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Katěrina Stǎnková



.



On Stackelberg and Inverse Stackelberg Games

&

Their Applications in the Optimal Toll Design Problem,

the Energy Markets Liberalization Problem,

and in the Theory of Incentives

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
in het openbaar te verdedigen ten overstaan van een commissie,

door het College voor Promoties aangewezen,
op maandag 2 februari 2009 te 12:30 uur
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Chapter 1

Introduction

This thesis falls within the area of applied mathematics. Itraises various problems within
the area of game theory and offers mathematical solutions tothem.

In this chapter we present the background and the motivationfor the research presented
in this thesis. In Section 1.1 we first introduce game theory as a theoretical topic of this the-
sis and as a tool to formalize and solve complex decision making problems. In Section 1.2
we introduce the applications that we consider in this thesis: The optimal toll design prob-
lem, the problem of energy market liberalization, and the theory of incentives. We conclude
the chapter with an overview and road map of this thesis, and asurvey of the contributions
to the state of the art in Section 1.3.

1.1 Introduction to game theory

1.1.1 The basics of game theory

What is game theory?

Game theory is a branch of applied mathematics used, among others, in the social sciences
(most notably economics), biology, political science, computer science, and philosophy.
Game theory attempts to mathematically capture behavior instrategic situations (so–called
games), in which an individual’s success in making choices may depend on the choices of
others. Game theory was initially developed in order to analyze competitions in which one
individual does better at another’s expense (zero sum games, [5]). Later on, game theory
was expanded in order to treat a much wider class of interactions.

Traditional applications of game theory attempt to find gameequilibria, i.e., sets of
strategies in which individuals are unlikely to change their behavior. Many equilibrium
concepts have been developed (e.g., the well-known Nash equilibrium [61], the Stackel-
berg equilibrium [92], and the Pareto equilibrium [93]) in an attempt to capture this idea.
These equilibrium concepts are motivated differently depending on the field of application,
although they often overlap or coincide.

Game theory has been widely recognized as an important tool in many fields. Eight
game theorists have won The Nobel Prize in economics, and John Maynard Smith was

1



2 1 Introduction

awarded the Crafoord prize for his application of game theory to biology.
The established names of “game theory” (developed from approximately 1930) and

“theory of differential games” (developed from approximately 1950, parallel to that of op-
timal control theory) are somewhat unfortunate. “Game theory”, especially, appears to be
directly related to board games; of course it is, but the notion that it is only related to such
games is far too restrictive. The term “differential game” became a generally accepted name
for games in which differential equations play an importantrole. Nowadays the term “dif-
ferential game” is also being used for other classes of gamesfor which the more general
term “dynamic games” would be more appropriate.

The most widely accepted origin of game theory as stated in the literature is found in the
year 1944, when the bookTheory of Games and Economic Behaviorby John von Neumann
and Oskar Morgenstern [91] was published. This theory was developed extensively in the
1950s by many scholars. Game theory was later explicitly applied to biology in the 1970s.

Applications of game theory

The applications of “game theory” and the “theory of differential games” mainly deal with
economic and political conflict situations, worst-case designs, evolution problems in biol-
ogy, as well as modeling of war games. However, it is not only the applications in these
fields that are important; equally important is the development of suitable concepts to de-
scribe and understand conflict situations. It turns out, forinstance, that the role of informa-
tion - what one player knows compared to others - is very crucial in such problems.

Scientifically, dynamic game theory can be viewed as the offspring of game theory and
optimal control theory. Its character, however, is much richer than that of its parents, since
it involves a dynamic decision process evolving in (discrete or continuous) time, with more
than one decision maker, each with his/her own cost functionand possibly having access to
different information.

Conflict as the origin of game theory

The problems of game theory are often connected with a conflict situation. Although the
notion of conflict is as old as mankind, the scientific approach dealing with conflict situ-
ations began relatively recently, around the 1930’s, resulting in a still growing stream of
scientific publications. More and more scientific disciplines devote time and attention to the
analysis of conflict situations. These disciplines include(applied) mathematics, economics,
engineering, aeronautics, sociology, politics, and mathematical finance.

In a conflict situation an individual, also called aplayer, agent, decision maker, actor,
or simplyperson, has to make a decision and each possible decision may lead toa different
outcome, which is valued differently by that individual. This individual may not be the only
one deciding in favor of a particular outcome; a series of decisions made by several individ-
uals may be necessary. If some of the individuals value the possible outcomes differently,
the seeds of conflict have been sown.

The individuals involved do not always have complete control over the outcome. Some-
times there are uncertainties that influence the outcome in an unpredictable way. Under such
circumstances, the outcome is (partly) based on data not yetknown and not determined by
the other players’ decisions. Sometimes it is said that suchdata are under the control of
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“nature” or “God”, and that every outcome is caused by the joint or individual actions of
human beings and “nature” (“God”).

Basic notions

So far we have used terms like “decision” and “strategy” without explaining them properly,
assuming that their meaning is intuitively clear. However,some precision is necessary to
avoid ambiguities.

In the following simple example the concepts of decision, action, and strategy (also
called “decision rule”) will be introduced.

Consider a person who has to decide what to do on a Sunday afternoon, and the options
are running outdoors or working out in a fitness club. A possible strategyof this individual
can be framed in these terms: “If the weather is nice, then I will run outside, otherwise I
will work out.” This is astrategyor a decision rule: what actually will be done depends
on quantities not yet known and not controlled by the decision maker; the decision maker
cannot influence the course of the events further, once he/she has fixed his/her strategy. (We
assume that the decision maker will stick to his/her strategy.) Any consequence of such a
strategy, after the unknown quantities are realized, is called anaction. In a sense, a constant
strategy (such as an irrevocable decision to go running or come what may) coincides with
the notion of action.

In the example above, the alternative actions are to run outdoors and to work out, and
the actions to be implemented depend on information (the weather), which has to be known
at the time it is carried out. In general, such information can be of different types. It
can, for instance, comprise the previous actions of all the other players. As an example,
consider the following sequence of actions: If he/she is nice to me, I will be nice to him/her.
The information can also be of a stochastic nature, such as inthe running example. Then,
the actual decision (action) is based on data not yet known and not controlled by other
players, but instead determined by “nature”. If this “nature” plays no role, the problem is
deterministic.

Static versus dynamic game theory

There is, in fact, no uniformly accepted line of separation between static games, on the one
hand, and dynamic games, on the other. We shall choose to calla gamedynamicif at least
one player is allowed to use a strategy that depends on previous actions of other players or
the player herself/himself. If a game is not dynamic, it isstatic.

What does “optimality” mean?

In game theoretic problems, the aim is often to find an optimalstrategy for one or more play-
ers. Optimality, in itself, is not a well defined concept. In non-cooperative games a solution
in terms of the Nash equilibrium is a specific form of optimality. Such a solution is reached
if one player cannot improve his/her outcome by altering his/her decision unilaterally.

Another concept of solution is the one that involves a hierarchy in decision making: one
or more of the players declare and announce their strategy before the other players choose
their strategy and the declaring players are in a position toenforce their own strategy upon
the other players. Such games in which one or more players, called the leaders, declare
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their strategy first and impose this strategy upon the other players, called thefollowers, are
referred to asStackelberg games.

If, however, the leaders announce their strategy as a mapping from the followers’ deci-
sion space into their own decision space, we talk aboutinverse Stackelberg games. Exam-
ples of inverse Stackelberg games are:

• Think of the leader as the government and of the follower as a citizen. The govern-
ment fixes how much income tax the citizen has to pay and this tax will depend on
the income of the citizen. It is up to the citizen to choose howmuch money he/she
will earn (by working harder or not). The income tax the government will receive is
an increasing function of the citizen’s earnings, where this tax rule (in many countries
piecewise linear) was made known ahead of the citizen’s decision as to how hard to
work and, hence, how much to earn.

• The leader is a bank and the follower an investor. The investor can buy stocks, the
bank acting as an intermediary, with the money he/she has in his/her savings account.
Suppose he/she buys stocks worth a certain amount of euro. Then the bank will charge
him/her transaction costs depending on this amount. The transaction costs rule has
been made known by the bank before the actual transaction takes place.

• The leader is a producer of electricity in a liberalized market and the follower is the
market (a group of clients) itself. The price of electricityis set as a function of the
amount of electricity traded [64].

• The leader is a road authority and the followers are drivers in the road network. The
road authority optimizes system performance by setting tolls on some of the links
in the network, the drivers make their travel decisions in order to minimize their
perceived travel time. The travel decisions of the drivers determine their traffic flows
in the network. If the road authority defines the tolls set in the network as functions
of the traffic flow in the network, the problem is of the inverseStackelberg type.

• The leader is a road authority and drivers in a given road network are the followers.
While the leader sets tolls on some links in the network, the drivers make their travel
decisions in order to minimize their perceived travel costs. Their travel choices deter-
mine the traffic flows in the network. If the link tolls are calculated as mappings of
the traffic flows in the network, this game is of the inverse Stackelberg type.

1.2 Introduction to the applications studied in this thesis

In this section the three applications considered in this thesis will be briefly introduced: the
optimal toll design problem in Section 1.2.1, the problem ofelectricity market liberalization
in Section 1.2.2, and the theory of incentives in Section 1.2.3.

1.2.1 Optimal toll design

Let us imagine a road network containing cities and routes connecting them. Individual
routes have different properties. Some routes, like highways, are wider, have rather high
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capacities, and have a rather high speed limit, too, whereasother routes, like local ones, are
narrower, with lower capacities, and have a rather low speedlimit. Clearly, the local roads
will clog easier than the highways.

Some routes may be tolled. The toll is set by a road authority,which tries to reach its
own goal, by choosing the routes to be tolled and the amount ofmoney the drivers have to
pay.

Within the considered network drivers depart from their origin cities to their destination
cities, for example, from the city where they live to the citywhere they work. Each driver
chooses among the routes available the one that would be optimal for him/her.

Here the word “optimal” can have a different meaning for different drivers. Some drivers
need to depart and arrive within a certain time horizon, and do not mind if they have to pay
toll fees, as long as they do not end up on a congested road (e.g., drivers traveling to work
everyday, with fixed office hours). For other drivers it is notimportant when they leave and
when they arrive, as long as their total travel time is not toohigh. There are also drivers
for whom the most important consideration is not to pay any tolls, no matter how slow their
journey is. Still other drivers pick the most scenic route.

For each of the drivers a dynamic cost function can be defined.This cost function
contains a travel-time dependent part, and a part containing the tolls the traveler has to pay
when traveling from his/her origin to his/her destination.The cost function can also contain
additional terms, like penalty for deviation from the preferred departure time and penalty for
deviation from the preferred arrival time. Such a cost function was considered in, e.g., [45].
Each of the travelers chooses his/her route and his/her departure time so as to minimize
his/her cost function. The travelers’ choices will determine how the traffic spreads over
the network. In an equilibrium state, no traveler can improve his/her perceived travel costs
by unilateral change of his/her route or departure time. This coincides with the so-called
dynamic stochastic user equilibrium [58], or the dynamic deterministic user equilibrium
[10, 94] in the complete information case.

The road authority can set tolls in various manners. In this thesis we compare two
possible approaches:

• The road authority sets tolls that can vary in time (dynamic toll), but are not directly
mapped to the rate of usage of individual routes (traffic-flowinvariant toll). The game
between the road authority setting tolls to reach its goal and travelers attempting to
minimize their perceived travel costs is defined and solved as a Stackelberg game.
Many researchers have been dealing with the optimal toll design problem in this set-
ting [46, 53, 84].

• The road authority sets dynamic tolls that aretraffic-flow dependent. The problem is
to find optimal toll mappings that would minimize the total travel time of the system
or maximize the total toll revenue. The game between the roadauthority setting toll
mappings to reach its goal and travelers attempting to minimize their travel costs is
defined and solved as an inverse Stackelberg game. In the situation with second-best
pricing, i.e., when the toll is not set on all links in the network, the concept of the
traffic-flow dependent toll is new (See also [74, 79, 81].).

Although we formulate the optimal toll design problem problem in a general manner, such
that a solution of the problem exists for wide class of objective functions and user equilibria
models
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The tolls maximizing the total toll revenue of the system will be much higher than those
minimizing the total travel time of the system, as one would intuitively expect.

Both problems mentioned are NP-hard [77, 78], which is why weuse advanced heuristic
methods, like a neural networks approach [80], to find a satisfying solution.

In some of our case studies the optimal traffic-flow dependenttoll is a decreasing func-
tion of link traffic flow (rather than increasing as one would assume). This phenomenon is
further discussed in Chapters 4 and 5.

1.2.2 Electricity market liberalization

The European electricity market is currently in the midst ofdrastic transformation from
monopolistic, national, and state-owned electricity producers (firms) to a market with com-
peting, private, and often multinational firms. The aim of liberalization is to decrease the
sales price of electricity and to bring about more cost efficient electricity production. Little
is known about other effects of liberalization, like impacts of this process on environment.

To get more insight into the impacts of liberalization, we introduce a game-theoretic
model with electricity producers in various countries as players (see also [75]). Various
scenarios of a firms’ behavior, depending on the properties and market power of the firms,
but also on the strategies of European policy makers, are included in the model. The model
encompasses eight European countries: Belgium, Denmark, Finland, France, Germany, The
Netherlands, Norway, Sweden.

The firms in individual countries generate electricity by means of different technolo-
gies. A producer can own one or more power plants of differenttypes,1 for which the total
capacity for each technology as well as the variable production costs are given. Produc-
ers maximize their pay-offs by choosing the amount of electricity to produce with various
technologies for various load modes. Firm pay-offs consistin the income from sales of
electricity in regional markets minus the (variable) costsof production.

There are limitations on transportation possibilities of electricity, and production ca-
pacity of electricity is fixed in the short term. The electricity demand for each country is
exogenous. Electricity trade is only feasible with neighboring countries. Emissions are
assigned to producers based on the actual technology used and can also be limited.

Real data used for computations are consumers’ demands for electricity per region, sup-
ply data (generation capacity and cost), trade data (interconnection capacity), data pertain-
ing to distribution losses, and emission factors.

The outcomes of our case studies show that liberalization decreases electricity prices
and may decrease production of emissions, provided that restrictions on the electricity pro-
duction are set well.

The problem of electricity market liberalization is dealt with in Chapter 6.

1.2.3 Theory of incentives

Another application of game theory is so-called theory of incentives. This theory deals with
so-called principal-agent models [51, 52, 59, 70], which are an example of the one-leader-
one-follower inverse Stackelberg game introduced in Chapter 3.

1Each power plant corresponds to one specific technology, butmore power plants can be owned by one pro-
ducer.
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Consider a bilateral relationship, in which aprincipal contracts anagentto be respon-
sible for the production of some good. The principal has to pay the agent for the good.
The salary which the principal offers to the agent for the production of a certain number of
products will be decided by the principal. The principal draws up acontract in which he
specifies the quantity of goods he wants and the salary that heis going to pay to the agent
for obtaining the demanded products.

Conflicting objectives and decentralized information are two basic ingredients of incen-
tive theory. The essential paradigm of the analysis of market behavior by economists is one
in which economic agents pursue, at least to some extent, their private interests.

The agent can have private information. This private information can be of two types:
either the agent can take an action unobserved by the principal (the case ofmoral hazard),
or the agent has some private knowledge about his/her cost orvaluation that is ignored by
the principal (the case ofadverse selection). In the incentive theory the main problem is to
find an optimal strategy for the principal, when he does not have a complete information
about the agent.

We will introduce several incentive problems and discuss optimal strategies for the prin-
cipal with different scenarios of the agent’s behavior (Seealso [76].). These problems fall
within the inverse Stackelberg games.

The theory of incentives is dealt with in Chapter 7.

1.3 Overview of this thesis

1.3.1 Thesis outline

This thesis is organized as follows:

• In Chapter 2 the foundations of classical game theory are introduced.

• In Chapter 3 we introduce the extension of classical game theory that we use in this
thesis, the so-called inverse Stackelberg games.

• In Chapter 4 we propose an extension of the static optimal toll design problem to
a situation with a traffic flow-dependent toll. We develop a neural networks-based
algorithm to solve this problem.

• In Chapter 5 we propose an extension of the dynamic optimal toll design problem to
a situation with a traffic-flow dependent toll. Also here we propose a neural networks-
based algorithm to solve this problem.

• In Chapter 6 we define the problem of a liberalized European electricity market. We
present various scenarios differing in the electricity producers’ behavior and solve
these problems analytically or using a numerical algorithmimplemented in Matlab.

• In Chapter 7 we introduce the theory of incentives as a subset of the inverse Stackel-
berg problems, and we present and solve different principal-agent problems.

• Chapter 8 summarizes the results of this thesis and outlines directions for future
research.
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1. Introduction

Optimal Toll Design

Applications

6. Electricity Market Problem

Game Theory

2. Results from Classical Game Theory

7. Theory of Incentives

5. Dynamic Optimal Toll Design Problem
3. Inverse Stackelberg Games

8. Conclusions & Future Research

4. Static Optimal Toll Design Problem

Figure 1.1: Road map. Arrows indicate recommended reading direction

1.3.2 Road map

Figure 1.1 illustrates a grouping of the chapters in relatedsubjects and an ordering in which
the chapters can be read. It is suggested to read the chaptersin the order as they appear in this
thesis. Chapter 1 contains a general introduction to the topic in this thesis, and is therefore
suggested to be red first. Chapters 2 and 3 both focus on game theory. Chapter 2 focuses on
“classical” game theory and explains its main concepts usedin this thesis. Chapter 3 deals
with so-called inverse Stackelberg games, and is one of the contributions of this thesis.
Chapters 4, 5, 6, and 7 deal with game theory applications studied in this thesis. It is
therefore suggested to read Chapters 2 and 3 before Chapters4, 5, 6, and 7. Both Chapters
4 and 5 focus on bilevel optimal toll design problem, the former on its static version, the
latter on its dynamic version. It is suggested to read Chapter 4 before Chapter 5. Chapter 8
summarizes the results of this thesis and gives directions for future research. This chapter
should be read as the last chapter.

Main contributions

The main contributions of the research described in this PhDthesis with respect to game
theory are the following:

• The concept of an inverse Stackelberg game as generalization of a Stackelberg game
is introduced and studied, mainly by means of examples. So far, almost no literature
dealing with inverse Stackelberg games exists, thought theconcept has been known
for some time.
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• Possible ways of how to find a (sub-)optimal solution of an inverse Stackelberg game
are proposed.

• In a general game theoretical framework, it is shown that under the same initial con-
ditions an inverse Stackelberg game can never bring a worse outcome than a related
Stackelberg game, as the Stackelberg strategy is a special case of the Stackelberg
strategy.

The main contributions of the research described in this PhDthesis with respect to the game
theory application in the optimal toll design problem are the following:

• A concept of a traffic-flow dependent toll in the optimal toll design problem is defined
for both the static and the dynamic optimal toll design problem.

• Properties of the optimal toll design problem are discussed.

• A neural-networks based algorithm for solving the optimal toll design problem with
a traffic-flow dependent toll is proposed.

• It is shown that the road authority can never be worse-off with a traffic-flow dependent
toll than with a traffic-flow invariant toll, since the traffic-flow invariant toll is a trivial
case of the traffic-flow dependent toll.

The main contributions of the research described in this PhDthesis with respect to the
game theory applications in the energy market liberalization problem are the following:

• A model of a liberalized electricity market, involving 8 European countries, is pro-
posed.

• Different game theory concepts are applied to this model andit is shown that a mo-
nopolistic or a duopolistic market yields higher electricity prices than a highly com-
petitive market.

The main contributions of the research described in this PhDthesis with respect to the
game theory application in theory of incentives are the following:

• A classical principal-agent model is an inverse Stackelberg game.

• Examples of this game are given and solved analytically.





Chapter 2

Results from Classical Game
Theory

In this chapter some classical results from game theory, used in this thesis, will be recapitu-
lated.

2.1 Preliminaries

Definition 2.1 (Game)
A gameis the interaction among rational, mutually aware players,where the decisions of
some players impacts the payoffs of others. A game is described by its players, each player’s
strategies, and the resulting costs for each outcome. Additionally, in sequential games, the
game stipulates the timing (or order) of moves. 2

Note that a player’sstrategyin a game is a complete plan of decision (action) for what-
ever situation might arise; this fully determines the player’s behavior. A player’s strategy
will determine thedecision(action) the player will take at any stage of the game, for every
possible history of play up to that stage. Astrategy profileis a set of strategies for each
player which fully specifies all actions in a game. A strategyprofile must include one and
only one strategy for every player. Apure strategydefines a specific move or action that a
player will follow in every possible attainable situation in a game. Such moves may not be
random, or drawn from a distribution, as in the case of mixed strategies. Amixed strategyis
a strategy consisting of possible moves and a probability distribution (collection of weights)
which corresponds to how frequently each move is to be played. One can regard a pure
strategy as a degenerate case of a mixed strategy, in which that particular pure strategy is
selected with probability 1 and every other strategy with probability 0.

We will use the following notation: LetD i be a decision space (set of possible decisions)
for the i-th player in ann-person noncooperative game. Letui ∈ D i be a decision of thei-th

player. LetD
def
= D 1×D 2×·· ·×D n be the set of decision spaces. Vectoru

def
= (u1, . . . ,un)

will be called a decision profile, vectoru−i
def
= (u1, . . . , ui−1, ui+1, . . . , un) will be the

decision profile without thei-th decision. The objective function for thei-th player will

11
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be denoted byJ i , whereJ i = J i(u). If player i ∈ {1, . . . ,n} chooses decisionui resulting
in decision profileu = (u1, . . . ,un), playeri obtains outcomeJ i(u). Note that the objective
function is individual and depends on the decision profile chosen, i.e., on the decision taken
by playeri as well as on the decisions of all the other players.

Below we will use the notionui not only for the decision of thei-th player, but also for
the value of such a decision. In Chapters 4, 5, 6, and 7 different notions for the players’
decisions will be introduced to avoid misunderstanding.

2.2 Nash equilibrium

A Nash equilibrium [61] is a set of strategies for finite, non-cooperative games between two
or more players whereby no player can improve his/her payoffby changing their strategy.
Each player’s strategy is an “optimal” response based on theanticipated rational strategy of
the other player(s) in the game.

Definition 2.2 (Nash equilibrium)
A decision profileu∗ = (u∗1, . . . ,u

∗
n)∈ D is in a Nash equilibrium (NE) if no unilateral devia-

tion in decision by any single player is profitable for that player, i.e.,∀i ∈ {1, . . . ,n}, ui ∈
D i , ui 6= u∗i

J i(u
∗
1, . . . ,u

∗
i−1,u

∗
i ,u

∗
i+1, . . . ,u

∗
n) ≤ J i(u∗1, . . . ,u∗i−1,ui ,u

∗
i+1, . . . ,u

∗
n).

2

A game can have a pure strategy Nash equilibrium or an Nash equilibrium in its mixed
extension. Nash proved that, if we allow mixed strategies (players choose strategies ran-
domly according to pre-assigned probabilities), then every n-player game in which every
player can choose from finitely many actions admits at least one Nash equilibrium.

Players are in a Nash equilibrium if each one is making the best decision that he/she
can, taking into account the decisions of the others. However, the Nash equilibrium does not
necessarily mean the best cumulative payoff for all the players involved; in many cases all
the players might improve their payoffs if they could somehow agree on strategies different
from the Nash equilibrium.

Remark 2.1 In Chapter 4 the so–calledWardropequilibrium will be introduced, as a lim-
iting case of the Nash equilibrium applied in macroscopic traffic modeling. The Wardrop
equilibrium is the Nash equilibrium with a very large numberof players. Then the contri-
bution of a single player to the outcome of the game tends to zero. 2

2.3 Stackelberg equilibria and terminology

For the sake of simplicity we will consider a game with two players only.
Let us consider two players, called Leader and Follower, respectively, each having

his/her own cost function,
JL (uL,uF) , JF (uL,uF) ,
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whereuL ,uL ∈ R. Each player wants to choose his/her own decision variable in such a
way as to minimize his/her own cost function. In the Stackelberg equilibrium concept one
player, the leader, announces his/her decisionuL, which is subsequently made known to the
other player, the follower. With this knowledge, the follower chooses his/heruF. HenceuF

becomes a function ofuL, written as

uF = lF(uL) ,

which is determined through the relation

min
uF
JF (uL,uF) = JF (uL, lF(uL)) .

Here it is assumed that this minimum exists and that it is unique for each possible choice
uL of the leader. The functionlF(·) is sometimes called a reaction function (i.e. it indicates
how the follower will react upon the leader’s decision). Before the leader announces his/her
decisionuL, he/she will realize how the follower will react and hence the leader will choose,
and subsequently announce,uL such as to minimizeJL (uL, lF(uL)) .

Example 2.1
Suppose

JL(uL,uF) = (uF−5)2 +u2
L, JF(uL,uF) = u2

L +u2
F−uLuF.

The reaction curvelF is given byuF = 1
2uL (it is easily found by differentiatingJL with

respect touF)and henceuL will be chosen such as to minimize
(

1
2

uL −5

)2

+u2
L,

which immediately results inuL = 2. With this decision of the leader the follower will
chooseuF = 1. The costs for the leader and follower are given by 20 and 3, respectively.2

Note that the best that the leader can obtain is

min
uL∈DL ,uF∈DF

JL(uL ,uF)

We will refer to this value as to theteam minimum.

2.4 Open loop versus closed loop

These concepts appear in games in which time evolution playsa role.
In open-loop information patterns a strategy only depends on the initial state, at the

beginning of a game. In closed-loop information patterns the strategy depends on the current
state, i.e., the state at the moment that a decision has to be made.

2.5 Tools for one-person optimization

In this section we will introduce some optimization techniques adopted from control sys-
tem theory and used in this thesis. For more details about individual techniques, see [5].
In Section 2.5.1 the dynamic programming approach for continuous-time systems will be
introduced. In Section 2.5.2 the minimum principle will be introduced. Section 2.5.3 deals
with affine quadratic continuous-time optimal control problems.
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2.5.1 Dynamic programming for continuous-time systems

The method of dynamic programming is based onthe principle of optimalitywhich states
that an optimal strategy has the property that, whatever theinitial state and time are, all
remaining decisions (from that particular initial state and particular initial time onwards)
must also constitute an optimal strategy. To exploit this principle, one has to work back-
wards in time, starting at all possible final states with the corresponding final times. The
dynamic programming approach, when applied to the single criterion optimization problems
defined in continuous time, leads to a partial differential equation, known as the Hamilton-
Jacobi-Bellman (HJB) equation. We will consider the problem defined as finding decision
u minimizing costL(u), where

ẋ(t) = f (t,x(t),u(t)) , x(0) = x0, t ≥ 0, (2.1)

u(t) = γ(t,x(t)) ∈ S, γ ∈ Γ, (2.2)

L(u) =

∫ T

0
g(t,x(t),u(t)) dt +q(T,x(T)) , (2.3)

T = min
t≥0

{t : l (t,x(t)) = 0}. (2.4)

Heret indicates the time, ˙x denotes dx/dt. The statex of this model evolves in time ac-
cording to the differential equation ˙x = f (t,x(t),u(t)). In general the statex can be an
n-dimensional vector (written asx ∈ Rn) andt ∈ [0,T], whereT > 0 represents the fixed
final time. Under suitable conditions on the functionf , the time evolution ofx is uniquely
determined by the differential equation. A scalar functionl defines ann-dimensional smooth
manifold in the product spaceRn×R+, and the class of all admissible closed-loop strategies
Γ. The so-calledvalue function

V(t,x)
def
= min

u(s)
t ≤ s≤ T

[∫ T

t
g(s,x(s),u(s)) ds+q(T,x(T))

]
, (2.5)

satisfying the boundary condition

V(T,x) = q(T,x) along l(T,x) = 0. (2.6)

describes the minimal cost-to-go from any initial statex and any initial timet. If V is con-
tinuously differentiable, the principle of optimality yields the following HJB equation:

−∂V(t,x)
∂t

= min
u

[
∂V(t,x)

∂x
f (t,x,u)+g(t,x,u)

]
, (2.7)

which takes (2.6) as the boundary condition.

Theorem 2.2 (Sufficiency) If a continuously differentiable function V(t,x) can be found
that satisfies the HJB equation(2.7)subject to the boundary condition(2.6), then it gener-
ates the optimal strategy through the static (pointwise) minimization problem defined by the
right-hand side of(2.7).

Proof : See [5]. 2
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2.5.2 The minimum principle

LetV from (2.7) be twice continuously differentiable. Let function H̃ be defined as

H̃(t,x,u)
def
=

∂V(t,x)
∂x

f (t,x,u)+g(t,x,u).

Then equation (2.7) foru∗ minimizing H̃(t,x,u) can be written as

∂V(t,x)
∂t

+ H̃(t,x,u∗) = 0. (2.8)

SinceV is twice continuously differentiable, differentiation of(2.8) with respect tox andt
yields

∂g
∂x

+
d
dt

(
∂V
∂x

)
+

∂V
∂x

∂ f
∂x

+
∂H̃
∂u

∂u∗

∂x
= 0. (2.9)

It can be seen that∂H̃
∂u = 0 for u = u∗ according to (2.8), ifu is not constrained (If there

are constraints onu, and u∗ happens to be on the boundary, then it can be shown that
∂H̃
∂u

∂u∗
∂x = 0.). In all cases, equation (2.9) becomes

∂g
∂x

+
d
dt

(
∂V
∂x

)
+

∂V
∂x

∂ f
∂x

= 0. (2.10)

Let x∗ denote the state trajectory corresponding tou∗. By introducing the so-calledcostate

vector, λ(t)
def
= ∂V(t,x∗(t))

∂x , (2.10) can be rewritten as

dp′

dt
= − ∂

∂x
[g(t,x∗,u∗)+λ(t) f (t,x∗,u∗)] = − ∂

∂x
H(t, p,x∗,u∗), (2.11)

whereH(t, p,x,u)
def
= g(t,x,u)+ p′ f (t,x,u). Sincel(T,x) = 0 for the final timeT, T can

be regarded as a function of the state, i.e.,T = T(x). The boundary condition forp(t) is
determined by

p′(T) =
∂V (T(x∗),x∗)

∂x
=

∂q(T(x∗),x∗)
∂x

. (2.12)

Under the assumption that the value functionV(t,x) is twice continuously differentiable, the
optimal controlu∗(t) and corresponding trajectoryx∗(t) satisfies the followingcanonical
equation:

ẋ∗(t) =

(
∂H
∂λ

)′
= f (t,x∗,u∗), x(t0) = x0, (2.13)

λ̇(t) = −∂H(t,λ,x∗,u∗)
∂x

, (2.14)

λ′(T) =
q(T,x∗)

∂x
along l(T,x) = 0; (2.15)

H(t,λ,x,u)
def
= g(t,x,u)+λ f (t,x,u), (2.16)

u∗(t) = argmin
u∈S

H(t,λ,x∗,u). (2.17)
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In the derivation of (2.13)–(2.17) the controls have been assumed to be functions of time
and state. If the control functions are dependent on time only, one obtains the following
(Pontryagin) principle.

Theorem 2.3 (Pontryagin minimum principle) Consider the optimal control problem de-
fined by(2.1)–(3.13)and under the open-loop information structure. If the functions f, g, q,
and l are continuously differentiable in x and continuous int and u, then relations(2.13)–
(2.17)provide a set of necessary conditions for the optimal control and the corresponding
optimal trajectory to satisfy.

Proof : See [47]. 2

2.5.3 Affine quadratic optimal control problems

Let a system be given by

ẋ = A(t)x(t)+B(t)u(t)+c(t), x(0) = x0. (2.18)

Let the function to be minimized be defined as

L(u) =
1
2

x′(T)Qf x(T)+
1
2

∫ T

0

(
x′Qx+2x′p+u′Ru

)
dt, (2.19)

wherex(t) ∈ R
n, u(t) ∈ R

m, 0≤ t ≤ T andT is fixed. A(·), B(·), Q(·) ≥ 0, R(·) > 0 are
matrices of appropriate dimensions and with continuous entries on[0,T]. The matrixQf is
nonnegative-definite,andc(·) andp(·) are continuous vector-valued functions, taking values
in R

n. Furthermore, we adopt the feedback information pattern andtake a typical control
strategy as a continuous mappingγ : [0,T]×R

n → R
m. The space of all such strategies will

be denoted byΓ. The optimal control problem is to find aγ∗ ∈ Γ such that

J (γ∗) ≤ J (γ) , ∀γ ∈ Γ, (2.20)

where

J (γ) def
= L(u), with u(·) = γ(·,x). (2.21)

SinceJ (γ) is quadratic inx0 (see [1]) and the minimum cost-to-go, starting from an arbitrary
t ∈ [0,T] at an arbitrary pointx ∈ R

n, is quadratic inx, we can prove that there exists a
continuously differentiable value function of the form

V(t,x) =
1
2

x′S(t)x+k′(t)x+m(t) (2.22)

that satisfies (2.7). HereS is a symmetricn×n matrix with continuously differentiable en-
tries,k(·) is a continuously differentiablen-vector, andm(·) is a continuously differentiable
function.

Substitution of (2.22) into (2.7) leads to

−1
2

x′Ṡx−x′k̇− ṁ= min
u

[
(Sx+k)′(Ax+Bu+c)+

1
2

x′Qx+x′p+
1
2

u′Ru

]
. (2.23)
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Minimization of the right hand side leads to

u∗(t) = γ∗ (t,x(t)) = −R−1B′ [S(t)x(t)+k(t)] . (2.24)

By substituting (2.24) into (2.23) we obtain the following conditions:

Ṡ+SA+A′S−SBR−1B′S+Q= 0, S(T) = Qf , (2.25)

k̇+
(
A−BR−1B′S

)′
k+Sc+ p= 0, k(T) = 0, (2.26)

ṁ+k′ c− 1
2

k′BR−1B′k = 0, m(T) = 0. (2.27)

Proposition 2.5.1 The affine quadratic continuous-time optimal control problems(2.18)–
(2.19)admits a unique optimum feedback controllerγ∗ which is given by(2.24), where S(·),
k(·), and m(·) uniquely satisfy(2.25)–(2.27). The minimum value of the cost function is

J (γ∗) =
1
2

x′0S(0)x0 +k′(0)x0 +m(0).

Proof : See [5]. 2





Chapter 3

Inverse Stackelberg Games

Parts of the research presented in this chapter have been presented in [78]. In Section 3.1 we
deal with static inverse Stackelberg games. Dynamic inverse Stackelberg problems are in-
troduced in Section 3.2. Conclusions, possible extensions, and future research are discussed
in Section 3.4.

3.1 Static inverse Stackelberg games and equilibria

In Section 3.1.1 the static inverse Stackelberg game with one leader and one follower is
introduced, in Section 3.1.2 static inverse Stackelberg problems with one leader and multiple
followers will be dealt with.

3.1.1 One leader – one follower games

Let us consider a game with one leader and one follower, each having his/her cost function

JL (uL,uF) ,JF (uL,uF) ,

to be minimized. In theinverse Stackelberg gamethe leader does not announce the scalar
uL, as in the Stackelberg game introduced in Section 2.3, but a functionγL(·), which maps
uF into uL.

Given the functionγL(·), the follower’s optimal choice ofuF, indicated by an asterisk,
satisfies

u∗F = argmin
uF
JF (γL(uF),uF) . (3.1)

The leader, before announcing his/herγL(·), will realize how the follower will play, and
he/she should exploit this knowledge in order to choose the best possibleγL-function, such
that ultimately his/her own cost becomes as small as possible. Symbolically this can be
written as

γ∗L(·) = argmin
γL (·)
JL
(
γL
(
uF(γL(·))

)
,uF
(
γL(·)

))
. (3.2)

19



20 3 Inverse Stackelberg Games

The problem (3.2) belongs to the field of composed functions [50], and is therefore in gen-
eral very difficult to solve. In general it is very complicated to find an analytical solution of
(3.2), if it exists at all.

However, if the leader knows what he/she can achieve (in terms of minimal costs) and
what has to be done by all players to reach this outcome, the leader may be able to persuade
other players to help him/her to reach this goal (i.e., the value of the leader’s cost function
obtained if all players minimize it), as shown in Example 3.1. If it is unknown what the
leader can achieve in terms of minimal costs, finding the leader’s optimalγL-strategy is
generally very difficult.

Example 3.1
Suppose the cost functions are those of Example 2.1, i.e.,

JL(uL,uF) = (uF−5)2 +u2
L, JF(uL,uF) = u2

L +u2
F−uLuF.

If both the leader and the follower would minimizeJL (uL,uF), the follower totally disre-
garding his/her own cost function, the leader would obtain theteam minimum

min
uL∈DL ,uF∈DF

JL (uL,uF) = JL(0,5) = 0.

To obtain the team minimum in the inverse Stackelberg game the leader should choose the
γL-curve in such a way that the point(uL,uF) = (0,5) lies on this curve and, moreover, that
the set

{(γL(uF),uF) |uF ∈ DF}
does not have other points in common with the set

{(uL,uF) |JF(uL,uF) < JF (0,5)}.

An example of such a curve isuL = 2uF−10. Clearly, this is the only linear curve satisfying
the requirements.

With this choice of the leader, the best for the follower to dois to minimize

JF(2uF−10,uF) ,

which leads touF = 5. ThenuL = 0 and the leader obtains his/her team minimum in spite
of the fact that the follower minimized his/her own cost function (although subject to the
constraintuL = γL (uF) = 2uF−10). 2

The following two examples show situations in which the teamminimum cannot be reached.

Example 3.2
LetD L = {α,β}, DF = {γ,δ}, α,β,γ,δ ∈ R. If the optimal strategies for the leader and for
the follower are1:

u∗L =

{
α, if uF = γ,
β, if uF = δ,

u∗F =

{
γ, if uL = β,
δ, if uL = α.

Clearly, in this situation the leader cannot reach the best-possible (team minimum) outcome
in the deterministic sense. However, a mixed strategy solution can be found.

2

1It is easy to define cost functions, corresponding to these optimal strategies.
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Example 3.3
Let us consider Example 3.1 with restriction of the decisionspaces for both the leader and

the follower,D L
def
= [−4,3], DF

def
= [−5,7]. The worst that can happen to the follower is

characterized by minuF maxuL JF, which is realized foruF = −2, uL = −4 (JF(−4,−2) =
12). In optimal case the leader obtains

min
uL ,uF
JL , subject toJF ≤ JF(−4,−2) = 12.

The solutionuL anduF will be indicated byu†
L,u†

F. An ε-optimal choice for the leader is

uL = γL (uF) =

{
−4, for −5≤ uF < u†

F− ε,
u†

L, for u†
F− ε ≤ uF ≤ 7,

whereε is an arbitrarily small nonnegative number. Ifε > 0, the solution is unique, ifε = 0
the follower can respond in a non-unique way. 2

Example 3.4 will deal with a situation, in which the leader does not know in advance, what
he/she can achieve.

Example 3.4
Let us consider an inverse Stackelberg game, in which the follower minimizes the sum of
f (uF) andγL(uF), whereγL : DF → R

0
+, γL(0) = 0, is chosen by the leader andf : DF → R

is a given function, i.e.,

u∗F = arg min
uF∈DF

( f (uF)+ γL(uF)), (3.3)

while the leader maximizesγL(uF), i.e.,

γ∗L(·) = argmax
γL (·)

γL (uF) . (3.4)

This example can be interpreted as follows: The leader is a bank and the follower is
an investor. The investor maximizes his wealth− f (uF)− γL(uF), whereuF [euro] is the
investment. ForuF = 0 no transaction takes place. LetγL(·) represent transaction costs
function, i.e., if the investor makes investment decisionuF, he has to pay transaction costs
of γL(uF) [euro]. Since the investor should be secured of a maximum cost f (0) by playing
uF = 0, we assume that he/she will only takeuF-values from the setU defined as

U
def
= {uF : f (uF) ≤ f (0)}.

In practice the functionf would depend on the market situation. Let us considerf
defined as follows

f (uF)
def
= (uF−α)2 + β,

with α > 0. Then f (0) = α2 + β and, therefore,U = [0,2α].
We will try to find anε-optimalγL-function in an ad-hoc way. SinceγL(uF) is included

in the follower’s cost function, we will try to check how different choices ofγL influence the
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outcome of the game. Intuitively, it seems to be reasonable to chooseγL-function defined as
follows:

γL(uF)
def
=

{
( f (0)− f (uF))(1− ε), if 0 ≤ uF ≤ 2α,
nonnegative, elsewhere,

(3.5)

whereε ↓ 0.

With the γL-function defined by (3.5) the optimal follower’s decision is u∗F = α, the
follower’s costs areα2+β−α2ε and the leader’s profit is(1−ε)α2. The leader (bank) reaps
essentially all the follower’s (investor’s) profits (the latter would have been minuF f (uF) =
α if the transaction costs would have been identically zero).Note that theε-optimal γL-
function of the leader is non-unique; another choice, similarly advantageous to the bank,
would be

γL(uF) =

{
α2− ε, if uF 6= 0;
0, if uF = 0,

whereε ↓ 0. Then the outcomes for the leader and the follower areα2− ε andα2 + β− ε,
respectively. Note that forε ↓ 0 the outcomes of the two games do not differ. 2

Note that an upper bound for the leader’s profit in Example 3.4is

JF(uF = u∗F)− JF(uF = 0),

whereu∗F is the optimal decision of the follower in absence of transaction costs.

3.1.2 One leader – multiple followers games

If there are two or more followers in the decision problem, the relationship, which deter-
mines the solution concept to be adopted between the followers, must be specified. LetF
be the set of all followers and let|F| denotes the number of elements in the setF . Let D L ,
DFi be decision spaces of the leader and thei-th follower, respectively,i = 1, . . . , |F |.

An inverse Stackelberg strategy for the leader is a mappingγL : DF1 ×·· ·×DF|F| → D L .
This mapping can also be a vector-valued function, ifD L ∈ R

n, n∈ N. Suppose thatu∗F =(
u∗F1

, . . . ,u∗F|F|

)
is the|F|-tuple of the follower’s decisions desired by the leader. Wesay that

γL is a dominant strategy solution for the leader, if

arg min
uFi∈DFi

JFi

(
γL

(
uF1, . . . ,uF|F |

)
,uF1, . . . ,uF|F |

)
= u∗Fi

, (3.6)

with arbitraryuF j , ∀ j 6= i, i = 2, . . . ,M.

If the followers minimize their own cost functions, being noncooperative among them-
selves, a natural solution concept for their behavior is theNash equilibrium, introduced in
Section 2.2.

Example 3.5 [Followers minimizing their own costs]
Consider three players, the leaderL and two followersF1, F2, with decision variablesuL,
uF1, uF2, respectively. The decision spaces for the followers are thereal numbers, i.e.,
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DF1 = DF2 = R, whileD L = R
2. The followers’ cost functions (to be minimized) are given

as follows:

JF1 =
(

u(1)
L −2

)2
+uF1

2 +u2
F2
−u(1)

L uF1 −u(1)
L uF2,

JF2 =
(

u(2)
L +1

)2
+uF1

2 +u2
F2
−2u(2)

L uF1 −2u(2)
L uF2,

and they are playing a Nash game among themselves. The leaderhas the cost function (to
be minimized)

JL =
(

u(1)
L −1

)2
+
(

u(2)
L +1

)2
+(uF1 −1)2 +(uF2 +1)2 (3.7)

It is obvious that the team minimum for the leader is in the point
(

u(1)
L ,u(2)

L ,uF1,uF2

)
= (1,−1,1,−1).

An optimal strategy for the leader is to choose linear functions

u(1)
L =

uF1

2
+

1
2
, u(1)

L = ξ(uF2 +1)−1, ξ ∈ R. (3.8)

Because the parameterξ can vary, the strategy (3.8) is nonunique. This strategy yields the
team minimum for the leader. Outcomes for the leader, the first follower, and the second
follower are then 0, 3, and 2, respectively.

2

In some cases the leader can decouple the followers from eachother, and, therefore, the
leader can control each of the followers’ cost functions separately.

Example 3.6 [Example of a decoupling strategy of the leader]

Let us consider three players, one leaderL with uL =
(

u(1)
L ,u(2)

L

)
(D L = (R+)2) and two

followers F1, F2 with decision variablesuF1 and uF2, respectively, and decision spaces
DF1 = DF2 = R+. All players want to minimize their cost functions defined as

JL = (uF1 +uF2)
2 ,

JF1 = (uF1 −1)2 +uF2 +u(1)
L ,

JF2 = (uF2 −1)2 +2uF1 +u(2)
L .

If the leader appliesu(1)
L = γ(1)

L (uF1) = 2uF1 − 2uF2, it will induce u(1)
L = 0 regardless

of the value ofuF2, and similarlyu(2)
L = γ(2)

L (uF2) = 2uF2 will induceu(2)
L = 0 for all values

uF2, and hence

γL (uF1,uF2) =
(

γ(1)
L (uF1) ,γ

(2)
L (uF2)

)

constitutes a dominant strategy. The leader can control cost functions of each follower
separately. However, such a solution does not exist generally, because the cost functions of
the followers may not have the required structure. 2
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Example 3.7 [Followers in a Wardrop equilibrium]
Consider again three players, the leaderL and the followersF1, F2, where the decision
spaces are defined asD L = {uL,uL = auF1 +b, a,b∈ R}, DF1 = DF2 = R

0
+. Additionally,

let the leader’s objective function be

JL = (uF1)
2 +(uF2)

2−uF1 uF2 −3uF1; (3.9)

and let the followers have cost functions

JF1 = uF1 +uL, JF2 = 10uF2, (3.10)

respectively. Additionally, let the following constraints have to be satisfied:

uF1 +uF2 = 10, JF1 = JF2. (3.11)

The leader can in advance compute that the optimal followers’ reactions to hisuL = auF1 +b
are

uF1 = −b−100
a+11

, uF2 =
10a+b+10

a+11
(3.12)

for any choice ofa andb. Hence, the leader minimizesJL with uF1 anduF2 given by (3.12),
i.e.,

JL =
100a2−1100a+33ab+3b2−237b+5800

(11+a)2 .

Minimization of this function with respect toa andb leads toa = −2/11b∗+79/11 where
b is free. This choice ofa yieldsuL = 79/2 andJL = 37/4, while the optimaluF1 anduF2

are 11/2 and 9/2 and yieldJF1 = JF2 = 45. 2

Remark 3.1 The interpretation of (3.11) in Example 3.7 is as follows: 10is the number
of drivers traveling from origino to destinationd choosing among two linksl1, l2, uF1

anduF2 are traffic flows on linkl1 and link l2, respectively. The travelers’ choices of links
determine the traffic flows in the network. Linkl1 is tolled with traffic-flow dependent toll

uL
def
= auF1 +b (a,b∈ R+), JF1 (uF1,uL) is the cost of using linkl1 andJF2(uF2) is the cost

on the linkl2. Equations (3.11) can be interpreted as Wardrop equilibriumamong travelers
[94], provided that both links are used. In Chapters 4 and 5 more problems of this type will
be considered. While in reality the traffic flows are integer-valued, in our case studies we
consider real traffic flows. 2

Example 3.8
Consider the game with two followers, with

JF1 = u2
F1
−uF1uL +2u2

L,

JF2 = u2
F2
−2uF2uL +5u2

L,

and one leader with the cost function

JL = u2
L +2uF1uL +5uF2uL +u2

F1
+u2

F2
+4u2

L.
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The team minimum ofJL would be achieved if

uF1 = −8/25, uF2 = −20/25, and uL = 8/25.

The leader will try to obtain his team minimum by right choiceof the coefficientsα, β, δ in

uL = γL(uF1,uF2) = αuF1 + βuF2 + δ.

If he is successful with linear functions, there is no necessity to consider the larger class
of nonlinear functions. We derive three (linear) equationsfor the coefficientsα, β, δ. The
first one is obtained by the fact that the absolute minimum must lie on the curveuL =

αuF1 +βuF2 +α3. The second and third ones are obtained by
∂JFi (uFi ,γL (uF1,uF2))

∂uFi
= 0, i = 1,2.

The equations are

−8α−20β +25δ = 8,

16α−20β−25δ = 16,

−8α+80β−50δ = 40,

which results in

α =
3
5
, β =

7
15

, δ =
332
375

. (3.13)

TheγL-function with coefficients given by (3.13) leads to the leader’s team minimum.
In other words, he/she cannot do better.

A different approach to find the solution of the problem couldbe described as fol-
lows: Consider the constant level curveJF1(uF1,uL) through this point, i.e.JF1(uF1,uL) =
928/625. This curve determinesuL as a function ofuF1. By taking the total derivative

of JF1(uF1,uL) = 928/625 with respect touF1 one obtains∂uL
∂uF1

= 3
5 for (uF1,uF2,uL) =

(−8/25,−20/25,8/25). By considering the constant level curveJF2(uF2,uL) through the

same point, one obtains similarly∂uL
∂uF2

= 7
15. Hence, if a linearγL function exists, it must be

of the form

uL = γL(uF1,uF2) = αuF1 + βuF2 + δ

with α = 3
5, β = 7

15. Now δ is obtained by the fact that the curveuL = γL must pass through
the point(uF1,uF2,uL) = (−8/25,−20/25,8/25.) This yieldsδ = 332

375. 2

3.2 Dynamic inverse Stackelberg games and equilibria

The dynamic inverse Stacklelberg game with one leader and one follower is introduced Sec-
tion 3.2.1. In Section 3.2.2 the inverse Stackelberg problems with one leader and multiple
followers will be dealt with. Note that we focus on continuous-time dynamics (as oppose to
dynamic problems considered in Chapter 5) although the discretized versions of the prob-
lems are used for their solution.
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3.2.1 One leader – one follower games

Let us consider a dynamic system defined by

ẋ = f (x,uL ,uF), x(0) = x0.

Heret indicates the time, ˙x denotes dx/dt. The statex of this model evolves in time accord-
ing to the differential equation ˙x = f .

In general the statex can be ann-dimensional vector (written asx∈ Rn), but we restrict
ourselves ton = 1 andt ∈ [0,T], whereT > 0 represents the fixed final time. The quantities
ui, i = L,F, are scalar functions of time possibly restricted to a certain setui(t) ∈ Ui(t),
which will be specified later. The functionui must be chosen in such a way as to minimize
the cost function ∫ T

0
gi(x,uL ,uF)dt +qi(x(T));

bothgi andqi are scalar functions and are assumed to satisfy certain regularity conditions, to
be introduced later, such that the cost functions are well defined. Under suitable conditions
on the functionf (x,uL ,uF), the time evolution ofx is uniquely determined by the differential
equation. There are no restrictions onx(T), it is the so-calledfree endpoint problem. The
specific problem on which we will concentrate now is:

(P)






ẋ = f (x,uF), x(0) = x0,

min
uF
JF = min

uF

(
q(x(T))+

∫ T

0
g(x,uF)dt +

∫ T

0
γL(uF(t))dt

)
,

max
γL (·)
JL = max

γL (·)

∫ T

0
γL(uF(t))dt.

The functionγL is up to the choice of the leader and satisfies

γL(0) = 0, γL(·) ≥ 0, γL(uF) = γL(−uF).

Similarly, as in Example 3.4, this game can be interpreted asa game between a bank as
the leader and an investor as the follower. The investor wants to maximize

−q(x(T))−
∫ T

0
g(x,uF)dt −

∫ T

0
γL(uF(t))dt

(equivalently wants to minimizeJF
def
= q(x(T))+

∫ T
0 g(x,uF)dt +

∫ T
0 γL(uF(t))dt).

The term−q(x(T)) represents the wealth of the investor at the final timeT and the term
−
∫ T

0 g(x,uF)dt represents the consumption during the time interval[0,T]. The termuF(t)
can be interpreted as a density of the investor’s transactions with the bank, i.e., during the
time interval[t,t +dt] the number of transactions equalsuF(t)dt. ForuF = 0 no transactions
take place (γL(0) = 0). The transactions cost money and we assume that the bank wants to
maximize these transaction costsJL. These costs are included in the costs of the follower
JF. A reasonable restriction onγL is thatγL(·) is nondecreasing with respect to|uF|. The
higher the number of transactions (either buying or selling, one being related to a positive
uF, the other one to a negativeuF), the higher the costs.

The problem as stated here is obviously a difficult one. We will consider two specific
examples of the problem (P) and try to find the optimalγL-function for the leader.
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Example 3.9
This example is a dynamic extension of Example 3.4. The problem is:

(P1)






ẋ = uF, x(0) = 1,

min
uF
JF = min

uF

((
1
2

∫ 1

0
u2

F(t)dt +
1
2

x2(1)

)
+
∫ 1

0
γL (uF(t)) dt

)
,

max
γL (·)
JL = max

γL (·)

∫ T

0
γL(uF(t))dt.

As in Example 3.4 the transaction costs will be first not considered. Based on the results
of the minimization problem of the follower’s function without theγL-function we will
consider different possibilities forγL-function to obtain the best-possible outcome for the
leader. Therefore, the follower’s cost function to be minimized is first defined as

J 0
F

def
=

(
1
2

∫ 1

0
u2

F(t)dt +
1
2

x2(1)

)
. (3.14)

The Hamiltonian of the problem given by ˙x = uF, x(0) = 1, and by (3.14) is

H = λuF +
1
2

u2
F.

Using the Pontryagin minimum principle we compute that

u∗F(t) = −λ, λ̇ = 0, λ(1) = x(1), uF(t) = −x(1), t ∈ [0,1],

and hence

u∗F(t) = −1
2
, x∗(t) = 1− 1

2
t, JF (uF = u∗F) =

1
4
, JF(uF = 0) =

1
2
.

Mimicking the choice ofγL in Example 3.4 we will first considerγL defined as

γL(uF)
def
= −

(
1
2
− ε
)

uF(1+uF)

on the interval[0,1] andγL(uF) ≥ 0 elsewhere, withε ↓ 0. HereγL(·) = 0 if ε = 0 on [0,1]
and

H = λuF +
1
2

u2
F−
(

1
2
− ε
)

uF(1+uF) .

Therefore,

u∗ = −λ− 1
2 + ε

2ε
and

λ̇ = 0, λ(1) = x(1), x∗(t) = 1− 1
2

t.

The outcomes of the game for the leader and the follower are

JL =
1
8
− 1

4
ε, JF =

3
8
− 1

4
ε.
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The leader can do better, however, with another choice of quadraticγL . Let

γL(uF)
def
=

1
2

βu2
F + αuF,

then

x∗(1) =
1+ β−α

2+ β
, u∗F(t) ≡−1+ α

2+ β
,

whereβ > −1 has to be satisfied (second-order conditions). SinceJF(uF = 0) = 1
2, the

parametersα andβ must satisfyJF(uF = u∗F) ≤ 1
2, i.e.,

1
2

(
(u∗F)

2 +(x∗(1))2
)

+ γL (u∗F) =
(2+ β)− (1+ α)2

2(2+ β)
≤ 1

2
,

which is always fulfilled forβ > −1. Consider

max
α,β

γL(u∗F) = max
α,β

1
2

(
β
(

1+ α
2+ β

)2

−2α
1+ α
2+ β

)
= max

α,β

β−4α− (4+ β)α2

2(2+ β)2 .

The maximization with respect toα leads toα = −2
4+β , which, upon its turn, leads to

max
α,β

γL (u∗F) = max
β

1
2(4+ β)

.

Based upon this, theε-optimal value forβ is β = −1+ ε, whereε ↓ 0. Subsequently,α =
− 2

3 + 2
9ε up to first order inε, and with the same accuracy,u∗F = − 1

3 + 1
9ε . This leads to

JF =
4
9
− 1

27
ε, JL =

1
6
− 1

18
ε,

which is a best result for the leader within the class of quadratic γL-functions. Without the
transaction costs for the investor, its costs would be

JF− JL =
5
18

+
1
54

ε,

which is less than what he would have obtained by playinguF = 0. Sinceg(u∗F) > 0 in a
neighborhood ofu∗F, only further away fromu∗F the functionγL has to be adjusted such that
γL(·) ≥ 0 everywhere.

We might think that the leader can maximize his/her profit by means of the following
nonquadratic choice:

γL(uF) =

{
0, if uF = 0,
1
4 − ε, if uF 6= 0,

with ε ↓ 0. It can be derived that the profit of the bank is1
8, which is clearly less than what

could be obtained with the best quadraticγL .
2

To show that with use of the quadraticγL-function the profit of the leader is maximized,
we will formulate the discretized version of Example 3.9.
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Example 3.10 [Discretized version of Example 3.9]
Here we consider the model

x(i) = x(i−1) +
1
N

u(i), i = 1,2, . . . ,N, x0 = 1,

and the criteria

JF =
1

2N

N

∑
i=1

(
u(i)

F

)2
+

1
2

(
1+

1
N

N

∑
i=1

u(i)
F

)2

, JL =
1
N

N

∑
i=1

γL

(
u(i)

F

)
.

The expression to be minimized is then

1
2



 1
N

N

∑
k=1

(
N

∑
i=1,i 6=k

(
u(i)

F

)2
)

+
N

∑
k=1

(
1+

1
N

N

∑
i=1,i 6=k

u(i)
F

)2




−1
2

N

∑
i=1

(
u(i)

F

)2
− 1

2
N

(
1+

1
N

N

∑
i=1

u(i)
F

)2

.

The derivative of this expression with respect tou(1)
F equals zero. Substitution ofu(2)

F =

· · · = u(N)
F = u(1)

F subsequently leads to
(

u(i)
F

)∗
= − N

3N−1
, i = 1,2, . . . ,N.

With N → ∞ we get
(

u(i)
F

)∗
= − 1

3, i = 1,2, . . . ,N. The profit for the leader is N
2(3N−1) . Note

that with limN→∞
N

2(3N−1) = 1
6, as in the case of the best quadraticγL-function.

If we considerJF as a function ofu(1)
F only and withu(2)

F = . . . = u(N)
F =− N

3N−1, thenJF
can be computed as

JF

(
u(1)

F ,u(2)
F , . . . ,u(N)

F = − N
3N−1

)
=

1
2

[
1
N

(
u(1)

F

)2
+

N−1
N

(
N

3N−1

)2

+

(
1+

1
N

(
u(1)

F − N(N−1)

3N−1

))2
]

and

JF

(
u(1)

F = 0,u(2)
F , . . . ,u(N)

F = − N
3N−1

)

− JF
(

u(1)
F = − N

3N−1
,u(2)

F , . . . ,u(N)
F = − N

3N−1

)

=
1
2

[
N(N−1)+ (2N)2

(3N−1)2 − N2 +(2N−1)2

(3N−1)2

]
.

If we calculate

N

(
JF

(
u(1)

F = 0,u(2)
F , . . . ,u(N)

F = − N
3N−1

)

−JF
(

u(1)
F = − N

3N−1
,u(2)

F , . . . ,u(N)
F = − N

3N−1

))
,
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the result is N
2(3N−1) , which equals the profit of the bank (as already obtained earlier). Apart

from anε-term it is necessary for the leader that

JF

(
u(1)

F = − N
3N−1

,u(2)
F , . . . ,u(N)

F = − N
3N−1

)
+

1
N

γL

≤ JF(u(1)
F = 0,u(2)

F , . . . ,u(N)
F = − N

3N−1
),

or with a quadraticε-term,

JF +
1
N

γL = JF

(
u(1)

F = 0,u(2)
F , . . . ,u(N)

F = − N
3N−1

)

+
1
N

ε

[(
u(1)

F +
N

3N−1

)2

−
(

N
3N−1

)2
]

.

Hence,

1
N

γL

(
u(1)

F

)
=

1
2

[
N (N−1)+ (2N)2

(3N−1)2 − 1
N

(
u(1)

F

)2
− N−1

N

(
N

3N−1

)2

+

−
(

1+
1
N

(
u(1)

F − N (N−1)

3N−1

))2
]

+
ε
N

((
u(1)

F

)2
+

2N
3N−1

u(1)
F

)
=

=
1
2

[
− 1

N

(
u(1)

F

)2
− 1

N2

(
u(1)

F

)2
− 4

3N−1
u(1)

F

]

+
ε
N

((
u(1)

F

)2
+

2N
3N−1

u(1)
F

)
.

For N → ∞ this leads to exactly the optimal quadratic function obtained before. This is at
least true forε = 0. The terms linear inε differ, however. We now write

JF
(

u(1)
F , . . . ,u(N)

F

)
= J 0

F

(
u(1)

F , . . . ,u(N)
F

)

+
1
2

[
N

∑
i=1

(
− 1

N

(
u(i)

F

)2
− 1

N2

(
u(i)

F

)2
− 2

3N−1
u(i)

F

)

+
2ε
N

((
u(i)

F

)2
+

4N
3N−1

u(i)
F

)]
.

The Hessian equals 



2ε
N

1
N2 · · · 1

N2

1
N2

. . .
. . .

...
...

. . .
. . . 1

N2
1

N2 · · · 1
N2

2ε
N




.

ForN > 1
2ε all eigenvalues lie in the right half plane. ForN≤ 1

2ε , however, the Hessian is not
positive definite. Therefore, for− N

3N−1 ≤ uF ≤ 0, γL(uF) is as above, and foruF < − N
3N−1

we choose it as a decreasing function. 2
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Example 3.11
Let us consider the dynamic model defined by

ẋ = uF, x(0) = 1,

with criterion

min
uF

1
2

∫ 1

0
(x2 +uF

2)dt +
1
2

x2(1).

An important difference with the problem of the previous section is that the optimal control
is not constant anymore:u∗F(t) = −e−t , which leads to the minimal valueJ ∗F = 1

2. There-

fore, in the discretized problem (see the coming subsection) all
(

u(i)
F

)∗
cannot be equal

anymore. ConsequentlyγL(uF) will have to be specified in the neighborhood of these dif-

ferent
(

u(i)
F

)∗
-values.

We will calculateγL as in Example 3.9. First we consider aγ-function of the form
γL(uF) = 1

2βuF
2 + αuF. The value function, to be minimized with respect toα andβ, is

(assuming thatx(0) = 1)
1
2

S(0)+k(0)+m(0),

whereS(t), k(t), andm(t) satisfy (see Section 2.5.3)

Ṡ=
S2

1+ β
−1, S(1) = 1;

k̇ =
S

1+ β
(k+ α), k(1) = 0;

ṁ=
1

1+ β
(kα+

1
2

k2), m(1) = 0.

It would be very difficult to proceed in analytical way from here, and, therefore, we will
proceed with the discretized version of Example 3.11. 2

Example 3.12 [Discretized version of Example 3.9]
The model is

xi = xi−1 +
1
N

u(i)
F , i = 1,2, . . . ,N, x0 = 1,

and the criteria are

JF =
1

2N

N

∑
i=1

((
u(i)

F

)2
+x2

i−1

)
+

1
2

x2
N =

=
1

2N

N

∑
i=1




(

u(i)
F

)2
+

(
1+

1
N

i−1

∑
k=1

u(k)
F

)2


+
1
2

(
1+

1
N

N

∑
i=1

u(i)
F

)2

;

JL =
1
N

N

∑
i=1

γL

(
u(i)

F

)
.
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First we want to solve minuF JF subject to the model equations. This leads to a linear equa-
tion in uF-elements:





d+ ζ1 ζ2 ζ3 . . . ζN

ζ2 d+ ζ2 ζ3
...

ζ3 ζ3 d+ ζ3
...

...
. . . ζN

ζN . . . . . . ζN d+ ζN









u(1)
F

u(2)
F

u(3)
F

...

u(N)
F





= −N





ζ1

ζ2

ζ3
...
ζN




, (3.15)

where

d =
1
N

, ζi =
1

N3 (N− i)+
1

N2 . (3.16)

The numerical computations suggest that the solutionuF converges towards−e−t , as it
should, asN → ∞. An upper bound for what the leader can hope for is obtained via the

calculation of the maximum (with respect tou(i)
F , i = 1,2, . . . ,N) of

JF(0,u(2)
F ,u(3)

F ,u(4)
F , . . . ,u(N)

F ) − JF(u(1)
F ,u(2)

F ,u(3)
F , . . . ,u(N)

F )+

JF(u(1)
F ,0,u(3)

F ,u(4)
F , . . . ,u(N)

F ) − JF(u(1)
F ,u(2)

F ,u(3)
F , . . . ,u(N)

F )+

JF(u(1)
F ,u(2)

F ,0,u(4)
F , . . . ,u(N)

F ) − JF(u(1)
F ,u(2)

F ,u(3)
F , . . . ,u(N)

F )+
...

JF(u
(1)
F ,u(2)

F ,u(3)
F , . . . ,u(N−1)

F ,0) − JF(u(1)
F ,u(2)

F ,u(3)
F , . . . ,u(N)

F ),

(3.17)

Written out this expression becomes

−
(

1
2N

+
1

2N2

) N

∑
l=1

(
u(l)

F

)2
− 1

2N

N

∑
l=1

N

∑
i=l+1

(
1

N2

(
u(l)

F

)2
+

2
N2 u(l)

F

i−1

∑
k=1,6=l

u(k)
F

)
+

− 1
N2

N

∑
l=1

(
u(l)

F

N

∑
i=1,6=l

u(i)
F

)
− 1

2N

N

∑
l=1

N

∑
i=l+1

2
N

u(l)
F − 1

N

N

∑
l=1

u(l)
F ,

Differentiation with respect tou( j)
F leads to





d+ ζ1 2ζ2 2ζ3 . . . 2ζN

2ζ2 d+ ζ2 2ζ3
...

2ζ3 2ζ3 d+ ζ3
...

...
. . . 2ζN

2ζN . . . . . . 2ζN d+ ζN









u(1)
F

u(2)
F

u(3)
F

...

u(N)
F





= −N





ζ1

ζ2

ζ3
...
ζN




, (3.18)

with d andζi defined as in (3.16). If this linear system of equations is symbolically written
as( 1

N I +A)uF = −Nζ, I being the identity matrix, then

uF = −(I −NA+(NA)2−·· ·)N2ζ.
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Numerical computations suggest that the solutionuF resembles the one of (3.15), i.e., the
values are negative,|u(i)| decreases with increasingi.

Above it was assumed that allu(i)
F -values were different (which also followed from nu-

merical evidence). In case of allu(i)
F -values being equal, an upper bound for the best out-

come for the leader is the maximum value ofδ for which the following inequalities hold for
a choice of theαi ’s (all being equal):

JF(α1,α2, . . . ,αN)+
i
N

δ < JF(“ α′s are zero, all combinations”), (3.19)

i = 1,2, . . . ,N. In general the leader will have to deal with a mixture of the extreme cases
(3.17) and (3.19) since he/she will not know ahead of time what yields the best results for

him/her. Suppose that all optimalu(i)
F are different. Then choose

γL(u(i)
F ) = JF(u(1)

F , . . . ,u(i−1)
F ,0,u(i+1)

F , . . . ,u(N)
F )− JF(u(1)

F ,u(2)
F ,u(3)

F , . . . ,u(N)
F )− ε,

and choose for all other values ofuF γL large (except forγL(0) = 0). In general this function
will not be monotone with respect to|uF| and its “usefulness” seems questionable forN →
∞. 2

3.2.2 One leader – multiple followers games

In this section we will mention a dynamic problem of the inverse Stackelberg type with one
leader and two followers.

Example 3.13
Let us consider the following example:

x1(0) = 0, x2(0) = 0, ẋ1 = uF1 uF2, ẋ2 = uF2,

JF1 =
1
2

∫ 1

0
u2

F1
(t)dt +

1
2

x2
1(1)+

∫ 1

0
γL (uF1(t)) dt,

JF2 =
1
2

∫ 1

0
u2

F2
(t)dt +

1
2

x2
2(1)+

∫ 1

0
γL (uF2(t)) dt.

Both JF1 andJF2 are to be minimized by the followers, while

JL
def
=

∫ 1

0
(γL (uF1 (t))+ γL (uF2 (t))) dt (3.20)

is to be maximized by the leader.
Our problem is to find the optimalγL(·) maximizing (3.20), whileJF1 andJF2 are mini-

mized by the followers.
Let us first considerγL(·) defined as

γL(uFi )
def
= αuFi

2 + βuFi , ∀i ∈ {1,2} (3.21)

With this γL we can compute
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H1 =
1
2

u2
F1

+ αu2
F1

+ βuF1 + λ1uF1 uF2,

H2 =
1
2

u2
F2

+ αu2
F2

+ βuF2 + λ1uF2,

and, therefore,

u∗F1
= − 2(1+ α)(β +2αβ−1)

(5+16α+20α2+8α3+2β + β2)
,

u∗F2
= − 1+ β

2(1+ α)
,

and

JF1 =
2(1+ α)

(
2α2−αβ2+3α+ β +1

)

5+16α+20α2+8α3+2β + β2 ,

JF2 =
1+2α−2β−β2

4(1+ α)
,

JL =
4α(1+ α)2(β +2αβ−1)2

y2 − 2β(1+ α)(β +2αβ−1)

y

+
α(β +1)2

4(α+1)2 − β(β +1)

2(α+1)
,

with y
def
= 5+ 16α + 20α2+ 8α3 + 2β + β2, y 6= 0,1. Minimization of JL with respect toα

andβ givesα∗ ≈ 0.696, β∗ ≈−0.111.
Substitutingα = α∗ andβ = β∗ into JL , JF1, andJF2, respectively, gives us 0.472, 0.383,

and 0.076, respectively, and

u∗F1
= 0.151, u∗F2

= −0.262.

Let us now consider a linearγL(·), i.e.,γL(·) defined by

γL(x)
def
= αx ∀x∈ R.

Then using the same approach as in the previous case we obtain

JF1 =
2(1+ α)

5+2α+ α2 ,

JF2 =
1
4
− 1

2
α− 1

4
α2,

JL = −α
(
1+11+3α2+ α3α

)

2(5+2α+ α2)
.

Minimization of JL with respect toα gives

α∗ ≈−0.047

andJF1 ≈ 0.234·10−2, JF2 ≈ 0.249, andJL ≈ 0.429.
This is a slightly worse outcome for the leader than in the previous case. We could not

find any better solution withγL(·) defined as a polynomial of higher degree than 2.
2



3.3 Extension: Two leaders – one follower 35

3.3 Extension: Two leaders – one follower

In the following example we will study the problem with two leaders and one follower. In
this case there is not an obvious point on which both leaders will agree at the outset. Hence
we will not try to start with such a point. This example was introduced in [65].

Example 3.14
The follower has cost function

JF1 = u2
F1

+u2
L1

+u2
L2

,

and the leaders have the cost functions

JL1 = (uF1 −1)2 +(uL1 −1)2, JL2 = (uF1 −2)2 +(uL2 −1)2.

respectively. Suppose that the two leaders will choose their functionsuL i as

uL1 = γL1(uF1) = α1uF1 + α2, uL2 = γL2(uF1) = β1uF1 + β2.

In the three dimensional (uF1,uF2,uL1) space these two planes have a line of intersection and
the follower is forced to choose the best point (i.e. with theminimum value ofJF1) on this
line of intersection. This leads to

uF1 = −α1α2 + β1β2

1+ α2
1+ β2

1

.

Realizing this choice of the follower, the two leaders will substitute this choice into their
ownγL i -functions and subsequently into their own cost functions.Thus these cost functions
become functions of the parametersαi andβi , i = 1,2, only. By setting

∂JL1(α1,α2,β1,β2)

∂αi
= 0,

∂JL2(α1,α2,β1,β2)

∂βi
= 0,

i.e. the necessary conditions for a Nash equilibrium, one obtains four equations with four
unknowns. The solutions are

α1 = −5, α2 = 10, β1 = −2, β2 = 5,

with correspondinguF1 = 2, uL1 = 0, uL2 = 1, and

α1 = −1, α2 = 2, β1 = 2, β2 = −2,

with correspondinguF1 = 1, uL1 = 1, uL2 = 0. Besides some other solutions were indi-
cated which result from the roots of a fourth order polynomial.

Let us study the first solution given in more detail. It turns out that the second order
conditions are fulfilled. Hence a correct solution has been obtained. It is striking that the
resultinguF-values coincide with the absolute minimum of the second leader (moreover, the
second solution obtained corresponds to the absolute minimum of the first leader).

It is claimed now that the solution obtained is only locally optimal. If the second leader
sticks to

uL2 = γL2(uF1) = −2uF1 +5
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it is claimed now that the first leader can do better than

uL1 = γL1(uF1) = −5uF1 +10,

namely by playing
uL1 = γL1(uF1) = 5uF1 −4.

With this choice ofγL1, while γL2 remains the same, i.e.,γL2(uF1) = −2uF1 + 5, the first
leader obtains his/her team minimum (uF1 = uL1 = 1). How has this latterγL1 function been
obtained? Answer: by substituting the functionuL2 = γL2(uF1) = −2uF1 + 5 into the cost
functionsJF1 andJL1. This now is a game for one leader and one follower. The leadercan
obtain his/her team minimum in this case.

If the first leader choosesuL1 = γL1(uF1) = 5uF1 − 4, then the second leader might be
willing to change his/herγL2 function. Indeed, that is the case. WithuL1 = γL1(uF1) =
+5uF1 −4 (fixed) anduL2 = γL2(uF1) = −32uF1 +65 the resulting (uF1,uL1,uL2) coincides
with the absolute minimum of the second leader. If the leaders continue with alternately
adapting their optimal functions we obtain:

uL2 = γL2(uF1) = −2uF1 +5,

uL1 = γL1(uF1) = +5uF1 −4,

uL2 = γL2(uF1) = −32uF1 +65,

uL1 = γL1(uF1) = +1055uF1 −1054,

uL2 = γL2(uF1) = −1114082uF1 +2228165,

etc.

Obviously this algorithm does not converge, linearγL-functions cannot lead to a Nash solu-
tion. 2

In the following theorem (uF1,JL1
,uL1,JL1

) refers to the pair (uF1,uL1) that minimizesJL1.
Similarly, (uF1,JL2

,uL2,JL2
) refers to the pair (uF1,uL2) that minimizesJL2.

Theorem 3.2 If uF1,JL1
6= uF1,JL2

, a Nash solution between the leaders does not exist.

This theorem holds irrespective of the class ofγL i (uF1) functions,i = 1,2. These functions
are allowed to be discontinuous (even with an infinite numberof discontinuity points); the
theorem remains true.

Proof : See [65]. 2

Example 3.15
Let us consider the cost functions of example 3.14 once more,but now with the constraints
−1≤ uF1 ≤+3, −1≤ uL i ≤+3, i = 1,2. The roles of the players remain the same. We will
let the two leaders alternately minimize their cost functions and see whether this algorithm
converges.

We start by assumingγL1 to be given withuL1 = γL1(uF1)≡ 0 (A two-player Stackelberg
game results withL2 as leader andF1 as follower). Their cost functions are respectively

JF1 = u2
F1

+u2
L2

, JL2 = (uF1 −2)2+(uL2 −1)2.
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An optimal choice forL2 is

uL2 = γL2(uF1) =

{
3 if uF1 6= 2,
1 if uF1 = 2.

(3.22)

As a result of this choiceF1 will chooseuF1 = 2. SubsequentlyuL2 = 1 andL2 has realized
his/her team minimum. Note that many other choices forγL1 are possible with the same
result, e.g.

uL2 = γL2(uF1) =

{
−2uF1 +5 if 1 ≤ uF1 ≤ 3,
3 if −1≤ uF1 ≤ +1.

We will continue with the first choice forγL2 given, i.e. (3.22). Keeping this function
fixed, the other leader,L1, will now choose his/her optimalγL1(uF1) function. Equation
(3.22) is substituted intoJF1 leading to

JF1 = u2
F1

+u2
L1

+

{
9 if uF1 6= 2,
1 if uF1 = 2.

It is easily verified now that an optimal solution forL1 is

uL1 = γL1(uF1) =

{
3 if uF1 6= 1,
1 if uF1 = 1.

(3.23)

This leads to the team minimum ofL1. Also in this case, the optimalγL1 is not unique.
We now fix γL1 as given in (3.23) and study the best answer byL2. L2 cannot obtain

his/her team minimum anymore, sinceJF1 prefers playinguF1 = 1 to uF1 = 2, whatever the
choice ofγL2(·). The worst that can happen to playerF1 is the outcome 11 which is real-
ized foruF1 = 1, uL2 = γL2(uF1 = 1) = 3, uL1 = γL1(uF1 = 1) = 1. HenceL2 should con-
sider minuF1

,uL2
JL2(uF1,uL2) subject toJF1(uF1,uL1 = γL1(uF1),uL2) ≤ JF1(uF1 = 1,uL1 =

1,uL2 = 3) = 11. This leads to

uL2 = γL2(uF1) =

{
3 if uF1 6= 2(

√
2√
5
− ε1),√

2√
5
− ε1 if uF1 = 2(

√
2√
5
− ε1).

(3.24)

as a possible choice forL2. The valueε1 > 0 has been added so as to make the choice for
F1 unique after (3.24) has been announced. Forε1 = 0 playerF1 has two choices, but one
of them is preferred byL2.

In this way we continue, keepingγL2(uF1) fixed again, the new (actually: a new) optimal
answer byL1 turns out to be

uL1 = γL1(uF1) =

{
3 if uF1 6=

√
1− ε1

√
10− ε2,√

1− ε1
√

10− ε2 if uF1 =
√

1− ε1
√

10− ε2,
(3.25)

for a small positiveε2 such as to make the answer byF1 unique. If we continue in this way,
the algorithm converges to

γL1(uF1) = γL2(uF1) =

{
3 if uF1 6= 0,
0 if uF1 = 0.

This solution leads to the team minimum of the follower (!). Apparently the follower is ”the
laughing third party”. 2

The problem introduced in this section can be extended to a situation with multiple leaders
and multiple followers. For more information about this topic, see [65].
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3.4 Conclusions and future research

In this chapter we were dealing with one leader – one followerand one leader – multiple
followers inverse Stackelberg games with the aim to find the optimal strategy for the leader.

We showed problems in which the optimal strategy of the leader exists as well as the
problems in which the optimal strategy does no exist. Problems with unknown optimal
outcome for the leader were elaborated mainly in Sections 3.2.1 and 3.2.2. In such situations
an ad-hoc approach was used in order to find the best possible outcome for the leader.

Since the theory of inverse Stackelberg games is still in itsinfancy, the important phe-
nomena was shown mainly by means of examples. Further investigation of the properties
of these games is a subject for future research.



Chapter 4

Static Optimal Toll Design

In this chapter thestaticoptimal toll design problem will be dealt with. Here the wordstatic
refers to the situation in which the traffic does not evolve over time, i.e., the problem is a
one-shot game. In Section 4.1 an overview of existing literature about the static optimal
toll design problem will be proposed. In Section 4.2 the problem will be introduced, to-
gether with basics from modeling of traffic on road networks.In Section 4.3 two concepts
of drivers’ behavior will be introduced and explained, together with their properties. In Sec-
tion 4.4 a problem formulation of the static optimal toll design problem will be given. In
Section 4.5 the general problem properties will be discussed. In Section 4.6 possible ways
of how to solve the problem will be proposed. In Section 4.7 the proposed solution methods
will be illustrated on case studies with the network with oneorigin–destination pair and
on the so-calledBeltwaynetwork, respectively. In Section 4.8 possible extensionsof the
research presented in this chapter together with a summary of the research of this chapter
will be given.

4.1 Introduction and literature overview

The optimal toll design problem is a problem of the Stackelberg type [5, 6], applied to the
traffic environment with a road authority as a leader and travelers as followers. The aim of
the road authority is to minimize its objective function, which is dependent on the travelers’
decisions, by choosing optimal tolls for a subset of links (so-called tollable links), while
the travelers minimize their individual travel costs. Their behavior is usually modeled by
applying atraffic assignmentprocedure [35, 66].

If it is assumed that all drivers are rational and have complete and perfect information
regarding network conditions, thedeterministic user equilibrium(DUE) applies [94]. With
imperfect information and distributed preferences aprobabilistic user equilibrium, referred
as well to asstochastic user equilibrium(SUE) takes place, for example, as alogit-based
stochastic equilibrium(LB-SUE), see [58].

There are two main research streams with respect to definition of the set of tollable links.
With so-called first-best tolling (or pricing), all the links in the network are assumed to be
tollable [68, 96], with so-called second-best tolling not all links are tollable [85]. The latter
concept is clearly more applicable in practice.

39
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In [85] and [84] second-best tolling is considered, travelers are driven by the determin-
istic user equilibrium (DUE), the objective function of theroad authority is defined as the
surplus of the network, the traffic demand is elastic, and it is assumed that the link cost
functions are increasing with respect to traffic flows. In [60, 66] the lower level of the
problem (travelers’ minimization of travel costs) is formulated and solved as a variational
inequality problem (VIP). Here the travelers are driven by DUE. In [68] a very general
Stackelberg model is presented, where the road authority has two decision variables, one
of them possibly dependent on traffic flow. The paper itself deals with general mathemat-
ical properties of traffic equilibria, however. The tolls are assumed to be constant and the
traffic-flow-dependent variable is interpreted as management decision of the road authority.

Following extensive case studies of two-route congestion problems in static networks
[24, 86, 88], we have introduced its second-best variant in which the link tolls are functions
of link and route flows in the network, for only a proper subsetof all links. This formulation
fits within a theoretical framework of “inverse Stackelbergproblems” [64, 80]. In the inverse
Stackelberg game the road authority introduces tolls as mappings of the traffic flows in the
network and, therefore, the possible responses of the drivers are taken into account in the
first place, while in the classical Stackelberg game the traffic-flow invariant toll is set first
and the drivers react as second. In both cases, the road authority is the leader.

This chapter introduces an extension of our recent researchto the general problem of
optimal design with traffic flow-dependent second-best tolling.

Because the problem is at least NP-hard, advanced optimization techniques, which can
be parallelized, should be used in order to speed up the solution process. In this chapter an
algorithm using neural networks is proposed as such an optimization technique.

4.2 Preliminaries

Consider a strongly connected road networkG = (N ,A ) , with a finite nonempty node set
N = {1, . . . ,n} (n ∈ N) and a finite nonempty setA = {1, . . . , |A |} (|A | ∈ N) of directed
arcs (links). LetRS ⊂ N ×N be a set of origin-destination pairs in the network. We
denote the nonempty set of simple routes (i.e., routes without cycles) from the originr to
the destinations by P (r,s) and the set of all simple routes of the network byP . Let T ⊆ A
be a set of so-calledtollable arcs(links), i.e., the links on which toll can be imposed.

Drivers in the road networkG(N ,A ) travel from their origins to their destinations, be-
ing noncooperative among themselves. When using tollable links, drivers might be obliged
to pay a prespecified toll. Drivers choose their routes in order to minimize their travel costs.
Each of the travel costs is a combination of travel time and tolls. The travelers’ choices will
determine the traffic flows in the network.

There is a road authority that sets tolls on the tollable links in the network in order to
minimize its objective function. The toll values are assumed to be calculated as functions
on traffic flows in the network.

Each change of the tolls will cause change in the travelers’ behavior, and vice versa.
The optimal toll design problem introduced in this chapter is a one leader–more followers
inverse Stackelberg game with the road authority as the leader and drivers as the followers.

There is a fixed positive travel demand described by drivers traveling from originr to
destinations: d(r,s) [veh/h]. Let us denote the link traffic flow on linka∈ A by qa [veh/h]
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and the route traffic flow on routep∈ P by fp [veh/h].
Feasibility with respect to the travel demands requires theroute flows to satisfy the

following conditions [19, 66]:

d(r,s) = ∑
p∈P (r,s)

fp, (r,s) ∈ RS , (4.1)

fp ≥ 0, p∈ P (r,s), (r,s) ∈ RS . (4.2)

We letδp,a be a link-route incidence identifier forG(N ,A ) , defined as

δp,a =

{
1, if route p∈ P contains linka∈ A ,
0, otherwise.

The link flow on linka is defined through the route flows in the network by the relation

qa = ∑
p∈P

δp,a fp, j ∈ {1, . . . , |A |}. (4.3)

With each linka∈ A the link cost for travelers entering this linkςa [euro], defined as

ςa(qa) = αta(qa)+ θa(qa), (4.4)

is associated. Hereα > 0 [euro/time unit] is the travelers’ value of time,ta = ta(qa) [time
unit] is the link travel time on linka, andθa = θa(qa) [euro] is the toll paid by each traveler
for using linka.

The link travel time function is assumed to be traffic-flow dependent, continuously dif-
ferentiable, and increasing with the link traffic flow. The standard way to define the link
travel time function is

ta(qa) =
|K|
∑
k=0

γk qk
a, |K| ∈ N0, where γk > 0 ∀k. (4.5)

If K = 0 the link travel time is traffic flow-independent. Another very common link travel
time function is the Bureau of Public Roads Delay Function ([17]), defined as

ta(qa) = ta0

(
1+ χ1

(
qa

Ca

)χ2
)

, χ1,χ2 > 0, (4.6)

whereta0 [time unit] is the free-flow travel time on linka, Ca [veh/time unit] is the capacity
of link a per time unit.

The route costscp, (p∈ P ) are assumed to be additive, i.e., they are derived from the
link costsςa (a∈ A ) through the relation

cp = ∑
a∈A

δp,aςa. (4.7)

Let q, t, andς denote a vector of link flows, a vector of link travel times, and a vector of
link travel costs on all links in the network, respectively,i.e,

q def
=





q1

q2
...
q|A|




, t

def
=





t1
t2
...
t|A|




, ς

def
=





ς1

ς2
...

ς|A|




. (4.8)
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Similarly, let us define corresponing route vectors:

f def
=





f1
f2
...
f|P |




, τ

def
=





τ1

τ2
...
τ|P |




, c def

=





c1

c2
...
c|P |




.

On each link from the set of tollable linksT the road authority can impose a traffic-flow
dependent toll. The traffic flow-dependent toll on linka∈ T will be denoted byθa(·). This
toll is defined as a polynomial function of the link flow on the same link,1 i.e.,

θa (qa) =
M

∑
m=0

w(m)
a (qa)

m, w(m)
a =

{
0 for a∈ A \ T ,

κ(m)
a for a∈ T , κ(m)

a ∈ R,
(4.9)

with M ∈N0. The traffic flows for the coming time period can be observed when playing the
game repeatedly. If a new toll level scheme is set on the real network, in a finite time (after a
finite number of days), during which the travelers try different possibilities of their traveling,
the system is assumed to reach an equilibrium state. The roadauthority is assumed to be
perfectly aware of the possible reactions of the drivers to agiven vector of toll values and,
therefore, can set the toll as defined in (4.9).

By definition,

θa (qa)

{
= 0 if a∈ A \ T ,
≥ 0 if a∈ T .

(4.10)

This means that the drivers cannot receive rewards when using tolled links. The vectorθ
will be a vector of link toll functions2 and can be symbolically written as follows:

θ
def
=





θ1(·)
θ2(·)

...
θ|A |(·)




.

Additionally, let us define coefficient vectors as follows:

wa
def
=





w(0)
a

w(1)
a

w(2)
a
...

w(M)
a





, w def
=





w1

w2
...

w|A|




. (4.11)

1The motivation for choosing a polynomial toll function is connected with the fact that the polynomial link
travel time functions are used in this thesis and, therefore, the first-best toll is a polynomial function of the link
flow, too. Other option would be to map the link tolls to the link travel times, as those are best congestion measures.

2Note thata ≡ 0 iff a∈ A \A .
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Let w(m)
a ∈

[
w(m),min,w(m),max

]
with w(m),min,w(m),max ∈ R, w(m),min < w(m),max for ∀m∈

{1, . . . ,M} and let setsWa andW be defined as follows:

Wa
def
=
[
w(0),min,w(0),max

]
×
[
w(1),min,w(1),max

]
×·· ·×

[
w(M),min,w(M),max

]
,

W def
= (Wa)

|A | ∀m∈ {0, . . . ,M}.

Clearly, Wa is a subset ofRM and thusWa andW are compact sets. It is assumed that
wa ∈ Wa, w ∈ W.

With M = 0 in equation (4.9) the toll becomes traffic flow-invariant. In that situation the

toll on the linka will be set asw(0)
a ∈ R

0
+, and vectorω defined as

ω
def
=





w(0)
1

w(0)
2
...

w(0)
|A|





will be a vector of traffic-flow invariant tolls.

4.2.1 Game-theoretic interpretation of the optimal toll design problem

The problem of the optimal toll design can be seen as an inverse Stackelberg game. Two
possible interpretations from the game theoretic point of view are possible:

• The drivers, as followers, choose routes from their originsto their destinations so as
to minimize their actual or perceived travel costs. Therefore, their decisions are their
route choices. Because the traffic flows are dependent upon these decisions and the
road authority as the leader sets tolls as functions of the traffic flows in the network,
these tolls are also composed functions of the drivers’ decisions.

• Because the travelers are uniform, all of them can be seen as one super-player, who is
the follower in the one leader – one follower inverse Stackelberg game with the road
authority as the leader. The decision of this super-player would establish the traffic
flows in the network. The tolls are the functions of the follower’s decisions in this
game.

In order to model the travelers’s behavior (route choices),a traffic assignment model has to
be used. In the following section we will discuss such a model.

4.3 Drivers’ behavior – static traffic assignment

This section formulates macroscopicstatic traffic assignment(STA) models that describe a
way of how individual drivers choose their preferred route from their origin to their destina-
tion. The basics of travels’ behavior models introduced in this section can be found in, e.g.,
[66], [67], or [58].
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The static traffic assignment contains a path choice model inwhich all travelers are dis-
tributed on all available routes such that a particular static user equilibrium state is reached.

Different variants of network user equilibria can be found in the literature, as the con-
cept of equilibrium is closely related to the properties of the users that give rise to this
equilibrium. Network equilibria fall into game-theoreticequilibria discussed in Chapter 2,
and derive their properties from those of the participatingplayers (i.e., network users), de-
pending especially on the level of information they have about actions of other players (full
information versus partial information or information with perception error), their prefer-
ences (the player’s cost function), and their behavior (allplayers are assumed to minimize
their own journey costs.).

We consider a single-user class assignment, i.e., all usersare assumed to affect the cost
of the link they use to other players in the same way and users’tastes in evaluating these
costs are identical, although generally users’ perceptionmay differ in a random way. The
travel demand is inelastic and given.

Various different network traffic equilibria exist (see, e.g., [10]). These equilibria can
be seen as specific instances of games, differing in chosen cost functions.

In this chapter two equilibrium concepts will be elaboratedupon: The deterministic
(Wardrop) user equilibrium (Section 4.3.1) and the logit-based probabilistic (in traffic liter-
ature also referred to as stochastic) user equilibrium (Section 4.3.2).

Although the stochastic equilibrium, introduced in Section 4.3.2, represents a more re-
alistic concept of the drivers’ behavior than the deterministic user equilibrium, the deter-
ministic equilibria are still widely used, mainly due to itscomputational advantages and its
direct connection to the Nash equilibrium [61].

Note that while a driver is discrete by nature, i.e., half of adriver cannot make a decision,
we assume continuous traffic flows, which means that the traffic flows are interpolated by
a continuous quantity. This could be justified by the fact that we are interested in average
situations and (real-valued) expected traffic flows, in order to compute the optimal tolls for
the road authority. A continuous approximation is also acceptable for the large traffic flows.

4.3.1 Deterministic user (Wardrop) equilibrium

The static deterministic traffic equilibrium, or Wardrop equilibrium, is based on the assump-
tion that all road users have complete information about theprevailing traffic conditions,
and that they choose the cheapest one among routes available, while taking congestion into
account. The Wardrop equilibrium is defined as follows.

Definition 4.1 (Wardrop equilibrium)
For each origin–destination pair, the route travel costs for all users traveling between a
specific origin–destination pair are equal, and less than the route travel costs which would
be experienced by a single user on any unused feasible route within the same(r,s)-pair, i.e.,

fp

(
cp−π(r,s)

)
= 0, p∈ P (r,s), (4.12)

cp−π(r,s) ≥ 0, p∈ P (r,s), (4.13)

whereπ(r,s) takes the role of the minimal travel cost of the routes fromP (r,s). 2
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For alternative formulations of the Wardrop equilibrium (including among othersnode-arc
optimizationformulation,arc-route optimizationformulation, or MPEC formulation) and
mathematical properties of Wardrop equilibria (includingexistence and uniqueness), see
[60, 66].

4.3.2 Probabilistuc (stochastic) user equilibrium

The main drawback of the Wardrop equilibrium point of view isthat each traveler is sup-
posed to have perfect information about the whole network. In more realistic formulations
each driver minimizes his or herperceivedtravel costs, i.e., their route valuation is subject
to a random error term (either because we do not know their taste, their cost perception is
flawed, their knowledge of the least-cost routes is flawed, orbecause they have information
that is unavailable to the road authority). The so-called stochastic user equilibrium applies.

Definition 4.2 (Probabilistic (stochastic) user equilibrium)
For each origin–destination pair, the perceived route travel costs for all users traveling be-
tween a specific origin–destination pair are equal, and lessthan the route travel costs which
would be perceived by a single user on any unused feasible route. 2

The perceived travel cost from Definition 4.2 is defined as thesum of of the effective
route travel cost3 and a random unobserved component:

ς̃a(qa,ε) = ςa(qa)+ εa, (4.14)

whereqa (the traffic flow on arca) is considered as a macroscopic deterministic variable,
andEa(ε) follows some probability distribution, the same for eacha∈ A , with parameter
εa (expressing the perception error).

We can distinguish between the case when the user makes the decision for his/her com-
plete route (open-loop game, see Chapter 2), and therefore makes an error in the perceived
cost of the route, from the case when he/she takes a new decision at each crossing (closed-
loop game, see Chapter 2), and therefore makes multiple perceived cost errors during his/her
journey.

When the probabilistic error distribution of errorε is known we can define stochastic
assignments.

The Probit assignment is an example of the closed-loop model. The errors Ea(ε) are
supposed to be centered Gaussian (normal) random variables. However, the computation of
the Probit assignment is difficult and is done using Monte Carlo methods.

In the open-loop situation, with the independent, centered, and Gumbel4 distributed
errors on the perceived costs of the routes (not the arcs) with the same variance (see [27,
58]), the probability that a single driver chooses routep∈ P (r,s) can be computed as follows:

P
{

c̃p < c̃p̂, ∀p 6= p̂, p̂∈ P (r,s)|c
}

=
exp(−µcp)

∑p̂∈P (r,s) exp(−µcp̂)
, (4.15)

with theperception error µ. Thisµ is used to calibrate the variance in the cost perception.

3The perceived travel costs are additive.
4P{G < x} = e−e−µx−η

, whereη is the Euler constant, the variance ofG is π2/(6µ2). The max of an indepen-
dent Gumbel random variable with the same variances is stilla Gumbel variable with the same variance.



46 4 Static Optimal Toll Design

The logit-based probabilistic (stochastic) user equilibrium (LB-SUE) conditions can
then be characterized by the equations

fp = P
{

c̃p < c̃p̂, ∀p 6= p̂, p̂∈ P (r,s)|c
}

d(r,s),∀(r,s) ∈ RS , (4.16)

with P
{

c̃p < c̃p̂, ∀p̂ 6= p, p̂∈ P (r,s)|c
}

defined by (4.15). The conditions (4.16) are

natural, according to the weak law of large numbers (see [38], Chapter 8), i.e., ifd(r,s) is
large, and if the travelers act independently, then

P
{

c̃p < c̃p̂, ∀p̂ 6= p, p̂∈ P (r,s)|c
}
≈ fp

d(r,s)
.

From (4.15) it follows that if the value ofµ is large, the perception error is small, and
travelers tend to choose routes with minimal cost. Settingµ→ ∞ in (4.15) yields the deter-
ministic user equilibrium (see Section 4.3.1). Therefore,DUE is a special case of LB-SUE
and algorithms used to solve LB-SUE can be used also for solving DUE. A small value of
µ indicates a large variance in the perception of travel cost,with travelers choosing routes
with considerably larger actual travel costs than those being the cheapest. It can also be
seen from (4.15) that withµ ↓ 0 all routes within an(r,s)-pair receive an equal share of the
(r,s)-demand.

Remark 4.1 The reason for using the Gumbel distribution is the ease of computing the
probability of the maximum of many independent Gumbel random variables and the shape
of the distribution, which is close to the normal one. The correlations of the travel costs
between the paths are not well represented by logit-based models and probit methods are an
attempt to improve the quality of the stochastic models – see[71]. Nevertheless, logit-based
methods seem to be the most used ones in traffic engineering.

The logit distribution, obtained from the Gumbel distribution assumption on the per-
ceived travel costs, satisfies a very important property, which justifies its use:A road having
a smaller travel cost than another one has a larger probability of being used than the other
one(see [31]). It can also be seen from equation (4.15) that for all values ofµ all routes
receive flow, regardless of their travel time. These facts motivate the use of the logit model
in our research.

In [31] other properties of the logit distribution (which isin fact the Gibbs distribution
of mechanical statistics [39]) are discussed. In particular it minimizes the entropy among
all the flow distributions having the same average time. The free parameterµ is a degree of
stochasticity. 2

For more information about probabilistic (stochastic) equilibria, including derivation
of properties of Dial logit equilibrium via Gibbs-Maslov semirings and some well-known
mathematical properties, see [58].

4.4 The problem formulation

In Section 4.2.1 we explained that the optimal toll design problem is a game of inverse
Stackelberg type, with possible two interpretations.
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In this game, the aim of the road authority is to choosew in such a way so as to minimize
some given objective function, which can be symbolically written asZ = Z(q(w),w). The
problem can be stated as

(P)






Find
w∗ = argminw∈W Z(q(w),w),

subject to
q = q(w) ∈ UE(w) ,

with w’s restricted by condition (4.10).

(4.17)

The expressionq∈ UE(w) reads as “link flow vectorq is a result of a used static user equi-
librium (UE) model when a polynomial toll function defined by(4.9) with coefficient vector
w is used.” Here we assume that some equilibrium model, without further assumptions, ap-
plies. The “standard” Stackelberg problem is a particular subproblem of (P), defined as

(P0)






Find
ω∗ = argmin

ω∈W0 Z(q(ω),ω),

subject to
q = q(ω) ∈ UE(ω) .

(4.18)

In the following section the properties of problem (P) will be discussed.

4.5 General problem properties

We will refer to θ by its coefficient vectorw and the pair(w,q(w)) will denote a pair
containing the vector of chosen toll functions and the link flow vector.

Note that problem (P) is a nonlinear programming problem (NLP) and has at least one
solution if a user equilibrium of (4.17) forms a compact set(w,q(w)) . Also, if for any
givenw the setUE(w) is a singleton,w determinesq uniquely (in general this would not
determine the route flows uniquely, though). In this case, the continuity ofq in terms ofw
will guarantee that the constrained set of (P) is closed, which implies the solution existence
of (P) sinceq andw are bounded.

However, since UE denotes a general user equilibrium, it might have multiple solutions
in terms ofq (UE(w) may not be a singleton). In this case,UE(w) is a point-to-set mapping
of w [33].

The following theorem will be used to prove the existence of the solution of the problem
(P).

Theorem 4.2 A set-valued mappingΦ from R
n to R

m is closed at any point ofRn if and
only if its graph is a closed set inRn×R

m.

Proof : See [33]. 2

The existence of the solution of problem (P) will depend on the compactness of the
graph ofUE(w) , defined as

Ψ(w,q)
def
= {(w,q) |q∈ UE(w) , ∀w∈W}. (4.19)
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Theorem 4.3 (Existence of a solution of problem (P)) Problem (P) has at least one solution
if the following conditions are satisfied:

i. For all w ∈W, the set UE(w) is nonempty and compact.

ii. Let w,w∈W and let q∈ UE(w), q∈ UE(w). For eachε > 0, there existsδ > 0 such
that if ||w−w|| < δ, then

max
∀q∈UE(w)

min
∀q∈UE(w)

||q−q|| < ε.

iii. ς is a continuous function of q.

Proof : Let R(0,ε) be an open ball with radiusε. ThenY
def
= UE(w)+R(0,ε) is an open set

containingUE(w) . Let us define an other open setZ
def
= {w : ||w−w||< δ}. Conditionii. in

Theorem 4.3 is equivalent to∪w∈ZUE(w)⊆ Y . Thus, underii. , the point-to-set mapping of
UE(w) is upper-semicontinuous. Together with conditioni. it implies that the point-to-set
mappingUE(w) is closed on setW. Thus the graphΨ(w,q) defined in (4.19) is closed by
Theorem 4.2. Also, underi., UE(w) is bounded for anyw∈W. SinceW is a bounded set,
the graphΨ(w,q) is bounded as well. Thus, graphw ∈ W is compact. Together withiii.
and the fact thatW is compact, we can conclude that (P) has at least one solution, since it is
a NLP with a continuous objective function defined on a compact set. 2

Remark 4.4 Condition i. states that for anyw ∈ W the travelers have to respond by at
least oneq, and that if the solution is not unique, that then the solutionsetUE(w) must
be compact. Conditionii. can be roughly stated as “If two toll vectors are very close to
each other, then their solution sets are also very close” (ifw→ w, thenUE(w) → UE(w)).
This is not satisfied for the deterministic user equilibrium, as shown in Example 4.1, but it
holds for many user equilibrium models, including the logit-based probabilistic (stochastic)
equilibrium.

Example 4.1 (On properties of Wardrop equilibria)
Let us imagine a one-origin–destination-pair network withtwo links, i.e.,A = {1,2}. Link

1 will be tollable, while link 2 is untolled. Let firstα = 1, let t1 be defined ast1
def
= q5

1−4q3
1+

6q1, let t2
def
= 2, i.e., it is traffic-flow independent. Letθ1

def
= 1.5q4

1−2.5q1, let q2 +q1 +2.
Then there are two possible solutions in terms of Wardrop equilibrium:

1. q(1) =

(
q1

q2

)
=

(
0.5
0.5

)
.

2. q(2) =

(
q1

q2

)
=

(
1
0

)
.

It is easy to see that withθ def
= θ1

def
= 1.5q4

1−2.5q1+ε the outcomes would not be “close” to
each other, and, therefore, conditionii. of Theorem 4.3 is not satisfied. 2

Since (P) does not depend on the specific formulation of the user equilibrium, Theo-
rem 4.3 actually establishes the solution existence condition for (P) that can incorporate a
broad range of UE models as long as the three conditions in thetheorem are satisfied. 2
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Theorem 4.5 (NP-hardness of problem (P))
Problem (P) is strongly NP-hard.

Proof : Problem (P) is a quadratic bilevel programming problem [21]. Even a linear-linear
variant (with linear cost functions for the travelers and a linear objective function for the
leader) of the problem with traffic-flow invariant tolls was proven to be strongly NP-hard
[40, 87]. Therefore, also problem (P) is strongly NP-hard. 2

Remark 4.6 Although the solution of the problem (P) yields positive tolls (see equa-
tion (4.10)), the toll functions may be decreasing with traffic flow on their own link, as
shown in the following simple example. 2

Example 4.2 (Toll decreasing with the traffic flow)
Let us consider a problem on a network with three parallel links between one origin–
destination pair(r,s), travelers driven by DUE, and the road authority minimizingthe total
travel time of the system. Letd(r,s) = D > 0, let α = 1. the link cost and time functions be
linear, i.e.,

D = q1 +q2+q3,

ς1 = αt1(q1)+ θ1(q1), ς2 = αt2(q2)+ θ2(q2), ς3 = αt3(q3),

t1(q1) = β1q1 + δ1, t2(q2) = β2q2 + δ2, t3(q3) = β3q3 + δ3.

with d(r,s) = D, α = 1, β1 = 1, β2 = 2, β3 = 0.05, δ1 = 1.008, δ2 = 0.672, δ3 = 2. Then,
the total travel time function can be computed as

Z(q1,q2,q3) =
3

∑
j=1

q j t j(q j)

= 1.05q2
1−0.992q1+2.05q2

2−1.328q2+0.05D2

−0.1q1D−0.1q2D+0.1q1q2 +2D.

The global minimum ofZ(q1,q2,q3) is in q∗1 ≈ 0.457+ 4.65·10−2D, q∗2 ≈ 0.313+ 2.33·
10−2D, q∗3 ≈ 0.930D−0.77 and reaches approximately−0.435+1.993D+0.047D2 [time
units]. This is the best what the road authority can obtain, given the fixed travel demand
(the so-called team minimum).

Let us assume that the road authority introduces the tolls onlinks l1 and l2 as linear
functions of the link flows on the same links, i.e.,θ1(q1) = aq1+b, θ2(q2) = aq2+b, with
θ1(·),θ2(·) > 0 on(0,1). With DUE, relationς1 = ς2 = ς3 holds if all three links are used.
It can be shown that for anyD > 0.828 the team minimum for the road authority can be
reached (i.e.,q∗ = (q∗1,q

∗
2,q

∗
3)

′ is that optimal flow pattern for the travelers) and that in such
casea < 0, while b > 0.

The optimal tolls are decreasing with traffic flows on the samelinks, because link 3
is untolled. Other choices of tollable links would bring toll functions increasing with the
traffic flow on the same link. 2

Similar phenomena will appear in some of the case studies in Section 4.7.
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4.6 Solution of problem (P)

In this section we propose solution methods for solving the problem (P) introduced in Sec-
tion 4.4.

4.6.1 Analytical solutions

Small problems with drivers driven by the deterministic (Wardrop) user equilibrium can be
solved analytically, as a system of equations.

4.6.2 Numerical solutions

With larger problems the analytical solutions become untractable. Standard numerical al-
gorithms for solving the lower level of the problems with DUEare:

• the Frank-Wolfe algorithm and its extensions;

• projection methods;

• relaxation methods;

• the partial lineralization algorithms;

• the column generation algorithms.

More information about these algorithms can be found in, e.g., [66].
To find the solution of the lower level of the problem (the resulting traffic flows for the

choice of particular toll) with the drivers driven by the LB-SUE iterative numerical methods
are used. The method ofsuccessive averages(MSA) has been applied to solve the lower
level problem. In the MSA algorithm, a search direction is obtained through a stochastic
network loading, and the step taken towards that solution corresponds to taking the average
of all previously generated solutions, i.e., the step length in iterationk is 1/k. For more
details about the MSA algorithm, see [22, 69].

Solving the upper level of problem (P) (finding optimal toll functions minimizing the ob-
jective function) with classical optimization methods maybecome intractable. If the objec-
tive function of the road authority is convex, standard algorithms for convex programming
(e.g., conjugate gradient methods, see [13]) can be used. However, in our case the objective
function is generally non-convex, as it is usually a polynomial function of the traffic flow (In
Example 4.3 a problem with nonconvex objective function is shown.). Therefore, advanced
heuristic methods have be used in order to find a solution in a tractable way. We propose to
use a a neural-networks approach.

Example 4.3 (Nonconvexity of the objective function)
Let us consider a one-origin–destination pair network withtwo links, with link 1 tolled with

toll defined as a particular polynomial function of the traffic flow, e.g.,θ1(q1)
def
= 160−

25q2
1+q4

1, and with link 2 untolled. The objective function will be defined as the total toll

revenue of the system, i.e.,Z
def
= q1 ·θ1(q1) = 160q1−25q3

1 + q5
1. This function is clearly

nonconvex with respect toq1. 2
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The solution method for (P) that we propose is a combination of the neural networks ap-
proach for the upper level of the problem and a method of sufficient averages for the lower
level of the problem. The algorithm will be proposed and discussed in this section.

The concept of neural networks is closely related to the concept of supervised learning,
which will be explained below.

4.6.3 Supervised learning

Let functiong : R
n →R

m assign a vectoryi ∈R
m to each vectorxi ∈R

n, i.e.,yi = g
(
xi
)
. We

will refer to the pair
(
xi ,yi

)
as thei-th patternof the functiong. The vectorxi will be called

the input vector (ofg) and the vectoryi will be called theoutputvector (ofg). Supervised
learning is a way to find an approximation of the functiong given a set ofo patterns [48].

An artificial neural network (ANN) can be thought of as a simple mathematical formula
with parameters called weights [48]. The result of supervised learning is an approximation
function gapp with an appropriately chosen vector of weightss. The goal of supervised
learning with ANN is therefore to find a functiongapp : R

n → R
m, that is approximating the

functiong in the “best way”. Moreover, it is required thatgapp has derivatives of all finite
orders in the components ofx.

There are several criteria that can be used to validate whether the functiongapp is “close
enough” tog. In our approach the so-calledvalidation error for each pattern (xi , yi ), i =
1,2, . . . ,o, is minimized.

The set ofo patterns is divided into a set oft training patterns and a set ofo−t validation
patterns. For a given vector of weightss the training and the validation errors are calculated
by

εt(s)
def
=

1
2

t

∑
i=1

m

∑
k=1

(gapp
k (xi ;s)−yi

k)
2,

εv(s)
def
=

1
2

o

∑
i=t+1

m

∑
k=1

(gapp
k (xi ;s)−yi

k)
2,

(4.20)

wheregapp
k andyi

k, k = 1,2, . . . ,m, refer to thek-th entry ofgapp andyi , respectively. The
elements ofs are optimized only fort training patterns, while the validation patterns are
used to prevent overtraining. Roughly stated: If the training errorεt becomes small with
respect tos, while the validation errorεv simultaneously grows, the ANN learns the patterns
“by heart” and looses its interpolation and extrapolation abilities.

An ANN is trained iteratively, i.e.,εt is decreased by adaption ofs, until εv increases for
two consecutive iterations (prevention of overtraining).Note that the training stops before
a local minimum ofεt is reached. Weight upgradessiter+1 − siter can be calculated with
any minimization algorithm, e.g., a first derivative methodsuch as steepest descent, or a
second derivative method such as the Newton’s method. For the first derivative methods the
iterative sequence

siter+1 = siter + η
(
εt

(
siter
)

,∇sεt

(
siter
))

∆s
(
εt(s

iter),∇sεt

(
siter
))

, (4.21)

with the search direction∆s
‖∆s‖ and with step lengthη, takes place. Numerical methods

implemented within FAUN5 1.0 for constrained nonlinear least-squares problems [63]are

5Fast Approximation with Universal Neural networks
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sequential quadratic programming (SQP) methods and generalized Gauss-Newton (GGN)
methods. These methods can exploit the special structure ofthe Hessian matrix ofεt [25, 36,
37]. It turns out that in practice SQP and GGN methods can automatically overcome most
of the training problems of ANN such as flat spots or steep canyons of the error functionεt .
Advantages of these methods are:

• In comparison to common training methods a more efficient search direction∆s is
calculated by use of the so-calledback propagation(see [16]).

• The step lengthη is accommodated during the training in contrast to common training
methods with fixed step length. The number of learning steps is reduced significantly.

• Only εt , ∇sεt , andεv, which can be computed by very fast matrix operations, are
required. For other ANN structures, e.g., radial basis functions, an efficient code for
∇sεt can be derived by automatic differentiation.

• Maximum and minimum of each weight can be set easily (box constraints).

• The total curvature of the ANN can be constrained (prevention of ANN oscillations).

• Convexity and monotonicity constraints can be set.

4.6.4 Solving the optimal toll design problem

In this section an algorithm for finding the solution of problem (P) is proposed. The flow
chart of the solution process is depicted in Figure 4.1.

Below we will describe individual parts of the solution process.

1. Area selection

Initially a setW with very loww(m),min and very highw(m),max will be chosen. The areaW is
changed depending on the outcome of the computation, the algorithm is applied recursively.

2. Computation of sample points of the objective function

This algorithm has two built-in optimization procedures:outer loop(corresponding to the
upper level of the problem - the decisions of the road authority) andinner loop(correspond-
ing to the lower level of the problem - the decision of the drivers) optimization procedures.

In the outer loop of the algorithm a grid search is applied. Ineach step of the outer
algorithm an element ofw ∈ W is selected according to the adopted grid and used as an
input for the inner loop. In this way a grid of sample points ofthe objective function is
created.

In the inner loop thetraffic assignment, including theroute choice model, aiming to
determine the user equilibrium based on the actual travel costs, is applied. To compute new
route flow rates in each iteration themethod of successive averages(MSA) is adopted on
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Figure 4.1: Flow chart of the solution process

the route flow level (see [66]). Convergence of the inner loopis verified using the so-called
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relative duality gapε(iter), defined as

ε(iter) =
∑(r,s)∈RS ∑p∈P (r,s)

(
c(r,s),(iter)

p −π(r,s),(iter)
)

f (r,s),(iter)
p

∑(r,s)∈RS π(r,s),(iter)d(r,s)
. (4.22)

Hereπ(r,s),(iter) is the minimal route travel time for travelers departing from origin r to des-
tinations as computed in the iteration iter. If the relative duality gaps of two consecutive
iterations are close enough, i.e., if|ε(iter+1)−ε(iter)|< εmax, with a given small positive num-
berεmax, the algorithm is terminated. Note thatε(iter) ↓ 0 is the convergence criterium in the
case of the deterministic user equilibrium.

Pseudocode for computing sample points of the objective function

(Initialization)
Download the networkG(N ,A ), defineRS , P (r,s), T , travel demands,
εmax (1≫ εmax > 0);
defineµ, n, m, iter = 0, W;
set the network empty, computeε(0);
(Outer loop)
for eachw from setW and chosen griddo
(Inner loop) (Logit-based stochastic traffic assignment)

iter:=iter+1;
while |ε(iter+1) − ε(iter)| > εmax do

Compute link costs from (4.4) and route costs from (4.7);
Determine the route choices of travelers for each(r,s)-pair using (4.15);
Update route flows using MSA;
Compute link flows using (4.3);

end do;
Compute objective functionZ(q(w),w) corresponding tow;

Returnw,Z(q(w),w).

Finding the minimal objective function is in this stage of the computation not necessary,
since the minimization of the functions given by the best-approximating neural network will
take place. Note that in Section 4.6.3 the input of the neurosimulation was vectorx∈ R

n,
which is in the following section replaced by vectorw of coefficient vector. It is an|A | ·M-
vector. Similarlyy is replaced byZ(q(w∗),w∗), which is a scalar.

4.6.5 Application of FAUN 1.1 simulator

The grid search produces the values of the objective function at discrete positions in the
parameter space. However, the grid search is relatively time consuming. It is desirable to
have a function that can be evaluated instantaneously. Furthermore, for every not calculated
position in the parameter space the algorithm has to be recomputed. It would speed up the
analysis, if the objective function could be computed for arbitrary values of the parameter
space. This leads to the following procedure, using only a limited number of sample points
and using neurosimulator FAUN to extrapolate the objectivefunction by functions, that can
be easily minimized.

Pseudocode for applying ANN to the objective function

(Initialization)
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1 2

a1

a2

a|A |

Figure 4.2: Network with one origin–destination pair and multiple links.

Prepare the grid search data for use with FAUN by splitting input and output;
Set appropriate scaling parameters for the data;
Set number of ANN to train successfullySN;
Set appropriate worst accepted validation quality;
Prepare FAUN for parallel computation.
(FAUN training)(Finding appropriate ANN)
do N-times in parallel

Select randoms;
while εv in (4.20) does not grow for two consecutive stepsdo

reduceεt in (4.20) by following the gradient descent ons in (4.21);
end while
if εv is acceptable

return and saves;
else if

reinitialize s;
end if

end do
(Postprocessing)
Export the best ANN;
Minimize the objective function approximation;
Returnw∗, q(w∗), andZ(q(w∗),w∗).

4.7 Case studies

In this section case studies illustrating the solution methods introduced in Section 4.6 will be
presented. In Section 4.7.1 the static optimal toll design problem with a network consisting
of one origin–destination pair and multiple links is considered, starting with two links and
linear link travel time and linear toll function, and proceeding to the problem with more
links and quadratic link travel times/tolls. The road authority minimizes the total travel
time of the system or maximizes the total toll revenue, the drivers are driven by DUE. The
problems are solved analytically. In Section 4.7.2 a largerproblem on the so-calledBeltway
network is considered and solved using the algorithm introduced in Section 4.6.2.

4.7.1 One origin–destination pair with multiple parallel links

Let us consider the network with one origin–destination pair as depicted in Figure 5.1 con-
sisting of|A | ≥ 2 directed parallel routes (links).
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The road authority as the leader sets link tolls as follows: The link a|A| is untolled and
each other link is tolled with a toll defined by (4.9), i.e.,

θa (qa) =
M

∑
m=0

w(m)
a (qa)

m, w(m)
a =

{
0 for a∈ A \ T ,

κ(m)
a for a∈ T , κa ∈ R.

Travelers as followers are assumed to have complete information about the network condi-
tions and therefore they are driven by the deterministic user equilibrium defined by Defini-
tion 4.1. The link travel time function for a single driver traveling on a linka and the link
travel cost function are defined as

ta(qa)
def
= βaqa + δa, ca(qa)

def
= ατa(qa)+ θa,

respectively. Therefore,
ca(qa) = αβaqa + αδa + θa(qa).

We assume a positive inelastic traffic demandd = d(r,s) > 0 [veh].
If the process of solving equations that define Wardrop equilibrium leads to negative

traffic flows on some links, the link traffic flows on these linkscan be set to 0 and we
might try to solve the new problem problem without some of these links. As shown in
Example 4.4, such a problem does not need to have a solution.

In Example 4.1 a situation with nonunique Wardrop equilibria can be seen.

Example 4.4 (Nonexistence of the Wardrop equilibrium solution)
Imagine the game on a three-route (link) network with one origin–destination pair. Let

d(1,2) = 5 [veh],α = 10, and let the route (link) cost functions be given by

c1 =
45
2

−2q1, (4.23)

c2 =
35
3

+
8
3

q2, (4.24)

c3 = 10+
5
2

q3. (4.25)

Then the system of equations
c1 = c2, c2 = c3

leads to the following link traffic flows:

q1 =
325
44

, q2 = −65
44

, q3 = −10
11

.

Sinceq2 andq3 are negative, link 2 and/or link 3 will receive zero traffic flow. Therefore,
q1 = 5, q2 = 0, q3 = 0 would be the first candidate for the Wardrop solution. If we set only
q3 to 0 and solve equationc1 = c3, the resulting traffic flows would beq1 = 15

4 , q2 = 5
4,

which is the second candidate for the Wardrop solution. If weset onlyq2 to 0 and we would
solve equationc1 = c3, the resulting traffic flows would beq1 = 0, q3 = 5, which would
determine the third candidate for the Wardrop solution. Unfortunately, none of traffic flows
combinations

• {q1,q2,q3} = {5,0,0};
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• {q1,q2,q3} = { 15
4 , 5

4,0};

• {q1,q2,q3} = {0,0,5}.

is in Wardrop equilibrium. 2

Remark 4.7 Note that in Example 4.4 one of the route (link) cost functions was decreasing
with traffic flow on the same route (link). The Wardrop equilibrium is a reasonable concept
only if the route (costs) are increasing with actual traffic flows. Therefore, Example 4.4 is
of academic nature only. 2

Total travel time minimization on a two-link network with li near link travel time func-
tions

Let us first assume that there are only two routes (links) in the network, i.e.,|A | = 2, where
the travel demandd(r,s) is fixed. Let only link 1 be tolled. If the road authority minimizes
the total travel time of the system, the optimal toll design problem can be written as

(P1)






Find
θ∗1(·) = argminθ1(·) q′ t,

subject to the Wardrop equilibrium constraints,
q = (q1,q2)

′ = (q1,D−q1)
′ ,t = (t1,t2)

′ ,
and∑2

a=1qa = D.

Let
t1

def
= β1q1 + δ1, t2

def
= β2q2 + δ2.

Since
d2 (q′ · t(q))

d (q1)2 = 2β1 +2β2 > 0,

the objective function is convex for allq. The total travel time function is minimized for

q∗1 =
δ2− δ1−2β2D

2(β1 + β2)
, q∗2 =

δ1− δ2−2β1D
2(β1 + β2)

. (4.26)

With this choice ofq1 andq2 the total travel time minimum becomes

4β1β2D2 +(4β1δ2 +4β2δ1)D− (δ2− δ1)
2

4(β1 + β2)
.

Different strategies for the road authority – An ad-hoc approach

Let us first assume that the road authority sets toll on link 1 as a linear toll function, i.e.,

θ1(q1)
def
= w(0)

1 +w(1)
1 q1.

If a Wardrop equilibrium withq1 andq2 defined by (4.26) applies, an optimalw(0)
1 has

to satisfy

w(0),∗
1 =

1
2

α(δ2− δ1)+
(δ1− δ2−2β2D)

2(β1 + β2)
w(1)

1 ,
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while w(1)
1 is free. Therefore, a linear inverse Stackelberg strategy satisfying

θ1(q1) =
1
2

α(δ2− δ1)+
(δ1− δ2−2β2D)

2(β1 + β2)
w(1)

1 +q1w(1)
1 (4.27)

yields the optimal flows. Note that settingw(1)
1 = 0 leads to the optimal Stackelberg strategy

θ1 = 1
2α(δ2− δ1), which is independent of the travel demandD.

Obviously, in this simple case there is no necessity to try more complicated strategies for
the road authority, since the minimal total travel time can be obtained with the Stackelberg
strategy.

Total travel time minimization with linear link travel time functions and multiple par-
allel links

In the more general case, with|A | > 1 andθ|A| = 0, the total travel time function has the
form

qT t =
|A |−1

∑
a=1

qata +q|A|t|A|

=
|A |−1

∑
a=1

qa(βaqa + δa)+ (D−
|A |−1

∑
j=1

q j)

(
β|A|

(
D−

|A |−1

∑
j=1

q j

)
+ δ|A|

)

=
|A |−1

∑
a=1

βaq2
a + δaqa + β|A|D

2−2β|A|D
|A |−1

∑
a=1

qa + δ|A|D

+ β|A|

(|A |−1

∑
a=1

qa

)2

− δ|A|
|A |−1

∑
a=1

qa.

The optimal route (link) flowq∗a (a ∈ {1, . . . , |A| − 1}) for a total travel minimum to be
reached has to satisfy

q∗a =
δ|A|− δa−2β|A|D

2βa +2β|A|
(4.28)

andq∗|A| = d(r,s)−∑|A|−1
a=1 q∗a

If δa > δ|A|−2β|A|D for anya∈ A , theq∗a would be negative, and, therefore, the global
minimum of the total travel time cannot be reached and one cantry to get as close to the
optimum as possible by trying different toll strategies.

If δa < δ|A|−2β|A|D andca
def
= ατa + θa for a∈ {1, . . . , |A|}, (4.28) expresses the link

flows minimizing the total travel time of the system. The Wardrop equilibrium in terms of
costs yields the following expressions forθa in terms ofθ j (a, j ∈ A , a 6= j):

θa = θ j +
Ψa, j

4

2
(
β j + β|A|

)(
βa + β|A|

) , j ∈ A . (4.29)

with Ψa, j
4 = αβ|A|(βaβ j + 2β2

|A|)(δ j − δa) + αβ2
|A|β j(δ j − 2β|A|D + δ|A| − 2δa) + αβa β2

|A|
(2δ j − δ|A| − δa + 2β|A|D). Since one of the links is untolled, the tolls on all other links
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can be computed by induction. Therefore, ifΨa, j
4 ≥ 0 ∀ j ∈ A the system of linear equa-

tions (4.29) yields the Stackelberg solution of the problem.
To recapitulate, ifδ j < δ|A| − 2β|A|D for ∀ j ∈ A andΨa, j

4 ≥ 0, (a, j ∈ A , a 6= j) the
Stackelberg game with one link untolled and traffic flow-invariant toll leads to the optimal
total travel time value. In the other cases, the outcomes of the Stackelberg and inverse
Stackelberg game may differ.

Total toll revenue maximization, with two parallel links and linear link travel time
functions

Clearly,q1 maximizing the total toll revenue has to satisfy

dθ1(q1)

d q1
+ θ1(q1) = 0

and, therefore, it is dependent on the definition of the toll function. We will attempt to
maximize the total toll revenue with different toll function definitions. The problem to be
solved can be symbolically written as

(P2)






Find
θ∗1(·) = argmaxθ1(·) (q1 θ1 (q1)) ,

subject to the deterministic user equilibrium conditions,

with q = (q1,q2)
T ,t = (t1,t2)

T , and∑2
a=1qa = D.

Different strategies for the road authority - An ad-hoc approach

With θ1(q1) = w(0)
1 + w(1)

1 q1 the objective function is concave forw(1)
1 < 0 (d2(θ1(q1)·q1)

d q2
1

=

2w(1)
1 ). Therefore, the optimal toll has to be decreasing with the traffic flow. Maximization

of the total toll revenue function with respect toq1 leads to the optimalq1 andq2 (indicated
by superscript∗)

q∗1 = − w(0)
1

2w(1)
1

, q∗2 = D+
w(0)

1

2w(1)
1

. (4.30)

If a Wardrop equilibrium applies, i.e., ifc1 = c2, w(0)
1 from (4.30) has to satisfy

w(0)
1 =

2α(δ1−β2D− δ2)w(1)
1

αβ1−w(1)
1 + αβ2

. (4.31)

With this choice ofw(0)
1 the total toll revenue reaches

−α2 (δ2− δ1 + β2D)2w(1)
1(

α(β1 + β2)−w(1)
1

)2 > 0 (w(1)
1 < 0). (4.32)

It can be shown that the optimal Stackelberg toll is

θ1 = α(δ1− δ2−β2D)



60 4 Static Optimal Toll Design

and that this toll yields the total toll revenue of

α (δ2− δ1+ β2D)2

4(β1 + β2)
. (4.33)

The Stackelberg toll pays off if this expression is positive.

Expression (4.32) has a higher value than expression (4.33)if w(1)
1 lies in the interval

[(
φ1−2−2

√
1−φ1

)
(β1 + β2)α

φ1
,

(
φ1−2+2

√
1−φ1

)
(β1 + β2)α

φ1

]
,

with φ1 = δ2− δ1+ β2D (1 > φ1 has to be satisfied).

If the toll is defined as a quadratic function, i.e.,θ1(q1)
def
= w(0)

1 + w(1)
1 q1 + w(2)

1 q2
1, the

objective function is concave forw1 > −3w2q1. The only candidate for optimalq1 is then

q1 = −
w1−

√
(w(1)

1 )2−3w(0)
1 w(2)

1

3w(2)
1

. (4.34)

With q1 defined by (4.34) and if the Wardrop equilibrium applies, thetotal toll revenue
function has the following form:

(w(0)
1 )2

(
2w(0)

1 +3Ψ1

)(
9w(1)

1 Ψ1 +6αw(0)
1 Ψ2−4w(0)

1 w(1)
1

)

27
(

w(0)
1 αΨ2 +2Ψ1w(1)

1 −w(0)
1 w(1)

1

)2 , (4.35)

with Ψ1 = αΦ1, Ψ2 = β1+β2. It can be seen that the total toll revenue in the quadratic toll
case (4.35) reaches higher values than the total toll revenue in the linear toll case (4.32), if

w(1)
1 ∈

(
w(1),min

1 ,w(1),max
1

)
, with

w(1),max
1 =−

(
16(w(0)

1 )3−60Ψ1(w
(0)
1 )2 +27Ψ2

1w
(0)
1 +54Ψ3

1+ Ψ3

)
Ψ2w(0)

1

27α (−δ1 + β2+ δ2)
2
(

2Ψ1D−w(0)
1

)2

+
2Ψ2w(0)

1

√
2
(

2w(0)
1 +3Ψ1

)5
w(0)

1

27α (−δ1+ β2+ δ2)
2
(
−w(0)

1 +2Ψ1D
)2 ,

whereΨ3 = 54α3
(

β2
3D3−324β2δ1δ2D−162δ2

2
)

, and

w(1),min
1 =−

(
16(w(0)

1 )3−60Ψ1(w
(0)
1 )2 +27Ψ2

1w
(0)
1 +54Ψ3

1+ Ψ3

)
Ψ2w(0)

1

27α (−δ1 + β2+ δ2)
2
(
−w(0)

1 +2Ψ1D
)2

−
2

√
2
(

2w(0)
1 +3Ψ1

)5
w(0)

1 Ψ2w(0)
1

27α (−δ1 + β2+ δ2)
2
(
−w(0)

1 +2Ψ1D
)2 .
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Remark 4.8 The previous example suggests that in the optimal toll design problem defined
on one origin–destination pair on the network with 2 parallel links, linear link travel time
functions, and with the road authority maximizing the totaltoll revenue of the problem, the
higher degree of the toll polynomial function yields a better outcome for the road authority.

2

Total toll revenue maximization on the network with two parallel links and quadratic
link travel time functions

Let us consider a two-link problem with the road authority minimizing the total travel time
of the system and the link travel time functions defined as

ta
def
= βaq2

a + γaqa + δa,

with the link toll function defined as in the previous case study, i.e.,θ1(q1) = w(0)
1 +w(1)

1 q1.
Following the same procedure as in the previous case it can beseen that when the Wardrop
equilibrium holds, two possible solution flows can be reached (if the transfer condition is
satisfied):

q(1)
1 = − w(1)

1 + αγ1 + αγ2 +2αβ2D−
√

Ψ3

2α (β1−β2)
, (4.36)

or q(2)
1 = − w(1)

1 + αγ1 + αγ2 +2αβ2D+
√

Ψ3

2α (β1−β2)
, (4.37)

with Ψ3 = w(1)
1

2
+ w(1)

1 (2 αγ1 +2αγ2+4αβ2D) + w(0)
1 (−4αβ1 +4αβ2) + α2γ1

2+
2α2γ1γ2 + 4α2γ1β2D + α2γ2

2+4α2β1γ2D+4α2β1β2D2−4α2β1δ1+4α2β1δ2+4α2β2δ1

− 4α2β2δ2 (Ψ3 ≥ 0 is a necessary condition to obtain the optimal traffic flows).
If only one from the traffic flows (4.36) and (4.37) leads to theWardrop equilibrium,

minimization of the total travel time function gives us:

w(0),∗
1 =

1
3

α (2δ2−2δ1 + γ2D) , w(1),∗
1 = −1

3
α(γ1 + γ2) < 0.

Note that this solution is unique. Also, sinceα > 0, γ1 > 0, andγ2 > 0, the optimal toll will
be decreasing with traffic flow, provided that condition (4.10) holds. A necessary condition

for this is that 2δ2−2δ1+ γ2 > 0. Moreover, sincew(1),∗
1 6= 0, the inverse Stackelberg game

strategy brings a better outcome for the road authority thanthe Stackelberg strategy. Since
the problem is a second-best problem, link 2 is untolled and,thus, no other possibility for
the road authority to get the same outcome with the Stackelberg strategy exists.

The total toll revenue maximization with multiple parallel links and linear link travel
time functions

The total toll revenue function has the form

qT θ =
|A |−1

∑
a=1

qa θa(qa). (4.38)
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a βa γa δa

1,2,3,5,8,14,17,21,24,26,27,28 5 1
400 0.15625·10−5

15,16,34,35 3 1
30

1
900

4,32 2.7 1
400 0.625·10−4

9,13,25,37,41,53 9 1
400 0.625·10−4

18,19,20 3 1
100 4 ·10−5

10,12 1.2 1
600 4 ·10−5

11 4 1
60 4 ·10−4

others 10 1
30

1
900

Table 4.1: Coefficients of the travel time function.

Here the tollθa(·) is a function of the link traffic flow on the same link. Ifd2θa(qa)

d(qa)
2 +

dθa(qa)
d qa

<

0, then the the local maximum of the total toll revenue functionis reached forqa (a∈ A )
satisfying

dθa(qa)

d qa
+ θa(qa) = 0. (4.39)

Therefore, the structure of the toll functions will influence the possible outcome of the game
and, therefore, no claims on optimal strategy for the leadercan be made before the structure
of the toll function is known.

4.7.2 Beltway network

Let us consider the network depicted in Figure 4.3 with 21 nodes and 56 links. Note that in
Figure 4.3 link labels lie on the right-hand side of the driving direction, when going from
North to South or from West to East. Nodes{1,2,3} will be referred to as to the North
nodes, similarly nodes{4,9,14} will be referred to as to the West nodes, etc. Initially the
set of tollable links will be defined asT = {9, 11, 13, 19, 22, 23, 25, 53}, as these are in
this network the rather congested links, when the toll is notimposed.6

Let the logit-based stochastic equilibrium apply for the lower level of the problem. The
set of originsR contains nodes from North, East, and West, while the set of destinations
S comprises nodes from the South. LetRS = R × S . Therefore, there are 27 origin–
destination pairs and 1357 routes in the network. There is a traffic demand of 20 cars
for each origin–destination pair and each minute.

The link travel time functions will be defined asta
def
= βa + γaqa + δaq2

a for eacha∈ A ,
where coefficientsβ, γ, andδ are depicted in Table 5.23.

The road authority minimizes the total travel time of the system.
The following four problems will be dealt with considering both objectives:

1a) Stackelberg game (defined by (P.0)) withw0,a = w0 ∈ R
0
+, ∀a∈ T .

6Our research does not deal with establishing the optimal setof tollable links. Research on this topic can be
found in, e.g., [30].
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Figure 4.3: Beltway network.
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1b) Inverse Stackelberg game (defined in (P)) withM = 2, toll defined by (4.9), and with

the additional condition thatw(m)
a = wm ∈ R for a∈ T , i.e., the linear toll functions

have link-independent coefficients.

1c) First-best (FB) pricing problem,with toll defined as themarginal link travel time,
θa(qa) = dta

dqa
qa for each linka∈ A . This presents the best possible outcome of the

game if all links are tollable.

1d) Problem with no toll.

To solve these problems the algorithm introduced in Section4.6, with εmax = 10−5,
εv = 0.005, 7500 training patterns, and 2500 validation patterns will be applied.

Note that in 1a) and 1b) the toll functions are identical for all tolled links. It is possible
to apply more flexible tolls, but the computations of the optimal tolls would become very
lengthy in that case.

Let the road authority minimize the total travel time of the system, i.e.,

Z(q(w),w) = ( f (q(w),w))T · τ( f (q(w),w)) ,

The outcomes of the game with no toll and the game with the first-best tolling are de-
picted in Table 4.2, while the outcomes of the Stackelberg game together with the outcomes
of the inverse Stackelberg game are depicted in Table 4.3.

The optimal toll value for the Stackelberg game is rather high, i.e., 38.2 euro. The opti-
mal values ofw0 andw1 for the inverse Stackelberg game are 0.083 and 4.57, respectively.
The total travel time obtained with the first-best tolling is1.3286·104 [min], the total travel
time with use of the inverse Stackelberg game is 1.3698·104 [min], and 1.4435·104 [min]
with use of the Stackelberg game. The total travel time with no tolls is 1.6025·104 [min]

Note that to obtain the first-best outcome it is necessary to toll 56 links, while we used
only 2 parameters in the toll function to obtain a result rather close to the first-best outcome.

In Table 4.4 outcomes of case studies, that differ in the set of tollable links, are depicted
(as Case studies 2–6). These case studies are chosen such that some of the tolled links have
very low first-best toll values, thus they should not be tolled in practice. Although outcomes
of the Stackelberg game and the inverse Stackelberg game arequite close to each other,
the inverse Stackelberg game performs never worse than the Stackelberg game. This is no
surprise, since the Stackelberg game is a special case of theinverse Stackelberg game. This
becomes clear in Case study 5 in which the optimal inverse Stackelberg strategy is in fact a
Stackelberg strategy.

In Case study 3 the optimal tolls on tollable links are decreasing with the link flows on
the same links. With increasing traffic flow on the particulartolled link the other links in the
network become even more congested, that is why the travelers should still be stimulated
to leave the other congested links and switch to the tolled link. This phenomenon would
not occur if the links that are more sensitive to congestion would be tolled. Therefore, the
flow-dependent tolling can accommodate to the new traffic conditions.

For Case study 1 additional computations with Stackelberg and inverse Stackelberg
games were performed. We compare the following games:

• Stackelberg game with



4.7 Case studies 65

no tolls FB tolls
a toll flow time toll flow time
1,2,3 − 60.00 5.16 0.16 60.00 5.16
4,32 − 62.45 3.10 0.4483 50.72 2.99
5,8,14,17,21,24 − 60.00 5.16 0.16 60.00 5.16
6,7 − 42.03 3.34 0.24 26.40 3.17
9,13 − 55.09 12.27 7.09 65.95 13.37
10,12 − 106.27 1.83 0.66 81.20 1.60
15,16 − 65.07 3.69 0.72 50.20 3.45
18,20 − 107.48 8.70 7.36 89.88 7.13
22,23 − 39.97 13.11 4.18 36.52 12.70
25,53 − 38.37 10.88 1.7938 29.18 10.26
26,27,28 − 180.00 5.50 0.55 180.00 5.50
29,30,31,a45 − 0.00 10.00 0.00 0.00 10.00
34,35 − 55.86 3.53 0.56 43.35 3.35
37,41 − 13.13 9.44 0.01 0.13 9.00
38,40 − 14.41 10.71 0.56 10.06 10.45
39 − 13.46 10.65 0.27 5.89 10.24
47 − 0.55 10.02 0.01 0.01 10.00
33,36,42,49 − 0.00 10.00 0.00 0.00 10.00
43,44 − 15.47 10.78 0.47 8.87 10.38
46,48 − 5.23 10.20 0.01 0.08 10.00
50,51 − 15.75 10.80 0.03 0.90 10.03
52,54,55,56 − 0.00 10.00 0.00 0.00 10.00
11 − 45.81 5.60 3.07 31.98 4.94
19 − 132.11 11.30 10.55 108.76 8.82

Table 4.2: Link parameters - Stackelberg game (Case study 1)

– links 9,11,13,19 tolled with identical toll and links 22,23,25,53 tolled with
identical toll, while these two toll values may differ;

– links 9,11,13 tolled with identical toll, links 19,22,23 tolled with identical toll,
and links 25 and 53 tolled with identical toll, while these three toll values may
differ;

– links 9,11 tolled with identical toll, links 13,19 tolled with identical toll, 22,23
tolled with identical toll, and links 25,53 tolled with identical toll, while these
four toll values may differ;

• inverse Stackelberg game with toll set as in equation (4.9)

– with M = 1 and the identical polynomial toll imposed on all tollable links;

– with M = 2 and the identical polynomial toll imposed on all tollable links;

– with M = 3 and the identical polynomial toll imposed on all tollable links.

Results are shown in Table 4.5. It is clear that when comparing Stackelberg and inverse
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SG ISG - linear
a toll flow time toll flow time
1,2,3 0.00 60.00 5.16 0.00 60.00 5.16
4 0.00 61.76 3.09 0.00 59.20 3.07
5,8,14,17,21,24 0.00 60.00 5.16 0.00 60.00 5.16
6,7 0.00 26.15 3.16 0.00 24.81 3.15
9,13 38.20 48.13 11.65 10.10 66.61 13.49
10,12 0.00 129.05 2.08 0.00 106.86 1.83
15,16 0.00 94.64 4.31 0.00 81.11 3.99
18,20 38.20 92.50 7.35 11.13 79.03 6.27
22,23 38.20 19.18 11.05 6.80 26.90 11.72
25,53 38.20 12.35 9.40 6.12 18.71 9.69
32 0.00 61.76 3.09 0.00 59.20 3.07
26,27,28 0.00 180.00 5.50 0.00 180.00 5.50
29,30,31,45 0.00 0.00 10.00 0.00 0.00 10.00
34,35 0.00 62.79 3.65 0.00 62.11 3.63
37,41 0.00 6.15 9.18 0.00 0.13 9.00
38,40 0.00 14.39 10.71 0.00 16.04 10.82
39 0.00 13.27 10.64 0.00 15.40 10.78
47 0.00 0.01 10.00 0.00 0.01 10.00
33,36,42,49 0.00 0.00 10.00 0.00 0.00 10.00
43,44 0.00 10.16 10.45 0.00 9.28 10.40
46,48 0.00 2.31 10.08 0.00 0.04 10.00
50,51 0.00 7.03 10.29 0.00 1.42 10.05
52,54,55,56 0.00 0.00 10.00 0.00 0.00 10.00
11 38.20 0.01 4.00 4.64 0.79 4.01
19 38.20 155.69 14.25 15.28 129.04 10.88

Table 4.3: Link parameters - inverse Stackelberg game (Casestudy 1)

Stackelberg games with the same number of parameters to be optimized, the inverse Stack-
elberg game performs never worse than the Stackelberg game.Already with 3 parameters
the resulting total travel time is very close to the first-best outcome. Therefore, it is prof-
itable for the road authority to calculate the tolls using inverse Stackelberg strategy even
when the tolls are set as very simple functions of link flows.

The average computational time with 16 microprocessors was9.5 minutes for problems
with one parameter to optimize, 16.2 minutes with problems with two parameters to be
optimized, 25.5 minutes with problems with three parameters, and 40.3 minutes with 4
parameters. The computational time can be reduced with use of more microprocessors.

Discussion

In the presented case studies we suggested how to improve thesystem performance with
use of so-called traffic-flow dependent tolls. It can be seen that the system performance
improves even with use of very simple toll functions.
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Another question to be discussed is the practical relevanceof the proposed concept of
the traffic-flow dependent tolls. One of the possibilities ofhow to apply such tolls in practice
is to use global positioning systems (GPS) and/or mobile phones for counting the number
of cars using specific roads/links in order to compute the traffic-flow dependent tolls.

4.8 Conclusions and future research

In this chapter we have introduced the problem of static optimal toll design with second-best
traffic-flow dependent tolling. We have discussed existenceof solutions of a very general
version of this problem as well as its difficulty and we have proposed a solution algorithm.
In the case studies (with specific objective function for theroad authority and specific traffic
assignment) we have shown both problems solved analytically and problems solved numeri-
cally using the proposed algorithm. Some unrealistic assumptions were considered, though,
especially inelastic travel demand.

The following topics are subject of our future research:

• Alternative objectives of the road authority Although problem (P) was defined
in a general way, in the presented case studies the objectivefunction of the road
authority was defined as a total travel time or as a total toll revenue of the traffic
system. Another option is to define the objective function asthe reliability of the
network or, for example, as a surplus of the network.

• Elastic demandsThe traffic demand is assumed fixed. The traffic-flow dependent
tolls can be implemented also in systems with elastic trafficdemands. More about
elastic traffic demands can be found in, e.g., [66].

• Heterogeneous network usersThe drivers in the network formed a homogeneous
group. In [10] possibilities for defining heterogeneous users are investigated. These
possibilities can be incorporated into our problem, too. Inthat case different toll
functions would be imposed for different user groups.

The problems closely related to the research conducted in this chapter, but falling out of
this frame, can be listed as follows:

• Finding the best way how to model link and route traffic flow, time, and other link
and route traffic variables. We adopted standard methods used in the traffic field.

• Validating of standard ways used to model the traffic variables on the road networks.

• Defining criteria of efficiency of algorithms for solving theproblems dealt with in
this thesis and comparing different algorithms with respect of such criteria. We tried
to develop algorithms that would solve the problems we are dealing with and that can
be parallelized. We do not consider any other criteria, likespeed and efficiency of the
algorithms.

• Finding the best possible toll functions minimizing the objective function of the road
authority. We were looking for polynomial toll functions improving the system per-
formance remarkably when compared to outcomes obtained with standard uniform or
time-varying tolls.
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• Definition of the best possible objective function for the road authority from the prac-
tical point of view. While in Chapters 4 and 5 this objective function was not defined
and the properties of the problems were discussed with a general objective function,
in case studies we used the total travel time (to be minimized) or total toll revenue (to
be maximized) as objective functions of the road authority.We are aware of the fact
that other objective functions might be more realistic.

• Definition of the best possible way how to define travelers’ cost functions. In this
thesis the link cost function was defined as a linear combination of link travel time
and link toll. There exist other ways how to define the link cost function. Finding of
such ways is beyond the scope of this thesis.



Chapter 5

Dynamic Optimal Toll Design

This chapter extends the outcomes of Chapter 4 to the situation in which the problem evolves
over time. We then talk about a dynamic optimal toll design problem.

5.1 Introduction and literature overview

There are extensive studies focusing on thestaticoptimal toll design problem, i.e., on prob-
lems in which decisions of the players (the travelers and theroad authority) do not evolve
over time (see [68, 85], Chapter 4). Although the static models are still widely used, the
theory and practice ofdynamicmodels have evolved significantly over the last ten years.
In the dynamic version of the optimal toll design problem thedynamic traffic assignment
(DTA) applies ([10]). DTA models typically describe route choice behavior of travelers on
a transportation network and the way in which traffic dynamically propagates through the
network.

If all travelers are assumed to have perfect information (i.e., they know the current and
future conditions on the network as well as the decisions of the other travelers) and if they
are uniform, thedeterministic user equilibrium(DUE) applies ([10, 94]). Similarly, with
imperfect information and distributed travel preferences, aprobabilistic user equilibrium, in
the traffic literature referred often as to astochastic user equilibrium(SUE), applies, in the
case studies of this chapter this is often thelogit based stochastic equilibrium(LB-SUE),
see ([58]).

With respect to possible tolling strategies there are two main research streams differing
in the definition of the set of tollable links. With so-calledfirst-best-tolling (or first-best
pricing) all the links in the network can be tolled ([68, 96]). With the so-called second-best
tolling not all links are tollable (see [85]). The latter concept is clearly more applicable in
practice.

Dynamic congestion pricing models in which network conditions and link tolls are time-
varying, have been addressed in [3], where the effectiveness of various pricing policies
(time-varying, uniform, and step tolls) was compared as well. Only one bottleneck or a
single origin–destination network was considered there, while the possibility of applica-
tion of traffic-flow dependent tolls is not discussed here. In[43] and [95] dynamic marginal
(first-best) cost pricing models for general transportation networks were developed. As indi-

71
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cated by the authors, the application of their model is limited to destination-specific (rather
than route or link-based) tolling strategies, which might complicate its practical application.
Moreover, only the first-best pricing is considered here.

In [46] the dynamic optimal toll design problem is considered with a case study on
the so-called Chen network. Tolls are assumed uniform or time-varying, but traffic-flow
invariant, and the problem of finding the optimal toll is defined, but not solved, although
the impact of some specific toll values on travelers’ route and departure time choices is
presented.

In [85] and [84] second-best tolling is considered, travelers are driven by the determin-
istic user equilibrium (DUE), the objective function of theroad authority is defined as the
surplus of the road authority (i.e., amount of money that theroad authority receives by im-
posing tolls minus the investments of the road authority concerning the toll charge), the
traffic demand is elastic, and it is assumed that the link costfunctions are increasing with
respect to traffic flows. In [66] and [60] the lower-level of the problem (travelers’ mini-
mization of travel costs) is formulated and solved as a variational inequality problem (VIP).
Here the travelers are driven by DUE. In [68] a very general Stackelberg model is presented,
where the road authority has two decision variables, one of them possibly traffic-flow de-
pendent. The paper itself deals with general mathematical properties of traffic equilibria,
however. The tolls are assumed to be constant and the traffic-flow dependent variable is
interpreted as a management decision of the road authority.

This chapter proposes an extension of our research in the field of the static optimal toll
design problem to the dynamic problems with both DUE and SUE.Although some au-
thors [3, 14] consider the step-wise second-best tolling, to the best of our knowledge no
research dealing with the optimal toll design problem with the second-best tolling, the trav-
elers driven by LB-SUE, and the aim being to find optimal toll defined as a function of the
traffic flows in the network has been done before. Since this problem is NP-hard, advanced
optimization techniques, which can be parallelized, should be used to solve it. Similarly as
in Chapter 4 a neural network-based algorithm as such an optimization technique is imple-
mented. The neurosimulator FAUN has already been employed to solve other problems in
the domain of dynamic games [15, 89, 90].

5.2 Preliminaries

Let G = (N ,A ) be a strongly connected road network, that means, there exists at least one
path connects each(r,s)-pair, whereN andA are finite nonempty sets of nodes and directed
arcs (links), respectively. The set of tollable arcs will bedenoted byT ⊆ A . There is a finite,
nonempty set of origin-destination pairsRS ⊂ N ×N and let the setK = {1,2, . . . , |K |}
be a time index set. Here eachk∈ K refers to

• the interval[(k−1.5)∆,(k+1.5)∆) if k≥ 2,

• the interval[0,0.5∆) if k = 1,

where∆ [h] is the length of each time interval.
For an ordered pair of nodes(r,s) ∈ RS , wherer is an origin ands is a destination,

there is a positive number of drivers traveling fromr to sand departing during thek-th time
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interval – so-called travel demandd(r,s),(k) [veh/h].1 The travel demand is for the sake of
simplicity assumed to be time-interval varying but traffic-flow and toll invariant.2 Let d(r,s)

be a|K |-vector of all travel demands fromr to s for all time intervals, i.e.,

d(r,s) def
=
(

d(r,s),(1),d(r,s),(2), . . . ,d(r,s),(|K |)
)T

.

Let (r1,s1) denote the first origin-destination pair,(r2,s2) denote the second origin-destin-
ation pair, etc., let(r|R |,s|S |) denote the last origin-destination pair. Then,

d
def
=




d(r1,s1)

...
d(r|R |,s|S |)



 .

In the following text we will denote such a vector by
(

d(r,s)
)

∀(r,s)∈RS
. will be a |RS | · |K |-

vector of all traffic demands for all travel time intervals and all origin–destination pairs in
the network.

Let P be the set of all simple paths (i.e., paths without cycles) inthe network and let
P (r,s) ⊂ P be the set of all paths between an origin-destination pair(r,s). An element of
P will be denoted byp, while an element ofP (r,s) will be denoted byp(r,s). Each path is
formed by one or more directed arcs.3

The route flow departure rate4 on pathp∈ P during thek-th time interval will be denoted

by f (k)
p ([veh/h]), the arc inflow rate on the linkaduring thek-th time interval will be denoted

by q(k)
l ([veh/h]).
The average route travel cost on the routep ∈ P when starting during thek-th time

interval will be denoted byc(k)
p , the average link travel cost on a linka during thek-th time

interval will be denoted byς(k)
l ([euro]).

The route and link tolls, times, costs, and flows are related through a dynamic route-arc

incidence indicatorδ(k),(k′)
p,a ∈ {0,1}, which equals 1, if the travelers entering the routep∈ P

during thek-th time interval enter the arca during thek′-th time interval, and 0 otherwise.
We will assume that the route times, costs, and tolls are additive5, and that the following
conservation constraints hold, i.e.,6

θ(k)
p = ∑

k′∈K
∑
a∈A

δ
(k),(k′)
p,a θ(k′)

l , τ(k)
p = ∑

k′∈K
∑

a∈A
δ

(k),(k′)
p,a t

(k′)
l , (5.1)

c(k)
p = ∑

k′∈K
∑
a∈A

δ
(k),(k′)
p,a ς(

k′)
l , q

(k′)
l = ∑

k∈K
∑

a∈A
δ

(k),(k′)
p,a f (k)

p , (5.2)

1We do not consider the so-called departure time choice, as our main focus is on the optimal strategy for the
road authority. This option is considered in, e.g.,[46].

2Elastic demand road pricing models are introduced in, e.g.,[84].
3Note that the order of links matters, the expressionp = (6,1,4) means that routep is formed by three links,

where 6 is the first one, 1 is the second one, and 4 is the last one.
4In the reminder of this chapter we will use the term “route flow” instead of the “route flow rate”.
5In reality, this does not need to be the case. For research dealing with non-additive costs, tolls, or flows we

refer the reader to [66].
6Since some of the variables have to be rounded off, additional discussion about consistency of these equation

is needed. Such a discussion can be found, in, i.e., [74].
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d(r,s),(k) = ∑
p∈P (r,s)

f (k)
p . (5.3)

For each linka∈ A , the link travel costς(k)
l for thek-th time interval is a linear combi-

nation of the actual link travel timetl and the actual link tollθa with coefficientsα [veh/h]
and 1, i.e.,

ς(k)
l

def
= αt(k)l + θ(k)

l , (5.4)

whereα [euro/time unit] is called the value of time, which is supposed to be independent of
q.7

Note that the link cost does not need to be strictly increasing with respect to the actual
link flows, as the toll functions need not to be (strictly) increasing. It may seem counter-
intuitive to have toll functions decreasing with the trafficflow, however, this phenomena
was already encountered for the static optimal toll design problem in Chapter 4. In contrast,
in , e.g., [85], the link costs are assumed increasing with link flows.

Let q(k), t(k), andς(k) denote for thek-th time interval a vector of link flow rates on all
links, a vector of link flows on all links, and a vector of link costs on all links, respectively,
i.e.,

q(k) def
=





q(k)
1

q(k)
2
...

q(k)
|A |




, t(k) def

=





t(k)1

t(k)2
...

t(k)|A |




, ς(k) def

=





ς(k)
1

ς(k)
2
...

ς(k)
|A |




. (5.5)

Let q, t, andς denote the vectors of the link flows, the link travel times, and the link
travel costs for all time intervals, i.e.,

q
def
=





q(1)

q(2)

...
q(|K |)




t

def
=





t(1)

t(2)

...
t(|K |)




, ς

def
=





ς(1)

ς(2)

...
ς(|K |)




. (5.6)

Similarly, let us define

f (k) def
=





f (k)
1

f (k)
2
...

f (k)
|P |




, τ (k) def

=





τ(k)
1

τ(k)
2
...

τ(k)
|P |




, c(k) def

=





c(k)
1

c(k)
2
...

c(k)
|P |




,

f
def
=





f (1)

f (2)

...
f (|K |)




, τ

def
=





τ (1)

τ (2)

...
τ (|K |)




, c

def
=





c(1)

c(2)

...
c(|K |)




.

7There are various ways in which the route cost functions can be defined, a common way is based on so-called
generalized cost function, as mentioned in [45].
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For each link fromT and each time interval a traffic-flow dependent toll can be imposed.

The traffic-flow dependent toll on linka∈ T will be denoted byθ(k)
l (·). Unless stated dif-

ferently, this toll will be for eachk-th time interval defined as a polynomial function of link
flow for the same time interval and on the same link, i.e.,

θ(k)
l

(
q(k)

l

)
=

M

∑
m=0

w(m),(k)
l

(
q(k)

l

)m
, w(m),(k)

l =

{
0 for a∈ A \ T ,
∈ R for a∈ T ,

(5.7)

with M ∈ N0. By definition,w is constrained∀q(k)
l ≥ 0 such that

θ(k)
l

(
q(k)

l

){ = 0 for a∈ A \ T ,
≥ 0 for a∈ T .

(5.8)

More advanced toll functions include traffic flows from previous time period, but we are
looking for a very simple scheme improving the system performance, therefore we restrict
ourself to toll functions in the form (5.7). Vectors

θ(k) def
=





θ(k)
1 (·)

θ(k)
2 (·)

...

θ(k)
|A |(·)




, θ

def
=





θ(1)

θ(2)

...
θ(|K |)





are vectors of link toll functions during thek-th time interval and vectors of all link toll
functions for all time periods, respectively. Coefficient vectors will be defined as follows:

w(k)
l

def
=





w(1),(k)
l

w(2),(k)
l

...

w(M),(k)
l




, w(k) def

=





w(k)
1

w(k)
2
...

w(k)
|A |




, w

def
=





w(1)

w(2)

...
w(|K |)




. (5.9)

Let w(m),(k)
l ∈

[
w(m),min,w(m),max

]
for all m and let setsW(k)

l , W(k), andW be defined as

follows:

W(k)
l

def
=
[
w(1),min,w(1),max

]
× . . .×

[
w(M),min,w(M),max

]
, (5.10)

W(k) def
=
(
W(k)

l

)|A |
, W

def
=
(
W(k)

)|K |
, (5.11)

with w(m),min,w(m),max ∈ R, w(m),min < w(m),max for ∀m ∈ {1, . . . ,M}. Clearly, W(k)
l is a

subset ofRM and thusW(k)
l , W(k), andW are convex and compact sets. It is assumed that

w(k)
l ∈W(k)

l , w(k) ∈W(k), w∈W for ∀k∈ K , a∈ A .

Note that while coefficientsw(m),(k)
l can be negative, the toll has to be nonnegative on all

links, as stated in (5.8).
With M = 0 in equation (5.7) the toll level becomes time-varying, butnot directly de-

pendent on traffic flow (although this toll will be influenced by changes in the traffic flow
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pattern). In that situation the toll on the linka j will be set asw(0),(k)
l ∈ R

0
+, and the vectors

ω(k) def
=





w(0),(k)
1

w(0),k)
2
...

w(0),(k)
|A |




, ω

def
=





ω(1)

ω(2)

...
ω(|A |)





will be vectors of time-varying, but traffic-flow invariant tolls for thek-th time interval, and
of time-varying, but traffic-flow invariant tolls for all time intervals, respectively.

Let W0 be defined as setW with M = 0, i.e., W0
def
=
[
w(0),min,w(0),max

]
, with 0 ≤

w(0),min < w(0),max. Let ω ∈W0. ClearlyW0 is a subset ofR0
+ and a compact set.

We also introduce the matrixM = {0,1}|RS |×|P |, which is the origin–destination pair-
path incidence matrix. Its element in the(r,s)-th row andp-th column is 1 if the routep
starts from originr and finishes in destinationsand 0 otherwise. The traffic flow feasibility
is described by

M f (k) = d(k). (5.12)

5.2.1 Game-theoretic interpretation of the optimal toll design problem

The problem of the dynamic optimal toll design can be seen as an inverse Stackelberg game.
Two possible interpretations from the game theoretic pointof view are possible:

• The drivers, as followers, choose in each time period routesfrom their origins to
their destinations so as to minimize their actual or perceived travel costs. Therefore,
their decisions are their route choices. Because the average traffic flows are depen-
dent upon these decisions and the road authority as the leader sets dynamic tolls as
functions of the average traffic flows in the network, these tolls are also composed
functions of the drivers’ decisions.

• Because the travelers are uniform, all of them can be seen as one super-player, who is
the follower in the one leader – one follower inverse Stackelberg game with the road
authority as the leader. The decision of this super-player would establish the average
traffic flows in the network. The dynamic tolls are the functions of the follower’s
decisions in this game.

5.3 Drivers’ behavior – dynamic traffic assignment

This section formulates a macroscopicdynamic traffic assignment (DTA) modelthat de-
scribes user-optimal flows over a network in which each driver chooses his/her preferred
route from origin to destination, based on the time-varyingconditions in the network. A
driver starting his trip during thek-th time interval will influence the traffic conditions in
this interval as well as the traffic conditions during later time intervals. The network con-
ditions in thek-th time period depend on the conditions in previous time time periods. The
travel behavior model used in this thesis can be found in, e.g., [10] or [19].
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The standard DTA models consist of adynamic travel choice(DTC) model and ady-
namic network loading(DNL) model.

The DTC contains a path choice model in which all travelers are distributed on all avail-
able routes such that some kind of dynamic user equilibrium is achieved. Both deterministic
and stochastic equilibria will be considered.

In Section 5.3.1 the dynamic traffic equilibria used in this thesis are defined and dis-
cussed. In Section 5.3.2 the dynamic network loading model will be formulated.

5.3.1 Dynamic traffic equilibrium conditions

In the problem of traffic assignment with given traffic demand, each user chooses a certain
route from his/her origin to his/her destination. The rulesaccording to which the users
decide which route to use have to be specified. The behavioralmodel used in this thesis
is the so-calledDynamic Traffic Equilibrium, as stated in, e.g., [10]. We consider both its
deterministic and stochastic variants.

Definition 5.1 (Dynamic deterministic traffic equilibrium)
The traffic network is in the dynamic deterministic traffic equilibrium, if for each origin–
destination pair, the route travel costs for all users traveling between a specific origin–
destination pair and departing during the same time interval are equal, and lower than the
route travel costs which would be experienced by a single user on any unused feasible route,
i.e., if for all (r,s) ∈ RS , p∈ P (r,s) the following statement holds:

If f (k)
p > 0, then c(k)

p = min
p̂∈P(r,s)

c(k)
p̂ , ∀k∈ K , p∈ P (r,s), (r,s) ∈ RS ;

if f (k)
p = 0, then c(k)

p > min
p̂∈P(r,s)

c(k)
p̂ , ∀k∈ K , p∈ P (r,s), (r,s) ∈ RS .

2

Definition 5.2 (Dynamic stochastic traffic equilibrium)
The traffic network is in the dynamic stochastic traffic equilibrium, if for each origin–
destination pair, the perceived route travel costs for all users traveling between a specific
origin–destination pair and departing at the same time instant are equal, and lower than the
route travel costs which would be experienced by a single user on any unused feasible route,
i.e., if for all (r,s) ∈ RS , p∈ P (r,s) the following statement holds:

If f (k)
p > 0, then c̃(k)

p = min
p̂∈P(r,s)

c̃(k)
p , ∀k∈ K , p∈ P (r,s), (r,s) ∈ RS ;

if f (k)
p = 0, then c̃(k)

p > min
p̂∈P(r,s)

c̃(k)
p , ∀k∈ K , p∈ P (r,s), (r,s) ∈ RS ,

wherec̃(k)
p is the perceived travel cost on the routep. 2

As in Chapter 5, Section 4.3 we assume that in equilibrium state, the so-calledlogit-
based dynamic stochastic equilibriumtakes place. This means that the following equation
applies for eachp∈ P (r,s), k∈ K :

f (k)
p =

exp(−µc(k)p )

∑p̂∈P (r,s) exp(−µcp̂)
d(r,s),(k).



78 5 Dynamic Optimal Toll Design

5.3.2 The dynamic network loading model

The dynamic network loading (DNL) model is formulated as a system of equations ex-
pressing link dynamics, flow conservation, flow propagation, and boundary constraints. The
DNL model simulates the progression of the route flows on the network, yielding dynamic
link flows, link volumes, and link travel times developing over time. The DNL model used
in this thesis is adapted from [10] and can be expressed by thefollowing system of equa-
tions:

v

(
k+t̃

(k)
a

)

a,p = u(k)
a,p (5.13)

u(k)
a,p =

{
q(k)

p , if a is the first link on path p∈ P (r,s),

v(k)
a−,p, were a− is the preceding link of a.

(5.14)

u(k)
a = ∑

p∈P (r,s)

u(k)
a,p (5.15)

v(k)
a = ∑

p∈P (r,s)

v(k)
a,p (5.16)

x(k)
a = ∑

k′≤k

(
u
(k′)
a −v

(k′)
a

)
∆, (5.17)

where t̃(k)a is an approximation of the link travel time. In addition, thelink travel time
function for thek-th time interval is a nondecreasing and link-specific function of the link
volume on the same link for thek-th time interval.

Equation (5.13) is aflow propagationequation. It describes the propagation of the

inflows u(k)
a,p through the link and therefore it determines the outflowsv(k)

a,p. Additionally, it
relates the inflows and outflows of linka at thek-th time interval of vehicles traveling on

routep from origin r to destinations. The t̃(k)a is defined as follows:

t̃(k)a
def
= χ, if t(k)a ∈ [(χ−0.5,χ +0.5)∆) . (5.18)

We do not assume explicitly that a FIFO (first-in first-out) condition has to be satisfied.

Equation (5.14) describes theflow conservationconditions. If linka is the first link on
routep, the inflow rate is equal to the corresponding route flows determined by the route

choice model. If linka is not the first link on the route, then the inflow rateu(k)
a,p is equal to

the link outflow ratev(k)
a−,p of the preceding linka−.

Equation (5.15) states that the total link inflows are determined by adding all link inflows
for all routes that flow into linka at that time interval.

Equation (5.16) states that the total link outflows are determined by adding all link
outflows for all routes that flow out of linka at that time interval.

Equation (5.17) defines the link volumex(k)
a , i.e., the number of travelers present at the

beginning of thek-th time interval on linka.
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5.4 The problem formulation

Similarly as in Section 4.5 the goal of the road authority is to choose an optimalw∗, min-
imizing his/her objective function. As described in Section 5.2.1 the problem is an inverse
Stackelberg game. The problem of the total travel time minimization can be formulated as
follows:

(PD)






Find
w∗ = argminw∈W Z(q(w),w) ,

subject toq∈ DUE(w) , whereθ is defined by (5.7) and (5.8).

The expressionq∈ DUE(w) reads as “link flow vectorq is a result of a used dynamic
user equilibrium (DUE) model when a polynomial toll function with coefficient vectorw is
used.” .

The “standard” Stackelberg problem would be defined as a subproblem of (PD):

(PD0)






Find
w∗

0 = argminw0∈W0
Z(q(w0),w0)

subject toq∈ DUE(w) .

5.5 General problem properties

Note that problem (PD) is a nonlinear programming problem, similarly as problem (PD)
introduced in Section 4.4. Also, the problem (PD) has at least one solution if the DUE
constraint represents a compact set of(w,q(w)).

If for any givenw the setDUE(w) is a singleton,w→ q is a one-to-one mapping. In this
case, the continuity ofq with respect tow will guarantee that the constrained set of (PD) is
closed, which implies the solution existence of (PD) sinceq andw are bounded.

In general,DUE(w) may have multiple solutions in terms ofq and thusDUE(w) may
not be a singleton. In this case,DUE(w) is a point-to-set mapping ofw ([33]). The solution
existence of (PD) will depend on the compactness of the graphDUE(w) , defined as

Ψ(w,q) = {(w,q) |q∈ DUE(w) , ∀w∈W}. (5.19)

Theorem 5.1 The problem (PD) has at least one solution if the following conditions are
satisfied:

i. The setDUE(w) is nonempty and compact for∀w∈W,

ii. Let w,w∈ W and let q∈ DUE(w), q∈ DUE(w). For eachε > 0, there existsδ > 0
such that if||w−w|| < δ, then

max
∀q∈DUE(w)

min
∀q∈DUE(w)

||q−q|| < ε.

iii. The link travel cost functions on all links are continous functions of the link flows on
the same links.
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Proof : Let R(0,ε) be an open ball with radiusε. ThenY
def
= DUE(w)+R(0,ε) is an open

set containing DUE(w). Let us define an other open setZ
de f
= {w : ||w−w||< δ} containing

w. According to conditionii. in Theorem 5.1, for anyε > 0, there existsδ > 0 such that

max
∀q∈DUE(w)

min
∀q∈DUE(w)

||q−q|| < ε,

which is equivalent to∪w∈ZDUE(w) ⊆ Y . Thus, underii. , the point-to-set mapping of
DUE(w) is upper-semicontinuous. Together with conditioni. it implies that the point-to-set
mappingDUE(w) is closed on setW. Thus the graphΨ(w,q) defined in (4.19) is closed by
Theorem 4.2. Also, underi., DUE(w) is bounded for anyw∈W. SinceW is a bounded set,
the graphΨ(w,q) is bounded as well. Thus, graphw∈W is compact. Together withiii. and
the fact thatW is compact, we can conclude that (PD) has at least one solution, since it is a
nonlinear programming problem with a continuous objectivefunction defined on a compact
set. 2

Theorem 5.2 Problem (PD) is strongly NP-hard.

Proof : The proof follows from the fact that the problem (P) is a special case of the problem
(PD) (withk = 1) and from Theorem 4.5. 2

5.6 Solution methods

The methods used to solve the problem (PD) are those introduced in Section 4.6 adjusted
to the dynamic environment. The problems with the drivers driven by the dynamic deter-
ministic user equilibrium can be solved analytically, as long as their scale is not too large.
The problems with the drivers driven by the dynamic logit-based (stochastic) equilibrium
will be solved by an algorithm containing a neural networks approach for solving the upper
level of the problem and the method of the successive averages for the lower level of the
problem. Since the dynamic deterministic user equilibriumis a special case of the dynamic
logit-based (stochastic) equilibrium, also the deterministic problems can be solved using the
neural-network based approach.

5.7 Case studies

In this section the solution methods introduced in Section 4.6 and mentioned in Section 5.6
will be applied on a number of case studies. Problems introduced in Section 5.7.1 are
simplified versions of problems (PD) and (PD0), respectively, with travelers driven by the
deterministic dynamic user equilibrium, applied on a two-link network. An analytical solu-
tion is given. Problems introduced in Section 5.7.2 are simplified variants of problem (PD)
and (PD0), too, with the drivers driven by stochastic user equilibrium. A numerical solution
is given.

5.7.1 Three-links network

In this section problems (PD) and (PD0) introduced in Section 5.4, played on the three-
link (route) parallel road network depicted in Figure 5.1 will be dealt with. Two alternative
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1 2

1

2

3 - untolled

Figure 5.1: One origin–destination pair network with3 links.

objective functionsZ1 = Z1 (q(w),w) andZ2 = Z2 (q(w),w), defined as

Z1 (q(w),w)
def
= qT(w) · t(w), (5.20)

Z2 (q(w),w)
def
= −qT(w) ·θ(w), (5.21)

will be considered.8

We assume thatK = {1, . . . ,7}, ∆ = 1 [h], d(r,s),(1) = 2000 [veh],d(r,s),(2) = 2000 [veh],
d(r,s),(3) = 3000 [veh],d(r,s),(4) = 3000 [veh],d(r,s),(5) = 2500 [veh],d(r,s),(6) = 2000 [veh],

d(r,s),(7) = 2000 [veh],α = 8 [euro/h],t(k)a
def
= βaq(k)

a +δa, a∈ {1,2,3}, c(a)
a

def
= αt(k)a +θ(k)

a .
δ1 = 1

5, δ2 = 1
4, δ3 = 1

3, β1 = 1
3000, β2 = 1

2000, β3 = 1
2500.

5.7.1.1 Total travel time minimization

Let the road authority minimize the total travel time of the network. In the following four
games we will consider different toll variants in Stackelberg (traffic-flow invariant) and
inverse Stackelberg (traffic-flow dependent) setting to seehow different classes of toll func-
tions influence outcomes of the game. To be able to give an objective comparison we will
focus on inverse Stackelberg strategies with toll functions having the same number of un-
known parameters as Stackelberg strategies to which the inverse Stackelberg strategies are
compared to. The goal is to find an inverse Stackelberg strategy that does not increase the
problem complexity9 and that provides better outcomes for the road authority.

In Section 5.7.1 the best possible outcome for the road authority is discussed.

Game 1

Let only link 1 be tolled. Two problems will be compared:

• A problem of total travel time minimization with uniform (constant) toll, i.e.,θ(k)
1

def
=

θ1 ∈ R
0
+.

• A problem of total travel time minimization with toll definedas aξ1-multiple of an

actual link traffic flow on linkl1, i.e.,θ(k)
1

(
q(k)

1

)
def
= ξ1q(k)

1 , ξ1 ∈ R
0
+.

8Other possible objective functions for the road authority can be, for example, unreliability of the network [18],
negative of the surplus of the network [84], etc.

9This is important for possible real-time applications.
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The optimal toll for the first problem is52
135 ≈ 0.39 [euro] and yields a total travel time

of 9590.79 [h]. A slightly better outcome, 9583.12 [h], can be reached in the second game
with an optimal value ofξ1 equal to 3809

10455525≈ 0.36·10−3. The outcomes of the games are
very close to each other because the problem was solved with respect to only one parameter.

Game 2

Let link 1 and link 2 be tolled. Two problems will be compared:

• A problem of total travel time minimization, where toll is uniform, i.e.,θ(k)
a

def
= θa ∈

R
0
+, a∈ {1,2}.

• A problem of total travel time minimization with toll on linka (a∈ {1,2}), defined as

aξa-multiple of actual link traffic flow on linka, i.e.,θ(k)
a

(
q(k)

a

)
def
= ξ1 ·q(k)

a , ξa ∈ R
0
+,

a∈ {1,2}.

For the first problem the optimal tolls on links 1 and 2 are8
15 [euro] and1

3 [euro], respec-
tively, and yield a total travel time of 9590.79 [h] (the same outcome as in the previous case).
The optimal values ofξ1 andξ2 for the second problem are 0.50· 10−3 and 0.51· 10−3,
respectively, and yield the outcome 9578.36 [h]. The traffic-flow dependent toll is accom-
modating to the traffic conditions in a better way, thereforethis toll yields better outcomes.

Game 3

Let only link 1 be tolled. Two problems to be compared are:

• Find θ(k)
1 minimizing the total travel time of the system, where

θ(k)
1

def
=

{
θ1, k∈ {1,2,6,7},
θ̃1, k∈ {3,4,5}.

• Find θ(k)
1

(
q(k)

1

)
minimizing the total travel time of the system, where

θ(k)
1

(
q(k)

1

)
def
=

{
ξ1q(k)

1 , k∈ {1,2,6,7},
ξ̃1q(k)

1 , k∈ {3,4,5}.

The optimal values ofθ1 andθ̃1 in the first game are52
135≈0.39 [euro] and52

135≈ 0.39 [euro],

respectively, and yield the total travel time 9590.79 [h]. The optimal values ofξ1 and ξ̃1

are 13
29925≈ 0.43·10−3 and 1

225 ≈ 0.44·10−2, respectively, and yield the total travel time of
9582.68 [h].

Game 4

Let links 1 and 2 be tolled. Two problems to be solved are:
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k q(k)
1 τ(k)

1 q(k)
2 τ(k)

2 q(k)
3 τ(k)

3
1 2660

3
223
450

4870
9

937
1800

5150
9

253
450

2 2660
3

223
450

4870
9

937
1800

5150
9

253
450

3 3860
3

283
450

7270
9

1177
1800

8150
9

313
450

4 3860
3

283
450

7270
9

1177
1800

8150
9

313
450

5 3260
3

253
450

6070
9

1057
1800

6650
9

283
450

6 2660
3

223
450

4870
9

937
1800

5150
9

253
450

7 2660
3

223
450

4870
9

937
1800

5150
9

253
450

Table 5.1: The optimal link traffic flows [veh/h] and the link travel times [h] for the problem
of total travel time minimization.

• Find θ(k)
1 , θ(k)

2 , minimizing the total travel time of the system, where

θ(k)
a

def
=

{
θa ∈ R

(0)
+ , k∈ {1,2,6,7}, a∈ {1,2},

θ̃a ∈ R
(0)
+ , k∈ {3,4,5}, a∈ {1,2}.

• Find θ(k)
1 , θ(k)

2 , minimizing the total travel time of the system, where

θ(k)
a

(
q(k)

a

)
def
=

{
ξaq(k)

a , k∈ {1,2,6,7}, a∈ {1,2}
ξ̃aq(k)

a k∈ {3,4,5}, a∈ {1,2}.

The optimal values ofθ1, θ2, θ̃1, and θ̃2 for the first problem are8
15 [euro], 8

15 [euro],
1
3 [euro], and1

3 [euro], respectively, and yield a total travel time of 9649.51 [h]. The optimal

values ofξ1, ξ2, ξ̃1, andξ̃2 for the second problem are 0.77·10−2, 1.29·10−2, 0.78·10−2,
and 1.26·10−2, respectively, and yield a total travel time of 9577.38 [h].

General outcome

Minimization of the total travel time function with respectto the traffic flows yields the link
traffic flows and the link travel times as depicted in Table 5.1.

If these traffic flows and travel times are the travelers’ response to the tolls, minimal
total travel time1034347

108 ≈ 9577.29 [h] will be obtained. This means that the second strategy
from Game 4 yields a total travel time close to the optimal outcome. The optimal outcome
9577.29 [h] can be reached if more parameters in the toll functionsare included. In Table 5.2

we find the optimal linear inverse Stackelberg strategy (θ(k)
a

def
= w(1),(k)

a q(k)
a +w(0),(k)

a ) and the
optimal Stackelberg strategy, minimizing the total traveltime of the system. Since for the

inverse Stackelberg strategy parametersw(1),(k)
a are free (and, therefore, the solution of the

inverse Stackelberg game is nonunique), clearly 7 parameters in the toll function are needed

to obtain the optimal outcome. Obviously, by settingw(1),(k)
a to 0 the optimal Stackelberg

strategy will be reached. Therefore, it seems that with enough toll parameters the outcomes
of the two strategies would be the same for general networks.However, it is difficult to
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k w(0),(k)
1 w(0),(k)

2

1 8
15− 2660

3 w(1),(1)
1

1
3 − 4870

9 w(1),(1)
2

2 8
15− 2660

3 w(1),(2)
1

1
3 − 4870

9 w(1),(2)
2

3 8
15− 3860

3 w(1),(3)
1

1
3 − 7270

9 w(1),(3)
2

4 8
15− 3860

3 w(1),(4)
1

1
3 − 7270

9 w(1),(4)
2

5 8
15− 3260

3 w(1),(5)
1

1
3 − 6070

9 w(1),(5)
2

6 8
15− 2660

3 w(1),(6)
1

1
3 − 4870

9 w(1),(6)
2

7 8
15− 2660

3 w(1),(7)
1

1
3 − 4870

9 w(1),(7)
2

Table 5.2: The optimal link toll function coefficients for the inverse Stackelberg game (total

travel time minimization). The optimal tolls for the Stackelberg game areθ(k)
1 =

8/15 [euro] and θ(k)
2 = 8/15 [euro].

compute optimal time-varying toll on each link and for each time period in the real time,
if the number of toll parameters is very high. That is why it isimportant to find strategy
working better even with low number of toll parameters.

5.7.1.2 Total toll revenue maximization

Let us again consider the network depicted in Figure 5.1, where the road authority maxi-
mizes the total toll revenue of the system. The traffic flows imposing the best outcome for
the road authority are unknown here, because the total toll revenue toll changes with change
of toll strategy.

Game 1

We will first assume that only link 1 is tolled. Two problems will be compared:

• The problem of total toll maximization, where the toll is uniform, i.e.,θ(k)
1

def
= θ1 ∈R

0
+.

• The problem of total toll maximization with toll defined as aξ1-multiple of actual

link traffic flow on link l1, i.e.,θ(k)
1

(
q(k)

1

)
def
= ξ1 ·q(k)

1 , ξ1 ∈ R
0
+.

The optimal toll for the first problem is2344
945 ≈ 2.48 [euro] and yields a total toll revenue

of 9690.19 [euro]. The solution of the second problem isξ1 = 1
225 and yields a total toll

revenue of 9931.46 [euro].

Game 2

Let link 1 and link 2 be tolled. We will compare two problems:

• The problem of total toll maximization, where the toll is uniform, i.e.,θ(k)
a

def
= θa ∈

R
0
+, a∈ {1,2}.
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• The problem of total toll maximization, with toll defined as aξa-multiple of actual
link traffic flow on link a, i.e.,

θ(k)
a

(
q(k)

1

)
def
= ξa ·q(k)

a , ξa ∈ R
0
+, a∈ {1,2}.

The optimal tolls for the first problem are452
105 ≈ 4.30 [euro] and431

105 ≈ 4.10 [euro] for links 1
and 2, respectively, yielding the total toll revenue 26071.23 [euro]. For the second problem
the optimal values ofξ1 andξ2 are 0.77·10−2 and 1.27·10−2, respectively. The resulting
total toll revenue is 26794.74 [euro].

Game 3

Let only link 1 be tolled. We will compare two problems:

• Find θ(k)
1 maximizing the total toll revenue of the system, where

θ(k)
1

def
=

{
θ1, k∈ {1,2,6,7}
θ̃1, k∈ {3,4,5}.

• Find θ(k)
1

(
q(k)

1

)
maximizing the total toll revenue of the system, where

θ(k)
1

(
q(k)

1

)
def
=

{
ξ1q(k)

1 , k∈ {1,2,6,7}
ξ̃1q(k)

1 , k∈ {3,4,5}.

The optimal values ofθ1 andθ̃1 for the first problem are292
135 ≈ 2.16 [euro] and392

135 ≈ 2.90
[euro], respectively, and yield the total toll revenue 9901.83 [euro]. The optimal values of
ξ1 and ξ̃1 for the second problem are both equal to1225, and yield a total toll revenue of
9931.46 [euro].

Game 4

Let both link 1 and 2 be tolled. We will compare two problems:

• Find θ(k)
1 andθ(k)

2 maximizing total toll revenue of the system, where

θ(k)
a

def
=

{
θa ∈ R

(0)
+ , k∈ {1,2,6,7}, a∈ {1,2},

θ̃a ∈ R
(0)
+ , k∈ {3,4,5}, a∈ {1,2}.

• Find θ(k)
1

(
q(k)

1

)
, θ(k)

2

(
q(k)

2

)
, maximizing the total toll revenue of the system, where

θ(k)
a

(
q(k)

a

)
def
=

{
ξaq(k)

a , k∈ {1,2,6,7}, a∈ {1,2},
ξ̃aq(k)

a k∈ {3,4,5}, a∈ {1,2}.
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k q(k)
1 q(k)

2 q(k)
3

1 − w
(0),(1)
1

2w
(1),(1)
1

− w
(0),(1)
2

2w
(1),(1)
2

4000w
(1),(1)
2 w

(1),(1)
1 +w

(1),(1)
2 w

(0),(1)
1 +w

(1),(1)
1 w

(0),(1)
2

2w
(1),(1)
2 w

(1),(1)
1

2 − w
(0),(2)
1

2w
(1),(2)
1

− w
(0),(2)
2

2w
(1),(2)
2

4000w
(1),(2)
2 w

(1),(2)
1 +w

(1),(2)
2 w

(0),(2)
1 +w

(1),(2)
1 w

(0),(2)
2

2w
(1),(2)
2 w

(1),(2)
1

3 − w
(0),(3)
1

2w
(1),(3)
1

− w
(0),(3)
2

2w
(1),(3)
2

6000w
(1),(3)
2 w

(1),(3)
1 +w

(1),(3)
2 w

(0),(3)
1 +w

(1),(3)
1 w

(0),(3)
2

2w
(1),(3)
2 w

(1),(3)
1

4 − w
(0),(4)
1

2w
(1),(4)
1

− w
(0),(4)
2

2w
(1),(4)
2

6000w
(1),(4)
2 w

(1),(4)
1 +a2

(4)w
(0),(4)
1 +w

(1),(4)
1 w

(0),(4)
2

2w
(1),(4)
2 w

(1),(4)
1

5 − w
(0),(5)
1

2w
(1),(5)
1

− w
(0),(5)
2
2a2

5
5000w

(1),(5)
2 w

(1),(5)
1 +w

(1),(5)
2 w

(0),(5)
1 +w

(1),(5)
1 w

(0),(5)
2

2w
(1),(5)
2 w

(1),(5)
1

6 − w
(0),(6)
1

2w
(1),(6)
1

− w
(0),(6)
2

2w
(1),(6)
2

4000w
(1),(6)
2 w

(1),(6)
1 +w

(1),(6)
2 w

(0),(6)
1 +w

(1),(6)
1 w

(0),(6)
2

2w
(1),(6)
2 w

(1),(6)
1

7 − w
(0),(7)
1

2q
(7)
1

− w
(0),(7)
2

2w
(1),(7)
2

4000w
(1),(7)
2 w

(1),(7)
1 +w

(1),(7)
2 w

(0),(7)
1 +w

(1),(7)
1 w

(0),(7)
2

2w
(1),(7)
2 w

(1),(7)
1

Table 5.3: Optimal link flows: Total toll revenue maximization with linear toll functions.

The optimal values ofθ1, θ2, θ̃1, and θ̃2 for the first problem are56
15 ≈ 3.73 [euro], 73

15 ≈
5.07 [euro], 53

15 ≈ 3.53 [euro], and73
15 ≈ 4.87 [euro], respectively, and yield a total toll

revenue of 26706.15 [euro]. The optimal values ofξ1, ξ2, ξ̃1, andξ̃2 for the second problem
are 0.77·10−2, 1.29·10−2, 0.78·10−2, and 1.26·10−2, respectively, and yield a total toll
revenue of 26795.01 [euro].

Since the total toll revenue function will vary depending onthe chosen structure of the
toll functions, it is impossible to get the maximal total toll revenue before knowing the
toll structure used. In the following game the optimal valueof the total toll revenue with
linear tolls will be computed, as this toll brought the best possible outcome when various
polynomial toll functions were tested.

Game 5

We will consider the situation, in which the road authority maximizes the total toll revenue
of the system by setting tolls defined as follows:

θ(k)
1

(
q(k)

1

)
def
= w(1),(k)

1 q(k)
1 +w(0),(k)

1 , θ(k)
2

(
q(k)

1

)
def
= w(1),(k)

2 q(k)
2 +w(0),(k)

2 . (5.22)

Provided that coefficientsw(1),(k)
j , j = 1,2, k ∈ {1, . . . ,7} are negative, local maxima

of the total toll revenue function with respect to the link traffic flows will be reached with

flows depicted in Table 5.3. These traffic flows are dependent on w(1),(k)
j andw(0),(k)

j ( j =
1,2,3, k = 1, . . . ,7).

The road authority maximizing the total toll revenue, aiming to influence the travelers
such that the traffic flows depicted in Table 5.3 will be obtained, has to take into account
the dynamic deterministic user equilibrium conditions. Ifall three links are used, these

conditions will yield coefficientsb(k)
1 andb(k)

2 as depicted in Table 5.4.
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k w(1),(k)
1 w(0),(k)

1 w(1),(k)
2 w(0),(k)

2 θ(k)
1 θ(k)

2
1 −0.0077 7.4795 −0.0129 7.0757 3.7397 3.5379
2 −0.0077 7.4795 −0.0129 7.0757 3.7397 3.5379
3 −0.0078 10.6860 −0.0126 10.2769 5.3430 5.1384
4 −0.0078 10.6860 −0.0126 10.2768 5.3430 5.1384
5 −0.0077 9.0533 −0.0127 8.6608 4.5267 4.3304
6 −0.0077 7.4795 −0.0129 7.0757 3.7397 3.5379
7 −0.0077 7.4795 −0.0129 7.0757 3.7397 3.5379

Table 5.5: Optimal toll function coefficients and resultingtolls [euro]: Total toll revenue
maximization.

1

2

3

4

51-tolled

2
3

4

5
6

Figure 5.2: Chen network.

Herew(1),(k)
1 , w(1),(k)

2 , k = 1, . . . ,7, are free. However, after substitutingw(0),(k)
1 , w(0),(k)

2 ,
k= 1, . . . ,7, from Table 5.4 into the total toll revenue function and maximizing the obtained

function with respect tow(1),(k)
1 , w(1),(k)

2 , k= 1, . . . ,7, the values of the coefficients of the toll
function can be obtained. These coefficients are depicted inTable 5.5 and yield the maximal

toll revenue 2.6795·104 [euro]. Substituting the coefficientsw(1),(k)
1 , w(0),(k)

1 , w(1),(k)
2 , and

w(0),(k)
2 from Table 5.5 into (5.22) will result in toll valuesθ(k)

1 andθ(k)
2 as depicted in the

same table. Obviously, toll defined as a polynomial function(of the actual link flow) of
degree higher than 1 will not lead to a system performance improvement (with respect to
the system performance when the classical Stackelberg strategy is employed), thus this is
the best outcome achieved. This means that also the second strategy from Game 4 is the
best strategy that we found.

5.7.2 Chen network

In this section case studies with the Chen network consisting of 6 links, 2 origin–destination
pairs(1,5) and(3,5), and 6 routes will be investigated (depicted in Figure 5.2).The traffic
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on each link flows from the node with lower identification number into the node with higher
identification number. Only link 1 is tollable, the toll is defined as

θ(k)
a

def
= w0,(k)

a +w1,(k)
a x(k)

a ,

with the traffic volumex(k)
a . Nonnegativity condition applies here, too.

For each directed arca ∈ A the following parameters are initially given: link length
sa [km], maximum speedϑmax

a [km/h], minimum speedϑmin
a [km/h], critical speedϑcrit

a

[km/h], jam densityJjam
a [pcu/km], where pcu denotes passenger car units, and the unre-

stricted link capacityCa [pcu/h]. Dynamic link travel time for an individual user entering
link a duringk-th time interval (k∈ K ) is defined as

τ(k)
a =

sa

ϑ(k)
a

, (5.23)

where the link speedϑ(k)
a [km/h] can be computed usingSmulders speed-density function

(see [73]):

ϑ(k)
a =






ϑmax
a + ϑcrit

a −ϑmax
a

Jcrit
a

J(k)
a , if J(k)

a ≤ Jcrit
a ,

Jjam
a +

(
ϑcrit

a −ϑmin
a

)
(

J
(k)
a

)−1
−
(

Jjam
a

)−1

(Jcrit
a )

−1−
(

Jjam
a

)−1 , if Jcrit
a ≤ J(k)

a ≤ Jjam
a ,

ϑmin
a if J(k)

a ≥ Jjam
a ,

(5.24)

with critical densityJcrit
a [pcu/km] defined asJcrit

a = Ca/ϑcrit
a .

The road authority minimizes the total travel time of the system, i.e.,

Z(w,q(w))
def
= ∑

k∈K
∑

(r,s)∈RS
∑

p∈P (r,s)

fp · τ(k)
p .

We assume that the logit-based dynamic stochastic equilibrium applies for the drivers.

Case Study 1

Four time intervals are considered, i.e.,K = {1,2,3,4}, ∆ = 1 [h]. The link properties and
the travel demands are depicted in Table 5.6. The other parameters are set as:µ = 0.2,

ε = 0.05, α = 8 [euro/h],w(1),min
a = −10, w(0),min

a = −5, w(1),max
a = 10, w(0),max

a = 5.

a sa ϑmax
a ϑcrit

a ϑmin
a Jjam

a Ca

1 7.5 150 90 20 50 1500
2 15 120 70 10 150 3500
3 15 120 70 10 150 3500
4 10 150 90 20 50 1500
5 15 120 70 10 150 3500
6 15 120 70 10 150 3500

(r,s) d(r,s),(1) d(r,s),(2) d(r,s),(3) d(r,s),(4)

(1,5) 2000 8000 8000 3000
(3,5) 1000 1500 2000 1500

Table 5.6: Link properties and travel demands in Case study 1.
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The neural-networks based algorithm was applied, with 33620 training data, 13297 vali-
dation data, and worst accepted validation error equal to 1.1%. Sixteen processors were used
to compute the problem in a parallel way, where both grid search and neurosimulation were
parallelized. The neural ANN function that approximates the total travel time function in the
“best way” (See Section 4.6.3 for explaining this best way.)is smooth, twice differentiable,
with more than one local minimum (shown numerically) and oneglobal minimum. The

minimum 14173 [h] is found at[w(1),(1)
1 , w(0),(1)

1 , w(1),(2)
1 , w(0),(2)

1 , w(1),(3)
1 , w(0),(3)

1 , w(1),(4)
1 ,

w(0),(4)
1 ] = [−0.50, 0.20, −0.03, 1.19, 0, 0, −0.04, 3.96]. Note that for the first and forth

interval the optimal toll is decreasing with the current traffic volume. This phenomenon
appears when other links are congested than the tolled link and the aim is to attract the
travelers to the tolled link.

With no toll the total travel time reaches 19542 [h] the optimal time-varying (but traffic-

flow independent) tolls areθ(1)
1 = 2.3 [euro],θ(1)

2 = 6.6 [euro],θ(3)
2 = 9.5 [euro],θ(4)

1 = 7.4
[euro], and yield total travel time of 1.7844·104 [h].

The computational time of the FAUN simulator was 10.23 hours, the computational time
of the grid search was 35.21 hours. This time can be decreased by using more processorsto
solve the problem.

Game 2

In this case study the number of time intervals will be increased to 8, with travel demands
depicted in Table 5.7. Also, there are no boundaries on parameters of linear toll functions

(r,s) d(r,s),(1) d(r,s),(2) d(r,s),(3) d(r,s),(4) d(r,s),(5) d(r,s),(6) d(r,s),(7) d(r,s),(8)

(1,5) 2000 4000 6000 8000 8000 6000 4000 2000
(3,5) 1000 2000 3000 4000 4000 3000 2000 1000

Table 5.7: Travel demands in Case study 2.

and only 14122 training data and 9301 validation data were used. The worst accepted
validation quality was set to 1.1%. The best-trained neural network was minimized using
Matlab again. The approximation function is again twice differentiable, with multiple local

minima, and one global minimum 29149.00 at [w(1),(0)
1 , w(0),(0)

1 , w(1),(1)
1 , w(0),(1)

1 , w(1),(2)
1 ,

w(0),(2)
1 , w(1),(3)

1 , w(0),(3)
1 , w(1),(4)

1 , w(0),(4)
1 , w(1),(5)

1 , w(0),(5)
1 , w(1),(6)

1 , w(0),(6)
1 , w(1),(7)

1 , w(0),(7)
1 ,

w(1),(8)
1 , w(0),(8)

1 ] = [−0.02, 2.62, −0.04, 3.20, 0.4, −0.93, 0.01, −1.32, 0.01, 0.99, 0.05,
0.40, 0, 0, 0.02, −0.24].

Optimal toll decreasing with the current traffic volume appears in the first time interval
and in the second time interval. With no toll the total traveltime reaches 39659.20 hours.
The optimal time-varying (but traffic-flow independent) tolls yield a total travel time of
34822.60 hours.

The computational time of the FAUN simulator was 7.15 [h], the grid search took 26.11
[h]. This time can be decreased by using more processors to solve the problem. From the
tests made after the computation it follows that the obtained solution is very accurate in its
neighborhood (with an error of 1%), although a lower number of training and validation
data was used.
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Discussion

In both case studies the traffic-volume (and hence traffic-flow) dependent toll improved
the system performance remarkably. Also, phenomena of the toll decreasing with traffic
volume was observed. The natural explanation for this phenomena is that the traffic should
be attracted to the tolled link.

The grid search is very time consuming, although the networkused is very small. The
speed of the solution process can be increased by further parallelization of both phases of
the solution process.

Generally, the time-varying but traffic-flow invariant tollcan never lead to a better out-
come than the traffic-flow dependent toll. This follows from the fact that the dynamic op-
timal toll design problem with traffic-flow invariant toll isa special case of (PD). See [74]
for further explanation.

5.8 Conclusions and future research

In this chapter we have introduced the concept of the dynamicoptimal toll design prob-
lem with second-best traffic-flow dependent toll. We discussed existence of solution of this
problem as well as its difficulty and proposed a solution algorithm, based on the algorithm
used for the solution of the static version of the problem. Inthe case studies we have shown
both problems solved analytically and problems solved numerically using the proposed al-
gorithm.

All the topics mentioned in Section 4.8, extended to the dynamic environment, can be
subjects of future research. Additionally, departure timechoice of the travelers is a topic
calling for the further investigation. In [45] the departure time choice of the travelers was
considered, without the traffic-flow dependent toll and finding the optimal solution of the
problem.





Chapter 6

Electricity Market Problem

In this chapter we propose a simple formalization of the electricity market problem. The
model aims to see the differences between the prices in the perfectly competitive market,
in the market with one leader, and in the market with two leaders, playing Nash among
themselves.

6.1 Introduction

The European electricity market is currently being transformed from a market with monop-
olistic, national, and state-owned producers to a market with competing, private, and often
multinational firms. This transformation is calledliberalization. The speed and current state
of this process vary among different European countries, from a near monopoly in the Czech
Republic to highly competitive markets in Norway, Sweden, and the Netherlands [54].

Main aims of the liberalization are to bring benefit to consumers by lowering electricity
prices and to cause more cost efficient electricity production. Little is known about the envi-
ronmental consequences of liberalization. On the one hand,more cost efficient production
may be beneficial for the environment, while, on the other hand, lower market prices imply
higher electricity demand that may increase the burden on the environment. Moreover, in
a highly competitive market an incentive to produce electricity with cheap, but often not
environmental-friendly means, is increased. It is also assumed that quite recent develop-
ments, such as the implementation of the European union’s CO2 emission trading system in
2005, may have major environmental impacts.

In the liberalization process, with various competing firms, the market and its rules
are no longer fixed. The effects of liberalization on market structure can be illustrated by
the recent development in Germany. Following liberalization, the initial 30 relatively small
electricity producers were merged into four large producers in only few years of time. These
firms have market power on the German market, but they also face competition from neigh-
boring countries. The extent of international competitionis limited by the transmission
capacities between countries, but it is also affected by themarket structure in these neigh-
boring countries. Also, the character of electricity markets in countries that are neighbors
of Germany will be changed by trade with Germany.

93
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To get more insights into how the liberalization can influence the European electricity
market, we will view the electricity producers in eight European countries: Belgium, Den-
mark, Finland, France, Germany, The Netherlands, Norway, and Sweden as players in a
game. We chose these countries because of the following reasons:

• There exists a model including these countries (in [56]) with different ways to model
the firms’ behavior, thus we can compare our results with already existing results.

• Real data about electricity prices, emission factors, and electricity productions are
available [32].

In the game that we consider the electricity producers choose technologies for electricity
production as well as amounts of electricity to be produced for different load periods. Only
the game among electricity producers of different countries is played, the consumers’ de-
mand of electricity is exogenous. This approach is reasonable in the situation, in which the
selling price of electricity in each country has to be the same for each producer, i.e., the
consumers cannot choose “cheaper” electricity from different producers.

The number of producers per country is given, as well as parameters like electricity
production costs and electricity production capacities, and the emission factors per country
and per technology. These initial data are derived from realdata and were taken from
existing literature and electronic sources [32, 56]. Additionally, shadow prices on emissions
per energy producer can be set.

Different game theoretic scenarios of firms behavior will beformulated, namely a per-
fect competition, a Stackelberg game, in which in each country one firm acts as a first-
moving Stackelberg market leader during dispatch, and a Stackelberg game with two leaders
per country acting as first-moving Stackelberg market leaders, playing Nash among them-
selves. Extension of the model to the dynamic game, in which investments can take place
over a longer time horizon is formulated and explored as well. In all considered scenarios
the possibility of electricity transmission between neighboring countries will be considered.

Extensive studies of static energy models have been carriedout. In [62] the Belgian,
Dutch, French, and German electricity market were considered and the effect of market
power among three static models was compared. One of these model, the nodal pricing
static equilibrium model COMPETES, was additionally studied in [41, 42]. In [29] and
[49] the consequences of market power in the Nordic electricity market are considered. In
[11] and [28] a static game theoretic model of the European gas market is presented. In
[20] emission permit trading to a nodal pricing model to study strategic effects of holding
NOX permits is added. In [56] the electricity market with eight European countries was
considered. However, the decision variable of the individual electricity producers was the
so-called market power mark-up, unlike the quantities of electricity to be produced, as it is
in our research.

The contributions of the research presented in this chaptercan be listed as follows:

• A new game theoretical model of electricity market of eight European countries is
developed. Our approach differs from those presented in theexisting literature, in
which other types of markets, electricity market with less countries included in the
model, or different decision variables for the electricityproducers are considered.
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• Various scenarios, like a perfect competition case or a Stackelberg game with one
leading producer and the rest of the producers being perfectly competitive, are in-
cluded in the model.

• Most of the input data for our model come from real measurements, presented in
existing literature. Therefore, the improved version of the model can help to explain
some recent changes in the real European electricity market.

• Extension of the existing model to a dynamic model with the possibility of invest-
ments is proposed. Such a dynamic model is applicable for real data to analyze the
current and future phenomena in the European electricity market.

This chapter is organized as follows. In Section 6.2 a staticmodel of electricity produc-
ers in eight European countries will be formulated. In Section 6.3 various case studies are
performed. In Section 6.4 an extension of the static model into a dynamic model with the
possibility of investments will be introduced. The outcomes of the case studies, their rela-
tion to the situation in the current European electricity market, and possible future research
directions are discussed in Section 6.5. Our research helpsto understand such a complicated
process, as the liberalization of the electricity market is.

6.2 Games of the European electricity market

Let us consider a game with electricity producers (also called firms or companies) in differ-
ent countries (also called regions) as players. The following countries are considered in the
model: Belgium (BEL), Denmark (DEN), Finland (FIN), France(FRA), Germany (GER),
The Netherlands (NLD), Norway (NOR), and Sweden (SWE). The number of producers
for each country is given. Firms generate electricity through different technologies; each
producer chooses technologies among technologies available to him/her and the amounts of
electricity produced by the chosen technologies. A producer can own several power plants
of different types, of which the total capacity for each, as well as variable production costs,
is given. Producers maximize their payoffs by choosing the amount of electricity to produce
with various technologies for various load modes1. Producer’s payoffs consist of the income
from sales of electricity in regional markets minus the variable costs of production. There
are limitations in transportation capacity of electricityand moreover, production capacity
of electricity is fixed on the short term. The electricity demand curve for each country is
exogenous and comes from real measurement [56]. Trade is only feasible with neighboring
countries and includes netting, which means that bi-directional flows between two coun-
tries are permitted, as long as trade constraints are not violated. Emissions are assigned to
producers based on the actual technology used. These emissions can be restricted, too.

Let F andR be a set of firms and a set of countries included in the model, respectively.
Let Fr ∈ F be a set of firms located in regionr, and let|Fr | be their number. LetI be a set of
possible technologies for electricity generation, i.e.,

I
def
= {wind energy,nuclear energy, . . .},

1The set of load modes in our research contains two possible loads: base load and peak load.
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let Ir ⊂ I be a set of technologies that are available in regionr ∈ R, and letI f be a set of
technologies available to firmf . Let L be a set of possible load modes, e.g., base load or

peak load. LetK be an emission type set, i.e.,K
def
= {acid,smog, . . .}.

Firm f ∈ Fr maximizes its surplusJ f [euro] defined as

J f
def
= ∑

l∈L

hl ∑
r ′∈R

(
pr ′,l sf ,r ′,l

)
−∑

l∈L

hl ∑
r ′∈R

(

∑
i∈I

ci,rqi, f ,r ′,l

)
, (6.1)

wheresf ,r ′ ,l [GW] denotes the supply of electricity of load model from firm f into region
r ′ andpr ′,l [euro] denotes the market electricity price for regionr ′ and load model . Let hl

[h] denote the number of hours of a particular loadl per year,ci,r [euro/MWh] represents
the variable production costs with technologyi in regionr, in which firm f is located, while
qi, f ,r ′,l [GW] is the production of firmf with technologyi for regionr ′ for load model . The
supply of electricity of load model per firm f to regionr ′ denoted bysf ,r ′,l can be defined
as

sf ,r ′,l
def
= (1−λr ′)∑

i∈I

qi, f ,r ′,l , (6.2)

whereλr ′ ∈ [0,1] is the loss of electricity due to transport to regionr ′, initially given. More-
over, the electricity supply is additive, i.e., the total supply of electricitySr ′,l [GW] for load
model per regionr ′ can be computed as

Sr ′,l = ∑
f∈Fr′

sf ,r ′,l ,

whereSr ′,l [GW] is a total electricity supply to regionr ′ during load model .
We assume that the pricepr,l is dependent on the total supply of electricitySr,l and

follows a constant elasticity of distribution (CED) [2, 4] with elasticity−εr,l (εr,l > 0) de-
pendent on regionr and load model , the reference demand for electricityd0

r,l [GW], and the

reference price of electricityp0
r,l [euro], and can be computed using the following equation:

d0
r,l

(
pr,l

p0
r,l

)−εr,l

= ∑
f∈F

sf ,r,l = Sr,l . (6.3)

The firm’s regional market shareπ f ,r,l ∈ [0,1] can be then computed as

π f ,r,l =
sf ,r,l

∑ f ′∈Fr sf ′ ,r,l
. (6.4)

Firms can trade electricity with other countries as well. The amount of electricity traded
xr,r ′,l [GW] is defined as the exported amount of electricity from region r to regionr ′ minus
the imported amount of electricity entering regionr from regionr ′ ( f ∈ Fr ), i.e.,

xr,r ′,l = ∑
f∈Fr

∑
i∈I

qi, f ,r ′,l − ∑
f ′∈Fr′

∑
i∈I

qi, f ′,r,l . (6.5)

There is a restriction on the maximum production capacity ofeach firm f , the technology
i, and the load model . The maximum production capacity is complementary to the shadow
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priceµi, f ,l [euro/MWh], which has a nonnegative value if the productionwith technologyi,
by firm f during load model , is equal to the maximum available production capacity:

µi, f ,l

(

∑
r ′∈R

qi, f ,r ′,l −qmax
i, f

)
≥ 0, µi, f ,l > 0. (6.6)

The amount of electricity traded is also restricted. It is iscomplementary to the shadow
price τr,r ′,l . This shadow price obtains a nonnegative value, when the trade restriction is
binding:

τr,r ′,l

(
xr,r ′,l −xmax

r,r ′

)
≥ 0, τr,r ′,l > 0, (6.7)

with the maximum amount of electricity traded between regions r andr ′ denoted byxmax
r,r ′

[GW].
Emissions can also be limited. Due to the Kyoto protocol, firms have to reduce the

amount of emissions, where the shadow price of emission constraint κk [euro/MWh] is
nonzero as soon as the current amount of emissions is equal toa permissible emission
ceilingEk [g],

κk

(

∑
l∈L

hl ∑
r ′∈R

∑
i∈I

∑
f∈F

σk
i,rqi, f ,r ′,l −Ek

)
≥ 0, κk > 0. (6.8)

Emission factorsσk
i,r [g/MWh] are associated with the region, in which firmf produces

electricity.
If we include constraints (6.6), (6.7), and (6.8) into the problem of maximizing the

surplus function (6.1), firmf maximizesL f defined as

L f
def
= ∑

l∈L
∑

r ′∈R
∑
i∈I

(
pr ′,l (1−λr ′)qi, f ,r ′,l −ci,rqi, f ,r ′,l

)

−∑
l∈L

hl ∑
i∈I

µi, f ,l

(

∑
r ′∈R

qi, f ,r ′,l −qmax
i, f

)

−∑
l∈L

hl ∑
r ′ ∈ R
r ′ 6= r

τr,r ′,l



 ∑
f ′∈Fr

∑
i∈I

qi, f ′,r ′,l − ∑
f ′∈Fr′

∑
i∈I

qi, f ′,r,l −xmax
r,r ′





− ∑
k∈K

κk

(

∑
l∈L

hl ∑
r ′∈R

∑
i∈I

∑
f ′′∈F

σk
i,rqi, f ′′,r ′,l −Ek

)
. (6.9)

Karush-Kuhn-Tucker (KKT) conditions for maximizing the objective function can be de-
rived from equation (6.9) by taking the derivative with respect to the production of electric-
ity qi, f ,r ′,l for firm f ∈ Fr :

0≤ qi, f ,r ′,l

(
ci,r +µi, f ,l + τr,r ′,l + ∑

k∈K

κkσi,r,l − (1−λr ′)pr ′,l

[
1− π f ,r ′,l

εr ′ ,l

])
,

0 < qi, f ,r ′,l . (6.10)
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Market shareπ f ,r,l is defined by equation (6.4). Inequalities (6.10) can be interpreted as
follows: As long as the marginal revenues from electricity sales are not lower than the
marginal costs of production, a power company is willing to produce electricity.

Marginal costs can be derived from equation (6.10) as follows:

cm
i, f ,r ′,l = ci,r +µi, f ,l + τr,r ′,l + ∑

k∈K

κk σk
i,r . (6.11)

The four components of the marginal costs can be interpretedas follows. The first term are
the costs of the producing electricity. The second and thirdterm are the scarcity price of
maximum production capacity per technology and the transmission price related to trade,
respectively. The fourth term represents the addition to the production costs due to an
emission constraint.

We substitute the marginal costs defined in equation (6.11) into equation (6.10) to obtain
the following necessary condition for firmf to produce electricity:

qi, f ,r ′,l

(
cm

i, f ,r ′,l − (1−λr ′) pr ′,l

[
1− π f ,r ′,l

εr ′,l

])
≥ 0, qi, f ,r ′,l > 0. (6.12)

6.2.1 Game formulations

We will consider three possible games among the electricityproducers: a perfect compe-
tition (PC), a Stackelberg game with one leader per country (SG), in which the rest of the
producers is perfectly competitive, and a Stackelberg gamewith two leaders per country
(competitive among themselves), where the rest of the producers are perfectly competitive,
too (NSG). We will denote an optimal quantity produced by firmf ∈ Fr for regionr ′, load
model , and technologyi ∈ I as follows:

• qf ,P
i, f ,r ′,l for perfect competition (PC);

• qf ,S
i, f ,r ′,l for Stackelberg game with one leader per region (SG);

• qf ,NS
i, f ,r ′,l for Stackelberg game with two leaders playing (Nash game among themselves)

per region (NSG).

Perfect competition

We consider a situation with uniform players having the sametechnologies available and
the same restrictions on capacities. In a perfectly competitive market the companies enter
the game if their utility from the game is nonnegative, i.e.,the problem of producerf in
regionr can be written as:

(PC)






Find(
qf ,P

i, f ,r ′,l

)∗
∈ [0,

qmax
ir
|Fr | ],

such that

∑
l∈L

hl ∑
r ′∈R

(
pr ′,l sf ,r ′,l

)
−∑

l∈L

hl ∑
r ′∈R

(

∑
i∈I

ci,r

(
qf ,P

i, f ,r ′,l

)∗
)

= 0.
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Since the solution of (PC) might be nonunique, we will additionally assume that

(
qf ,P

i, f ,r ′,l

)∗
= arg min

qf ,P
i, f ,r′ ,l

pr ′,l (·) ,

i.e., in a perfectly competitive market the firms choose the quantities to be produced in order
to minimize the selling costs, while their utilities are nonnegative.

Stackelberg game with one leader per region

We assume that there is one leading firm in each region acting as the first player, choosing(
qf ,S

i, f ,r ′,l

)

i∈Ir ,r ′∈R,l∈L
so as to maximizeL f defined in (6.9), whereas other producers, which

are the followers, are perfectly competitive. The leader can in advance determine how the
other producers will react to his/her decision and with thisinformation the leader can choose

his/her optimal
(

qf ,S
i, f ,r ′,l

)

i∈Ir ,r ′∈R,l∈L
. For each region, the means of electricity production

are available to the leader of this game only, and are initially given.

Stackelberg game with two leaders per region

We assume that there are two leading firmsf , f ′ in each regionr acting first, playing Nash

game between each other and choosing
(

qf ,NS
i, f ,r ′,l

)

i∈Ir ,r ′∈R,l∈L
,
(

qf ′,NS
i, f ′,r ′′,l

)

i∈Ir′ ,r
′′∈R,l∈L

so as to

minimize their profitsL f andL f ′ . Other producers, which are perfectly competitive, choose
their production amounts per load and technology after the leaders have made their choice.

In each of the three games we are interested not only in the payoffs for individual play-
ers, but also in how their behavior influences emission levels, what technologies to produce
electricity would be preferred, and what amounts of electricity will be traded among neigh-
boring countries.

Data used for computations are consumers’ demand of electricity per region, supply
data (generation capacity and cost), trade data (interconnection capacity), distribution losses
data, emission factors. These data are taken from [32, 56, 83], and are presented and dis-
cussed below.

6.2.2 Model specifications

Demand and supply side of the model

Within the electricity markets of the considered countrieswe distinguish 34 different elec-
tricity producers or firms, as presented, together with net lossesλr and values for reference
demandsd0, in Table 6.1.

The demand side of the model consists of one sector per national market. However,
there are different markets for peak load (high demand) and base load (moderate demand).
We consider two load periods, namely a peak period (20% of theyear) and a base load (80%
of the year). We additionally assume that demand at peak hours requires 90 % of the total
available capacity:

d0
peak= 0.9∑

i∈I
qmax

i, f .
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BEL DEN FIN FRA GER NLD NOR SWE
no. of firms 2 3 3 2 5 5 7 7
net losses 4.5% 6.5% 3.5% 6.8% 4.7% 3.9% 8.9% 8.2%
avg. demand (GW) 9.04 3.75 8.72 46.88 54.45 11.48 12.66 15.46

Table 6.1: Characteristics of eight European electricity markets.

BEL DEN FIN FRA GER NLD NOR SWE
BEL 2500 1400
DEN 1750 950 1900
FIN 70 1450
FRA 2850 1150
GER 1350 1750 3300
NLD 1400 3300
NOR 950 70 3035
SWE 1840 2050 550 3035

Table 6.2: Transmission capacities between the countries (MW).

The price elasticity of the demand is assumed to be set to−0.4, as in [56]. The intuition
behind this relatively high price elasticity is that it reflects the alternatives for consumers to
choose their electricity supplier [83].

The model encompasses 12 different production technologies, which can be listed as
follows:

• conventional thermal power technologies: nuclear (N), coal (C), gas (G), lignite (L),
oil (O).

• combined heat and power production (CHP) technologies: gas(CHP-G), coal (CHP-
C), oil (CHP-O), biomass (CHP-B), and other fuels (CHP-X).

• renewable technologies: hydro (H) and wind power (W).

Due to varying fuel and production taxes across countries the variable production costs
differ across regions and technologies, but not across producers within each country. A
summary of total production capacities in the countries included in the model is given in
Table 6.3.

Trade and distribution losses

Firms in our model are assigned to a specific country. Hence, no crossborder ownership is
permitted. There is an opportunity to trade electricity among countries, with the following
restrictions:

• Trade via imports and exports to countries outside the considered countries is ignored.

• A firm can only trade with neighboring countries.
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BEL DEN FIN FRA GER NLD NOR SWE
nuclear 5.71 2.64 63.18 21.37 0.45 9.46
coal 2.95 5.10 2.29 12.69 17.86 4.05
lignite 18.97
gas 3.50 0.04 0.90 1.89 13.82 7.17
oil 1.20 0.79 1.24 12.23 8.11 0.99 4.64
CHP-gas 0.58 2.58 1.80 0.99 4.66 0.13
CHP-coal 1.13 1.47 6.96 0.56
CHP-oil 0.10 0.16 0.30 0.65
CHP-bio 0.29 0.23 1.04 0.64 0.46
CHP-other 1.44 6.64 0.20 1.00
hydro 1.40 0.01 2.88 25.60 11.61 0.04 27.46 16.33
wind 0.01 2.42 0.04 0.08 0.36 0.44 0.01 0.25
total 15.74 12.30 15.89 122.31 100.33 18.44 27.67 33.48

Table 6.3: Electricity production capacities in 2000 (GW).

BEL DEN FIN FRA GER NLD NOR SWE
nuclear 6.14 6.14 6.14 6.14 6.14 7.50
coal 16.94 13.83 13.97 15.19 14.42 16.83
lignite 15.50
gas 24.22 23.81 20.28 23.83 29.04 23.25
oil 36.42 35.21 35.21 38.84 38.70 41.21 39.83
CHP-gas 13.29 13.08 11.21 15.85 12.78 13.52
CHP-coal 7.57 7.63 7.84 11.73
CHP-oil 19.58 19.58 19.58 21.43 21.58
CHP-bio 19.94 19.94 19.94 19.94 19.94
CHP-other 14.59 16.69 16.69 16.69
hydro 0.00 0.00 0.00 5.84 0.00 0.00 0.00 1.18
wind 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.4: Variable cost (euro/MWh) per technology in 2000.

BEL DEN FIN FRA GER NLD NOR SWE
coal 920.0 972.2 915.9 915.9 970.0 915.9
lignite 1219.7
gas 388.0 327.2 348.9 401.9 348.9 411.0
oil 877.3 692.6 877.3 756.8 877.3 877.3 877.3
CHP-gas 330.6 673.9 528.3 327.1 327.1 327.1
CHP-coal 948.9 776.1 33.1 733.1
CHP-oil 503.4 503.4 503.4 503.4
CHP-bio 0.0 81.9 2.1 0.0 0.0
CHP-other 1296.1 401.6 403.4 403.4

Table 6.5: Greenhouse gas emission factors (kg CO2 equivalents/MWh) per technology.
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BEL DEN FIN FRA GER NLD NOR SWE
coal 31.594 20.699 23.310 31.549 23.307 28.365
lignite 33.896
gas 5.901 2.174 4.522 15.435 4.522 6.783
oil 21.821 2.486 21.821 25.610 21.821 21.821 21.821
CHP-gas 2.174 19.833 6.848 2.174 2.174 2.174
CHP-coal 20.217 32.459 2.649 2.649
CHP-oil 2.486 2.486 2.486 2.486
CHP-bio 7.160 31.692 46.726 7.160 12.288
CHP-other 83.071 15.435 3.736 3.736

Table 6.6: Emission factors for acidifying emissions (g acid equivalent/MWh) per technol-
ogy.

BEL DEN FIN FRA GER NLD NOR SWE
coal 80.0 57.0 172.9 170.0 66.0 17.0
lignite 96.0
gas 0.0 0.0 0.0 0.0 0.0 0.0
oil 21.0 1.0 3.0 130.0 2.0 2.0 21.0
CHP-gas 0.0 0.0 0.0 0.0 0.0 0.0
CHP-coal 57.0 150.0 10.0 10.0
CHP-oil 1.0 2.0 2.0 2.0
CHP-bio 30.0 0.0 21.0 30.0 233.0
CHP-other 195.0 0.0 1.0 1.0

Table 6.7: Emission factors for smog formation (g fine particles/MWh) per technology.
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The transmission capacity within a country is unrestricted. The interconnection capacity
among countries of the electricity network is restricted and the data is derived from ETSO
data [32].

Electricity distribution after transmission through the electricity grid is accompanied
by losses. These distribution losses are generally much larger than the transmission losses,
which are ignored in the model. The distribution lossesλr (r ∈R) occur when the electricity
is distributed within a country, and differ across countries, as depicted in Table 6.1.

Emission factors

Three environmental effects can be taken into account in thegame: greenhouse gas emis-
sions, acidification, and smog formation due to emissions offine particles.

Information about emission factors for all technologies per country is taken from [83]
and [56] and is depicted in Table 6.5, Table 6.6, and Table 6.7. For all technologies, the
specific emissions of the 8 considered countries due to the electricity generation were deter-
mined. Emissions due to construction and deconstruction ofpower plants, mining, extrac-
tion, and transportation have been disregarded, as these emissions, including emissions of
extraction and transportation, are rather small, and in thesame range of those for wind or
hydroelectric power. Consequently emissions of hydroelectric, nuclear, and wind power are
set to zero, CO2 emissions of biomass power are also set to zero.

6.3 Case studies

For each situation (PC), (SG), (NSG) the following three scenarios will be considered.

• There is only one country in the model (The Netherlands); electricity transmissions
with other countries are not considered.

• There are two countries in the model (The Netherlands and Belgium), electricity
transmissions between these two countries can be considered; transmissions with
other countries are not considered.

• All eight countries are included in the model; the electricity transmissions among
these 8 countries can be considered.

In Table 6.8 and Table 6.9 schemes of the case studies are depicted. The first tabular
refers to the games without emission constraints. The second tabular refers to the problems
with emission constraints consideration. We set the permissible emission ceilingEk [g] is
set to 50% of the average of the resulting emissions of the eight countries when game E1.8
is played.

In the Stackelberg game we will assume that the leaders have access to the means of
electricity production depicted in Table 6.10,

For games with 2 and more countries there will be variant (c),denoting that the cross-
border transactions are considered.

6.3.1 Games with one country

The problems involving only The Netherlands will be solved analytically.



104 6 Electricity Market Problem

without
emissions

SG PC NSG

1 country E1.1 E1.2 E1.3
2 countries E1.4 E1.5 E1.6
8 countries E1.7 E1.8 E1.9

Table 6.8: Scheme of case studies with no emission restrictions.

with
emissions

SG PC NSG

1 country E2.1 E2.2 E2.3
2 countries E2.4 E2.5 E2.6
8 countries E2.7 E2.8 E2.9

Table 6.9: Scheme with case studies with emission restrictions.

Game SG NSG
BEL wind, hydro, nuclear wind, hydro, nuclear, CHP-gas
DEN wind, hydro wind, hydro, CHP-coal, CHP-gas
FIN wind, hydro, nuclear wind, hydro, nuclear, CHP-gas
FRA wind, hydro wind, hydro
GER wind, hydro wind, hydro
NLD wind, hydro, nuclear, CHP-

gas
wind, hydro, nuclear, CHP-gas, coal

NOR wind, hydro wind, hydro
SWE wind, hydro wind, hydro

Table 6.10: The available means of electricity production for leaders in Stackelberg game.
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Games E1.2 and E2.2

Maximization of the utility functions with respect to the quantities produced gives the fol-
lowing outcome. With perfect competition (Game E1.2) and with all producers having
equal access to the means of electricity production, the selling price of electricity is 17.23
[euro/MWh].

When the emission constraints are considered (Game E2.2), the selling price of electric-
ity is 19.13 [euro/MWh].

Games E1.1 and E2.1

Let the leading producer have access to the means of production depicted in Table 6.10 as the
only producer. In game E1.1 maximization of his/her profit with respect to the constraint of
nonnegative profit for other producers leads to a selling cost of 25.98 [euro/MWh], yielding
him/her a profit of 55182.92 [euro], while the utility of all other producers is zero.

When the emission constraints are considered (Game E2.1), the selling price of elec-
tricity is 30.10 [euro/MWh] and the profit for the leader is 49819.10 [euro], while the other
producers obtain a zero profit.

Games E1.3 and E2.3

Let the two leading producers as only producers have (symmetric) access to the means
of production depicted in Table 6.10. Then maximization of their profit with respect to
the constraint of nonnegative profit for other producers leads to a selling cost of 20.31
[euro/MWh] and an average profit of 44632.41 [euro], while all other producers have a zero
profit.

With emission constraints included the selling cost is 26.15 [euro/MWh]. This cost
yields profit of 41023.24 [euro] for each of the leading producers, while all other producers
have a zero profit.

Discussion

In the case studies with only one country (The Netherlands),the selling price is remarkably
higher in the Stackelberg games than in the perfectly competitive market, especially when
the leading producers have access to more ecological means for electricity production than
the rest of the producers. While the resulting prices of our case studies are still about 25 %
smaller when compared to the actual situation in the electricity market, the influence of the
type of competition on the electricity prices matches the trends presented in [56] very well.

6.3.2 Games with two countries

Games E1.4 and E2.4

If game E1.4 is played, the electricity price in The Netherlands is 19.42 [euro/MWh] and
yields a profit of 50244.12 [euro] for the leader; the electricity price in Belgium is17.99
[euro/MWh]; the profit of the leading producer will be 61213.24 [euro].

If game E1.4(c) is played, the electricity price in The Netherlands is 18.35 [euro/MWh]
and yields a profit of 46001.21 [euro] for the leader; the electricity price in Belgium is15.85
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[euro/MWh]; the profit of the leading producer is 57192.91 [euro]. Belgian firms will sell
1400 [MW] to the Netherlands.

If game E2.4 is played, the electricity price in The Netherlands is 22.32 [euro/MWh] and
yields a profit of 44115.23 [euro] for the leader; the electricity price in Belgium is18.56
[euro/MWh]; the profit of the leading producer is 57234.11 [euro].

If game E2.4(c) is played, the electricity price in the Netherlands will be 20.15 [euro/
MWh] and yields a profit of 37125.24 [euro] for the leader; the electricity price in Belgium
is 17.12 [euro/MWh]; the profit of the leading producer is 50259.44 [euro].

Game E1.5 and Game E2.5

If both Belgium and The Netherlands are considered in the perfect competition case (Game
E1.5), 10.41 [euro/MWh] and 18.12 [euro/MWh] are the selling prices in Belgium and The
Netherlands, respectively.

If emission restrictions are included, the prices are 12.99 [euro/MWh] and 19.99 [euro/
MWh], respectively.

Game E1.6 and Game E2.6

If both Belgium and The Netherlands have two leading producers, playing Nash among
themselves,2 and cross-border electricity transmissions are prohibited (Game E1.6), the
game does not have a solution. The two electricity producersin Belgium cannot cover
the demand on electricity. Together they can produce only 7.70 [GW] of electricity, while
the initial electricity demand in Belgium is 9.04. If the demand would not need to be sat-
isfied, the optimal strategy for the identical leaders wouldbe to set the price of electricity
infinitely high.

If Game E1.6(c) is played, the situation is solvable. Moreover, the electricity producers
in Belgium cannot set the electricity prices arbitrary high, as they are limited by the elec-
tricity prices in The Netherlands. A solution to the problemis as follows: The electricity
price in both Belgium and The Netherlands is 18.25 [euro], the average profit of the Dutch
producers is 73140.23 [euro], the average profit of Belgian producers is 23095.18 [euro].
If Game E2.6(c) is played, the selling price of electricity for both Belgium and the Nether-
lands will be 19.31 [euro] and the average profits for the Dutch and Belgian producers will
be 65232.13 [euro] and 18123 [euro], respectively.

Discussion

As in the game with one country, the perfect competitive market yields much lower elec-
tricity prices. The prices will be remarkably increased if emission restrictions are included.

6.3.3 Games with eight countries

Since the analytical computation of the solution of the problem with eight countries would
be extremely time-consuming, the problem was implemented and solved numerically in
Matlab.

2In Belgium these two producers are only players.
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Game E1.7 E1.7 (c) E1.8 E1.8(c) E1.9 E1.9(c)
BEL 20.73 18.41 10.04 8.23 15.98 13.21
DEN 20.03 19.97 5.98 5.44 14.98 14.72
FIN 20.32 20.28 7.81 5.23 15.05 14.88
FRA 20.35 19.44 8.20 6.87 17.21 16.88
GER 18.95 17.95 7.87 6.62 11.22 10.99
NLD 21.13 19.25 15.85 12.01 19.54 18.22
NOR 13.21 12.59 0.01 0.01 9.25 9.01
SWE 17.32 15.45 1.37 1.08 14.21 13.54

Table 6.11: Resulting selling costs for base load period forgames with eight countries.

Game E1.7(c) E1.8(c) E1.9(c)
BEL-FRA 1320/1500 0/2850 1440/1410
BEL-NLD 890/50 1400/0 1000/25
DEN-GER 1460/1300 1750/0 1500/750
DEN-NOR 60/800 0/950 50/900
DEN-SWE 210/800 0/950 100/880
FIN-NOR 20/65 0/70 10/68
FIN-SWE 320/1800 0/2050 200/1900
FRA-GER 850/275 1150/0 910/105
GER-NLD 2950/1500 3300/0 3005/545
GER-SWE 200/455 0/550 150/505
NOR-SWE 1420/2650 0/3035 720/2810

Table 6.12: Electricity traded between neighboring countries [MW].

For each of the three games we will consider both variants with and without electricity
transmissions between neighboring countries.

The variants of the games, in which cross-border electricity transmissions are allowed,
will be denoted by (c). The resulting prices for the base loadperiod are mentioned in
Table 6.11, whereas the amounts of electricity traded between the neighboring countries
are depicted in Table 6.12. In this table, 1320/1500 in column BEL-FRA illustrates that
1320 [MW] of electricity from Belgian firms will be sold in France, while 1500 [MW] of
electricity units will be sold in Belgium by French firms. Theamounts of acid particles per
firm in a country ([g]) , the amounts of CO particles per firm in acountry ([g]), and the
resulting amounts of smog particles per firm in a country ([g]) for game E1.8 are depicted
in Table 6.11.

Discussion

The resulting electricity prices are in our case studies quite lower than the prices appearing
in the actual European electricity market (see [32]). The trends in the prices coincides with
the actual situation in the European electricity market, though. The emission levels were
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Game E1.8 acid CO smog
BEL 3.5961·104 1.4191·106 3.5961·104

DEN 1.3304·103 3.1320·105 1.3304·103

FIN 9.7799·104 2.0925·106 9.7799·104

FRA 0 0 0
GER 8.2164·104 3.3121·106 8.2164·104

NLD 4.3591·104 1.6014·106 4.3591·104

NOR 0 0 0
SWE 6.2383·103 1.1744·106 6.2383·103

total 2.6708·105 9.9127·106 2.6708·105

Table 6.13: Game E1.8: Emission acid particles (g), emission CO particles (g), and emis-
sion smog particles (g), in different countries per firm

not compared to those from actual measurements.

6.4 Extension: Dynamic model

In this section we propose a dynamic extension of the model introduced in Section 6.2.
Let us consider the case that the time horizon of the model is extended one time period

ahead. In that case, firms can aim to maximize theirdiscountedpayoff by choosing the
amount of electricity to produce with various technologiesfor each time period. In addition
to the utility from sales of the electricity in the regional markets minus the average variable
costs of production, firms also have to accommodate the fixed costs by financing the pur-
chase of new production capacity via investments. The following equation expresses the
payoffs in the next time period:

J̃ f =
1

1+ β

[

∑
l∈L

hl ∑
r ′∈R

p̃r ′,l s̃f ,r ′,l −∑
l∈L

hl ∑
r ′∈R

(

∑
i∈I

ci,r q̃i, f ,r ′,l

)
+∑

i∈I

Vi q̃
max
i, f

]

−∑
i∈I

Vi q
new
i, f , (6.13)

with q̃max
i, f defined later by (6.15).

The variables in (6.13) are defined as in Section 6.2, with “∼” identifying the variable
for the next time period. Hence, the investment decision of the firm in the current period
depends on the expected outcome in the next period. That is why the prices, the supply, the
generation, and the production capacity are assigned to thenext period and discounted with
interest rateβ. In addition to serving the market in the next period, firms also need to con-
sider the value of installed capacity in the next period, while new investments are needed to
keep the production capacity at a desired level. ParameterVi [euro/kW] represents the value
of technologyi, while qnew

i, f [GW] denotes the amount of the new production capacity of
electricity (chosen by the producer). This means that the maximum production capacity is
no longer fixed. The firms make their investment decisions in every time period based on the
most recent information (cf. the feedback information structure, see [5]). Equation (6.14)
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describes the capacity expansion, in which capital is depreciated at technology-specific de-
preciation rateδi :

qmax
i, f = (1− δi)qmax

i, f +qnew
i, f . (6.14)

Because of environmental considerations with respect to nuclear waste and physical limita-
tions on the capacity of the used technologies (e.g., it is natural to restrict the capacity of
coal power plants), the following inequality is included into the model:

ϕ̃i

(

∑
f∈F

qnew
i, f +(1− δi) ∑

f∈F

qmax
i, f −qmaxabs

i

)
≥ 0, ϕ̃i > 0. (6.15)

Here the shadow pricẽϕi might become nonzero, once the planned expansion of capacity
of a certain technology reaches the maximum allowable installed capacityqmaxabs

i [GW].
The producer maximizes the net profitLDYN

f , by a joint choice of the investment decision
and his/her production of technologies for possible regions and both load types in the next
period. Therefore, the net profit can be defined as:

LDYN
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The derivative of (6.16) with respect to production leads tothe following first-order condi-
tion for the next period, which is equivalent to (6.10) in thestatic case:

0≤ q̃i, f ,r ′,l

(
ci,r + µ̃i, f ,l + τ̃r ′,r,l − ∑

k∈K

κ̃kσk
i,r − (1−λr ′) p̃r ′,l

[
1− π̃ f ,r ′,l

εr ′ ,l

])
,

0 < q̃i, f ,r ′,l . (6.17)

The derivative of (6.16) with respect to the investment in new capacity, leads to the following
additional first-order condition:

qnew
i, f

(

∑
l∈L

hl µ̃i, f ,l −βVi − (1+ β)ϕ̃i

)
≥ 0,

qnew
i, f > 0. (6.18)
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Equation (6.18) shows that firmf makes an investment
(

qnew
i, f

)

i∈I
as long as the marginal

return on capital∑l∈L hl µ̃i, f ,l exceeds the marginal cost of capitalβVi +(1+ β)ϕ̃i .

From an economical point of view, the value of the shadow price of the capacity usage
µ̃i, f ,l provides the signal to what extent a firm would like to use a particular technology
during a particular load period.

The amount of production capacity is no longer constant in the dynamic model and
equation (6.6) can be rewritten in terms of the decision variables as follows:

µ̃i, f ,l

(

∑
r ′∈R

q̃i, f ,r ′,l − (1− δi) qmax
i, f −qnew

i, f

)
≥ 0, µ̃i, f ,l > 0. (6.19)

6.5 Conclusions and future research

Conclusions

We have proposed a model of the liberalized European electricity market, consisting of
eight European countries. In the model emission limitations can be set as well as maxi-
mal transmission capacities between the neighboring countries. The aim has been to see
how different the electricity prices will be in a monopolistic, a duopolistic, and a perfectly
competitive situation.

Although the considered model is rather simple, some interesting phenomena can be
observed:

• The electricity prices become lower when cross-border electricity transmissions are
allowed.

• In the monopolistic and the duopolistic situation the electricity prices are higher than
in the situation with perfectly competitive market.

• Generally in the perfect competition the producers tend to use cheaper and non-
environmentally friendly means of electricity production. The emission restrictions
are needed to motivate the electricity producers to act moreecologically. This in-
creases the electricity prices, though, especially in the countries with a low number
of hydro and wind power plants.

The extended variant of the model can be used for monitoring and predicting the behavior
of the European electricity market.

Model limitations and future research

The major limitations of the model can be listed as follows:

• Only three possible games were considered in each of the casestudies: perfect com-
petition, Stackelberg game with one leader, Stackelberg game with two leaders. Al-
though the aim of liberalization is to obtain a highly competitive market, it will never
be perfectly competitive. Situations with noncooperativeelectricity producers, in
non-perfect competition have to be considered to obtain more realistic outcome.
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• Only eight countries were included in the model.

• Cross-border ownerships of the electricity producers are not allowed in the model,
while in reality they appear more and more often.

• The electricity price is assumed to be constant within one country, while in reality
this price might differ per the electricity producer [83].

• The model is very simple, while some of the data used for the modeling are real, the
assumptions on the players’ behavior are very strong.

These limitations will be resolved in our future research.

Practical relevance of the outcomes of the research presented in this chapter

The liberalization of the European electricity market draws the attention of many research-
ers. There are numerous attempts to model the current situation in order to predict the
possible consequences of liberalization.

In this chapter we have tried to model the electricity marketin eight European countries.
The model is quite simple and does not take into account all factors that can influence the
liberalization process throughout Europe. Still, outcomes of our case studies coincide with
practical observations. Although the resulting prices of our case studies are remarkably
lower than in the current European electricity market,3 their structure of prices coincides
with other relevant studies in the same field [29, 42, 56]. Thedynamic model, describing
the current situation in a more realistic way, is being developed.

3We assume that there are some other factors, not included into our modeling, influencing the electricity price.





Chapter 7

Theory of Incentives

In this chapter we will introduce some problems from the so-calledtheory of incentivesand
view them as specific problems of the inverse Stackelberg type.

7.1 Introduction

Incentive theory emerges with the division of labor and exchange. The division of labor
induces the need for delegation. The first contracts probably appeared in an agricultural set-
ting, when landlords contracted their tenants. Adam Smith [72] recognized the contractual
nature of the relationship between the masters and the workers. He recognized the conflict-
ing interests of those two kinds of players and recognized that bargaining power was not
evenly distributed among them; the masters generally had all the bargaining power. Smith
also stressed the agent’s participation constraint, whichlimits what the principal can ask
from the agent. Although Smith did not have a vision of economic actors as long-time
maximizers of utility, his work was important as a headstoneof incentive theory, since he
discussed the problems associated with price-rate contracts in the industry.

Barnard [8] is the one who can be credited with the first attempt to define a general
theory of incentives in management. Even much earlier, Hume[44] wrote the first explicit
statement of the so-called free-rider problem. With the beginning of the theory of voting, the
issue of strategic voting as a principal-agents problem wasnoticed [23]. The first attempt to
address the issue of strategic voting can be found in [12].

The notion of moral hazard, i.e., the ability of insured agents to affect the probabilities
of insured events, was well-known in the insurance profession [26, 34].

In [57] the regulation literature was put in the framework ofthe principal-agent literature
with adverse selection by stressing the lack of informationof the regulator. The problem
was transformed into the second-best problem by weighting the firm’s profit with a smaller
weight than consumers’ surplus in the social welfare function maximized by the regulated
firm [9]. In [52] the model featuring both adverse selection and moral hazard was intro-
duced. The ex-post observability of cost made the model technically an adverse selection
model, though.

113
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7.2 Preliminaries

Principal-agent models fall within the economic theory of incentives or contracts [51, 59,
70], which forms a subset of the one-leader-one-follower inverse Stackelberg games intro-
duced in Chapter 3.

Let us consider a bilateral relationship in which aprincipal P contracts anagentA to
delegate the production of some good.1 Of course, the principal has to pay the agent for
the good. The salary which the principal offers to the agent for the production ofq∈ R+

products will bet ∈ R+ [euro]. The variablesq andt will be calledquantityandtransfer,
respectively. The principal draws up acontract in which he specifiesq and t. We call
this contract the(q,t)-contract. We assume that it is always the principal who draws up the
contract and then presents it to the agent, who, after havingstudied the terms of the contract,
must decide whether or not to sign it.2 We talk about atake-it-or-leave-itcontract, since its
terms are non-negotiable.

The agent’s efficiency in producing the good is determined byhow much money he/she
needs to produce one product. We will denote this value byθ, θ ∈ Θ ⊂ R+, and call it the
agent’smarginal cost. If A has the marginal costθ ∈ Θ, we refer to him as an agent of type
θ, or as aθ-agent. The principal does not always know the value ofθ, but he does know
the setΘ. The agent may pretend to be an agent of a different type. We call the agent’s
pretending to be an agent of a different typemimicking. Theθ-agent announces that he is
of the typeuA ∈ DA ⊂ R+. We assumeΘ = DA . Then his utility (“surplus value”) from
signing the(q,t) - contract is

JA (q(uA) ,t (uA) ,θ) = t (uA)− CA (q(uA) ,θ) = t (uA)−θq(uA) . (7.1)

Here we assume that botht = t(uA) andq = q(uA) are dependent only on the agent’s “an-
nounced type”. Another possibility is to considert dependent onq (see [51]).

The agent will not sign the contract ifJA (q,t,θ) ≤ 0. If A signs the contract, he will
produce the demanded number of goods.

The principal’s utility function is

JP(q,t) = CP(q)− t, (7.2)

whereCP(q) describes the principal’s value ofq products. This function is assumed to
satisfy the following natural properties:

dCP
d q

> 0,
d2CP
d q2 < 0, CP(0) = 0.

The marginal value of the good for the principal is, thus, positive and strictly decreasing
with respect toq onR+.

The situation in which bothP andA know θ beforeP offers the contract is known
as a situation withcomplete information(to be studied in Section 7.3), while the situation
in which only the agent knows his own type before the contractis designed is called a

1We confine the agent to produce good only, although the formulation used in this chapter has also more general
interpretation.

2We do not permitA to make a counter-offer toP , a situation which is known asbilateral bargaining[55],
[82].
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situation withadverse selection(Section 7.4). The situation in which the agent can perform
some unobserved actions after the contract is signed is known asmoral hazard(see e.g.
[59]). In this paper we focus mainly on theadverse-selection-principal-agent model.

It is usually assumed [51, 59] thatP chooses among the two possible strategies:

• The principal will offer the contract toA , no matter how efficientA is (contract
without shutdown).

• The principal will contractA only if A ’s marginal cost is higher than some certain
value (contract with shutdown), otherwise no contract will be offered.

We will consider only contracts without shutdown.

7.3 Complete-information principal-agent model

Let us first assume that the agent type is from the discrete type setΘ def
=
[
θ,θ
]
. In this model

the principal knows the agent’s typeθ ∈
[
θ,θ
]
, θ < θ, θ,θ ∈ R+; hence, he can set up a

contract slightly exceeding the agent’s zero utility leveland ensuring the highest possible
utility for himself. The optimalq andt will be called thefirst bestquantity and transfer and
will be denoted by an asterisk.

The principal maximizes

JP(q(θ),t(θ)) = CP(q(θ))− t (θ)

subject to the agent’s participation constraint

JA (q(θ),t(θ),θ) = t(θ)−q(θ)θ > 0.

The principal’s optimal strategy is thenu∗P(θ)
def
= (q∗(θ),t∗(θ)) , where (withε ↓ 0)

t∗(θ) = q(θ)θ+ ε, q∗(θ) = argmax
q(θ)
CP(q(θ))−q(θ) θ− ε, (7.3)

with uA = θ, θ ∈ Θ. Thus,

d
dq

Cp(q
∗) = θ. (7.4)

The agent will acceptP ’s offer and gainε ↓ 0 utility.

Remark 7.1 In the following example we will assume thatA is of typeθ from the two-
element setΘ = {θ,θ}, θ > θ > 0. If

θ =

{
θ we say, thatA is efficient;
θ we say, thatA is inefficient.

We will denote the transfer and the quantity offered to theθ-agent byt = t(θ), q = t(θ),

and to theθ-agent byt = t(θ), q = t(θ). We will refer to the contract offered to theθ-agent
as the(q,t)-contract and to the contract offered to theθ-agent as the(q, t)-contract.

2
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Example 7.1
The employer of a factory (P ) delegates to a worker (A ) to make a certain number of prod-

ucts. The principal’s objective function is given asCP(q(θ))
def
= ln(q(θ)+1). The agent can

be only of theθ or θ type, whereθ = 0.1 [euro],θ = 0.2 [euro]. The principal maximizes
his utility function

JP(q(θ),t(θ)) = CP(q(θ))− t (θ)

= ln(q(θ)+1)− t (q(θ))

subject tot(θ)−θq(θ) > 0, whereθ ∈ {θ,θ}. From (7.3) it follows that the principal offers
t∗(θ) satisfyingt∗(θ) = θq∗(θ)+ ε, whereε ↓ 0, andq∗(θ) satisfies

q∗(θ) =
1−θ

θ
.

Hence,P demandsq∗(θ) = 9 products fort∗(θ) = (0.9+ ε) [euro], if θ = θ = 0.1 [euro],
andP demandsq∗(θ) = 4 products fort∗(θ) = (0.8+ ε) [euro], if θ = θ = 0.2 [euro]. The
agent’s profit is alwaysε ↓ 0 andP ’s profit is ln(10)−0.9− ε ≈ (1.4− ε) [euro] if A is
efficient, and ln(5)−0.9− ε≈ (0.71− ε) [euro] if A is inefficient.2 2

7.4 Adverse-selection principal-agent model

Under the adverse selection the principal is not aware of theagent’s typeθ ∈ Θ =
[
θ,θ
]

before writing the contract, but he/she does knowΘ.

The following example shows the more specific situation withΘ =
{

θ,θ
}

.

Example 7.2
Let us assume that the principal from Example 7.1 does not know the agent’s type (while
knowing both theθ andθ values.). He designs the pair of contracts

{(
1−θ

θ
,1−θ+ ε

)
,

(
1−θ

θ
, 1−θ+ ε

)}

with θ = 0.2 [euro], θ = 0.1 [euro], hoping that each agent will pick the contract matching
his type. IfA is efficient, it pays for him to pretend to be an inefficient agent to obtain utility

JA (θ,q,t) = t(θ)−qθ =
(
1−θ+ ε

)
− 1−θ

θ
θ = (0.4+ ε) [euro],

while theθ-agent’s utility without mimicking is

JA
(
θ,q,t

)
= t −qθ =

(
1−θ+ ε

)
− 1−θ

θ
θ = ε [euro].



7.4 Adverse-selection principal-agent model 117

If the agent is inefficient, it does not pay to him to mimic the efficient agent, because

JA
(
θ,q(θ),t(θ)

)
= t(θ)−qθ

=
(
1−θ+ ε

)
− 1−θ

θ
θ = ε [euro],

JA
(
θ,q(θ),t(θ)

)
= t(θ)−qθ

= (1−θ+ ε)− 1−θ
θ

θ = (ε−0.9) [euro].

2

WhenΘ = [θ,θ], the principal has ana priori belief about the agent’s type. This belief
is embodied in the probability distributionf with cumulative distribution functionF on Θ,
which will be called a principalprior.

The principal offers the contract variables as mappings from Θ.
The principal offers the(q(·),t(·))-contract whereq(·) : Θ→R+, t(·) : Θ→R+, hoping

that everyθ̂−agent (̂θ ∈ Θ) will choose the
(
q
(
θ̂
)
,t
(
θ̂
))

-contract. Thus,q andt become
functions of the agent’s possible type space. These functions are known before the agent an-
nounces his type. The mechanism of announcing transfer and quantity as functions from an
agent’s decision space before the contract is signed is called a direct revelation mechanism
[51].

Definition 7.1
A direct revelation mechanism is a mappingγP(·) : Θ → DP, whereγP = (q(·) ,t (·)) for
∀θ ∈ Θ. The principal commits to offering the transfert(θ̂) and the production levelq(θ̂) if
the agent announceŝθ ∈ Θ. 2

For the sake of simplicity, we assume thatq(·), t(·) are differentiable with respect to each
θ ∈ Θ.

The direct revelation mechanism is said to betruthful, if an agent of any type fromΘ
does not wish to mimic an agent of a different type.

Definition 7.2
A revelation mechanismγP(·) is truthful if it satisfies for everỹθ, θ̂ from Θ, θ̃ < θ̂ the
following incentive compatibility constraints

t
(
θ̃
)
− θ̃q

(
θ̃
)
≥ t
(
θ̂
)
− θ̃q

(
θ̂
)
, (7.5)

t
(
θ̂
)
− θ̂q

(
θ̂
)
≥ t
(
θ̃
)
− θ̂q

(
θ̃
)
, (7.6)

respectively. 2

By adding (7.5) and (7.6) we obtain
(
θ̂− θ̃

)(
q(θ̃)−q(θ̂)

)
≥ 0 (7.7)

for all
(
θ̂, θ̃
)
∈ Θ×Θ. Because (7.7) holds for allθ̃, θ̂ ∈ Θ, also

dq(θ)

dθ
≤ 0. (7.8)
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Therefore, if the direct revelation mechanism is truthful,q(·) is non-increasing.
Inequality (7.5) implies that the following first-order condition for the optimal response

uA chosen by typeθ is satisfied:

dt
dθ

(uA)−θ
dq
dθ

(uA) = 0 (7.9)

To avoid agents’ mimicking, the following equality has to besatisfied for all̂θ ∈ Θ:

dt
dθ

(θ̂)− θ̂
dq
dθ

(θ̂) = 0. (7.10)

The local second-order condition

d2 t
dθ2 (θ̂)− θ̂

d2q
dθ2 (θ̂) ≤ 0 (7.11)

has to be satisfied as well. By differentiating (7.10), condition (7.11) can be rewritten in a
simpler way as

− dq
dθ

(θ̂) ≥ 0. (7.12)

If (7.10) and (7.12) are satisfied, theθ-agent does not want to mimic an agent of an other
type locally. To prevent theθ-agent from global mimicking, too, the following constraints
must be fulfilled:

t(θ)−θq(θ) ≥ t(uA)−θq(uA) (7.13)

for all (θ,uA) ∈ Θ×Θ.
By integrating formula (7.10) we obtain

t(θ)−uA q(uA) = t (uA)−θq(uA)+ (θ−uA) q(uA)−
∫ θ

uA

q(τ)dτ, (7.14)

where(θ−uA)q(uA)− ∫ θ
uA

q(τ)dτ ≥ 0, becauseq(·) is non-increasing.
Thus, (7.9) can be extended globally. Truthful revelation mechanisms are then charac-

terized by the two conditions (7.10) and (7.12).
We now introduce the concept ofinformation rents. Under complete information intro-

duced in Section 7.3 the principal is able to maintain all types of agents at theirε−utility
level,

JA (q∗(θ),t∗(θ),θ) = t∗(θ)−θq∗(θ) = ε.

Under incomplete information this will be not possible anymore, at least when the principal
wants all types of agents to sign the contract offered. Let ustake the revelation mechanism
γP(·) = (q(·),t(·)) and consider the utility that theθ-agent gains by mimicking auA-agent,
uA > θ (with D = uA −θ):

J (q(uA),t(uA),θ) = t(uA)−θ ·q(uA) = t(uA)−uA q(uA)+Dq(uA) (7.15)

= JA (q(uA),t(uA),uA)+Dq(uA). (7.16)

Even if theuA-agent’s utility is reduced to its lowest valueε, theθ-agent benefits from an
information rentDq(uA) coming from his ability to possibly mimic a less efficient agent.
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So as long as the principal insists on a positive quantity from the θ-agent, the principal
must give up a possible rent to any other type of agent. The information rent is generated
by the information advantage of the agent over the principal. The principal’s problem is
to determine the smartest way to give up the rent provided by any given incentive feasible
contract. We will use the following notation: The information rents for aθ-agent will be

denoted byIθ, i.e.,Iθ
def
= JA (q(θ),t(θ),θ) = t(θ)−θq(θ).

The optimal solution of the adverse-selection-principal-agent model will be called the
second-best solution(as opposed to the optimal solution in the situation with complete in-
formation, which is often called thefirst-best solution). This second-best solution will be
denoted by SB. From (7.15) it follows that the optimal strategy for anyθ-agent is to play
uSB

A = θ. The principal is aware of this.
With the use of (7.13), the local incentive constraint can bewritten as

d Iθ
dθ

= −q(θ)+
d t
dθ

(θ)−θ
d q
dθ

(θ) = −q(θ) . (7.17)

Thus, the principal’s problem becomes

max
{q(·),t(·)}

∫ θ

θ
(CP (q(θ))− t (θ)) f (θ)dθ, (7.18)

subject to

d Iθ
dθ

= −q(θ) , (7.19)

dq
dθ

(θ) ≤ 0, (7.20)

Iθ > 0 for ∀θ ∈ Θ. (7.21)

Equation (7.18) can also be rewritten as

max
{q(·),I(·)}

∫ θ

θ
(CP (q(θ))−θq(θ)− Iθ) f (θ)dθ (7.22)

with the use of information rentIθ.
With the use of (7.17), the participation constraint (7.21)simplifies toIθ > 0. Clearly

the θ-agent will obtainJ
(
q(θ),t(θ),θ

)
= Iθ = ε. For the sake of simplicity, we will not

consider the constraint (7.20) now and check if this constraint is satisfied after finding the
optimal strategy for the principal.

Equation (7.19) can be rewritten as follows:

Iθ − Iθ = −
∫ θ

θ
q(τ)dτ, (7.23)

i.e. (with Iθ = ε),

Iθ =

∫ θ

θ
q(τ)dτ+ ε. (7.24)
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The principal’s objective function becomes

∫ θ

θ

(
CP(q(θ))−θq(θ)−

∫ θ

θ
q(τ)dτ− ε

)
f (θ)dθ (7.25)

=

∫ θ

θ

(
CP(q(θ))−

(
θ+

F(θ)

f (θ)

)
q(θ)− ε

)
f (θ)dθ. (7.26)

Point-wise minimization of (7.26) leads to the optimal solution for the principalqSB(·) :

dCP
d q

(
qSB(θ)

)
= θ+

F (θ)

f (θ)
. (7.27)

All the agents’ types obtain a positive utility by playinguSB
A = θ:

JA
(
q(θ),t(θ),θ

)
=

∫ θ

θ
qSB(τ)dτ+ ε. (7.28)

If the so-calledmonotone hazard property

d
dθ

(
F(θ)

f (θ)

)
≥ 0

holds for allθ ∈ Θ, the solutionqSB(·) satisfying (7.28) will be decreasing, and the omitted
constraint (7.20) is satisfied. The monotone hazard property is satisfied for most single-peak
densities [7].

7.5 Conclusions and future research

We have proposed to view the adverse-selection-principal-agent model as a special case
of a one-leader-one-follower static inverse Stackelberg game. Starting from the complete-
information-principal-agent model we showed that only theleast efficient type of agent
will gain the same profit (ε [euro]) whether signing a complete-information contract or
an adverse-selection contract. Agent of any other type willbe better signing an adverse-
selection contract. Dynamic contracts are a subject for future research.



Chapter 8

Conclusions and Future Research

This chapter summarizes the research proposed and developed throughout this thesis. Its
scope and main contributions to the current state-of-art ingame theory, traffic control, elec-
tricity market theory, and theory of incentives are briefly discussed in Section 8.1. The
future research possibilities and directions are discussed in Section 8.2.

8.1 Contributions to the state-of-the-art

Game theory is a widely used and investigated field. Althoughthis field has been exten-
sively studied and in recent years the focus has been directed more towards game theoretic
applications than towards fundamental research, there arestill game theoretic areas that have
not been studied in a sufficient detail and, therefore, almost no theoretical results in these
areas are known. One of such fields is the field of the so-calledinverse Stackelberg games.
In Chapter 3 of this thesis these games were defined and their properties were studied. Ap-
plications of the Stackelberg and the inverse Stackelberg games in the static optimal toll
design problem, the dynamic optimal toll design problem, electricity market liberalization
problem, and the theory of incentives (contracts) were studied in Chapters 4, 5, 6, and 7.

Our contributions with respect to the state-of-the-art in the main topics covered in this
thesis are the following:

• Conducted research in the field of game theory
We recapitulated some classical results from the field of game theory. We introduced
the so-called inverse Stackelberg games, with clear focus on one-leader-one-follower
and one-leader-more-followersproblems. We showed a way ofhow to find an optimal
strategy for the leader and presented situations in which the optimal strategy of the
leader

– exists and is unique;

– exists and is nonunique;

– does not exist;

– is generally unknown.

121
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Both static and dynamic problems were studied. Some generalstatements about prop-
erties of the inverse Stackelberg games were made. Also someunresolved issues were
mentioned.

• Conducted research in the field of the optimal toll design
We proposed the concept of the traffic-flow-dependent toll inthe context of the opti-
mal toll design problem and in various case studies we dealt with finding an optimal
strategy for the road authority minimizing his/her objective function, while the drivers
minimized their own (perceived) travel costs. Although theextensively studied first-
best optimal toll design problem is clearly an inverse Stackelberg game1, in the field
of the second-best optimal toll design the concept of the traffic-flow-dependent toll
was not introduced before. The drivers in the optimal toll design problem act as one
super-player with traffic flows on alternative routes (wheretolls are imposed by the
road authority) being his/her decision variables. We were dealing with both static and
dynamic variants of the optimal toll design problem.

We considered two different situations according to the information that the drivers
have:

– The situation with complete information in which the drivers are aware of all
traffic conditions and minimize theiractual travel costs. In equilibrium state the
deterministic user equilibrium (DUE) applies.

– The situation with incomplete information, in which the drivers are not aware of
all traffic conditions and minimize theiractual perceived travel costs. In equi-
librium state some stochastic user equilibrium (SUE) applies. As an example of
such an equilibrium the logit-based stochastic equilibrium (LB-SUE) was used.

The deterministic user equilibrium is a limiting case of thelogit-based stochastic equi-
librium when the so-called perception error tends to infinity. With the deterministic
equilibrium the optimal toll design problem is analytically solvable, unlike in the case
with the more general LB-SUE.

Also, since DUE is a limiting case of LB-SUE, the algorithm that we have proposed
for solving the optimal toll design problem with the second-best traffic-flow depen-
dent toll and the drivers driven by LB-SUE can be used for solving the optimal toll
design problem with drivers driven by DUE, too. This algorithm uses neural networks
simulation and belongs to advanced heuristic methods, which can be efficiently used
for solving NP-hard problems. The optimal toll design problem belongs to the class
of this type of problems.

We have shown that the use of the traffic-flow dependent toll may improve the system
performance remarkably, while the traffic flow-dependent toll can never yield a worse
outcome than the traffic-flow invariant toll. The choice of tolled links influence the
outcome of the game remarkably.

Theorems about the existence of the solution for the generalvariant of the optimal
toll design problem have been stated for both the static and the dynamic situations.
Case studies of various network types were presented, too.

1So far the first-best optimal toll design problem has not beenrecognized as an inverse Stackelberg game,
although it is a clear example of the game of this type.
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• Conducted research in energy market liberalization problem
We have proposed a model of the European electricity market.Eight countries were
included in the model: Belgium, Denmark, Finland, France, Germany, The Nether-
lands, Norway, and Sweden. The model uses real data about electricity production
prices, emission factors, and electricity consumption in individual countries. Differ-
ent types of games, differing in the following criteria, have been considered:

– form of the leadership (no leader, one leader - Stackelberg game with one leader,
two leaders - Stackelberg game with two leaders);

– type of the competition among the leaders and the followers (perfect vs. imper-
fect);

– role of borders (game with the cross-border electricity transmissions allowed vs.
game with no cross-border electricity transmissions);

– role of emissions (emission constraints included or no emission constraints).

As a result of the case studies we have drawn the following conclusions:

– The electricity prices are the highest if one of the electricity producers acts as
a leader, i.e., has a monopoly in his country. The prices decrease with two
competing leaders and are the lowest when none of the electricity producers
acts as the leader and perfect competition takes place.

– While perfectly competitive electricity market increasesthe emission factors
when emission restrictions are not imposed, a right choice of emission con-
straints may decrease emission factors, while the electricity prices do not in-
crease that much.

– The electricity prices decrease if the cross-border electricity transactions are
allowed.

The outcomes of our model coincide with the experiences in the real electricity mar-
ket.

• Conducted research in theory of incentives
The principal-agent problem from the economical theory of incentives has been iden-
tified as an example of the inverse Stackelberg games. Various problems of this type
have been solved, with a focus on the optimal strategy for theprincipal as the leader
and interesting phenomena. The only situation, in which theprincipal receives posi-
tive outcome no matter how efficient the agent that the principal is contracting is, is
the situation with full information. While the principal-agent theory is a classical one,
we have presented it as a special case of an inverse Stackelberg game.

8.2 Future research

In this section we will discuss possible future research directions for each of the main topics
addressed in this thesis.
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• Future research in Game theory
While in Chapter 3 important phenomena in inverse Stackelberg games were intro-
duced, mainly by means of specific examples, some general properties have not been
studied yet. The following topics are interesting subjectsfor future research:

– Existence of the solutions to general problem of the inverseStackelberg type.

– An inverse Stackelberg game with a higher number of players.

– Inverse Stackelberg game with leaders or followers being cooperative among
themselves.

– The problems with incomplete information.

• Future research in Optimal toll design problem
The problems, that should be addressed in the future research, are:

– The optimal toll design problem with traffic-flow-dependenttoll with elastic
demand.

– The problems with heterogeneous user classes of the drivers.

– The problems with the traffic-flow dependent tolls that are not polynomial func-
tions of the traffic flows.

– The optimal toll design problem with the drivers driven by different user equilib-
rium than LB-SUE. There exist more realistic models of the travelers’ behavior,
where the travelers are driven by the equilibria that are extensions of the LB-
SUE. Also probit-based models can be used. The problem becomes difficult to
solve in this case, though. We expect that also in this situation the problem the
traffic-flow dependent toll brings better outcomes for the road authority.

– The dynamic optimal toll design problem with the travelers’departure time
choice.

• Future research in Energy market liberalization problem
The issues that deserve future research are:

– Dynamic model - although a possible extension of the currentmodel to the situ-
ation with more time steps (discrete dynamic model) was discussed, case studies
performed were more of academic nature, while computationswith “real-size”
models were not performed.

– Incorporating more countries into the model. To be able to see the influence of
the liberalization process throughout the Europe, all European countries have to
be included.

– Model with elastic electricity demand. Although this option was briefly studied
when the extension of the model to the dynamic problem was discussed.

– Game with the electricity consumers being incorporated into the model. In this
case the electricity producers can be leaders in a Stackelberg or in an inverse
Stackelberg game and the electricity consumers can be the followers.
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– Including net region-specific electricity losses per country and also including
net losses of both the countries when electricity cross-border transmission takes
place.

• Future research in Theory of incentives
Important subjects for future research are:

– Dynamic contracts. In Chapter 7 the clear emphasis was on static contracts,
while the extension to the dynamic version of the problem wasmentioned quite
briefly.

– Problems with moral hazard, problems combining moral hazard with adverse
selection.

– Problems with more principals and/or agents.
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[77] K. Staňková, M. C. J. Bliemer, and G. J. Olsder. Inverse Stackelberg games and
their application to dynamic bilevel optimal toll design problem. In Proceedings
of the 12th International Symposium on Dynamic Games and Applications, Sophia-
Antipolis, France, 2006.



132 Bibliography
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[82] D. D. B. Van Bragt, J. A. La Poutré, and E. H. Gerding. Equilibrium selection in
evolutionary bargaining models.Computing in Economics and Finance 2000, 323,
2000.

[83] T. Van Eck.A new balance for the energy sector: No longer a puppet in the hands of
technology, public interests and market. Industrielinqs Pers en Platform, Amsterdam,
The Netherlands, 2007.

[84] E. T. Verhoef. Second best congestion pricing in general static transportation networks
with elastic demands.Regional Science and Urban Economics, 32(3):281–310, 2002.

[85] E. T. Verhoef. Second-best congestion pricing in general networks. heuristic algo-
rithms for finding second-best optimal toll levels and toll points. Transportation Re-
search Part B, 36(8):707–729, 2002.

[86] E. T. Verhoef, P. Nijkamp, and P. Rietveld. Second-bestcongestion pricing: The case
of an untolled alternative.Journal of Urban Economics, 40(3):279–302, 1996.

[87] L. N. Vicente and P. H. Calamai. Geometry and local optimality conditions for bilevel
programs with quadratic strictly convex lower levels. In D.Du and P. M. Pardalos, ed-
itors, Minimax and Applications, Nonconvex Optimization and Its Applications, vol-
ume 4, pages 141–151. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1995.

[88] W. Vickrey. Congestion theory and transport investment. The American Economic
Review, 59(2):251–260, 1969.

[89] H.-J. Von Mettenheim and M. H. Breitner. Neural networkforecasting with high per-
formance computers. InProceedings of the 13th International Workshop on Dynamics
and Control, pages 33–40. Wiesensteig, Germany, 2005.



Bibliography 133

[90] H.-J. Von Mettenheim and M. H. Breitner. Dynamic games with neurosimulators and
grid computing: The game of two cars revisited. InProceedings of the 12th Inter-
national Symposium on Dynamic Games and Applications, Sophia Antipolis, France,
2006.

[91] J. Von Neumann and O. Morgenstern.Theory of Games and Economic Behavior.
Princeton University Press, Princeton, New Jersey, 1944.

[92] H. Von Stackelberg.The Theory of Market Economy. Oxford University Press, Oxford,
UK, 1934.

[93] S. Y. Wang. Existence of a Pareto equilibrium.Journal of Optimization Theory and
Applications, 79(2):373–384, 1993.

[94] J. G. Wardrop. Some theoretical aspects of road traffic research. InProceedings of the
Institute of Civil Engineers, Part II, pages 325–378, 1952.

[95] B. Wie and R. L. Tobin. Dynamic congestion pricing models for general traffic net-
works. Transportation Research Part B, 32(5):313–327, 1998.

[96] M. B. Yilidirim and D. W. Hearn. A first best toll pricing framework for variable
demand traffic assignment problems.Transportation Research Part B, 39:659–678,
2005.





NGInfra PhD Thesis Series on
Infrastructures

1. Strategic behavior and regulatory styles in the Netherlands energy industry, Martijn
Kuit, 2002, Delft University of Technology, The Netherlands.

2. Securing the public interest in electricity generation markets, The myths of the invisi-
ble hand and the copper plate, Laurens de Vries, 2004, Delft University of Technol-
ogy, The Netherlands.

3. Quality of Service Routing in the Internet: Theory, Complexity and Algorithms, Fer-
nando Kuipers, 2004, Delft University of Technology, The Netherlands.

4. The role of power exchanges for the creation of a single European electricity market:
market design and market regulation, François Boisseleau, 2004, Delft University of
Technology, The Netherlands, and University of Paris IX Dauphine, France.

5. The ecology of metals, Ewoud Verhoef, 2004, Delft University of Technology, The
Netherlands.

6. MEDUSA, Survivable information security in critical infrastructures, Semir Daska-
pan, 2005, Delft University of Technology, The Netherlands.

7. Transport infrastructure slot allocation, Kaspar Koolstra, 2005, Delft University of
Technology, The Netherlands.

8. Understanding open source communities: an organizationalperspective, Ruben van
Wendel de Joode, 2005, Delft University of Technology, The Netherlands.

9. Regulating beyond price, integrated price-quality regulation for electricity distribu-
tion networks, Viren Ajodhia, 2006, Delft University of Technology, The Netherlands.

10. Networked Reliability, Institutional fragmentation and the reliability of service provi-
sion in critical infrastructures, Mark de Bruijne, 2006, Delft University of Technol-
ogy, The Netherlands.

11. Regional regulation as a new form of telecom sector governance: the interactions
with technological socio-economic systems and market performance, Andrew Ba-
rendse, 2006, Delft University of Technology, The Netherlands.

135



136 NGInfra PhD Thesis Series on Infrastructures

12. The Internet bubble - the impact on the development path of the telecommunications
sector, Wolter Lemstra, 2006, Delft University of Technology, TheNetherlands.

13. Multi-Agent Model Predictive Control with Applications toPower Networks, Rudy
Negenborn, 2007, Delft University of Technology, The Netherlands.

14. Dynamic bi-level optimal toll design approach for dynamic traffic networks, Dusica
Joksimovic, 2007, Delft University of Technology, The Netherlands.

15. Intertwining uncertainty analysis and decision-making about drinking water infras-
tructure, Machtelt Meijer, 2007, Delft University of Technology, The Netherlands.

16. The New EU Approach to Sector Regulation in the Network Infrastructure Industries,
Richard Cawley, 2007, Delft University of Technology, The Netherlands.

17. A functional legal design for reliable electricity supply,How technology affects law,
Hamilcar Knops, 2008, Delft University of Technology, The Netherlands and Leiden
University, The Netherlands.

18. Improving Real-Time Train Dispatching: Models, Algorithms and Applications, An-
drea D’Ariano, 2008, Delft University of Technology, The Netherlands.

19. Exploratory Modeling and Analysis: A Promising Method to Deal with Deep Uncer-
tainty, Datu Buyung Agusdinata, 2008, Delft University of Technology, The Nether-
lands.

20. Characterization of Complex Networks: Application to Robustness Analysis, Almer-
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Samenvatting

Over Stackelberg- en inverse Stackelbergspellen en hun toepass-
ing in het ontwerpen van optimale tollen, de liberalisering
van energiemarkten en in de theorie van aansporingen

Inverse Stackelbergspellen zijn het onderwerp geworden van recent onderzoek in speltheo-
rie. Tot nu toe stond de theorie voor dit soort spellen slechts in de kinderschoenen en was
er dus zeer weinig bekend over inverse Stackelbergspellen.In dit proefschrift wordt inge-
gaan op het theoretisch oplossen van zulke problemen en wordt een aantal zeer uitdagende
problemen uit een variëteit aan domeinen in het raamwerk van inverse Stackelbergspellen
geplaatst en opgeslost.

In Stackelbergspellen bepaalt een zogenaamdeleider acties voor één of meer zoge-
naamdevolgers. In het algemeen is het vinden van een optimale strategie voor een leider
in deze spellen extreem moeilijk; in veel gevallig zelfs onmogelijk. Beginnend met een-
voudige statische problemen en daarna verdergaand met meermoeilijke dynamische prob-
lemen, wordt in dit proefschrift aangetoond hoe de optimalestrategie voor een leider op een
heuristische manier gevonden kan worden.

In dit proefschrift wordt de toepassing van speltheorie in de volgende drie specifieke ge-
bieden voorgesteld: bet bepalen van optimale tollen, liberalisering van de elektriciteitssector
en de theorie van aansporingen.

Het ontwerpen van een optimale tol wordt in de proefschrift beschreven als een spel
van het Stackelberg type. Een wegbeheerder representeert hierbij de leider en de wegge-
bruikers representeren de volgers. De wegbeheerder bepaalt de tol voor een aantal van de
wegen in een wegennetwerk. De wegbeheerder doet dit op een zodanige manier dat zijn
doelfunctie wordt gemaximaliseerd, terwijl de weggebruikers hun beslissingen maken op
een zodanige manier dat hun reiskosten worden geminimaliseerd. Als de tol die de wegbe-
heerder bepaalt niet afhankelijk is van de verkeersstroom,dan is het op te lossen probleem
een klassiek Stackelbergspel. Als de tol wel afhankelijk isvan de verkeersstroom, dan is het
probleem een invers Stackelbergspel. In dit proefschrift wordt een optimale stroomafhanke-
lijke tol voor de wegbeheerder gevonden, voor zowel statische als dynamische varianten van
het tolontwerpprobleem. Als het oplossingsconcept voor deweggebruikers wordt bepaald
met behulp van een zogenaamd deterministisch gebruikersequilibrium, dan kan het prob-
leem analytisch worden aangepakt. Als het zogenaamde stochastische gebruikersequilib-
rium wordt gebruikt, dan moeten numerieke methoden worden gebruikt om een oplossing
te vinden. Aangezien dit probleem NP-moeilijk is, stellen wij voor om een oplossingsaan-
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pak te gebruiken die gebaseerd is op neurale netwerken. We vergelijken de uitkomsten van
de spellen met stroomonafhankelijke tol en stroomafhankelijke tol. We concluderen dat de
stroomafhankelijke tol de prestaties van het systeem significant kan verbeteren. Daarnaast
worden interessante eigenschappen van dit probleem beschreven en bediscussieerd.

De liberalisering van de elektriciteitsmarkten is in dit proefschrift gedefinieerd als een
competatief spel tussen elektriciteitsproducenten in 8 Europese landen. Elektriciteitsvraag
wordt hierbij als gegeven beschouwd. De producenten maken een keuze uit de inzet van
beschikbare middelen voor elektriciteitsproductie en de hoeveelheid te produceren elek-
triciteit op een zodanige manier dat hun winst wordt gemaximaliseerd. Verschillende spelsce-
nario’s worden beschouwd: Perfecte competitie, een spel met één leidende producent per
land en een spel met twee leidende producenten per land (waarbij de leiders onderling een
zogenaamde Nashstrategie gebruiken). De uitwisseling vanelektriciteit tussen naburige lan-
den is toegestaan en beperkingen op emissies worden meegenomen. Een numeriek model,
gebruikmakend van realistische data, wordt voorgesteld omhet probleem op te lossen. Onze
resultaten suggeren dat de liberalisatie van de elektriciteitsmarkten tot een daling in de prijs
voor elektriciteit kan leiden.

Ten slotte behandelen wij zogenaamdeprincipal-agentmodellen uit de theorie van aans-
poringen als een speciale groep van inverse Stackelbergspellen. In dit geval is deprincipal
de leider an deagentde volger. De leider contracteert de volger met het doel om een bepaald
aantal goederen te produceren. De mate van effectiviteit van de volger kan variëren. Deze
effectiviteit is onbekend bij de leider. Het probleem van het vinden van een optimale strate-
gie voor de leider wordt behandeld. Interessante fenomenenin dit spel worden gepresen-
teerd en een optimale strategie voor de leider wordt afgeleid.

Kateřina Staňková



Summary

On Stackelberg and Inverse Stackelberg Games and their
Applications in the Optimal Toll Design Problem, the En-
ergy Markets Liberalization Problem, and in the Theory of
Incentives

Inverse (or reverse) Stackelberg games have become the subject of recent game theory re-
search, as a special type or as an extension of Stackelberg games. So far, only very little
theory about inverse Stackelberg games is available and theavailable theory is still in its
infancy. In this thesis we focus on theoretically solving such problems and we propose to
treat several challenging problems in various fields insidethis framework.

In Stackelberg games a so-calledleaderdetermines actions for one or more so-called
followers. The problem of finding an optimal strategy for the leader in these games is
in general extremely hard to solve, and often even completely unsolvable. Starting from
simple static problems and proceeding to more difficult dynamic ones, we show how to find
the optimal strategy for the leader in a heuristic manner.

In this thesis, the application of game theory is proposed inthe following domains: The
optimal toll design problem, the electricity markets liberalization problem, and the theory
of incentives.

The optimal toll design problem is a game of the Stackelberg type in which a road au-
thority acts as the leader and drivers in the road network actas the followers. The road
authority sets tolls on some of the links in the network in order to maximize its objective
function, while the drivers make their travel decisions in order to minimize their perceived
travel costs. If the toll that the road authority sets is traffic-flow invariant, the problem is
the “classical” Stackelberg game; if the toll is traffic-flowdependent, the problem is of the
inverse Stackelberg type. We determine the optimal traffic-flow dependent toll for the road
authority for both static and dynamic variants of the problem. If the solution concept for the
drivers’ behavior is the deterministic user equilibrium, the problem can be dealt with ana-
lytically. If the stochastic user equilibrium applies, numerical methods have to be applied
to find a solution. As the problem is NP-hard, we use a neural-networks based solution
approach to solve the problem. We compare outcomes of the games with traffic-flow in-
variant and traffic-flow dependent toll and conclude that thetraffic-flow dependent toll can
improve the system performance remarkably. Interesting phenomena in this problem and
its properties are discussed, too.
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The electricity markets liberalization problem is defined in this thesis as a noncoopera-
tive game among electricity producers in eight European countries, in which the electricity
demand is exogenous. The producers choose among available means of electricity produc-
tions and quantities to produce in order to maximize their profit. Different game scenarios
are considered: Perfect competition, a game with one leading producer per each country,
and a game with two leading producers, playing Nash among themselves, for each country.
The transmission of electricity between neighboring countries is allowed and emission con-
straints are considered. A numerical model, using real data, is developed in order to solve
the problem. Our results suggest that liberalization of electricity markets leads to electricity
price decrease.

Finally, we deal with so-called principal-agent models from the theory of incentives as
a specific group of inverse Stackelberg problems. Here the principal as a leader contracts
an agent as a follower in order to produce certain goods. The agent can be of different
efficiency, often unknown to the principal. The problem of finding the optimal strategy for
the principal is dealt with. Interesting phenomena in this game are presented and an optimal
strategy for the leader is derived.

Kateřina Staňková
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