the netl, the concept of the
traffic-flow dependent toll is new (See alsol[[74, 179, 81].).

Although we formulate the optimal toll design problem perhlin a general manner, such
that a solution of the problem exists for wide class of oliyediunctions and user equilibria
models
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The tolls maximizing the total toll revenue of the system W much higher than those
minimizing the total travel time of the system, as one woulditively expect.

Both problems mentioned are NP-hard [77, 78], which is whyiseadvanced heuristic
methods, like a neural networks approzch [80], to find afyatis solution.

In some of our case studies the optimal traffic-flow depentidiis a decreasing func-
tion of link traffic flow (rather than increasing as one wous$ame). This phenomenon is
further discussed in Chaptéds 4 dnid 5.

1.2.2 Electricity market liberalization

The European electricity market is currently in the midsdddstic transformation from
monopolistic, national, and state-owned electricity proets (firms) to a market with com-
peting, private, and often multinational firms. The aim bklialization is to decrease the
sales price of electricity and to bring about more cost efitelectricity production. Little
is known about other effects of liberalization, like imp=of this process on environment.

To get more insight into the impacts of liberalization, wér@atluce a game-theoretic
model with electricity producers in various countries agypls (see also_[75]). Various
scenarios of a firms’ behavior, depending on the propertidsaarket power of the firms,
but also on the strategies of European policy makers, ahedad in the model. The model
encompasses eight European countries: Belgium, Denmiat&ni, France, Germany, The
Netherlands, Norway, Sweden.

The firms in individual countries generate electricity byame of different technolo-
gies. A producer can own one or more power plants of differyges? for which the total
capacity for each technology as well as the variable pradoiatosts are given. Produc-
ers maximize their pay-offs by choosing the amount of eietgrto produce with various
technologies for various load modes. Firm pay-offs corisighe income from sales of
electricity in regional markets minus the (variable) cadtproduction.

There are limitations on transportation possibilities lefceicity, and production ca-
pacity of electricity is fixed in the short term. The eledtsiademand for each country is
exogenous. Electricity trade is only feasible with neigfifigp countries. Emissions are
assigned to producers based on the actual technology uderharalso be limited.

Real data used for computations are consumers’ demands &gty per region, sup-
ply data (generation capacity and cost), trade data (interection capacity), data pertain-
ing to distribution losses, and emission factors.

The outcomes of our case studies show that liberalizatienedses electricity prices
and may decrease production of emissions, provided thiaictéens on the electricity pro-
duction are set well.

The problem of electricity market liberalization is dealtiwin Chaptef®.

1.2.3 Theory of incentives

Another application of game theory is so-called theory oémtives. This theory deals with
so-called principal-agent models [51/) 52} 59, 70], whiah am example of the one-leader-
one-follower inverse Stackelberg game introduced in Giréht

1Each power plant corresponds to one specific technologymbue power plants can be owned by one pro-
ducer.
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Consider a bilateral relationship, in whictpancipal contracts aragentto be respon-
sible for the production of some good. The principal has tp i@ agent for the good.
The salary which the principal offers to the agent for thedpietion of a certain number of
products will be decided by the principal. The principalwsaup acontractin which he
specifies the quantity of goods he wants and the salary thiatdming to pay to the agent
for obtaining the demanded products.

Conflicting objectives and decentralized information ave basic ingredients of incen-
tive theory. The essential paradigm of the analysis of ntd&bavior by economists is one
in which economic agents pursue, at least to some exteitpifidate interests.

The agent can have private information. This private infation can be of two types:
either the agent can take an action unobserved by the pairtie case ofmoral hazarg,
or the agent has some private knowledge about his/her casiwation that is ignored by
the principal (the case @fdverse selectign In the incentive theory the main problem is to
find an optimal strategy for the principal, when he does nethacomplete information
about the agent.

We will introduce several incentive problems and discudswad strategies for the prin-
cipal with different scenarios of the agent’s behavior (8se [76].). These problems fall
within the inverse Stackelberg games.

The theory of incentives is dealt with in Chafiér 7.

1.3 Overview of this thesis

1.3.1 Thesis outline
This thesis is organized as follows:
¢ In Chapter[@the foundations of classical game theory are introduced.

e In Chapter[3we introduce the extension of classical game theory thatsgdnuthis
thesis, the so-called inverse Stackelberg games.

¢ In Chapter [4 we propose an extension of the static optimal toll desigrler to
a situation with a traffic flow-dependent toll. We develop ana¢ networks-based
algorithm to solve this problem.

e In Chapter[Hwe propose an extension of the dynamic optimal toll desigblem to
a situation with a traffic-flow dependent toll. Also here wepwse a neural networks-
based algorithm to solve this problem.

e In Chapter[@we define the problem of a liberalized European electriciaykat. We
present various scenarios differing in the electricitydarcers’ behavior and solve
these problems analytically or using a numerical algoritmplemented in Matlab.

¢ In Chapter[flwe introduce the theory of incentives as a subset of the sevBtackel-
berg problems, and we present and solve different pringigaht problems.

e Chapter [g summarizes the results of this thesis and outlines dinestfor future
research.
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1. Introduction

Applications

Game Theory 1 . Optimal Toll Design

2. Results from Classical Game Theory 4. Static Optimal Toll Design Problem

' D :

5. Dynamic Optimal Toll Design Problem
3. Inverse Stackelberg Games

6. Electricity Market Problem

7. Theory of Incentives

8. Conclusions & Future Research

Figure 1.1: Road map. Arrows indicate recommended readiregtion

1.3.2 Road map

Figure[1.1 illustrates a grouping of the chapters in relatdgjects and an ordering in which
the chapters can be read. Itis suggested to read the chaygtez®rder as they appear in this
thesis. Chaptérl1 contains a general introduction to thie foghis thesis, and is therefore
suggested to be red first. Chapiérs 2[@nd 3 both focus on gamey tithapter]2 focuses on
“classical” game theory and explains its main concepts uséus thesis. Chaptél 3 deals
with so-called inverse Stackelberg games, and is one of dhéributions of this thesis.
Chapter§ ¥[1516, arld 7 deal with game theory applicatiorgiestuin this thesis. It is
therefore suggested to read Chapiérs 2and 3 before Chdt:I8, andl7. Both Chapters
[4 and® focus on bilevel optimal toll design problem, the ferran its static version, the
latter on its dynamic version. It is suggested to read Cm@pbefore Chaptdrl5. Chapfar 8
summarizes the results of this thesis and gives directioniifure research. This chapter
should be read as the last chapter.

Main contributions

The main contributions of the research described in this Bi&3is with respect to game
theory are the following:

e The concept of an inverse Stackelberg game as generafiz#ta Stackelberg game
is introduced and studied, mainly by means of examples. iSalfaost no literature
dealing with inverse Stackelberg games exists, thoughtdheept has been known
for some time.
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e Possible ways of how to find a (sub-)optimal solution of arense Stackelberg game
are proposed.

¢ In a general game theoretical framework, it is shown thaeutite same initial con-
ditions an inverse Stackelberg game can never bring a wartseme than a related
Stackelberg game, as the Stackelberg strategy is a spasilaf the Stackelberg
strategy.

The main contributions of the research described in this fleBis with respect to the game
theory application in the optimal toll design problem are tbllowing:

e A concept of a traffic-flow dependent toll in the optimal todisign problem is defined
for both the static and the dynamic optimal toll design peotol

e Properties of the optimal toll design problem are discussed

¢ A neural-networks based algorithm for solving the optinadildesign problem with
a traffic-flow dependent toll is proposed.

¢ Itis shown that the road authority can never be worse-ofi witraffic-flow dependent
toll than with a traffic-flow invariant toll, since the traffitow invariant toll is a trivial
case of the traffic-flow dependent toll.

The main contributions of the research described in this #iebis with respect to the
game theory applications in the energy market liberaliragiroblem are the following:

e A model of a liberalized electricity market, involving 8 Eyrean countries, is pro-
posed.

o Different game theory concepts are applied to this modelitisdshown that a mo-
nopolistic or a duopolistic market yields higher electsigirices than a highly com-
petitive market.

The main contributions of the research described in this #ieBis with respect to the
game theory application in theory of incentives are theofeihg:

¢ A classical principal-agent model is an inverse Stackeligame.

e Examples of this game are given and solved analytically.






Chapter 2

Results from Classical Game
Theory

In this chapter some classical results from game theorg unsthis thesis, will be recapitu-
lated.

2.1 Preliminaries

Definition 2.1  (Game)

A gameis the interaction among rational, mutually aware playetsgre the decisions of
some players impacts the payoffs of others. A game is desthbits players, each player’s
strategies, and the resulting costs for each outcome. idddity, in sequential games, the
game stipulates the timing (or order) of moves. O

Note that a player’strategyin a game is a complete plan of decision (action) for what-
ever situation might arise; this fully determines the pta/behavior. A player’s strategy
will determine thedecision(action) the player will take at any stage of the game, foreve
possible history of play up to that stage. s&ategy profileis a set of strategies for each
player which fully specifies all actions in a game. A stratpggfile must include one and
only one strategy for every player. pure strategydefines a specific move or action that a
player will follow in every possible attainable situationa game. Such moves may not be
random, or drawn from a distribution, as in the case of mixettegies. Amixed strategys
a strategy consisting of possible moves and a probabiltyitdution (collection of weights)
which corresponds to how frequently each move is to be play&te can regard a pure
strategy as a degenerate case of a mixed strategy, in whatipaiticular pure strategy is
selected with probability 1 and every other strategy withbability O.

We will use the following notation: Leb; be a decision space (set of possible decisions)
for thei-th player in am-person noncooperative game. luet D; be a decision of theth

player. Letp d:Efa)l x Dy X --+ X Dy be the set of decision spaces. Vecuéjg(ul, .eeyUn)

will be called a decision profile, vectar_; def (ui, ..., Ui—1, Uiy1, ..., Un) will be the
decision profile without thé-th decision. The objective function for thieh player will

11
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be denoted by, wheres = 5(u). If playeri € {1,...,n} chooses decision; resulting
in decision profileu = (ug,...,un), playeri obtains outcome;(u). Note that the objective
function is individual and depends on the decision profilesen, i.e., on the decision taken
by playeri as well as on the decisions of all the other players.

Below we will use the notiom; not only for the decision of thieth player, but also for
the value of such a decision. In Chapter§M.15, 6,[@nd 7 differetions for the players’
decisions will be introduced to avoid misunderstanding.

2.2 Nash equilibrium

A Nash equilibrium|[611] is a set of strategies for finite, nosperative games between two
or more players whereby no player can improve his/her paypffhanging their strategy.
Each player’s strategy is an “optimal” response based oaitkieipated rational strategy of
the other player(s) in the game.

Definition 2.2 (Nash equilibrium)

A decision profileu* = (uj, ..., u;) € D is in a Nash equilibrium (NE) if no unilateral devia-
tion in decision by any single player is profitable for thaty#r, i.e.vi € {1,....n}, u €
Di, U # U

]i(uiw"aui*flvui*aui*qtlv'--aur‘l) S ]i(ui,...,Ui*,]_,Ui,Ui*Jrl,...,U;)-
O

A game can have a pure strategy Nash equilibrium or an Nashbggum in its mixed
extension. Nash proved that, if we allow mixed strategidaygrs choose strategies ran-
domly according to pre-assigned probabilities), theneveplayer game in which every
player can choose from finitely many actions admits at leastiash equilibrium.

Players are in a Nash equilibrium if each one is making thé¢ thesision that he/she
can, taking into account the decisions of the others. Howéwe Nash equilibrium does not
necessarily mean the best cumulative payoff for all thegrisyjnvolved; in many cases all
the players might improve their payoffs if they could somslagree on strategies different
from the Nash equilibrium.

Remark 2.1 In Chaptef# the so—callédfardropequilibrium will be introduced, as a lim-
iting case of the Nash equilibrium applied in macroscoméfit modeling. The Wardrop
equilibrium is the Nash equilibrium with a very large numbéplayers. Then the contri-
bution of a single player to the outcome of the game tendsrm ze O

2.3 Stackelberg equilibria and terminology

For the sake of simplicity we will consider a game with twoyges only.
Let us consider two players, called Leader and Followempeetively, each having
his/her own cost function,

gL (UL, up),  Jr (UL, Ug),
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whereu,,u. € R. Each player wants to choose his/her own decision variabkich a
way as to minimize his/her own cost function. In the Stac&ritequilibrium concept one
player, the leader, announces his/her decisjgiwhich is subsequently made known to the
other player, the follower. With this knowledge, the follemchooses his/her-. Henceug
becomes a function af_, written as

ur=Ir(u),
which is determined through the relation
muin JF (UL, Up) = JF (UL, Ie(uL)) -

Here it is assumed that this minimum exists and that it is waifpr each possible choice
u_ of the leader. The functiok(-) is sometimes called a reaction function (i.e. it indicates
how the follower will react upon the leader’s decision). &efthe leader announces his/her
decisionug, he/she will realize how the follower will react and hence lader will choose,
and subsequently announce,such as to minimize (u.,lg(u)).

Example 2.1
Suppose
(UL, UE) = (Ur—5)2+ U2,  Jr(uL,ur) = uf + U2 — UL U
The reaction curvér is given byug = %uL (it is easily found by differentiating_ with
respect tasr)and hencel. will be chosen such as to minimize

1 2
(EUL 5> + U2,

which immediately results im. = 2. With this decision of the leader the follower will
chooseur = 1. The costs for the leader and follower are given by 20 andspectivelyO

Note that the best that the leader can obtain is
min 7 (u_,Ug)
U €D ,UFEDE

We will refer to this value as to thieam minimum

2.4 Open loop versus closed loop

These concepts appear in games in which time evolution plagke.

In open-loop information patterns a strategy only depentshe initial state, at the
beginning of a game. In closed-loop information patteresstnategy depends on the current
state, i.e., the state at the moment that a decision has t@te.m

2.5 Tools for one-person optimization

In this section we will introduce some optimization techrég adopted from control sys-
tem theory and used in this thesis. For more details aboutithchl techniques, seel[5].

In Section 2.5]1 the dynamic programming approach for coistiis-time systems will be

introduced. In Section 2.3.2 the minimum principle will imroduced. Sectidn 2.5.3 deals
with affine quadratic continuous-time optimal control pgeabs.
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2.5.1 Dynamic programming for continuous-time systems

The method of dynamic programming is basedtoa principle of optimalitywhich states

that an optimal strategy has the property that, whateveittial state and time are, all
remaining decisions (from that particular initial statedgrarticular initial time onwards)
must also constitute an optimal strategy. To exploit thiagiple, one has to work back-
wards in time, starting at all possible final states with tberesponding final times. The
dynamic programming approach, when applied to the singleriim optimization problems
defined in continuous time, leads to a partial differenttplaion, known as the Hamilton-
Jacobi-Bellman (HJB) equation. We will consider the prabldefined as finding decision
u minimizing costL(u), where

X(t) = f(t,x(t),ut)), x(0)=x, t=>0, (2.1)

ult) =y(t,x(t)) €S ver, (2.2)
T

L(w = [ g(tx(V),ult) dt+a(T.x(T)). @3)

T= rtn>i51{t (Lt x(t)) = 0}. (2.4)

Heret indicates the timex denotes ®/dt. The statex of this model evolves in time ac-
cording to the differential equation= f (t,x(t),u(t)). In general the statg can be an
n-dimensional vector (written as< R") andt € [0, T], whereT > O represents the fixed
final time. Under suitable conditions on the functibnthe time evolution ok is uniquely
determined by the differential equation. A scalar functidefines am-dimensional smooth
manifold in the product spa@®” x R, and the class of all admissible closed-loop strategies
I. The so-calledralue function

def : T
V(t,x) = lrjrz|sr)1 [/t g(s,x(s),u(s)) ds+q(T,x(T))|, (2.5)

t<s<T
satisfying the boundary condition
V(T,x)=q(T,x) along I(T,x)=0. (2.6)

describes the minimal cost-to-go from any initial statend any initial timet. If V is con-
tinuously differentiable, the principle of optimality yés the following HIB equation:
oV (t,x) - [oV(t,x)

— g = min | == (X w) gt xu)| (2.7)

which takes[(Z]6) as the boundary condition.

Theorem 2.2 (Sufficiency) If a continuously differentiable functioiit)x) can be found
that satisfies the HIB equatidB.4) subject to the boundary conditidg.8), then it gener-
ates the optimal strategy through the static (pointwisa)imization problem defined by the
right-hand side of(2.7).

Proof: Seel5]. |
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2.5.2 The minimum principle
LetV from (Z.7) be twice continuously differentiable. Let fuinet H be defined as

A (t,x,u) &' L/g;’ X)

f(t,X, U) +g(taX7 U).

Then equatior{2]7) far* minimizing F (t, x,u) can be written as

V (t ~
¥+H(t,x,u*):0. (2.8)
SinceV is twice continuously differentiable, differentiation @.8) with respect to andt

yields

Jg d(gz) ov af dH ou _0 2.9)

ox axox ouox
It can be seen tha@% = 0 for u = u* according to[{218), ifu is not constrained (If there
are constraints om, andu* happens to be on the boundary, then it can be shown that
9HOU” _ ). In all cases, equatiof (2.9) becomes

ou 0x
g d [ov ov of -
&Jra(&)Jr&&O (2.10)

Letx* denote the state trajectory correspondingtoBy introducing the so-calledostate
vector A(t) dzefw, (Z.10) can be rewritten as

W 2 gt u) + AT )] = —2HEpX ). (211)
a - ax 9 O =T R, '

whereH (t, p,x, u) d:‘Efg(t,x, u) + p'f(t,x,u). Sincel(T,x) = 0 for the final timeT, T can

be regarded as a function of the state, iTes T(x). The boundary condition fop(t) is
determined by

pm= V) _aT60)x) 212)

Under the assumption that the value functi, x) is twice continuously differentiable, the
optimal controlu*(t) and corresponding trajectory(t) satisfies the followinganonical
equation

X (t) = (g—i)/ = f(t,x*,u"), X(to) = Xo, (2.13)
Alt) = *W (2.14)

N(T) = Q(B’XX*) along 1(T,x) = 0; (2.15)

H(t, A, x,u) d:‘Efg(t,x, u)+ A f(t,xu), (2.16)

u(t) = argLrJQiSnH (t, A, X", u). (2.17)
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In the derivation of[(2.113)E(2.17) the controls have beesuamd to be functions of time
and state. If the control functions are dependent on timg, @mle obtains the following
(Pontryagin) principle.

Theorem 2.3 (Pontryagin minimum principle) Consider the optimal cahfproblem de-
fined by(2.1)~(3.13)and under the open-loop information structure. If the fims f, g, g,
and | are continuously differentiable in x and continuous and u then relationg2.13)-
(Z.17) provide a set of necessary conditions for the optimal cominal the corresponding
optimal trajectory to satisfy.

Proof: Seel4/]. O

2.5.3 Affine quadratic optimal control problems

Let a system be given by
X=A(t)x(t)+B(t)u(t) +c(t), x(0)=Xo. (2.18)
Let the function to be minimized be defined as
L(u) = %X’(T)QfX(T)Jr%/OT (XQx+2Xp+URu) dt, (2.19)

wherex(t) e R" u(t) e R™, 0<t < T andT is fixed. A(:), B(-), Q(-) > 0, R(-) > 0 are
matrices of appropriate dimensions and with continuousesntn|[0, T]. The matrixQs is
nonnegative-definite, argd-) andp(-) are continuous vector-valued functions, taking values
in R". Furthermore, we adopt the feedback information patterntakel a typical control
strategy as a continuous mapping0, T] x R" — R™. The space of all such strategies will
be denoted by . The optimal control problem is to findyé € I such that

J(Y)<s(y), Vvyer, (2.20)
where
7(y) = L(u), with u(:) =vy(-,x). (2.21)

Sincey (y) is quadratic ing (seel[1]) and the minimum cost-to-go, starting from an aabjyt
t € [0,T] at an arbitrary poink € R", is quadratic inx, we can prove that there exists a
continuously differentiable value function of the form

1
V(t,x) = éx’S(t)x+ K (t)x+m(t) (2.22)
that satisfied(2]7). Hei®is a symmetrim x n matrix with continuously differentiable en-
tries,k(-) is a continuously differentiable-vector, andn(-) is a continuously differentiable

function.
Substitution of[(2.212) intd (2]7) leads to

f%x’Sxfx’kfr'n:muin (Sx+k)’(Ax+Bu+c)+%%Qx+>(p+%u’Ru . (2.23)
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Minimization of the right hand side leads to
ut(t) =y (tx(t) = —RTIB'[S{xX() + k(b)) (2.24)
By substituting[(2.24) intd (2.23) we obtain the followingnitions:

S+SA+AS-SBRIB'S+Q=0, T)=0Qy, (2.25)

k+ (A—BR'B'S)'k+Sc+p=0, k(T)=0, (2.26)
1

m+k’cf§k’BF\le’k:O, m(T) =0. (2.27)

Proposition 2.5.1 The affine quadratic continuous-time optimal control pehs(@Z.18)-
(2.19)admits a unique optimum feedback controifewhich is given by2.24) where %),
k(-), and n(-) uniquely satisfy2.28}-(2.27) The minimum value of the cost function is

1Y) = 3%S(0)% +K(0)% +m(0).

Proof: Seel5]. |






Chapter 3

Inverse Stackelberg Games

Parts of the research presented in this chapter have besanped in|[78]. In Sectidn 3.1 we
deal with static inverse Stackelberg games. Dynamic imvBtackelberg problems are in-
troduced in Section 3.2. Conclusions, possible extens@rsfuture research are discussed
in Sectior 3.4.

3.1 Static inverse Stackelberg games and equilibria

In Section[3.111 the static inverse Stackelberg game withleader and one follower is
introduced, in Sectidn 3.1.2 static inverse Stackelbesglems with one leader and multiple
followers will be dealt with.

3.1.1 One leader — one follower games

Let us consider a game with one leader and one follower, eaghdphis/her cost function

Ju (UL, ur), 9k (UL, Up),

to be minimized. In thénverse Stackelberg gantiee leader does not announce the scalar
u, as in the Stackelberg game introduced in Se¢fioh 2.3, hunietibnyy (-), which maps
Ur intou .

Given the functiony_(-), the follower’s optimal choice afir, indicated by an asterisk,
satisfies

Up = argminse (VL (Ug), Ur) - (3.1)

The leader, before announcing his/lget-), will realize how the follower will play, and
he/she should exploit this knowledge in order to choose #s¢ mossibley_ -function, such
that ultimately his/her own cost becomes as small as pessiBymbolically this can be
written as

Vi) = afgnyT}i_)nJL (Y (UF(YL () UR(YL(9)))- (3.2)

19
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The problem[(3]2) belongs to the field of composed functiéf$, [and is therefore in gen-
eral very difficult to solve. In general it is very complicdti find an analytical solution of
3.2), if it exists at all.

However, if the leader knows what he/she can achieve (ingefhminimal costs) and
what has to be done by all players to reach this outcome, #tietenay be able to persuade
other players to help him/her to reach this goal (i.e., tHaevaf the leader’s cost function
obtained if all players minimize it), as shown in Examiplel 3Iflit is unknown what the
leader can achieve in terms of minimal costs, finding thedeadptimaly,-strategy is
generally very difficult.

Example 3.1
Suppose the cost functions are those of Example 2.1, i.e.,

91 (uL,Up) = (UF—5)%+u?,  7r(uL,Ur) = U? + U2 — UL Ur.

If both the leader and the follower would minimize (u._,ug), the follower totally disre-
garding his/her own cost function, the leader would obth@téam minimum
min 7 (u_,ug) = 5.(0,5) =0.
U €D ,UFEDE
To obtain the team minimum in the inverse Stackelberg gaméetider should choose the
yL-curve in such a way that the poifu, , ug) = (0,5) lies on this curve and, moreover, that
the set
{(YL(uF), UF) |UF € DF}
does not have other points in common with the set
{(uL, ur) | ¢ (UL, ur) < J¢ (0,5)}.
An example of such a curveis = 2up — 10. Clearly, this is the only linear curve satisfying

the requirements.
With this choice of the leader, the best for the follower taglto minimize

IF (2ur — 10,uF),

which leads taur = 5. Thenu, = 0 and the leader obtains his/her team minimum in spite
of the fact that the follower minimized his/her own cost ftion (although subject to the
constrainu = yi (Up) = 2ug — 10). O

The following two examples show situations in which the teamimum cannot be reached.

Example 3.2
Letp. ={a,B}, e ={y,0}, a,B,y,0 € R. If the optimal strategies for the leader and for
the follower are':

. {0(, if up=y, . {y, it u =B,

L=\ B, if ur=3, UF=15 if u=—oa.

Clearly, in this situation the leader cannot reach the pesstible (team minimum) outcome
in the deterministic sense. However, a mixed strategy iselaian be found.
O

Litis easy to define cost functions, corresponding to thesimapstrategies.
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Example 3.3
Let us consider Example_3.1 with restriction of the decisipaces for both the leader and
the follower, D def [—4,3], D def [-5,7]. The worst that can happen to the follower is

characterized by mjpmax, sr, which is realized four = -2, u. = —4 (Jr(—4,-2) =
12). In optimal case the leader obtains

miny_, subject toe < 9p(—4,-2)=12
up ,Ug

The solutionu. andug will be indicated byuI, uJ,E. An g-optimal choice for the leader is

4, for —5§u|:<u;§—s,

UL:yL(uF):{ " t

up, for up—e<up<7,

whereg is an arbitrarily small nonnegative numberelf O, the solution is unique, i€ =0
the follower can respond in a non-unique way. O

Exampld 3.4 will deal with a situation, in which the leadeedmot know in advance, what
he/she can achieve.

Example 3.4

Let us consider an inverse Stackelberg game, in which thewiet minimizes the sum of
f(ur) andy, (ug), wherey, : Dg — R?H v (0) = 0, is chosen by the leader arid g — R
is a given function, i.e.,

ug =arg min(f(ug)+ v (Ug)), (3.3)

UFEDE

while the leader maximizeg (ur), i.e.,
VL) = argmav (ug). (3.4)
(-

This example can be interpreted as follows: The leader isnk bad the follower is
an investor. The investor maximizes his wealtfi(ug) — yi (ug), whereug [euro] is the
investment. Foug = 0 no transaction takes place. Lgt(-) represent transaction costs
function, i.e., if the investor makes investment decigipnhe has to pay transaction costs
of yi (ug) [euro]. Since the investor should be secured of a maximurnfd@3$ by playing
ug = 0, we assume that he/she will only talge-values from the sétl defined as

def i
U ={ue: f(ug) < £(0)}.

In practice the functiorf would depend on the market situation. Let us consider

defined as follows

f (Up) = (Ur — )2+ B,

with a > 0. Thenf(0) = a? + B and, thereford) = [0,2a].
We will try to find ane-optimaly,_-function in an ad-hoc way. Singg (ug) is included
in the follower’s cost function, we will try to check how déffent choices ofi_ influence the
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outcome of the game. Intuitively, it seems to be reasonaltbdosey -function defined as
follows:

f(0)—f(ug))(1—¢), if 0<up<2aq,

VL(UF)dgf{ (F(0) ~ f(up)(1-8) <UF< (35)

nonnegative elsewhere,

wheree | 0.

With the y_ -function defined by[(3]5) the optimal follower’s decisianuy = a, the
follower’s costs are? + B — a’e and the leader’s profit il — €)a®. The leader (bank) reaps
essentially all the follower’s (investor's) profits (thetkr would have been mipf(ug) =
a if the transaction costs would have been identically zetdte that thee-optimaly -
function of the leader is non-unique; another choice, sirlyiladvantageous to the bank,
would be

a?—¢g, if Up#O0;

Y (UF) = { 0, if ur—0,
wheree | 0. Then the outcomes for the leader and the followercere- € anda? + B —¢,
respectively. Note that far | 0 the outcomes of the two games do not differ. O

Note that an upper bound for the leader’s profit in ExarnplEs3.4
IF(Up = Ug) — Jr(up = 0),

whereug. is the optimal decision of the follower in absence of tratisaccosts.

3.1.2 One leader — multiple followers games

If there are two or more followers in the decision probleng tblationship, which deter-
mines the solution concept to be adopted between the folfywieust be specified. Let
be the set of all followers and 1| denotes the number of elements in theseLet D,
Dr. be decision spaces of the leader andittiefollower, respectively,=1,...,|F|.

An inverse Stackelberg strategy for the leader is a mappin@r, x --- x Dp — Di.
This mapping can also be a vector-valued functiomjife R", n € N. Suppose thati: =

(u’gl, e u,*:m) is the|F|-tuple of the follower’s decisions desired by the leader.sAf that
yL is a dominant strategy solution for the leader, if

arg min Jg (yL (UFv---vUFm) ,uFl,...,uF‘FI) = Ug, (3.6)

UFiGQ)Fi
with arbitraryug;, Vj #i,i=2,...,M.
If the followers minimize their own cost functions, beingmumoperative among them-

selves, a natural solution concept for their behavior isNash equilibrium, introduced in

Sectior Z.P.

Example 3.5 [Followers minimizing their own costs]
Consider three players, the leaderand two followersfi, 72, with decision variablesy,
Ur,, Ur,, respectively. The decision spaces for the followers areré¢la numbers, i.e.,
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Df, = Dr, = R, while p| = R2. The followers’ cost functions (to be minimized) are given
as follows:

2
1 1 1
IR = (u(LLZ) +UF12+U%2*U(L)UF1*U(L)UF2,

(2) (2)
L

2
IR = (u(LZ) + 1) +Ur, 2+ u%z —2U”Ur, — 2U” UF,,
and they are playing a Nash game among themselves. The leasltite cost function (to
be minimized)

2 2
9 = (u(Ll) - 1) + (uf) + 1) + (Up, — 1)%+ (U, + 1) (3.7)

Itis obvious that the team minimum for the leader is in thenpoi

(ul(_l)v ul(_2)7 uFla qu) = (15 717 17 71)

An optimal strategy for the leader is to choose linear fiondi

u 1
ut = %Jré, uY =g, +1)—1, EcR. (3.8)
Because the paramet&rcan vary, the strategf/ (3.8) is nonunique. This strategidyithe
team minimum for the leader. Outcomes for the leader, theféiower, and the second
follower are then 03, and 2 respectively.
O

In some cases the leader can decouple the followers fromatheh and, therefore, the
leader can control each of the followers’ cost functionsasately.

Example 3.6 [Example of a decoupling strategy of the leader]
Let us consider three players, one leadewith u. = (uﬁl),uﬁz)) (L = (R4)?) and two

followers #1, ¥ with decision variablesir, and ur,, respectively, and decision spaces
Dr, = D, = R4, All players want to minimize their cost functions defined as

9L = (U, + Ur,)?,

1
Ir = (Ur — 1)2+UF2+UI(_ )’

Ir, = (U, — 1)2 +2UF, + u(Lz).
If the leader applieﬂ(Ll) = \le)(uFl) = 2Ur, — 2Ur,, it will induce u(Ll) = 0 regardless
of the value ofur,, and similarlyuﬁz) = y(Lz) (Ur,) = 2ur, will induce u(Lz) = 0 for all values
Ur,, and hence

1 2
YL (U, Ur,) = (V<L SRR (UFZ))
constitutes a dominant strategy. The leader can contrdlfoostions of each follower

separately. However, such a solution does not exist gdypdvatause the cost functions of
the followers may not have the required structure. O
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Example 3.7 [Followers in a Wardrop equilibrium]

Consider again three players, the leadeand the followersri, 72, where the decision
spaces are defined g = {u_,u. =aur, +b,a,beR}, Dg, = D, = R?r. Additionally,
let the leader’s objective function be

= (ur)? + (UR,)® — U, Ur, — 3UF; (3.9)
and let the followers have cost functions
JF, = Ur, + UL, JF, = 10UF,, (3.10)
respectively. Additionally, let the following constragrttave to be satisfied:
Ur, + U, = 10, IF, = IF,. (3.12)

The leader can in advance compute that the optimal followeaistions to hisi. =aug, +b
are

b-100  10a+b+10

b-10C _ 12
ar1l R at1l (3.12)

Ur, =

for any choice o andb. Hence, the leader minimizes with ur, andug, given by [3.1P),
ie.,

_100a2 — 1100a+ 33ab+ 3b?— 237b + 5800
: (11+ a)? '

Minimization of this function with respect taandb leads toa = —2/11b* + 79/11 where
bis free. This choice o&yieldsu_ = 79/2 andj_ = 37/4, while the optimalur, anduf,
are 1Y2 and 92 and yieldsr, = 7r, = 45. O

Remark 3.1 The interpretation of (3.11) in Examdle B.7 is as follows: i4@e number
of drivers traveling from origiro to destinationd choosing among two linkéy, 12, ur,
andur, are traffic flows on link1 and linklz, respectively. The travelers’ choices of links

determine the traffic flows in the network. Likis tolled with traffic-flow dependent toll

uL dZEfau.:1 +b(a,be Ry), 5, (Ur,, UL ) is the cost of using link; and sk, (ur, ) is the cost

on the linkl,. Equations[(3.111) can be interpreted as Wardrop equilibeomong travelers
[94], provided that both links are used. In Chaplérs 4[dnd gerpooblems of this type will
be considered. While in reality the traffic flows are integalued, in our case studies we
consider real traffic flows. O

Example 3.8
Consider the game with two followers, with

2 2
jFl = uFl - uFluL + 2u|_7

IF, = U, — 2Up,uL + 5U7,
and one leader with the cost function

JL = UF + 22U, UL + 5UR,UL + UZ, + UE, +4u.
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The team minimum of, would be achieved if
Ur, = —8/25 ur, =—20/25 and u_=8/25
The leader will try to obtain his team minimum by right choadfehe coefficientsr, B, din
uL = YL (Ur,, Ur,) = aUr, + Bur, + d.

If he is successful with linear functions, there is no neitgds consider the larger class
of nonlinear functions. We derive three (linear) equatifmshe coefficientsx, 3, 8. The
first one is obtained by the fact that the absolute minimumtri@son the curveu, =
QUF, + BUr, + 0. The second and third ones are obtained 5y ’;ESFTUFZ» =0,i=1,2.
The equations are

—80—20B+250 = 8,
160 — 208 —255 = 16,
—80+80B—505 = 40,

which results in

7 332

3
==, B=—,0=—. 3.13
=5 P15 37 (3.13)

They -function with coefficients given by (3.1.3) leads to the legsiteam minimum.
In other words, he/she cannot do better.

A different approach to find the solution of the problem cohkl described as fol-
lows: Consider the constant level curk€ (U, , uL) through this point, i.eJr, (Ur,,uL) =
928/625. This curve determinag as a function ofur,. By taking the total derivative
of 7, (Ur,,u ) = 928/625 with respect tair, one obtainsl;’uLFL = 3 for (Ur,Ur,,UL) =

1
(—8/25,—20/25,8/25). By considering the constant level curyg (ur,,u.) through the
same point, one obtains similarﬁ% = 115 Hence, if a lineay_ function exists, it must be
2

of the form
u. = Vi (Ur;, UF,) = OUF, + BUF, + 8

with a = g B= 1—75 Now 0 is obtained by the fact that the curug =y must pass through
the point(ur,, Ur,, u ) = (—8/25,—-20/25,8/25.) This yieldsd = % O

3.2 Dynamic inverse Stackelberg games and equilibria

The dynamic inverse Stacklelberg game with one leader aadadiower is introduced Sec-

tion[3.2.1. In Section 3.2.2 the inverse Stackelberg probleith one leader and multiple
followers will be dealt with. Note that we focus on contingetime dynamics (as oppose to
dynamic problems considered in Chapter 5) although theatized versions of the prob-

lems are used for their solution.
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3.2.1 One leader — one follower games

Let us consider a dynamic system defined by
x=f(x,uL,ug), X(0)=Xo.

Heret indicates the timex denotes ®/dt. The statex of this model evolves in time accord-
ing to the differential equation= f.

In general the statecan be am-dimensional vector (written asc R"), but we restrict
ourselveston = 1 andt € [0, T], whereT > 0 represents the fixed final time. The quantities
u, i = L,F, are scalar functions of time possibly restricted to aagersetu;(t) € Ui(t),
which will be specified later. The functiaR must be chosen in such a way as to minimize
the cost function

[ aocucueat+ g )

bothg; andq; are scalar functions and are assumed to satisfy certaitarégwonditions, to
be introduced later, such that the cost functions are wéitheld. Under suitable conditions
on the functiorf (x, u., Ug), the time evolution okis uniquely determined by the differential
equation. There are no restrictions (T ), it is the so-calledree endpoint problemThe
specific problem on which we will concentrate now is:

x=f(x,ug), x(0)=xo,

mine = min (a0x(T) + [ gix et [y tew)k).

T
maxj. =max | Y (ug(t))dt.
() () /o

(P)

The functiony, is up to the choice of the leader and satisfies

YL(0) =0, vi(-) >0, YL(ur) = YL(—UF).

Similarly, as in Examplg-3]4, this game can be interpretealgame between a bank as
the leader and an investor as the follower. The investor sv@nmaximize

~a0m) - [ atcupict— [ v (ueo)a

(equivalently wants to minimize- d:efq(x(T)) + Jo 9% UF)dt + fo Vi (UF(t)) dt).

The term—q(x(T)) represents the wealth of the investor at the final firend the term
ffOT g(x,ur)dt represents the consumption during the time intef@al]. The termug(t)
can be interpreted as a density of the investor’'s trangactioth the bank, i.e., during the
time intervallt, t + dt] the number of transactions equafgt)dt. Forug = 0 no transactions
take placey (0) = 0). The transactions cost money and we assume that the bank tea
maximize these transaction cogts These costs are included in the costs of the follower
Jr. A reasonable restriction op is thaty (-) is nondecreasing with respectfig|. The
higher the number of transactions (either buying or sellone being related to a positive
Ur, the other one to a negative), the higher the costs.

The problem as stated here is obviously a difficult one. Wé amihsider two specific
examples of the problem (P) and try to find the optimafunction for the leader.
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Example 3.9
This example is a dynamic extension of Exaniplé 3.4. The proli:

X=Ug, X(0)=1,

Py nJLnJF = muln ( (% /01 u(t)dt + %xz(l)) + /OlyL (UF(t)) dt) ,

T
maxs. = max [ Y (ug(t))dt.
() w() /o

As in Examplé_3.4 the transaction costs will be first not cdesed. Based on the results
of the minimization problem of the follower’s function witht they, -function we will
consider different possibilities for -function to obtain the best-possible outcome for the
leader. Therefore, the follower’s cost function to be miizied is first defined as

1

72 d“<1/ ué(t)dt+1x2(1)). (3.14)

2Jo 2
The Hamiltonian of the problem given by= ug, x(0) = 1, and by [3.14) is
1
Using the Pontryagin minimum principle we compute that
V() =—A, A=0, A1) =x(1), ue(t)=-x(1), te[01],
and hence
1 1 1 Z_L

Ur(t) = =5, X' () =1-3t Jr(Ur=Up) =5, Jr(Ur=0)=7.

Mimicking the choice ofy. in Exampld-3.4 we will first consideg defined as

v (up) &' (% - £> Ur (14 uF)

on the interval0, 1] andy_(ug) > 0 elsewhere, witls | 0. Herey, (-) =0 if e=00n|0,1]
and

H :)\UF+}U%* (%s) Ur (1+ UF).

2
Therefore,
. A-3l+e
ut = —
2¢
and 1
A=0, A1) =x(1), X(t)=1- Et'

The outcomes of the game for the leader and the follower are

1 1 3

JF=5— 7%

=g et g 4
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The leader can do better, however, with another choice digtiay, . Let

def 1
ACOE EBU%JFO‘UH

then
_1+B-a N 1+a

X'(1) = 248 Ug(t) = 5P

wheref3 > —1 has to be satisfied (second-order conditions). Sig¢er = 0) = % the
parameterst andp must satisfysr(Ur = ug) < %, ie.,

1

. 2
(2 0 )2 v () - EEB G

2(2+p)

1
<_a
-2

which is always fulfilled fo3 > —1. Consider

o Ao (1+a)?  1+a) B-da—(4+PB)a?
’IJ%"V““”—T,%Xé(B(m) ‘”ﬂ)‘rﬂ,‘%x 22+7

-2

The maximization with respect to leads too = pmct which, upon its turn, leads to

1
maxy, (Uf) = max————.
Al )
Based upon this, the-optimal value for3 is p = —1+ €, wheree | 0. Subsequentlyy =
—% + %s up to first order ire, and with the same accuraey, = —3 + 3¢ . This leads to

4 1 1 1

F=g 275 =5

——¢

6 18”7

which is a best result for the leader within the class of gaticly, -functions. Without the
transaction costs for the investor, its costs would be

5 1
JF—IJL = 1_8 + a87

which is less than what he would have obtained by playing- 0. Sinceg(u:) > 0in a
neighborhood otif, only further away fronug the functiony, has to be adjusted such that
yiL(+) > 0 everywhere.

We might think that the leader can maximize his/her profit lsans of the following
nonquadratic choice:

0, if ug=0,

Vi (Up) = { 1o if UE#£0,

with € | 0. It can be derived that the profit of the bank%iswhich is clearly less than what
could be obtained with the best quadratic
O

To show that with use of the quadratic-function the profit of the leader is maximized,
we will formulate the discretized version of Examplel3.9.
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Example 3.10 [Discretized version of ExamplE_3]19]
Here we consider the model

The derivative of this expression with respecn.@) equals zero. Substitution mf) =
(N) @ subsequently leads to

ooy
(“Q)*:*:sNN_l’ i—1.2...N.

With N — o we get(u,(:i))* =-1i=1,2,...,N. The profit for the leader i%. Note

that with limy_. ﬁ = £, as in the case of the best quadrati€unction.
If we considersg as a function oﬁ,(:l) only and Withu,<:2) =...= u,(:N) = f%, thensg

can be computed as

1{1/a)2 N=1/ N \? 1/ 1 NN-1)Y))°
Z[N(UF) N (SNl) B G R G

and

1 N 2 N N
e (=g =)
C1[N(N=1)+(2N)2 N2+ (2N-1)
2 (3N—1)° (BN-1)2 |’

If we calculate

N
N <j|: <u,(:l) :O,u,(:z),...,u,(:N) 3N—1)

1 N 2 N N
—F (u(F)?;N—l’u'(:)""’u(F)3N—1>>’
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the result isﬁ, which equals the profit of the bank (as already obtainedegarApart
from ane-term it is necessary for the leader that

1 N 2 N N 1
e (o) = g = gy
1 2 N N
S]F(ué):07u|<2)7"'au[(2):_3N71)7

or with a quadratie-term,

1 L) _ 2 ~n_ N
JF+NV|_—]|:(UF =0,uf’,...,up " = N1
Pl (@ N Y (Y
N F T3N-1 3N-—-1
Hence,
1o/ @y L[NN=D+@N? 1,032 N-1/ N 2
NVL(UF) BN-17 N(UF) N \an—1) "

) ) ]

For N — o this leads to exactly the optimal quadratic function oledibefore. This is at
least true fole = 0. The terms linear ia differ, however. We now write

e () = 92 (.. f2)

LIS/ 1y 1?2
2|2 (N(UF) e () T3N_1 F>
28 (2, AN
N ((“F) a1
The Hessian equals
2 1 kS
N N2 N2
EEREY
N2 ’
: Tt
1 1 B
N2 N2 N

ForN > 2_15 all eigenvalues lie in the right half plane. Agr< % however, the Hessian is not
positive definite. Therefore, fm% < Ug <0,V (uE) is as above, and fare < 73NL71
we choose it as a decreasing function. O
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Example 3.11
Let us consider the dynamic model defined by

Xx=ug x(0)=1,

with criterion
m|n2/ (6 + up )dt+1x( 1).

An important difference with the problem of the previoust&etis that the optimal control
is not constant anymorei(t) = —e~t, which leads to the minimal valugt = 3. There-

fore, in the discretized problem (see the coming subse)ca'lir(u,@)* cannot be equal
anymore. ConsequentW(uF) will have to be specified in the neighborhood of these dif-
ferent(u(F)) -values.

We will calculatey, as in Examplé_3]9. First we considernydunction of the form
VL (Ug) = %[3u.:2 +aug. The value function, to be minimized with respectat@andf, is
(assuming that(0) = 1)

2S0) +K(0) + M),
whereS(t), k(t), andm(t) satisfy (see Sectidn 2.5.3)

. L
S= 1+B_1’ S(1) =1,
. S _
k= 1+B(k+or), k(1) =0;
: 1
= 1+B(ka+ k2) m(1) = 0.

It would be very difficult to proceed in analytical way fromreeand, therefore, we will
proceed with the discretized version of Exaniple B.11. O

Example 3.12 [Discretized version of Example_3]9]
The model is

1 .
XI:Xifl+Nu[(ZI)7 |:1727"'7N7 XO:]-a

and the criteria are
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First we want to solve mip Jr subject to the model equations. This leads to a linear equa-
tion in ug-elements:

d+81 & (3 . N ey
) FZ) (1
(2 d+l2 {3 : u,(:3 &
(3 (3 d+3 : U(F> =-N _(3 , (3.15)
: N : ;
ZN ZN d+ZN u'(:N) ZN
where . . .

The numerical computations suggest that the solutiorwonverges towards-e!, as it
should, adN — o. An upper bound for what the leader can hope for is obtainadhe

calculation of the maximum (with respectmg), i=12,...,N)of

7e(0, u,<:2), u,<:3), u,<:4), e, u,(:N)) — Jp(u,g), u,<:2), u,<:3), e u,(:N))wL

j,:(u(Fl),O, u<F3), u<F4), - u(FN)) jF(u,(:l), u<F2), u(F3), . U(FN))+

Jp(uél), u<F2),0, u(F4), e, u(FN)) ]F(Ul(:l), u(FZ), u<F3), e, u(FN))wL (3.17)
j,:(u(Fl) , u<F2), u<F3), ey u(FNfl) ,0) — jF(u,(:l), u<F2), u<F3), e u(FN)),

Written out this expression becomes
1 ANS (03 (L my, 20 W
<m+W>IZ(“F) PN CICORS-TID S A B

1e(ws 0 _ 1820 130
mZ(“F.Z TN N TN
|=
Differentiation with respect tu(Fj) leads to

d+a1 20 203 oo 2N u,(:l)

) 2 G
20, d+l 203 : u‘F3> &
Ny Wy d+is : u | =N S BECET)
: - 2N : ;
2 ... 2y d+In u N

with d and{; defined as in[(3.16). If this linear system of equations istsyiially written
as(&1 +A)ug = —NZ, | being the identity matrix, then

up = —(I = NA+ (NA)2— .. )N?Z.
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Numerical computations suggest that the solutipmesembles the one df (3115), i.e., the
values are negativ@y(i)| decreases with increasimng

Above it was assumed that al}L')-values were different (which also followed from nu-

merical evidence). In case of ajﬂ)—values being equal, an upper bound for the best out-
come for the leader is the maximum valueddbr which the following inequalities hold for
a choice of the;’s (all being equal):

Ir(0g,00,...,0N) + INB < Jr(* o’s are zerg all combinationy), (3.19)

i=12,...,N. In general the leader will have to deal with a mixture of the@xe cases
@11 and[(3.19) since he/she will not know ahead of timetwkedds the best results for

him/her. Suppose that all optimaﬂ) are different. Then choose
yL(ul(:I)) = jF(ul(:l)v LR ul(:iil)707 ul(:iJrl)a R ul(:N)) - ]':(l'll(::I_)J‘Il(:Z)7 ul(:s)7 Tt ul(:N)) - 87

and choose for all other valuesuf y, large (except foy (0) = 0). In general this function
will not be monotone with respect fag| and its “usefulness” seems questionableNor
o, O

3.2.2 One leader — multiple followers games

In this section we will mention a dynamic problem of the irseBtackelberg type with one
leader and two followers.

Example 3.13
Let us consider the following example:

Xl(O) = 0, Xz(O) = 0, Xl = Ur; Ur,, Xg = Up,,
1 r1 2 1 2 1
=5 [ EO@+ SO+ [ ) o,
11, 1, 1
=3 | BOd 80+ [ v () o
Both sr, andsr, are to be minimized by the followers, while

% [ e () v (o, () (3.20)

is to be maximized by the leader.

Our problem is to find the optimg| (-) maximizing [3.20), whilesr, and s, are mini-
mized by the followers.

Let us first considey, () defined as

yi(UR) d:efauFinrBuFi, Vi € {1,2} (3.21)

With thisy_ we can compute
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1
Hi= §U|2:1 +GU|%1+BUF1+}\1UF1 Ur,,

1
Hy = §U|2:2 +0U|%2+BUF2+}\1UF2,

and, therefore,
o 20+a)B+20B-1)
P17 (54 160+ 2002+ 803+ 2B+ B2)’
_1+B
2(1+a)’

*
UF2:7

and
2(14a) (202 —aP?+3a+p+1)
5+ 160 + 2002+ 803 + 2B+ p2
1420282
]Fz—wa
]L_40‘(1+0‘)2(l3+20([3—1)2_2[3(1+0‘)(I3+2a[3—1)
a y? y
LOB+D2 BER+D)
4(a+1)7> 2(a+1)

IR =

with y 25 1 160 + 2002 + 8% + 2B + B2, y # 0, 1. Minimization of 7. with respect ta

andf givesa* ~ 0.696, f* ~ —0.111
Substitutingx = a* andf = B* into 7, Jr,, andJr,, respectively, gives us872 0.383
and 0076, respectively, and

uf, =0.151 uf, = —0.262

Let us now consider a linegy (-), i.e.,y.(-) defined by

v (%) Lhax wxeR.

Then using the same approach as in the previous case we obtain

e — 2(1+0)
FLT 5120+ a2’

_L oL L
=729 3%

_o(1+11+30%+a%)
T T BT 20 1 0?)

Minimization of 7 with respect tax gives
o =~ —0.047

andJsr, ~ 0.234-1072, ¢, ~ 0.249 andy_ ~ 0.429
This is a slightly worse outcome for the leader than in thevipres case. We could not
find any better solution witly_(-) defined as a polynomial of higher degree than 2.
O
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3.3 Extension: Two leaders — one follower

In the following example we will study the problem with twaalgers and one follower. In
this case there is not an obvious point on which both leadi#fragvee at the outset. Hence
we will not try to start with such a point. This example wasaadtuced in|[65].

Example 3.14
The follower has cost function

Iy = U + U+,
and the leaders have the cost functions
Iy = (Up — 1%+ (U, — 1% g, = (Up, — 2)% + (U, — 1)2
respectively. Suppose that the two leaders will choose thectionsu, as
U, =YL, (Ury) = OUR, +02, UL, = Yi,(Ur,) = BiUr, + B2

In the three dimensionali§, , Ur,, u_,) space these two planes have a line of intersection and
the follower is forced to choose the best point (i.e. withttiaimum value ofsr,) on this

line of intersection. This leads to
e — 0102+ B1B2
! 1+af+p2°

Realizing this choice of the follower, the two leaders wilbstitute this choice into their
owny,;-functions and subsequently into their own cost functidisis these cost functions

become functions of the parametessandf;, i = 1,2, only. By setting
0L, (01,02,B1,B2)  0J1,(01,02,B1,B2)
=0, =0,
aq; B

i.e. the necessary conditions for a Nash equilibrium, ortainb four equations with four
unknowns. The solutions are

0p=-5 0,=10, B1=-2, B>=5,
with correspondingr, =2, u, =0, u,=1 and
012—1, 0222, [3122, BZZ—Z,

with correspondingr, =1, u, =1, u.,=0. Besides some other solutions were indi-
cated which result from the roots of a fourth order polyndmia

Let us study the first solution given in more detail. It turng that the second order
conditions are fulfilled. Hence a correct solution has bdaained. It is striking that the
resultingug-values coincide with the absolute minimum of the seconddeémoreover, the
second solution obtained corresponds to the absolute mimiof the first leader).

It is claimed now that the solution obtained is only localptimal. If the second leader
sticks to

UL, = Vi, (UR) = —2UF, +5
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it is claimed now that the first leader can do better than
u, = yLl(uFl) = —5UF, +10,

namely by playing
u, = yLl(Upl) = ":_)L,I[:1 —4.

With this choice ofy, ,, while y., remains the same, i.eg,,(ur,) = —2ur, + 5, the first

leader obtains his/her team minimuog{ = u., = 1). How has this lattey, , function been
obtained? Answer: by substituting the functian = yi,(Ur,) = —2ur, + 5 into the cost
functionsyr, and,. This now is a game for one leader and one follower. The lecaler
obtain his/her team minimum in this case.

If the first leader chooses ;, = vi,(Ur,) = BuF, — 4, then the second leader might be
willing to change his/hey, function. Indeed, that is the case. With, = vy, (Ur,) =
+5uF, — 4 (fixed) andu., =y, (Ur,) = —32UF, + 65 the resultingyr, , u.,,u.,) coincides
with the absolute minimum of the second leader. If the leadentinue with alternately
adapting their optimal functions we obtain:

U, = VLZ(UFl) = _ZuFl +5,

U, VLl(uFl) = +5Uf, — 4,

U, = VYi,(Ur)=—32u + 65,

U, = ¥,(Ur)=+1055UF —1054

U, = VYi,(ur)=—1114082F, +2228165
etc

Obviously this algorithm does not converge, lingaffunctions cannot lead to a Nash solu-
tion. O

In the following theoremu, 5 UL, 5 ) refers to the pairug,,u.,) that minimizesyy, .
Similarly, (Ur, 5, UL,.5,) refers to the pairu, ,u.,) that minimizesy, ,.

Theorem 3.2 If Up, 5, # Ur, 5, @ Nash solution between the leaders does not exist.

This theorem holds irrespective of the clasyi9fur, ) functions,i = 1,2. These functions
are allowed to be discontinuous (even with an infinite nundbeliscontinuity points); the
theorem remains true.

Proof: See|65]. i

Example 3.15
Let us consider the cost functions of exaniple B.14 once nboitenow with the constraints
—1<uf, <43, -1<u;, <+43,i=1,2. Theroles of the players remain the same. We will
let the two leaders alternately minimize their cost furresiand see whether this algorithm
converges.

We start by assuming , to be given withu, = yi, (Ur,) = 0 (A two-player Stackelberg
game results witlh., as leader an#; as follower). Their cost functions are respectively

IR = u|2:1 + uEzv I, = (uFl - 2)2 + (ULZ - 1)2'
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An optimal choice fol; is

3 0 up#£2

“Lz:yLz(“Fl):{ 1 if g =2 (3.22)

As a result of this choic€; will chooseur, = 2. Subsequently, = 1 andL; has realized
his/her team minimum. Note that many other choicesyfgorare possible with the same
result, e.g.
. | —2uf,+5 if 1<uf <3
Uy = Yo (Ury) = { 3 if —1<up, <+1.

We will continue with the first choice foy., given, i.e. [3.2R). Keeping this function
fixed, the other leadet,1, will now choose his/her optimajk , (ur,) function. Equation
(3.22) is substituted inter, leading to

9 if up, #2
_ 2 2 Fi 7 4,
]F1UF1+UL1+{ 1 if UFl 92
It is easily verified now that an optimal solution flor is
B [ 3 if ur #1,
Uy = Vs (URy) = { 1 if up =1 (3.23)

This leads to the team minimum bf. Also in this case, the optimal , is not unique.

We now fixy,, as given in[(3.28) and study the best answel py L, cannot obtain
his/her team minimum anymore, singg prefers playingir, = 1 tour, = 2, whatever the
choice ofyi,(-). The worst that can happen to play&ris the outcome 11 which is real-
ized forug, =1, u, = Vi,(Ur; = 1) =3, u, =y, (ur, = 1) = 1. Hencel, should con-
sider ming u., I, (U, UL,) subject togr, (Ur;, UL, = Vi, (Ury), UL,) < I (Ur = LU, =
1,u, =3) =11. Thisleads to

3 it ur, #2(32 —£1),

UL, = Yi, (U, ) = . V2 (3.24)
2 2 { ‘/Tg—sl if u,:lzz(%—sl).
as a possible choice fdr. The valueg; > 0 has been added so as to make the choice for
F1 unique after[(3.24) has been announced. &zt 0 playerF; has two choices, but one
of them is preferred biz,.

In this way we continue, keeping, (Ur, ) fixed again, the new (actually: a new) optimal

answer byl ; turns out to be

v =4 2 MumZvicavioe. g,
! S 1—81\/F)—82 if Ur, = 1—81\/@—82,
for a small positiveez such as to make the answerByunique. If we continue in this way,
the algorithm converges to

3 if u 0,
le(UFl)ZVLz(“Fl):{ 0 if u?io
=0,

This solution leads to the team minimum of the follower (pparently the follower is "the
laughing third party”. ]

The problem introduced in this section can be extended ttwatgin with multiple leaders
and multiple followers. For more information about thisigseel[65].
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3.4 Conclusions and future research

In this chapter we were dealing with one leader — one follosret one leader — multiple
followers inverse Stackelberg games with the aim to find thtewal strategy for the leader.

We showed problems in which the optimal strategy of the leadists as well as the
problems in which the optimal strategy does no exist. Probl&ith unknown optimal
outcome for the leader were elaborated mainly in Seckichd and3.22. In such situations
an ad-hoc approach was used in order to find the best possittleroe for the leader.

Since the theory of inverse Stackelberg games is still imfancy, the important phe-
nomena was shown mainly by means of examples. Further igaéish of the properties
of these games is a subject for future research.



Chapter 4

Static Optimal Toll Design

In this chapter thetaticoptimal toll design problem will be dealt with. Here the watdtic
refers to the situation in which the traffic does not evolveraime, i.e., the problem is a
one-shot game. In Sectign #.1 an overview of existing liteeaabout the static optimal
toll design problem will be proposed. In Sectionl4.2 the peobwill be introduced, to-
gether with basics from modeling of traffic on road networdksSectior 4.B two concepts
of drivers’ behavior will be introduced and explained, ttigg with their properties. In Sec-
tion[4.4 a problem formulation of the static optimal toll @gsproblem will be given. In
Sectior4.b the general problem properties will be disalisbeSectio 46 possible ways
of how to solve the problem will be proposed. In Seclion 4e7ghoposed solution methods
will be illustrated on case studies with the network with amigin—destination pair and
on the so-calledeltwaynetwork, respectively. In Sectidn 4.8 possible extensiufrthe
research presented in this chapter together with a sumnfiding @esearch of this chapter
will be given.

4.1 Introduction and literature overview

The optimal toll design problem is a problem of the Stackegtigpe [5,6], applied to the
traffic environment with a road authority as a leader andefiexg as followers. The aim of
the road authority is to minimize its objective function,iathis dependent on the travelers’
decisions, by choosing optimal tolls for a subset of links-¢alled tollable links), while
the travelers minimize their individual travel costs. The¢havior is usually modeled by
applying atraffic assignmenprocedure [35, 66].

If it is assumed that all drivers are rational and have cote@ed perfect information
regarding network conditions, tlteeterministic user equilibriuntDUE) applies|[94]. With
imperfect information and distributed preferences@babilistic user equilibriumreferred
as well to asstochastic user equilibriur(SUE) takes place, for example, asogit-based
stochastic equilibriunfLB-SUE), seel[58].

There are two main research streams with respect to defimifithe set of tollable links.
With so-called first-best tolling (or pricing), all the liskn the network are assumed to be
tollable [68/96], with so-called second-best tolling nibliaks are tollable|[85]. The latter
concept is clearly more applicable in practice.

39
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In [85] and [84] second-best tolling is considered, trakebge driven by the determin-
istic user equilibrium (DUE), the objective function of thead authority is defined as the
surplus of the network, the traffic demand is elastic, and #ssumed that the link cost
functions are increasing with respect to traffic flows. lIn|,[66] the lower level of the
problem (travelers’ minimization of travel costs) is forlated and solved as a variational
inequality problem (VIP). Here the travelers are driven by In |68] a very general
Stackelberg model is presented, where the road authoritywha decision variables, one
of them possibly dependent on traffic flow. The paper itseffislavith general mathemat-
ical properties of traffic equilibria, however. The tolleassumed to be constant and the
traffic-flow-dependent variable is interpreted as managghecision of the road authority.

Following extensive case studies of two-route congestimlpms in static networks
[24,/86, 88], we have introduced its second-best variantiitivthe link tolls are functions
of link and route flows in the network, for only a proper sulaxfedll links. This formulation
fits within a theoretical framework of “inverse Stackelbprgblems”[64} 80]. In the inverse
Stackelberg game the road authority introduces tolls agpmgp of the traffic flows in the
network and, therefore, the possible responses of therdrare taken into account in the
first place, while in the classical Stackelberg game thdi¢rflbw invariant toll is set first
and the drivers react as second. In both cases, the roadigutbthe leader.

This chapter introduces an extension of our recent resdarttte general problem of
optimal design with traffic flow-dependent second-besirtgll

Because the problem is at least NP-hard, advanced optionizachniques, which can
be parallelized, should be used in order to speed up the@olptocess. In this chapter an
algorithm using neural networks is proposed as such an @atiion technique.

4.2 Preliminaries

Consider a strongly connected road netwgrk= (4(, 42 ), with a finite nonempty node set
A ={1,...,n} (neN) and a finite nonempty set = {1,...,|4]|} (|4] € N) of directed
arcs (links). Letgs C AL x A be a set of origin-destination pairs in the network. We
denote the nonempty set of simple routes (i.e., routes withgcles) from the origin to
the destinatiors by 2 ("9 and the set of all simple routes of the networkbylLet 7 C a2

be a set of so-calletbllable arcs(links), i.e., the links on which toll can be imposed.

Drivers in the road networ (4, 2) travel from their origins to their destinations, be-
ing noncooperative among themselves. When using tollaiits,|drivers might be obliged
to pay a prespecified toll. Drivers choose their routes ireotd minimize their travel costs.
Each of the travel costs is a combination of travel time aiid.tdhe travelers’ choices will
determine the traffic flows in the network.

There is a road authority that sets tolls on the tollablediitkthe network in order to
minimize its objective function. The toll values are assdriteebe calculated as functions
on traffic flows in the network.

Each change of the tolls will cause change in the travelezkalior, and vice versa.
The optimal toll design problem introduced in this chapseaione leader—more followers
inverse Stackelberg game with the road authority as thestesatt drivers as the followers.

There is a fixed positive travel demand described by drivesgeting from originr to
destinatiors: d("® [veh/h]. Let us denote the link traffic flow on lirke 2 by ga [veh/h]
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and the route traffic flow on routec # by f, [veh/h].
Feasibility with respect to the travel demands requiresrthete flows to satisfy the
following conditions|[[19, 66]:

d(r’s) = z fpa (r,S) € RS, (41)
pee (9)
fp>0 pe2™ (s ecgs. (4.2)

We letdp 5 be a link-route incidence identifier f@ (2 ,2), defined as

5 1, ifroutepe 2 containslinkae 4,
s 0, otherwise.

The link flow on linka is defined through the route flows in the network by the refatio

peP

With each linka € 4 the link cost for travelers entering this lirgk [euro], defined as

Ga(Oa) = Ota(Ga) + 6a(Ta), (4.4)

is associated. Here > 0 [euro/time unit] is the travelers’ value of timg,= ta(0a) [time
unit] is the link travel time on linka, andB, = 84(ga) [euro] is the toll paid by each traveler
for using linka.

The link travel time function is assumed to be traffic-flow degent, continuously dif-
ferentiable, and increasing with the link traffic flow. Tharsiard way to define the link
travel time function is

IK]
ta(Ga) = Zoykq'gl, |K| € No, where y>0 Vk (4.5)
k=

If K =0 the link travel time is traffic flow-independent. Anotheryeommon link travel
time function is the Bureau of Public Roads Delay FunctidT], defined as

X2
ta(Qa) = taO <1+X1 (%) ) ) X17X2 > Oa (46)

wheretyg [time unit] is the free-flow travel time on ling, C, [veh/time unit] is the capacity
of link a per time unit.

The route costsp, (p € ») are assumed to be additive, i.e., they are derived from the
link costsca (a € ) through the relation

acAa
Letq, t, and¢ denote a vector of link flows, a vector of link travel timesdanvector of
link travel costs on all links in the network, respectivelg,

01 t1 G

02 to Q
= e | sE T (4.8)

aa b Gl
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Similarly, let us define corresponing route vectors:

fl T]_ Cl
der | T2 def | T2 def | C2
flerf R -

fle| Tjz| Cie|

On each link from the set of tollable links the road authority can impose a traffic-flow
dependent toll. The traffic flow-dependent toll on limk 7 will be denoted byB,(+). This
toll is defined as a polynomial function of the link flow on traase link} i.e.,

(m)_{ 0 for aea\7, (4.9)

M
) =5 wm moowy =
a (Ga) nZo a’ (Ga)", Wa for act, k\"eR,

with M € Np. The traffic flows for the coming time period can be observedmwtiaying the
game repeatedly. If a new toll level scheme is set on the etalark, in a finite time (after a
finite number of days), during which the travelers try diffierpossibilities of their traveling,
the system is assumed to reach an equilibrium state. Theawthdrity is assumed to be
perfectly aware of the possible reactions of the driversgovan vector of toll values and,
therefore, can set the toll as definedin{4.9).

By definition,

=0 if aea\7,
ea@){ S0 it acr. (4.10)

This means that the drivers cannot receive rewards whey tisiled links. The vecto®
will be a vector of link toll functiond and can be symbolically written as follows:

e\ﬂl | ()
Additionally, let us define coefficient vectors as follows:

w®
Wé 1) W1

wa B oW | we | T (4.11)

. W
Al
Wi

1The motivation for choosing a polynomial toll function isre@cted with the fact that the polynomial link
travel time functions are used in this thesis and, therefibie first-best toll is a polynomial function of the link
flow, too. Other option would be to map the link tolls to theklinavel times, as those are best congestion measures.
°Note thaty =0 iff ac a \ 4.
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Letwi” € |w(mmin wimmax| yith w(m).min y(mmax c g y(m).min - \(m).max for \im ¢
{1,...,M} and let set®/, andW be defined as follows:

) )

W, def [W(O),min W(O),max} % [W(l),min7w(l),max} W x {W(M),min7W(M),max

def
W =

(Wa)l vme{0,...,M}.
Clearly, W, is a subset oRM and thusw, andW are compact sets. It is assumed that
Wy € Wy, weW.

With M = 0 in equation[(4]9) the toll becomes traffic flow-invariamtttat situation the

toll on the linka will be set asny) ¢ R?, and vectow defined as

W
(0)

def | W2
w = .
o)

w
Al

will be a vector of traffic-flow invariant tolls.

4.2.1 Game-theoretic interpretation of the optimal toll design problem

The problem of the optimal toll design can be seen as an iev@tackelberg game. Two
possible interpretations from the game theoretic poini@fnare possible:

e The drivers, as followers, choose routes from their origintheir destinations so as
to minimize their actual or perceived travel costs. Thameftheir decisions are their
route choices. Because the traffic flows are dependent ugse ttecisions and the
road authority as the leader sets tolls as functions of &fédrflows in the network,
these tolls are also composed functions of the drivers'siaas.

e Because the travelers are uniform, all of them can be seemessuper-player, who is
the follower in the one leader — one follower inverse Staulry game with the road
authority as the leader. The decision of this super-playamrigvestablish the traffic
flows in the network. The tolls are the functions of the folews decisions in this
game.

In order to model the travelers’s behavior (route choicasdaffic assignment model has to
be used. In the following section we will discuss such a model

4.3 Drivers’ behavior — static traffic assignment

This section formulates macroscoptatic traffic assignmer{STA) models that describe a
way of how individual drivers choose their preferred routand their origin to their destina-
tion. The basics of travels’ behavior models introducedhia section can be found in, e.g.,
[6€], [67], or |58].
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The static traffic assignment contains a path choice modehioh all travelers are dis-
tributed on all available routes such that a particulaictater equilibrium state is reached.

Different variants of network user equilibria can be foundhe literature, as the con-
cept of equilibrium is closely related to the properties ud users that give rise to this
equilibrium. Network equilibria fall into game-theoregquilibria discussed in Chapiér 2,
and derive their properties from those of the participaptayers (i.e., network users), de-
pending especially on the level of information they havewdlaations of other players (full
information versus partial information or information tviperception error), their prefer-
ences (the player’s cost function), and their behaviorfdlalyers are assumed to minimize
their own journey costs.).

We consider a single-user class assignment, i.e., all asemssumed to affect the cost
of the link they use to other players in the same way and usastes in evaluating these
costs are identical, although generally users’ perceptiag differ in a random way. The
travel demand is inelastic and given.

Various different network traffic equilibria exist (seeg€.[10]). These equilibria can
be seen as specific instances of games, differing in chostifilzactions.

In this chapter two equilibrium concepts will be elaboratgmbn: The deterministic
(Wardrop) user equilibrium (Sectign 4.8.1) and the logiséd probabilistic (in traffic liter-
ature also referred to as stochastic) user equilibriumt{@gd.3.2).

Although the stochastic equilibrium, introduced in Secf#b3.2, represents a more re-
alistic concept of the drivers’ behavior than the deterstiniuser equilibrium, the deter-
ministic equilibria are still widely used, mainly due to @esmputational advantages and its
direct connection to the Nash equilibrium [61].

Note that while a driver is discrete by nature, i.e., half dfiger cannot make a decision,
we assume continuous traffic flows, which means that thearidfivs are interpolated by
a continuous quantity. This could be justified by the fact tha are interested in average
situations and (real-valued) expected traffic flows, in otdeompute the optimal tolls for
the road authority. A continuous approximation is also ptadele for the large traffic flows.

4.3.1 Deterministic user (Wardrop) equilibrium

The static deterministic traffic equilibrium, or Wardropudiprium, is based on the assump-
tion that all road users have complete information aboutptieeailing traffic conditions,
and that they choose the cheapest one among routes avanaliktaking congestion into
account. The Wardrop equilibrium is defined as follows.

Definition 4.1  (Wardrop equilibrium)

For each origin—destination pair, the route travel costsafbusers traveling between a
specific origin—destination pair are equal, and less thardhte travel costs which would
be experienced by a single user on any unused feasible rithia the samér, s)-pair, i.e.,

fp (cp - T[(r’s)) =0, peo, (4.12)
cp—1"9 >0, pers (4.13)

wherer"® takes the role of the minimal travel cost of the routes frafi®. O
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For alternative formulations of the Wardrop equilibriumdluding among othensode-arc
optimizationformulation,arc-route optimizatiorformulation, or MPEC formulation) and
mathematical properties of Wardrop equilibria (includegstence and uniqueness), see
[60,166].

4.3.2 Probabilistuc (stochastic) user equilibrium

The main drawback of the Wardrop equilibrium point of vievthst each traveler is sup-
posed to have perfect information about the whole netwarknbre realistic formulations
each driver minimizes his or heerceivedravel costs, i.e., their route valuation is subject
to a random error term (either because we do not know thee,tdseir cost perception is
flawed, their knowledge of the least-cost routes is flawetegause they have information
that is unavailable to the road authority). The so-calledlsastic user equilibrium applies.

Definition 4.2  (Probabilistic (stochastic) user equilibrum)

For each origin—destination pair, the perceived routeetrawsts for all users traveling be-
tween a specific origin—destination pair are equal, andtlessthe route travel costs which
would be perceived by a single user on any unused feasibie.rou O

The perceived travel cost from Definitibn #.2 is defined asstima of of the effective
route travel costand a random unobserved component:

Ca(Ua, €) = Ca(Ta) + €a, (4.14)

whereq, (the traffic flow on ar@) is considered as a macroscopic deterministic variable,
andE,(¢) follows some probability distribution, the same for each 4, with parameter
€4 (expressing the perception error).

We can distinguish between the case when the user makesdiseddor his/her com-
plete route (open-loop game, see Chalpter 2), and therefakesran error in the perceived
cost of the route, from the case when he/she takes a newaleeiseach crossing (closed-
loop game, see Chaptér 2), and therefore makes multipleipetbcost errors during his/her
journey.

When the probabilistic error distribution of erreis known we can define stochastic
assignments.

The Probit assignment is an example of the closed-loop model. ThessEggE) are
supposed to be centered Gaussian (normal) random varigesver, the computation of
the Probit assignment is difficult and is done using Montd@aethods.

In the open-loop situation, with the independent, centeaedl Gumbél distributed
errors on the perceived costs of the routes (not the arch)thit same variance (seel[27,
58]), the probability that a single driver chooses raute? ("9 can be computed as follows:

EXP—HG) (4.15)

~ = A A (r,s) =
P {Cp < Cp, Vp 7& P, per |C} Zﬁ€T<r’s) eXp(*HCﬁ) ’

with theperception error uThisiis used to calibrate the variance in the cost perception.

3The perceived travel costs are additive.

4P <x} =e """ wheren is the Euler constant, the variancefis T2 /(62). The max of an indepen-
dent Gumbel random variable with the same variances isasBiimbel variable with the same variance.
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The logit-based probabilistic (stochastic) user equiilibr (LB-SUE) conditions can
then be characterized by the equations

fo=P{G <& Vp#p perIc}d"d v(rsexs, (4.16)

with P{c”:p <&, Vp#p, Ppe T<"5)|c} defined by [[4.15). The conditions (4]16) are

natural, according to the weak law of large numbers (see [3Bapter 8), i.e., il"9 is
large, and if the travelers act independently, then

Y N _ f
P{CP <&, VP#Pp, Pe T(r’s)|c} ~ d(r'?s)'

From [4.15) it follows that if the value ofi is large, the perception error is small, and
travelers tend to choose routes with minimal cost. Settirg « in (4.13) yields the deter-
ministic user equilibrium (see Sectibn 413.1). Theref@EE is a special case of LB-SUE
and algorithms used to solve LB-SUE can be used also forrspDUE. A small value of

W indicates a large variance in the perception of travel aeith travelers choosing routes
with considerably larger actual travel costs than thosed#ie cheapest. It can also be
seen from[(4.115) that with | O all routes within ar{r,s)-pair receive an equal share of the
(r,s)-demand.

Remark 4.1 The reason for using the Gumbel distribution is the ease ofpuding the
probability of the maximum of many independent Gumbel randariables and the shape
of the distribution, which is close to the normal one. Therefations of the travel costs
between the paths are not well represented by logit-baséeisand probit methods are an
attempt to improve the quality of the stochastic models {&&e Nevertheless, logit-based
methods seem to be the most used ones in traffic engineering.

The logit distribution, obtained from the Gumbel distrilout assumption on the per-
ceived travel costs, satisfies a very important propertjcivjustifies its useA road having
a smaller travel cost than another one has a larger probapif being used than the other
one(see[31]). It can also be seen from equation (4.15) thatlforatues ofp all routes
receive flow, regardless of their travel time. These facttivate the use of the logit model
in our research.

In [31] other properties of the logit distribution (whichiisfact the Gibbs distribution
of mechanical statistics [39]) are discussed. In particiilainimizes the entropy among
all the flow distributions having the same average time. Tee parametqt is a degree of
stochasticity. O

For more information about probabilistic (stochastic) iBta, including derivation
of properties of Dial logit equilibrium via Gibbs-Maslovre&ings and some well-known
mathematical properties, seel[58].

4.4 The problem formulation

In Section4.211 we explained that the optimal toll desigobfem is a game of inverse
Stackelberg type, with possible two interpretations.
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In this game, the aim of the road authority is to chowse such a way so as to minimize
some given objective function, which can be symbolicalljtten asZ = Z(q(w),w). The
problem can be stated as

Find
w* = argminy.yy Z(q(w), w),
(P)< subjectto (4.17)

q=q(w) € UE(w),
with w's restricted by conditiod (4.10).

The expressiog € UE (w) reads as “link flow vectoq is a result of a used static user equi-
librium (UE) model when a polynomial toll function defined @3) with coefficient vector
wis used.” Here we assume that some equilibrium model, withother assumptions, ap-
plies. The “standard” Stackelberg problem is a particuléapsoblem of (P), defined as

Find
w*=argmin o Z(d(w),w),
(Po) subject to (4.18)

d=0(w) € UE(w).

In the following section the properties of problem (P) will Biscussed.

4.5 General problem properties

We will refer to 8 by its coefficient vectomw and the pair(w,q(w)) will denote a pair
containing the vector of chosen toll functions and the linkvflvector.

Note that problem (P) is a nonlinear programming problemRIN&and has at least one
solution if a user equilibrium of{4.17) forms a compact éstq(w)). Also, if for any
givenw the setUE(w) is a singletonw determinesy uniquely (in general this would not
determine the route flows uniquely, though). In this case ctimtinuity ofq in terms ofw
will guarantee that the constrained set of (P) is closedclvimplies the solution existence
of (P) sinceq andw are bounded.

However, since UE denotes a general user equilibrium, ihbfigve multiple solutions
in terms ofq (UE(w) may not be a singleton). In this casE(w) is a point-to-set mapping
of w[33].

The following theorem will be used to prove the existencéefdolution of the problem

(P).

Theorem 4.2 A set-valued mapping@ from R" to R™ is closed at any point dR" if and
only if its graph is a closed set iR" x R™.

Proof: Seel[33]. O

The existence of the solution of problem (P) will depend om ¢bmpactness of the
graph ofUE (w), defined as

W(w,q) £ {(w,q)|q e UE(W), Yw e W}. (4.19)
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Theorem 4.3 (Existence of a solution of problem (P)) Problem (P) has aste@ne solution
if the following conditions are satisfied:

i. Forallw e W, the set UEw) is nonempty and compact.

ii. Letw,weW and let gc UE(w), g € UE(W). For eache > 0, there exist® > 0 such
that if ||w—w|| < , then

max —min_ ||g—7l <Ee.
VQeUE(W) YOeUE(W)

iii. ¢isa continuous function of.q

Proof: LetR(0,¢) be an open ball with radius Theny d:e'(UE(v_v) +R(0,¢€) is an open set

containingUE (W) . Let us define an other open sefj:ef{w: [lw—w]|| < &}. Conditionii. in
Theorenil4.B is equivalent tow, - UE (w) C o . Thus, undeii., the point-to-set mapping of
UE(w) is upper-semicontinuous. Together with conditioit implies that the point-to-set
mappingUE (w) is closed on salV. Thus the graph! (w,q) defined in[[4.1D) is closed by
Theoreni4.R. Also, undér, UE(w) is bounded for any € W. SinceW is a bounded set,
the graph¥ (w,g) is bounded as well. Thus, graphe W is compact. Together withii.
and the fact thatV is compact, we can conclude that (P) has at least one salstime it is
a NLP with a continuous objective function defined on a corhpat |

Remark 4.4 Conditioni. states that for any € W the travelers have to respond by at
least oneg, and that if the solution is not unique, that then the solusetUE (w) must

be compact. Conditioii. can be roughly stated as “If two toll vectors are very close to
each other, then their solution sets are also very close&l (i W, thenUE (w) — UE (W)).
This is not satisfied for the deterministic user equilibrjiaa shown in Example4.1, but it
holds for many user equilibrium models, including the Idugised probabilistic (stochastic)
equilibrium.

Example 4.1 (On properties of Wardrop equilibria)
Let us imagine a one-origin—destination-pair network viwtb links, i.e.,2 = {1,2}. Link

1 will be tollable, while link 2 is untolled. Let first = 1, lett; be defined ag d:EfqifAquJr

6q1, letty def 2, i.e., it is traffic-flow independent. L& def 1.5q7 — 2.50, let gz + g + 2.
Then there are two possible solutions in terms of Wardrofliegum:

@_( % )_(05
vat=(g)-(05)
2. 4 — ql):(l)_
a (Q2 0

def def

Itis easy to see thatwith = 6; = 1.5q7 — 2.5¢; + € the outcomes would not be “close” to
each other, and, therefore, conditiarof Theoreni 4.8 is not satisfied. O

Since (P) does not depend on the specific formulation of tlee @guilibrium, Theo-
rem[4.3 actually establishes the solution existence ciomdior (P) that can incorporate a
broad range of UE models as long as the three conditions ithdwrem are satisfied. O
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Theorem 4.5 (NP-hardness of problem (P))
Problem (P) is strongly NP-hard.

Proof: Problem (P) is a quadratic bilevel programming problem [EMen a linear-linear
variant (with linear cost functions for the travelers andneér objective function for the
leader) of the problem with traffic-flow invariant tolls wasogen to be strongly NP-hard
[40,187]. Therefore, also problem (P) is strongly NP-hard. O

Remark 4.6 Although the solution of the problem (P) yields positivelgo{see equa-
tion (4.10)), the toll functions may be decreasing with ftcaflow on their own link, as
shown in the following simple example. O

Example 4.2 (Toll decreasing with the traffic flow)

Let us consider a problem on a network with three paralltsibetween one origin—
destination pai(r, s), travelers driven by DUE, and the road authority minimizihg total
travel time of the system. L™ = D > 0, leta = 1. the link cost and time functions be
linear, i.e.,

D=01+02+03,
G =oati(qr) +61(q), G =oata(o)+062(q2), G =atz(gz),
t1(a1) = P11+ 01, t2(02) = B2 + 82, t3(03) = B30z + 3.

withd™ =D, a =1, By =1, B2 =2, B3 = 0.05, 5, = 1.008 &, = 0.672 83 = 2. Then,
the total travel time function can be computed as

3
Z(qu,0,03) = ) djtj(a;)
=1

= 1.050% — 0.992q; + 2.0503 — 1.328q, + 0.05D?
—0109:D-0.192D+0.10102+ 2D.

The global minimum of(q1,qp, 3) is in @ ~ 0.4574 4.65- 102D, gj ~ 0.313+4 2.33-
102D, g4 ~ 0.930D — 0.77 and reaches approximatel.435+ 1.993D +0.047D?[time
units]. This is the best what the road authority can obtaivergthe fixed travel demand
(the so-called team minimum).

Let us assume that the road authority introduces the tollénés I; andl; as linear
functions of the link flows on the same links, i.8:(g1) = aq +b, 82(qz) = age + b, with
01(-),02(-) > 0 on(0,1). With DUE, relation¢s = ¢2 = ¢z holds if all three links are used.
It can be shown that for anl > 0.828 the team minimum for the road authority can be
reached (i.eq" = (03,05, 03)’ is that optimal flow pattern for the travelers) and that infsuc
casea < 0, whileb > 0.

The optimal tolls are decreasing with traffic flows on the sdimies, because link 3
is untolled. Other choices of tollable links would bringlthinctions increasing with the
traffic flow on the same link. O

Similar phenomena will appear in some of the case studiesdtic3{4.7.
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4.6 Solution of problem (P)

In this section we propose solution methods for solving ttublem (P) introduced in Sec-
tion[4.4.

4.6.1 Analytical solutions

Small problems with drivers driven by the deterministic (df@p) user equilibrium can be
solved analytically, as a system of equations.

4.6.2 Numerical solutions

With larger problems the analytical solutions become wtitale. Standard numerical al-
gorithms for solving the lower level of the problems with DEEe:

o the Frank-Wolfe algorithm and its extensions;
e projection methods;

e relaxation methods;

o the partial lineralization algorithms;

e the column generation algorithms.

More information about these algorithms can be found in, {66].

To find the solution of the lower level of the problem (the iléag traffic flows for the
choice of particular toll) with the drivers driven by the LBJE iterative numerical methods
are used. The method eficcessive averag€sISA) has been applied to solve the lower
level problem. In the MSA algorithm, a search direction isaited through a stochastic
network loading, and the step taken towards that solutioresponds to taking the average
of all previously generated solutions, i.e., the step lengtiterationk is 1/k. For more
details about the MSA algorithm, see[22, 69].

Solving the upper level of problem (P) (finding optimal talhictions minimizing the ob-
jective function) with classical optimization methods nimgcome intractable. If the objec-
tive function of the road authority is convex, standard &thons for convex programming
(e.g., conjugate gradient methods, see [13]) can be usedeVw, in our case the objective
function is generally non-convex, as it is usually a polyiedfunction of the traffic flow (In
Exampld4.B a problem with nonconvex objective functiorhisven.). Therefore, advanced
heuristic methods have be used in order to find a solutionriaciable way. We propose to
use a a neural-networks approach.

Example 4.3 (Nonconvexity of the objective function)

Let us consider a one-origin—destination pair network with links, with link 1 tolled with
toll defined as a particular polynomial function of the traffiow, e.g.,01(qz1) 4160
2502 + g7, and with link 2 untolled. The objective function will be dedith as the total toll
revenue of the system, i.eZ,d:ef g1-61(01) = 160q; — 25qf1L q?. This function is clearly
nonconvex with respect . |
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The solution method for (P) that we propose is a combinatfcth@ neural networks ap-
proach for the upper level of the problem and a method of seffi@averages for the lower
level of the problem. The algorithm will be proposed and dé&sed in this section.

The concept of neural networks is closely related to the ephaf supervised learning,
which will be explained below.

4.6.3 Supervised learning

Let functiong : R" — R™ assign a vectoy' € R™to each vectox' € R",i.e.,y =g(x'). We
will refer to the pair(x',y') as thei-th patternof the functiong. The vectorx' will be called
theinput vector (ofg) and the vectoy will be called theoutputvector (ofg). Supervised
learning is a way to find an approximation of the functgpgiven a set ob patterns|[48].

An artificial neural network (ANN) can be thought of as a simplathematical formula
with parameters called weights [48]. The result of supedigarning is an approximation
function g@P with an appropriately chosen vector of weiglsts The goal of supervised
learning with ANN is therefore to find a functig@i®?: R" — R™, that is approximating the
functiong in the “best way”. Moreover, it is required thgi’P has derivatives of all finite
orders in the components »f

There are several criteria that can be used to validate whtth functiorg®?Pis “close
enough” tog. In our approach the so-calladlidation error for each patternx, y'), i =
1,2,...,0, is minimized.

The set ob patterns is divided into a set bfraining patterns and a setof-t validation
patterns. For a given vector of weiglstthe training and the validation errors are calculated

by

Hm
-

NIE NI

M’MO 7

k=1 (4.20)

o.
Ile,

m
& 3 (@709
wheregi™ andyl, k= 1,2,...,m, refer to thek-th entry ofg?"P andy', respectively. The
elements of are optimized only fot training patterns, while the validation patterns are
used to prevent overtraining. Roughly stated: If the tragnérrore; becomes small with
respect tes, while the validation errog, simultaneously grows, the ANN learns the patterns
“by heart” and looses its interpolation and extrapolatibitiges.

An ANN is trained iteratively, i.e & is decreased by adaption®funtil &, increases for
two consecutive iterations (prevention of overtraininghte that the training stops before
a local minimum ofe; is reached. Weight upgrade$™* — s’ can be calculated with
any minimization algorithm, e.g., a first derivative methadth as steepest descent, or a
second derivative method such as the Newton’s method. Edirgh derivative methods the
iterative sequence

gter+l gter+ n( (Siter) 7DSEt (Siter) )AS(& (g'ter)7 D€ (Siter) )7 (4_21)

with the search directior—mﬁ—gH and with step lengtlm, takes place. Numerical methods
implemented within FAUN 1.0 for constrained nonlinear least-squares problemsd6s]

SFast Approximation with Universal Neural networks
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sequential quadratic programming (SQP) methods and daresr&auss-Newton (GGN)
methods. These methods can exploit the special structtine défessian matrix cf [25,/36,
31]. It turns out that in practice SQP and GGN methods camaatically overcome most
of the training problems of ANN such as flat spots or steep caspf the error functios.
Advantages of these methods are:

¢ In comparison to common training methods a more efficientcbedirectionAs is
calculated by use of the so-callbeck propagatiorfsee [15]).

e The step length is accommodated during the training in contrast to commainitig
methods with fixed step length. The number of learning stepsduced significantly.

e Only g, Osg, andeg,, which can be computed by very fast matrix operations, are
required. For other ANN structures, e.g., radial basis fione, an efficient code for
Osg; can be derived by automatic differentiation.

e Maximum and minimum of each weight can be set easily (boxtcaimgs).
e The total curvature of the ANN can be constrained (preveargfcANN oscillations).

e Convexity and monotonicity constraints can be set.

4.6.4 Solving the optimal toll design problem

In this section an algorithm for finding the solution of preiw (P) is proposed. The flow
chart of the solution process is depicted in Figuré 4.1.

Below we will describe individual parts of the solution pess.

1. Area selection

Initially a setW with very loww(™-M" and very highw{™-M will be chosen. The ara4 is
changed depending on the outcome of the computation, tbethlg is applied recursively.

2. Computation of sample points of the objective function

This algorithm has two built-in optimization proceduresiter loop(corresponding to the
upper level of the problem - the decisions of the road autyycandinner loop(correspond-
ing to the lower level of the problem - the decision of the dr&) optimization procedures.

In the outer loop of the algorithm a grid search is applied.e&ch step of the outer
algorithm an element ofv € W is selected according to the adopted grid and used as an
input for the inner loop. In this way a grid of sample pointstioeé objective function is
created.

In the inner loop thdraffic assignmentincluding theroute choice modelaiming to
determine the user equilibrium based on the actual trawscis applied. To compute new
route flow rates in each iteration tineethod of successive averad®$SA) is adopted on
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1. AREA SELECTION

2. COMPUTATION
OF
SAMPLE POINTS

3. APPLICATION
OF
FAUN 1.1
SIMULATOR

—

4.1S THE
VALIDATION
ERROR "SMALL
ENOUGH" ?

5. MINIMIZE THE "BEST"
FUNCTION FROM
THE SET OF FUNCTIONS|
APPROXIMATING Z
IN THE "BEST WAY"
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WAY?
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APPROPRIATE
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APPROXIMATING
IN THE "BEST WAY"

Figure 4.1: Flow chart of the solution process

the route flow level (see [66]). Convergence of the inner lsogerified using the so-called
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relative duality gap(®" | defined as

2 (r9)eRrs ZpeMﬂS) (Cg’S)Aiter) - Tﬁr’s)’(iter)) flgr’s)’(iter)

Z(r,s)e&s Tir:8).(iter) g (r.9)

S(iter) _

(4.22)

Herer("):(€" is the minimal route travel time for travelers departingnfroriginr to des-
tinations as computed in the iteration iter. If the relative dualitpgaf two consecutive
iterations are close enough, i.e.|gfte+1) — (€| < ¢ with a given small positive num-
beremax, the algorithm is terminated. Note thefe) | 0 is the convergence criterium in the
case of the deterministic user equilibrium.

Pseudocode for computing sample points of the objective fution

(Initialization)
Download the networlG (¢, 4), definex,s, 29 7, travel demands,
€max (1> €max > 0);
definep, n, m, iter=0, W;
set the network empty, comput€);
(Outer loop
for eachw from setwW and chosen grido
(Inner loop (Logit-based stochastic traffic assignment)
iter:=iter+1;
while [g(te+D) _gliten| > g do
Compute link costs froni.(4l4) and route costs fréml(4.7);
Determine the route choices of travelers for efch)-pair using[4.1b);
Update route flows using MSA,
Compute link flows usind{413);
end do
Compute objective functiod(q(w),w) corresponding tev;
Returnw, Z(q(w), w).

Finding the minimal objective function is in this stage of tbmputation not necessary,
since the minimization of the functions given by the begtragimating neural network will
take place. Note that in Sectibn 46.3 the input of the nenmalation was vectok € R",
which is in the following section replaced by vectoof coefficient vector. Itis aha| - M-
vector. Similarlyy is replaced by (q(w*),w*), which is a scalar.

4.6.5 Application of FAUN 1.1 simulator

The grid search produces the values of the objective funatiadiscrete positions in the
parameter space. However, the grid search is relatively iansuming. It is desirable to
have a function that can be evaluated instantaneouslyh&munbre, for every not calculated
position in the parameter space the algorithm has to be neatad. It would speed up the
analysis, if the objective function could be computed fdritaary values of the parameter
space. This leads to the following procedure, using onlynétéid number of sample points
and using neurosimulator FAUN to extrapolate the objedtimetion by functions, that can
be easily minimized.

Pseudocode for applying ANN to the objective function

(Initialization)
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a1

Figure 4.2: Network with one origin—destination pair and ltiple links.

Prepare the grid search data for use with FAUN by splittirautrand output;
Set appropriate scaling parameters for the data;
Set number of ANN to train successfulli;
Set appropriate worst accepted validation quality;
Prepare FAUN for parallel computation.
(FAUN training(Finding appropriate ANN)
do N-times in parallel
Select randons,
while g, in (£.20) does not grow for two consecutive stejps
reduceg; in (£.20) by following the gradient descent sin (£.21);
end while
if &y is acceptable
return and savs,
else if
reinitialize s;
end if
end do
(Postprocessing
Export the best ANN;
Minimize the objective function approximation;
Returnw*, q(w*), andZ(q(w*),w*).

4.7 Case studies

In this section case studies illustrating the solution mégintroduced in Sectién 4.6 will be
presented. In Sectidn 4.7.1 the static optimal toll desigiiem with a network consisting
of one origin—destination pair and multiple links is coresied, starting with two links and
linear link travel time and linear toll function, and prodéeg to the problem with more
links and quadratic link travel times/tolls. The road auityominimizes the total travel
time of the system or maximizes the total toll revenue, theets are driven by DUE. The
problems are solved analytically. In Section 41.7.2 a lapgeblem on the so-calleBeltway
network is considered and solved using the algorithm intced in Sectioh 4.6.2.

4.7.1 One origin—destination pair with multiple parallel links

Let us consider the network with one origin—destinatiom paidepicted in Figufe 3.1 con-
sisting of|4| > 2 directed parallel routes (links).
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The road authority as the leader sets link tolls as followse Tink a5 is untolled and
each other link is tolled with a toll defined Hy (4.9), i.e.,

M 0 for aca\7
0 _ W(m) m W(m) — ’
a(Ca) ngo a (Ga)", a for ac T, KzeR.

Travelers as followers are assumed to have complete intfamabout the network condi-
tions and therefore they are driven by the deterministic egailibrium defined by Defini-
tion[4.1. The link travel time function for a single driveaweling on a linka and the link
travel cost function are defined as

ta(0a) & BaOa+0a, Ca(Ta) d:efo( Ta(0a) + 6a,

respectively. Therefore,
Ca(Ga) = 0 BaGa + 0 8a + Ba(Ta)-

We assume a positive inelastic traffic demand d9 > 0 [veh].

If the process of solving equations that define Wardrop dayium leads to negative
traffic flows on some links, the link traffic flows on these linéan be set to 0 and we
might try to solve the new problem problem without some ofsthénks. As shown in
Exampld 4.4, such a problem does not need to have a solution.

In Exampld 4.1l a situation with nonunique Wardrop equitiaran be seen.

Example 4.4 (Nonexistence of the Wardrop equilibrium solubn)
Imagine the game on a three-route (link) network with ongiofidestination pair. Let
d12 = 5[veh],a = 10, and let the route (link) cost functions be given by

45

=7 -2q. (4.23)
35 8

2= 2+ (4.24)

3 =10+ gCB. (4.25)

Then the system of equations
C1=0C, C=C3

leads to the following link traffic flows:

325 65 10

25 BT gy BT

Sinceq, andgs are negative, link 2 and/or link 3 will receive zero trafficviloTherefore,
a1 =5, g2 = 0, g3 = 0 would be the first candidate for the Wardrop solution. If weanly
gs to 0 and solve equatioty = c3, the resulting traffic flows would bg; = 1745, U = %,
which is the second candidate for the Wardrop solution. I6etsonlyg, to 0 and we would
solve equatiore; = c3, the resulting traffic flows would bg; = 0, g3 = 5, which would
determine the third candidate for the Wardrop solution.ddtuinately, none of traffic flows

combinations

e {01,02,03} = {5,0,0};

0=
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o {01,02,03} = {¥,3.0}
e {01,02,03} = {0,0,5}.

is in Wardrop equilibrium. O

Remark 4.7 Note that in Example-4l4 one of the route (link) cost functiaras decreasing

with traffic flow on the same route (link). The Wardrop equililm is a reasonable concept
only if the route (costs) are increasing with actual traffievs. Therefore, Example 4.4 is
of academic nature only. O

Total travel time minimization on a two-link network with li near link travel time func-
tions

Let us first assume that there are only two routes (links)@mitwork, i.e.|2| = 2, where
the travel demand(™9 is fixed. Let only link 1 be tolled. If the road authority minines
the total travel time of the system, the optimal toll desigolyfem can be written as

Find
01(-) =argminy, ) 't,
(P1) subject to the Wardrop equilibrium constraints,

0= (1,%) = (qz,D—qn)’ .t = (t,t2)’,

Let def def
t1 ZBiqr+31, = Bage+ S
Since o
d* (d'-t(a))
—— L =2B1+2B2> 0,
d (ql)z Bl BZ

the objective function is convex for al The total travel time function is minimized for

q*:52—51—2[32D q*:51—52—2[31D
! 2(B1+B2) 2 2(B1+B2)

With this choice ofg; andgp the total travel time minimum becomes

(4.26)

4B1B2D? + (4182 + 4B201) D — (52 — 81)°
4(B1+B2) '

Different strategies for the road authority — An ad-hoc approach

Let us first assume that the road authority sets toll on link & Bnear toll function, i.e.,
def
el(ql) € Wg_o) —i—Wg_l) di1.

If a Wardrop equilibrium withg; andq, defined by[(4.26) applies, an optimmgo) has
to satisfy
(61— 62— 2B2D) e

2(B1+B2) 1

« 1
wi%" = a8 -8+
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while w<11) is free. Therefore, a linear inverse Stackelberg stratatigfging

(31— —2B2D) ¢
2(B1+B2)

yields the optimal flows. Note that settimél) = 0 leads to the optimal Stackelberg strategy
61 = 1a(82 — 81), which is independent of the travel demadd

Obviously, in this simple case there is o necessity to tryggncomplicated strategies for
the road authority, since the minimal total travel time carobtained with the Stackelberg
strategy.

1
01(q1) = Ea(ég —01)+ Wl + qlw1 (4.27)

Total travel time minimization with linear link travel time functions and multiple par-
allel links

In the more general case, wita| > 1 and6|, = 0, the total travel time function has the
form
la|-1
q't="5 datatqatia
a=1

l2|-1 la]-1 la]-1
= Z 0a(Bala+ 0a) + (D — Z QJ)<BA (D Z CIJ>+5A>
a=1 =1 =1
l2|-1 l2|-1
= zl Bal3 -+ dala+ By D — 2Bja D Zl Ja+ 84D
a= a=

al-1 0\ 2 ja]-1
+Bjay < Zl CIa) —J Zl Ca-
a= a=

The optimal route (link) flong; (a € {1,...,|A| —1}) for a total travel minimum to be
reached has to satisfy

6‘A‘ — 01— ZB\A\D

%= 2Ba+2B|a (4.28)

andq‘ ‘7drs zr‘llQa

If 82 > Ja — 2B)a D for anya € 4, theq; would be negative, and, therefore, the global
minimum of the total travel time cannot be reached and onetrgaio get as close to the
optimum as possible by trying different toll strategies.

If 8a < &ja) — 2Bja D andca d:efuta+ 6, forae {1,...,|A|}, (4.28) expresses the link
flows minimizing the total travel time of the system. The Wagequilibrium in terms of
costs yields the following expressions fyin terms off; (a, j € 4, a# j):

2l
2(Bj+Ba) (Ba+Biay)’

with Wil = By (BaB; +2B5,))(8) — 8a) -+ ABfy By (8] — 2B + 8 — 23a) + aPafy
(20 — G‘A‘ 8a +2PBja D). Since one of the links is untolled, the tolls on all other &nk

jea. (4.29)
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can be computed by induction. Thereforel,\l*ﬁ’J >0 Vj e a the system of linear equa-
tions [4.29) yields the Stackelberg solution of the problem

To recapitulate, iS; < §a — 2B4D for Vj € 2 andWy! >0, (a,j € 4, a# j) the
Stackelberg game with one link untolled and traffic flow-ir&at toll leads to the optimal
total travel time value. In the other cases, the outcomes®fStackelberg and inverse
Stackelberg game may differ.

Total toll revenue maximization, with two parallel links and linear link travel time
functions

Clearly,g; maximizing the total toll revenue has to satisfy

do
dlchlh) +61(q1) =0

and, therefore, it is dependent on the definition of the tafiction. We will attempt to
maximize the total toll revenue with different toll functiaefinitions. The problem to be
solved can be symbolically written as

Find

(P>) 01(-) = argmax, ) (0101 (1)),
subject to the deterministic user equilibrium conditions
with g = (q1,q2)",t = (t1,t2)", and 52, ga = D.

Different strategies for the road authority - An ad-hoc approach

With 81(q1) = (10) +W(ll) g1 the objective function is concave fmfll) <0 (%ﬂ;ml) =
1

2W(11)). Therefore, the optimal toll has to be decreasing with ta#it flow. Maximization

of the total toll revenue function with respectdgpleads to the optimai; andg;y (indicated

by superscript)

(0) (0)
W. W.
0i=-—, G=D+_—% (4.30)
2wy 2w;
If a Wardrop equilibrium applies, i.e., th = ¢, w(lo) from (4.30) has to satisfy
20 (81— 2D — &) i
w? = (% Bz(l) )W (4.31)
api—w;” +aps
With this choice ofw(lo) the total toll revenue reaches
2 (8, — &1+ B2D) 2w
L0 Gtk BD)WLT 0 ), (4.32)

I 2
(0( (B1+B2) — Wy ))
It can be shown that the optimal Stackelberg toll is

61 =0a(d1— 62— P2D)
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and that this toll yields the total toll revenue of

a (8 — 81+ B2D)?
4(B1+B2)
The Stackelberg toll pays off if this expression is positive
Expression[{4.32) has a higher value than expreskionl (ﬁ.@@) lies in the interval
(@—2-2V1—@) BrtPB2)a (@—2+2VI—q) (Br+P2)a

) )

¢ ¢

(4.33)

with ¢ = &2 — 01+ B2D (1 > ¢ has to be satisfied).
If the toll is defined as a quadratic function, i.81{01) ":efw<1°> —i—W(ll) o1 +W(12) 3, the
objective function is concave fav; > —3w2q1. The only candidate for optimaiy is then

v P

3W(12)

1= (4.34)

With q; defined by [(4.34) and if the Wardrop equilibrium applies, thil toll revenue
function has the following form:

(w‘l‘” )2 (Zw(lo) + 3LIJ1) (9W(11) Y, + 6a W(lo) W, — 4W(10) ng))

> , (4.35)
27 (wg‘” a¥y+2%; W<11) - W<1°) W(ll))

with W, = ad,, Wo = 31+ B2. It can be seen that the total toll revenue in the quadratic tol
case[(4.35) reaches higher values than the total toll reventhe linear toll casé (4.82), if

W(ll) c (W(ll),min7 (ll),max) . with

. (26(wy”)2 — BOws (w2 + 27w 2w + 543+ Ws ) wonh”
W(l ),max —

2
27a (—51 + B2+ 52)2 (2‘-”1 D- W<10))
5
2¢,m” \/ 2 (2w +3ws) wy”

27
27a (—51+ Bz—l— 52)2 (— (10) +2W¥; D)

+

whereWs — 5403 (BZ3D3 — 3243,8:5,D — 162622) ,and

0 0 0 0
i (16(W(1 )3 — 60wy (Wi2)2 + 27w2wi¥ 1 54W3 + l-|J3) wonl
(min __

2
2701 (—81 + Ba+ 82)° (—w(l‘” 2w, D)
5
2 \/ 2 (20 + 3w ) W wand”

_ N
270 (~ 8y + Bo+ 8)° (—wy” +291D)
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Remark 4.8 The previous example suggests that in the optimal toll egsigblem defined

on one origin—destination pair on the network with 2 patdiifks, linear link travel time

functions, and with the road authority maximizing the tatdll revenue of the problem, the

higher degree of the toll polynomial function yields a bettetcome for the road authority.
O

Total toll revenue maximization on the network with two parallel links and quadratic
link travel time functions

Let us consider a two-link problem with the road authorityimiizing the total travel time
of the system and the link travel time functions defined as

ta def Baqur YaOa+ Oa,

with the link toll function defined as in the previous caselgtu.e.,01(q1) = (10) +W(11) 1.
Following the same procedure as in the previous case it caadrethat when the Wardrop
equilibrium holds, two possible solution flows can be reakcfiethe transfer condition is

satisfied):

(1) wiY +ayi+ays+ 20 B2D — /P

- _ ) 4.36
& 20 (B1—B2) (4.30)
(1)
2 _ Wi +ayi+ay;+2aBD+v/Ws
or g, = 20 (B1—Pa) , (4.37)

with W3 = w(l)2 (1 0 2,2
3 1+ W (2ayi+2ay2+4aBD) + wy (—4aBi+4afs) + acyic+

202y1y2 + 40ay1BaD + a?y22 +402B1yoD +4a%B1BD? — 402181 + 40218, + 4025,
— 4a2Byd, (W3 > 0 is a necessary condition to obtain the optimal traffic flows)

If only one from the traffic flows[(4.36) an@ (4]37) leads to Werdrop equilibrium,
minimization of the total travel time function gives us:

(0) %

1
W= 2a (28 - 281 +y.D), w = (Y1+y2) <O.

3 a
Note that this solution is unique. Also, singe> 0, y; > 0, andy, > 0, the optimal toll will
be decreasing with traffic flow, provided that conditibn (J).folds. A necessary condition
for this is that D, — 281 + Y2 > 0. Moreover, sincew(ll)’* # 0, the inverse Stackelberg game
strategy brings a better outcome for the road authority tharStackelberg strategy. Since
the problem is a second-best problem, link 2 is untolled #mas, no other possibility for
the road authority to get the same outcome with the StacigHimtegy exists.

The total toll revenue maximization with multiple parallel links and linear link travel
time functions

The total toll revenue function has the form

la|-1
qT0: Z 0aBa(0a)- (4.38)
a=1
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a Ba | Ya Oa
1,2,3,5,8,14,17,21,24,26,27,28 | 5 | ;5 | 0.15625 10>
15,16,34,35 3 3—19 55

4,32 2.7 ago 0.625-10*
9,13,25,37,41,53 9 ag0 0.625.104
18,19,20 3 10 4.10°°

10,12 12| 450 | 4-10°°

11 4 | & |410%
others 10 | 3 | o5

Table 4.1: Coefficients of the travel time function.

Here the tolB;(+) is a function of the link traffic flow on the same Iink.% + deg‘—ga) <

0, then the the local maximum of the total toll revenue funci®neached fon, (a € 4)
satisfying

d6a(da) +04a(0a) = 0. (4.39)

doa
Therefore, the structure of the toll functions will influertthe possible outcome of the game

and, therefore, no claims on optimal strategy for the leadatbe made before the structure
of the toll function is known.

4.7.2 Beltway network

Let us consider the network depicted in Figlurd 4.3 with 21asoghd 56 links. Note that in
Figure[4.3 link labels lie on the right-hand side of the driydirection, when going from
North to South or from West to East. Nodgk 2,3} will be referred to as to the North
nodes, similarly node§4,9, 14} will be referred to as to the West nodes, etc. Initially the
set of tollable links will be defined as = {9, 11, 13 19, 22 23 25, 53}, as these are in
this network the rather congested links, when the toll isimposed

Let the logit-based stochastic equilibrium apply for therdo level of the problem. The
set of originsg contains nodes from North, East, and West, while the set stirggions
S comprises nodes from the South. Lesf = % x $. Therefore, there are 27 origin—
destination pairs and 1357 routes in the network. There mfficc demand of 20 cars
for each origin—destination pair and each minute.

The link travel time functions will be defined bgstEf Ba+ Vala+ éaqg for eachac 4,
where coefficient§, y, andd are depicted in Table 5.P3.

The road authority minimizes the total travel time of thetegs

The following four problems will be dealt with consideringth objectives:

la) Stackelberg game (defined by (P.0)) withy = wo € RS’H YaeT.

60ur research does not deal with establishing the optimabfsetiable links. Research on this topic can be
found in, e.g., [30].



4.7 Case studies

NORTH

EAST

4
@
9
WEST| @
14
®
o7 ts5 28 €56
® o )
19 20 21
SOUTH

Figure 4.3: Beltway network.
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1b) Inverse Stackelberg game (defined in (P)) Witk- 2, toll defined by [4.B), and with

the additional condition thait/gm) =Wn € Rforae 7, i.e., the linear toll functions
have link-independent coefficients.

1c) First-best (FB) pricing problem,with toll defined as tmarginal link travel time,
0a(0a) = g_ct;i ga for each linka € 2. This presents the best possible outcome of the
game if all links are tollable.

1d) Problem with no toll.

To solve these problems the algorithm introduced in Se®i@) with gmax = 107>,
gy = 0.005 7500 training patterns, and 2500 validation patterns velapplied.

Note that in 1a) and 1b) the toll functions are identical fibtaled links. It is possible
to apply more flexible tolls, but the computations of the wati tolls would become very
lengthy in that case.

Let the road authority minimize the total travel time of tlystem, i.e.,

The outcomes of the game with no toll and the game with thelfigst tolling are de-
picted in Tablé 42, while the outcomes of the Stackelbengegtbgether with the outcomes
of the inverse Stackelberg game are depicted in Table 4.3.

The optimal toll value for the Stackelberg game is rathehhig., 382 euro. The opti-
mal values ofvg andw; for the inverse Stackelberg game ar@8B and 457, respectively.
The total travel time obtained with the first-best tollingLi8286- 10* [min], the total travel
time with use of the inverse Stackelberg game.8698- 10* [min], and 14435. 10* [min]
with use of the Stackelberg game. The total travel time withalis is 16025- 10* [min]

Note that to obtain the first-best outcome it is necessarglt®6 links, while we used
only 2 parameters in the toll function to obtain a resulteattiose to the first-best outcome.

In Tablel4.4 outcomes of case studies, that differ in thefseilable links, are depicted
(as Case studies 2—6). These case studies are chosen dugdntkaf the tolled links have
very low first-best toll values, thus they should not be witepractice. Although outcomes
of the Stackelberg game and the inverse Stackelberg ganmudeeclose to each other,
the inverse Stackelberg game performs never worse thartdcketberg game. This is no
surprise, since the Stackelberg game is a special case iol/érse Stackelberg game. This
becomes clear in Case study 5 in which the optimal inversek8laerg strategy is in fact a
Stackelberg strategy.

In Case study 3 the optimal tolls on tollable links are desirgawith the link flows on
the same links. With increasing traffic flow on the partictitdied link the other links in the
network become even more congested, that is why the traveteruld still be stimulated
to leave the other congested links and switch to the toliel liThis phenomenon would
not occur if the links that are more sensitive to congestionla be tolled. Therefore, the
flow-dependent tolling can accommodate to the new trafficlitmms.

For Case study 1 additional computations with Stackelbed)iaverse Stackelberg
games were performed. We compare the following games:

e Stackelberg game with
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no tolls FB tolls
a toll  flow time | toll flow time
1,2,3 - 60.00 516 | 0.16 6000 516
4,32 - 6245 310 | 0.4483 5072 299
5,8,14,17,21,24 | — 60.00 516 | 0.16 6000 516
6,7 - 4203 334 | 024 2640 317
9,13 - 5509 1227 | 7.09 6595 1337
10,12 — 10627 183 | 0.66 8120 160
15,16 — 65.07 369 | 0.72 5020 345
18,20 - 10748 870 | 7.36 8988 713
2223 — 3997 1311 | 4.18 3652 1270
2553 — 3837 1088 | 1.7938 2918 1026
26,27,28 - 18000 550 | 0.55 18000 550
29,30,31, a45 — 0.00 1000 | 0.00 0.00 1000
34,35 — 5586 353 | 0.56 4335 335
37,41 - 1313 944 | 0.01 013 900
38,40 - 1441 1071 | 0.56 1006 1045
39 — 1346 1065 | 0.27 589 1024
47 - 0.55 1002 | 0.01 001 1000
33,36,42 49 - 0.00 1000 | 0.00 0.00 1000
43 44 — 1547 1078 | 0.47 887 1038
46,48 — 5.23 1020 | 0.01 0.08 1000
50,51 - 1575 1080 | 0.03 090 1003
52,54, 5556 — 0.00 1000 | 0.00 000 1000
11 — 4581 560 | 3.07 3198 494
19 - 13211 1130 | 1055 10876 882

Table 4.2: Link parameters - Stackelberg game (Case study 1)

— links 9,11,13,19 tolled with identical toll and links 223,25,53 tolled with
identical toll, while these two toll values may differ;

— links 9,11, 13 tolled with identical toll, links 122, 23 tolled with identical toll,
and links 25 and 53 tolled with identical toll, while theseet toll values may
differ;

— links 9,11 tolled with identical toll, links 1319 tolled with identical toll, 2223
tolled with identical toll, and links 2%3 tolled with identical toll, while these
four toll values may differ;

e inverse Stackelberg game with toll set as in equafiod (4.9)

— with M = 1 and the identical polynomial toll imposed on all tollakitekk;
— with M = 2 and the identical polynomial toll imposed on all tollakilek;

— with M = 3 and the identical polynomial toll imposed on all tollakiekss.

Results are shown in Table #.5. It is clear that when compa8iackelberg and inverse
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SG ISG - linear
a toll flow time | toll flow time
12,3 0.00 6000 516 | 0.00 6000 516
4 0.00 6176 309 | 0.00 5920 307
5,8,14,17,21,24 | 0.00 6000 516 | 0.00 6000 516
6,7 0.00 2615 316 | 0.00 2481 315
9,13 3820 4813 1165| 10.10 6661 1349
10,12 0.00 12905 208 | 0.00 10686 183
15,16 0.00 9464 431 | 0.00 8111 399
18,20 3820 9250 735 | 11.13 7903 627
22,23 3820 1918 1105| 6.80 2690 1172
25,53 3820 1235 940 | 6.12 1871 969
32 0.00 6176 309 | 0.00 5920 307
26,27,28 0.00 18000 550 | 0.00 18000 550
29,30,31,45 0.00 000 1000 | 0.00 000 1000
34,35 0.00 6279 365 | 0.00 6211 363
37,41 0.00 615 918 | 0.00 013 900
3840 0.00 1439 1071| 0.00 1604 1082
39 0.00 1327 1064 | 0.00 1540 1078
47 0.00 001 1000 | 0.00 001 1000
33 36,4249 0.00 000 1000 | 0.00 000 1000
43 44 0.00 1016 1045| 0.00 928 1040
46,48 0.00 231 1008 | 0.00 004 1000
50,51 0.00 703 1029 | 0.00 142 1005
52 54 5556 0.00 000 1000 | 0.00 000 1000
11 3820 001 400 | 464 079 401
19 3820 15569 1425 | 1528 12904 1088

Table 4.3: Link parameters - inverse Stackelberg game (Cashy 1)

Stackelberg games with the same number of parameters tdingzsgal, the inverse Stack-
elberg game performs never worse than the Stackelberg gameady with 3 parameters
the resulting total travel time is very close to the firstthmscome. Therefore, it is prof-
itable for the road authority to calculate the tolls usingeirse Stackelberg strategy even
when the tolls are set as very simple functions of link flows.

The average computational time with 16 microprocessorsvainutes for problems
with one parameter to optimize, Z6minutes with problems with two parameters to be
optimized, 25 minutes with problems with three parameters, and 40inutes with 4
parameters. The computational time can be reduced withfurer@ microprocessors.

Discussion

In the presented case studies we suggested how to improwystem performance with
use of so-called traffic-flow dependent tolls. It can be séan the system performance
improves even with use of very simple toll functions.
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SG ISG FB no toll
. TTT TTT TTT TTT

CS | tolled links toll (-10%) {wo, w1} (-10%) (10%) (-10%)
2 4,6,7,9,10,32,34,35,37,38 118 | 1.51 {4.11,-0.20} | 1.46 1.33 1.60
3 11,12,13/15,16,39,40,41,43,44 | 1.40 | 1.49 {3.47,-0.10} | 1.49 1.33 1.60
4 4,6,7,9,10,11,12,13 16,43 198 | 1.46 {1.36,0.03} 1.44 1.33 1.60
5 12,13/16,18,19,20,23,43 50,53 | 1.022 | 1.52 {1.02,0} 1.52 1.33 1.60
6 13,15,19,22,25 41, 44,47,50,53 | 1.16 | 1.53 {7.09,—4.45} | 151 1.33 1.60

Table 4.4: Results of the case studies.
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2 parameters

3 parameters

4 parameters

link SG ISG SG ISG SG ISG
0, Wo, W1 04 <<o“<<Hu<<MA.“_.O\Av 04 <<ou<<Hu<<MA.”_.O\NJu<<wA.“_.O\mv

9 4858 | 4.57,0.083 || 43.25 3.27,0.045,5.12 4191 2.81,0.036,3.55,1.22
11 4858 | 4.57,0.083 || 43.25 3.27,0.0455.12 4191 2.81,0.036,3.55,1.22
13 4858 | 4.57,0.083 || 43.25 3.27,0.0455.12 3854 2.81,0.036,3.55,1.22
19 4858 | 4.57,0.083 || 37.12 3.27,0.0455.12 3854 2.81,0.036,3.55,1.22
22 16.24 | 4.57,0.083 || 37.12 3.27,0.0455.12 1821 2.81,0.036,3.55,1.22
23 1624 | 457,0.083| 37.12 | 3.27,0.0455.12 1821 | 2.81,0.0363.551.22
25 16.24 | 457,0.083 || 16.23 3.27,0.0455.12 15.49 2.81,0.036,3.55,1.22
53 16.24 | 4.57,0.083 || 16.23 3.27,0.045,5.12 1549 2.81,0.036,3.55,1.22

TTT

(-10% 14123 | 1.3698 1.4098 | 1.3537 1.3934 | 1.3401

[min]

Table 4.5: Comparison of different tolling strategies ors€atudy 1.
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Another question to be discussed is the practical relevahtiee proposed concept of
the traffic-flow dependent tolls. One of the possibilitiekodv to apply such tolls in practice
is to use global positioning systems (GPS) and/or mobilexpkdor counting the number
of cars using specific roads/links in order to compute thiicrlow dependent tolls.

4.8 Conclusions and future research

In this chapter we have introduced the problem of staticwattoll design with second-best
traffic-flow dependent tolling. We have discussed existafcmlutions of a very general

version of this problem as well as its difficulty and we havegmsed a solution algorithm.

In the case studies (with specific objective function forribeed authority and specific traffic

assignment) we have shown both problems solved analyt@atl problems solved numeri-
cally using the proposed algorithm. Some unrealistic agsimms were considered, though,
especially inelastic travel demand.

The following topics are subject of our future research:

e Alternative objectives of the road authority Although problem (P) was defined
in a general way, in the presented case studies the objdatvtion of the road
authority was defined as a total travel time or as a total ®lenue of the traffic
system. Another option is to define the objective functiortresreliability of the
network or, for example, as a surplus of the network.

e Elastic demandsThe traffic demand is assumed fixed. The traffic-flow dependent
tolls can be implemented also in systems with elastic trafimands. More about
elastic traffic demands can be foundin, elg.} [66].

e Heterogeneous network userd he drivers in the network formed a homogeneous
group. In [10] possibilities for defining heterogeneousrsisge investigated. These
possibilities can be incorporated into our problem, too.tHat case different toll
functions would be imposed for different user groups.

The problems closely related to the research conductedsichiapter, but falling out of
this frame, can be listed as follows:

¢ Finding the best way how to model link and route traffic flowndi, and other link
and route traffic variables. We adopted standard methodbingke traffic field.

e Validating of standard ways used to model the traffic vadgalgin the road networks.

e Defining criteria of efficiency of algorithms for solving thoblems dealt with in
this thesis and comparing different algorithms with respésuch criteria. We tried
to develop algorithms that would solve the problems we aadimigwith and that can
be parallelized. We do not consider any other criteria, digeed and efficiency of the
algorithms.

¢ Finding the best possible toll functions minimizing theexijve function of the road
authority. We were looking for polynomial toll functions proving the system per-
formance remarkably when compared to outcomes obtainddstgihdard uniform or
time-varying tolls.
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¢ Definition of the best possible objective function for thadauthority from the prac-
tical point of view. While in Chapteid 4 afdl 5 this objectiveétion was not defined
and the properties of the problems were discussed with arglemigiective function,
in case studies we used the total travel time (to be minimiaetbtal toll revenue (to
be maximized) as objective functions of the road authoig. are aware of the fact
that other objective functions might be more realistic.

¢ Definition of the best possible way how to define travelerstdanctions. In this
thesis the link cost function was defined as a linear comiginaif link travel time
and link toll. There exist other ways how to define the linktdasiction. Finding of
such ways is beyond the scope of this thesis.



Chapter 5

Dynamic Optimal Toll Design

This chapter extends the outcomes of Chdgter 4 to the situiativhich the problem evolves
over time. We then talk about a dynamic optimal toll desigobem.

5.1 Introduction and literature overview

There are extensive studies focusing ongtadicoptimal toll design problem, i.e., on prob-
lems in which decisions of the players (the travelers anddlad authority) do not evolve
over time (seel [68, 85], Chapter 4). Although the static niodee still widely used, the
theory and practice alynamicmodels have evolved significantly over the last ten years.
In the dynamic version of the optimal toll design problem tlymamic traffic assignment
(DTA) applies ([10]). DTA models typically describe routkaice behavior of travelers on
a transportation network and the way in which traffic dynaattycpropagates through the
network.

If all travelers are assumed to have perfect informatian,(they know the current and
future conditions on the network as well as the decisiondefather travelers) and if they
are uniform, thedeterministic user equilibriundDUE) applies ([10} 94]). Similarly, with
imperfectinformation and distributed travel preferenegsobabilistic user equilibriumin
the traffic literature referred often as tstchastic user equilibriufSBUE), applies, in the
case studies of this chapter this is often kgt based stochastic equilibriuifb. B-SUE),
see ([58]).

With respect to possible tolling strategies there are twmmmesearch streams differing
in the definition of the set of tollable links. With so-callfidst-best-tolling (or first-best
pricing) all the links in the network can be tolled ([68) 96]yith the so-called second-best
tolling not all links are tollable (seé [85]). The latter capt is clearly more applicable in
practice.

Dynamic congestion pricing models in which network coradi and link tolls are time-
varying, have been addressed lin [3], where the effectisenévarious pricing policies
(time-varying, uniform, and step tolls) was compared ad.w@hnly one bottleneck or a
single origin—destination network was considered theta)enthe possibility of applica-
tion of traffic-flow dependent tolls is not discussed herg4f] and [95] dynamic marginal
(first-best) cost pricing models for general transportatietworks were developed. As indi-

71
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cated by the authors, the application of their model is Bahito destination-specific (rather
than route or link-based) tolling strategies, which mighrplicate its practical application.
Moreover, only the first-best pricing is considered here.

In [4€] the dynamic optimal toll design problem is considkkeith a case study on
the so-called Chen network. Tolls are assumed uniform oe-tiarying, but traffic-flow
invariant, and the problem of finding the optimal toll is defin but not solved, although
the impact of some specific toll values on travelers’ routd daparture time choices is
presented.

In [85] and [84] second-best tolling is considered, traksebere driven by the determin-
istic user equilibrium (DUE), the objective function of thead authority is defined as the
surplus of the road authority (i.e., amount of money thatrtzel authority receives by im-
posing tolls minus the investments of the road authorityceoning the toll charge), the
traffic demand is elastic, and it is assumed that the link frogttions are increasing with
respect to traffic flows. In_[66] and [60] the lower-level oktproblem (travelers’ mini-
mization of travel costs) is formulated and solved as a tianal inequality problem (VIP).
Here the travelers are driven by DUE. [In[68] a very generat&tlberg model is presented,
where the road authority has two decision variables, onaerhtpossibly traffic-flow de-
pendent. The paper itself deals with general mathematrcglgpties of traffic equilibria,
however. The tolls are assumed to be constant and the tfafficdependent variable is
interpreted as a management decision of the road authority.

This chapter proposes an extension of our research in tliedii¢he static optimal toll
design problem to the dynamic problems with both DUE and SAEough some au-
thors [3,/14] consider the step-wise second-best tollinghé best of our knowledge no
research dealing with the optimal toll design problem wlith second-best tolling, the trav-
elers driven by LB-SUE, and the aim being to find optimal ta@fided as a function of the
traffic flows in the network has been done before. Since thiblpm is NP-hard, advanced
optimization techniques, which can be parallelized, stidvel used to solve it. Similarly as
in Chaptef# a neural network-based algorithm as such amizgatiion technique is imple-
mented. The neurosimulator FAUN has already been emplaysdlve other problems in
the domain of dynamic games [15/ 39, 90].

5.2 Preliminaries

Let G = (a(,4) be a strongly connected road network, that means, theres etikast one
path connects each s)-pair, wheren. anda are finite nonempty sets of nodes and directed
arcs (links), respectively. The set of tollable arcs wildemoted byr C 4. There is a finite,
nonempty set of origin-destination paiks C A. x A_ and let the setx = {1,2,...,|x |}

be atime index set. Here eakl® % refers to

e the interval[(k— 1.5)A, (k+1.5)A) if k> 2,
e theintervall0,0.54) if k=1,

whereA [h] is the length of each time interval.
For an ordered pair of nodéds s) € %5, wherer is an origin ands is a destination,
there is a positive number of drivers traveling froro s and departing during thieth time
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interval — so-called travel demant{"S-*) [veh/h]! The travel demand is for the sake of
simplicity assumed to be time-interval varying but traffimw and toll invarian® Letd("®
be a| x |-vector of all travel demands fromto s for all time intervals, i.e.,

g(rs) def <d<r,s>,<l> 4r9.@2 d(ns»(\x\))T_

5 gy

Let (r1,s1) denote the first origin-destination pairp,s;) denote the second origin-destin-
ation pair, etc., letr 4 |,S;;|) denote the last origin-destination pair. Then,

d(ruse)

de

dMzl-Ss))

In the following text we will denote such a vector léyi(’vs))v .willbe a|®&s|-|x |-
r,S)eRS

vector of all traffic demands for all travel time intervalsdaail origin—destination pairs in
the network.

Let » be the set of all simple paths (i.e., paths without cycleghanetwork and let
»(S) 2 be the set of all paths between an origin-destination @asj. An element of
2 will be denoted byp, while an element of? "9 will be denoted byp"¥. Each path is
formed by one or more directed arts.

The route flow departure rdten pathp € # during thek-th time interval will be denoted
by £ ([veh/h]), the arc inflow rate on the lir&during thek-th time interval will be denoted

k
by g ([veh/h]).

The average route travel cost on the ropte 2 when starting during thé&-th time
interval will be denoted byg‘), the average link travel cost on a liakduring thek-th time

interval will be denoted byl(k) ([euro]).

The route and link tolls, times, costs, and flows are reldtealigh a dynamic route-arc
incidence indicatoégfz—,{(k/) € {0,1}, which equals 1if the travelers entering the roupec #
during thek-th time interval enter the am during thek’-th time interval, and O otherwise.
We will assume that the route times, costs, and tolls aretiget}i and that the following

conservation constraints hold, i%.,

K).(K K k), (K K
of = 5 v oo oy s A e
K'ex aca Kex aca
K),(K) (K K k), (K
D IDE LA i T &2
k'ex aca kex aca

1We do not consider the so-called departure time choice, amain focus is on the optimal strategy for the
road authority. This option is considered in, e.al,[46].

2Elastic demand road pricing models are introduced in, [84],

3Note that the order of links matters, the expressioa (6,1,4) means that route is formed by three links,
where 6 is the first one, 1 is the second one, and 4 is the last one

4In the reminder of this chapter we will use the term “route flinstead of the “route flow rate”.

5In reality, this does not need to be the case. For researdimgledth non-additive costs, tolls, or flows we
refer the reader to [66].

6Since some of the variables have to be rounded off, addititisaussion about consistency of these equation
is needed. Such a discussion can be found, in,li.e., [74].
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drot =y 9. (5.3)

For each linka € 4, the link travel cost;l(k) for thek-th time interval is a linear combi-
nation of the actual link travel tim and the actual link tolB; with coefficientsa [veh/h]
and1l,i.e.,

(k) def

(0 def gy

+o, (5.4)

wherea [euro/time unit] is called the value of time, which is suppd$o be independent of
7

g.

Note that the link cost does not need to be strictly increpsiith respect to the actual
link flows, as the toll functions need not to be (strictly) ieasing. It may seem counter-
intuitive to have toll functions decreasing with the traffiow, however, this phenomena
was already encountered for the static optimal toll desigiblem in Chaptdrl4. In contrast,
in, e.g., [85], the link costs are assumed increasing witk fiows.

Letq®, t® ands® denote for thé-th time interval a vector of link flow rates on all
links, a vector of link flows on all links, and a vector of linksts on all links, respectively,
ie.,

(k)

i o N
(k) def 4z (k) def t2 (k) def )
q A 2 T P (55)
0 (k) (k)
A Ul Qal

Let g, t, and¢ denote the vectors of the link flows, the link travel timesg &me link
travel costs for all time intervals, i.e.,

ey (@ e
q? {@ e
a | t= | (5.6)
g% (1) (%)
Similarly, let us define
£ K ok
00 Q C
plig def | 12 Sl def [ T2 olkg def | @2
) () )
fle| Te| Cle|
£ +O) N
" e e e o i)
¢(%) ) D

"There are various ways in which the route cost functions eagiefined, a common way is based on so-called
generalized cost function, as mentioned.in [45].
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For each link fromz and each time interval a traffic-flow dependent toll can bedsegal.
The traffic-flow dependent toll on link € 7 will be denoted byel(k)(-). Unless stated dif-
ferently, this toll will be for eaclk-th time interval defined as a polynomial function of link
flow for the same time interval and on the same link, i.e.,

M m
K K (K K (K 0 for aca\7,
9'( ) (q'( )) - Zowl(m)() (q'( )) ’ me)()_{ cR for aeT (5.7)
m= ’

with M € Np. By definition,w is constrained/qfk) > 0 such that

K (K =0 for aea\7,
% (q' ){ >0 for ae7. (5-8)

More advanced toll functions include traffic flows from pi@ys$ time period, but we are
looking for a very simple scheme improving the system penface, therefore we restrict
ourself to toll functions in the forni.(5.7). Vectors

9%2(-) o
(k) def 8, () g def 61

) (1)

ew(.) 0

are vectors of link toll functions during theth time interval and vectors of all link toll
functions for all time periods, respectively. Coefficiemttors will be defined as follows:

Wilz’(k) WE{; w(d)
2),(k (2)
Wl(k) def | W . ko g W_Z Cow® W_ _ (5.9)
M), (K ) (1%))
WK W w
Let wl(m)’(k) € {w(m)’m‘“,w(m)’max} for all mand let setwfk), W& andw be defined as
follows:
Wl(k) def [W(:L),min7w(l),max} % {W(M).,mimw('\/')-,max , (5.10)
def K 4] def ||
Wk de (wf >) S oweE (W<k>) , (5.11)

with wim-min y(m.max ¢ R - w(m-min < w(m:max for vm e {1,...,M}. Clearly, Wl(k) is a

subset ofRM and thustk), WK andw are convex and compact sets. It is assumed that
w ew® whk ew® wewforvke x,ac a.

Note that while coefficienlwl(m)’<k) can be negative, the toll has to be nonnegative on all
links, as stated irl (5] 8).

With M = 0 in equation[(5]7) the toll level becomes time-varying, ot directly de-
pendent on traffic flow (although this toll will be influenceg thanges in the traffic flow
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pattern). In that situation the toll on the lirg will be set aswl(o)’(k) € R?r, and the vectors

w2 w®
(0.
(k) def Wa def w(2)
w = s w =
WORE BR(ED)

12|

will be vectors of time-varying, but traffic-flow invariarglts for thek-th time interval, and
of time-varying, but traffic-flow invariant tolls for all timintervals, respectively.

Let Wo be defined as saV with M = 0, i.e., W & [w(@-min w(0).max| " \ith 0 <

wlO-min - \w(0)max | ety € Wo. ClearlyWy is a subset oR% and a compact set.

We also introduce the matrdd = {0,1}/%5!xI7| which is the origin—destination pair-
path incidence matrix. Its element in tlies)-th row andp-th column is 1 if the route
starts from origirr and finishes in destinatisand 0 otherwise. The traffic flow feasibility
is described by

MR =gk, (5.12)

5.2.1 Game-theoretic interpretation of the optimal toll design problem

The problem of the dynamic optimal toll design can be seem a&s/@rse Stackelberg game.
Two possible interpretations from the game theoretic pofiniew are possible:

e The drivers, as followers, choose in each time period rofrtas their origins to
their destinations so as to minimize their actual or peextivavel costs. Therefore,
their decisions are their route choices. Because the awdrafiic flows are depen-
dent upon these decisions and the road authority as therleatiedynamic tolls as
functions of the average traffic flows in the network, thedks tare also composed
functions of the drivers’ decisions.

e Because the travelers are uniform, all of them can be seemessuper-player, who is
the follower in the one leader — one follower inverse Staolry game with the road
authority as the leader. The decision of this super-playrravestablish the average
traffic flows in the network. The dynamic tolls are the funaogoof the follower's
decisions in this game.

5.3 Drivers’ behavior — dynamic traffic assignment

This section formulates a macroscopignamic traffic assignment (DTA) modbht de-
scribes user-optimal flows over a network in which each drof®oses his/her preferred
route from origin to destination, based on the time-varyingditions in the network. A
driver starting his trip during th&-th time interval will influence the traffic conditions in
this interval as well as the traffic conditions during latend intervals. The network con-
ditions in thek-th time period depend on the conditions in previous timeetpariods. The
travel behavior model used in this thesis can be found in, [A.0] or [19].
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The standard DTA models consist oflgnamic travel choic¢DTC) model and aly-
namic network loadingDNL) model.

The DTC contains a path choice model in which all traveleestistributed on all avail-
able routes such that some kind of dynamic user equilibraiathieved. Both deterministic
and stochastic equilibria will be considered.

In Section5.311 the dynamic traffic equilibria used in thiedis are defined and dis-
cussed. In Sectidn 5.3.2 the dynamic network loading modebe/formulated.

5.3.1 Dynamic traffic equilibrium conditions

In the problem of traffic assignment with given traffic demaeaich user chooses a certain
route from his/her origin to his/her destination. The rudesording to which the users
decide which route to use have to be specified. The behaviordel used in this thesis
is the so-calledynamic Traffic Equilibriumas stated in, e.g., [10]. We consider both its
deterministic and stochastic variants.

Definition 5.1  (Dynamic deterministic traffic equilibrium)

The traffic network is in the dynamic deterministic trafficuddprium, if for each origin—
destination pair, the route travel costs for all users tiagebetween a specific origin—
destination pair and departing during the same time intemeaequal, and lower than the
route travel costs which would be experienced by a singlearsany unused feasible route,
i.e.,ifforall (r,;s) € 5, p € 29 the following statement holds:

If fp(,k) >0, then cg() = mi(n)c%k), vkex, pee™ (rs) ers;
pep(rs

if fék) =0, then c(pk) > mi(n)c%k), vkex, pee™. (s ecgs.
pepP(rs

Definition 5.2 (Dynamic stochastic traffic equilibrium)

The traffic network is in the dynamic stochastic traffic edtpuitm, if for each origin—
destination pair, the perceived route travel costs for sdirs traveling between a specific
origin—destination pair and departing at the same timairisire equal, and lower than the
route travel costs which would be experienced by a singlearsany unused feasible route,
i.e.,ifforall (r,;s) € 5, p € 29 the following statement holds:

If 39 >0, then ¢f'= min &, Vkex, pe2™d, (necws;

peP(rs)
it 39 =0, then &> mi(n)é‘,)k% vkex, pee®™ (1) ers,
pep(rs
Wherecl,gk> is the perceived travel cost on the ropte O

As in Chaptefb, Sectidn 4.3 we assume that in equilibriurtesthe so-calledogit-
based dynamic stochastic equilibritakes place. This means that the following equation
applies for eaclp e 29, ke % :

k
0 exp(—ucy’) qrsh(k)
Zf)eg)(rss) eX[X—LJ.Cp)
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5.3.2 The dynamic network loading model

The dynamic network loading (DNL) model is formulated as atesn of equations ex-
pressing link dynamics, flow conservation, flow propagationd boundary constraints. The
DNL model simulates the progression of the route flows on #tevark, yielding dynamic
link flows, link volumes, and link travel times developingastime. The DNL model used
in this thesis is adapted from |10] and can be expressed bfollogving system of equa-
tions:

K+
v,g(l; )_ u) (5.13)
K) q¥, if a isthe firstlink on path pe » (),
Ua7p = (k ) . . (514)
Valp, were a— isthe preceding link of a.
=y up (5.15)
per (s
W=y b (5.16)
per (s
9 = 5 (ug") _v§k>) A, (5.17)
K<k

Wherefék) is an approximation of the link travel time. In addition, thek travel time
function for thek-th time interval is a nondecreasing and link-specific fiorcof the link
volume on the same link for theth time interval.

Equation [[5.IB) is dlow propagationequation. It describes the propagation of the
inflows ugf)p through the link and therefore it determines the outflaﬁ{}g Additionally, it
relates the inflows and outflows of lirkkat thek-th time interval of vehicles traveling on

routep from originr to destinatiors. Thefék) is defined as follows:

WLy, it ) e[(x—05x+05)). (5.18)

We do not assume explicitly that a FIFO (first-in first-outhddion has to be satisfied.
Equation[[5.14) describes tfiew conservatioronditions. If linka is the first link on

route p, the inflow rate is equal to the corresponding route flows datezd by the route

choice model. If linka is not the first link on the route, then the inflow ra&% is equal to

the link outflow rate/gi),p of the preceding linla—.

Equation[(5.1b) states that the total link inflows are deteenhby adding all link inflows
for all routes that flow into linka at that time interval.

Equation [5.16) states that the total link outflows are deiteed by adding all link
outflows for all routes that flow out of link at that time interval.

Equation[[5.1l7) defines the link volunxg(), i.e., the number of travelers present at the
beginning of thek-th time interval on linka.
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5.4 The problem formulation

Similarly as in Sectiofi 415 the goal of the road authorityoighoose an optimal*, min-
imizing his/her objective function. As described in SexsflnZ.1 the problem is an inverse
Stackelberg game. The problem of the total travel time mirdion can be formulated as
follows:

Find
(PD){ w* = argminy. Z(g(w),w),
subject tog € DUE (w), where@ is defined by[(5]7) and(3.8).

The expression € DUE (w) reads as “link flow vectoq is a result of a used dynamic
user equilibrium (DUE) model when a polynomial toll funetiwith coefficient vectow is
used.”.

The “standard” Stackelberg problem would be defined as arsbbgm of (PD):

Find
(PDo) § Wp = argminy,cw, Z(g(Wo), Wo)
subject tog € DUE (w).

5.5 General problem properties

Note that problem (PD) is a nonlinear programming problemijlarly as problem (PD)
introduced in Sectioh 4l4. Also, the problem (PD) has attleae solution if the DUE
constraint represents a compact sefvafg(w)).

If for any givenw the seDUE (w) is a singletonw — q is a one-to-one mapping. In this
case, the continuity af with respect tov will guarantee that the constrained set of (PD) is
closed, which implies the solution existence of (PD) sigemdw are bounded.

In general DUE (w) may have multiple solutions in terms gfand thusDUE (w) may
not be a singleton. In this cadeUE (w) is a point-to-set mapping of ([33]). The solution
existence of (PD) will depend on the compactness of the gbagia(w) , defined as

W(w,q) = {(w,0q) |q € DUE(w), Yw € W}. (5.19)

Theorem 5.1 The problem (PD) has at least one solution if the followingditions are
satisfied:

i. The seDUE(w) is nonempty and compact fogmw € W,

ii. Letw,we W and let qc¢ DUE(w), § € DUE(W). For eache > 0, there exist® > 0
such that if jw—W|| < 9, then

max min  |jlg—7|| <E&.
YOleDUE (W) YOeDUE(W)

iii. The link travel cost functions on all links are contirmfunctions of the link flows on
the same links.
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Proof: LetR(0,€) be an open ball with radius Theny ®'bu E(w) + R(0,¢€) is an open

set containing D E(w). Let us define an other open e {w:||w—W]|| < &} containing
W. According to conditiorii. in Theoreni 5.1, for ang > 0, there existd > 0 such that
max min  ||g—7|| <k,

VOeDUE (W) YOeDUE (W)
which is equivalent taJwe, DUE(w) C & . Thus, undeiii., the point-to-set mapping of
DUE (w) is upper-semicontinuous. Together with conditiofimplies that the point-to-set
mappingDUE (w) is closed on s&V. Thus the grapM (w,q) defined in[(4.19) is closed by
Theoreni4.R. Also, undér, DUE(w) is bounded for any € W. SinceW is a bounded set,
the graph¥ (w, g) is bounded as well. Thus, graphe W is compact. Together witiii. and
the fact thaWV is compact, we can conclude that (PD) has at least one sojsiitce it is a
nonlinear programming problem with a continuous objediinetion defined on a compact
set. O

Theorem 5.2 Problem (PD) is strongly NP-hard.

Proof: The proof follows from the fact that the problem (P) is a specase of the problem
(PD) (withk = 1) and from Theoreiin 4.5. O

5.6 Solution methods

The methods used to solve the problem (PD) are those inteatdincSection 4]6 adjusted
to the dynamic environment. The problems with the driveigetr by the dynamic deter-
ministic user equilibrium can be solved analytically, asgas their scale is not too large.
The problems with the drivers driven by the dynamic logisda (stochastic) equilibrium
will be solved by an algorithm containing a neural netwonggraach for solving the upper
level of the problem and the method of the successive averfagehe lower level of the
problem. Since the dynamic deterministic user equilibrisim special case of the dynamic
logit-based (stochastic) equilibrium, also the deterstiaproblems can be solved using the
neural-network based approach.

5.7 Case studies

In this section the solution methods introduced in Se¢fi@e#d mentioned in Section 5.6
will be applied on a number of case studies. Problems intedun Sectioi 5.7]11 are
simplified versions of problems (PD) and (f)Drespectively, with travelers driven by the
deterministic dynamic user equilibrium, applied on a twdchetwork. An analytical solu-
tion is given. Problems introduced in Section 5.7.2 are Bfiegd variants of problem (PD)
and (PD), too, with the drivers driven by stochastic user equilibti A numerical solution
is given.

5.7.1 Three-links network

In this section problems (PD) and (pPDintroduced in Sectioh 5.4, played on the three-
link (route) parallel road network depicted in Figlrel5.1 we dealt with. Two alternative
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3 - untolled

Figure 5.1: One origin—destination pair network wigHinks.

objective functiong; = Z; (g(w),w) andZs = Z, (g(w), w), defined as

Z1 (g(w),w) = g™ () - t(w), (5.20)

Z2 (q(w),w) &' —q" (w)-6(w), (5.21)

will be considered.

We assume that = {1 ., 7}, A=11h],d"s-(1) = 2000 [veh]d rs).(2) = 2000 [veh],
d(-(3) = 3000 [veh],d("S): 3000 [veh] d("9-(5 = 2500 [veh],d"9-(6) = 2000 [veh],
de ><> =2000 [veh]cxf8[eur0/h]ta defBaQa +6a, ac{1,2,3},c® Lot 1ol
01 = 5’ 02 = 4’ 03 = 3’ 1= 3000’ B2 = 2500 B3 = 2500

5.7.1.1 Total travel time minimization

Let the road authority minimize the total travel time of thetwork. In the following four
games we will consider different toll variants in Stacketpéraffic-flow invariant) and
inverse Stackelberg (traffic-flow dependent) setting toheeedifferent classes of toll func-
tions influence outcomes of the game. To be able to give arctibgecomparison we will
focus on inverse Stackelberg strategies with toll fundibaving the same number of un-
known parameters as Stackelberg strategies to which tieesevstackelberg strategies are
compared to. The goal is to find an inverse Stackelberg girdtat does not increase the
problem complexity and that provides better outcomes for the road authority.

In Sectior[ 5. 711 the best possible outcome for the road atith® discussed.

Game 1

Let only link 1 be tolled. Two problems will be compared:

e A problem of total travel time minimization with uniform (ostant) toll, i.e.,e(lk) def

916[@2.

e A problem of total travel time minimization with toII defineﬂs a1-multiple of an
actual link traffic flow on linkiy, i.e.,e(lk) ( ) *fe, ql ,&1€RI.

80ther possible objective functions for the road authority be, for example, unreliability of the network|[18],
negative of the surplus of the network [84], etc.
9This is important for possible real-time applications.
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The optimal toll for the first problem |§r’—5 0.39 [euro] and yields a total travel time

of 959079 [h]. A slightly better outcome, 958® [h], can be reached in the second game

with an optimal value o€; equal togeses~ 0.36- 10-3. The outcomes of the games are

very close to each other because the problem was solvedesitiect to only one parameter.

Game 2
Letlink 1 and link 2 be tolled. Two problems will be compared:

° A problem of total travel time minimization, where toll isiform, i.e. 68) dffea S

R% ae {1,2}.

¢ Aproblem of total travel time minimization with toll on Iinek(ae {1, 2}) defined as
a&a-multiple of actual link traffic flow on linka, i.e. eé) ( ) defE q EaeR‘i,
ac{1,2}.

For the first problem the optimal tolls on links 1 and 2 %e[euro] and% [euro], respec-
tively, and yield a total travel time of 9598 [h] (the same outcome as in the previous case).
The optimal values o€; and¢;, for the second problem are3D- 1023 and 051-10°3,
respectively, and yield the outcome 9538 [h]. The traffic-flow dependent toll is accom-
modating to the traffic conditions in a better way, theretbis toll yields better outcomes.

Game 3

Let only link 1 be tolled. Two problems to be compared are:

e Find e(l") minimizing the total travel time of the system, where

e(k) dBf 917 k € {17 27 67 7}7
1 7\ 8, ke{34,5}.

e Find 9( K (q< )) minimizing the total travel time of the system, where

e(k) (q( )def Elq]_ I ke {1727677}7
LA 1019, ke (3,45}

The optimal values d; andb in the first game arf;r?—5 0.39[euro]an ~0.39 [euro]

respectively, and yield the total travel time 95B®[h]. The optimal values of; and&;
are 533>~ 0.43- 102 and 55 ~ 0.44- 102, respectively, and yield the total travel time of
958268 [h].

Game 4

Letlinks 1 and 2 be tolled. Two problems to be solved are:
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(3] (3] ) ) ) (3]
q; T 9 i 93 T3
2660 | 223 | 4870 | 937 | 5150 | 253

3 250 | ~9 1800 | 9 250
2660 | 223 | 4870 | 937 | 5150 | 253

3 750 | ~9 1800 | 9 250
3860 | 283 | 7270 | 1177 | 8150 | 313

3 250 | ~9 1800 | "9 450
3860 | 283 | 7270 | 1177 | 8150 | 313

3 750 | ~9 1800 | "9 50
3260 | 253 | 6070 | 1057 | 6650 | 283

3 250 | 9 1800 | "9 250
2660 | 223 | 4870 | 937 | 5150 | 253

3 750 | ~9 1800 | 9 250
2660 | 223 | 4870 | 937 | 5150 | 253

3 250 | ~9 1800 | 9 250

~N o 0ok WN R X

Table 5.1: The optimal link traffic flows [veh/h] and the lim&tel times [h] for the problem
of total travel time minimization.

e Find 9(1'0, 9<2k>, minimizing the total travel time of the system, where

gk def eaeRf), ke {1,2,6,7}, aec{1,2},
: 8.cR?, ke {345}, ac{1,2.

e Find 9(1'0, 9<2k), minimizing the total travel time of the system, where

(k) [ () def anék), ke {1,2,6,7}, ac{l1,2}
ea (Qa ) = z (K
€aOa  ke{3,45}, ae{1,2}.
The optimal values 01, 6, 81, and 8, for the first problem arel—5 [euro], & 15 [euro],
3 1 [euro], and1 [euro] respectlvely, and yield a total travel time of 9&®[h]. The optimal

values of¢ 1, Ez, &1, andé,, for the second problem are®- 1072, 1.29- 1072, 0.78- 102,
and 126- 1072, respectively, and yield a total travel time of 9538 [h].

General outcome

Minimization of the total travel time function with respeotthe traffic flows yields the link
traffic flows and the link travel times as depicted in Tdble 5.1

If these traffic flows and travel times are the travelers’ oese to the tolls, minimal
total travel timeM7 9577.29 [h] will be obtained. This means that the second strategy
from Game 4 ylelds a total travel time close to the optimatouate. The optimal outcome

9577.29 [h] can be reached if more parameters in the toll funcl}ine:tncluded In Table5.2
we find the optimal linear inverse Stackelberg stratéiéf} f’:efw q +W ) and the
optimal Stackelberg strategy, minimizing the total traile of the system. Since for the
inverse Stackelberg strategy paramevﬁg’(k) are free (and, therefore, the solution of the
inverse Stackelberg game is nonunique), clearly 7 paramietéhe toll function are needed
to obtain the optimal outcome. Obviously, by settm%)’<k) to O the optimal Stackelberg
strategy will be reached. Therefore, it seems that with ghaall parameters the outcomes
of the two strategies would be the same for general netwdravever, it is difficult to
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K W(lo)&k) W(ZO)&k)

1 1% _ %ow(ll)-,(l) % _ 4%70W(21),(1)
2| f- R | a2
3| 8- O | LT
A S el B
5 1% . 32360W(ll)7(5) %7 6%70W<21),(5)
6 % . 26360W(11)-,(6) %7 4%70w<21)’<6)
7 1% _ @)W(ll)ﬂ) % _ 4%70W(21),(7)

Table 5.2: The optimal link toll function coefficients foetimverse Stackelberg game (total
travel time minimization) The optimal tolls for the Stdbleeg game areﬁ(lk) =

8/15[euro] ande = 8/15[euro].

compute optimal time-varying toll on each link and for eaichet period in the real time,
if the number of toll parameters is very high. That is why iirigortant to find strategy
working better even with low number of toll parameters.

5.7.1.2 Total toll revenue maximization

Let us again consider the network depicted in Figuré 5.1 revklee road authority maxi-
mizes the total toll revenue of the system. The traffic flowpasing the best outcome for
the road authority are unknown here, because the totaktediue toll changes with change
of toll strategy.

Game 1

We will first assume that only link 1 is tolled. Two problemdiveie compared:

k) def

e The problem of total toll maximization, where the toll is forim, i.e.,e( =0;¢€

e The problem of total toll maximization with toII defined a<,g@multiple of actual
ink traffic flow on link Iz, i.e.,8(" (o) gy, &1 € RY.

The optimal toll for the first problem i$3% ~ 2.48 [euro] and yields a total toll revenue
of 969019 [euro]. The solution of the second problenfis= 5> 55 and yields a total toll
revenue of 99346 [euro].

Game 2
Letlink 1 and link 2 be tolled. We will compare two problems:

e The problem of total toll maximization, where the toll is forim, i.e. 68) def 0, €

R%, ae{1,2}.
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e The problem of total toll maximization, with toll defined a€amultiple of actual
link traffic flow on link a, i.e.,

0l (1) T'ea o, EGacR0, ac{L2).

The optimal tolls for the first problem ag‘%—g ~ 4.30[euro] and%% ~4.10[euro] for links 1
and 2, respectively, yielding the total toll revenue 26@3J]euro]. For the second problem
the optimal values of; and&, are 077- 102 and 127- 102, respectively. The resulting
total toll revenue is 267944 [euro].

Game 3

Let only link 1 be tolled. We will compare two problems:

e Find 6(1k) maximizing the total toll revenue of the system, where

gl def

{el, ke {1,2,6,7}
(4 de

01, ke {3,4,5}.
e Find e(l"> (q(lk)) maximizing the total toll revenue of the system, where

6y

(q(k)) def Elqgk), ke {1,2,6,7}
L &0y, ke {3.45).

The optimal values 08, and®; for the first problem aré32 ~ 2.16 [euro] ands32 ~ 2.90

[euro], respectively, and yield the total toll revenue 9831[euro]. The optimal values of

&1 and¢&; for the second problem are both equal%, and yield a total toll revenue of
993146 [euro].

Game 4

Let both link 1 and 2 be tolled. We will compare two problems:

e Find e(l") andeék) maximizing total toll revenue of the system, where

egk)d:ef gaeRf), ke {1,2,6,7}, ae {12},
8.cRY, ke {345}, ac{1,2).

e Find 9(1'0 (q(lk)) , e;"> (q(zk)) , maximizing the total toll revenue of the system, where

o0 (o) def [ Eadk’, ke{1,2,67}, ac{12},
a (Qa) T (K
ana k S {37475}7 ac {15 2}
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Table 5.3: Optimal link flows: Total toll revenue maximipatiwith linear toll functions.

The optimal values 001, 8, 61, andéz for the first problem aré—e’ ~ 3.73 [euro], 1 7—3 ~
5.07 [euro] 22 ~ 3.53 [euro], and ~ 4.87 [eur0], respectlvely, and yield a total toll
revenue of 2670&5 [euro]. The optlmal values @f, &2, El, andEz for the second problem
are 077-10°2,1.29-10°2, 0.78-10 2, and 126- 102, respectively, and yield a total toll
revenue of 267981 [euro].

Since the total toll revenue function will vary dependingtba chosen structure of the
toll functions, it is impossible to get the maximal totalltodvenue before knowing the
toll structure used. In the following game the optimal vatdghe total toll revenue with
linear tolls will be computed, as this toll brought the bessgible outcome when various
polynomial toll functions were tested.

Game 5

We will consider the situation, in which the road authoritgximizes the total toll revenue
of the system by setting tolls defined as follows:

K) ()Y def k k) [ (K def
e<l>(q<1>) WP © gl 4 w00, eé)(q(l)) Wi K gl w0k, (5.22)
Provided that coefﬂments/( ,1=1,2, ke{l,...,7} are negative, local maxima

of the total toll revenue functlon WI'[h respect to the lin&ffic flows will be reached with
flows depicted in Table5.3. These traffic flows are dependemﬁa’(k) andwgo)’(k) (j=
1,2,3 k=1,...,7).

The road authority maximizing the total toll revenue, aigto influence the travelers
such that the traffic flows depicted in Table]5.3 will be obeginhas to take into account
the dynamic deterministic user equilibrium conditions.allf three links are used, these

conditions will yield coefficient®{ andby” as depicted in Table5.4.
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Table 5.4: Coefficient of linear toll functions yielding &enaximum of the total toll revenue.
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WO [ WO [ (D0 [ O® [ g& | gl

1 1 2 2 1
—0.0077 | 7.4795 | —0.0129| 7.0757 | 3.7397 | 3.5379
—0.0077| 7.4795 | —0.0129| 7.0757 | 3.7397 | 3.5379
—0.0078 | 10.6860 | —0.0126 | 10.2769 | 5.3430| 5.1384
—0.0078 | 10.6860 | —0.0126 | 10.2768 | 5.3430| 5.1384
—0.0077 | 9.0533 | —0.0127| 8.6608 | 4.5267 | 4.3304
—0.0077| 7.4795 | —0.0129| 7.0757 | 3.7397 | 3.5379
—0.0077| 7.4795 | —0.0129| 7.0757 | 3.7397 | 3.5379

~NO O WNRX

Table 5.5: Optimal toll function coefficients and resultitadis [euro]: Total toll revenue
maximization.

2 4

1 1-tolled 3 4 5

Figure 5.2: Chen network.

Herew(ll)’(k), W(Zl)’(k), k=1,...,7, are free. However, after substitutiméo)’<k), W(O)’<k),
k=1,...,7, from Tabld5.% into the total toll revenue function and maizimy the obtained
function with respect tw(ll)’(k), W(Zl)’(k), k=1,...,7, the values of the coefficients of the toll
function can be obtained. These coefficients are depict€abitg 5.5 and yield the maximal
toll revenue 26795 10* [euro]. Substituting the coefficiemzs(ll)’(k), W(lo)’(k), (21)’("), and
w(zo)’(k) from Table[5.b into[(5.22) will result in toll value&ﬁk) andeék) as depicted in the
same table. Obviously, toll defined as a polynomial funcfioithe actual link flow) of
degree higher than 1 will not lead to a system performancedugment (with respect to
the system performance when the classical Stackelbertggyrés employed), thus this is
the best outcome achieved. This means that also the segatehstfrom Game 4 is the
best strategy that we found.

5.7.2 Chen network

In this section case studies with the Chen network congisiiit links, 2 origin—destination
pairs(1,5) and(3,5), and 6 routes will be investigated (depicted in Fiduré 5T2e traffic
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on each link flows from the node with lower identification nienimto the node with higher
identification number. Only link 1 is tollable, the toll isfiteed as

with the traffic volumeéik). Nonnegativity condition applies here, too.

For each directed ara € 4 the following parameters are initially given: link length
Sa [km], maximum speed'® [km/h], minimum speed™" [km/h], critical speedSt
[km/h], jam densityd5" [pcu/km], where pcu denotes passenger car units, and tfe unr
stricted link capacityC, [pcu/h]. Dynamic link travel time for an individual user ening
link a duringk-th time interval k € k) is defined as

k Sa
™ = ok (5.23)
a

where the link speeﬁg‘) [km/h] can be computed usirmulders speed-density function
(seel[73)):

oy B, it o < g,
_ (0N ~1( jam 2 _
8% =& gam (gt — gmin) % if - Jgerit < g0 < glam, (5.24)
(Jgrll) _ <Jgam)
gmin it g > giam

with critical densityJS™ [pcu/km] defined agS™ = C, /95,
The road authority minimizes the total travel time of thetsys i.e.,

def K
Zwaw)E'y Y T fpry
kEX (r9)€RS per (s

We assume that the logit-based dynamic stochastic equitibapplies for the drivers.

Case Study 1

Four time intervals are considered, i.&.,= {1,2,3,4}, A= 1 [h]. The link properties and

the travel demands are depicted in Tdbld 5.6. The other mdeamare set ag1= 0.2,

£ = 0.05, a = 8 [euro/h]wi)™" = —10,wM" — 5 WM _ 10, WM 5,

Sa 321ax 1sgrit 1sglwin Jjaam Ca
7.5 | 150 90 20 50 1500
15 | 120 70 10 150 | 3500 (r,s) drs.@) T 9.2 | 9.3 | grs).@
15 120 70 10 150 | 3500 (1,5) 2000 8000 8000 3000
10 150 90 20 50 1500 (3,5) 1000 1500 2000 1500
15 120 70 10 150 | 3500
15 120 70 10 150 | 3500

OO0 WNRD

Table 5.6: Link properties and travel demands in Case study 1
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The neural-networks based algorithm was applied, with B3@#ning data, 13297 vali-
dation data, and worst accepted validation error equalli#h1Sixteen processors were used
to compute the problem in a parallel way, where both gridgdeand neurosimulation were
parallelized. The neural ANN function that approximatestiftal travel time function in the
“best way” (See Sectidn 4.6.3 for explaining this best wiygmooth, twice differentiable,
with more than one local minimum (shown numerically) and giebal minimum. The
minimum 14173 [h] is found a[lw(ll)’(l), W<10)’<1), W<11)’(2), W(lo)’(z), W<11)’(3), W(lo)’(s), W<11)’(4),
w? ] = [~0.50, 0.20, —0.03, 1.19, 0, 0, —0.04, 3.96]. Note that for the first and forth
interval the optimal toll is decreasing with the currenfficavolume. This phenomenon
appears when other links are congested than the tolled hdktlae aim is to attract the
travelers to the tolled link.

With no toll the total travel time reaches 19542 [h] the ogitime-varying (but traffic-
flow independent) tolls ar@él) =23 [euro]B(zl) =6.6 [euro],e(zs) =95 [euro],9<14) =74
[euro], and yield total travel time of.1844- 10* [h].

The computational time of the FAUN simulator was2®hours, the computational time
of the grid search was 351 hours. This time can be decreased by using more procéssors
solve the problem.

Game 2

In this case study the number of time intervals will be insszhto 8 with travel demands
depicted in Table5]7. Also, there are no boundaries on patexsof linear toll functions

(r,s) ds).(@) d®s).(2 d9.03) d9.(4) 4.5 d(s),(6) RIESEG) dm9.®
(1,5) 2000 4000 6000 8000 8000 6000 4000 2000
(3,5 1000 2000 3000 4000 4000 3000 2000 1000

Table 5.7: Travel demands in Case study 2.

and only 14122 training data and 9301 validation data weesl.usThe worst accepted
validation quality was set t0.1%. The best-trained neural network was minimized using
Matlab again. The approximation function is again twicdetiéntiable, with multiple local

minima, and one global minimum 29149 at [W(ll)’(o), W(lo)’(o) W(ll)’(l), W(lo)’<1) ng)’(z),

) )

WO@ WD WO D@ O 1) WOLE) D6 (016 WD WO
wi® w0®)7 = —0.02 2.62, —0.04, 3.20, 0.4, —0.93, 0.01, —1.32, 0.01, 0.99, 0.05,

0.40,0,0,0.02, —0.24.

Optimal toll decreasing with the current traffic volume agsain the first time interval
and in the second time interval. With no toll the total tratiele reaches 396580 hours.
The optimal time-varying (but traffic-flow independent)lsoyield a total travel time of
3482260 hours.

The computational time of the FAUN simulator wad 5 [h], the grid search took 261
[h]. This time can be decreased by using more processorsdue @ problem. From the
tests made after the computation it follows that the obthswution is very accurate in its
neighborhood (with an error of 1%), although a lower humteraining and validation
data was used.
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Discussion

In both case studies the traffic-volume (and hence traffig)fidependent toll improved
the system performance remarkably. Also, phenomena ofalhddcreasing with traffic
volume was observed. The natural explanation for this phmema is that the traffic should
be attracted to the tolled link.

The grid search is very time consuming, although the netwssdd is very small. The
speed of the solution process can be increased by furthaligdemation of both phases of
the solution process.

Generally, the time-varying but traffic-flow invariant tathn never lead to a better out-
come than the traffic-flow dependent toll. This follows frame fact that the dynamic op-
timal toll design problem with traffic-flow invariant toll ia special case of (PD). See [74]
for further explanation.

5.8 Conclusions and future research

In this chapter we have introduced the concept of the dynamiicnal toll design prob-
lem with second-best traffic-flow dependent toll. We disedssxistence of solution of this
problem as well as its difficulty and proposed a solution athm, based on the algorithm
used for the solution of the static version of the problenthmcase studies we have shown
both problems solved analytically and problems solved rrigakly using the proposed al-
gorithm.

All the topics mentioned in Sectidn 4.8, extended to the dyina&nvironment, can be
subjects of future research. Additionally, departure theice of the travelers is a topic
calling for the further investigation. In_[45] the depaduime choice of the travelers was
considered, without the traffic-flow dependent toll and firgdihe optimal solution of the
problem.






Chapter 6

Electricity Market Problem

In this chapter we propose a simple formalization of thetelgty market problem. The
model aims to see the differences between the prices in ttiegtlg competitive market,
in the market with one leader, and in the market with two lesadplaying Nash among
themselves.

6.1 Introduction

The European electricity market is currently being transied from a market with monop-
olistic, national, and state-owned producers to a markit @mpeting, private, and often
multinational firms. This transformation is callBoeralization The speed and current state
of this process vary among different European countriesy & near monopoly in the Czech
Republic to highly competitive markets in Norway, Swederd the Netherlands [54].

Main aims of the liberalization are to bring benefit to consusrby lowering electricity
prices and to cause more cost efficient electricity productiittle is known about the envi-
ronmental consequences of liberalization. On the one handg cost efficient production
may be beneficial for the environment, while, on the othedh&ower market prices imply
higher electricity demand that may increase the burden ertivironment. Moreover, in
a highly competitive market an incentive to produce eleitjriwith cheap, but often not
environmental-friendly means, is increased. It is alsa@esl that quite recent develop-
ments, such as the implementation of the European unionsddtission trading system in
2005 may have major environmental impacts.

In the liberalization process, with various competing firrtiee market and its rules
are no longer fixed. The effects of liberalization on markaicture can be illustrated by
the recent development in Germany. Following liberalmatithe initial 30 relatively small
electricity producers were merged into four large prodsiaeonly few years of time. These
firms have market power on the German market, but they alsodampetition from neigh-
boring countries. The extent of international competitisimited by the transmission
capacities between countries, but it is also affected byrtheket structure in these neigh-
boring countries. Also, the character of electricity maska countries that are neighbors
of Germany will be changed by trade with Germany.

93
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To get more insights into how the liberalization can influetite European electricity
market, we will view the electricity producers in eight Epean countries: Belgium, Den-
mark, Finland, France, Germany, The Netherlands, Norwag,%weden as players in a
game. We chose these countries because of the followingneas

e There exists a model including these countriesi/(in [56]hwlifferent ways to model
the firms’ behavior, thus we can compare our results withadlyeexisting results.

¢ Real data about electricity prices, emission factors, dadtrcity productions are
available[32].

In the game that we consider the electricity producers ahdeshnologies for electricity
production as well as amounts of electricity to be producedifferent load periods. Only
the game among electricity producers of different coustiseplayed, the consumers’ de-
mand of electricity is exogenous. This approach is readenalthe situation, in which the
selling price of electricity in each country has to be the sdor each producer, i.e., the
consumers cannot choose “cheaper” electricity from déffieproducers.

The number of producers per country is given, as well as petens like electricity
production costs and electricity production capacitiesl the emission factors per country
and per technology. These initial data are derived from desh and were taken from
existing literature and electronic sources [32, 56]. Aiddially, shadow prices on emissions
per energy producer can be set.

Different game theoretic scenarios of firms behavior wilftenulated, namely a per-
fect competition, a Stackelberg game, in which in each agume firm acts as a first-
moving Stackelberg market leader during dispatch, andck&ltaerg game with two leaders
per country acting as first-moving Stackelberg market legg#aying Nash among them-
selves. Extension of the model to the dynamic game, in whigastments can take place
over a longer time horizon is formulated and explored as.welhll considered scenarios
the possibility of electricity transmission between néighing countries will be considered.

Extensive studies of static energy models have been cantiedin [62] the Belgian,
Dutch, French, and German electricity market were consifl@and the effect of market
power among three static models was compared. One of thedelntbe nodal pricing
static equilibrium model COMPETES, was additionally saddin [41,/42]. In[29] and
[4€] the consequences of market power in the Nordic elagtnoarket are considered. In
[11] and [28] a static game theoretic model of the Europeanmgarket is presented. In
[20] emission permit trading to a nodal pricing model to ststrategic effects of holding
NOx permits is added. Ir_[56] the electricity market with eighir&pean countries was
considered. However, the decision variable of the indigldlectricity producers was the
so-called market power mark-up, unlike the quantities eticity to be produced, as it is
in our research.

The contributions of the research presented in this chaptebe listed as follows:

e A new game theoretical model of electricity market of eight@&pean countries is
developed. Our approach differs from those presented irxigting literature, in
which other types of markets, electricity market with lessittries included in the
model, or different decision variables for the electrigitpducers are considered.
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e Various scenarios, like a perfect competition case or akStherg game with one
leading producer and the rest of the producers being pérfeainpetitive, are in-
cluded in the model.

e Most of the input data for our model come from real measuresygnesented in
existing literature. Therefore, the improved version & thodel can help to explain
some recent changes in the real European electricity market

e Extension of the existing model to a dynamic model with thegiaility of invest-
ments is proposed. Such a dynamic model is applicable fodeda to analyze the
current and future phenomena in the European electricitketa

This chapter is organized as follows. In Secfiod 6.2 a smtidel of electricity produc-
ers in eight European countries will be formulated. In S8d6.3 various case studies are
performed. In Sectionh 8.4 an extension of the static modelandynamic model with the
possibility of investments will be introduced. The outcanud the case studies, their rela-
tion to the situation in the current European electricityrlked, and possible future research
directions are discussed in Section 6.5. Our research teelpslerstand such a complicated
process, as the liberalization of the electricity market is

6.2 Games of the European electricity market

Let us consider a game with electricity producers (alseeddirms or companies) in differ-
ent countries (also called regions) as players. The foligwiountries are considered in the
model: Belgium (BEL), Denmark (DEN), Finland (FIN), Fran@&RA), Germany (GER),
The Netherlands (NLD), Norway (NOR), and Sweden (SWE). Tamloer of producers
for each country is given. Firms generate electricity tigtodifferent technologies; each
producer chooses technologies among technologies aleditabim/her and the amounts of
electricity produced by the chosen technologies. A prodoare own several power plants
of different types, of which the total capacity for each, agdlas variable production costs,
is given. Producers maximize their payoffs by choosing theunt of electricity to produce
with various technologies for various load motieRroducer’s payoffs consist of the income
from sales of electricity in regional markets minus the abie costs of production. There
are limitations in transportation capacity of electricityd moreover, production capacity
of electricity is fixed on the short term. The electricity damd curve for each country is
exogenous and comes from real measurement [56]. Tradeyigeadible with neighboring
countries and includes netting, which means that bi-dwaet flows between two coun-
tries are permitted, as long as trade constraints are nisttgch Emissions are assigned to
producers based on the actual technology used. These ensigsin be restricted, too.

Let F andR be a set of firms and a set of countries included in the modgpectively.
LetF € F be a set of firms located in regionand let|F | be their number. Ldtbe a set of
possible technologies for electricity generation, i.e.,

I d:‘Ef{wind energynuclear energy. .},

1The set of load modes in our research contains two possiatisidase load and peak load.



96 6 Electricity Market Problem

letl, C | be a set of technologies that are available in regienR, and letls be a set of
technologies available to firmh. Let L be a set of possible load modes, e.g., base load or

peak load. LeK be an emission type set, i.K,d:ef{acid, smog...}.
Firm f € i, maximizes its surplugs [euro] defined as

def o
7t € thl rgR (PriSiry) — %m rgR (; c.,,q.,f’m) , (6.1)

wheres; ./ | [GW] denotes the supply of electricity of load mold&om firm f into region
r’ andp | [euro] denotes the market electricity price for regidand load modé. Leth,
[h] denote the number of hours of a particular Idguer yearc;, [euro/MWh] represents
the variable production costs with technolagg regionr, in which firm f is located, while
ai.t 1 [GW] is the production of firmf with technologyi for regionr’ for load modd. The
supply of electricity of load modeper firm f to regionr’ denoted bys; | can be defined
as

def
St = (1*7\r/)ZCIi,f,r/,|, (6.2)
IS

wherel, € [0,1] is the loss of electricity due to transport to regiodrinitially given. More-
over, the electricity supply is additive, i.e., the totapply of electricityS| [GW] for load
model per region’ can be computed as

S = Z Stril,
fek,

whereS | [GW] is a total electricity supply to regior during load modé.

We assume that the priga, is dependent on the total supply of electriciy and
follows a constant elasticity of distribution (CED) [2, 4]tiv elasticity —&;; (g, > 0) de-
pendent on regionand load modé, the reference demand for electriciiglI [GW], and the
reference price of eIectricitpﬂl [euro], and can be computed using the following equation:

—&r)
Pr
do — = Strl = S (6.3)
il <p2| ) f%: r ;

The firm’s regional market sharg | € [0,1] can be then computed as

Strl

Myl =——" "
2 f'eF St/ )

(6.4)

Firms can trade electricity with other countries as well.eEmount of electricity traded
x| [GW] is defined as the exported amount of electricity fromioeg to regionr’ minus
the imported amount of electricity entering regioftiom regionr’ (f ¢ F), i.e.,

Xt = Z: il — > Gt (6.5)
fekie flek, e

There is a restriction on the maximum production capacitgaufh firmf, the technology
i, and the load modke The maximum production capacity is complementary to thelsiva
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pricep ¢ [euro/MWh], which has a nonnegative value if the productiti technology,
by firm f during load modé, is equal to the maximum available production capacity:

VR <Z Qi fr) Qir,nfax> >0, s >0 (6.6)
r'eR

The amount of electricity traded is also restricted. It i€@gnplementary to the shadow
price 1,,/). This shadow price obtains a nonnegative value, when the trestriction is
binding:

Trrr) (Xr,r’,l _Xp}éx) > Oa T > Oa (6-7)

with the maximum amount of electricity traded between regioandr’ denoted by
[GW].

Emissions can also be limited. Due to the Kyoto protocol, difmave to reduce the
amount of emissions, where the shadow price of emissiontiinsk* [euro/MWh] is
nonzero as soon as the current amount of emissions is eq@ap&missible emission
ceilingEX [g],

: (lgt " r;R% gpo‘k*’q‘*f*”,l - Ek) >0, k>0 (6.8)

Emission factorsc}fr [g/MWh] are associated with the region, in which firmproduces
electricity.

If we include constraintd (6.6)[(6.7), and (6.8) into thekdem of maximizing the
surplus function[(6]1), firnf maximizes.¢ defined as

Lt d:efg[rgR; (P (L=Ae) g1 — CirChigrr1)
=LY AL G f.r/, —qmax>

ma
— Zhl z Trr )l Z Qi) — z i, fr. _Xr,r’x
le rreRr flek 1€ [MEAIS
r'£r

— Kk h O'.k Qifryr) — Ek> - (69)
k;( <|;- lrgR;frZeF L, P

Karush-Kuhn-Tucker (KKT) conditions for maximizing the jebtive function can be de-
rived from equation(6]9) by taking the derivative with respto the production of electric-
ity gj ) forfirm f € F:

T[f7 /]
0< g <Ci,r + Wi, f 1+ T + z KkGirl — (1= Ar)pr) [1 r, D ,
KeK &

0< Qi fr)- (610)
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Market sharerts ;) is defined by equatio (6.4). Inequaliti€s (6.10) can berjmeted as
follows: As long as the marginal revenues from electricidyes are not lower than the
marginal costs of production, a power company is willing toduce electricity.

Marginal costs can be derived from equation (.10) as fallow

Moy =G M+ T + 5 KEOf (6.11)
kek

The four components of the marginal costs can be interpestédllows. The first term are
the costs of the producing electricity. The second and tteinh are the scarcity price of
maximum production capacity per technology and the trassiom price related to trade,
respectively. The fourth term represents the addition & gtoduction costs due to an
emission constraint.

We substitute the marginal costs defined in equaltion{6ritd)squation(6.10) to obtain
the following necessary condition for firinto produce electricity:

T p )
&)

O f ) (Cin,]f,m —(1=Av)pr) [1— D =20, g1 >0. (6.12)

6.2.1 Game formulations

We will consider three possible games among the electrmitglucers: a perfect compe-
tition (PC), a Stackelberg game with one leader per cou8)( in which the rest of the
producers is perfectly competitive, and a Stackelberg gaitietwo leaders per country
(competitive among themselves), where the rest of the perdare perfectly competitive,
too (NSG). We will denote an optimal quantity produced by firm F for regionr’, load
model, and technology € | as follows:

. qit}Fjr’,I for perfect competition (PC);

° qit}%r,,l for Stackelberg game with one leader per region (SG);

° q{}'f'jl for Stackelberg game with two leaders playing (Nash gamengrtttemselves)

per region (NSG).

Perfect competition

We consider a situation with uniform players having the samodnologies available and
the same restrictions on capacities. In a perfectly conipetinarket the companies enter
the game if their utility from the game is nonnegative, ithe problem of producef in
regionr can be written as:

Find
fP O\ o de
(qifr/|) E[Ov “:,‘]a

PAELES]

(PC) such that
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Since the solution of (PC) might be nonunique, we will addfitilly assume that

(qif,}'ir/,l) =arg minpy (),

RRE

i.e., in a perfectly competitive market the firms choose thengjties to be produced in order
to minimize the selling costs, while their utilities are megative.

Stackelberg game with one leader per region

We assume that there is one leading firm in each region acsitigesfirst player, choosing
(qif’fsr, |). LRI so as to maximizé; defined in[[6.P), whereas other producers, which
/el rrerle

are the followers, are perfectly competitive. The leadericaadvance determine how the
other producers will react to his/her decision and with ithisrmation the leader can choose

his/her optimal(qif}ér/,l)iel eRleL” For each region, the means of electricity production
0 r J

are available to the leader of this game only, and are ihitgaven.

Stackelberg game with two leaders per region

We assume that there are two leading firfmg’ in each regiom acting first, playing Nash

A !
game between each other and choo<|qi Nfl) , (qif f’f\'f, |) soasto
ol el reR el ol o el r"eRlel

minimize their profitd s andL¢/. Other producers, which are perfectly competitive, choose
their production amounts per load and technology afterahddrs have made their choice.

In each of the three games we are interested not only in theffsafpr individual play-
ers, but also in how their behavior influences emission tewehat technologies to produce
electricity would be preferred, and what amounts of eleityriwill be traded among neigh-
boring countries.

Data used for computations are consumers’ demand of eliggtper region, supply
data (generation capacity and cost), trade data (intesmiiom capacity), distribution losses
data, emission factors. These data are taken from [32, §6a88 are presented and dis-
cussed below.

6.2.2 Model specifications
Demand and supply side of the model

Within the electricity markets of the considered countriesdistinguish 34 different elec-
tricity producers or firms, as presented, together with oetés\, and values for reference
demandsl®, in Table6.1.

The demand side of the model consists of one sector per aatioarket. However,
there are different markets for peak load (high demand) aiseé lbad (moderate demand).
We consider two load periods, namely a peak period (20% ofd¢he) and a base load (80%
of the year). We additionally assume that demand at peakstrequires 90 % of the total
available capacity:

d2, . =09F g
peal % I,
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BEL DEN FIN FRA GER NLD NOR SWE
no. of firms 2 3 3 2 5 5 7 7
net losses A% 65% 35% 68% 47% 39% 89% 82%
avg. demand (GW) 94 375 872 4688 5445 1148 1266 1546

Table 6.1: Characteristics of eight European electricitsirkets.

BEL DEN FIN FRA GER NLD NOR SWE

BEL 2500 1400

DEN 1750 950 1900
FIN 70 1450
FRA 2850 1150

GER 1350 1750 3300

NLD 1400 3300

NOR 950 70 3035

SWE 1840 2050 550 3035

Table 6.2: Transmission capacities between the countiidg),

The price elasticity of the demand is assumed to be se0dtd, as in[56]. The intuition
behind this relatively high price elasticity is that it refie the alternatives for consumers to
choose their electricity supplier [83].

The model encompasses 12 different production technapgibich can be listed as
follows:

e conventional thermal power technologies: nuclear (N)] ¢6a gas (G), lignite (L),
oil (O).

e combined heat and power production (CHP) technologies(@d®-G), coal (CHP-
C), oil (CHP-0), biomass (CHP-B), and other fuels (CHP-X).

e renewable technologies: hydro (H) and wind power (W).

Due to varying fuel and production taxes across countriesviriable production costs
differ across regions and technologies, but not acrossuserd within each country. A
summary of total production capacities in the countriesuied in the model is given in

Table[6.3.

Trade and distribution losses

Firms in our model are assigned to a specific country. Henzerassborder ownership is

permitted. There is an opportunity to trade electricity agoountries, with the following
restrictions:

e Trade viaimports and exports to countries outside the densd countries is ignored.

e A firm can only trade with neighboring countries.
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BEL DEN FIN FRA°' GER NLD NOR SWE
nuclear 5.71 2.64 63.18 21.37 0.45 9.46
coal 295 510 229 12.69 17.86 4.05
lignite 18.97
gas 350 004 090 189 13.82 7.17
oil 120 0.79 124 1223 811 0.99 4.64
CHP-gas 058 258 1.80 099 4.66 0.13
CHP-coal 1.13 1.47 6.96 0.56
CHP-oll 0.10 0.16 0.30 0.65
CHP-bio 029 0.23 1.04 0.64 0.46
CHP-other 144 6.64 0.20 1.00
hydro 140 0.01 288 2560 11.61 0.04 27.46 16.33
wind 001 242 004 008 036 044 0.01 0.25
total 15.74 12.30 15.89 122.31 100.33 18.44 27.67 33.48

Table 6.3: Electricity production capacities in 2000 (GW).

BEL DEN FIN FRA' GER NLD NOR SWE
nuclear 6.14 6.14 6.14 6.14 6.14 7.50
coal 16.94 13.83 13.97 15.19 14.42 16.83
lignite 15.50
gas 24.22 23.81 20.28 23.83 29.04 23.25
oil 36.42 35.21 35.21 38.84 3870 41.21 39.83
CHP-gas 13.29 13.08 11.21 15.85 12.78 13.52
CHP-coal 757 7.63 7.84 11.73
CHP-oll 19.58 19.58 19.58 21.43 21.58
CHP-bio 19.94 19.94 19.94 19.94 19.94
CHP-other 1459 16.69 16.69 16.69
hydro 0.00 000 000 584 000 000 0.00 1.8
wind 000 000 000 000 0.00 0.00 0.00 o0.00

Table 6.4: Variable cost (euro/MWh) per technology in 2000.

BEL DEN FIN FRA°' GER NLD NOR SWE
coal 920.0 972.2 9159 9159 970.0 915.9
lignite 1219.7
gas 388.0 327.2 3489 4019 3489 411.0
oil 877.3 6926 877.3 756.8 877.3 8773 877.3
CHP-gas 330.6 673.9 528.3 327.1 3271 327.1
CHP-coal 948.9 776.1 33.1 733.1
CHP-oll 503.4 503.4 503.4 503.4
CHP-bio 0.0 819 21 0.0 0.0
CHP-other 1296.1 401.6 403.4 403.4

Table 6.5: Greenhouse gas emission factors (kg Equivalents/MWh) per technology.
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BEL DEN FIN FRA GER NLD NOR SWE

coal

lignite

gas

oil
CHP-gas
CHP-coal
CHP-oil
CHP-bio
CHP-other

31.594 20.699 23.310 31.549 23.307 28.365

33.896
5901 2174 4522 15435 4522 6.783

21.821 2.486 21.821 25.610 21.821 21.821 21.821
2.174 19.833 6.848 2174 2174 2.174

20.217 32.459 2.649 2.649

2.486 2.486 2.486 2.486
7.160 31.692 46.726 7.160 12.288

83.071 15.435 3.736 3.736

Table 6.6: Emission factors for acidifying emissions (gda@juivalent/MWh) per technol-

ogy.

BEL DEN FIN FRA' GER NLD NOR SWE
coal 80.0 57.0 1729 1700 66.0 17.0
lignite 96.0
gas 0.0 0.0 0.0 0.0 0.0 0.0
oil 210 1.0 3.0 130.0 2.0 2.0 21.0
CHP-gas 0.0 0.0 0.0 0.0 0.0 0.0
CHP-coal 57.0 150.0 10.0 10.0
CHP-oll 1.0 2.0 2.0 2.0
CHP-bio 30.0 0.0 21.0 30.0 233.0
CHP-other 195.0 0.0 1.0 1.0

Table 6.7: Emission factors for smog formation (g fine péestMWh) per technology.
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The transmission capacity within a country is unrestrict&tle interconnection capacity
among countries of the electricity network is restricted #re data is derived from ETSO
data [32].

Electricity distribution after transmission through thedricity grid is accompanied
by losses. These distribution losses are generally mugkidanan the transmission losses,
which are ignored in the model. The distribution losse& € R) occur when the electricity
is distributed within a country, and differ across courstyigs depicted in Table 6.1.

Emission factors

Three environmental effects can be taken into account ig#mee: greenhouse gas emis-
sions, acidification, and smog formation due to emissiorimefparticles.

Information about emission factors for all technologies gauntry is taken from_[83]
and [56] and is depicted in Talble 6.5, Tablel6.6, and Table Bof all technologies, the
specific emissions of the 8 considered countries due to #utrigity generation were deter-
mined. Emissions due to construction and deconstructigoowafr plants, mining, extrac-
tion, and transportation have been disregarded, as thessiens, including emissions of
extraction and transportation, are rather small, and irséime range of those for wind or
hydroelectric power. Consequently emissions of hydrdaeteauclear, and wind power are
set to zero, C@emissions of biomass power are also set to zero.

6.3 Case studies

For each situation (PC), (SG), (NSG) the following threensems will be considered.

e There is only one country in the model (The Netherlands)tatdty transmissions
with other countries are not considered.

e There are two countries in the model (The Netherlands andif@al), electricity
transmissions between these two countries can be condjdeamsmissions with
other countries are not considered.

e All eight countries are included in the model; the electyicransmissions among
these 8 countries can be considered.

In Table[6.8 and Table_8.9 schemes of the case studies argtetbpiThe first tabular
refers to the games without emission constraints. The setadlar refers to the problems
with emission constraints consideration. We set the peibiesemission ceilind® [g] is
set to 50% of the average of the resulting emissions of th& emuntries when game E1.8
is played.

In the Stackelberg game we will assume that the leaders haessto the means of
electricity production depicted in Talile 6110,

For games with 2 and more countries there will be variantdehoting that the cross-
border transactions are considered.

6.3.1 Games with one country

The problems involving only The Netherlands will be solvedlgtically.
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without PC  NSG
emissions
1 country E1.1 E1.2 E1.3
2 countries El1.4 E15 E1.6
8 countries E1.7 E1.8 E1.9

Table 6.8: Scheme of case studies with no emission restrgcti

with PC  NSG
emissions
1 country E2.1 E2.2 E23
2 countries E2.4 E25 E2.6
8 countries E2.7 E2.8 E2.9

Table 6.9: Scheme with case studies with emission restngti

Game SG NSG

BEL wind, hydro, nuclear wind, hydro, nuclear, CHP-gas

DEN wind, hydro wind, hydro, CHP-coal, CHP-gas

FIN wind, hydro, nuclear wind, hydro, nuclear, CHP-gas

FRA wind, hydro wind, hydro

GER wind, hydro wind, hydro

NLD wind, hydro, nuclear, CHP- wind, hydro, nuclear, CHP-gas, coal
gas

NOR wind, hydro wind, hydro

SWE wind, hydro wind, hydro

Table 6.10: The available means of electricity productimnléaders in Stackelberg game.
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Games E1.2 and E2.2

Maximization of the utility functions with respect to theantities produced gives the fol-
lowing outcome. With perfect competition (Game E1.2) anthvéll producers having
equal access to the means of electricity production, tHmgedrice of electricity is 1723
[euro/MWHh].

When the emission constraints are considered (Game E2eXetling price of electric-
ity is 19.13 [euro/MWh].

Games El.1 and E2.1

Letthe leading producer have access to the means of produtetpicted in Table 6.10 as the
only producer. In game E1.1 maximization of his/her profttwespect to the constraint of
nonnegative profit for other producers leads to a selling @5.98 [euro/MWHh], yielding
him/her a profit of 551832 [euro], while the utility of all other producers is zero.

When the emission constraints are considered (Game EBRelxelling price of elec-
tricity is 30.10 [euro/MWh] and the profit for the leader is 498109 [euro], while the other
producers obtain a zero profit.

Games E1.3 and E2.3

Let the two leading producers as only producers have (synuheiccess to the means
of production depicted in Table 6110. Then maximizationtwdit profit with respect to
the constraint of nonnegative profit for other producersideto a selling cost of 281
[euro/MWh] and an average profit of 44632 [euro], while all other producers have a zero
profit.

With emission constraints included the selling cost isl8geuro/MWh]. This cost
yields profit of 410224 [euro] for each of the leading producers, while all oth@doicers
have a zero profit.

Discussion

In the case studies with only one country (The Netherlarids)selling price is remarkably
higher in the Stackelberg games than in the perfectly coithygeinarket, especially when
the leading producers have access to more ecological meaeke€tricity production than
the rest of the producers. While the resulting prices of asecstudies are still about 25 %
smaller when compared to the actual situation in the etgdttninarket, the influence of the
type of competition on the electricity prices matches teads presented in [66] very well.

6.3.2 Games with two countries
Games E1.4 and E2.4

If game E1.4 is played, the electricity price in The Nethedsis 1942 [euro/MWh] and
yields a profit of 502442 [euro] for the leader; the electricity price in Belgiumlig 99
[euro/MWh]; the profit of the leading producer will be 61223 [euro].

If game E1.4(c) is played, the electricity price in The Neléueds is 1835 [euro/MWh]
and yields a profit of 460021 [euro] for the leader; the electricity price in Belgiunis85
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[euro/MWh]; the profit of the leading producer is 57192 [euro]. Belgian firms will sell
1400 [MW] to the Netherlands.

If game E2.4 is played, the electricity price in The Nethedsis 2232 [euro/MWh] and
yields a profit of 441123 [euro] for the leader; the electricity price in Belgiumli856
[euro/MWh]; the profit of the leading producer is 572B# [eur0].

If game E2.4(c) is played, the electricity price in the Neldveds will be 2015 [euro/
MWh] and yields a profit of 371224 [euro] for the leader; the electricity price in Belgium
is 17.12 [euro/MWh]; the profit of the leading producer is 50289[euro].

Game E1.5 and Game E2.5

If both Belgium and The Netherlands are considered in thEepecompetition case (Game
E1.5), 1041 [euro/MWh] and 18.2 [euro/MWHh] are the selling prices in Belgium and The
Netherlands, respectively.

If emission restrictions are included, the prices ar®%2euro/MWh] and 199 [euro/
MWh], respectively.

Game E1.6 and Game E2.6

If both Belgium and The Netherlands have two leading prodyjgelaying Nash among
themselveg, and cross-border electricity transmissions are protdbj@ame E1.6), the
game does not have a solution. The two electricity produiceBelgium cannot cover
the demand on electricity. Together they can produce om@ [GW] of electricity, while
the initial electricity demand in Belgium is®. If the demand would not need to be sat-
isfied, the optimal strategy for the identical leaders wdagdo set the price of electricity
infinitely high.

If Game E1.6(c) is played, the situation is solvable. Moe¥pthe electricity producers
in Belgium cannot set the electricity prices arbitrary high they are limited by the elec-
tricity prices in The Netherlands. A solution to the problenas follows: The electricity
price in both Belgium and The Netherlands is28B[euro], the average profit of the Dutch
producers is 731403 [euro], the average profit of Belgian producers is 2308%euro].

If Game E2.6(c) is played, the selling price of electricity both Belgium and the Nether-
lands will be 1931 [euro] and the average profits for the Dutch and Belgiadyeers will
be 6523213 [euro] and 18123 [euro], respectively.

Discussion

As in the game with one country, the perfect competitive ratykelds much lower elec-
tricity prices. The prices will be remarkably increasedrifission restrictions are included.

6.3.3 Games with eight countries

Since the analytical computation of the solution of the peobwith eight countries would
be extremely time-consuming, the problem was implementetismlved numerically in
Matlab.

2|n Belgium these two producers are only players.
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Game EL.7 EL7(c) EL8 EL8(c) EL9 EL.9(c)
BEL 2073 1841 1004 823 1598 1321
DEN 2003 1997 598 544 1498 1472

FIN 2032 2028 781 523 1505 1488
FRA 2035 1944 820 687 1721 1688
GER 1895 1795 787 662 1122 1099

NLD 2113 1925 1585 1201 1954 1822
NOR 1321 1259 001 001 925 901

SWE 1732 1545 137 108 1421 1354

Table 6.11: Resulting selling costs for base load periodjames with eight countries.

Game E1.7(c) E1.8(c) E1.9(c)
BEL-FRA  1320/1500 @¢’2850 14401410
BEL-NLD 890/50 14000 100Q/25
DEN-GER 14601300 17500 1500/750
DEN-NOR 60/'800 0/950  50/900
DEN-SWE 210800 0/950 100880
FIN-NOR  20/65 0/70 10/68
FIN-SWE 3201800 (©¢’2050 200'1900
FRA-GER 850275 11500 910/105
GER-NLD 2950'1500 33000 3005545
GER-SWE 200455 0/550 150'505
NOR-SWE 14202650 (¢/3035 7202810

Table 6.12: Electricity traded between neighboring coieg{MW].

For each of the three games we will consider both variants arnid without electricity
transmissions between neighboring countries.

The variants of the games, in which cross-border eleagtricénsmissions are allowed,
will be denoted by (c). The resulting prices for the base Ipadod are mentioned in
Table[6.11L, whereas the amounts of electricity traded kextvire neighboring countries
are depicted in Table 6112. In this table, 132800 in column BEL-FRA illustrates that
1320 [MW] of electricity from Belgian firms will be sold in Free, while 1500 [MW] of
electricity units will be sold in Belgium by French firms. Thmounts of acid particles per
firm in a country ([g]) , the amounts of CO particles per firm ic@untry ([g]), and the
resulting amounts of smog particles per firm in a country)(fgi game E1.8 are depicted
in Table[6.11.

Discussion

The resulting electricity prices are in our case studietedaiver than the prices appearing
in the actual European electricity market (see [32]). Tkads in the prices coincides with
the actual situation in the European electricity markedutih. The emission levels were
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Game E1.8 acid CcoO smog
BEL 3.5961-10" 1.4191.10° 3.5961-10°
DEN 13304-10° 3.1320-10° 1.3304-10°
FIN 9.7799-10* 2.0925-10° 9.7799-10*
FRA 0 0 0

GER 82164-10* 3.3121.10° 8.2164-10
NLD 4.3591-10* 1.6014-10° 4.3591.10*
NOR 0 0 0

SWE 62383-10° 1.1744-10° 6.2383-10°
total 26708 10° 9.9127-10° 2.6708 10P

Table 6.13: Game E1.8: Emission acid particles (g), emis§l® particles (g), and emis-
sion smog particles (g), in different countries per firm

not compared to those from actual measurements.

6.4 Extension: Dynamic model

In this section we propose a dynamic extension of the modieldnced in Sectioh 6.2.

Let us consider the case that the time horizon of the modeté&nded one time period
ahead. In that case, firms can aim to maximize tdeicountedpayoff by choosing the
amount of electricity to produce with various technolod@seach time period. In addition
to the utility from sales of the electricity in the regionaarkets minus the average variable
costs of production, firms also have to accommodate the figsts dy financing the pur-
chase of new production capacity via investments. Thewiaig equation expresses the
payoffs in the next time period:

1 ~ ~max

TP thl rngr/,l St — thl rgR <Z CirGit |> Z\/I Gi f
- ZV. af
with " defined later by[(6.15).

The variables in[{6.13) are defined as in Sedfioh 6.2, withitlentifying the variable
for the next time period. Hence, the investment decisiorheffirm in the current period
depends on the expected outcome in the next period. Thatjishetprices, the supply, the
generation, and the production capacity are assigned toetktgperiod and discounted with
interest ratel. In addition to serving the market in the next period, firm®aised to con-
sider the value of installed capacity in the next period le&vhew investments are needed to
keep the production capacity at a desired level. Pararvigfearo/kW] represents the value
of technologyi, while g$" [GW] denotes the amount of the new production capacity of
electricity (chosen by the producer). This means that theinmmam production capacity is

no longer fixed. The firms make their investment decisionsémetime period based on the
most recent information (cf. the feedback information ctilve, seel|5]). Equation (6.14)

Jt =

(6.13)
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describes the capacity expansion, in which capital is degied at technology-specific de-
preciation ratey;:

o= (1-3) gl +q'f” (6.14)

Because of environmental considerations with respectd¢teatuwaste and physical limita-
tions on the capacity of the used technologies (e.g., it israhto restrict the capacity of
coal power plants), the following inequality is includedarthe model:

(rz:qln?w_i_ 1 5. qumax maxabs) >0, & >0. (6.15)

Here the shadow pric@ might become nonzero, once the planned expansion of cgpacit
of a certain technology reaches the maximum allowablellegtaapacityg"®*a>S[GW].

The producer maximizes the net praff™N, by a joint choice of the investment decision
and his/her production of technologies for possible regi@mmd both load types in the next
period. Therefore, the net profit can be defined as:

1
DYN ~
=— h /1S5 h Cir Gt
f I E Pr 15, | E | E S
1+ I;_ r'eR o ler r%R(le o ,r,)
1
+ quax anewi Zhl rli,f,l q , 7qmax
1€ T Ie-l'_IIf 1+Ble 1€ r e o

1 T 5 ~ o
1 ~ N ~
1B k; Kk (lGZL hy rgR% fZEF OikGi 7 1) — Ek)
1 - B Z qsl <th qnew 1 5, fZ: qmax maxabs) ) (6.16)

The derivative of[(6.16) with respect to production leadéhfollowing first-order condi-
tion for the next period, which is equivalent {0 (6.10) in Hiatic case:

N . T )
0< Gi.f .0 <Ci,r + i1l +Tr/ 11— ;chlr (1 }\r/) P [1 . rl :|> )
r/

O<q| frl- (6-17)

IAELES]

The derivative of[(6.16) with respect to the investment iw rapacity, leads to the following
additional first-order condition:

a'f” (lgthl fifr—BVi—(1+ B)¢i> >0,

> (6.18)
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Equation [[6.18) shows that firfh makes an investmer(n{‘?w)_ ,as long as the marginal
’ 1

return on capital < h i | exceeds the marginal cost of caéﬁali +(1+B)§i.

From an economical point of view, the value of the shadowepoitthe capacity usage
fii ) provides the signal to what extent a firm would like to use dipaar technology
during a particular load period.

The amount of production capacity is no longer constant édjpnamic model and
equation[(6.6) can be rewritten in terms of the decisionaimdeis as follows:

VR (Z Gifrr) — (1—8) qg’fax—QR?W) >0, [ >0. (6.19)
r'eR

6.5 Conclusions and future research

Conclusions

We have proposed a model of the liberalized European aégtrnarket, consisting of
eight European countries. In the model emission limitatioan be set as well as maxi-
mal transmission capacities between the neighboring cegntThe aim has been to see
how different the electricity prices will be in a monopoiista duopolistic, and a perfectly
competitive situation.

Although the considered model is rather simple, some ist@Erg phenomena can be
observed:

e The electricity prices become lower when cross-bordertedity transmissions are
allowed.

¢ In the monopolistic and the duopolistic situation the eieity prices are higher than
in the situation with perfectly competitive market.

e Generally in the perfect competition the producers tendge cheaper and non-
environmentally friendly means of electricity productiofihe emission restrictions
are needed to motivate the electricity producers to act raoodogically. This in-
creases the electricity prices, though, especially in thentries with a low number
of hydro and wind power plants.

The extended variant of the model can be used for monitomdgeaiedicting the behavior
of the European electricity market.

Model limitations and future research

The major limitations of the model can be listed as follows:

e Only three possible games were considered in each of thestadies: perfect com-
petition, Stackelberg game with one leader, Stackelbengegaith two leaders. Al-
though the aim of liberalization is to obtain a highly conifdet market, it will never
be perfectly competitive. Situations with noncooperatectricity producers, in
non-perfect competition have to be considered to obtairerremlistic outcome.
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e Only eight countries were included in the model.

e Cross-border ownerships of the electricity producers ateatlowed in the model,
while in reality they appear more and more often.

e The electricity price is assumed to be constant within onentry, while in reality
this price might differ per the electricity producer[83].

e The model is very simple, while some of the data used for thdatiog are real, the
assumptions on the players’ behavior are very strong.

These limitations will be resolved in our future research.

Practical relevance of the outcomes of the research presest in this chapter

The liberalization of the European electricity market dsdive attention of many research-
ers. There are numerous attempts to model the currentisituiat order to predict the
possible consequences of liberalization.

In this chapter we have tried to model the electricity manketight European countries.
The model is quite simple and does not take into account etibfa that can influence the
liberalization process throughout Europe. Still, outcerofour case studies coincide with
practical observations. Although the resulting prices of case studies are remarkably
lower than in the current European electricity markéheir structure of prices coincides
with other relevant studies in the same field [29,/42, 56]. dyeamic model, describing
the current situation in a more realistic way, is being deped.

3We assume that there are some other factors, not includedimtmodeling, influencing the electricity price.






Chapter 7

Theory of Incentives

In this chapter we will introduce some problems from the albbecltheory of incentiveand
view them as specific problems of the inverse Stackelberg typ

7.1 Introduction

Incentive theory emerges with the division of labor and exade. The division of labor

induces the need for delegation. The first contracts pretzdpeared in an agricultural set-
ting, when landlords contracted their tenants. Adam S fecognized the contractual
nature of the relationship between the masters and the v&rkde recognized the conflict-
ing interests of those two kinds of players and recognizat largaining power was not
evenly distributed among them; the masters generally Habebargaining power. Smith

also stressed the agent’s participation constraint, winistis what the principal can ask
from the agent. Although Smith did not have a vision of ecoimoattors as long-time

maximizers of utility, his work was important as a headstohmcentive theory, since he
discussed the problems associated with price-rate casirathe industry.

Barnard [3] is the one who can be credited with the first atteimglefine a general
theory of incentives in management. Even much earlier, Higdipwrote the first explicit
statement of the so-called free-rider problem. With tharo@gg of the theory of voting, the
issue of strategic voting as a principal-agents problemnetised [23]. The first attempt to
address the issue of strategic voting can be found. in [12].

The notion of moral hazard, i.e., the ability of insured agea affect the probabilities
of insured events, was well-known in the insurance profesi 6,/ 34].

In [57] the regulation literature was put in the frameworktef principal-agentliterature
with adverse selection by stressing the lack of informatibthe regulator. The problem
was transformed into the second-best problem by weighitieditm’s profit with a smaller
weight than consumers’ surplus in the social welfare functhaximized by the regulated
firm [9]. In [52] the model featuring both adverse selection anoral hazard was intro-
duced. The ex-post observability of cost made the modehieally an adverse selection
model, though.

113
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7.2 Preliminaries

Principal-agent models fall within the economic theorymdentives or contracts [51, 159,
70], which forms a subset of the one-leader-one-followeeiige Stackelberg games intro-
duced in Chaptér] 3.

Let us consider a bilateral relationship in whiclprncipal 2 contracts aragenta to
delegate the production of some gdod®f course, the principal has to pay the agent for
the good. The salary which the principal offers to the agenttie production ofj € R
products will bet € R, [euro]. The variableg andt will be calledquantityandtransfer,
respectively. The principal draws upcantractin which he specifieg] andt. We call
this contract théq,t)-contract. We assume that it is always the principal who drapithe
contract and then presents it to the agent, who, after havirtied the terms of the contract,
must decide whether or not to sigrfitVe talk about dake-it-or-leave-icontract, since its
terms are non-negotiable.

The agent’s efficiency in producing the good is determinetidsy much money he/she
needs to produce one product. We will denote this valug,ifyc © C R, and call it the
agent'smarginal cost If 2 has the marginal co$te ©, we refer to him as an agent of type
0, or as aB-agent. The principal does not always know the valu®,dfut he does know
the set®. The agent may pretend to be an agent of a different type. Weheahgent's
pretending to be an agent of a different typemicking The 8-agent announces that he is
of the typeus € DA C R. We assumé = Da. Then his utility (“surplus value”) from
signing the(q,t) - contract is

Ja(Q(ua),t(ua),6) =t(ua)—ca(q(ua),B8) =t(ua) —0q(ua). (7.1)

Here we assume that both=t(ua) andg = q(ua) are dependent only on the agent’s “an-
nounced type”. Another possibility is to considetependent o (see[[51]).

The agent will not sign the contract ik (q,t,0) < 0. If 4 signs the contract, he will
produce the demanded number of goods.

The principal’s utility function is

Jp(a,t) = cp(a) —t, (7.2)

where cp(q) describes the principal's value gfproducts. This function is assumed to
satisfy the following natural properties:

dcp d?cp
d—q>0’ qu

The marginal value of the good for the principal is, thus,ifp@sand strictly decreasing
with respect tajon R, .

The situation in which botlr and 2 know 6 before# offers the contract is known
as a situation witltomplete informatiorfto be studied in Sectidn 7.3), while the situation
in which only the agent knows his own type before the contimaesigned is called a

<0, cp(0)=0.

1We confine the agent to produce good only, although the fatioml used in this chapter has also more general
interpretation.

2We do not permita to make a counter-offer t@, a situation which is known dsilateral bargaining[55],
[82].
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situation withadverse selectio(Sectiorl 7.#). The situation in which the agent can perform
some unobserved actions after the contract is signed is tkkra@snoral hazard(see e.g.
[59]). In this paper we focus mainly on tlaelverse-selection-principal-agent model

It is usually assumed [51, 59] thatchooses among the two possible strategies:

e The principal will offer the contract ter, no matter how efficientz is (contract
without shutdowhn

e The principal will contracta only if 2’s marginal cost is higher than some certain
value contract with shutdowp otherwise no contract will be offered.

We will consider only contracts without shutdown.

7.3 Complete-information principal-agent model

Let us first assume that the agent type is from the discretedgi® def [Q,@J . In this model
the principal knows the agent’s tyiec [Qﬂ ,8<8,0,86cR; hence, he can set up a
contract slightly exceeding the agent’s zero utility lesatl ensuring the highest possible
utility for himself. The optimal andt will be called thefirst bestquantity and transfer and
will be denoted by an asterisk.

The principal maximizes

7p(a(8),t(8)) = cr(q(®)) —t(0)
subject to the agent’s participation constraint
Ia (0(6),t(8),6) =(6) —q(8)6 > 0.

The principal’s optimal strategy is thef(0) def (g"(0),t*(8)) , where (withe | 0)

t"(6) =q(6)6+¢, q'(8) =arg ggg)lmp(q(e)) —q(8) 8¢, (7.3)
withua =6, 8 € ©. Thus,
deq)=6 (7.4)
dq p q —_— . .

The agent will accepr’s offer and gaire | O utility.

Remark 7.1 In the following example we will assume thatis of type8 from the two-
element se® = {0,6}, 0> 6 > 0. If

0— 0 we say, thafa is efficient
“ 1 8 we say, tha is inefficient

We will denote the transfer and the quantity offered to@fegent byt =t(8), q=1(8),

and to theB-agent byt = t(8), g =t(8). We will refer to the contract offered to tteagent
as the(g,t)-contract and to the contract offered to agent as théq, t)-contract.
O
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Example 7.1
The employer of a factoryr) delegates to a workes() to make a certain number of prod-

ucts. The principal’s objective function is given@s(q(0)) %N (q(B) +1). The agent can
be only of thed or 6 type, whered = 0.1 [euro],0 = 0.2 [euro]. The principal maximizes
his utility function

Jp(0(6),t(8)) = cp(a(B)) —t(8)
=In(q(6) +1)—t(a(6))

subject tat(6) — 08q(6) > 0, whered € {8,8}. From [Z.3) it follows that the principal offers
t*(0) satisfyingt*(8) = 6g*(6) + €, wheree | 0, andqg*(0) satisfies

Hence,» demandg*(6) = 9 products fot*(8) = (0.9+¢) [euro], if 6 = 8 = 0.1 [eurq],
ande demandsy*(8) = 4 products fot*(8) = (0.8+ ¢) [euro], if 6 = 6 = 0.2 [euro]. The
agent’s profit is always | 0 ande’s profit is In(10) — 0.9 — € ~ (1.4 —¢) [euro] if 4 is
efficient, and Iii5) — 0.9 — e ~ (0.71—¢) [euro] if 4 is inefficient.O 0

7.4 Adverse-selection principal-agent model

Under the adverse selection the principal is not aware ofitfent's typed € © = [6,6]
before writing the contract, but he/she does kr@w

The following example shows the more specific situation \@its: {6,6}.

Example 7.2
Let us assume that the principal from Exanipld 7.1 does nawkhe agent's type (while
knowing both thé and@ values.). He designs the pair of contracts

{(%@,1_5%), (%ﬁ,l_éﬂ)}

with 8 = 0.2 [euro], 8 = 0.1 [euro], hoping that each agent will pick the contract matupi
his type. If2 is efficient, it pays for him to pretend to be an inefficientrade obtain utility

In(6,0,f)=t0)-g0=(1-08+¢) - —eg = (0.4+¢) [euro],

while theB-agent’s utility without mimicking is

~——08=c¢[euro].
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If the agent is inefficient, it does not pay to him to mimic tfiieient agent, because

5

= (17§+£)7 5 = € [euro],

6 1%95: (e—0.9) [euro].

d

WhenO = [6, 8], the principal has aa priori belief about the agent's type. This belief
is embodied in the probability distributiohwith cumulative distribution functiof on ©,
which will be called a principgprior.

The principal offers the contract variables as mappings &

The principal offers thég(-),t(-))-contract wherej(- ):®@—=R,4,t(-):©®— Ry, hoping
that everyd—agent 8 € ©) will choose the(q (8) ,t (8))-contract. Thusg andt become
functions of the agent’s possible type space. These fumstice known before the agent an-
nounces his type. The mechanism of announcing transferw@enttity as functions from an
agent’s decision space before the contract is signed isccaltlirect revelation mechanism
[51].

Definition 7.1

A direct revelation mechanism is a mappipg(-) : © — Dp, whereypr = (q(-),t(-)) fo
V6 € ©. The principal commits to offering the transtée) and the production Ievaal(@)
the agent announcés: O. O

For the sake of simplicity, we assume tlgat), t(-) are differentiable with respect to each
BecO.

The direct revelation mechanism is said tothehful, if an agent of any type fror®
does not wish to mimic an agent of a different type.

Definition 7.2 o o
A revelation mechanisngp(+) is truthful if it satisfies for even, 8 from ©, 6 < 6 the
following incentive compatibility constraints

t (é) —8q (é) >t (é) 6q (é) , (7.5)

t(8) — 6q () >t (8) — 8q(8), (7.6)

respectively. |
By adding [Z.5) and (716) we obtain

(6-8) (a(B) —q(®) >0 (7.7)

for all (8,8) € © x ©. Because{717) holds for &, 8 € ©, also

dq(®)
g5 =0 (7.8)
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Therefore, if the direct revelation mechanism is truthfigl) is non-increasing.
Inequality [Z.5) implies that the following first-order atition for the optimal response
ua chosen by typ® is satisfied:

S (w053 =0 (7.9)
To avoid agents’ mimicking, the following equality has todaisfied for alb c e

%(é) — é%(é) =0. (7.10)
The local second-order condition

g—;;(é) - é%(@) <0 (7.11)

has to be satisfied as well. By differentiatifig (7.10), ctindi(Z11) can be rewritten in a
simpler way as

- j—g(é) > 0. (7.12)

If (Z.10) and [Z.IPR) are satisfied, tBeagent does not want to mimic an agent of an other
type locally. To prevent th8-agent from global mimicking, too, the following constrsn
must be fulfilled:

t(8) — 64(6) > t(Ua) — O7(Un) (7.13)

forall (B,us) € © x ©.
By integrating formula{Z.10) we obtain

1(6) ~ Ua(U) = (u) ~ 00 (un) + (0~ ) ()~ | (. (7.14)

where(8—ua)q(ua) — fueA g(t)dt > 0, because(+) is non-increasing.

Thus, [Z.9) can be extended globally. Truthful revelaticechanisms are then charac-
terized by the two conditions(7110) and (4.12).

We now introduce the concept mfformation rents Under complete information intro-
duced in Sectiof 713 the principal is able to maintain alketypf agents at thea— utility
level,

A (G°(0),17(8),8) =t*(8) — Bq*(8) =&.

Under incomplete information this will be not possible amym at least when the principal
wants all types of agents to sign the contract offered. Leaks the revelation mechanism
ve(-) = (q(-),t(-)) and consider the utility that tf@agent gains by mimicking as-agent,
Ua > 0 (with D = ua — 0):

7 (q(ua),t(ua),6) =t(ua) —8-q(ua) =t(ua) —Uaq(ua) + D(ua) (7.15)
= Ja (A(ua),t(Ua),Ua) +Da(Ua). (7.16)

Even if theua-agent’s utility is reduced to its lowest valaethe 8-agent benefits from an
information rentDg(ua) coming from his ability to possibly mimic a less efficient age



7.4 Adverse-selection principal-agent model 119

So as long as the principal insists on a positive quantitynftbe 8-agent, the principal
must give up a possible rent to any other type of agent. Tharimdtion rent is generated
by the information advantage of the agent over the princifdle principal’s problem is
to determine the smartest way to give up the rent providedlgygaven incentive feasible
contract. We will use the following notation: The inforn@tirents for &-agent will be
denoted byrg, i.e., Ig d:Ef]A (q(8),t(8),8) =t(8) —6q(0).

The optimal solution of the adverse-selection-principgént model will be called the
second-best solutiofas opposed to the optimal solution in the situation with plate in-
formation, which is often called thiérst-best solutioh This second-best solution will be
denoted by SB. Froni (Z.1L5) it follows that the optimal stygtéor any6-agent is to play
uﬁB: 0. The principal is aware of this.

With the use of{(7.113), the local incentive constraint camvbiéen as

drg dt dg ..
5 = ~U(®)+55(8)~0(8) = —q(0). (7.17)

Thus, the principal’s problem becomes

2]
max C, 0))—t(0))f(6)d6, 718
{q(.>,t<.>}/§ (Cr (a(8)) ~1(8)) f (6) (7.18)
subject to

dIe -
dg
Mg <« |
ao ' =% (7.20)
Ip>0 for VBeO. (7.21)

Equation[[Z.IB) can also be rewritten as

8
{q?}f"}f)}./e (Cr (a(8)) —0q(8) —16) f (6)d® (7.22)

with the use of information remng.

With the use of[(7.17), the participation constraint (7.8ib)plifies torz > 0. Clearly
the B-agent will obtains (q(8),t(8),8) = 15 = €. For the sake of simplicity, we will not
consider the constrairfi (7120) now and check if this coistia satisfied after finding the
optimal strategy for the principal.

Equation[[7.19) can be rewritten as follows:

-0
Is—lo=— /e qr)dr, (7.23)

i.e. (with I = €),

Ig= /eeq(T)dT—l—E. (7.24)
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The principal’s objective function becomes

3] ]
/ (c.:(q(e» ~6q()~ | q(r)drs) f(6)do (7.25)
[<] ]
_ F(8)
7/@ (CP(Q(G)) (9+@) q(6)£> f (8)d6. (7.26)
Point-wise minimization of{7.26) leads to the optimal s for the principalgSe(-) :
% (q5%(8)) = 0+ %. (7.27)

All the agents’ types obtain a positive utility by pIayiuﬁB: o:

_ )
7a (0(8),£(8),0) = /e gSB(T)dt + €. (7.28)
If the so-callednonotone hazard property
d (F(8)
—(==)>
s (720
holds for alld € ©, the solutiong®&(-) satisfying [Z.2B) will be decreasing, and the omitted

constraint[(7.20) is satisfied. The monotone hazard prgesatisfied for most single-peak
densities|[7].

7.5 Conclusions and future research

We have proposed to view the adverse-selection-pringigaht model as a special case
of a one-leader-one-follower static inverse Stackelbame@ Starting from the complete-
information-principal-agent model we showed that only kbast efficient type of agent

will gain the same profitg [euro]) whether signing a complete-information contract o
an adverse-selection contract. Agent of any other typelwlbetter signing an adverse-
selection contract. Dynamic contracts are a subject faréutesearch.



Chapter 8

Conclusions and Future Research

This chapter summarizes the research proposed and degidglmpeighout this thesis. Its
scope and main contributions to the current state-of-agaime theory, traffic control, elec-
tricity market theory, and theory of incentives are brieflgatissed in Section 8.1. The
future research possibilities and directions are discliss8ectio 8.2.

8.1 Contributions to the state-of-the-art

Game theory is a widely used and investigated field. Althotingfield has been exten-
sively studied and in recent years the focus has been dirembdee towards game theoretic
applications than towards fundamental research, thesdiligame theoretic areas that have
not been studied in a sufficient detail and, therefore, almogheoretical results in these
areas are known. One of such fields is the field of the so-calledse Stackelberg games.
In ChaptefB of this thesis these games were defined and tiogieties were studied. Ap-
plications of the Stackelberg and the inverse Stackelbargeg in the static optimal toll
design problem, the dynamic optimal toll design problerackilcity market liberalization
problem, and the theory of incentives (contracts) wereistlith Chaptergl4,]%5]6, and 7.

Our contributions with respect to the state-of-the-artia tain topics covered in this
thesis are the following:

e Conducted research in the field of game theory
We recapitulated some classical results from the field ofegdrory. We introduced
the so-called inverse Stackelberg games, with clear foouse-leader-one-follower
and one-leader-more-followers problems. We showed a wagwfto find an optimal
strategy for the leader and presented situations in whietofitimal strategy of the
leader

exists and is unique;

exists and is nonunique;

does not exist;

is generally unknown.

121
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Both static and dynamic problems were studied. Some gestataments about prop-
erties of the inverse Stackelberg games were made. Alsosprasolved issues were
mentioned.

e Conducted research in the field of the optimal toll design
We proposed the concept of the traffic-flow-dependent tathéncontext of the opti-
mal toll design problem and in various case studies we detitfimding an optimal
strategy for the road authority minimizing his/her objeetiunction, while the drivers
minimized their own (perceived) travel costs. Although #xéensively studied first-
best optimal toll design problem is clearly an inverse SéHwérg gamg in the field
of the second-best optimal toll design the concept of thifidriow-dependent toll
was not introduced before. The drivers in the optimal tolige problem act as one
super-player with traffic flows on alternative routes (whiglés are imposed by the
road authority) being his/her decision variables. We wexaidg with both static and
dynamic variants of the optimal toll design problem.

We considered two different situations according to therimiation that the drivers
have:

— The situation with complete information in which the driserre aware of all
traffic conditions and minimize thed@rctual travel costsin equilibrium state the
deterministic user equilibrium (DUE) applies.

— The situation with incomplete information, in which thewds are not aware of
all traffic conditions and minimize the&ctual perceived travel cost$n equi-
librium state some stochastic user equilibrium (SUE) agsplAs an example of
such an equilibrium the logit-based stochastic equilior{lB-SUE) was used.

The deterministic user equilibriumis a limiting case oflibgit-based stochastic equi-
librium when the so-called perception error tends to infinivith the deterministic
equilibrium the optimal toll design problem is analytigadblvable, unlike in the case
with the more general LB-SUE.

Also, since DUE is a limiting case of LB-SUE, the algorithnathve have proposed
for solving the optimal toll design problem with the secdvest traffic-flow depen-
dent toll and the drivers driven by LB-SUE can be used forigglthe optimal toll
design problem with drivers driven by DUE, too. This algonituses neural networks
simulation and belongs to advanced heuristic methods,nd@a be efficiently used
for solving NP-hard problems. The optimal toll design peshlbelongs to the class
of this type of problems.

We have shown that the use of the traffic-flow dependent tojlimarove the system
performance remarkably, while the traffic flow-dependelhtim never yield a worse
outcome than the traffic-flow invariant toll. The choice died links influence the
outcome of the game remarkably.

Theorems about the existence of the solution for the genar&nt of the optimal
toll design problem have been stated for both the static hediynamic situations.
Case studies of various network types were presented, too.

1So far the first-best optimal toll design problem has not bemognized as an inverse Stackelberg game,
although it is a clear example of the game of this type.
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e Conducted research in energy market liberalization problen
We have proposed a model of the European electricity maBight countries were
included in the model: Belgium, Denmark, Finland, Francerr@any, The Nether-
lands, Norway, and Sweden. The model uses real data abatrictg production
prices, emission factors, and electricity consumptiomitiviidual countries. Differ-
ent types of games, differing in the following criteria, ledveen considered:

— form of the leadership (no leader, one leader - Stackelbamgegvith one leader,
two leaders - Stackelberg game with two leaders);

— type of the competition among the leaders and the followssf¢ct vs. imper-
fect);

— role of borders (game with the cross-border electricitpsraissions allowed vs.
game with no cross-border electricity transmissions);

— role of emissions (emission constraints included or no gimrsconstraints).
As a result of the case studies we have drawn the followinglosions:

— The electricity prices are the highest if one of the eleityriproducers acts as
a leader, i.e., has a monopoly in his country. The pricesedser with two
competing leaders and are the lowest when none of the eligctproducers
acts as the leader and perfect competition takes place.

— While perfectly competitive electricity market increadhe emission factors
when emission restrictions are not imposed, a right chofcendssion con-
straints may decrease emission factors, while the elé@gtpeices do not in-
crease that much.

— The electricity prices decrease if the cross-border etrtransactions are
allowed.

The outcomes of our model coincide with the experiencesdrrel electricity mar-
ket.

e Conducted research in theory of incentives

The principal-agent problem from the economical theorynoéntives has been iden-
tified as an example of the inverse Stackelberg games. \fapimblems of this type
have been solved, with a focus on the optimal strategy foptheeipal as the leader
and interesting phenomena. The only situation, in whiclptticipal receives posi-
tive outcome no matter how efficient the agent that the pgoalds contracting is, is
the situation with full information. While the principaant theory is a classical one,
we have presented it as a special case of an inverse Stackghae.

8.2 Future research

In this section we will discuss possible future researcadions for each of the main topics
addressed in this thesis.
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e Future research in Game theory
While in Chaptef B important phenomena in inverse Stackglgames were intro-
duced, mainly by means of specific examples, some genenaépies have not been
studied yet. The following topics are interesting subjéatduture research:

— Existence of the solutions to general problem of the inv8taekelberg type.
— An inverse Stackelberg game with a higher number of players.

— Inverse Stackelberg game with leaders or followers beirgpemative among
themselves.

— The problems with incomplete information.

e Future research in Optimal toll design problem
The problems, that should be addressed in the future réseae

— The optimal toll design problem with traffic-flow-dependéoit with elastic
demand.

— The problems with heterogeneous user classes of the drivers

— The problems with the traffic-flow dependent tolls that arepudynomial func-
tions of the traffic flows.

— The optimal toll design problem with the drivers driven bifelient user equilib-
rium than LB-SUE. There exist more realistic models of tleeters’ behavior,
where the travelers are driven by the equilibria that areresibns of the LB-
SUE. Also probit-based models can be used. The problem kecdifiicult to
solve in this case, though. We expect that also in this sitnahe problem the
traffic-flow dependent toll brings better outcomes for thedrauthority.

— The dynamic optimal toll design problem with the traveledgparture time
choice.

e Future research in Energy market liberalization problem
The issues that deserve future research are:

— Dynamic model - although a possible extension of the cumrerdel to the situ-
ation with more time steps (discrete dynamic model) waaudised, case studies
performed were more of academic nature, while computatigths“real-size”
models were not performed.

— Incorporating more countries into the model. To be able &tke influence of
the liberalization process throughout the Europe, all Baam countries have to
be included.

— Model with elastic electricity demand. Although this optiwas briefly studied
when the extension of the model to the dynamic problem wasidéed.

— Game with the electricity consumers being incorporateal ihé model. In this
case the electricity producers can be leaders in a Stacletivén an inverse
Stackelberg game and the electricity consumers can be itbe/éos.
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— Including net region-specific electricity losses per coymind also including
net losses of both the countries when electricity crossidraransmission takes
place.

e Future research in Theory of incentives
Important subjects for future research are:

— Dynamic contracts. In ChaptEl 7 the clear emphasis was ¢ic stantracts,
while the extension to the dynamic version of the problem mvaationed quite
briefly.

— Problems with moral hazard, problems combining moral hheéth adverse
selection.

— Problems with more principals and/or agents.






Bibliography

[1] B. D. O. Anderson and J. B. MooreOptimal Control: Linear Quadratic Methods
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[2] P. S. Armington. A theory of demand for products distiigled by place of produc-
tion. IMF Staff Papers16:159-178, 1969.

[3] R. Arnott, A. de Palma, and R. Lindsey. Economics of aleatick.Journal of Urban
Economics27(1):111-130, 1990.

[4] K. J. Arrow, H. B. Chenery, B. S. Minhas, and R. M. Solow.pRal-labor substitution
and economic efficiencyReview of Economics and Statistid8(3):225-250, 1961.

[5] T. Basar and G. J. OlsdeDynamic Noncooperative Game Theo&IAM, Philadel-
phia, Pennsylvania, 1999.

[6] A. Bagchi. Stackelberg Differential Games in Economical Modedpringer-Verlag,
Berlin, Germany, 1984.

[7] M. Bagnoli and T. Bergstrom. Log—concave probabilitglats applications. Technical
report, University of Michigan, Ann Arbor, Michigan, 1989.

[8] C. Barnard. The Functions of The Executivelarvard University Press, Cambridge,
Massachusetts, 1938.

[9] D. Baron and R. Myerson. Regulating a monopolist with mmkn costs.Economet-
rica, 50(4):911-930, 1982.

[10] M. C. J. Bliemer. Analytical Dynamic Traffic Assignment with Interacting tUse
Classes PhD thesis, Delft University of Technology, Delft, The Retlands, 2001.

[11] M. G. Boots, B. F. Hobbs, and F. A. M. Rijkers. Trading lretdownstream European
gas market: A successive oligopoly approacthe Energy Journal25(3):73-102,
2004.

[12] H. Bowen. The interpretation of voting in the allocatim economic resourceQuar-
terly Journal of Economic$8(1):27-48, 1943.

[13] S. Boyd.Convex OptimizationCambridge University Press, Cambridge, UK, 2004.

127



128 Bibliography

[14] R. M. Braid. Uniform versus peak-load pricing of a betteck with elastic demand.
Journal of Urban Economi¢c26(3):320-327, 1989.

[15] M. H. Breitner. Robust optimal onboard reentry guidanta space shuttle: Dynamic
game approach and guidance synthesis via neural netwaoksnal of Optimization
Theory and Applications07(3):481-503, 2000.

[16] Michael H. Breitner. Usage of artificial neural netwsrfor the numerical solution
of dynamic games. IRroceedings of the 11th International Symposium on Dynamic
Games and Applicationpages 62—79, Tuscon, Arizona, 2004.

[17] Bureau of Public Roaddraffic Assignment ManuaU.S. Department of Commerce,
Urban Planning Division, Washington, District of Columpl®64.

[18] K. S. Chan and W. H. K. Lam. Impact of road pricing on théwaak reliability.
Journal of the Eastern Asia Society for Transportation &gdb:2060—-2075, 2005.

[19] K. H. Chen. Dynamic Travel Choice Models: A Variational Inequality Apach
Springer, Oxford, UK, 1999.

[20] Y. Chen and B. F. Hobbs. An oligopolistic power marketdabwith tradablenog
permits.IEEE Transaction on Power Systerd29(1):119-129, 2005.

[21] B. Colson, P. Marcotte, and G. Savard. An overview of\el optimization.Annals
of Operations Researchh53:235-256, 2007.

[22] C. F. Daganzo. Stochastic network equilibrium with tipié vehicle types and assy-
metric, indefinite link cost Jacobian§tansportation Sciencd 7(3):282—300, 1983.

[23] J. C. de Borda.Mémoire sur les Elections au Scrutinmprimerie Royale, Paris,
France, 1781.

[24] S. Defermos and F. T. Sparrow. Optimal resource allonand toll patterns in user-
optimized transport networkgournal of Transport Economics and Polj&(2):184—
200, 1971.

[25] P. Deuflhard.Newton Methods for Nonlinear Problems. Affine Invariancd Adap-
tive Algorithms Springer, Berlin, Germany, 2004.

[26] O. D. DickersonHealth InsuranceR. D. Irwin, Inc., Ontario, Canada, 1959.

[27] T. A. Domencich and D. L. McFaddeblrban Travel Demand: A Behavioral Analysis
North-Holland Publishing Co., Amsterdam, The Netherlai@g5.

[28] R. G. Egging and S. A. Gabriel. Examining market powethia European natural gas
market.Energy Policy 34(17):2762—-2778, 2006.

[29] L. Ekeberg, L. Sundahl, M. Rompotti, O.S. Halsos, d@H. Bryng. A powerful
competition policy: Towards a more coherent competitiolicgan the Nordic market
for electricity power. Technical Report 1/2003, 2003.



Bibliography 129

[30] J. Ekstrom, L. Engelson, and C. Rydergren. Heuristiodathms for a second-best
congestion pricing problenNetnomics2008.

[31] S. Erlander and N. F. StewarT.he Gravity Model in Transportation Analysi¥/SP,
Utrecht, The Netherlands, 1990.

[32] European Transmission System Operators. ETSO ser2607. URL:
http:// ww:. et so-net.org/.

[33] F. Fachinei and J. S. Pan§inite-Dimensional Variational Inequalities and Comple-
mentarity Problems: Vol. |, 1ISpringer-Verlag, New York, New York, 2003.

[34] E. J. FaulknerHealth InsuranceMcGraw-Hill, New York, New York, 1960.

[35] C. Fisk. Some developments in equilibrium traffic assignt. Transportation Re-
search Part B14(3):243-255, 1980.

[36] R. Fletcher.Practical Methods of OptimizationJohn Wiley & Sons, New York, New
York, 2000.

[37] P. E. Gill, W. Murray, and M. H. Wright.Practical optimization Academic Press,
London, UK, 2004.

[38] Ch. M. Grinstead and J. L. Snelhtroduction to Probability American Mathematical
Society, Providence, Rhode Island, 1997.

[39] E. J. Gumbel. Statistics of ExtremesColumbia University Press, New York, New
York, 1958.

[40] P. Hansen, B. Jaumard, and G. Savard. New branch-anxdales for linear bilevel
programming. SIAM Journal on Scientific and Statistical Computidg(5):1194—
1217, 1992.

[41] B. F. Hobbs, F. A. M. Rijkers, and M. G. Boots. The more gemtion, the more
competition? A Cournot analysis of the benefits of electrarket coupling. The
Energy Journal26(4):69-98, 2005.

[42] B.F. Hobbs, F.A.M. Rijkers, and A.F. Wals. Strategimggation with conjectured
price responses in a mixed transmission pricing systemt-lP@ormulation, Part II:
Application. IEEE Transactions and Power Systerh8:707-717,872—879, 2004.

[43] H.J.Huang and H. Yang. Optimal variable road-use pgan a congested network of
parallel routes with elastic demands.Rroceedings of the 13th International Sympo-
sium on the Theory of Flow and Transportatjgages 479-500, Lyon, France, 1996.

[44] D. A. Hume. Treatise of Human NatureOxford University Press, Oxford, UK, 1740.

[45] D. Joksimovi¢.Dynamic Bi-level Optimal Toll Design Approach for Dynamiaffic
Networks PhD thesis, Delft University of Technology, Delft, The Retlands, 2007.

[46] D. Joksimovi€, M. C. J. Bliemer, and P. H. L. Bovy. Opthtoll design problem in
dynamic traffic networks with joint route and departure tiol®ice. Transportation
Research Record 923, 2004.



130 Bibliography

[47] D. E.Kirk. Optimal Control Theory, An IntroductiofPrentice Hall, Englewood Cliffs,
New Jersey, 1970.

[48] S. Koenig, F. Koeller, and M. H. Breitner. FAUN 1.1 Useakual. Technical report,
Institut fur Wirtschaftsinformatik, Gottfried Wilhelm é&ibniz Universitt, Hannover,
Germany, 2005.

[49] M.T. Kromann. Imperfect competition in the Nordic elecity markets.Danish Eco-
nomic Council 3, 2001.

[50] M. Kuczma. Functional Equations in a Single Variabl®olish Scientific Publishers,
Warsaw, Poland, 1968.

[51] J.J. Laffontand D. MartiomorThe Theory of Incentives: The Principal-Agent Model
Princeton University Press, Princeton, New Jersey, 2002.

[52] J.J. Laffontand J. TiroleA Theory of Incentives in Procurement and RegulatdiT
Press, Cambridge, Massachusetts, 1993.

[53] T.Larson and M. Patriksson. Traffic management thrdirdgtolls — An approach uti-
lizing side constrained traffic equilibrium modeRendiconti del Circolo Matematico
di Palermo, Serie 1148:147-170, 1997.

[54] F. Leveque.Competitive Electricity Markets and Sustainabilit¢dward Elgar Pub-
lishing, Cheltenham, UK, 2007.

[55] P. B. Linhart, R. Radner, and A. M. SatterthwaiBargaining with Incomplete Infor-
mation Academic Press, San Diego, California, 1992.

[56] W. Lise, V. Linderhof, O. Kuik, C. Kemfert, ROstling, and T. Heinzow. The Eu-
ropean electricity market — what are the effects of marketgyoon prices and the
environment?Energy Policy 34(5):2123-2136, 2006.

[57] M. Loeb and W. Magat. A decentralized method of utiliggulation.Journal of Law
and Economics22(2):399-404, 1979.

[58] P. Lotito, J.-P. Quadrat, and E. Mancinelli. Trafficigssnent & Gibbs-Maslov semir-
ings. In G. L. Litvinov, editor,Contemporary Mathematicsolume 377. American
Mathematical Society, Providence, Rhode Island, 2005.

[59] I. Macho-Stadler and J. D. Pérez-Castrilln Introduction to the Economics of Infor-
mation Oxford University Press, Oxford, UK, 1997.

[60] A. Nagurney. Network Economics: A Variational Inequality Probler{luwer, The
Netherlands, 1993.

[61] J. Nash. Noncooperative gaméginals of Mathematic$4:286—295, 1951.

[62] K. Neuhoff, J. Barquin, M.G. Boots, A. Ehrenmann, B. labibs, F. A. M. Rijkers, and
M. Vazquez. Network-constrained cournot models of litizeal electricity markets:
the devil is in the detailsEnergy Economic®7:495-525, 2005.



Bibliography 131

[63] U. Nowak and L. Weimann. A family of Newton codes for ysis of highly nonlinear
equations. Technical Report TR 91-10, Konrad Zuse ZentBerlin, Germany, 1998.

[64] G. J. Olsder. Phenomena in inverse Stackelberg prabl@echnical Report 11/2005,
Mathematisches Forschungsinstitut Oberwolfach, Obdagb| Germany, 2005.

[65] G. J. Olsder. Phenomena in inverse Stackelberg garaesl: Btatic problems. Tech-
nical report, Delft University of Technology, Delft, The terlands, 2008. Submitted
to a journal.

[66] M. Patriksson.The Traffic Assignment Problem: Models and MethddSP, Utrecht,
The Netherlands, 1994.

[67] M. PatrikssonNonlinear Programming and Variational Inequality ProblsnA Uni-
fied ApproachKluwer, The Netherlands, 1999.

[68] M. Patriksson and R. T. Rockefellar. A mathematical el@hd descent algorithm for
bilevel traffic managementransportation Scien¢&6(3):271-291, 2002.

[69] W. B. Powel and Y. Sheffi. The convergence of equilibrialgorithms with predeter-
mined step sizesTransportation Sciencd 6(1):45-55, 1982.

[70] B. Salanie Economics of Contracts: A PrimeMIT Press, Cambridge, Massachusetts,
2000.

[71] Y. Sheffi. Urban Transportation Networks Prentice Hall, Englewood Cliffs, New
Jersey, 1985.

[72] A. Smith. The Wealth of Nationdvlodern Library, New York, New York, 1776.

[73] S. Smulders. Modelling and filtering of freeway traffioll. Technical Report OS-
R8706, Centre of Mathematics and Computer Science, Anwterdhe Netherlands,
1988.

[74] K. Stankova and M. C. J. Bliemer. Dynamic road pricimigh traffic-flow dependent
tolling. In Proceedings of the 87th Transportation Research Board Ahkieeting
Washington, District of Columbia, 2008. Paper 08-1016.

[75] K. Stankova and G. J. Olsder. On games in the libegdliguropean electricity mar-
ket. Technical report, Delft University of Technology, BelThe Netherlands, 2008.
Submitted to a journal.

[76] K. Stankova and G. J. Olsder. Inverse Stackelbergegawersus adverse-selection
principal-agent model theory. FRroceedings of the 12th International Symposium on
Dynamic Games and ApplicatiorSophia-Antipolis, France, 2006.

[77] K. Stanhkova, M. C. J. Bliemer, and G. J. Olsder. IneeBtackelberg games and
their application to dynamic bilevel optimal toll designoptem. InProceedings
of the 12th International Symposium on Dynamic Games andiggppns Sophia-
Antipolis, France, 2006.



132 Bibliography

[78] K. Stankova, G. J. Olsder, and M. C. J. Bliemer. Bilewgtimal toll design problem
solved by the inverse Stackelberg games approadtinan Transport 12:871-880,
2006.

[79] K. Stankova, H. J. Von Mettenheim, and G. J. Olsder.n&@yic optimal toll design
problem with second-best-flow-dependenttolling solvedgiseural networks. Tech-
nical report, Delft University of Technology, Delft, The terlands, 2008. Submitted
to a journal.

[80] K. Stankova, H.-J. Von Mettenheim, and G. J. Olsdeygn&mic optimal toll design
problem with second-best-flow-dependent tolling solveidgismeural networks. In
Proceedings of the 10th International Conference on Apgilbms of Advanced Tech-
nologies in TransportationAthens, Greece, 2008.

[81] K. Stankova, G. J. Olsder, and M. C. J. Bliemer. Roddipg games in a two-link dy-
namic network. Technical report, Delft University of Tedhogy, Delft, The Nether-
lands, 2009. To appear in the European Journal of Trangjmortand Infrastructure
Research.

[82] D. D. B. Van Bragt, J. A. La Poutré, and E. H. Gerding. Hfuum selection in
evolutionary bargaining modelsComputing in Economics and Finance 20323,
2000.

[83] T. Van Eck.A new balance for the energy sector: No longer a puppet in #relk of
technology, public interests and markétdustrielings Pers en Platform, Amsterdam,
The Netherlands, 2007.

[84] E. T. Verhoef. Second best congestion pricing in gelrgtadic transportation networks
with elastic demanddRegional Science and Urban Economig2(3):281-310, 2002.

[85] E. T. Verhoef. Second-best congestion pricing in gaheetworks. heuristic algo-
rithms for finding second-best optimal toll levels and taliggs. Transportation Re-
search Part B36(8):707-729, 2002.

[86] E. T. Verhoef, P. Nijkamp, and P. Rietveld. Second-lestgestion pricing: The case
of an untolled alternativeJournal of Urban Economi¢#0(3):279-302, 1996.

[87] L. N. Vicente and P. H. Calamai. Geometry and local optity conditions for bilevel
programs with quadratic strictly convex lower levels. Inu and P. M. Pardalos, ed-
itors, Minimax and Applications, Nonconvex Optimization and lpgpWications vol-
ume 4, pages 141-151. Kluwer Academic Publishers, Dortirdtte Netherlands,
1995.

[88] W. Vickrey. Congestion theory and transport investinefhe American Economic
Review59(2):251-260, 1969.

[89] H.-J. Von Mettenheim and M. H. Breitner. Neural netwéokecasting with high per-
formance computers. IAroceedings of the 13th International Workshop on Dynamics
and Contro] pages 33—40. Wiesensteig, Germany, 2005.



Bibliography 133

[90] H.-J. Von Mettenheim and M. H. Breitner. Dynamic gamethweurosimulators and
grid computing: The game of two cars revisited. Rroceedings of the 12th Inter-
national Symposium on Dynamic Games and ApplicatiBoghia Antipolis, France,
2006.

[91] J. Von Neumann and O. Morgensteritheory of Games and Economic Behavior
Princeton University Press, Princeton, New Jersey, 1944,

[92] H.Von StackelbergThe Theory of Market Econom@xford University Press, Oxford,
UK, 1934.

[93] S. Y. Wang. Existence of a Pareto equilibriudournal of Optimization Theory and
Applications 79(2):373-384, 1993.

[94] J. G. Wardrop. Some theoretical aspects of road tragfearch. IfProceedings of the
Institute of Civil Engineers, Part Jlpages 325-378, 1952.

[95] B. Wie and R. L. Tobin. Dynamic congestion pricing maifdr general traffic net-
works. Transportation Research Part B2(5):313-327, 1998.

[96] M. B. Yilidirim and D. W. Hearn. A first best toll pricingramework for variable
demand traffic assignment problem&tansportation Research Part, 39:659-678,
2005.






NGInfra PhD Thesis Series on
Infrastructures

10.

11.

. Strategic behavior and regulatory styles in the Netherkaadergy industryMartijn

Kuit, 2002, Delft University of Technology, The Netherland

. Securing the public interest in electricity generation kets, The myths of the invisi-

ble hand and the copper plateaurens de Vries, 2004, Delft University of Technol-
ogy, The Netherlands.

. Quality of Service Routing in the Internet: Theory, Comityeatnd Algorithms Fer-

nando Kuipers, 2004, Delft University of Technology, ThetiNglands.

. The role of power exchanges for the creation of a single Eegopelectricity market:

market design and market regulatidfrancois Boisseleau, 2004, Delft University of
Technology, The Netherlands, and University of Paris IX piaoe, France.

. The ecology of metaglE€Ewoud Verhoef, 2004, Delft University of Technology, The

Netherlands.

. MEDUSA, Survivable information security in critical inguctures Semir Daska-

pan, 2005, Delft University of Technology, The Netherlands

. Transport infrastructure slot allocatigrKaspar Koolstra, 2005, Delft University of

Technology, The Netherlands.

. Understanding open source communities: an organizatipeadpectiveRuben van

Wendel de Joode, 2005, Delft University of Technology, TtetHérlands.

. Regulating beyond price, integrated price-quality redida for electricity distribu-

tion networksViren Ajodhia, 2006, Delft University of Technology, Thestherlands.

Networked Reliability, Institutional fragmentation aruetreliability of service provi-
sion in critical infrastructuresMark de Bruijne, 2006, Delft University of Technol-
ogy, The Netherlands.

Regional regulation as a new form of telecom sector goveraaithe interactions
with technological socio-economic systems and markebpeadnce Andrew Ba-
rendse, 2006, Delft University of Technology, The Nethads

135



136 NGInfra PhD Thesis Series on Infrastructures

12. The Internet bubble - the impact on the development pathedtelecommunications
sector Wolter Lemstra, 2006, Delft University of Technology, TRetherlands.

13. Multi-Agent Model Predictive Control with Applications Bower NetworksRudy
Negenborn, 2007, Delft University of Technology, The Neldueds.

14. Dynamic bi-level optimal toll design approach for dynanriffic networks Dusica
Joksimovic, 2007, Delft University of Technology, The Netlands.

15. Intertwining uncertainty analysis and decision-makingabdrinking water infras-
tructure, Machtelt Meijer, 2007, Delft University of Technology, &Netherlands.

16. The New EU Approach to Sector Regulation in the Network $tifueture Industries
Richard Cawley, 2007, Delft University of Technology, ThetNerlands.

17. A functional legal design for reliable electricity supplow technology affects lagw
Hamilcar Knops, 2008, Delft University of Technology, ThetNerlands and Leiden
University, The Netherlands.

18. Improving Real-Time Train Dispatching: Models, Algorithiand ApplicationsAn-
drea D’Ariano, 2008, Delft University of Technology, ThetRerlands.

19. Exploratory Modeling and Analysis: A Promising Method toaD&ith Deep Uncer-
tainty, Datu Buyung Agusdinata, 2008, Delft University of Tectoml, The Nether-
lands.

20. Characterization of Complex Networks: Application to Rethess AnalysjsAlmer-
ima Jamakovic, 2008, Delft University of Technology, Thethirlands.

21. Shedding light on the black hole, The roll—out of broadbaodess networks by pri-
vate operators Marieke Fijnvandraat, 2008, Delft University of Techngyp The
Netherlands.

22. On Stackelberg and Inverse Stackelberg Games & Their Agtjits in the Optimal
Toll Design Problem, the Energy Markets Liberalization Blem, and in the Theory
of IncentivesKatefina Stafkova, 2008, Delft University of TechrgpjoThe Nether-
lands.



Samenvatting

Over Stackelberg- en inverse Stackelbergspellen en hun tpass-
ing in het ontwerpen van optimale tollen, de liberalisering
van energiemarkten en in de theorie van aansporingen

Inverse Stackelbergspellen zijn het onderwerp gewordemeeent onderzoek in speltheo-
rie. Tot nu toe stond de theorie voor dit soort spellen skeghte kinderschoenen en was
er dus zeer weinig bekend over inverse Stackelbergspéhedit proefschrift wordt inge-
gaan op het theoretisch oplossen van zulke problemen en eendhantal zeer uitdagende
problemen uit een variéteit aan domeinen in het raamwenkinigerse Stackelbergspellen
geplaatst en opgeslost.

In Stackelbergspellen bepaalt een zogenaalaider acties voor één of meer zoge-
naamdevolgers In het algemeen is het vinden van een optimale strategieemw leider
in deze spellen extreem moeilijk; in veel gevallig zelfs myelijk. Beginnend met een-
voudige statische problemen en daarna verdergaand metmoedijke dynamische prob-
lemen, wordt in dit proefschrift aangetoond hoe de optiretiktegie voor een leider op een
heuristische manier gevonden kan worden.

In dit proefschrift wordt de toepassing van speltheoriedivdigende drie specifieke ge-
bieden voorgesteld: bet bepalen van optimale tollen,dilisaring van de elektriciteitssector
en de theorie van aansporingen.

Het ontwerpen van een optimale tol wordt in de proefsche&dhreven als een spel
van het Stackelberg type. Een wegbeheerder representedrij de leider en de wegge-
bruikers representeren de volgers. De wegbeheerder bejgatal voor een aantal van de
wegen in een wegennetwerk. De wegbeheerder doet dit op elmmipe manier dat zijn
doelfunctie wordt gemaximaliseerd, terwijl de weggebeungkhun beslissingen maken op
een zodanige manier dat hun reiskosten worden geminireadiséls de tol die de wegbe-
heerder bepaalt niet afhankelijk is van de verkeersstralam s het op te lossen probleem
een klassiek Stackelbergspel. Als de tol wel afhankelijiais de verkeersstroom, dan is het
probleem een invers Stackelbergspel. In dit proefschafdiveen optimale stroomafhanke-
lijke tol voor de wegbeheerder gevonden, voor zowel stiaisds dynamische varianten van
het tolontwerpprobleem. Als het oplossingsconcept vooweggebruikers wordt bepaald
met behulp van een zogenaamd deterministisch gebruikelibemm, dan kan het prob-
leem analytisch worden aangepakt. Als het zogenaamdeasttimthe gebruikersequilib-
rium wordt gebruikt, dan moeten numerieke methoden worddmugkt om een oplossing
te vinden. Aangezien dit probleem NP-moeilijk is, stelleipw@or om een oplossingsaan-
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pak te gebruiken die gebaseerd is op neurale netwerken. iyelijleen de uitkomsten van
de spellen met stroomonafhankelijke tol en stroomafhajkieabl. We concluderen dat de
stroomafhankelijke tol de prestaties van het systeemfgigni kan verbeteren. Daarnaast
worden interessante eigenschappen van dit probleem legschen bediscussieerd.

De liberalisering van de elektriciteitsmarkten is in dibpfschrift gedefinieerd als een
competatief spel tussen elektriciteitsproducenten in ®pese landen. Elektriciteitsvraag
wordt hierbij als gegeven beschouwd. De producenten mag&erkeuze uit de inzet van
beschikbare middelen voor elektriciteitsproductie en devieelheid te produceren elek-
triciteit op een zodanige manier dat hun winst wordt gemadiseerd. Verschillende spelsce-
nario’s worden beschouwd: Perfecte competitie, een spekfmeleidende producent per
land en een spel met twee leidende producenten per landi{jvdadeiders onderling een
zogenaamde Nashstrategie gebruiken). De uitwisselingleddriciteit tussen naburige lan-
den is toegestaan en beperkingen op emissies worden meegengen numeriek model,
gebruikmakend van realistische data, wordt voorgesteldetprobleem op te lossen. Onze
resultaten suggeren dat de liberalisatie van de elelditiciharkten tot een daling in de prijs
voor elektriciteit kan leiden.

Ten slotte behandelen wij zogenaamdacipal-agentmodellen uit de theorie van aans-
poringen als een speciale groep van inverse Stackelbdlieyspia dit geval is degprincipal
de leider an dagentde volger. De leider contracteert de volger met het doel anbepaald
aantal goederen te produceren. De mate van effectiviteitleavolger kan variéren. Deze
effectiviteit is onbekend bij de leider. Het probleem vahviaden van een optimale strate-
gie voor de leider wordt behandeld. Interessante fenomienéit spel worden gepresen-
teerd en een optimale strategie voor de leider wordt afgelei

Katefina Stankova



Summary

On Stackelberg and Inverse Stackelberg Games and their
Applications in the Optimal Toll Design Problem, the En-
ergy Markets Liberalization Problem, and in the Theory of
Incentives

Inverse (or reverse) Stackelberg games have become thecsobyecent game theory re-
search, as a special type or as an extension of Stackelbergsgaso far, only very little
theory about inverse Stackelberg games is available andwditable theory is still in its
infancy. In this thesis we focus on theoretically solvingtsyproblems and we propose to
treat several challenging problems in various fields ingiiteframework.

In Stackelberg games a so-calle@derdetermines actions for one or more so-called
followers The problem of finding an optimal strategy for the leaderhiase games is
in general extremely hard to solve, and often even completesolvable. Starting from
simple static problems and proceeding to more difficult ayitasones, we show how to find
the optimal strategy for the leader in a heuristic manner.

In this thesis, the application of game theory is proposeberfollowing domains: The
optimal toll design problem, the electricity markets lization problem, and the theory
of incentives.

The optimal toll design problem is a game of the Stackelbgpg in which a road au-
thority acts as the leader and drivers in the road networlaadhe followers. The road
authority sets tolls on some of the links in the network inesrtb maximize its objective
function, while the drivers make their travel decisions idey to minimize their perceived
travel costs. If the toll that the road authority sets isfitaflow invariant, the problem is
the “classical” Stackelberg game; if the toll is traffic-fla@pendent, the problem is of the
inverse Stackelberg type. We determine the optimal tréifiiw-dependent toll for the road
authority for both static and dynamic variants of the prahléf the solution concept for the
drivers’ behavior is the deterministic user equilibriutme foroblem can be dealt with ana-
lytically. If the stochastic user equilibrium applies, namncal methods have to be applied
to find a solution. As the problem is NP-hard, we use a newblorks based solution
approach to solve the problem. We compare outcomes of thegaith traffic-flow in-
variant and traffic-flow dependent toll and conclude thattta#fic-flow dependent toll can
improve the system performance remarkably. Interestirnpmena in this problem and
its properties are discussed, too.

139



140 Summary

The electricity markets liberalization problem is definedhis thesis as a noncoopera-
tive game among electricity producers in eight Europeamtras, in which the electricity
demand is exogenous. The producers choose among availabhesrof electricity produc-
tions and quantities to produce in order to maximize theifipr Different game scenarios
are considered: Perfect competition, a game with one Ilggaliaducer per each country,
and a game with two leading producers, playing Nash amongsakres, for each country.
The transmission of electricity between neighboring caaats allowed and emission con-
straints are considered. A numerical model, using real, datieveloped in order to solve
the problem. Our results suggest that liberalization aftelgty markets leads to electricity
price decrease.

Finally, we deal with so-called principal-agent modelsfrthe theory of incentives as
a specific group of inverse Stackelberg problems. Here timeipal as a leader contracts
an agent as a follower in order to produce certain goods. Teatacan be of different
efficiency, often unknown to the principal. The problem ofifimg the optimal strategy for
the principal is dealt with. Interesting phenomena in tlzimg are presented and an optimal
strategy for the leader is derived.

Katefina Stankova
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