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Abstract: In recent years, there has been an enormous increase in the amount of research in the field
of prognostics and predictive maintenance for mechanical and electrical systems. Most of the existing
approaches are tailored to one specific system. They do not provide a high degree of flexibility and
often cannot be adaptively used on different systems. This can lead to years of research, knowledge,
and expertise being put in the implementation of prognostics models without the capacity to estimate
the remaining useful life of systems, either because of lack of data or data quality or simply because
failure behaviour cannot be captured by data-driven models. To overcome this, in this paper we
present an adaptive prognostic framework which can be applied to different systems while providing
a way to assess whether or not it makes sense to put more time into the development of prognostic
models for a system. The framework incorporates steps necessary for prognostics, including data pre-
processing, feature extraction and machine learning algorithms for remaining useful life estimation.
The framework is applied to two systems: a simulated turbofan engine dataset and an aircraft cooling
unit dataset. The results show that the obtained accuracy of the remaining useful life estimates
are comparable to what has been achieved in literature and highlight considerations for suitability
assessment of systems data towards prognostics.

Keywords: prognostics and health management; adaptive framework; remaining useful life

1. Introduction

Over the last few years, the field of prognostics has undergone substantial growth,
as evidenced by advances in algorithms, models, and their applications [1]. Prognostics
is the process of estimating a system’s remaining useful life (RUL) [2], usually following
fault detection and/or diagnosis, and is usually considered part of a condition-based
maintenance strategy. Prognostics enables operators to react to faults before failures occur,
leading to a minimization of systems downtime, lowered operational costs, and increased
reliability [3,4].

Prognostic approaches can be classified into three types: physics-based, data-driven,
and hybrid approaches [5]. Physics-based approaches can be applied in cases in which
the underlying degradation phenomenon can be mathematically modelled. There are
many examples of physics-based models that were successfully applied in practical cases,
such as Li-Ion batteries [6] and other structures subject to fatigue degradation [7]. Data-
driven approaches are used when it is difficult to obtain a degradation model or when
there is no knowledge about the system physics. Finally, hybrid approaches combine
available information about underlying physical knowledge and data. Examples for such
approaches are Baptista et al. [8] combining Kalman Filtering with data-driven methods,
Downey et al. [9] integrating a physical model and the least square method to estimate
RUL of industrial equipment, or Reddy Lyathakula et al. [10] using a physics-based fatigue
damage degradation model and combining it with an neural network-based to model
the damage progression in bonded joints. When considering complex systems which are
subject to multiple degradation mechanisms, fault modes and operating conditions, accu-
rate physics-based models are often not available [4]. Therefore, data-driven prognostic
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techniques making use of monitored system condition data and failure data can be applied
in such a case. They are mostly based on statistical or artificial intelligence (AI) methods.
The requirement for such algorithms is the availability of data characterizing system be-
haviour that covers all phases of normal and faulty operation and all degradation scenarios
under different operating conditions. Recent developments in sensing technologies, data
storage, data processing, IT systems and computational power have been major drivers
of data-driven prognostic approaches, leading to an increase in available methods and
algorithms in the state of the art.

Most of the existing literature on data-driven prognostics focuses on the development
of more advanced and more accurate models and algorithms. For this purpose, standard
datasets are often used as these enable comparative evaluation of multiple models. This is
a valid approach when the aim is the development of better-performing methods for those
specific datasets. However, it also makes the approaches application- and system-specific.
When applying those methodologies on ’real’ systems, it can be the case that simple
algorithms outperform very complex ones. Furthermore, tuning a complex algorithm
to reach a better performance generally takes a lot of time and skill, which is often not
available. Consider, for example, an airline operating different types of aircraft and aiming
to introduce prognostics on a broad basis. Each aircraft can be considered as a complex
system with multiple subsystems and components. For each of these subsystems or
components, a dedicated prognostic model is needed and the costs for the airline to hire
data scientists that develop, test, and validate a single model for each of the components
would be immense. Therefore, what would be more desirable is a generic prognostic
framework that chooses the most accurate prognostic approach from a set of algorithms
given component data.

Prior studies proposing such frameworks have yielded promising results. An au-
tonomous diagnostics and prognostics framework (DPF) is suggested by Baruah et al. [11].
It consists of several steps, including data pre-processing, clustering to distinguish operat-
ing conditions and, finally, diagnostics and prognostics steps. A limitation of the approach
is the fact that some parameters, including the number of observations for initialisation
and optimization of cluster adaption rates have to be set manually and it can be tricky to
tune the algorithm in an optimal way. Another limitation is the fact that a classification
is performed (i.e., at any time it is determined if the component is faulty or not), rather
then a remaining useful life estimation. To account for this, Voisin et al. [12] provide a
generic prognostic framework that can be instantiated to various applications. However,
their approach is very formal and no specific machine learning algorithms are used in this
framework. Again, this is a limitation, as it is up to the user to define proper techniques.
To overcome this problem, An et al. [13] provide guidelines to help with the selection of
appropriate prognostic algorithms depending on the application. Another way to address
this is by using ensembles of machine learning approaches that combine multiple prog-
nostic algorithms with an accuracy-based weighted-sum formulation [14]. Still, a problem
remains: this addresses only prognostics but not the steps needed before, namely the data
pre-processing and diagnostics. This is overcome by Trinh and Kwon [15], who suggest
a prognostics method based on an ensemble of genetic algorithms that includes all the
steps, from the data pre-processing until the RUL estimation. With this it provides a truly
generic framework for prognostics. The authors of the paper validated their framework by
applying it to three commonly used and available datasets and comparing its performance
to other existing approaches. However, their findings are limited to simulated datasets.

This development makes sense, especially when one considers the problems and
challenges arising with using real-life data: As Zio [4] points out, often collected sensor
signals are collected under changing operational and environmental conditions. On top of
that they are often incomplete, unlabeled, as data are missing or scarce. Therefore, extracting
informative content for the diagnostics and prognostics can be a challenging task. Still,
this points towards a problematic trend: many prognostic method developments in recent
literature are not tested on real-life industrial cases. While many methods show highly
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promising results [1], they may face significant limitations when applied to real-life cases.
However, it is not often that these limitations are identified and addressed in literature.
Nevertheless, several studies using real aircraft data have been published. Fault messages
of an aircraft system have been used in [16] to compare data-driven approaches for aircraft
maintenance to the more classically used experience-based maintenance. An anomaly
detection method for condition monitoring for an aircraft cooling system unit is presented
in [17]. On the same dataset, two more studies have been conducted on remaining useful
life estimation: first, a clustering approach was used to determine degradation models
and failure thresholds and together with a particle filter algorithm this results in RUL
estimates [18]. Second, a HI construction approach integrating physics based and data-
driven methods was applied to the same dataset to estimate the systems RUL [19].

Still, applications for generic prognostic frameworks are limited to simulated datasets.
We therefore present a generic framework and apply it to both a simulated dataset as well
as a ’real’ dataset of operating aircraft within an airline. For both applications, the aim is
to provide guidance in the choice of prognostic methodologies for a given dataset and a
systems data suitability analysis from a prognostics perspective. We thereby also address
the challenge of applying prognostic methodologies in real applications of complex systems
and provide an assessment of whether or not a system is prognosable given the system
data. A genetic algorithm is used to find the optimal combination of methodologies and
associated hyperparameter settings for each step in the process of generating prognostics.
With respect to the current academic state of the art, our novel contributions include:

• The presentation of a generic prognostic framework with the capability to not only estimate
a system’s RUL, but also give an assessment towards the ability to perform prognostics on
such a system. A system is defined to be ’prognosable’ if meaningful and accurate data-
driven prognostic models can be developed based on available operational, contextual and
failure data. Meaningful refers to the fact that the models are able to capture degradation
trends and learn failure behaviour, while the term accurate pertains to the prediction
quality in terms of one or multiple defined prognostic metrics.

• The implementation of the framework on both real aircraft data, as well as a simulated
dataset.

• An identification of the challenges faced with using prognostic approaches on a real
aircraft dataset opposed to using simulated data.

The remainder of this paper is organized as follows. Section 2 introduces the generic
prognostic framework. In Section 3, the aircraft systems, underlying data, and failure modes
are described and the results of the case study are presented. Subsequently, the adaptivity
of the framework, the difficulties with applying it to a real dataset and the question of
how to determine the ability to perform prognostics on a system are discussed. Finally, in
Section 4, we conclude by highlighting the most important findings and limitations and
providing directions for further research.

2. The Generic Prognostic Framework

In essence, the Generic prognostic framework (GPF), as shown in Figure 1—originally
introduced by Trinh et al. [15] and extended here—takes as an input system data and out-
puts a trained prognostic model with the capability of predicting system remaining useful
life at any time of operation. To be more precise, we define the GPF to be a tool that contains
modelling techniques covering multiple aspects of a data-driven prognostics approach
and, given a system dataset, selects the best techniques for each case. This means that in
addition to incorporating different methodologies, the framework includes a selection step
in which the best set of techniques is chosen relative to prognostic performance.

There are multiple steps that have to be implemented in a prognostics framework
(such as data pre-processing methods or feature engineering techniques) before the actual
prognostics algorithm that performs the remaining useful life prediction on the dataset is
executed. Therefore, a generic prognostic framework does not only need to provide the
flexibility of choosing the ‘best’ prognostic algorithm, but also it has to incorporate the
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previous steps. Note that we distinguish prognostic algorithms from prognostic models:
when using the term ’prognostic algorithm’ we refer to a certain selected technique used
to perform prognostics, e.g., Random forest (RF) or neural networks, and by ’prognostic
model’ we indicate the derived predictor (as output of the prognostic algorithm and feature
engineering methodologies) that takes system data as an input and outputs the RUL estimate.

Figure 1. The elements of the generic prognostic framework.

The GPF treats the selection of the according techniques as an optimization problem:
the objective is to select the optimal methodology (in terms of Mean squared error (MSE),
defined in Equation (1)) with the optimal hyper parameter settings for each element of
prognostics included in the framework (such as data rebalancing). We implement this
in four steps as shown in Figure 1. In step 1, the selected system data are pre-processed.
As the GPF is a generic framework that is adaptive by nature to different datasets, the
data pre-processing techniques applied are kept to a minimum. Further details about
the pre-processing applied are given in Section 2.1. In step 2, the hyper parameters for
prognostic algorithms are tuned by grid search, as further explained in Section 2.2. Step
3 aims to solve the optimization problem that can be formulated as follows: find the
optimal combination to generate predictions for a given dataset, where optimality is
evaluated through minimisation of the MSE, given a set of re-balancing, feature engineering
techniques, and prognostic algorithms. A detailed explanation of this process and the
according techniques is given in Section 2.3. Finally, in step 4, the settings are used to
build the prognostic model to output the RUL estimate. The framework as suggested in
this paper can be used in multiple ways, two of which are of primary importance in the
context of our research: either it can provide a quick assessment of the ability to perform
prognostics based on the input data or it can be used to perform an automatic selection
of feature engineering settings. This is further explained in Section 2.4. To guide through
the following sections and make the dynamics of the GPF clearer, we make use of a small
example dataset. It is split in a training and test set as it would for a machine learning
application as considered in this paper. The example training set is presented in Table 1
and the respective test set can be found in Table 2.
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Table 1. Sample train dataset.

Current Mean Current Min Current Max Speed Mean Speed Min Speed Max High Current Count RUL id

0.00 0.0 0.0 0.00 0 0 751 0 11
1.19 0.0 2.1 4035 0 5024 967 1 11
2.15 2.1 2.2 4998 4976 5024 42 2 11
2.11 2.1 2.2 4997 4976 5016 83 3 11
2.18 1.8 2.4 4822 4472 5024 2223 4 11
2.15 1.8 2.4 4516 4448 5024 39,267 5 11
1.84 1.6 2.2 4547 4456 4840 1693 6 11
2.13 2.1 2.2 4996 4976 5008 12 7 11
1.49 0.0 2.4 4564 0 5032 1910 0 3
2.43 2.4 2.5 4639 4576 4720 39 1 3
2.43 2.4 2.5 4557 4536 4584 9 2 3
2.40 2.4 2.5 4497 4472 4552 104 3 3
2.24 2.1 2.4 4493 4464 4528 846 4 3
2.13 1.9 2.2 4493 4456 4528 1017 5 3

Table 2. Sample test dataset.

Current Mean Current Min Current Max Speed Mean Speed Min Speed Max High Current Count RUL id

1.08 0.0 2.2 3225 0 5024 567 0 25
2.11 2.1 2.2 4996 4968 5032 41 1 25
2.12 2.1 2.2 4998 4984 5008 10 2 25

2.1. Step 1: Data Pre-Processing

We make the following assumptions for the system data:

• The system is operated until failure.
• System data are related to operational properties of the system, captured, e.g., through

sensors and is available from the beginning of operations until failure.
• The remaining useful life (RUL) of the system is known at any time of operations, i.e.,

in machine learning terms, a labelled dataset is available.
• In addition, the data must represent all phases of operation, i.e., normal as well as

faulty behaviour and degradation under different operating conditions.

This results in datasets similar to those presented in Tables 1 and 2 consisting of several
trajectories, identified by ids (in the example, ids 11, 3, and 25) each representing a single
system. The systems are operated until failure, i.e., until their RUL has reached 0. In
each time step, several operational conditions are given, such as current and speed in the
example dataset. To evaluate and validate the prognostic models, the data are split into
training and test data. The splits are such that trajectories are kept in the same datasets
and 10% of the trajectories (ids) are used for testing. This is demonstrated in the example
datasets, in which ids 11 and 3 are used for training and id 25 is used for testing. Further
data pre-processing steps depend on the underlying datasets. For those used in our case
studies, we explain the steps in Section 3.

2.2. Step 2: Grid Search to Tune Prognostic Algorithms

Once the system data have been selected for the prognostic framework, the first step
in the proposed GPF is to select the prognostic algorithms. Note, that the strength and
the focus of the framework lies in providing a quick prognostic assessment rather than
providing the ’best’ possible prognostic assessment. Therefore, it suffices to use simple and
easily implementable machine learning techniques, acknowledging that such algorithms
may often provide first insights in the nature of the predictions.

In this paper, for this purpose we choose two different machine learning methodolo-
gies, a RF regression and a Support vector machine (SVM). Random Forests were introduced
by Breiman [20,21] and are based on the concept of bagging, where ensemble trees are
grown by a random selection (without replacement) from the examples in the training set.
Support vector machines, introduced by Vapnik [22], make use of basis functions that are
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centred on the training data points and then selecting a subset of these during training. The
two selected algorithms are well-established and offer potential advantages in terms of
interpretability and explainability, which is necessary to understand systems retrospectively
and prospectively [23]. This may assist in the adoption of these algorithms for a variety
of applications, potentially even covering safety-critical components. They thereby also
provide the possibility to establish first baseline models for a quick prognostic assessment.
Those two methodologies are chosen as representative machine learning algorithms. Both
RF and SVMs have been shown to be adaptive to different datasets even without applying
a thorough hyper parameter selection and are, therefore, good candidates to establish a first
baseline. However, the framework can easily be extended to include further methodologies
or algorithms.

For the chosen algorithms on a validation set, a grid search is performed to find the
optimal hyper parameter settings. Since the aim of the grid search in this case is to establish
quick baseline models that can consequently be used as in input in the following step of the
framework, we only search a limited set of parameters. The according hyper parameters
and their possible settings explored during the grid search are given in Table 3. The found
settings are the ones then used as initial settings for the prognostic algorithms in the genetic
algorithm that is presented in the next section.

Table 3. The hyper parameters and combination of settings explored during the grid search for each
of the prognostic algorithms.

Prognostic Algorithm Hyper Parameter Description Possible Settings

rf

n estimators number of trees {200, 800, 1400}

max features maximum number of features to
consider when looking for the best split {’auto’, ’sqrt’, ’log2’}

min samples leaf minimum number of samples required
to be at a leaf node {1, 2, 4}

SVM
C learning rate {0.001, 0.01, 0.1, 10}

gamma kernel coefficient {0.001, 0.01, 0.1, 1}

2.3. Step 3: Genetic Algorithm

As highlighted before, we treat the problem of finding the prognostic settings as an
optimization problem: The objective function is to minimize the MSE (Equation (1)) of the
prognostic algorithm together with data re-balancing and feature engineering techniques
on the pre-processed dataset. The MSE at time t is defined as

MSE(t) =
1
t

t

∑
i=1

(RULi − ˆRULi)
2, (1)

with RULi the true RUL value and ˆRULi the predicted RUL value at timestep i.
The MSE has been selected for the evaluation of the prognostics for two main reasons:

first, as a score which captures accuracy, the MSE gives a good indication over how well
the algorithms perform with respect to predicting the RUL. Second, despite the fact that
it is important to not rely on one metric to evaluate predictions [24], we found that the
majority of the literature considering the simulated turbofan engine dataset uses the MSE
or root mean squared error (RMSE) to evaluate RUL predictions. For this reason, it makes
sense for us to apply it in this case study as well to have results that are comparable with
the state of the art and, thereby, can be validated against existing approaches.

The concepts of natural selection and genetics inspired the field of evolutionary strategies
and genetic algorithms. Genetic algorithms are based on the concepts of natural selection
and genetics [25]. Due to their flexibility, Genetic algorithm (GA)s are able to solve global
optimization problems and optimize several criteria at the same time, such as in our case the
simultaneous selection of data re-balancing, feature engineering, and prognostic algorithm
techniques [26]. This is what makes them good candidates for our optimization problem.
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A GA consists of several steps as presented in Algorithm 1 and Figure 2. The process
is as follows:

- A population is initialized, composed by a set of individuals (i.e., solutions to the
optimization problem).

- The best fitted individuals are selected based on a fitness metric which represents
the objective.

- In a following step, the selected individuals undergo a cross-over and mutation process
to produce new children for a new generation of individuals.

- This process is repeated over a number of generations until the algorithm converges
or a stopping criterion is achieved.

Figure 2. Genetic algorithm process.

A population consists of individuals, which, in turn, consists of a set of chromosomes.
Each individual represents a solution to the optimization problem and is associated with a
fitness. In our case, an individual consist of three chromosomes corresponding to choices of
methodologies for data re-balancing, feature engineering and prognostic algorithms as it is
shown in Figure 3. The details of the setup for each of the respective steps are given in the
following subsections. For the example included in this section, the solution space of the
optimization problem corresponds to 32 possible solutions. The fitness of each individual
is given by the MSE at time t (Equation (1)) resulting from the prognostics performed with
the individual settings on the underlying dataset.

In the following subsections, we give an overview of the multiple techniques consid-
ered by the GA for the data re-balancing, feature engineering, and prognostic algorithm.
To guide through the process, we make use of the example introduced in Section 2.1.
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Algorithm 1: Genetic algorithm

start;
t← 0;
initialize population P(t);
evaluate fitness of each individual in P(t);
while termination condition not fulfilled do

t← t + 1;
s1, s2 ← select individuals from P(t);
x1, x2 ← create offspring by crossover operation on s1, s2;
x̂1, x̂2 ←mutate x1, x2;
evaluate fitness of x̂1, x̂2 if fitness of x̂1, x̂2 higher than least fittest individuals in

P(t) then
replace least fittest individuals with x̂1, x̂2;

else
pass;

end
end

Figure 3. The prognostic steps and methodologies included in the genetic algorithm.

2.3.1. Data Re-Balancing

Data pre-processing or data manipulation is usually performed as a step prior to
applying data-driven approaches for two reasons: first, to reduce the number of features
in order to achieve a more efficient analysis and second, to adapt the dataset to suit the
selected method [27]. Steps typically involved are data cleaning, normalization, and
feature engineering [2]. In cases of imbalanced datasets, oversampling can be introduced
in addition [28]. A comprehensive overview of feature engineering steps and respective
methodologies is given by Jovic et al. [27]. In the generic prognostic framework, two steps
of data pre-processing are addressed, namely data re-balancing and feature engineering,
including feature extraction and selection methods.

The data re-balancing step is completed first, to address the problem of imbalanced
distributions in prognostic datasets. In this framework, three methodologies to address
this issue, introduced by Branco et al. [28] are included, namely

• Random over-sampling (RO),
• Introduction of Gaussian noise (GN),
• Weighted relevance-based combination strategy (WERCS).

The presented methodologies are suitable for regression problems, such as RUL
estimation. While we do not go into details about them and refer interested readers to [28],
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we introduce the underlying concepts in the following paragraph. The main idea behind
re-balancing methods for continuous target variables is the construction of bins based on
a relevance function. The relevance function maps the values of the target variable into
a range of importance, where 1 corresponds to maximal importance and 0 to minimum
relevance. With this, the bins classify the data in normal (BINN) and relevant samples
(BINR). In our setup, we use a sigmoid relevance function as defined in [29] and shown in
Figure 4 with a relevance threshold, tr of 0.5. Furthermore, we set all values with a RUL of
less then the threshold cl = 10 to be of importance, set the oversampling rate to 0.9 and the
undersampling rate to 0.1.

Figure 4. Example of a sigmoid relevance function similar to the one used for the rebalancing task.

• Random oversampling: random oversampling is often used to deal with imbalanced
classification tasks. Samples from the rare class are randomly selected and replicated
in a new updated dataset. In [28], this strategy is adapted to regression tasks in the
following way: the bins are constructed as above and while the samples in BINN
remain unchanged a number of replicas of samples is added in BINR. The number of
replicas is determined by the variable over, specifying the added percentage. While
no information is discarded this way, the likelihood of overfitting increases.

• Gaussian Noise: here, the re-balancing is performed in two ways, under-sampling
the normal cases and generating new cases based on the relevant target variable.

• Weighted Relevance-based Combination Strategy (WERCS): the idea behind this
method is to combine over- and under-sampling strategies dependent only on the
relevance function to avoid the definition of bins of relevance or the need of setting a
relevance threshold, but it only uses the information of the relevance function.

Figure 5 shows the resulting dataset sizes on the demonstration dataset presented in
Table 1 with the relevance threshold cl = 1.

Figure 5. The dataset sizes for the different rebalancing strategies when applied to the demonstration
example.



Aerospace 2022, 9, 839 10 of 27

2.3.2. Feature Engineering

In case of feature engineering the field of available literature and proposed method-
ologies is much wider and more diverse. Often, the terms feature selection and feature
extraction are used in this context meaning various things. To be clear on this, we use the
definitions used by Jovic et al. [27]. In feature extraction, either the entire set of features or
a subset of features are transformed by mapping the original feature space to a new feature
space with lower dimensions. Examples of feature extraction methodologies are principle
component analysis (PCA), kernel PCA, or techniques based on hierarchical clusterings,
such as feature agglomeration (FAG). The scope of this analysis are RUL estimation models
for mechanical or electrical systems with run-to-failure data, it is assumed that underlying
signals come in the form of time-series data. A widely used feature extraction technique
for time-series data is Principal component analysis (PCA) which projects the data into a
lower dimensional space through its singular value decomposition. Due to the fact that it
has been so widely and successfully applied to prognostic approaches for time-series data,
PCA is included in the GPF.

On the other hand, in feature selection a subset of features is chosen from the original
feature set without transformation. Feature selection methods can be classified into four
types [30]:

• Filter-based approaches, selecting a subset of features without using a learning algo-
rithm,

• Wrapper approaches, evaluating the accuracy produced by use of the selected features
in regression or classification,

• Embedded approaches, performing feature selection during the process of training
and sepcific to applied learning algorithms, and

• Hybrid approaches, combining filter, and wrapper methods.

In the GPF, we include a filter and an embedded approach. The filter approach is a
correlation-based approach, which chooses the best features based on univariate statistical
tests. The embedded approach is based on the random forest importance, i.e., it chooses
the features identified as most important by a random forest estimator.

2.3.3. Prognostic Algorithms

Finally, the according prognostic algorithm needs to be chosen and applied to the data
transformed by the previous steps. The underlying set of algorithms with according hyper
parameters consists of a RF regression and a SVM for which the hyper parameters were
found during the grid search step as presented in Section 2.2.

2.3.4. Genetic Algorithm Parameters

The previous paragraphs gave an overview over the form of an individual of the GA.
Of course, the GA hyper parameters also need to be set. The termination condition is
chosen as the maximal number of generations. The probability with which an individual
is mutated is set to 0.1, the probability for cross-over to 0.5 and the population size to 20
as presented in [15]. With this, we are ready to run the GA and apply it to system data
to find the ’optimal’ settings of feature engineering methodologies and according hyper
parameters. Now the next step is to use those settings to build the prognostic model.

2.4. Step 4: Training the Prognostic Model

The output of the GA is the ’best individual’, i.e., the set of methodologies and hyper
parameter settings that lead to the best performance on the dataset in terms of MSE. This
individual is now used to build a prognostic model. As an input this model takes a new
dataset of according system data and it outputs the RUL estimation.

All the models are implemented in Python. For the implementation we use the skikit-
learn package in Python [31]. For the re-balancing techniques, the resreg python package is
used [29].
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3. Case Study and Results

In Section 1, we pointed out that our aim is to provide a generic prognostic framework
with the capability of providing RUL estimation models and determine the ability to
perform prognostics on a system based on given operational and failure data. To understand
if the framework is adaptive to different systems and to obtain insights into how the results
can be used towards determining if a system is prognosable, the following steps are taken:

• The GPF is implemented in two different case studies involving a simulated and a real
aircraft system, respectively.

• The results of the GPF are compared to two baseline machine-learning algorithms, RF
and SVM.

• The observed values are used in a comparative evaluation of the GPF and its capability
to assess if a system is prognosable is analysed.

In Section 3.1, the framework is implemented and validated on a simulated turbofan
engine dataset. Section 3.2 presents the results of applying the framework to an aircraft
cooling unit. Finally, in Section 3.3, the results of the case studies are discussed and the
generalizability and adaptivity of the GPF are assessed.

3.1. Simulated Turbofan Case Study

The first case study is conducted on a simulated turbofan engine dataset widely
used for prognostic approaches in literature. We introduce the dataset in more detail in
Section 3.1.1. Subsequently, we explain how we applied the GPF on the dataset in
Section 3.1.2, after which we go into details of how the verification and validation was
conducted using this dataset in Section 3.1.3 and, finally, we present the results in Section 3.1.5.

3.1.1. Simulated Turbofan Engine Dataset

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data consist
of four datasets, each containing simulated run-to-failure data for turbofan
engines [32,33]. The datasets differ mainly in the number of fault modes (’modes’) and
operating conditions (’conditions’) as listed in Table 4. Each engine is considered to be from
a fleet of engines of the same type and each time series, also often referred to as trajectory,
is from a single unit. The engines are operated until failure, i.e., the time series capture
the operations of each unit until it fails. In the test set, the time series ends at some point
before the failure and the objective is to estimate the RUL, or in other words the number of
remaining operational cycles before failure. There are 21 sensor measurements and each
row in the dataset contains the measurements corresponding to operations during one time
cycle for a certain unit.

Table 4. Characteristics of the four turbofan engine datasets, note that the difference between the four
datasets lies within the number of fault modes (’modes’) and operating conditions (’conditions’).

Data Set # Modes #Conditions #Train Units #Test Units

#1 1 1 100 100
#2 1 6 260 259
#3 2 1 100 100
#4 2 6 249 248

3.1.2. Application of the GPF to the Dataset

In order to train the prognostic models we require a labelled dataset, i.e., we assume
that the RUL is known at any time. In the C-MAPSS dataset the units are operated until
failure, which means that the RUL can simply be calculated as the time to failure. In this
case study, we set the maximum number of generations of the GA to 10 and vary the
number of individuals in a population between 20, 30, and 50.
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3.1.3. Verification and Validation of the GPF

Due to fact that it has been so extensively studied and there is a lot of material,
especially on the C-MAPSS dataset FD001 in literature, we use it to conduct a validation
of the GPF. Furthermore, we take this opportunity to mention that every element and
step of the GPF was verified using unit tests and testing of the entire blocks of the GPF.
The validation is completed for each of the methodologies included in the GPF, to be
more precise data rebalancing methods, feature engineering techniques and prognostic
algorithms. What we present in the following is an extract of the validation of the feature
engineering and prognostic algorithms (as shown in Figure 6).

Figure 6. The features selected by the PCA and their relevance scores (the higher the more relevant).

In Section 3.1.2, we already mentioned that there are 21 features, corresponding to
sensor readings. Seven of those are constant throughout the components life, leaving us
with 14 features of interest, namely sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and 21. It
has been found that of those 14 the sensors 7, 8, 9, 12, 16, 17 and 20 are the most valuable
ones for RUL estimations [34], which is mostly in alignment with what [35] found. They
pointed out that sensors 2, 3, 4, 7, 11, 12, 15, 17, 20 and 21 are the most relevant for RUL
predictions, as shown in Figure 7. In the GPF we include three basic feature engineering
methodologies as explained in Section 2.3.2: PCA, correlation-based and importance-based
feature engineering. Table 5 gives an overview over the resulting selected features and
shows that all the three methodologies included in the GPF are aligned and also select the
same features as in the two selected papers.

Table 5. The selected most relevant features of the C-MAPSS FD001 dataset by the methodologies
included in the GPF and in existing literature.

Generic Prognostic Framework Literature

PCA
Correlation-
Based

Importance-
Based

Paper #1
[34]

Paper #2
[35]

s2, s3, s4, s7, s11, s12, s15,
s17, s20, s21 s4, s7, s11, s12, s15, s21 s4, s9, s11, s12 s7, s8, s9, s12, s16, s17, s20 s2, s3, s4, s7, s11, s12, s15,

s17, s20, s21
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Figure 7. The most relevant features selected based on two different relevance scores by [35]. (a): pass
rate of MK test; (b): Uncertainty Score.

In order to validate the outputs of the prognostic algorithms and the GPF itself, we
select three papers from literature presented in Table 6 to compare the metrics reached
when using the SVM and RF of the GPF to the results reached in the respective papers on all
four C-MAPSS datasets. Note that all of those papers use a piecewise linear RUL function
(well explained in [36]), which has been shown to result in much better predictions and in
order to make the results comparable we do so too. Therefore, the results presented in the
following are not comparable with the results reached using the linear RUL function as
presented in Section 3.1.5. Furthermore, two metrics are used to compare the results, the
root mean-squared error (RMSE) which is simply the square root of the MSE and the score
function as defined in [37]. The resulting metrics of the three selected papers (in case of
using the RF only two selected papers) and of the GPF are summarized in Tables 7 and 8.
On all four datasets the results reached by the RF and SVM of the GPF in terms of RMSE
and the score function are in the same range as the algorithms presented in the three papers
in literature.

Table 6. Reference papers to validate the output of the prognostic algorithms in the GPF.

Paper ID Reference

1 [38]
2 [39]
3 [35]

Table 7. Random Forest algorithm RMSE and score on the three papers of literature and using the
GPF.

Dataset Metric Paper #1 Paper #3 RF in the GPF

FD001 RMSE 20.23 17.91 18.16
Score 802.23 479 578.20

FD002 RMSE 30.01 29.59 29.15
Score 84,068 70,465 65,114

FD003 RMSE 22.34 20.27 20.76
Score 1000.51 711.13 743.03

FD004 RMSE 29.62 31.12 30.00
Score 22,250 46,567 26,247.53
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Table 8. Support vector machine RMSE and score on the three papers of literature and using the GPF.

Dataset Metric Paper #1 Paper #2 Paper #3 SVM in the GPF

FD001 RMSE 20.58 20.96 40.72 24.25
Score 852.07 1381.5 7703 2312.64

FD002 RMSE 36.27 42 52.99 30.15
Score 521,461 589,900 316,483 19,827.94

FD003 RMSE 23.3 21.05 46.32 23.69
Score 1108.68 1598.3 22,541 2472.71

FD004 RMSE 40.77 45.35 59.96 32.24
Score 46,611 371,140 141,122 10,248.59

3.1.4. Comparative Study on Dataset FD001

In this section we present a short comparative study to show the effect of the different
rebalancing, feature engineering and prognostic algorithm settings on dataset FD001. The
aim is to understand what impact the different settings have on the resulting prognostic
model in terms of MSE. In Tables 9–11 the resulting MSEs for the different rebalancing, fea-
ture engineering and prognostics algorithm settings are presented. A visual representation
of the scores is given in Figure 8a–c.

It can be seen that the rebalancing methodologies do not really affect the prognostic
models in terms of MSE. As Table 9 and Figure 8a show the MSE varies only between 1650,41
when using no rebalancing and 1658,01 when using WERCS as rebalancing methodology.
Different feature engineering settings together with no rebalancing have a higher impact
on the MSE as Table 10 and Figure 8b) show. The worst performing method is using PCA
together with a RF, while correlation- and importance-based methods perform similarly
with an MSE of 1769,25 and 1775,82, respectively. The prognostic algorithms presented
in Table 11 and Figure 8c) impact the resulting scores as well: While the RF based model
achieves an MSE of 1650,99, the SVM based model only reaches an MSE of 1775,05. All in all,
the results are surprising on first sight, because one would expect applying rebalancing or
feature engineering techniques to improve the prognostic models. However, it seems as if
increasing the complexity of prognostic models does not necessarily lead to an improvement
in terms of MSE. Random forests are known to be adaptive themselves. Therefore, it is not
too astonishing that simply using a RF on the unaltered dataset outperforms the methods
in which we make changes to the dataset in terms of size or dimensionality. In particular,
since the underlying models are trained and tested on dataset FD001, which is considered
the simplest of the C-MAPSS datasets since it only contains one failure mode and operating
conditions (see Table 4).

Table 9. A comparison of applying different rebalancing methodologies and the resulting MSEs on
dataset FD001.

Settings MSE
Rebalancing Feature Engineering Prognostic Algorithm

RO None rf 1657,90
None None rf 1650,41
GN None rf 1656,45
WERCS None rf 1658,01

Table 10. A comparison of applying different feature engineering methodologies and the resulting
MSEs on dataset FD001.

Settings MSE
Rebalancing Feature Engineering Prognostic Algorithm

None correlation rf 1769,25
None importance rf 1775,82
None None rf 1650,88
None PCA rf 2105,58
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Table 11. A comparison of applying the different prognostic algorithms and the resulting MSEs on
dataset FD001.

Settings MSE
Rebalancing Feature Engineering Prognostic Algorithm

None None rf 1650,88
None None SVM 1775,05

Figure 8. A comparison of applying the different prognostic settings on dataset FD001.

3.1.5. Results Simulated Turbofan Data

The GPF is applied to all four datasets and to evaluate how the performance, it is
compared to pure RF and SVM models. “Pure” here refers to the models obtained by
training the RF and SVM algorithms with the settings found in the grid search (see step 2
in Section 2.2) directly, i.e., skipping step 3, applying the GPF. The resulting metrics are
summarized in Table 12 and Figure 9. Unsurprisingly the GPF outperforms methods in
almost every case. Only for dataset FD004 the GPF makes the choice to use RF directly
without including a data rebalancing or a feature engineering method and, therefore,
reaches the same MSE as simply using RF. In general, choices in rebalancing/feature
engineering do not seem to have a big impact on the quality of resulting predictions (in
terms of MSE), as can be seen from Table 12. The MSEs are all very close to each other.

Table 12. The resulting MSEs of using the GPF versus purely using RF or SVM.

Dataset Algorithm
GPF (50 Individuals) RF SVM

FD001 1649.923528 1650.410000 1775.053164
FD002 1877.882809 1974.466387 2152.961399
FD003 4170.124626 4239.466717 4650.671887
FD004 4559.050200 4559.050200 5238.340000
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Figure 9. The MSE of GPF versus purely using RF or SVM for the four CMAPSS datasets.

More insight in the quality of predictions can be gained by observing Figures 10–13
showing the resulting predictions and the ground truth on six randomly selected trajectories
of the test set for the GPF, the RF and the SVM models. Note that the figures show six
randomly selected trajectories of the test set and they might not be a representative choice
as the performance varies between different trajectories. Still, the figures give some insight
into how well the models are able to capture degradation. By and large, the trends are
captured quite well. Throughout all four datasets FD001–FD004 it can be observed that
the true RUL is better approximated by predictions for longer trajectories, i.e., trajectories
operating for longer than 100 time cycles. For shorter trajectories throughout all datasets
the algorithm is not able to predict RUL accurately or capture degradation trends. For
dataset FD001, the least complex dataset, the trends are in most cases very close to ground
truth. For most trajectories, the RF outperforms SVM (see Figure 10a,d,e). Although for
trajectories 15 and 87, shown in Figure 10b,f, this is not the case, those are also the cases with
the trajectories only running for a bit more than 70, respective 30 time cycles. In dataset
FD002 for trajectories 7, 15, and 46 represented in Figure 11a,b,e the RUL prediction is very
close to the ground truth and for most of the other trajectories the RUL towards the end
of the component life is predicted quite accurately. In dataset FD003, the predictions seem
more unstable. Still the degradation is captured quite well, especially towards the end of life.
As mentioned before for dataset FD004, the GPF chose as the optimal prognostic settings RF
without any feature engineering or rebalancing method, therefore, only two lines visible
in the plots. On the chosen trajectories it seems as if the SVM outperforms RF quite often,
although most of the trajectories are quite short (none is longer than 175 time cycles), so the
set of trajectories might not be a good representation of the overall performance.
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Figure 10. True and predicted value on dataset FD001 for six different trajectories when using the
GPF, RF, and SVM.

Figure 11. True and predicted value on dataset FD002 for six different trajectories when using the
GPF, RF, and SVM.
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Figure 12. True and predicted value on dataset FD003 for six different trajectories when using the
GPF, RF, and SVM.

Figure 13. True and predicted value on dataset FD004 for six different trajectories when using the
GPF, RF, and SVM.

Table 13 shows the chosen prognostic settings when running the GPF on the four
C-MAPSS datasets with 20, 30, and 50 individuals. We see a consistency of the choices
of the GPF over the population size. Furthermore, in those cases where the choices of
methodologies differ, than it is only minor changes in the settings, e.g., a different selection
of rebalancing method for datasets FD001 and FD003. Furthermore, we note that the
GPF consistently chooses the RF over the SVM, only for dataset FD003 it selects the SVM,
which together with the suiting feature engineering and data rebalancing methods even
outperforms the RF. This shows the importance of including such steps when developing
prognostic models. While the differences in terms of MSE in this case are minor, it can be
the case that they are bigger for a different dataset.
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Table 13. The resulting prognostic settings when running the GPF with populations of 20, 30, and 50
individuals on the four C-MAPSS datasets.

Dataset Population
Size Rebalancing Feature

Engineering
Prognostic
Algorithm

20 WERCS None RF
30 RO None RFFD001
50 RO None RF
20 GN None RF
30 GN None RFFD002
50 GN None RF
20 None importance SVM
30 None importance SVMFD003
50 GN importance SVM
20 None None RF
30 None None RFFD004
50 None None RF

All in all, on the C-MAPSS dataset, even simple methodologies, such as applying
RF and SVM without any feature engineering or data rebalancing, yield quite promising
results and although the GPF improves performance, it does not significantly add to the
prediction quality.

3.2. Aircraft Supplemental Cooling Units

As a second case study, we consider cooling units (CUs) installed on aircraft operated
in a modern and widely-used airline. They are part of the cooling system, which cools the
aircraft galleys. On each considered aircraft, four CUs are installed in the cooling system
and each consists of a condenser, a flash tank, an evaporator, and a compressor. During
flights, one or more CUs can be in operation at the same time, but, in general, the aircraft
tries to spread loads equally over the four CUs. The system is maintained in a run-to-failure
way, in the sense that if one of the CUs fails, the entire system is repaired and replaced.

3.2.1. Cooling Units Dataset

The dataset provided by the airline contains both sensor data and contextual data. On
each cooling unit, 9 sensors are installed (i.e., 36 sensors in total for the four CUs) measuring
different system properties continuously during flights at a rate of 1 Hz, resulting in 26.4 GB
of sensor data for two and a half years of operation corresponding to 18,295 flights. In
addition to the sensor measurements, the data contains information such as a flight ID,
the plane tail (a unique identifier for each aircraft), the departure date and time, the flight
phase and the row number specifying the exact time of the measurement. Note that every
flight cycle consists of 14 flight phases from departure to landing. The contextual data
contains information about failures and replacements, documenting when failures, each
identified by a failure ID, on which cooling unit happened. More information about how
maintenance is performed on the CUs and how the dataset was constructed can be found
in [17].

3.2.2. Application of the GPF to the Dataset

In order to apply the GPF to the cooling unit dataset provided by the airline, several
basic data pre-processing steps were conducted. First of all, the sensor measurements,
together with the information about failures, have to be translated into run-to-failure trajec-
tories, similarly to those contained in the C-MAPSS dataset. For each aircraft (identified
by plane tail), based on the contextual datasets containing replacement time and date for
each failure ID, the trajectories can be constructed using the flight IDs, departure date and
time, flight phase and row number. As a next step, the nine sensor measurements for each
CU are aggregated per flight phase by their mean, minimum, and maximum value. This
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is done on the one hand for smoothing the dataset and reduce the noise and on the other
hand to reduce the size of the dataset to make it more applicable for the GPF. The aim is,
after all, to provide a quick prognostic assessment rather than a perfect prognostic model.
In Table 14 the resulting 24 trajectories are listed including the number of data points (after
the aggregation) and the number of flight cycles of operation until failure.

Table 14. The 24 trajectories of the CUs, the number of flight cycles in operation and the number of
data points after aggregation.

Failure ID Plane Tail Data Points Flight Cycles

111 dlkzncgy 24593 2236
18 wnjxbqsk 16,623 1511
114 enwslczm 12,877 1170
116 iefywfmy 11,845 1077
115 iefywfmy 11,746 1068
118 dlkzncgy 10,519 957
112 dlkzncgy 10,244 932
108 trmblwny 8998 818
109 tjyjdtaf 8921 811
113 lbhkyjhi 8836 803
105 dlkzncgy 7119 648
31 iefywfmy 6770 616
22 iilvtkok 13,440 611
110 iilvtkok 6255 569
107 ibauqnxj 5403 491
117 cntxlxyh 5391 490
23 iilvtkok 4966 452
25 lbhkyjhi 3358 305
26 tjyjdtaf 2751 250
28 tjyjdtaf 2192 199
24 lbhkyjhi 1763 160
2 ibauqnxj 1661 151
11 rgwwyqtt 517 47
17 wnjxbqsk 88 8

Using the resulting trajectories, for each the RUL is calculated in the same way as on
the C-MAPSS dataset in Section 3.1.2 as a linear function of time, in this case measured
in flight cycles until failure. Figure 14 shows the mean RUL for the 24 trajectories of the
CU dataset. For some sensors there are nans or missing values in the dataset. Since they
account for only 2.12% of data, we simply remove them from the dataset. The last step
which has to be performed to apply the GPF to the cooling unit dataset is to split the data
into a train and test set. Now, with only 24 trajectories, it seems a natural choice to apply
cross validation. What we use in this work is a leave-one-out cross validation approach
and with a number of test set size of roughly 10% of the train set size, this corresponds
to selecting 2–3 random trajectories for the test set and keeping the others in the train set.
To be more precise, for the selection of the prognostic methodologies, i.e., step 3 of the
GPF, as described in Section 2.3, we use the following approach: for each generation of
the genetic algorithm, when the next population of individuals is selected, the genetic
algorithm also creates a new train and test set, based on the above described leave-one-out
cross validation approach. In addition to that, during training the prognostic models in
step 3 of the GPF, the trajectories are cut n flight cycles before failure, where n is set to
50, 100, 200, or 500. This means that only the last n flight cycles before failure are used
for the training, which is useful for two reasons: first, this reduces the dataset size and,
therefore, also the computational time needed. Second and more importantly though, this
reduces noise introduced by long running trajectories that do not contain much information
about degradation behaviour and condenses the information on the failure dynamics. Note
that in step 4 of the GPF (Section 2.4), when training the prognostic model using the by the
GPF chosen settings, as opposed to using cross-validation the train and test sets are fixed
and the test set consists of the three trajectories with failure IDs 108, 113, and 116.
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Figure 14. The mean RUL for all trajectories of the cooling unit dataset.

3.2.3. Results Cooling Unit Dataset

Table 15 and Figure 15 show the resulting MSE of using the GPF, compared to using
purely RF and purely SVM on the cooling unit dataset for different cut settings. We
can see that the GPF always outperforms the RF and SVM by margins, i.e., including
feature engineering and/or rebalancing methods seems to have a significant impact on the
prediction quality. Table 16 showing the resulting prognostic settings found by the GPF and
the results below introduce further details and make this even clearer. The best results in
terms of MSE are achieved when cutting 500 FC before failure. This is not surprising, since
the dataset behind it contains the most information. The cutting can be seen as some kind
of classification of the data in healthy and faulty behaviour. Therefore, they do have quite
some influence on the quality of predictions as can be clearly seen in Figure 15. However,
while the MSE is lower when cutting 50 Flight cycles (FC) before failure (see Table 15), this
is not really comparable to the slightly higher MSEs when cutting 100 or 200 FC before
failure, since the MSE punishes false predictions closer to the end of life of a component
less than false predictions at the beginning.

Table 15. MSE of using GPF, only RF or SVM for different cut settings (cut 50, 100, 200, or 500 FC
before failure).

Settings MSE
Population
Size Cut GPF SVM RF

20 50 121,133 252,559 256,327
20 100 160,608 228,725 235,180
20 200 176,610 191,486 186,678
20 500 12,818 43,626 75,002

Figure 15. MSE of using GPF, only RF or SVM for different cut settings (cut 50, 100, 200, or 500 FC
before failure).
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Table 16 contains the by the GPF chosen prognostic settings for different cut settings
and the corresponding MSEs. In all cases, rebalancing methods are chosen and in most
cases, feature engineering methods are also included by the GPF to arrive at the optimal
prognostic output. Still, the MSE is remarkably high in all cases even when it is low
compared to using only RF or SVM.

Table 16. Chosen prognostic settings and MSE for different cut settings (cut 50, 100, 200, or 500 FC
before failure).

Population
Size Cut Rebalancing Feature

Engineering
Prognostic
Algorithm MSE Percentage

of Data
20 50 RO importance SVM 169,933 7,15
20 100 GN importance SVM 160,608 12,74
20 200 GN PCA SVM 119,626 27,40
20 500 WERCS None rf 12,818 55,98

The resulting predictions and the ground truth on three trajectories of the test set for
the GPF, using only the RF and only the SVM for predictions when using different cut
settings (cutting 50, 100, 200, and 500 FC before failure) are displayed in Figures 16–19.
Cutting 50 FC before failure results in quite unstable predictions, which do not depict any
degradation trends at all. When including a bit more points and cutting 100 FC before
failure this changes. In fact, using Gaussian Noise to do rebalancing and applying the
random forest importance feature selection methodology, improves the prediction quality
in such a way that now a trend is captured compared to the RF and SVM models predictions
(see Figure 17). Table 15 reflects this behaviour in the lowered MSE of using the GPF as
compared to using only RF or SVM. For cutting 200 FC before failure, the predictions seem
to be less stable, perhaps due to the additional noise introduced through the data. This
changes again when cutting 500 FC before failure as displayed in Figure 19. In this case,
the predictions become more stable again and especially the GPF captures the degradation
trend quite well.

Figure 16. True and predicted values for three different trajectories of the SCU test set when using
the GPF, RF, and SVM (cut 50 FC before failure).

Figure 17. True and predicted values for three different trajectories of the SCU test set when using
the GPF, RF, and SVM (cut 100 FC before failure).
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Figure 18. Trueand predicted values for three different trajectories of the SCU test set when using the
GPF, RF, and SVM (cut 200 FC before failure).

Figure 19. True and predicted values for three different trajectories of the SCU test set when using
the GPF, RF, and SVM (cut 50 FC before failure).

All in all, the two main points we find when applying the GPF to the cooling unit
dataset can be summarized as follows: first, the GPF outperforms using simple machine
learning methods by margins (in terms of MSE). Second, the impact of when to ’cut’ the
data before failure in the train set is high, which can be seen as the impact of labelling
data as ’healthy’/’faulty’. A next step can be to use a piecewise linear function similarly to
existing approaches on the C-MAPSS dataset, such as the one presented in [40], or to use a
health indicator flagging data as ’healthy’ or ’faulty’.

3.3. Comparative Evaluation and Discussion of the Results

In Section 1, we put forward the idea of applying the GPF to assess the ability to
perform prognostics on a system, i.e., to find out whether it makes sense to put more time
into training prognostic models and applying more advanced prognostic methodologies
on the system data. Now that we have the results of applying the framework to both a
simulated prognostic dataset, which is known to be suitable for RUL estimation models,
and a real aircraft cooling unit dataset, we can compare and draw some conclusions.
First, in Section 3.3.1, we highlight the similarities and differences between prognostics on
simulated and real datasets. Second, we go into details on using the GPF to determine the
ability to perform prognostics on a system based on the underlying data in Section 3.3.2
and, thirdly, we discuss limitations and directions for further research in Section 3.3.3.

3.3.1. Similarities and Differences between Simulated and Real Data

The GPF was applied to both a simulated aircraft turbofan dataset and a cooling unit
dataset provided by an airline. The results presented for the C-MAPSS dataset in Section 3.1
and for the cooling unit dataset in Section 3.2 highlighted some of the challenges that arise
when using prognostics on a real aircraft dataset as opposed to using prognostic approaches
on simulated data. Three main points can be discerned. First, the much smaller number
of failures leads to a smaller dataset. When using data-driven prognostic methodologies
this can lead to less stable predictions and in some cases to models that are not able to
predict RUL reliably at all. This can be seen when comparing, e.g., Figures 11–18 showing
the true and predicted values for trajectories of the test set of the C-MAPSS dataset FD002
and the cooling unit dataset when cut 200 FC before failure, respectively. Not only this,
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but throughout Figures 10–13 the degradation trend is much better captured than for the
cooling unit dataset (Figures 16–19). Second—and this point is closely linked to the previous
one—including additional steps, such as data pre-processing, data rebalancing, or feature
engineering, to predict RUL can improve the quality of the predictions. This is true even
when the methodologies are not tailored towards the dataset, but only applied in a basic
way as it is done through the GPF. The impact of including such methodologies is much
higher for the cooling unit dataset compared to the turbofan dataset. This becomes clear
from the optimal choice of methodologies presented in Table 16 for the cooling unit and in
Table 13 for the C-MAPSS dataset. This leads to the third point we noticed when applying
the GPF to both datasets: while the GPF outperforms the basic machine learning models in
every case for both simulated and real data (see Table 12 and Figure 9, respectively, Table 15
and Figure 15), it still has much higher potential for improving the cooling unit dataset.

3.3.2. Using the GPF to Determine the Ability to Perform Prognostics on a System

As noted in the previous section, applying the GPF to real data seems to result in
predictions of much better quality for the cooling unit dataset. This indicates the GPF
provides a more thorough prognostic assessment as simply applying a RF or SVM would
do. Since it is straightforward to apply the framework, it can not only give an indication
over which prognostic methodologies might be the most effective on a given dataset, but
also it can give an indication of the ability to perform prognostics on a system. In Section 1
we defined the ability to perform prognostics on a system to mean that meaningful and
accurate data-driven prognostic models can be developed based on given underlying
operational and failure data for a system. To be more precise, the assessment of whether or
not a system is prognosable is approached from a data suitability point of view. The aim is
to understand if, based on the system data, we are able to retrieve first simple prognostic
models. If this is not the case, the system data might not be of sufficient quality and size to
train a prognostic model. It is not very surprising that the simple prognostic methodologies
included in the GPF result in quite accurate predictions in terms of MSE and visually
compared against the true RUL on all four simulated datasets. The C-MAPSS datasets
are created for prognostics and it has been shown over the past decade multiple times in
literature that even with simple methodologies the RUL of the underlying turbofan engine
can be accurately estimated. For the cooling unit dataset this is a bit more complicated.
There are several additional challenges when working with a real dataset, as covered in
the previous Section 3.3.1. Other authors who have worked on the cooling unit dataset
noticed the same: in their paper in which they present an anomaly detection method and
apply it to the dataset, Basora et al. [17] point out that the prediction of fault occurrences
proved a challenge, especially due to the fact that fault dynamics are different from one
case to another. This situation is not improved by the small number of faults and the
lack of knowledge of failure modes. Still, other authors found that applying prognostic
methodologies to the same dataset results in quite accurate RUL predictions (see [19,41]).

All in all, we would, based upon previous works in literature, conclude that the system
based on the collected data is prognosable. The only remaining challenge is to extend the
dataset and especially collect more data concerning faults. This is in alignment with the results
presented in Section 3.2 and becomes especially visible in Figures 17 and 19. Based on this
and our findings in the previous Sections 3.1 and 3.2, the output of the GPF can be used to
tell if a system is prognosable when keeping the following in mind: even if the MSE does
contain some information on the ability to perform prognostics on a system, this information
does not suffice to make real implications. Depending on the dataset the resulting MSE can
differ significantly and it does not give a real indication if the degradation trend is captured or
not. Table 15 shows that the GPF results in a lower MSE than the classic machine learning
algorithms, but Figure 16 shows us that exactly like the RF and SVM models, it does not seem
to capture any trends at all on the test dataset. For this purpose, visual representations of the
predictions can be helpful.
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3.3.3. Limitations and Further Research

The findings of this research are subject to several limitations, which point out direc-
tions for further research.

• As mentioned in the previous section, the use of the MSE in isolation does not give a
sufficient insight into the performance of prognostics. In addition to visualisation of
trajectories, several other metrics can be used to give additional insight into prognostic
performance, such as the prediction horizon.

• Only a limited amount of methods are included in this application of the GPF, which
limits the assessment of the ability to perform prognostics on a system. Neverthe-
less, the GPF can easily be extended to include alternative methods, such as neural
networks and their myriad variations. This will, however, have implications on the
computational runtime of the GPF; careful balancing might be required between
prognostic performance and computational performance in view of organisational ob-
jectives (i.e., obtaining a first assessment of a dataset or obtaining the best performing
model).

• For now, we apply hyperparameter tuning only to determine initial settings for the
prognostic algorithms. However, further research could go into the investigation of
using different hyperparamter selection methodologies or pre-select them according
to the selected prognostic algorithm.

• The amount of available data is an important consideration when considering the
applicability of data-driven methods and by extension the GPF. While this framework
has the capability to work with large amounts of input data, a lack of (labelled) failure
data may lead to difficulties in accurately predicting future failure events.

While the data availability and quality, especially of failure related data, is one of the
biggest challenges when applying prognostics to real system data [4], this is also one of the
main points we aim to address with the presented framework. Applying the GPF to system
data results in an assessment of the suitability of the underlying data for prognostics. While
such an assessment can help in the decision of further prognostic development effort, it also
can provide insights into possible arising requirements for further or more dense failure
related or sensor data.

4. Conclusions

We have presented a generic prognostic framework with two major aims: (1) provide
an approach capable of identifying a suiting prognostic model given related system data;
and (2) provide a way to assess system data in terms of the ability to perform prognostics
on a system. To substantiate both points, we have applied the framework towards two
datasets: the synthetic C-MAPPS dataset and a real aircraft system dataset, enabling a
comparative evaluation. This is in contrast to existing literature, which focuses exclusively
on either synthetic or real data, with the latter being much less prevalent. Additionally,
as pointed out in the introduction, recent advances in prognostic method developments
lack convincing proof regarding generalizability, i.e., suitability for application beyond
synthetic datasets, such as C-MAPSS towards real-life industrial cases.

The results of our study suggest that the generic prognostic framework can be adapted
to various systems and provides potential towards valid remaining useful life estimates
for aircraft systems. Furthermore, the framework provides a means to quickly assess the
ability to perform prognostics based on system data. In addition to that, we highlight the
limitations and challenges with applying prognostics to real-life datasets.

Future research will focus on expanding and testing the methods included in the
framework. Furthermore, the influence of a variety of metrics on prognostic performance
will be assessed more thoroughly.
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CMA Central moving average
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CUs Cooling units
EMA Exponential moving average
FAG Feature agglomeration
FC Flight cycles
GA Genetic algorithm
GPF Generic prognostic framework
GRP Gaussian random projection
MSE Mean squared error
PCA Principal component analysis
RF Random forest
RUL Remaining useful life
SMA Simple moving average
SRP Sparse random projection
SVM Support vector machine
tSVD Truncated singular value decomposition
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