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1
Introduction

Deep learning algorithms are usually data hungry and require massive amounts of training data to
reach a satisfactory level of performance on any task. In contrast, humans learn new skills much more
efficiently and can also use learned concepts in richer ways than conventional algorithms, for example:
imagination, explanation and taking action. Kids who have seen cats and birds only a few times can
quickly tell them apart. People who know how to ride a bike are likely to learn riding a motorcycle faster
with little or even no demonstration. The fundamental challenge for deep learning algorithms lies in
understanding and inculcating the two major aspects (Lake, Salakhutdinov, and Tenenbaum 2015) of
human-level concept learning:

• How do people learn new concepts from just one or a few examples?

• How do people learn such abstract, rich, and flexible representations that generalize well across
several tasks?

This is essentially what few-shot learning aims to solve. An ideal few-shot learning model is
expected to be capable of generalizing or adapting well to new tasks and environments that have never
been encountered during training time. The adaptation process on the unseen test tasks is essentially
a mini learning session, which takes place with very limited exposure to the new task configurations.
Ideally, the learnt model can complete new unseen tasks by learning the underlying concepts and
generalizable abstractions behind the tasks. For this reason, few-shot learning is also referred to as
learning to learn. An instantiation of few-shot learning is few-shot classification where the idea is to
learn to predict correct class labels for a set of unlabeled data points (query set), given only a small
set of labeled data points (support set). This query and support set together are called an episode or
a task, and are drawn from the same data distribution.

A wealth of research methods have been proposed, aiming to solve this problem from various
perspectives. Metric learning proposes to learn a shared feature extractor to embed the samples
into a metric space of class prototypes (Vinyals et al. 2016; Snell, Swersky, and Zemel 2017; Sung
et al. 2018; Wang et al. 2019; Bateni, Goyal, et al. 2020; J. Liu, Song, and Qin 2020; Bateni, Barber,
et al. 2022). The input image samples into a lower dimensional embedding space to then classify
the unlabelled samples based on the computation of some distance or similarity based metric. By
parameterizing these embedding-space mappings with neural networks and using differentiable simi-
larity based metrics for classification, the network can be made to classify images in a data-deficient
setting by training it in an episodic manner. This facilitates quick and efficient generalisation on new
and unseen tasks. Due to limited data per class, these prototypes suffer from sample-bias and fail to ef-
ficiently represent class characteristics. Furthermore, sharing a feature extractor across tasks implies
that the discriminative information learnt from the seen classes is equally effective on any arbitrary
unseen classes, which is not true in most cases.
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Task-aware few-shot learning approaches (K. Lee et al. 2019; Li et al. 2019; Requeima et al.
2019; Ye et al. 2020; Bateni, Barber, et al. 2022) address these limitations by exploiting information
hidden in the unlabeled data. This exploitation is facilitated by an adaptation mechanism that makes
the support embeddings extracted from the seen classes useful for classification of the unseen query
classes, particularly for that given task. This type of customization of embedding spaces helps align
support and query feature vectors for better representation of task-specific discriminative information.
This not only improves the discriminative ability of classifiers across tasks, but also alleviates the
problem of overfitting on limited support set data since now information from the query set is also used
in extracting features for each image in a task. Since the alignment of these embeddings is still subject
to the relevance of the characteristics captured by the shared feature extractors, task-aware methods
sometimes fail to extract meaningful representations particularly relevant to classification.

Apart from using transduction for task-aware feature extraction, there are methods that use
Transductive Inference to classify the query samples by making use of the patterns and additional
structural information present in them. In these approaches, labels are assigned to the query samples
only and not beyond them, as opposed to their inductive counterparts where prediction is done on the
entire feature space and not just on a few test samples (Yanbin Liu et al. 2019; Boudiaf et al. 2020;
Dhillon et al. 2020; Ziko et al. 2020; Bateni, Barber, et al. 2022).

Optimization-Based Learning methods search for model parameters that are sensitive to the
task objective functions for fast gradient-based adaptation to new tasks. Approaches like MAML (Finn,
Abbeel, and Levine 2017) and its computationally light variants perform fast adaptation by backpropa-
gating the meta-loss through the inner-loop of gradient descent steps computed on the support sam-
ples. SNAIL (Mishra et al. 2018) uses a combination of temporal convolutions and soft attention to
aggregate information from past experience and to pinpoint specific pieces of information. LEO (Rusu
et al. 2019) learns a low-dimensional, data-dependent latent embedding of model parameters and
performs optimization-based meta learning in this space. However, these gradient-based meta learn-
ing techniques usually don’t scale well with larger backbones and neural nets such as ResNet’s and
WRN’s for feature extractors due their computational complexity of operating on second-order gradi-
ents, and are prone to overfitting as well Mishra et al. 2018. Furthermore, MAML inspired methods are
also very sensitive to neural network architectures, often leading to instability during training, requir-
ing arduous hyper-parameter searches to stabilize training and achieve high generalization (Antreas
Antoniou, Harrison Edwards, and Amos J. Storkey 2019)

Probabilistic methods address sample-bias by relaxing finding point estimates to approxi-
mating data-dependent distributions of either high-dimensional model weights (Gordon et al. 2019;
Nguyen, Do, and Carneiro 2019; Ravi and Beatson 2019; Hu et al. 2020) or lower-dimensional class
prototypes (J. Zhang et al. 2019; Sun et al. 2021). Gradient-based meta-learning methods estimate
parameters which have a high variance due to the small sample sizes of the available dataset. To
work with this variance, a natural extension to finding point-estimates of parameters is modelling this
uncertainty as the variance by treating these parameters as latent variables in a Bayesian framework.
However, inferring a high-dimensional posterior of model parameters is inefficient in low-data regimes.
Moreover, estimating distributions of class prototypes involves using hand-crafted non-parametric ag-
gregation techniques which may not be well suited for every unseen task.
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Abstract

The versatility to learn from a handful of samples is the hall-
mark of human intelligence. Few-shot learning is an endeav-
our to transcend this capability down to machines. Inspired
by the promise and power of probabilistic deep learning, we
propose a novel variational inference network for few-shot
classification (coined as TRIDENT) to decouple the repre-
sentation of an image into semantic and label latent vari-
ables, and simultaneously infer them in an intertwined fash-
ion. To induce task-awareness, as part of the inference me-
chanics of TRIDENT, we exploit information across both
query and support images of a few-shot task using a novel
built-in attention-based transductive feature extraction mod-
ule (we call AttFEX). Our extensive experimental results
corroborate the efficacy of TRIDENT and demonstrate that,
using the simplest of backbones, it sets a new state-of-the-art
in the most commonly adopted datasets miniImageNet and
tieredImageNet (offering up to 4% and 5% improvements,
respectively), as well as for the recent challenging cross-
domain miniImagenet → CUB scenario offering a significant
margin (up to 20% improvement) beyond the best existing
cross-domain baselines.

Introduction
Deep learning algorithms are usually data hungry and re-
quire massive amounts of training data to reach a satisfac-
tory level of performance on any task. To tackle this limita-
tion, few-shot classification aims to learn to classify images
from various unseen tasks in a data-deficient setting. In this
exciting space, metric learning proposes to learn a shared
feature extractor to embed the samples into a metric space of
class prototypes (Sung et al. 2018; Vinyals et al. 2016; Snell,
Swersky, and Zemel 2017; Wang et al. 2019; Liu, Song,
and Qin 2020; Bateni et al. 2020). Due to limited data per
class, these prototypes suffer from sample-bias and fail to
efficiently represent class characteristics. Furthermore, shar-
ing a feature extractor across tasks implies that the discrim-
inative information learnt from the seen classes are equally
effective on any arbitrary unseen classes, which is not true
in most cases. Task-aware few-shot learning approaches
(Bateni et al. 2022; Ye et al. 2020) address these limitations
by exploiting information hidden in the unlabeled data. As a
result, the model learns task-specific embeddings by align-
ing the features of the labelled and unlabelled task instances
for optimal distance metric based label assignment. Since

the alignment of these embeddings is still subject to the
relevance of the characteristics captured by the shared fea-
ture extractors, task-aware methods sometimes fail to extract
meaningful representations particularly relevant to classifi-
cation. Probabilistic methods address sample-bias by relax-
ing the need to find point estimates to approximate data-
dependent distributions of either high-dimensional model
weights (Nguyen, Do, and Carneiro 2019; Ravi and Beat-
son 2019; Gordon et al. 2019; Hu et al. 2020) or lower-
dimensional class prototypes (Sun et al. 2021; Zhang et al.
2019). However, inferring a high-dimensional posterior of
model parameters is inefficient in low-data regimes and esti-
mating distributions of class prototypes involves using hand-
crafted non-parametric aggregation techniques which may
not be well suited for every unseen task.

Although fit for purpose, all these approaches seem to
overlook an important perspective. An image is composed of
different attributes such as style, design, and context, which
are not necessarily relevant discriminative characteristics for
classification. Here, we refer to these attributes as semantic
information. On the other hand, other class-characterizing
attributes (such as wings of a bird, trunk of an elephant,
hump on a camel’s back) are critical for classification, ir-
respective of context. We refer to such attributes as label in-
formation. Typically, contextual information is majorly gov-
erned by semantic attributes, whereas the label character-
istics are subtly embedded throughout an image. In other
words, semantic information can be predominantly present
across an image, whereas attending to subtle label infor-
mation determines how effective a classification algorithm
would be. Thus, we argue that attention to label-specific
information should be ingrained into the mechanics of the
classifier, decoupling it from semantic information. This be-
comes even more important in a few-shot setting where the
network has to quickly learn from little data. Building upon
this idea, we propose transductive variational inference of
decoupled latent variables (coined as TRIDENT), to simul-
taneously infer decoupled label and semantic information
using two intertwined variational networks. To induce task-
awareness while constructing the variational inference me-
chanics of TRIDENT, we introduce a novel atention-based
transductive feature extraction module (we call AttFEX)
which further enhances the discriminative power of the in-
ferred label attributes. This way TRIDENT infers distribu-
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Figure 1: High-level process flow of TRIDENT. Inferred label latent variable zl contains class-characterizing information, as is reflected by
better separation of the distributions when compared to their semantic latent counterparts zs. AttFEX module generates task-aware feature
maps by exploiting information from both support and query images, which compensates for the lack of label vectors Y in inferring zl.

tions instead of point estimates and injects a handcrafted
inductive-bias into the network to guide the classification
process. Our main contributions can be summarized as:

1. We propose TRIDENT, a variational inference network
to simultaneously infer two salient decoupled attributes
of an image (label and semantic), by inferring these two
using two intertwined variational sub-networks (Fig. 1).

2. We introduce an attention-based transductive feature
extraction module, AttFEX, to enable TRIDENT see
through and compare all images within a task, inducing
task-cognizance in the inference of label information.

3. We perform extensive evaluations to demonstrate that
TRIDENT sets a new state-of-the-art by outperforming
all existing baselines on the most commonly adopted
datasets miniImagenet and tieredImagenet (up to 4% and
5%), as well as for the challenging cross-domain scenario
of miniImagenet→ CUB (up to 20% improvement).

Related Work
Metric-based learning. This body of work revolves around
mapping input samples into a lower-dimensional embedding
space and then classifying the unlabelled samples based on a
distance or similarity metric. By parameterizing these map-
pings with neural networks and using differentiable similar-
ity metrics for classification, these networks can be trained
in an episodic manner (Vinyals et al. 2016) to perform few-
shot classification. Prototypical Nets (Snell, Swersky, and
Zemel 2017), Simple Shot (Wang et al. 2019), Relation Net-
works (Sung et al. 2018), Matching Networks (Vinyals et al.
2016) variants of Graph Neural Nets (Satorras and Estrach
2018; Yang et al. 2020), Simple CNAPS (Bateni et al. 2020),
are a few examples of seminal ideas in this space.
Transductive Feature-Extraction and Inference. Trans-
ductive feature extraction or task-aware learning is a vari-
ant of the metric-learning with an adaptation mechanism
that aligns support and query feature vectors in the embed-
ding space for better representation of task-specific discrim-
inative information. This not only improves the discrimi-
native ability of classifiers across tasks, but also alleviates

the problem of overfitting on limited support set since in-
formation from the query set is also used for extracting fea-
tures of images in a task. CNAPS (Requeima et al. 2019),
Transductive-CNAPS (Bateni et al. 2022), FEAT (Ye et al.
2020), Assoc-Align (Afrasiyabi, Lalonde, and Gagné 2020),
TPMN (Wu et al. 2021) and CTM (Li et al. 2019) are prime
examples of such methods. Next to transduction for task-
aware feature extraction, there are methods that use trans-
ductive inference to classify all the query samples at once
by jointly assigning them labels, as opposed to their in-
ductive counterparts where prediction is done on the sam-
ples one at a time. This is either done by iteratively prop-
agating labels from the support to the query samples or by
fine-tuning a pre-trained backbone using an additional en-
tropy loss on all query samples, which encourages confident
class predictions at query samples. TPN (Liu et al. 2019),
Ent-Min (Dhillon et al. 2020), TIM (Boudiaf et al. 2020),
Transductive-CNAPS (Bateni et al. 2022), LaplacianShot
(Ziko et al. 2020), DPGN (Yang et al. 2020) and ReRank
(SHEN et al. 2021) are a few notable examples in this space
that usually report state-of-the-art results in certain few-shot
classification settings (Liu et al. 2019).

Optimization-based meta-learning. These methods search
for model parameters that are sensitive to task objective
functions for fast gradient-based adaptation to new tasks.
MAML (Finn, Abbeel, and Levine 2017), its variants (Ra-
jeswaran et al. 2019; Nichol, Achiam, and Schulman 2018a)
and SNAIL (Mishra et al. 2018) are a few prominent exam-
ples while LEO (Rusu et al. 2019) efficiently meta-updates
its parameters in a lower dimensional latent space.

Probabilistic learning. The estimated parameters of typi-
cal gradient-based meta-learning methods discussed earlier
(Finn, Abbeel, and Levine 2017; Rusu et al. 2019; Mishra
et al. 2018; Nichol, Achiam, and Schulman 2018a; Ra-
jeswaran et al. 2019), have high variance due to the small
task sample size. To deal with this, a natural extension is
to model the uncertainty by treating these parameters as
latent variables in a Bayesian framework as proposed in
Neural Statistician (Edwards and Storkey 2017), PLATI-
PUS (Finn, Xu, and Levine 2018), VAMPIRE (Nguyen,
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Do, and Carneiro 2019), ABML (Ravi and Beatson 2019),
VERSA (Gordon et al. 2019), SIB (Hu et al. 2020),
SAMOVAR (Iakovleva, Verbeek, and Alahari 2020). Meth-
ods like ABPML (Sun et al. 2021) and VariationalFSL
(Zhang et al. 2019) infer latent variables of class proto-
types to perform classification and avoid inferring high-
dimensional model parameters. ABPML (Sun et al. 2021)
and VariationalFSL (Zhang et al. 2019) are the closest to our
approach. In contrast to these two methods, we avoid hand-
crafting class-level aggregations, as well as we enhance vari-
ational inference by incorporating an inductive bias through
decoupling of label and semantic information.

Problem Definition
Consider a labelled dataset D = {(xi, yi) | i ∈ [1, N ′]} of
images xi and class labels yi. This dataset D is divided into
three disjoint subsets: D = {Dtr ∪ Dval ∪ Dtest}, re-
spectively, referring to the training, validation, and test sub-
sets. The validation dataset Dval is used for model selection
and the testing dataset Dtest for final evaluation. Follow-
ing standard few-shot classification settings (Vinyals et al.
2016; Sung et al. 2018; Snell, Swersky, and Zemel 2017),
we use episodic training on a set of tasks Ti ∼ p(T ). The
tasks are constructed by drawing K random samples from
N different classes, which we denote as an (N -way, K-
shot) task. Concretely, each task Ti is composed of a support
and a query set. The support set S = {(xSkn, ySkn) | k ∈
[1,K], n ∈ [1, N ]} contains K samples per class and the
query set Q = {(xQ

kn, y
Q
kn) | k ∈ [1, Q], n ∈ [1, N ]} con-

tains Q samples per class. For a given task, the NQ query
and NK support images are mutually exclusive to assess the
generalization performance.

The Proposed Method: TRIDENT
Let us start with the high-level idea. The proposed approach
is devised to learn meaningful representations that capture
two pivotal characteristics of an image by modelling them
as separate latent variables: (i) zs representing semantics,
and (ii) zl embodying class labels. Inferring these two latent
variables simultaneously allows zl to learn meaningful dis-
tributions of class-discriminating characteristics decoupled
from semantic features represented by zs. We argue that
learning zl as the sole latent variable for classification re-
sults in capturing a mixture of true label and other semantic
information. This in turn can lead to sub-optimal classifica-
tion performance, especially in a few-shot setting where the
information per class is scarce and the network has to adapt
and generalize quickly. By inferring decoupled label and se-
mantics latent variables, we inject a handcrafted inductive-
bias that incorporates only relevant characteristics, and thus,
ameliorates the network’s classification performance.

Generative Process
The directed graphical model in Fig. 2 illustrates the com-
mon underlying generative process p such that pi =
p(xi, yi | zli, zsi). For the sake of brevity, in the follow-
ing we drop the sample index i as we always refer to
terms associated with a single data sample. We work on

Figure 2: Generative Model of TRIDENT. Dotted lines indicate
variational inference and solid lines refer to generative processes.
The inference and generative parameters are color coded to corre-
spond to their respective architectures indicated in Fig.1 and Fig.4.

the logical premise that the label latent variable zl is re-
sponsible for generating class label as well as for image
reconstruction, whereas the semantic latent variable zs is
only responsible for image reconstruction (solid lines in
the figure). Formally, the data is explained by the genera-
tive processes: pθ1(y | zl) = Cat(y | zl) and pθ2(x | zl, zs) =
gθ2(x; zl, zs), where Cat(.) refers to a multinomial distri-
bution and gθ2(x; zl, zs) is a suitable likelihood function
such as a Gaussian or Bernoulli distribution. The likelihoods
of both these generative processes are parameterized us-
ing deep neural networks and the priors of the latent vari-
ables are chosen to be standard multivariate Gaussian dis-
tributions (Kingma and Welling 2014; Kingma et al. 2014):
p(zs) = N (zs | 0, I) and p(zl) = N (zl | 0, I).

Variational Inference of Decoupled Zl and Zs

Computing exact posterior distributions is intractable due
to high dimensionality and non-linearity of the deep neural
network parameter space. Following (Kingma and Welling
2014; Kingma et al. 2014), we instead construct an approx-
imate posterior over the latent variables by introducing a
fixed-form distribution q(zl, zs | x, y) parameterized by ϕ.
By using qϕ(.) as an inference network, the inference is ren-
dered tractable, scalable and amortized since ϕ now acts as
the global variational parameter. We assume qϕ has a fac-
torized form qϕ (zs, zl | x, y) = qϕ1

(zl | x, zs) qϕ2
(zs | x),

where qϕ1
(.), qϕ2

(.) are assumed to be multivariate Gaus-
sian distributions. As is also depicted in Fig. 2, we use zs as
input to qϕ1

(.) to infer zl because of their conditional depen-
dence given x. This way we forge a path to allow necessary
semantic latent information flow through the label inference
network. On the other hand, the opposite direction (using zl
to infer zs) is unnecessary, because label information does
not directly contribute to the extraction of semantic features.
We will further reflect on this design choice in the next sub-
section. Neural networks are then used to parameterize both
inference networks as:

qϕ2 (zs | x) = N
(
zs |µϕ2

(x), diag(σ2
ϕ2
(x))

)
,

qϕ1 (zl | x, zs) = N
(
zl |µϕ1

(x, zs), diag(σ2
ϕ1
(x, zs))

)
.

(1)

To find the optimal approximate posterior, we derive the
evidence lower bound (ELBO) on the marginal likelihood of
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the data to form our objective function:

p(x, y) =
∫∫

p(x, y | zs, zl) p(zs,zl) dzs dzl,

= Eq(zs,zl | x)

[
p(x | zl, zs)p(y | zl)p(zl)p(zs)

q(zl, zs | x)

]
.

ln p(x, y) ⩾ Eq(zs,zl|x)

[
ln

(
p(x | zl, zs)p(y | zl)p(zl)p(zs)

q(zs, zl | x)

)]
,

= Eqϕ2

[
Eqϕ1

[
ln

(
p(x | zs, zl)p(y | zl)p(zs)p(zl)

q(zs | x)q(zl | x, zs)

)]]
.

Denoting Ψ = (θ1, θ2, ϕ1, ϕ2), the ELBO can be given by

L(Ψ) = −Eqϕ2
Eqϕ1

[ln pθ2(x | zs, zl) + ln pθ1(y | zl)]+

DKL

(
qϕ1(zl | x, zs)∥ p(zl)

)
+DKL

(
qϕ2(zs | x)∥ p(zs)

)
,

(2)

where the second line follows the graphical model in Fig 2,
and E(.) and ln(.) denote the expectation operator and the
natural logarithm, respectively. We avoid computing biased
gradients by following the re-parameterization trick from
(Kingma and Welling 2014). Assuming Gaussian distribu-
tions for the priors as well as the variational distributions
allows us to compute the KL Divergences of zl and zs
(last two terms in (2)) analytically (Kingma and Welling
2014). By considering a multivariate Gaussian distribution
and a multinomial distribution as the likelihood functions
for pθ2 (x | zs, zl) and pθ1 (y | zl), respectively, the negative
log-likelihood of x becomes the mean squared error (MSE)
between the reconstructed images x̃ and the ground-truth im-
ages x while the negative log-likelihood of y becomes the
cross-entropy between the actual labels y and the predicted
labels ỹ. After working (2) out, we arrive at our overall ob-
jective function L = LR + LC , where:

LR = α1∥x − x̃∥2 −KL(µs, σs),

LC = −α2

N∑
n=1

yn ln pθ1(ỹ = n | zl)−KL(µl, σl),
(3)

where KL(µ, σ) = 1
2

∑D
d=1

(
1+2 ln(σd)−(µd)2−(σd)2

)
,

D denotes the dimension of the latent space, N is the to-
tal number of classes in an (N -way, K-shot) task, α1, α2

are constant scaling factors, µs and σ2
s denote the mean and

variance vectors of semantic latent distribution, and µl and
σ2
l denote the mean and variance vectors of label latent dis-

tribution. The hyper-parameters α1, α2 only scale the evi-
dence lower-bound appropriately, since the reconstruction
loss is in practice three orders of magnitude greater than the
cross-entropy loss. As such, this scaling helps convergence
but impacts the tightness of the ELBO slightly; nonetheless,
(2) and (3) are still considered variational inference by con-
sensus among the literature (Higgins et al. 2017; Joy et al.
2021; Mathieu et al. 2019; Dupont 2018). The loss is cal-
culated for each given task on query and support sets sepa-
rately; i.e., Lg = Lg

R + Lg
C with g ∈ {Si,Qi}. Note that in

(1) we deliberately choose to exclude the label information y
as input to qϕ1

(.) to be able to exploit the associated genera-
tive network pθ1(y | zl) as a classifier. The consequence and
the proposed solution to accommodate this design choice are
discussed in the next subsection.

Support Set Feature Maps Query Set Feature Maps

Figure 3: AttFEX module depicting colors as images and shades
as feature maps. We illustrate only 3 image feature maps and 3
channels instead of 32 for N, for the sake of simplicity.

AttFEX for Transductive Feature Extraction
We first extract the feature maps of all images in the
task using a convolutional block F = ConvEnc(X) where
X ∈ RN(K+Q)×C×W×H , F ∈ RN(K+Q)×C′×W ′×H′

.
The feature map tensor F is then transposed into F′ ∈
RC′×N(K+Q)×W ′×H′

and fed into two consecutive 1 × 1
convolution blocks. This helps the network utilize informa-
tion across corresponding pixels of all images in a task Ti
which acts as a parametric comparison of classes. We lever-
age the fact that ConvEnc already extracts local pixel infor-
mation by using larger kernels, and thus, use parameter-light
1× 1 convolutions subsequently to focus only on individual
pixels. Let F′

i denote the ith channel (or feature map layer)
out of total of C ′ available and ReLU denote the rectified lin-
ear unit activation. The 1× 1 convolution block (Conv1×1)
is formulated as follows:

Mi = ReLU
(
Conv1×1(F′

i,WM )
)
,∀i ∈ [1, C ′];

Nj = ReLU
(
Conv1×1(Mj ,WN )

)
,∀j ∈ [1, C ′];

(4)

where N ∈ RC′×32×W ′×H′
and WM ∈ R64×N(K+Q)×1×1,

WN ∈ R32×64×1×1 denote the learnable weights. Next, we
want to blend information across feature maps for which we
use a self-attention mechanism (Vaswani et al. 2017) across
Nj ,∀j ∈ [1, 32]. To do so, we feed N to query, key and
value extraction networks fq(, ;WQ), fk(.;WK), fv(.;WV )
which are also designed to be 1× 1 convolutions as:

Qi = ReLU (Conv1×1(Ni,WQ)) , ∀i ∈ [1, C ′];

Ki = ReLU (Conv1×1(Ni,WK)) , ∀i ∈ [1, C ′];

Vi = ReLU (Conv1×1(Ni,WV )) , ∀i ∈ [1, C ′];

(5)

where WQ,WK ,WV ∈ R1×32×1×1 are the learnable
weights and Q, K, V ∈ RC′×1×W ′×H′

are the query, key
and value tensors. Next, each feature map Nj is mapped to
its output tensor Gj by computing a weighted sum of the
values, where each weight (within parentheses in (6)) mea-
sures the compatibility (or similarity) between the query and
its corresponding key tensor using an inner-product:

Gi =
C′∑
j=1

(
exp (Qi ·Kj)√

dk.
∑C′

k=1 exp (Qi ·Kk)

)
Vi, (6)
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where dk = W ′ × H ′, and Gi ∈ R1×C′×W ′×H′
, ∀i. Fi-

nally, we transform the original feature maps F by apply-
ing a Hadamard product between the feature mask G and F,
thus, rendering the required feature maps transductive:

F̃
S
= G ◦ FS or F̃

Q
= G ◦ FQ.

Here, FS and FQ represent the feature maps corresponding
to the support and query images, respectively. As a result of
operating on this channel-pixel distribution across images in
a task, FS and FQ are rendered task-aware. Note that the
query tensor Q must not be confused with the query set Q
of a task.

Algorithmic Overview and Training Strategy

Figure 4: TRIDENT is comprised of two intertwined variational
networks. Zg

s is concatenated with the output of AttFEX, and used
for inferring Zg

l , where g ∈ {S,Q}. Next, both Zg
l and Zg

s are used
to reconstruct images X̃g

while Zg
l is used to extract Ỹ g .

Overview of TRIDENT. The complete architecture of
TRIDENT is illustrated in Fig. 4. The ConvEnc feature ex-
tractor and the linear layers µϕ2

(.), σ2
ϕ2
(.) constitute the in-

ference network qϕ2
of the semantic latent variable (bottom

row of Fig. 4). The AttFEX module, another ConvEnc,
and linear layers µϕ1

(.) and σ2
ϕ1
(.) make up the infer-

ence network qϕ1
of the label latent variable (top row of

Fig. 4). The proposed approach, TRIDENT, is described in
Algorithm 1. Note that TRIDENT is trained in a MAML
(Finn, Abbeel, and Levine 2017) fashion, where depend-
ing on the inner or outer loop, the support or query set
(g ∈ {S,Q}) will be the reference, respectively. First,
the lower ConvEnc block extracts feature maps Xg

CE =
ConvEnc(Xg). Xg

CE’s are then flattened and passed onto
µϕ2(.), σ

2
ϕ2
(.), which respectively output the mean and vari-

ance vectors of the semantic latent distribution, as discussed
in (1). This is done either for the entire support or the query
images Xg , where g ∈ {S,Q} for a given task Ti. We
then sample a set of vectors Zg

s (subscript s for seman-
tic) from their corresponding Gaussian distributions using
the re-parameterization trick (line 1, Algorithm 1). Upon
passing X = XS ∪ XQ through the upper ConvEnc, the
AttFEX module of qϕ1 comes into play to create task-
cognizant feature maps F̃

g
for either S or Q (line 2). Zg

s

together with F̃
g

are passed onto the linear layers µϕ1(.),
σ2
ϕ1
(.) to generate the mean and variance vectors of the label

Algorithm 1: TRIDENT
Require: XS ,XQ, Y g, Xg

CE, where g ∈ {S,Q}
1 Sample: Zg

s ∼ qϕ2

(
Zs |µϕ2

(Xg
CE), diag

(
σ2

ϕ2
(Xg

CE)
))

2 Compute task-cognizant embeddings:

[F̃
S
, F̃

Q
] = AttFEX(ConvEnc(X));X = XS ∪ XQ

3 Concatenate Zg
s and F̃g into [F̃g,Zg

s ] and sample:
Zg
l ∼ qϕ1

(
Zl |µϕ1

([F̃
g
,Zg

s ]), diag(σ
2
ϕ1
([F̃

g
,Zg

s ]))
)

4 Reconstruct Xg using X̃
g
= pθ2(X |Z

g
l ,Zg

s)

5 Extract class-conditional probabilities using:
p
(
Ỹ g |Zg

l

)
= softmax

(
pθ1(Y

g |Zg
l )
)

6 Compute Lg = Lg
R + Lg

C using (3)
Return: Lg

Algorithm 2: End to End Meta-Training of TRIDENT

Require: Dtr, α, β, B
1 Randomly initialise Ψ = (ϕ1, ϕ2, θ1, θ2)
2 while not converged do
3 Sample B tasks Ti = Si ∪Qi from Dtr

4 for each task Ti do
5 for number of adaptation steps do
6 Compute LSi(Ψ) = TRIDENT(Ti − {Y Qi})
7 Evaluate ∇(Ψ)LSi(Ψ)
8 Ψ← Ψ− α∇ΨLSi(Ψ)

9 end
10 (Ψ′)i = Ψ

11 end
12 Compute

LQi(Ψ′
i) = TRIDENT(Ti − {Y Si});∀i ∈ [1, B]

13 Meta-update on Qi: Ψ← Ψ− β∇Ψ

∑B
i=1 LQi(Ψ′

i)

14 end

latent Gaussian distributions (line 3). After sampling the set
of vectors Zg

l (subscript l for label) from their correspond-
ing distributions, we use Zg

l and Zg
s to reconstruct the input

images X̃
g

using the generative network pθ2 (line 4). Next,
Zg
l ’s are input to the classifier network pθ1 to generate the

class logits, which are normalized using a softmax(.),
resulting in class-conditional probabilities p(Ỹ g |Zg

l ) (line
5). Finally (in line 6), using the outputs of all the compo-
nents discussed earlier, we calculate the loss Lg as formu-
lated in (2) and (3). Training strategy. An important as-
pect of the training procedure of TRIDENT is that its set
of parameters Ψ = (θ1, θ2, ϕ1, ϕ2) are meta-learnt by back-
propagating through the adaptation procedure on the support
set, as proposed in MAML (Finn, Abbeel, and Levine 2017)
and illustrated here in Algorithm 2. This increases the sen-
sitivity of the parameters Ψ towards the loss function for
fast adaptation to unseen tasks and reduces generalization
errors on the query set Q. First, we randomly initialize the
parameters Ψ (line 1, Algorithm 2) to compute the objective
function over the support set LSi(Ψ) using equation (3) in
the main manuscript, and perform a number of gradient de-
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Table 1: Accuracies in (% ± std). The predominant methodology of the baselines: Ind.: inductive inference, TF: transductive feature
extraction methods, TI: transductive inference methods. Conv: convolutional blocks, RN: ResNet backbone, †: extra data. Style: best and
second best. TRIDENT employs a transductive feature extraction module (TF), and the simplest of backbones (Conv4).

miniImagenet tieredImagenet mini→CUB
Methods Backbone Approach 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
MAML (Finn, Abbeel, and Levine 2017) Conv4 Ind. 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 0.08 34.01 ± 1.25 48.83 ± 0.62
ABML (Ravi and Beatson 2019) Conv4 Ind. 40.88 ± 0.25 58.19 ± 0.17 - - 31.51 ± 0.32 47.80 ± 0.51
OVE(PL) (Patacchiola et al. 2020) Conv4 Ind. 48.00 ± 0.24 67.14 ± 0.23 - - 37.49 ± 0.11 57.23 ± 0.31
DKT+Cos (Patacchiola et al. 2020) Conv4 Ind. 48.64 ± 0.45 62.85 ± 0.37 - - 40.22 ± 0.54 55.65 ± 0.05
BOIL (Oh et al. 2021) Conv4 Ind. 49.61 ± 0.16 48.58 ± 0.27 66.45 ± 0.37 69.37 ± 0.12 - -
LFWT(Tseng et al. 2020) RN10 TF+TI 66.32 ± 0.80 81.98 ± 0.55 - - 47.47 ± 0.75 66.98 ± 0.68
FRN(Wertheimer, Tang, and Hariharan 2021) RN12 Ind. 66.45 ± 0.19 82.83 ± 0.13 71.16 ± 0.22 86.01 ± 0.15 54.11 ± 0.19 77.09 ± 0.15
DPGN(Yang et al. 2020) RN12 TF+TI 67.77 84.6 72.45 87.24 - -
PAL(Ma et al. 2021) RN12 TF+TI 69.37 ± 0.64 84.40 ± 0.44 72.25 ± 0.72 86.95 ± 0.47 - -
Proto-Completion(Zhang et al. 2021a) RN12 TF+TI 73.13 ± 0.85 82.06 ± 0.54 81.04 ± 0.89 87.42 ± 0.57 - -
TPMN(Wu et al. 2021) RN12 TF+TI 67.64 ± 0.63 83.44 ± 0.43 72.24 ± 0.70 86.55 ± 0.63 - -
LIF-EMD(Li, Wang, and Hu 2021) RN12 TF+TI 68.94 ± 0.28 85.07 ± 0.50 73.76 ± 0.32 87.83 ± 0.59 - -
Transd-CNAPS(Bateni et al. 2022) RN18 TF+TI 55.6 ± 0.9 73.1 ± 0.7 65.9 ± 1.0 81.8 ± 0.7 - -
Baseline++(Chen et al. 2019) RN18 TF 51.87 ± 0.77 75.68 ± 0.63 - - 42.85 ± 0.69 62.04 ± 0.76
FEAT(Ye et al. 2020) RN18 TF 66.78 82.05 70.80 84.79 50.67 ± 0.78 71.08 ± 0.73
SimpleShot(Wang et al. 2019) WRN Ind. 63.32 80.28 69.98 85.45 48.56 65.63
Assoc-Align(Afrasiyabi, Lalonde, and Gagné 2020) WRN TF 65.92 ± 0.60 82.85 ± 0.55 74.40 ± 0.68 86.61 ± 0.59 47.25 ± 0.76 72.37 ± 0.89
ReRank(SHEN et al. 2021) WRN TF+TI 72.4±0.6 80.2±0.4 79.5±0.6 84.8±0.4 - -
TIM-GD(Boudiaf et al. 2020) WRN TI 77.8 87.4 82.1 89.8 - 71
LaplacianShot(Ziko et al. 2020) WRN TI 74.9 84.07 80.22 87.49 55.46 66.33
S2M2(Mangla et al. 2020) WRN TF 64.93 ± 0.18 83.18 ± 0.11 73.71 ± 0.22 88.59 ± 0.14 48.24 ± 0.84 70.44 ± 0.75
MetaQDA(Zhang et al. 2021b) WRN TF 67.83 ± 0.64 84.28 ± 0.69 74.33 ± 0.65 89.56 ± 0.79 53.75 ± 0.72 71.84 ± 0.66
PT+MAP(Hu, Gripon, and Pateux 2021) WRN TF+TI 82.92 ± 0.26 88.82 ± 0.13 85.67 ± 0.26 90.45 ± 0.14 62.49 ± 0.32 76.51 ± 0.18
PEMnE-BMS(Hu, Pateux, and Gripon 2022) WRN TF+TI 83.35 ± 0.25 89.53 ± 0.13 86.07 ± 0.25 91.09 ± 0.14 63.90 ± 0.31 79.15 ± 0.18
Transd-CNAPS+FETI(Bateni et al. 2022) RN18† TF+TI 79.9 ± 0.8 91.50 ± 0.4 73.8 ± 0.1 87.7 ± 0.6 - -

TRIDENT(Ours) Conv4 TF 86.11 ± 0.59 95.95 ± 0.28 86.97 ± 0.50 96.57 ± 0.17 84.61 ± 0.33 80.74 ± 0.35

scent steps on the parameters Ψ to adapt them to the support
set (lines 5 to 9). This is called the inner-update and is done
separately for all the support sets corresponding to their B
different tasks (line 3). Once the inner-update is computed
for each of the B parameter sets, the loss is evaluated on the
query set LQi(Ψ′

i) (line 12), following which a meta-update
is conducted over all the corresponding query sets, which
involves computing a gradient through a gradient procedure
as described in (Finn, Abbeel, and Levine 2017) (line 13).

Experimental Evaluation
The goal of this section is to address the following four
questions: (i) How well does TRIDENT perform when com-
pared against the state-of-the-art methods for few-shot clas-
sification? (ii) How reliable is TRIDENT in terms of the
confidence and uncertainty metrics? (iii) How well does
TRIDENT perform in a cross-domain setting where there is
a domain shift between the training and testing datasets? (iv)
Does TRIDENT actually decouple latent variables?
Benchmark Datasets. We evaluate TRIDENT on the three
most commonly adopted datasets: miniImagenet (Ravi and
Larochelle 2017), tieredImagenet (Ren et al. 2018) and CUB
(Welinder et al. 2010). miniImagenet and tieredImagenet are
subsets of ImageNet (Deng et al. 2009) utilized for few-shot
classification. Further details on these datasets can be found
in the Appendix.
Implementational Details. We use PyTorch (Paszke et al.
2019) and learn2learn (Arnold et al. 2020) for all our im-
plementations. We use a commonly adopted Conv4 ar-
chitecture (Ravi and Larochelle 2017; Finn, Abbeel, and
Levine 2017; Patacchiola et al. 2020; Afrasiyabi, Lalonde,
and Gagné 2020; Wang et al. 2019; Boudiaf et al. 2020) as
ConvEnc to obtain the generic feature maps. Following the

standard setting in the literature (Finn, Abbeel, and Levine
2017; Ravi and Larochelle 2017), the Conv4 has four con-
volutional blocks where each block has a 3 × 3 convolu-
tion layer with 32 feature maps, followed by a batch nor-
malization (BN) (Ioffe and Szegedy 2015) layer, a 2 × 2
max-pooling layer and a LeakyReLU(0.2) activation.
The generative network pθ1 for zl is a classifier with two
linear layers and a LeakyReLU(0.2) activation in be-
tween, while pθ2 for zs consists of four blocks of a 2-
D upsampling layer, followed by a 3 × 3 convolution and
LeakyReLU(0.2) activation. Both latent variables zl and
zs have a dimensionality of 64. Following (Nichol, Achiam,
and Schulman 2018b; Liu et al. 2019; Vaswani et al. 2017),
images are resized to 84 × 84 for all configurations and we
train and report test accuracy of (5-way, 1 and 5-shot) set-
tings with 10 query images per class for all datasets. Hyper-
parameter settings can be found in the Appendix.

Evaluation Results
We report test accuracies indicating 95% confidence inter-
vals over 600 tasks for miniImagenet, and 2000 tasks for
both tieredImagenet and CUB, as is customary across the
literature (Chen et al. 2019; Dhillon et al. 2020; Bateni
et al. 2022). We compare our performance against a wide
variety of state-of-the-art few-shot classification methods
such as: (i) metric-learning (Wang et al. 2019; Bateni et al.
2020; Afrasiyabi, Lalonde, and Gagné 2020; Yang et al.
2020), (ii) transductive feature-extraction based (Oreshkin,
Rodrı́guez López, and Lacoste 2018; Ye et al. 2020; Li
et al. 2019; Xu et al. 2021), (iii) optimization-based (Finn,
Abbeel, and Levine 2017; Mishra et al. 2018; Oh et al.
2021; Lee et al. 2019; Rusu et al. 2019), (iv) transductive
inference-based (Bateni et al. 2022; Boudiaf et al. 2020;
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Table 2: Parameter count of TRIDENT against competitors.
Conv4 µϕ σϕ AttFEX TRIDENT Conv4 RN18 WRN

qϕ1
28896 51264 51264 6994

qϕ2
28896 51264 51264 -

pθ1+ pθ2 2245 + 132009
412,238 190, 410 12.4M 36.482M

Ziko et al. 2020; Liu et al. 2019), and (v) Bayesian (Iakovl-
eva, Verbeek, and Alahari 2020; Zhang et al. 2019; Hu et al.
2020; Patacchiola et al. 2020; Ravi and Beatson 2019) ap-
proaches. Previous works (Liu et al. 2019), (Hou et al. 2019)
have demonstrated the superiority of transductive inference
methods over their inductive counterparts. In this light, we
compare against a larger number of transductive (18 base-
lines) rather than inductive (7 baselines) methods for a fair
comparison.

It is important to note that TRIDENT is only a transduc-
tive feature-extraction based method as we utilize the query
set images to extract task-aware feature embeddings; it is
not a transductive inference based method since we per-
form inference of class-labels over the entire domain of def-
inition and not just for the selected query samples (Vap-
nik 2006; Gammerman, Vovk, and Vapnik 1998). The re-
sults on miniImagenet and tieredImagenet for both (5-way,
1 and 5-shot) settings are summarized in Table 1. We ac-
centuate on the fact that we also compare against Transd-
CNAPS+FETI (Bateni et al. 2022), where the authors pre-
train the ResNet-18 backbone on the entire train split
of Imagenet. We, however, avoid training on additional
datasets, in favor of fair comparison with the rest of liter-
ature. Regardless of the choice of backbone (simplest in our
case), TRIDENT sets a new state-of-the-art on miniImagenet
and tieredImagenet for both (5-way, 1 and 5-shot) settings,
offering up to 5% gain over the prior art. Recently, a more
challenging cross-domain setting has been proposed for few-
shot classification to assess its generalization capabilities to
unseen datasets. The commonly adopted setting is where one
trains on miniImagenet and tests on CUB (Chen et al. 2019).
The results of this experiment are also presented in Table 1.
We compare against any existing baselines for which this
cross-domain experiment has been conducted. As can be
seen, and to the best of our knowledge, TRIDENT again sets
a new state-of-the-art by a significant margin of 20% for (5-
way, 1-shot) setting, and 1.5% for (5-way, 5-shot) setting.
Computational Complexity. Most of the reported base-
lines in Table 1 use stronger backbones such as ResNet12,
ResNet18 and WRNwhich contain 11.5, 12.4 and 36.4 mil-
lions of parameters respectively. On the other hand, we use
three Conv4s along with two fully connected layers and an
AttFEX module which accounts for 410,958 and 412,238
parameters in the (5-way, 1-shot) and (5-way, 5-shot) sce-
narios, respectively. This is summarized in details in Table 2.
Even though we are more parameter heavy than approaches
that use a single Conv4 as feature extractor, TRIDENT’s
total parameters still lies in the same order of magnitude as
these approaches. In summary, when it comes to complexity
in parameter space, we are considerably more efficient than
the vast majority of the cited competitors.
Reliability Metrics. A complementary set of metrics are
typically used in probabilistic settings to measure the uncer-
tainty and reliability of predictions. More specifically, ex-
pected calibration error (ECE) and maximum calibration er-
ror (MCE) respectively measure the expected and maximum

Table 3: Calibration errors of TRIDENT. Style: best and
second best.

Metrics MAML PLATIPUS ABPML ABML BMAML VAMPIRE TRIDENT

ECE 0.046 0.032 0.013 0.026 0.025 0.008 0.00365-way,
1-shot MCE 0.073 0.108 0.037 0.058 0.092 0.038 0.029

ECE 0.032 - 0.006 - 0.027 - 0.00155-way,
5-shot MCE 0.044 - 0.030 - 0.049 - 0.018

binned difference between confidence and accuracy (Guo
et al. 2017). This is illustrated in Table 3 where TRIDENT
offers superior calibration on miniImagenet (5-way, 1 and
5-shot) as compared to other probabilistic approaches, and
MAML (Finn, Abbeel, and Levine 2017).

Ablation Study
We analyze the classification performance of TRIDENT
across various paramaters and hyper-parameters, as is sum-
marized in Table 4. We use miniImagenet (5-way, 1-shot)
setting to carry out ablation study experiments. To cover
different design perspectives, we carry out ablation on: (i)
MAML-style training parameters: meta-batch size B and
number of inner adaption steps n, (ii) latent space dimen-
sionality: zl and zs to assess the impact of their size, (iii)
AttFEX features: number of features extracted by WM ,
WN . Looking at the results, TRIDENT’s performance is
directly proportional to the number of tasks and inner-
adaptation steps, as is previously demonstrated in (Antreas
Antoniou, Harrison Edwards, and Amos J. Storkey 2019;
Finn, Abbeel, and Levine 2017) for MAML based training.
Regarding latent space dimensions, a correlation between a
higher dimension of zl and zs and a better performance can
be observed. Even though, the results show that increasing
both dimensions beyond 64 leads to performance degrada-
tion. As such, (64, 64) seems to be the sweet spot. Finally,
on feature space dimensions of AttFEX, the performance
improves when WM > WN , and the best performance is
achieved when the parameters are set to (64, 32). Notably,
the exact set of parameters return the best performance for
(5-way, 5-shot) setting.

Decoupling Analysis
As a qualitative demonstration, we visualize the label and
semantic latent means (µl and µs) of query images for a
randomly selected (5-way, 5-shot) task from miniImagenet,
before and after the MAML meta-update procedure. The
UMAP (McInnes, Healy, and Melville 2018) plots in Fig. 5
illustrate significant improvement in class-conditional sep-
aration of query samples for label latent space upon meta-
adaption, whereas negligible improvement is visible on the
semantic latent space. This is a qualitative evidence that ZL

captures more class-discriminating information as compared
to ZS . To substantiate this quantitatively, the clustering ca-
pacity of these latent spaces is also measured by the Davies-
Bouldin score (DBI) (Davies and Bouldin 1979), where, the
lower the DBI score, the better both the inter-cluster sep-
aration and intra-cluster “tightness”. Fig. 5 shows that the
DBI score drops significantly more after meta-adaptation in
the case of ZL as compared to ZS , indicating better cluster-
ing of features in the former than the latter. This aligns with
the proposed decoupling strategy of TRIDENT and corrob-
orates the validity of our proposition to put an emphasis on
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Table 4: Ablation study for miniImagenet (5-way, 1-shot) tasks. Accuracies in (% ± std.).

(B, n) (5, 3) (5, 5) (10, 3) (10, 5) (20, 3) (20, 5)
- 67.43 ± 0.75 69.21 ± 0.66 74.6 ± 0.84 80.82 ± 0.68 86.11 ± 0.59

(dim(zl),
dim(zs))

(32, 32) (32, 64) (32, 128) (64, 32) (64, 64) (64, 128) (128, 32) (128, 64) (128, 128)
76.29 ± 0.72 75.44 ± 0.81 79.1 ± 0.57 82.93 ± 0.8 86.11 ± 0.59 85.62 ± 0.52 81.49 ± 0.65 82.89 ± 0.48 84.42 ± 0.59

(dim(WM ),
dim(WN ))

(32, 32) (32, 64) (32, 128) (64, 32) (64, 64) (64, 128) (128, 32) (128, 64) (128, 128)
78.4 ± 0.23 77.89 ± 0.39 79.55 ± 0.87 86.11 ± 0.59 84.87 ± 0.45 82.11 ± 0.35 84.67 ± 0.7 85.8 ± 0.58 83.92 ± 0.63

Figure 5: Better class separation upon meta-update is confirmed
by lower DBI scores. Different colors/markers indicated classes.

label latent information for the downstream few-shot task.

Concluding Remarks
We introduce a novel variational inference network (coined
as TRIDENT) that simultaneously infers decoupled latent
variables representing semantic and label information of
an image. The proposed network is comprised of two in-
tertwined variational sub-networks responsible for inferring
the semantic and label information separately, the latter be-
ing enhanced using an attention-based transductive feature
extraction module (AttFEX). Our extensive experimental
results corroborate the efficacy of this transductive decou-
pling strategy on a variety of few-shot classification settings
demonstrating superior performance and setting a new state-
of-the-art for the most commonly adopted dataset mini and
tieredImagenet as well as for the recent challenging cross-
domain scenario of miniImagenet→ CUB. As future work,
we plan to demonstrate the applicability of TRIDENT in
semi-supervised and unsupervised settings by including the
likelihood of unlabelled samples derived from the graphi-
cal model. This would render TRIDENT as an all-inclusive
holistic approach towards solving few-shot classification.
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Oreshkin, B.; Rodrı́guez López, P.; and Lacoste, A. 2018.
TADAM: Task dependent adaptive metric for improved
few-shot learning. In Advances in Neural Information Pro-
cessing Systems, volume 31.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in
Neural Information Processing Systems 32.
Patacchiola, M.; Turner, J.; Crowley, E. J.; O’Boyle, M.
F. P.; and Storkey, A. J. 2020. Bayesian Meta-Learning for
the Few-Shot Setting via Deep Kernels. In NeurIPS.
Rajeswaran, A.; Finn, C.; Kakade, S. M.; and Levine, S.
2019. Meta-Learning with Implicit Gradients. In Wallach,
H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox,
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Appendix
Impact of AttFEX
In order to study the impact of the transductive feature ex-
tractor AttFEX, we exclude it during training and train the
remaining architecture. Training proceeds exactly as men-
tioned before in the manuscript. As can be seen in Ta-

Table 5: Impact of AttFEX on classification accuracies.

miniImagenet tieredImagenet
(5-way, 1-shot) (5-way, 5-shot) (5-way, 1-shot) (5-way, 5-shot)

AttFEX OFF 67.68 ± 0.55 78.53 ± 0.21 69.32 ± 0.76 79.32 ± 0.76

AttFEX ON 86.11 ± 0.59 95.95 ± 0.28 86.97 ± 0.50 96.57 ± 0.17

ble 5, the exclusion of AttFEX from TRIDENT results in
a substantial drop in classification performance across both
datasets and task settings. Empirically, this further substan-
tiates the importance of AttFEX’s ability to render the fea-
ture maps transductive/task-aware. As explained earlier in
the main manuscript, it is imperative to include y in the input
to qϕ1

(.) for mathematical correctness of the variational in-
ference formulation. However, in order to utilize TRIDENT
as a classification and not a label reconstruction network, we
choose not to input y to qϕ1

(.), but rather do so indirectly by
inducing a semblance of label characteristics in the features
extracted from the images in a task. Thus, it is important to
realize that this ability of AttFEX to render feature maps
transductive is not just an adhoc performance enhancer, but
rather an essential part of TRIDENT since it allows us to not
violate our generative and inference mechanics.

Additional Details of Datasets
miniImagenet (Vinyals et al. 2016) is a subset of ImageNet
(Deng et al. 2009) for few-shot classification. It contains 100
classes with 600 samples each. We follow the predominantly
adopted settings of (Ravi and Larochelle 2017; Chen et al.
2019) where we split the entire dataset into 64 classes for
training, 16 for validation and 20 for testing. tieredImagenet
is a larger subset of ImageNet (Deng et al. 2009) with 608
classes and 779, 165 total images, which are grouped into
34 higher-level nodes in the ImageNet human-curated hier-
archy. This set of nodes is partitioned into 20, 6, and 8 dis-
joint sets of training, validation, and testing nodes, and the
corresponding classes form the respective meta-sets. CUB
(Welinder et al. 2010) dataset has a total of 200 classes, split
into training, validation and test sets following (Chen et al.
2019). We use this dataset to simulate the effect of a domain
shift where the model is first trained on a (5-way, 1 or 5-
shot) configuration of miniImagenet and then tested on the
test classes of CUB, as used in (Chen et al. 2019; Boudiaf
et al. 2020; Ziko et al. 2020; Long et al. 2018).

Implementational Details
Let α1 and α2 respectively denote the scaling factors of the
MSE and cross-entropy terms in our objective functions LR

and LC , as already defined in Subsection 4.2. The terms
α and β respectively denote the learning rates of the in-
ner and meta updates whereas B and n respectively denote

Table 6: Hyperparameter values when training TRIDENT.

miniImagenet tieredImagenet
H.P. 5-way, 1-shot 5-way, 5-shot 5-way, 1-shot 5-way, 5-shot
α1 1e-2 1e-2 1e-2 1e-2
α2 100 100 150 150
α 1e-3 1e-3 1.5e-3 1.7e-3
β 1e-4 1e-4 1.5e-4 1.7e-4
B 20 20 20 20
n 5 5 5 5

the number of sampled tasks and adaptation steps of the in-
ner-update of our end-to-end training process, as described
in Algorithm 2. The hyperparameter values (H.P.) used
for training TRIDENT on miniImagenet and tieredImagenet
are shown in Table 6. We apply the same hyperparame-
ters for the cross-domain testing scenario of miniImagenet
→ CUB used for training TRIDENT on miniImagenet, for
the given (N -way, K-shot) configuration. Hyperparameters
are kept fixed throughout training, validation and testing for
a given configuration. Adam (Kingma and Ba 2015) opti-
mizer is used for inner and meta-updates. Finally, the query,
key and value extraction networks fq(, ;WQ), fk(.;WK),
fv(.;WV ) of the AttFEX module only use Conv1×1(.)
and not the LeakyReLU(0.2) activation function for
(5-way, 1-shot) tasks, irrespective of the dataset. We ob-
served that utilizing BatchNorm (Ioffe and Szegedy 2015)
in the decoder of zs (pθ2 ) to train TRIDENT on (5-way, 5-
shot) tasks of miniImagenet and on (5-way, 1-shot) tasks of
tieredImagenet leads to better scores and improved stabil-
ity during training. We used the ReLU activation function
instead of LeakyReLU(0.2) to carry out training on (5-
way, 1-shot) tasks of tieredImagenet. Meta-learning objec-
tives can lead to unstable optimization processes in prac-
tice, especially when coupled with stochastic sampling in
latent spaces, as also previously observed in (Antreas Anto-
niou, Harrison Edwards, and Amos J. Storkey 2019; Rusu
et al. 2019). For ease of experimentation we clip the meta-
gradient norm at an absolute value of 1. TRIDENT con-
verges in 82, 000 and 22, 500 epochs for (5-way, 1-shot)
and (5-way, 5-shot) tasks of miniImagenet, respectively and
takes 67, 500 and 48, 000 epochs for convergence on (5-way,
1-shot) and (5-way, 5-shot) tasks of tieredImagenet, respec-
tively. This translates to an average training time of 110
hours on an 11GB NVIDIA 1080Ti GPU. Note that we did
not employ any data augmentation, feature averaging or any
other data apart from the corresponding training subset Dtr,
during training and evaluation.

Additional Calibration Results
To further examine the reliability and calibration of our
method, we assess the ECE, MCE (Guo et al. 2017) and
Brier scores (BRIER 1950) of TRIDENT on the challenging
cross-domain scenario of miniImagenet→ CUB for (5-way,
5-shot) tasks. Note that this an extension to Table 1 from
the Experimental Evaluation section of the main manuscript
and not an additional test on a new dataset since we al-
ready compute and compare the accuracies of TRIDENT on
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Table 7: Style: best and second best.

Methods ECE MCE Brier
Feature Transfer(Chen et al. 2019) 0.275 0.646 0.772
Baseline(Chen et al. 2019) 0.315 0.537 0.716
Matching Nets(Vinyals et al. 2016) 0.030 0.079 0.630
Proto Nets(Snell, Swersky, and Zemel 2017) 0.009 0.025 0.604
Relation Net(Sung et al. 2018) 0.234 0.554 0.730
DKT+Cos(Patacchiola et al. 2020) 0.236 0.426 0.670
BMAML(Yoon et al. 2018) 0.048 0.077 0.619
BMAML+Chaser(Yoon et al. 2018) 0.066 0.260 0.639
LogSoftGP(ML)(Galy-Fajou et al. 2020) 0.220 0.513 0.709
LogSoftGP(PL)(Galy-Fajou et al. 2020) 0.022 0.042 0.564
OVE(ML)(Snell and Zemel 2021) 0.049 0.066 0.576
OVE(PL)(Snell and Zemel 2021) 0.020 0.032 0.556

TRIDENT(Ours) 0.009 0.02 0.276

miniImagenet→ CUB in the main manuscript. When com-
pared against other baselines that report these metrics on the
aforementioned scenario, TRIDENT proves to be the most
calibrated with the best reliability scores. This is shown in
Table 7.
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3
Statistical Modelling

Learning from experiences and feedback forms the cornerstone of human development. Scientists
have long dreamed of making machines that mimic the characteristic human traits of making observa-
tions, thinking and learning. Machine learning is a field of study that lies at the confluence of statistics,
computer science and psychology, aiming to make machines learn from experiences. In order to make
machines extract meaningful insights and patterns from raw data, we need a few necessary ingredi-
ents:

• Data captured by observing reality.

• A statistical model to transform and process the data.

• An objective function that quantifies how well the model is performing.

• An algorithm that adjusts the models parameters to optimize for the objective function.

Data are the observations that the model experiences. In the context of statistical modelling,
a dataset is a collection of many examples. Each example is a collection of features (dimensions)
that are a result of quantitative measurement from some event or process that the machine learning
algorithm must process. An example is typically represented as a vector 𝒙𝑖 ∈ ℝ𝑑, where 𝑖 ∈ [1, 𝑁],
𝑁 denotes the total number of feature vectors in the dataset and 𝑑 denotes the dimensionality of a
feature vector. These examples are also referred to as data points, datums or samples. Based on the
type of data captured and available for modelling, machine learning can be broadly categorized into
Supervised and Unsupervised.

Supervised learning algorithms experience a dataset that not only contains feature vectors
describing a task/event, but also a label or target associated to each example. For example, the Iris
dataset (Fisher 1936) contains feature vectors describing properties of iris plants and also the target
species of each of these feature vectors, represented as a discrete variable with as many dimensions
as the total number of species in the dataset. Apart from discrete target variables, it is also possible
to have continuous target variables, for example, a dataset containing important properties about the
stock of a company at multiple timestamps and the target variable being the price of that stock for each
of the recorded timestamps. The goal of a supervised machine learning algorithm is to process the
feature vectors and correctly predict the target variable for ideally all possible test examples. Predicting
a discrete target variable or category is called Classification and predicting a continuous real valued
target variable is called Regression.

Unsupervised Learning algorithms experience a dataset containing only feature vectors de-
scribing the useful properties of the structure of this dataset. In cases like these, the goal of the
machine learning algorithm is to process this dataset and ideally learn the underlying distribution of

17
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the entire dataset, to then be used for density estimation at new, unseen data points, clustering exam-
ples into categories of similar examples, or implicit tasks of denoising and synthesis of useful examples.
In both, Supervised and Unsupervised cases, the idea is to achieve the goal of solving a task not only
on the seen examples (training set), but also to generalize on the unseen examples (test set).

3.1. Frequentist Statistics
Learning from data requires a principled approach for estimating the true unknown distribution of the
dataset. As discussed earlier, unsupervised learning involves observing several examples of a random
vector 𝒙, and attempting to implicitly or explicitly learn the probability distribution 𝑝(𝒙), or some inter-
esting properties of that distribution, while supervised learning involves observing several examples of
a random vector 𝒙 along with an associated value or vector 𝒚, and learning to predict 𝒚 from 𝒙, usually
by estimating the conditional distribution 𝑝(𝒚|𝒙).

Frequentist statistics involves modelling a parametric form of the true distribution and then max-
imizing the likelihood of the observed data with respect to the parameters. This perspective assumes
that the true parameter value 𝜽 is fixed but unknown, while the data is observed and known. Thus,
the task now is to find a point estimate �̂� that maximizes the likelihood of the observed data, while �̂�
being a random variable on account of being a function of the dataset. The estimate �̂� is known as the
Maximum Likelihood Estimator (MLE) of the true parameter 𝜽.

Consider the dataset to be a collection of 𝑁 samples 𝑿 = {𝒙1, ...., 𝒙𝑁} drawn independently from
the same true but unknown data generating distribution 𝑝𝑑𝑎𝑡𝑎(𝒙). Let the model be defined by the
parameters 𝜽 and 𝑝𝑚𝑜𝑑𝑒𝑙(𝒙|𝜽) be a parametric family of distributions over the same space indexed by
𝜽. The maximum likelihood estimator (MLE) for 𝜽 is then given by:

𝜽MLE = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜽

𝑝𝑚𝑜𝑑𝑒𝑙(𝑿|𝜽)

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝜽

𝑁

∏
𝑖=1

𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙𝑖|𝜽)
(3.1)

The likelihood of the entire dataset can be written as a product of the likelihood of all individual samples
since it is assumed that the data is sampled independently and from identical true distributions. This
is known as the i.i.d. assumption. In order to avoid numerical underflow due to the multiplication of
several small probability values, a logarithm of the likelihood is taken to conveniently transform the
product into a sum while keeping the argmax same:

𝜽MLE = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜽

𝑁

∑
𝑖=1

log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙𝑖|𝜽)

𝜽MLE = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜽

𝔼𝒙∼�̂�data log𝑝model (𝒙|𝜽)
(3.2)

Since the argmax doesn’t change when scaling the objective function, dividing the expression by 𝑁
gives the expectation of the log-likelihood with respect to the empirical distribution �̂�data. In practice,
it is common to minimize the negative log-likelihood rather than maximizing the log-likelihood as the
objective function:

𝜽MLE = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜽

− 𝔼𝒙∼�̂�data log𝑝model (𝒙|𝜽) (3.3)

In the case of Supervised Learning, the negative log-likelihood (NLL) to be minimized takes the form:

𝜽MLE = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜽

−
𝑁

∑
𝑖=1

log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒚𝑖|𝒙𝑖 , 𝜽) , (3.4)

while for Unsupervised Learning, the negative log-likelihood (NLL) to be minimized takes the form:

𝜽MLE = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜽

−
𝑁

∑
𝑖=1

log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙𝑖|𝜽) , (3.5)
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3.1.1. Linear Regression using MLE

Figure 3.1: Linear Regression using a Gaussian distribution as the likelihood of 𝑦 at a given 𝒙0 with model
parameters 𝒘 and 𝛽−1 = 𝜎2. Figure courtesy Bishop (n.d.)

Linear regression is a widely used method for predicting a real-valued continuous target variable
𝑦 ∈ ℝ given a feature vector 𝒙 ∈ ℝ𝐷. Since regression deals with modelling a continuous valued target
variable, the likelihood distribution (𝑝𝑚𝑜𝑑𝑒𝑙) is assumed to be Gaussian, with its mean parameterized
by the model function �̂� = 𝒘⊤ + 𝑏. In other words, a linear regressor tries to fit a Gaussian distribution
centered at the prediction value �̂� of a given input feature vector 𝒙, as depicted in Fig. 3.1. The
likelihood thus takes the form:

𝑝(𝑦 ∣ 𝒙, 𝜽) = 𝒩 (𝑦 ∣ 𝑏 + 𝒘⊤𝒙, 𝜎2) (3.6)
where 𝜽 = (𝑏,𝒘, 𝜎2) are all the parameters of the model, with 𝑏 being the bias term. However, a
straight line will not provide a good fit to most data sets. To this end, a nonlinear transformation can be
applied to the input features, by replacing 𝒙 with 𝜙(𝒙) to get

𝑝(𝑦 ∣ 𝒙, 𝜽) = 𝒩 (𝑦 ∣ 𝑏 + 𝒘⊤𝜙(𝒙), 𝜎2) (3.7)

Note that the method would still be called linear regression since the relationship between the model
parameters and the target variable is still linear. The likelihood of the entire dataset is given by the
product of likelihoods of all individual datums since we work under the i.i.d. assumption. To find the
MLE of the model parameters, the NLL of the dataset is minimized, which is given by:

NLL (𝒘, 𝜎2) = −
𝑁

∑
𝑖=1

log [( 1
2𝜋𝜎2)

1
2
exp(− 1

2𝜎2 (𝑦𝑖 −𝒘
⊤𝒙𝑖)

2)]

= 1
2𝜎2

𝑁

∑
𝑖=1
(𝑦𝑖 − �̂�𝑖)

2 + 𝑁2 log (2𝜋𝜎2)

(3.8)

where the model predictions �̂� = 𝒘⊤𝒙𝑖. The NLL in Equation (3.8) is minimized by setting the deriva-
tives of the NLL with respect to the parameters equal to 0. Computing the derivative of the NLL with
respect to the model’s weight parameter 𝒘 gives the Ordinary Least Squares (OLS) objective function:

OLS(𝒘) = 1
2

𝑁

∑
𝑖=1
(𝑦𝑖 −𝑤⊤𝒙𝑖)

2 = 1
2‖𝑿𝒘 − 𝒚‖

2
2 =

1
2(𝑿𝒘 − 𝒚)

⊤(𝑿𝒘 − 𝒚) (3.9)

Optimizing this loss function for linear regression is also commonly called the method of sum of least
squares. Solving the OLS objective gives the MLE of 𝒘:

𝒘𝑀𝐿𝐸 = (𝑿⊤𝑿)
−1 𝑿⊤𝒚 (3.10)

By simply plugging in the 𝒘𝑀𝐿𝐸 into the NLL expression and equating the derivative with respect to 𝜎2
to zero, we obtain 𝜎2𝑀𝐿𝐸:

𝜎2𝑀𝐿𝐸 = (𝒚⊤𝒚 − 𝒚⊤𝑿𝒘𝑀𝐿𝐸) (3.11)
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(a) Sigmoid (b) Heaviside

Figure 3.2: Activation functions to output probability values.

3.1.2. Logistic Regression using MLE
Logistic regression is a widely used discriminative classification model 𝑝(𝒚|𝒙; 𝜽) where 𝒙 is a feature
vector, 𝑦 ∈ [1, ...., 𝐶] is the class label, and 𝜽 are the model parameters. If 𝐶 = 2, this is known as
binary logistic regression, and if 𝐶 > 2, it is known as multi-class logistic regression. For ease of
representation and explanation, only binary logistic regression has been discussed in this text, with
straight forward extension to the multi-class case. Since classification deals with the modelling of
discrete target variables (0, 1 in the case of binary classification), it is suitable to model the likelihood
distribution (𝑝𝑚𝑜𝑑𝑒𝑙) as a Bernoulli distribution of 𝒚, dependent on the feature vectors 𝒙 and the model’s
parameters 𝒘, 𝑏

𝑝(𝑦 ∣ 𝒙; 𝜽) = Ber (𝑦 ∣ 𝜎 (𝒘⊤𝒙 + 𝑏)) (3.12)

where 𝜎 and 𝑏 denote the sigmoid function and the model’s bias term, respectively. The total param-
eters of the model are denoted by 𝜽 = {𝒘, 𝑏}. The role of the sigmoid function is to squash the output
of the model 𝒘⊤𝒙 + 𝑏 into the interval (0, 1). This is done because the Bernoulli distribution expects
a probability value ∈ [0, 1] as an input for 𝑦 = 1 by default. Therefore, the modelling task for binary
classification boils down to correctly output a value > 0 for probability value > 0.5 when 𝑦 = 1, and
a value < 0 for probability value < 0.5 for 𝑦 = 0, as can be seen in Fig 3.2. The probability values
estimated by the model are given by:

𝑝(𝑦 = 1 ∣ 𝒙; 𝜽) = 𝜎(𝑎) = 1
1 + 𝑒−𝑎 (3.13)

where 𝑎 = 𝒘⊤𝒙 + 𝑏 are called the log-odds (log 𝑝
1−𝑝 ), where 𝑝 = 𝑝(𝑦 = 1 ∣ 𝒙; 𝜽). The sigmoid function

can be considered as a “soft" version of the Heaviside function and is thus fit for statistical modelling
due to its differentiability. Here, the model’s output is a linear function of the input. This is not effective
for modelling data that is not linearly separable. To include non-linearity in the model’s predictions, the
input can be transformed using a basis function 𝜙(𝒙), and can then be used as the input in the model’s
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function. The negative log-likelihood of the Bernoulli distribution 𝑝(𝑦 ∣ 𝒙; 𝜽) is thus given by:

NLL(𝜽) = − 1𝑁 log𝑝(𝑌 ∣ 𝑿; 𝜽) = − 1𝑁 log
𝑁

∏
𝑖=1

Ber (𝑦𝑖 ∣ �̂�𝑖)

= − 1𝑁

𝑁

∑
𝑖=1

log [�̂�𝑦𝑖𝑖 × (1 − �̂�𝑖)
1−𝑦𝑖]

= − 1𝑁

𝑁

∑
𝑖=1
[𝑦𝑖 log �̂�𝑖 + (1 − 𝑦𝑖) log (1 − �̂�𝑖)]

= 1
𝑁

𝑁

∑
𝑖=1
ℍ𝑐𝑒 (𝑦𝑖 , �̂�𝑖)

(3.14)

where �̂� = 𝜎(𝒘⊤𝜙(𝒙) + 𝑏) and ℍ𝑐𝑒(𝑝, 𝑞) = −[𝑝 log 𝑞 + (1 − 𝑝) log(1 − 𝑞)] is the binary cross-entropy
loss.

3.2. Bayesian Statistics
The frequentists view probabilities in terms of frequencies of random and repeatable events. On the
other hand, the Bayesian perspective is to view probabilities as a measure for providing a quantifica-
tion of uncertainty. In the frequentist setting, parameters are assumed to be fixed and their values are
determined by an estimator that maximizes the likelihood of the observed data with respect to the pa-
rameters. The variance of these estimates are calculated by considering the distribution of all possible
datasets given the parameters. Rather than assuming the parameters to be fixed, Bayesians view the
actual observed data to be the only single dataset, and the uncertainty in the data generating parame-
ters is expressed through a probability distribution over them. This involves making assumptions about
the parameters apriori. The assumptions about the parameters are then updated by making precise
revisions of uncertainty in the parameters, in light of new evidence (data).

Consider the observed data 𝒟 = {(𝒙𝑖 , 𝒚𝑖)∀𝑖 ∈ [1, 𝑁]} for a supervised model and 𝒟 = {(𝒙𝑖)∀𝑖 ∈
[1, 𝑁]} for unsupervised models. In contrast to the point estimate MLE of the parameters 𝜽, Bayesian
statistics involve computing a probability distribution over the parameters in light of evidence 𝒟. This is
done using the Bayes rule:

𝑝(𝜽 ∣ 𝒟) = 𝑝(𝜽)𝑝(𝒟 ∣ 𝜽)
𝑝(𝒟) = 𝑝(𝜽)𝑝(𝒟 ∣ 𝜽)

∫ 𝑝 (𝜽′) 𝑝 (𝒟 ∣ 𝜽′) 𝑑𝜽′ (3.15)

The term 𝑝(𝜽 ∣ 𝒟) is known as the posterior distribution to represent the uncertainty in 𝜽. The
prior distribution 𝑝(𝜽) reflects the assumption/information about the parameters before seeing the
evidence/data. The likelihood function 𝑝(𝒟 ∣ 𝜽) reflects the data we expect to see for each setting of
the parameters. The marginal likelihood 𝑝(𝒟) can be interpreted as the average probability of the
data over all possible prior parameters. 𝑝(𝒟) is a constant and can be ignored when computing the
relative probabilities of 𝜽 values. The posterior predictive distribution can also be computed once the
uncertainty measure over 𝜽 is updated (posterior distribution) by marginalizing out the parameters:

𝑝(𝑦 ∣ 𝒙, 𝒟) = ∫𝑝(𝑦 ∣ 𝒙, 𝜽)𝑝(𝜽 ∣ 𝒟)𝑑𝜽 (3.16)

3.2.1. Bayesian Linear Regression
To compute the posterior over parameters 𝑝(𝜽 ∣ 𝒟) and the posterior predictive distribution 𝑝(𝑦 ∣ 𝒙, 𝒟),
an assumption about the prior 𝑝(𝜽) must be made. For simplicity and reasons that will be stated later
in this chapter, a Gaussian prior is assumed: 𝑝(𝒘) = 𝒩(𝒘 ∣ �̃�, �̃�). 𝜎2 is assumed to be known for
simplicity and thus only 𝒘 is optimized.



3.2. Bayesian Statistics 22

(a) MLE Posterior Predictive. (b) Bayesian Posterior Predictive.

Figure 3.3: Prediction Densities of MLE and Bayesian approaches. Figure courtesy Murphy (2022).

(a) MLE Posterior. (b) Bayesian Posterior.

Figure 3.4: Posterior Densities of MLE and Bayesian approaches. Figure courtesy Murphy (2022).

Due to the i.i.d. assumption, the likelihood of the dataset can be written as:

𝑝 (𝒟 ∣ 𝒘, 𝜎2) =
𝑁

∏
𝑖=1

𝑝 (𝑦𝑖 ∣ 𝒘⊤𝒙, 𝜎2) = 𝒩 (𝒚 ∣ 𝑿𝒘, 𝜎2𝑰𝑁) (3.17)

where 𝑰𝑁 is the 𝑁𝑥𝑁 identity matrix. Since both the prior and likelihood are Gaussians, by con-
jugacy, the posterior is Gaussian too, which reduces the burden of computing the marginal likelihood.
The posterior can be derived as follows:

𝑝 (𝒘 ∣ 𝑿, 𝒚, 𝜎2) ∝ 𝒩(𝒘 ∣ �̆�, �̆�)𝒩 (𝒚 ∣ 𝑿𝒘, 𝜎2𝑰𝑁) = 𝒩(𝒘 ∣ �̂�, �̂�)

�̂� ≜ �̂� (�̆�−1�̆� + 1
𝜎2𝑿

⊤𝑦)

�̂� ≜ (�̆�−1 + 1
𝜎2𝑿

⊤𝑿)
−1

(3.18)

where �̆� and �̆� are the posterior mean and covariance, respectively.

Now, to compute the uncertainty about the predictions of future outputs, the posterior predictive
distribution can be calculated as follows:

𝑝 (𝑦 ∣ 𝒙, 𝒟, 𝜎2) = ∫𝒩 (𝑦 ∣ 𝒙⊤𝒘, 𝜎2)𝒩(𝒘 ∣ �̂�, �̂�)𝑑𝑤

= 𝒩 (𝑦 ∣ �̂�⊤𝒙, �̂�2(𝑥))
(3.19)

where 𝜎2(𝒙) ≜ 𝜎2 + 𝒙⊤�̂�𝒙 is the variance of the posterior predictive distribution at a given point 𝒙
using the updated 𝜽 using 𝑁 training data points. This variance in the posterior predictive distribution
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(a) 𝜆 = 1. (b) 𝜆 = 10−5.

Figure 3.5: Regularized Logistic Regression with multiple 𝜆 values. Figure courtesy Murphy (2022).

is a function of the given observation variance (𝜎2) and the parameter’s variance �̂�. This parameter
variance grows as one moves away from the training samples, representing uncertainty (Fig. 3.3b).
This indication and measure of uncertainty lacks from the MLE estimation of the parameters (Fig. 3.3a).
In the case of MLE, the optimal 𝒘𝑀𝐿𝐸 and 𝜎2𝑀𝐿𝐸 from Equations (3.10), (3.11) are plugged into the
posterior predictive distribution to obtain 𝑝 (𝑦 ∣ 𝒙⊤ ̂𝒘𝑀𝐿𝐸 , 𝜎2𝑀𝐿𝐸). The variance of this posterior predictive
distribution is independent of the new data and thus remains constant throughout (Fig. 3.3a). Moreover,
the MLE method only gives one unique function for the posterior (Fig. 3.4a) since the estimator only
optimizes for a point estimate. The Bayesian posterior allows for the sampling of a range of different
functions due to the availability of an entire distribution (Fig. 3.4b).

3.2.2. Bayesian Logistic Regression
In the previous subsection, we assumed that the prior distribution over parameters is a Gaussian.
This allowed for the analytical computation of the exact posterior distribution and the need to compute
the marginal likelihood by evaluating an integral was avoided. This property of the prior distribution
makes it a conjugate prior for the Gaussian likelihood distribution. This is not possible with all cases
of probability distributions. Such a case can be observed here, with the Logistic Regression setup
where the likelihood is assumed to be a Bernoulli distribution. With the loss of analytical tractability
of the exact posterior distribution, it is either possible to compute certain approximations to the exact
posterior or to compute a point estimate of the optimal parameter value that maximizes the posterior
distribution 𝜽𝑀𝐴𝑃. An approach to the former is discussed in the chapter 5 and the latter is called the
Maximum Aposteriori Estimation (MAP). Firstly, the posterior distribution is directly proportional to
the product of the likelihood and the prior:

𝑝 (𝒘 ∣ 𝑿, 𝒚) ∝ 𝐵𝑒𝑟(𝒚 ∣ 𝒘, 𝑿)𝑝 (𝜽) (3.20)

Assuming that the prior distribution is a standard normal distribution with zero mean, the MAP estimate
is given by:

�̂�MAP = argmin
𝒘

NLL(𝒘) + 𝜆‖𝒘‖22 (3.21)

This is a consequence of taking a negative log on both sides of the equation, as has been described in
earlier subsections. Thus, the MAP estimate of the parameters is just an 𝑙2 regularized version of the
MLE estimate of 𝒘. This is simply a consequence of assuming a standard normal prior for the weights
𝑝(𝒘) = 𝒩(𝒘 ∣ 0, 𝑰). The larger the value of 𝜆, the more the parameters are penalized for being large
(deviating from the zero-mean prior), and thus, lesser the flexibility of the model (Fig. 3.5).

The MAP estimate obtained for Linear Regression using the same assumption over the prior
weights is called Ridge Regression and follows the same negative log-likelihood, but with an additional
regularization term of the 𝑙2 norm of the weights, as in equation (3.21). Therefore, the final training
objective/ loss function for MAP estimation becomes:

ℒ(𝑤) = ℍ𝑐𝑒(𝒚, 𝜎(𝑿𝒘)) + 𝜆‖𝒘‖22 (3.22)
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for Logistic Regression and

ℒ(𝑤) = 1
2‖𝑿𝒘 − 𝒚‖

2
2 + 𝜆‖𝒘‖22 (3.23)

for Linear Regression.

3.3. Why Frequentist Statistics Works
The maximum likelihood estimator can be shown to be the best asymptotic estimator, as the number
of examples 𝑁 → ∞. The maximum likelihood estimator of a parameter has the property that as
the number of samples approaches infinity, the maximum likelihood estimate of the parameter value
converges to the true value of the data generating parameter, given certain appropriate conditions.
These appropriate conditions are:

• The true distribution 𝑝𝑑𝑎𝑡𝑎 must lie within the model family 𝑝𝑚𝑜𝑑𝑒𝑙(·; 𝜃). Otherwise, it is impossible
to recover 𝑝𝑑𝑎𝑡𝑎 using any estimator.

• The true distribution 𝑝𝑑𝑎𝑡𝑎 must correspond to exactly one value of 𝜃. Otherwise, MLE can
recover the correct 𝑝𝑑𝑎𝑡𝑎 , but will be unable to choose the true 𝜃 parameter responsible for
generating the data.

MLE can also be viewed as a simple point approximation to the Bayesian posterior 𝑝(𝜽 ∣ 𝒟)
using a uniform prior, in which case the MAP and MLE estimates become equal since the prior 𝑝(𝜽)
is independent of the parameter. Another way of reasoning for the use of MLE on why it works is the
following. The predictive distribution of MLE 𝑝(𝒚 ∣ �̂�𝑀𝐿𝐸) is actually the closest possible distribution
to the empirical distribution of the observed data. To prove this, first, the empirical distribution is
defined by the Dirac Delta distribution:

𝑝𝒟(𝑿, 𝒚) = 𝑝𝒟(𝒚 ∣ 𝑿)𝑝𝒟(𝒙) =
1
𝑁

𝑁

∑
𝑖=1
𝛿 (𝑥 − 𝑥𝑖) 𝛿 (𝑦 − 𝑦𝑖) (3.24)

Now, a model must be created that has a distribution 𝑞(𝒀 ∣ 𝑿) as close to the true 𝒟(𝒚 ∣ 𝑿) as possible.
A suitable metric to measure this is the KL Divergence:

𝐷KL(𝑝‖𝑞) =∑
𝒚
𝑝(𝒚) log 𝑝(𝒚)𝑞(𝒚)

= ∑
𝒚
𝑝(𝒚) log𝑝(𝒚)

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
ℍ(𝑝)

− ∑
𝒚
𝑝(𝒚) log 𝑞(𝒚)

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
ℍ𝑐𝑒(𝑝,𝑞)

(3.25)

where ℍ(𝑝) is the entropy of 𝑝 and ℍ𝑐𝑒(𝑝, 𝑞) is the cross-entropy between 𝑝, 𝑞. 𝐷KL(𝑝‖𝑞) ≥ 0, with
equality iff 𝑝 = 𝑞. Defining 𝑞 = 𝑞(𝒚 ∣ 𝑿) and 𝑝 = 𝑝𝒟(𝒚 ∣ 𝑿), the expected KL divergence becomes:

𝔼𝑝𝒟(𝒙) [𝐷𝕂 (𝑝𝒟(𝑌 ∣ 𝑥)‖𝑞(𝑌 ∣ 𝑥))] =∑
𝒙
𝑝𝒟(𝒙) [∑

𝒚
𝑝𝒟(𝒚 ∣ 𝑥) log

𝑝𝒟(𝒚 ∣ 𝑥)
𝑞(𝒚 ∣ 𝒙) ]

= const −∑
𝒙,𝒚
𝑝𝒟(𝒙, 𝒚) log 𝑞(𝒚 ∣ 𝒙)

= const − 1
𝑁

𝑁

∑
𝑖=1

log𝑝 (𝒚𝑖 ∣ 𝒙𝑖 , 𝜽)

(3.26)

Minimizing this is equivalent to minimizing the NLL in Equations (3.14), (3.8).
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3.4. The problem with Bayesian Statistics
Given a likelihood 𝑝(𝒟 ∣ 𝜽) and a prior 𝑝(𝜃), we can compute the posterior 𝑝(𝜃 ∣ 𝒟) using Bayes
rule (Equation (3.15)). However, actually performing this computation is usually analytically intractable,
except for the cases where the prior selected is a conjugate to the likelihood distribution (Section 3.2.1),
or models where all the latent variables come from a small finite set of possible values. This limits our
selection of priors to only the conjugate cases, depending on the likelihood distribution. This also
means that the choice of the prior is now made on the basis of mathematical convenience rather than
as a reflection of prior beliefs. Moreover, in cases where there is no prior information available about
the parameters, a poor choice of the prior distribution can consequently give poor results with high
confidence. This leads to drawing misleading conclusions about the true data distribution.

3.5. Structural Causal Models
In order to study the questions of causality, there must be a principled way to set the assumptions
about the causal story behind a data set. To do so, the concept of the structural causal model (SCM)
comes into the picture, which is a way of describing the relevant features of the world and how they
interact with each other. Specifically, a structural causal model describes how nature assigns values to
variables of interest. Every SCM is associated with a graphical causal model, which consists of a set of
nodes representing the variables in the dataset and edges representing the relationship between the
nodes. This text only deals with graphical models that are directed acyclic graphs (DAGs). Because
of the association between SCM and graphs, graphs can provide the definition of causation in a given
dataset. Specifically, if, in a graphical model, a variable 𝑿 is the child of another variable 𝒀, then 𝒀 is a
direct cause of 𝑿 and if 𝑿 is a descendant of 𝒀, then 𝒀 is a potential cause of 𝑿.

3.5.1. Decomposition Rules
For any model whose graph is acyclic, the joint distribution of the variables in the model is given by the
product of the conditional distributions 𝑃(𝑐ℎ𝑖𝑙𝑑 ∣ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠) over all the families in the graph. Formally,
this is written as:

𝑃 (𝑥1, 𝑥2, … , 𝑥𝑛) =∏
𝑖
𝑃 (𝑥𝑖 ∣ 𝑝𝑎𝑖) (3.27)

where 𝑝𝑎𝑖 stands for the parents of child nodes 𝑥𝑖, and the index 𝑖 is over all possible nodes it the
graph (𝑛). For example, consider the simple chain graph 𝑿 → 𝒀 → 𝒁. For this, the joint distribution can
be decomposed as:

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧) = 𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦 ∣ 𝑋 = 𝑥)𝑃(𝑍 = 𝑧 ∣ 𝑌 = 𝑦) (3.28)

3.5.2. Rules of Conditional Independence
In most practical cases, we do not have a probabilistically specified causal model, but only a graphical
structure of the model based on our assumptions of the underlying generative process of the data.
We know the causal relationships of the variables, but we do not know the strength or nature of the
relationships. Even with such limited information, we can discern a great deal about the data set
generated by the model. From an unspecified graphical causal model, i.e., one in which we know
which variables are functions of which others, but not the specific nature of the functions that connect
them, we can learn which variables in the data set are independent of each other and which are
independent of each other conditional on other variables. These independencies will be true of every
data set generated by a causal model with that graphical structure, regardless of the specific functions
attached to the SCM (Glymour, Pearl, and Jewell 2016).

Rule 1: Conditional Independence in Chains Two variables, 𝑨 and 𝑪, are conditionally inde-
pendent given 𝑩, if there is only one unidirectional path between 𝑨 and 𝑪, and 𝑩 is any set of variables
that intercepts that path (Fig. 3.6a).

Rule 2: Conditional Independence in Forks If a variable 𝑪 is a common cause of variables
𝑨 and 𝑩 (Fig. 3.6b), and there is only one path between 𝑨 and 𝑩, then 𝑨 and 𝑩 are independent
conditional on 𝑪.
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(a) Chain (b) Fork (c) Collider

Figure 3.6: Types of DAGs. Figure courtesy Glymour, Pearl, and Jewell (2016)

Rule 3: Conditional Independence in Colliders If a variable 𝑪 is the collision node between
two variables 𝑨 and 𝑩 (Fig. 3.6c), and there is only one path between 𝑨 and 𝑩, then 𝑨 and 𝒃 are
unconditionally independent but are dependent conditional on 𝑪 and any descendants of 𝑪.

Figure 3.7: The DAG of TRIDENT with dotted lines indicate inference and solid lines refer to generative
processes. The dependency of 𝒛𝑙 on 𝒛𝑠 has been introduced in order to incorporate their conditional dependence

given 𝒙.

The DAG of TRIDENT has been specified in Fig. 3.7 of the scientific article. It is important to
notice that 𝒙 acts as the collider node for 𝒛𝑙 and 𝒛𝑠 since these two latent variables are parents of 𝒙, as
is the case in Fig. 3.6c. This means that 𝑞(𝒛𝑙 , 𝒛𝑠 ∣ 𝒙) ≠ 𝑞(𝒛𝑙 ∣ 𝒙)𝑞(𝒛𝑠 ∣ 𝒙) since 𝒛𝑙 and 𝒛𝑠 are dependent
on each other conditional on 𝒙. This is why the inference mechanics are assumed to have a factorized
form 𝑞(𝒛𝑙 , 𝒛𝑠 ∣ 𝒙) = 𝑞(𝒛𝑠 ∣ 𝒙)𝑞(𝒛𝑙 ∣ 𝒙, 𝒛𝑠). This way a path is forged to allow necessary semantic latent
information to flow through the label inference network. This could have been assumed to be the other
way round as: 𝑞(𝒛𝑙 , 𝒛𝑠 ∣ 𝒙) = 𝑞(𝒛𝑙 ∣ 𝒙)𝑞(𝒛𝑠 ∣ 𝒙, 𝒛𝑙), but this does not hold logical relevance because
label information does not directly contribute to the extraction of semantic features.



4
Deep Learning

Deep neural networks are biologically inspired function approximators that are designed to perform
a wide array of tasks such as text modelling, speech synthesis, tabular data prediction, image clas-
sification, activity recognition, 3D scene generation etc. These networks are typically compositions
of multiple functions (neurons) stacked on top of each other that operate in parallel. Each of these
functions/units can be analogously thought of as neurons (McCulloch and Pitts 1943) that receive an
input from the previous network of units as a vector and output a scalar activation value.

4.1. Deep Feedforward Networks

Figure 4.1: Multilayer Perceptron with 1 layer. Figure courtesy A. Zhang et al. (2021)

Deep feedforward networks, also called multilayer perceptrons (MLPs), process data to find
patterns and extract meaningful information for statistical generalization. This type of networks are
composed of multiple functions, connected in a chain, to give the final output. The length of the chain
is called the depth of the network while each component in the chain is called a layer. For eg: 𝑓(𝒙) =
𝑓(3)(𝑓(2)(𝑓(1)(𝒙))) represents a neural network of depth 3 where 𝑓(1), 𝑓(2) and 𝑓(3) are the first, second
and third layers of the neural network. The goal of this network 𝑓(𝒙) is to approximate some true
function 𝑦 = 𝑓∗(𝒙) that maps the input 𝒙 to the output 𝑦. This is done by optimizing the parameters 𝜽 of
the neural network function 𝑓(𝒙; 𝜽) that result in the best approximation of the true function. A question
that arises is that why do we even need these deep neural networks particularly? This is because of
their unique ability to be Universal Function Approximators Hornik, Stinchcombe, and White 1989.

27
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(a) ReLU (b) Sigmoid (c) Leaky ReLU (d) Tanh

Figure 4.2: Activation functions commonly used in practice.

It has been proven in prior literature that even with a single hidden layer, given enough nodes and the
right set of parameters 𝜽, we can potentially model any function using MLPs. In other words, given
enough number of nodes stacked on top of each other along with non-linear transformations, a neural
network can potentially model any function possible. It is important to note here that the universal
approximation theory holds true only in the presence of non-linear transformations and not the affine
transforms alone. This is because it is impossible to have all data distributions, sampled from reality,
to be fit with only a linear parameterization of the given distribution. A few of the commonly used
activation functions have been illustrated in Fig. 4.2.

Formally, the output of an MLP is calculated as follows:

𝑯 = 𝑔1(𝑿𝑾(1) + 𝒃(1))
𝑶 = 𝑔2(𝑯𝑾(2) + 𝒃(2))

(4.1)

where 𝑿 ∈ ℝ𝑁𝑥𝑑 represents the dataset with 𝑁 samples and 𝑑 features, 𝑯 ∈ ℝ𝑁𝑥ℎ represents the
outputs of the hidden layer with ℎ hidden units or dimensionality of the hidden layer output,𝑾(1) ∈ ℝ𝑑𝑥ℎ
and 𝒃(1) ∈ ℝ1𝑥ℎ being the weights and biases of the first layer, 𝑾(2) ∈ ℝℎ𝑥𝑞 and 𝒃(2) ∈ ℝ1𝑥𝑞 being
the weights and biases of the second layer, 𝑶 ∈ ℝ𝑛𝑥𝑞 being the output of the MLP with dimensionality
𝑞 and 𝑔1, 𝑔2 being non-linear activation functions. To build more general and computationally heavy
MLPs that posses greater capacity for approximation, more hidden layers can be stacked on top of
each other instead of just one, as is illustrated in Equation (4.1) and Fig. 4.1.

4.1.1. Stochastic Gradient Descent
Until now, objective functions have been derived using multiple perspectives of distribution modelling
and function approximators have also been discussed for optimal modeling of these distributions. How-
ever, all the estimators of network parameters have to be optimized for minimizing the negative log-
likelihoods of multiple tasks. To optimize for the minimum loss with respect to the network parameters,
Gradient Descent and its variants are the most used methods in practice. As the name suggests, gra-
dient descent is a gradient based optimization algorithm that iteratively operates on convex functions
to find the optimal parameters. Suppose that the function to be optimized is 𝑦 = 𝑓(𝑥). The derivative
of this function is given by 𝑓′(𝑥) = 𝑑𝑦

𝑑𝑥 , which gives the slope of the function (for 1 dimensional domain
and co-domain) 𝑓(𝑥) at the given point 𝑥. The slope also indicates the change in 𝑦, if a change is made
in 𝑥. This is a useful property because now, with this derivative information, it is possible to indicate
the direction of movement for the parameter in order to “settle" in a local minima where the derivative
𝑓′(𝑥) = 0. This is illustrated in Fig. 4.3. Finally, the gradient descent procedure involves taking a step
in the opposite direction of the gradient in order to settle in a minima:

𝒙′ = 𝒙 − 𝜖∇𝒙𝑓(𝒙) (4.2)

where 𝜖 is the size of the step taken in each iteration.

As far as deep learning is concerned, the parameter space consists of thousands of dimensions



4.1. Deep Feedforward Networks 29

Figure 4.3: Gradient descent algorithm uses the derivative of the cost function to find the optimal direction of
movement for the parameters. Figure courtesy Goodfellow, Bengio, and Courville (2016)

and thus the loss functions contain many more local minima and saddle points than a global minimum.
Therefore, it is common to settle for finding local minima that has a value very close to the actual global
minimum. Moreover, deep learning involves using large training datasets for good generalization, but
large datasets are also much more computationally difficult to process. In order to run the gradient
descent algorithm on the entire dataset, a computation cost of the order 𝒪(𝑁) is required:

∇𝜽𝐽(𝜽) =
1
𝑁

𝑁

∑
𝑖=1
∇𝜽𝐿 (𝒙(𝑖), 𝑦(𝑖), 𝜽) (4.3)

This operation becomes computationally intractable for training datasets containing billions of samples.
Thus, stochastic gradient descent is used instead of gradient descent where, the gradient is com-
puted for only a small mini-batch containing a few 𝑚 << 𝑁 samples. This works since the gradient is
an expectation of the derivative of the loss function, over the distribution of the dataset. This expecta-
tion can be computed with a much smaller number of samples, as opposed to using the entire dataset.
The expectation is computed as follows:

𝒈 = 1
𝑚∇𝜽

𝑚

∑
𝑖=1
𝐿 (𝒙(𝑖), 𝑦(𝑖), 𝜽) (4.4)

Since the algorithm now operates on only 𝑚 instead of 𝑁 samples, multiple random sampling passes
are carried out where 𝑚 random samples are drawn from the entire training dataset. Finally, steps
are taken in the opposite direction of the gradient in the parameter space, until convergence. This is
represented as:

𝜃 ← 𝜃 − 𝜖𝑔 (4.5)

4.1.2. Backpropagation
The stochastic gradient descent procedure described in the previous subsection requires to compute
the derivative of the loss function with respect to all the function parameters. When using a deep
neural network, the derivative must be computed with respect all the thousands of parameters. To do
so, an efficient method is developed called backpropagation which involves computing the gradients
of outputs with respect to inputs and parameters, starting from the last output of the network which is



4.2. Convolutional Neural Networks 30

the loss function value, with respect to input, which is the output of the neural network function. This
computation is carried out recursively till the computation reaches the input layer of the neural network
and thus all the necessary derivatives have been calculated. This procedure, in other words, is also
called the chain rule of derivatives in calculus. Finally, all the derivatives are collected in a vector of
gradients as follows:

𝜵𝜽𝐿(𝑓(𝒙; 𝜽), 𝑦) = [
𝜕𝐿
𝜕𝑤ℎ

, 𝜕𝐿𝜕𝑏ℎ
, 𝜕𝐿
𝜕𝑤ℎ−1

, 𝜕𝐿
𝜕𝑏ℎ−1

, … 𝜕𝐿
𝜕𝑤1

, 𝜕𝐿𝜕𝑏1
]
⊤

(4.6)

where ℎ is the total number of layers in the neural network.

4.2. Convolutional Neural Networks
Convolutional neural networks (CNNs) are a special class of neural networks that are designed particu-
larly to process data that has a grid-like topology. This makes it a natural fit for operating on image data
(2𝐷 grids) or even time-series. CNNs are ubiquitous in the realm of computer vision because of their
powerful and efficient ability to process an image’s rich spatial structure. MLPs are fully-connected
networks that would operate on the image’s grid of pixels by flattening it first and then treating each
pixel as a separate dimension. This is massively inefficient because of two reasons:

• An image grid comprises of a large number of pixels in totality, generally anywhere between
84 × 84 to 1024 × 1024, or even more, depending on the resolution of the image. Operating on
a massive number of dimensions requires that many more parameters, one for each in the first
layer of the MLP, and then lesser or more, depending on the network architecture. This makes
the optimization procedure computationally costly and inefficient.

• By operating on each pixel separately, the MLP disregards the rich spatial structure of the image.
This spatial structure is of great importance since it forms the essence of what an image depicts.

Convolutional neural networks are neural networks that use the convolution operation instead of stan-
dard matrix multiplication in at least one of their layers, as opposed to MLPs that simply use matrix
multiplication. (Goodfellow, Bengio, and Courville 2016)

To start with CNNs, it is apt to first understand what the convolution operation is. The convolution
function is computed between two real valued functions 𝑥,𝑤 ∶ ℝ𝑑 → ℝ and is defined as:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∫𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎 (4.7)

In other words, the convolution operation measures the overlap between 𝑥 and 𝑤 when one function
is "flipped" and shifted by 𝑡. The first argument is known as the input (in this case 𝑥) and the second
one, the kernel (in this case 𝑤). The output is known as the feature map. For discrete functions, the
integral becomes a sum and thus the convolution operation is defined as:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =
∞

∑
𝑎=−∞

𝑥(𝑎)𝑤(𝑡 − 𝑎) (4.8)

These definitions of convolution are for the single-dimensional case. However, as discussed ear-
lier, in deep learning applications, the use is for multi-dimensional data such as images which are
2-dimensional. In these cases, the convolution is defined over multiple axes as:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =∑
𝑚
∑
𝑛
𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) =∑

𝑚
∑
𝑛
𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

(4.9)
where 𝐼 and 𝐾 are two-dimensional input and kernel, respectively. The second line in Equation (4.9)
indicates that the convolution operation is commutative. What is common in practice is to use the
cross-correlation function, which is the same as convolution, but without the flipping of the kernel:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =∑
𝑚
∑
𝑛
𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛). (4.10)
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Deep learning libraries such as PyTorch (Paszke et al. 2019) actually implement cross-correlation
but call it convolution. This is what has been followed in the rest of the text too. A visual representation

Figure 4.4: Convolution operation (cross-correlation without flipping). Figure courtesy Goodfellow, Bengio, and
Courville (2016)

of this convolution operation applied to a 2𝐷 grid (can be interpreted as an image) has been illustrated
in Fig. 4.4. CNNs not only use one such kernel, but multiple of these with different weight values to
extract a large variety of features at every step/layer of the convolutional neural network. The number
of kernels in a convolutional operation is referred to as the number of channels in a convolutional
operation.

4.2.1. Why Convolutions?
As mentioned earlier, the unique ability of convolutions to incorporate the structural information of an
image in its processing helps improve a deep learning algorithm since it encodes the prior knowledge
that nearby pixels in an image are similar and thus need similar processing, rather than having separate
weights for them. This property of CNNs is called Parameter Sharing.

In standard MLPs, all elements of a weight layer are used once when computing the output of
a layer and is multiplied by one element of the input once only. But in CNNs, each value in a kernel
is is used at every position of the input grid (except boundary values in some cases where the input
grid is not padded). This means that only one set of parameters (all values in a kernel) are learnt for
CNNs, rather than learning a different weight value for each and every location as is the case with
MLPs (Fig. 4.5).

Parameter sharing also makes CNNs equivariant to translation. This means that the output
changes in exactly the same way the input changes (Fig. 4.6). This is particularly relevant for process-
ing images since if an object in the image changes its location, then the feature map representation
of the image also changes accordingly. This helps design particular convolutions that extract specific
types of features, since they function in the same way throughout the space of the image and extract
those features from all parts of the image.
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Figure 4.5: Top: Black arrow indicates use of the central weight in 3-element kernel in a CNN. Bottom: Black
arrow indicates the use of a weight matrix element in MLP. Figure courtesy Goodfellow, Bengio, and Courville

(2016)

Figure 4.6: An example indicating the same leftward shift in output as the input.

Figure 4.7: Highlighting the output units 𝑠 that are influenced by the input unit 𝑥 in the case of a 3-element kernel
convolution (top) and fully connected matrix multiplication (bottom). Figure courtesy Goodfellow, Bengio, and

Courville (2016)

Finally, CNNs typically have sparse connections or sparse weights instead of fully connected
weights. This is because the kernel’s size is typically set to be much smaller than the image’s size.
This is done so as to process an image and extract local features from small neighbourhood of pixels
throughout the image, with the help of specialized convolutions. For example, a kernel can be designed
to detect edges and contours in an image that only occupy a few hundreds of pixels. This is much more
efficient than processing the image entirely all at once using millions of pixel values. This also makes
CNNs less computationally expensive and memory light (Fig. 4.7).

Although convolution is equivariant to translation, it is not equivariant to other transformations
such as scale or rotation. In order to handle this, Pooling is used after a convolutional layer in standard
CNNs. Pooling operates on small neighbourhoods (just like a kernel) of an image and returns one
output for the neighbour. One such pooling operation is average pooling that returns the average
of the input neighbourhood of pixels. Pooling helps making a CNN approximately invariant to small
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translations. Invariance is useful when we care about detecting certain features in the image grid
rather than actually locating their exact position in the final feature map.

Figure 4.8: Typical convolutional block in a CNN comprises of a convolution operation, followed by a
non-linearity induced by an activation function and then finally a pooling operation. Figure courtesy Goodfellow,

Bengio, and Courville (2016).

A Convolution block in a CNN generally comprises of the components depicted in Fig. 4.8.
Multiple of these convolutional blocks are stacked layer after layer, with different kernel and pooling
kernel sizes to extract meaningful feature maps from input images to be used for the downstream task.
One of the first such CNNs was developed by Yann LeCun, called the LeNet (LeCun et al. 1998), as

Figure 4.9: Flow of data in the LeNet. The input image shows a handwritten digit ’7’ and output is the probability
over 10 possible classes. Figure courtesy A. Zhang et al. (2021).

shown in Fig. 4.9. An example of feature maps that can be extracted from CNNs has been illustrated
in Fig. 4.10.
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Figure 4.10: Feature maps (left) extracted from a CNN with 4 convolutional blocks with the learnt convolutional
kernels (right). The rows indicate 4 experiments run in parallel for the same handwritten digit classification task,

with columns indicating the different feature maps extracted in each experiment.

4.3. Attention
The optical nerve of a human’s visual system receives massive amounts of sensory input, far more
than what it can process. Thankfully for us, we posses the ability to only attend to certain stimuli
and let the other slide. Focus and concentration grant humans the ability to consciously divert their
attention to certain matters of interest, which has had a great part to play in the natural selection of
species too. Inspired by this biological ability of human beings to attend to relevant stimuli, Attention
mechanisms are built mathematically that power Transformers, responsible for creating large language
models such as GPT-3 (Brown et al. 2020).

The idea of attention dates back to 1964, when Nadarya and Watson developed the Nadarya-
Watson kernel regression (Nadaraya 1964; Watson 1964). In this version of regression, the output that
must be predicted 𝑦 = 𝑓(𝑥) is the normalized, kernel-weighted sum of the input locations:

𝑓(𝑥) =
𝑛

∑
𝑖=1

𝐾 (𝑥 − 𝑥𝑖)
∑𝑛𝑗=1 𝐾 (𝑥 − 𝑥𝑗)

𝑦𝑖 (4.11)

where 𝑛 equals the total number of observed/training data points and 𝐾 is the kernel that is used. This
can be re-written from the perspective of attention:

𝑓(𝑥) =
𝑛

∑
𝑖=1
𝛼 (𝑥, 𝑥𝑖) 𝑦𝑖 (4.12)

where 𝑥 is the query and (𝑥𝑖 , 𝑦𝑖) are the key-value pairs. Notice that the weight that each 𝑦𝑖 contributes
to the final output value 𝑦 = 𝑓(𝑥) is decided by the attention weight 𝛼(𝑥, 𝑥𝑖) in Equation (4.12). The
attention weights over all possible keys for a given query forms a probability distribution due to their
normalization and non-negative values. The kernel can be chosen to be any relevant kernel such as
the Gaussian or Softmax kernel, depending on the downstream application.

A very similar version of this attention has been proposed in Vaswani et al. 2017, which is
also known as the scaled dot-product attention. As the name suggests, the attention weighting
function is a simple dot-product that is scaled by the square root of the dimensionality of the query/key
representations. These representations are generally extracted by separate neural networks for query,
key and values. For a mini-batch of 𝑛 queries and𝑚 key-value pairs, where the query mini-batch matrix
𝑸 has a dimensionality of ℝ𝑛×𝑑, value matrix 𝑲 has a dimensionality of ℝ𝑚×𝑑 and the value mini-batch



4.3. Attention 35

Figure 4.11: Illustration of Single and Multi-head attention as proposed in Vaswani et al. (2017).

matrix 𝑽 has a dimensionality of ℝ𝑚×𝑣, the scaled dot-product attention can be computed as follows:

softmax(QK
⊤

√𝑑
)V ∈ ℝ𝑛×𝑣 . (4.13)

This attention mechanism is now widely used in almost all attention implementations due to its im-
pressive efficacy and widespread generalizability across multiple downstream tasks. This version of
attention is used in most Transformers, Devlin et al. 2018; Yinhan Liu et al. 2019; Brown et al. 2020
being a few notable examples. There is also a possibility to have multiple different versions of the query,
key and value representations for each data point. This helps the network extract multiple represen-
tations for the same data points that may be relevant in different contexts for the attention function to
then operate on. In other words, multiple representations of self attention allows the network to jointly
attend to information from different representation subspaces at different positions. This is known as
Multi-headed self-attention, and has been depicted in Fig. 4.11.

Support Set Feature Maps Query Set Feature Maps

Figure 4.12: Illustration of the AttFEX operating point-wise on pixel distributions across corresponding feature
maps. The self attention module then fuses information extracted across the various feature maps.

TRIDENT utilizes a special version of convolutional neural networks in its transductive feature-
extraction module AttFEX (Fig. 4.12). These networks have a kernel size of 1×1, and are thus called
Conv1 × 1. This specific class of convolutions is used in the AttFEX module since it is meant to only
see through and compare the feature maps (and not images) across all images in a task. The feature
maps already contain local spatial features from images since they are extracted using larger (3 × 3)
convolutional kernels. The AttFEX module now only operates in a point-wise manner on pixel distri-
butions of these information rich feature maps since all of these have been extracted using identical
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sets of kernels. Thus, operating on identically processed corresponding pixels of feature maps is much
more efficient and appropriate than using a larger convolutional kernel again to pool neighbouring pixel
information. AttFEX makes use of a scaled dot-product attention mechanism (Vaswani et al. 2017) as
well, to then fuse information extracted across the various feature maps in the previous step. Finally,
we end up with masks that contain task-relevant class-discriminating information which is multiplied
with the original feature maps to render them task-specific.



5
Variational Inference

All fields of science rely on hypothesizing theories about the underlying processes of nature and then
testing these theories by means of experimentation. Hypothesizing theories is equivalent to assuming
a structural causal model for the process in question, as discussed in detail in Chapter 3, Section 3.5.
The graphical model explains causal relationships between all the variables. Effectively, the aim is to
learn a joint distribution over all the variables in the SCM and then testing them against observations
collected from reality. This perspective is known as generative modeling, as opposed to discriminative
modeling, where the aim is to only learn a predictor given the data (Diederik P Kingma, Welling, et al.
2019).

Generative modeling provides an intuitive and interpretable model of the assumptions made
about the underlying laws and constraints of the generative process. These are reflected in the vari-
ables and their relationships, while other information that is considered to be irrelevant is discarded as
noise. The inferred joint distribution of the variables along with the graphical model naturally expresses
the causal structure which in turn generalizes much better to unseen data distributions/ situations when
compared to correlations. This is because of the fact that correlation between two variables is an in-
sufficient metric to conclude any cause and effect relationship between them. The correlation could
be completely coincidental or maybe influenced by some other confounding latent factor. Moreover, a
generative model can also be used as a discriminative one by plugging in the inferred joint probabilities
into the Bayes rule (Equation 3.15).

Discriminative models optimize for a mapping between inputs and future predictions. A gen-
erative model, however, first identifies the future output and then understands the process behind it
by inferring distributions of all the variables involved. While this characteristic of generative models is
useful for inferring and discovering important traits and patterns from data, it also is disadvantageous
in the sense that it makes stronger assumptions about the data. This leads to higher asymptotic bias
(Banerjee 2007) in generative models, as compared to their discriminative counterparts. Thus, when
the causal assumptions about the data are incorrect (which to some degree they are in almost all
cases), and there is sufficient amount of data available at one’s disposal, a discriminative model would
typically give fewer errors in solely discriminative tasks. However, depending on the amount of data
and labels available, and the nature of the downstream task, it maybe worthwhile to study and make
assumptions about the generative process (Durk P Kingma et al. 2014; Sohn, H. Lee, and Yan 2015;
Sønderby et al. 2016).

5.1. Why Approximate Inference?
When designing an SCM for a process, it is not necessary to always only have fully-observed variables.
In other words, it is possible that one may need/want to include certain factors of variation/ random
variables in the directed graphical model that are not a part of the dataset. These unobserved variables
are called latent variables that are a part of the model, but not of the dataset. Usually, in practice, and

37
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throughout this text (from now on), 𝑧 is used to denote such variables. In order to infer a joint probability
distribution over the variables, one needs to consider the Bayesian perspective for statistical modeling
3.2. However, this requires to compute some form of the marginal likelihood of observed data, which
in most cases, is analytically intractable 3.4. For example, in a simple latent variable model where
𝑧 → 𝑥, the computation of the exact posterior distribution 𝑝𝜃(𝑧 ∣ 𝑥) =

𝑝𝜃(𝑧,𝑥)
𝑝𝜃(𝑥)

is intractable due to the

intractability of the marginal 𝑝𝜃(𝑥) = ∫𝑝𝜃(𝑥, 𝑧)𝑑𝑧. Considering an example regarding deep learning
models where the model parameters 𝜽 are the latent variables, and the exact posterior distribution
𝑝(𝜽 ∣ 𝒟) must be computed. This involves computing the marginal likelihood of the dataset 𝒟 by
evaluating an integral defined over the extremely high-dimensional space of the model parameters
𝜽. Computing this integral w.r.t. millions of neural network parameters is analytically intractable. MAP
estimation is a workaround to this intractability by estimating a prior regularized point estimate, however
it avoids the computation of the distribution completely 3.2. Thus, it also fails to provide any measure of
uncertainty about the inferred variables. This motivates the need to resort to Approximate Inference
techniques.

5.2. Variational Free Energy and Evidence Lower Bound
Variational inference is an approximate inference technique that has gained attention due to its rela-
tively low computational cost and good generalizational capabilities. It allows one to infer probability
distributions over variables by turning an intractable inference problem into a tractable optimization
problem.

Consider a generative model with latent variables 𝒛 and observed variables 𝒙 while the fixed
model parameters for the generative distribution are 𝜽. Since computing the posterior distribution
𝑝𝜽(𝒛 ∣ 𝒙) is intractable, an approximation to this posterior 𝑞(𝒛) is assumed. Since goal is to have an
approximate posterior that is as close as possible to the true posterior, the following objective/loss is
minimized:

𝑞 = argmin
𝑞∈𝒬

𝐷𝑲𝑳 (𝑞(𝒛)‖𝑝𝜽(𝒛 ∣ 𝒙)) (5.1)

In order to optimize the approximate posterior over a family of distributions 𝒬, the distributions are
parameterized using the variational parameters 𝝍. Now, the optimization problem is shifted from
minimizing with respect to 𝑞, to 𝝍. The best variational parameters are given by:

𝜓∗ = argmin
𝜓

𝐷𝕂𝕃 (𝑞(𝒛 ∣ 𝜓)‖𝑝𝜽(𝒛 ∣ 𝒙))

= argmin
𝜓

𝔼𝑞(𝒛∣𝜓) [log 𝑞(𝒛 ∣ 𝜓) − log(𝑝𝜽(𝒙 ∣ 𝑧)𝑝𝜽(𝒛)𝑝𝜽(𝒙)
)]

= argmin
𝜓

𝔼𝑞(𝒛∣𝜓) [log 𝑞(𝒛 ∣ 𝜓) − log𝑝𝜽(𝒙 ∣ 𝒛) − log𝑝𝜽(𝒛)]⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
ℒ(𝜓∣𝜽,𝒙)

+ log𝑝𝜽(𝒙)

(5.2)

Note that the variational parameters are optimized for a given 𝒙. The last term log𝑝𝜽(𝒙) is independent
of 𝝍 and thus can be dropped from the optimization problem. The remaining loss function can now be
reduced to:

ℒ(𝜓 ∣ 𝜽, 𝒙) = 𝐷𝑲𝑳 (𝑞(𝒛 ∣ 𝜓)‖𝑝𝜽(𝒙, 𝒛)) ≜ 𝔼𝑞(𝒛∣𝜓) [log 𝑞(𝒛 ∣ 𝜓) − log𝑝𝜽(𝒙, 𝒛)] (5.3)

Analogous to the Helmholtz Free Energy of a thermodynamic system, this loss function represents the
Variational Free Energy (VFE), where:

ℒ(𝜓 ∣ 𝜽, 𝒙) = 𝔼𝑞(𝒛∣𝜓)[ℰ(𝒛)] − ℍ(𝑞) (5.4)

and ℰ(𝒛) represents the expected energy and ℍ(𝑞) is the entropy of the approximate latent distribution.
The VFE is an upper bound on the free energy − log𝑝𝜽(𝒙), since the KL divergence between any two
quantities is greater than zero:

𝐷𝕂(𝑞‖𝑝) = VFE(𝜓 ∣ 𝜽, 𝒙) + log𝑝𝜽(𝒙) ≥ 0 (5.5)



5.3. Amortization of Inference 39

Figure 5.1: The oval represents the set of all variational distributions parameterized by 𝝍 ∈ ℝ𝑘. The aim is to find
a point inside the oval that parameterizes a 𝑞(𝒛 ∣ 𝝍) that is closest to the true posterior 𝑝𝜽(𝒛 ∣ 𝒙). Figure courtesy

Murphy (2022).

By minimizing the VFE, the free energy (NLL of the data) is minimized, which in turn gives the best
variational parameters. This eventually results in the best approximate posterior 𝑞(𝒛 ∣ 𝝍), thus turning
the inference problem into an optimization problem.

The negative of the VFE can be interpreted as the evidence lower bound or ELBO since:

𝐿(𝜓 ∣ 𝜽, 𝒙) ≜ 𝔼𝑞(𝒛∣𝜓) [log𝑝𝜽(𝒙, 𝒛) − log 𝑞(𝒛 ∣ 𝜓)] ≤ log𝑝𝜽(𝒙) (5.6)

where the log-likelihood of the data is called the “evidence". The ELBO can be rewritten as:

𝐿(𝜓 ∣ 𝜽, 𝒙) = 𝔼𝑞(𝒛∣𝜓) [log𝑝𝜽(𝑥 ∣ 𝒛)] − 𝐷𝕂𝕃 (𝑞(𝒛 ∣ 𝜓)‖𝑝𝜽(𝒛)) (5.7)

where, by maximizing the ELBO, the log-likelihood of the data is increased. This is done by increas-
ing the expected log-likelihood of the data conditional on the latent variable, while reducing the KL
divergence between posterior and prior as a regularization term, as depicted in Fig. 5.1 .

5.3. Amortization of Inference
In the previous section, it was stated that the VFE and ELBO are only optimized for a given 𝒙. This
means that the variational parameters 𝝍 have to be initialized and then the optimization must be
repeated separately for each and every data point 𝒙 in the dataset 𝒟. Solving an optimization problem
for each 𝑞(𝒛𝑖 ∣ 𝝍𝑖)∀𝑖 ∈ [1, 𝑁] is slow and computationally expensive, especially in the context of deep
learning where datasets typically contain a few million samples. To avoid this, the inference can be
amortized by training a model with parameters 𝝓 to predict the per-sample variational parameters 𝝍𝑖
from the data point 𝒙𝑖. In this way, the cost of finding per-sample 𝝍𝑖 is reduced to finding a common
𝝓 for the entire dataset. The model with parameters 𝝓 is called the inference network 𝝍𝑖 = 𝑓𝑖𝑛𝑓𝝓 (𝒙𝑖).
This effectively changes the approximate posterior as follows:

𝑞 (𝒛𝑖 ∣ 𝝍𝑖) = 𝑞 (𝒛𝑖 ∣ 𝑓𝒊𝒏𝒇𝝓 (𝒙𝑖)) = 𝑞𝝓 (𝒛𝑖 ∣ 𝑥𝑖) (5.8)

To find the amortized ELBO for the entire dataset, the ELBO for each data point (or log-likelihood) can
be summed since it is the lower bound of the log-likelihood of each data point (Equation (5.6)). The
dataset ELBO thus becomes:

𝐿(𝝓, 𝜽 ∣ 𝒟) = 1
𝑁

𝑁

∑
𝑖=1
[𝔼𝑞𝝓(𝒛𝑖∣𝒙𝑖) [log𝑝𝜽 (𝒙𝑖 , 𝒛𝑖) − log 𝑞𝜙 (𝒛𝑖 ∣ 𝒙𝑖)]] (5.9)

The inner expectation over a single sample latent posterior can be approximated by sampling a 𝒛𝑖 from
the inferred distribution 𝑞𝜙 (𝒛𝑖 ∣ 𝒙𝑖) . Amortized inference is widely used in latent variable models and
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Figure 5.2: VAEs learn a neural network that acts as a stochastic mapping between the observed space of 𝒙
and the latent space of 𝒛. Typically the observed space has a rather complicated empirical distribution 𝑞𝒟(𝒙)

while the latent space has a relatively simpler distribution (depicted as a sphere). Figure courtesy
Diederik P Kingma, Welling, et al. (2019).

probabilistic programming, however, this may result in sub-optimal 𝝍𝑖 ’s since an implicit assumption is
made about the relationship between the data point 𝒙𝑖 and the variational parameters 𝝍𝑖 through the
inference network.

5.4. Variational Auto-Encoders
Variational autoencoders (VAEs) (Diederik P Kingma and Welling 2014) are a class of deep learning
models that are built to variationally infer latent variables in a computationally efficient way using amor-
tized inference and stochastic gradient descent. More specifically, VAEs use variational inference to
compute the intractable posterior over latent variables by assuming an approximate posterior of the
form 𝑞𝜙(𝒛 ∣ 𝒙) ≈ 𝑞𝜽(𝒛 ∣ 𝒙). The approximate posterior 𝑞(⋅) is parameterized using a neural network
𝝓, thus effectively amortizing the cost of computing a per-sample variational parameter 𝝍𝑖. The op-
timization objective of the VAE is the evidence lower bound (ELBO), just like any other variational
method.

𝐿𝜽,𝝓(𝒙) = log𝑝𝜽(𝒙) − 𝐷𝐾𝐿 (𝑞𝝓(𝒛 ∣ 𝒙)‖𝑝𝜽(𝒛 ∣ 𝒙))
≤ log𝑝𝜽(𝒙)

(5.10)

Using the derivations from Equation (5.6), (5.7), a relationship can be established between the KL
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divergence of the approximate and true posterior. Obviously, the KL divergence gives a measure of the
amount of information (negative entropy) lost when the true posterior is replaced by the approximate
posterior. Thus, maximizing the ELBO is equivalent to maximizing the log-likelihood of the data, which
in turn pushes the KL divergence to be as close to zero. This also means that the KL divergence
measures the gap between the ELBO 𝐿(𝝓, 𝜽 ∣ 𝒙) and the marginal likelihood log𝑝𝜽(𝒙). Thus, the
better the approximation of the approximate posterior, the better the log-likelihood of the data. Re-
framing the ELBO objective a little reflects the overall structure of the VAE much better, and can be
given as:

𝐿𝜽,𝝓(𝒙) = 𝔼𝑞𝝓(𝒛∣𝒙) [log𝑝𝜽(𝒙, 𝒛) − log 𝑞𝝓(𝒛 ∣ 𝒙)]
𝐿𝜽,𝝓(𝒙) = 𝔼𝑞𝝓(𝒛∣𝒙) [log𝑝𝜽(𝒙 ∣ 𝒛) + log𝑝𝜽(𝒛) − log 𝑞𝝓(𝒛 ∣ 𝒙)]
𝐿𝜽,𝝓(𝒙) = 𝔼𝑞𝝓(𝒛∣𝒙) [log𝑝𝜽(𝒙 ∣ 𝒛)] − 𝐷𝐾𝐿 (𝑞𝝓(𝒛 ∣ 𝒙)‖𝑝𝜽(𝒛))

(5.11)

where 𝑞𝝓(𝒛 ∣ 𝒙) forms the inference network and 𝑝𝜽(𝒙 ∣ 𝒛) forms the generative network, that re-
constructs 𝒙 using 𝒛 as input and neural network parameters 𝜽. A more intuitive explanation of the
functioning of a VAE has been depicted in Fig. 5.2.

5.4.1. Stochastic Gradient Descent Optimization of the ELBO
By having the variational and fixed parameters (𝝓, 𝜽) in the same network architecture, the VAE jointly
optimizes both the sub-networks using stochastic gradient descent (Section 4.1.1). Assuming that
the data has been independently sampled from identical distributions (i.i.d.), the ELBO for the entire
dataset can be written as:

𝐿𝜽,𝝓(𝒟) = ∑
𝒙∈𝒟

ℒ𝜽,𝝓(𝒙) (5.12)

For SGD, the gradients of the ELBO must be computed w.r.t. the inference and generative parameters.
The generative parameter gradients are calculated as follows:

∇𝜽𝐿𝜽,𝜙(𝒙) = ∇𝜽𝔼𝑞𝝓(𝒛∣𝒙) [log𝑝𝜽(𝒙, 𝒛) − log 𝑞𝜙(𝒛 ∣ 𝒙)]
= 𝔼𝑞𝝓(𝒛∣𝒙) [∇𝜽 (log𝑝𝜽(𝒙, 𝒛) − log 𝑞𝝓(𝒛 ∣ 𝒙))]
≃ ∇𝜽 (log𝑝𝜽(𝒙, 𝒛) − log 𝑞𝝓(𝒛 ∣ 𝒙))
= ∇𝜽 (log𝑝𝜽(𝒙, 𝒛))

(5.13)

The last line is a Monte Carlo approximation of the second line in Equation (5.13). Note that the
gradients of the generative parameters are unbiased since the expectation is w.r.t. to the inference
parameters and thus the gradient operation can be easily computed for the terms inside the expectation
operation. In the case of the variational parameters, the gradients are:

∇𝜙𝐿𝜽,𝝓(𝒙) = ∇𝜙𝔼𝑞𝝓(𝒛∣𝒙) [log𝑝𝜽(𝒙, 𝒛) − log 𝑞𝝓(𝒛 ∣ 𝒙)]
≠ 𝔼𝑞𝝓(𝒛∣𝒙) [∇𝜙 (log𝑝𝜽(𝒙, 𝒛) − log 𝑞𝝓(𝒛 ∣ 𝒙))] .

(5.14)

These gradients are unbiased since the expectation and the gradient operation, both are to be com-
puted w.r.t. the inference parameters 𝝓.

5.4.2. Reparameterization Trick
Due to the intractability of the unbiased gradient of the variational parameters, a change of variables
is introduced in the sampling of the approximate latent posterior, called the reparameterization trick.
Concretely, the random variable 𝒁 ∼ 𝑞𝝓(𝒁 ∣ 𝒙) is transformed to now be a function of another random
variable 𝝐, given 𝒙,𝝓:

𝒛 = 𝒈(𝜖,𝝓, 𝒙) (5.15)

where 𝝐 is independent of 𝒙,𝝓. Now, the expectation is transformed into:

𝔼𝑞𝜙(𝒛∣𝒙)[𝑓(𝒛)] = 𝑬𝑝(𝝐)[𝑓(𝒛)] (5.16)
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Figure 5.3: Gradients w.r.t. 𝜙 can now be unbiased since the expectation has a change of variable to 𝜖. Figure
courtesy Diederik P Kingma, Welling, et al. (2019).

and the gradient now becomes unbiased as follows:

∇𝜙𝔼𝑞𝝓(𝒛∣𝒙)[𝑓(𝒛)] = ∇𝜙𝔼𝑝(𝝐)[𝑓(𝒛)]
= 𝔼𝑝(𝝐) [∇𝜙𝑓(𝒛)]
≃ ∇𝜙𝑓(𝒛).

(5.17)

𝝐 ∼ 𝑝(𝝐) can be simulated using random noise. An illustration for the reparameterization trick can be
seen in Fig. 5.3.

5.4.3. Practical Applications

Figure 5.4: A VAE’s objective function is comprised of a reconstruction term that makes the inference and
generator network efficient, and a KL divergence term that acts as a regularizer for the inferred latent

distributions. Figure courtesy Joseph Rocca.1

In practical applications of the VAE, the likelihood of the data conditional on the latent variable 𝑝𝜽(𝒙 ∣ 𝒛)
is assumed to either be Gaussian or Bernoulli, thus reducing the log-likelihood term into the mean
squared error (MSE) or the binary cross-entropy loss (BCE), as derived in Chapter 3, Section 3.1.2,
3.1.1. Also, the prior for latent variable 𝑝𝜽(𝒛) is considered to be a standard normal distribution while
1https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Figure 5.5: The KL divergence term prevents the network from “cheating" by forcing it to learn distributions
instead of very high variance narrow distributions that only optimize reconstruction loss. Figure courtesy Irhum

Shafkat.2

(a) TRIDENT’s DAG illustrating variational inference
(dotted lines) and generative process (solid lines). The
inference and generative parameters are color coded to

correspond to their respective architectures.
(b) TRIDENT’s two intertwined variational networks that

infer Z𝑙 and Z𝑠.

Figure 5.6: TRIDENT’s generative model and corresponding variational network.

the approximate posterior is assumed to be a Gaussian distribution, with its parameters 𝝁, 𝝈 parame-
terized using the inference neural network 𝝓. The KL divergence term of the VAE ELBO term (Fig. 5.4)
acts as a regularization term for the approximate posterior. When the prior is assumed to be standard
normal Gaussian with zero mean and unit variance, the KL term forces the latent distribution to be
close to this normal distribution by penalizing it when the mean deviates a lot from the origin just to
maintain high reconstruction quality. The KL divergence term also helps learn well spread distributions
instead of high-variance narrow distributions that only optimize for the reconstruction quality. This en-
sures that the inferred latent space is evenly distributed with minimally small regions that represent no
input data. This is visualized using an example of the handwritten digits dataset in Fig. 5.5.

TRIDENT follows the same principles of amortized variational inference where the variational
parameters 𝜙1 infer the latent variable Z𝑙 and 𝜙2 infers the latent variable Z𝑠. The generative model of
TRIDENT makes assumptions about the causal structure of an image and its label that are reflected
in its DAG (Fig. 5.6a). It is assumed that there are two salient latent factors that describe the essence
of an image and its label: the semantic (Z𝑠) and label (Z𝑙) latent variables. The semantic and label
latent variables are assumed to be the generative factors of the image while the label latent variable
is responsible for generating the label of the image. The inference mechanics of the latent variables,
decided by this DAG, are given in equation (1) of the scientific article. Label information is avoided as
input to the inference network 𝑞𝜙1 to utilize TRIDENT for classification and not label reconstruction.
To compensate for the lack of important label information in the inference of the label latent variable,
AttFEX is used to induce task-specificity in the feature maps of input images. This injects a semblance
of label characteristics as input in the inference network 𝑞𝜙1 , thus acting as an approximation to the true
one-hot encoded label vectors 𝑌. Finally, the variational network of TRIDENT is designed that follows

2https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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the inference and generative mechanics of our DAG. The loss function to be optimized is decided by
the ELBO derivation in equation (2) of 2, where the log-likelihood of images log𝑝𝜃2(x ∣ z𝑠 , z𝑙) is an
MSE term and the log-likelihood of labels log𝑝𝜃1(𝑦 ∣ z𝑙) is the cross-entropy term.



6
Few-Shot Learning

Deep learning has made tremendous advances in vision, speech, language and even natural sciences,
yet still remains dependent on massive amounts of data. This is far from the goal of creating artificial
“intelligence" since human beings, that have set the upper limit for intelligence, learn new skills and
abstract concepts with very few data examples. Few shot learning is an endeavour to transcend this
capability of humans onto machines, where the model must learn to generalize to new classes and
concepts, given only a few samples per class during training. Few shot classification is an instantia-
tion of the broader few shot learning problem statement, where the classifier is trained on a dataset
containing several classes, but only a few handful (typically 1 − 5) of samples per class. Given this
data-deficient setting, an ideal few shot learning algorithm must learn to generalize well and quickly
enough to classify images from new unseen test-data distributions.

6.1. Problem Definition

Figure 6.1: Illustration of a (2-way, 4-shot) setting where the each rectangular dotted box depicts a task 𝒯𝑖,
comprised of a support (𝒮𝑖) and query (𝒬𝑖) set. During testing, typically 600 − 2000 tasks are sampled for an

unbiased estimate of the performance but only 1 task 𝒯𝑗 is illustrated for the sake of simplicity.

Consider a labelled dataset 𝒟 = {(x𝑖 , 𝑦𝑖) | 𝑖 ∈ [1, 𝑁′]} of images x𝑖 and class labels 𝑦𝑖. This
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dataset 𝒟 is divided into three disjoint subsets: 𝒟 = {𝒟𝑡𝑟 ∪ 𝒟𝑣𝑎𝑙 ∪ 𝒟𝑡𝑒𝑠𝑡}, respectively, referring to
the training, validation, and test subsets. The validation dataset 𝒟𝑣𝑎𝑙 is used for model selection and
the testing dataset 𝒟𝑡𝑒𝑠𝑡 for final evaluation. Following standard few-shot classification settings Vinyals
et al. 2016; Snell, Swersky, and Zemel 2017; Sung et al. 2018, we use episodic training on a set of
tasks (also called episodes) 𝒯𝑖 ∼ 𝑝(𝒯). The tasks are constructed by drawing 𝐾 random samples from
𝑁 different classes, which we denote as an (𝑁-way, 𝐾-shot) task. Concretely, each task 𝒯𝑖 is composed
of a support and a query set, as illustrated in Fig. 6.1. The support set 𝒮 = {(x𝑆𝑘𝑛 , 𝑦𝑆𝑘𝑛) | 𝑘 ∈ [1, 𝐾], 𝑛 ∈
[1, 𝑁]} contains 𝐾 samples per class and the query set 𝒬 = {(x𝑄𝑘𝑛 , 𝑦𝑄𝑘𝑛) | 𝑘 ∈ [1, 𝑄], 𝑛 ∈ [1, 𝑁]} contains
𝑄 samples per class. For a given task, the 𝑁𝑄 query and 𝑁𝐾 support images are mutually exclusive
to assess the generalization performance.

Episodic training was proposed by Vinyals et al. (2016) to make the training process mimic the
testing phase, where the classifier’s generalization ability is tested on multiple tasks with limited labeled
samples. One might wonder why Transfer Learning based approaches are not suitable for the few shot
classification problem setting, where a deep neural network is first trained on training dataset {𝒟𝑡𝑟, and
then fine-tuned on the support sets of the testing dataset ({𝒟𝑡𝑒𝑠𝑡) tasks. The issue with this approach
is that it would severely overfit on few-shot tasks since the limited amount of labeled support samples
(1-5) would not be sufficient enough to accurately represent the true distribution of classes. This results
in high-variance fine-tuned models that fail to generalize on new unseen tasks. This claim has been
empirically verified in Vinyals et al. (2016) and Finn, Abbeel, and Levine (2017). However, more recent
works have shown the effectiveness of transfer learning based approaches (Boudiaf et al. 2020; Dhillon
et al. 2020; Tian et al. 2020; Ziko et al. 2020) by achieving state-of-the-art accuracies on standard few-
shot classification benchmarks. These works show that it is important to use transductive inference,
where information from the unlabeled query samples is used in adjusting the decision boundary, either
by iteratively propagating labels from the support to the query set or by using an additional measure of
entropy on the query samples to ensure that the decision boundary is located in a low-density region.

The following sections discuss one seminal work from each category of methodologies devel-
oped for solving few-shot image classification.

6.2. Model Agnostic Meta Learning
Model agnostic meta learning (MAML), is an optimization based few shot learning method that learns
to learn (meta-learn) by improving the learning strategy over multiple episodes/tasks (Finn, Abbeel, and
Levine 2017). More specifically, MAML trains to find an initial set of weights that can be quickly adapted
to new tasks, via just a few gradient descent steps. This quick adaptation is achieved by training the
network to maximize the sensitivity of the loss function of new tasks with respect to the parameters,
so that even small local changes in the parameters can lead to large improvements in the task loss
(Finn, Abbeel, and Levine 2017). Consider a neural network 𝑓𝜃 that must be optimized for few shot
classification. The goal is to find a set of parameters 𝜃∗ that generalize quickly within a few steps of
gradient descent (Fig. 6.2a). To do so, first the neural network performs a few steps of gradient descent
on the support set of each task from a randomly sampled meta-batch consisting of a small number of
tasks, say 𝐵 (line 7, Fig. 6.2b). This is known as the inner-update which results in a set of parameters
𝜽 = 𝜃′𝑖∀𝑖 ∈ [1, 𝐵]. Using these parameters 𝜽, the loss is computed over all the corresponding query
sets using their respective inner-updated parameters (line 10, Fig. 6.2b). This is known as the meta-
update step. This entire process makes up one iteration of the MAML algorithm. Multiple of these
iterations are carried out until convergence, in order to find the optimal meta-parameters 𝜃∗.

A VAE at least requires a few hundred samples to learn a good latent space for reconstruction.
With only 1 − 5 samples available per class in few-shot settings, the variational network would be
handicapped in estimating a good latent posterior mapping that generalizes well across tasks. Thus,
the variational and fixed parameters {𝝓, 𝜽} are made sensitive to small changes across tasks while
learning the conditional distributions of latent variables, using a MAML-style training approach.
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(a) MAML optimizes for a 𝜃 that is capable of quick
adaptation to new tasks. Figure from Finn, Abbeel, and

Levine (2017).

(b) MAML computes inner-updates on the support set and
backpropagates through the gradient descent steps of the
support adaptation, as a part of the meta-update on the
query set. Figure from Finn, Abbeel, and Levine (2017).

6.3. Prototypical Networks
Prototypical nets or proto-nets (Snell, Swersky, and Zemel 2017) is an example of the metric-learning
approach for few-shot classification. The idea here is to learn a common mapping across tasks, that
projects images to an embedding space that is optimal for classification using a distance metric. Proto-
nets solve the problem of few shot learning by addressing the key issue of overfitting on a small number
of samples, leading to poor generalization on new unseen tasks. To this end, the authors propose to
work under an assumption that a classifier should have a simple inductive bias. The aim is to learn
an embedding space where the data points cluster around a single prototype representation of each
class. First, each image is transformed into an embedding using a neural network 𝑓𝜙 that acts as the

Figure 6.3: Prototypes 𝑐𝑘 are the mean embeddings of the support examples and a query sample 𝑥 is classified
based on the distance between all pairs of 𝑐𝑘, 𝑥. Figure from Snell, Swersky, and Zemel (2017).

common embedding function used across tasks. Then, the support embeddings of each class 𝒮𝑛 are
averaged to compute the prototypes for each class:

𝒄𝑛 =
1
|𝒮𝑛|

∑
(𝒙𝑖 ,𝑦𝑖)∈𝒮𝑛

𝑓𝜙 (𝒙𝑖) (6.1)

Finally, the class conditional probabilities of the query samples are computed using a given distance
metric, which is the Euclidean distance metric in this case.

𝑝𝜙(𝑦 = 𝑛 ∣ 𝒙) =
exp (−𝑑 (𝑓𝜙(𝒙), 𝒄𝑛))

∑𝑛′ exp (−𝑑 (𝑓𝜙(𝒙), 𝒄𝑛′))
(6.2)
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The distances are normalized using the softmax activation so that these represent the probabilities of
classes. The NLL of the class-conditional probabilities is minimized using SGD, which is equivalent
to minimizing the cross-entropy. Since the euclidean distance between query samples and the mean
of each class is used to compute the class-conditionals, this method is equivalent to the nearest-
mean classifier, where the implicit assumption is that the class distributions are Gaussians with equal
covariance matrices, all being equal to 𝐼. This also reflects in the linear decision boundaries (Fig. 6.3)
between class distributions in the embedding space.

6.4. Transductive CNAPS
Transductive CNAPS (Bateni, Barber, et al. 2022), is a transductive inference and task-aware (also
called transductive feature extraction) approach that builds on Simple CNAPS (Bateni, Goyal, et al.
2020). Simple CNAPS is a metric learning approach that builds on Proto-nets by using a Mahalanobis
distance (Mahalanobis 1936) metric instead of a Euclidean distance metric. This involves estimating
the class-covariance matrices, which in turn lead to quadratic decision boundaries. An advantage of
using these is that the decision-boundary now takes into account the differences in class-distributions
resulting in improved non-linear boundaries (Fig. 6.4). The decision-boundaries also improve since the
two major flawed assumptions of unit and identical class-covariance matrices of proto-nets is relaxed
in this case. Finally, the class conditional distributions are given by:

Figure 6.4: Euclidean norm (left) assumes same 𝐼 covariance matrices whereas Mahalanobis distance (right)
incorporates different covariances. Figure from Bateni, Goyal, et al. (2020).

𝑝 (𝑦∗𝑖 = 𝑛 ∣ 𝑓𝜏𝜃 (𝒙∗𝑖 ) , 𝒮𝜏) = softmax (−𝑑𝑛 (𝑓𝜏𝜃 (𝒙∗𝑖 ) , 𝝁𝑛)) (6.3)

where 𝒙∗𝑖 is the query sample, 𝝁𝑛 is the mean of class 𝑛 and 𝑑𝑛 is given by the Mahalanobis distance
metric:

𝑑𝑘(𝒙, 𝒚) =
1
2(𝒙 − 𝒚)

𝑇 (𝑸𝜏𝑛)
−1 (𝒙 − 𝒚) (6.4)

where 𝑸𝜏𝑛 is the class-covariance matrix. This can also be interpreted as the quadratic discriminant
classifier since it assumes different Gaussian distributions for each class and then performs classifi-
cation by computing the probability density function for all query-class pairs.

Transductive CNAPS introduces a transductive feature extraction module and an iterative trans-
ductive inference technique, that use information from the query samples to extract feature embeddings
and perform inference, respectively. In the transductive feature extraction module, first the embeddings
for support and query examples are extracted using the encoder CNN. Then, these are mean pooled
to get 𝒆𝒮 , 𝒆𝒬 for support and query sets, respectively. Then, these are processed through two steps
of a Long Short Term Memory (LSTM) network in order to get the final task-specific embeddings, as
illustrated in Fig. 6.5.

To carry our transductive inference, an expectation-maximization routine is carried out where
first inference is performed as in Equation (6.3), and then these class-conditional probabilities are
used to compute weighted estimates of mean and covariance metrics of each corresponding class
using the query features. These two steps are repeated for a few iterations until the convergence. This
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Figure 6.5: Information from both, support and query samples is used by 𝑔𝜃 to compute task-specific
embeddings. Figure from Bateni, Goyal, et al. (2020).

iterative classification and distribution refinement is known as the soft k-means algorithm, the details
of which can be found in (Dunn 1973). Since the information from the query samples is also used
in classifying them, and the inference is performed only on the selected query data points instead of
the entire domain of definition, this method is called transductive inference (Gammerman, Vovk, and
V. Vapnik 1998; V. N. Vapnik 2006).

6.5. Transductive Propagation Networks
Transductive propagation networks was the first method to model transductive inference (Gammerman,
Vovk, and V. Vapnik 1998; V. N. Vapnik 2006) explicitly in the few-shot classification problem. The aim
here is to construct a graph structure with nodes as the support and query feature embeddings and the
edges weighted by the distance between nodes. The distance is measured using an appropriate kernel
metric, Gaussian in this case. Once the graph is constructed, labels are iteratively propagated from
the support nodes to the unlabelled query nodes based on the distance/similarity between the node
pairs (Fig. 6.6). A CNN 𝑓𝜓 is used for extracting the features, which in turn form the node embeddings.

Figure 6.6: The labels are iteratively propagated from the support samples (colored) to the query samples
(hollow) by exploiting the graph structure between embeddings as nodes and edge weights as distances. Figure

from Yanbin Liu et al. (2019).
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These node embeddings are then passed through another CNN 𝑔𝜙 that extract a set of embeddings
responsible for the variance estimates 𝜎 for each node-pair, as shown in Fig. 6.7. These are used in
the edge weight calculation as follows:

𝑊𝑖𝑗 = exp(−12𝑑 (
𝑓𝜑 (𝒙𝒊)
𝜎𝑖

,
𝑓𝜑 (𝒙𝒋)
𝜎𝑗

)) . (6.5)

Finally, the labels are propagated from support to query nodes using the manifold smoothing closed-

Figure 6.7: The architecture diagram of TPN illustrating the data flow from input images to the computation of
the cross-entropy loss. Figure from Yanbin Liu et al. (2019).

form formulation:
𝐹∗ = (𝐼 − 𝛼𝑆)−1𝑌 (6.6)

where 𝑆 = 𝐷−1/2𝑊𝐷−1/2 with 𝐷 being the diagonal matrix with its diagonals being the sum of rows of
𝑊, 𝑌 being a vector of labels (with 0s in place of the query labels) and 𝐼 being the identity matrix. The
matrix 𝑆 is known as the graph’s Laplacian. The propagated labels in 𝐹∗ form the logits and are then
softmax normalized to give the class-conditional probabilities 𝐹∗𝑖𝑗 for class 𝑗 and sample 𝑖.

6.6. Meta Learning Probabilistic Inference
ML-PIP (Gordon et al. 2019) is a hierarchical probabilistic inference method for few shot learning that
replaces gradient based meta-updates with forward passes through the inference networks at test time,
for quick adaptation. The hierarchical probabilistic structure allows ML-PIP to share information across
tasks via the shared latent variable 𝜃, which is also responsible for meta-learning. The hierarchical
DAG structure (Fig. 6.8) contains task-specific parameters 𝜓𝑡, where each task is comprised of a
support set 𝒟𝑡 = {(𝑥𝑡𝑛 , 𝑦𝑡𝑛) ∶ 𝑛 = 1 ∶ 𝑁𝑡} and a query set 𝒟𝑡𝑡𝑒𝑠𝑡 = {(�̃�𝑡𝑚 , �̃�𝑡𝑚) ∶ 𝑛 = 1 ∶ 𝑀𝑡}. A point

Figure 6.8: Directed graphical model for multi-task learning. Figure from Gordon et al. (2019)

estimate is learnt for the shared parameter 𝜃 since it has little uncertainty due to the presence of large
amounts of data for its estimation. An approximate posterior distribution is estimated for 𝜓𝑡 and is
denoted by 𝑝(𝜓𝑡 ∣ �̃�𝑡 , 𝒟𝑡 , 𝜃). The posterior predictive distribution is a result of marginalizing out the
task-specific parameters, and is given by:

𝑝 (�̃�𝑡 ∣ �̃�𝑡 , 𝒟𝑡 , 𝜃) = ∫𝑝 (�̃�𝑡 ∣ �̃�𝑡 , 𝜓𝑡 , 𝜃) 𝑝 (𝜓𝑡 ∣ 𝒟𝑡 , 𝜃) 𝑑𝜓𝑡 . (6.7)
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As discussed in earlier chapters, it is intractable to compute the exact posterior and thus an amortized
approximate posterior is learnt, denoted by 𝑞𝜙(𝜓𝑡 ∣ �̃�𝑡 , 𝒟𝑡 , 𝜃). The best parameters are estimated
by maximizing the expected accuracy of the approximate posterior predictive distribution, given any
dataset:

𝜙∗ = argmin
𝜙

𝔼𝑝(𝒟,�̃�) [𝐷𝕂𝕃 (𝑝(�̃� ∣ �̃�, 𝒟, 𝜃)‖𝑞𝜙(�̃� ∣ �̃�, 𝒟, 𝜃))]

= argmin
𝜙

𝔼𝑝(𝒟,�̃�,�̃�) [log∫𝑝(�̃� ∣ �̃�, 𝜓, 𝜓)𝑞𝜙(𝜓 ∣ 𝒟, 𝜃)𝑑𝜓] .
(6.8)

The outer expectation can be computed by sampling multiple tasks from 𝑝(𝒟), which acts as a Monte
Carlo approximation. The inner expectation (integral) is computed by drawing 𝑆 samples from the
task-specific parameter posterior 𝜓𝑡𝑠 ∼ 𝑞𝜙(𝜓𝑡 ∣ 𝒟𝑡 , 𝜃). The resulting training objective now takes the
form:

ℒML−PIP(𝜃, 𝜙) =
1
𝑀𝑇

𝑀

∑
𝑚=1

𝑇

∑
𝑡=1

log(1𝑆

𝑆

∑
𝑠=1
𝑝 (�̃�𝑡𝑚 ∣ �̃�𝑡𝑚 , 𝜓𝑡𝑠)) (6.9)

Note that this is different from standard amortized variational inference since the emphasis is only on
minimizing the difference between the true and approximate posterior predictive distribution, and not
the difference between the approximate and true posterior distributions 𝑞𝜙(𝜓𝑡 ∣ 𝒟𝑎𝑙𝑙 , 𝜃) and 𝑝(𝜓𝑡 ∣ 𝜃).
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TRIDENT Additional Discussion

In this chapter, we talk about architectural details and modelling design choices that failed to work.
Learning from these failures and building on the observations consequently made TRIDENT what
it is now. Hopefully, this provides additional insight and further motivation to support the claims and
hypothesis that TRIDENT makes.

The idea of inferring decoupled information from data, based on the needs of the specific down-
stream task has been the key driving factor behind this research. From the perspective of a human
being, we observe multiple details about the environment around us, however, we only choose to utilize
specific parts of the observed information for a given task. This specific information is dependent on
the nature of the task at hand. We apply the same line of thought to the problem of image classification.
The essence of an image is comprised of various different aspects such as the context it was captured
in, the context it depicts and the general style in which it is portrayed (a 3D render, an oil painting, a
vapor-wave design, digital art, hand drawn sketch, an animated caricature etc.). Depending on the
other images it may be discriminated against, not all of these aspects and characteristics are relevant
to the image’s classification. However, there are subtle details in images that set them apart from each
other, which we call class-characterizing label attributes. These label attributes are decided based
on the context of the task, of course. It can be argued that optimizing a simple cross-entropy loss
for classification already acts a sufficient objective to guide the neural network’s information extraction
process. But in a few-shot scenario, there is extremely limited data for the network to learn from and
then generalize on new unseen classes. In such a case, it is sub-optimal to leave it to the network
to find the perfect combination of neural connections, since the amount of data is simply not enough
for the network to learn the data distributions and find satisfactory decision boundaries. Thus, it is
important to manually engineer an inductive bias by making assumptions about the causal structure of
the data and deciding on which variables to infer. To this end, we decided to use semantic and label
variables as the latent generative variables for the image and the label respectively. The inference and
generative mechanics, and the variational lower bound followed from this line of thought.

7.1. A False Independence Assumption
Initially, we disregarded the rule of conditional dependence on collider nodes (Chapter 3, Section 3.5)
in the inference mechanics of TRIDENT. Concretely, there was no dependence considered between
𝒛𝑠 and 𝒛𝑙 given 𝒙, when inferring the two latent variables. With this assumption, the factorized form
for 𝑞𝜙 is 𝑞𝜙 (𝒛𝑠 , 𝒛𝑙 ∣ 𝒙, 𝑦) = 𝑞𝜙1 (𝒛𝑙 ∣ 𝒙) 𝑞𝜙2 (𝒛𝑠 ∣ 𝒙). Thus, the amortized variational inference networks
were:

𝑞𝜙2 (𝒛𝑠 ∣ 𝒙) = 𝒩 (𝒛𝑠 | 𝜇𝜙2(𝒙), 𝑑𝑖𝑎𝑔(𝜎
2
𝜙2(𝒙))) ; 𝑞𝜙1 (𝒛𝑙 ∣ 𝒙, 𝒛𝑠) = 𝒩 (𝒛𝑙 ∣ 𝜇𝜙1(𝒙, 𝒛𝑠), 𝑑𝑖𝑎𝑔(𝜎

2
𝜙1(𝒙, 𝒛𝑠))) .

(7.1)
The DAG corresponding to this has been illustrated in Fig. 7.1a. This makes a strong, and rather
incorrect, assumption about the latent variables. This is that even though 𝒛𝑠 and 𝒛𝑙 together decide
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(a) TRIDENT’s DAG illustrating variational inference
(dotted lines) and generative process (solid lines). The
inference and generative parameters are color coded to

correspond to their respective architectures.
(b) TRIDENT’s two variational networks, intertwined only

in their generative structures, that infer Z𝑙 and Z𝑠.

Figure 7.1: Generative model and corresponding variational network with the Conditional Independence
Assumption.

the generative process of 𝒙, knowing something about 𝒙 does not tell anything about 𝒛𝑠 while trying to
infer 𝒛𝑙 or vice-versa. Proceeding with this assumption, we formulated the ELBO which looked like:

ℒ(Ψ) = −𝔼𝑞𝜙2 [ln𝑝𝜃2(𝒙 | 𝒛𝑠 , 𝒛𝑙)] − 𝔼𝑞𝜙1 [ln𝑝𝜃1(𝑦 | 𝒛𝑙)]+
𝐷𝐾𝐿(𝑞𝜙1(𝒛𝑙 | 𝒙, 𝒛𝑠)‖ 𝑝(𝒛𝑙)) + 𝐷𝐾𝐿(𝑞𝜙2(𝒛𝑠 | 𝒙)‖ 𝑝(𝒛𝑠)),

(7.2)

The implications of this assumption on the network architecture and the data flow are reflected in
Fig. 7.1b. Finally, the accuracies achieved for the benchmark datasets and the cross-domain scenario
are reflected in Table 7.1, where the accuracies with the incorrect assumption are shown in the first
row and the scores with the correct model in the second row. Note that TRIDENT is equipped with
AttFEX in both these scenarios since the compensation for the lack of label input for 𝒛𝑙 ’s inference
remains consistent throughout. The massive drop in generalization capability of TRIDENT, not only

Table 7.1: Accuracies in (% ± std).

mini Imagenet tiered Imagenet mini→CUB

Methods Backbone 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

TRIDENT(Assumption) Conv4 59.78 ± 0.45 67.55 ± 0.8 64.89 ± 0.52 73.89 ± 0.78 44.56 ± 0.59 48.90 ± 0.37

TRIDENT Conv4 86.11 ± 0.59 95.95 ± 0.28 86.97 ± 0.50 96.57 ± 0.17 84.61 ± 0.33 80.74 ± 0.35

for the cross-domain scenario, but also for in-domain unseen examples, corroborates the fact that this
assumption of conditional independence on a collider node is incorrect. In other words, making a
fallacious assumption about the causal structure of the underlying true data distribution hampers the
inference capabilities of the model, which reflects in its generalization capability.

7.2. Experimenting with Manifold Smoothing
Before engineering AttFEX, we experimented with the idea of manifold smoothing as a way of induc-
ing transduction in the feature extraction process. Inspired by the work of Yanbin Liu et al. (2019),
the idea was to use propagation of information using feature embeddings in a graph structure. We
constructed a graph with nodes as the feature embeddings extracted by the upper ConvEnc and edge
weights decided by the Gaussian distance metric between node pairs. The 𝜎 value was calculated
as 𝜎2 = 𝑉𝑎𝑟(𝑑𝑖𝑗) where 𝑑𝑖𝑗 denotes the Gaussian distance metric between node 𝑖, 𝑗. Finally, the
graph’s Laplacian was used to propagate information between the node features themselves, rather
than the label vectors. This acted as a smoothing operation between the node features, since the
embeddings were now a weighted sum of all the node embeddings, with the weight depending on the
distance/similarity between the node features. This removed noise from the manifold that the node
embeddings sat on, thus acting as a manifold smoothing operation. The results for this are depicted in
Table 7.2. The network fails to generalize as well as it does with AttFEX. Our hypothesis for this is that
the convolutional inference network, on its own, isn’t equipped enough to learn an embedding space
for inferring a latent 𝒛𝑙 that is close enough to the true posterior, while at the same time, optimizing
for task-specificity. Thus, the efficient utilization of extra parameters from AttFEX for task-specificity is
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Table 7.2: Accuracies in (% ± std).
mini Imagenet tiered Imagenet mini→CUB

Methods Backbone 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

TRIDENT(with Manifold Smoothing) Conv4 69.84 ± 0.5 80.15 ± 0.67 74.12 ± 0.90 82.44 ± 0.23 61.89 ± 0.73 72.82 ± 0.31

TRIDENT(with AttFEX) Conv4 86.11 ± 0.59 95.95 ± 0.28 86.97 ± 0.50 96.57 ± 0.17 84.61 ± 0.33 80.74 ± 0.35

vital to the performance of TRIDENT by compensating for the lack of label input.



8
Conclusions and Future Directions

This work introduces a novel variational inference network (coined as TRIDENT) that simultaneously
infers decoupled latent variables representing semantic and label information of an image. The pro-
posed network is comprised of two intertwined variational networks responsible for inferring the seman-
tic and label information separately, the latter being enhanced using an attention-based transductive
feature extraction module (AttFEX). Our extensive experimental results corroborate the importance of
this transductive decoupling strategy on a variety of few-shot settings showing superior performance
and setting a new state-of-the-art for the most commonly adopted datasets mini and tiered Imagenet
as well as for the recent challenging cross-domain scenario of mini Imagenet → CUB.

As future work, the aim is to make TRIDENT more modular. By doing so, this decoupling strat-
egy can also be incorporated into other few-shot classification methodologies that employ different in-
ference techniques. Along the same lines, AttFEX is already a plug-and-play module and can readily
be adopted by other baselines to induce task-specificity in their extracted embedding spaces. Another
avenue to explore is to demonstrate the applicability of TRIDENT in semi-supervised and unsuper-
vised settings. This would be done by including the likelihood of unlabelled samples through marginal-
ization over the label variable in the probabilistic objective function in the case of semi-supervised
settings. Whereas in the unsupervised setting, augmentations of images in a task can be used to
form the 𝐾-shots associated to classes, with each image being a class of its own. The label variable
can now be interpreted as a ’pseudo’-label variable and the negative log-likelihood can be modelled
by using a contrastive loss on all images in the task. This would render TRIDENT as an all-inclusive
holistic approach towards solving few-shot classification problems.
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