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Look at the resplendent colours on the soap bubbles!
Why is the sea blue?

What makes diamond glitter!
What makes Hubli So Special?

Ask the right questions, and nature will open the doors to her secrets.

CV Raman.
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Summary

Aerosols are the source of the largest uncertainties in our climate models, blurring our

outlook of the future. This has been attributed to the complexity of measuring their

properties, which vary over time and space. Atmospheric circulation spreads aerosols

across the globe from a point source, which makes satellite-based observations lucrative.

At present, there are several aerosol observing missions that deliver aerosol data products

in a consistent and operational manner; these missions report several aerosol properties

that are important for reducing the contribution of uncertainties to our climate models.

What is missing, however, is an operational data product that measures the height of these

aerosols at a global scale.

Earlier attempts at this use data derived from lidar instruments in space; an example

being the Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) instrument, which

uses lasers to measure atmospheric composition. In the case of aerosols, the amount

of backscattered electromagnetic radiation at each atmospheric layer gives an idea of

the amount and height of aerosols. The mobility a�orded by space-based instruments

gives space lidars a leg up over ground-based lidars. However, the coverage of such lidar

instruments is merely near-global. This has to do with the fact that while lidars in space can

circle the entire globe, their footprint on the ground is very narrow, in the order of several

hundred meters to a few kilometers: this is an inherent limitation of the measurement

principle. Consequently, a speci�c patch on Earth is revisited in periods that can range

several days.

An alternative to space based atmospheric lidars are space based spectral imagers.

These are essentially cameras that take snapshots of the Earth, capturing the light and

splitting its di�erent electromagnetic frequencies into the scale of nanometers using very

precise prisms and detection techniques. The advantage of these instruments over lidars is

that they have a very large footprint, covering several thousand kilometers of area in a

single �y-by. This allows for daily to even sub-daily coverage of the Earth, as each snapshot

covers larger and sometimes overlapping areas. The challenge is to estimate aerosol height

using spectral signatures of the Earth’s atmosphere in an operational environment that can

handle data coming in from the satellite at a rate of several million pixels every few minutes.

This dissertation focuses on delivering the aerosol height data product operationally using

computer algorithms.

The logic of aerosol height estimation using these so-called spectral snapshots of the

atmosphere di�er from that using lidars; the instrument does not provide data for di�erent

atmospheric layers. This has to be inferred using the chemistry of the oxygen molecule.

O2, the second most abundant gas in our atmosphere, has a unique spectral signature in

the near-infrared region, comprising of electromagnetic radiation around 765 nm. The

chemical structure of the oxygen molecule allows it to absorb some of these radiations,

creating a structure of absorption bands. This spectral signature deepens as more light is

absorbed by the oxygen: this happens as photons penetrate deeper and deeper into the
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earth’s atmosphere, unless they hit a barrier. If the photons bounce back from an aerosol

layer at a very high altitude, the amount of absorption by oxygen would be low. This

‘depth’ of absorption gives clues on how high an aerosol layer might be present.

Computer models can reconstruct this oxygen absorption structure onto a simulated

spectrum. One of the control parameters within the model is the height of an aerosol layer.

The generated spectral signature of a simulated atmosphere resembling the atmosphere of

a pixel in the snapshot from space-based hyperspectral imagers is then compared to the

measured spectral signature. This usually results in a non-zero di�erence, which is caused

by errors in the model. These errors can be minimised by using computer algorithms and

mathematical information retrieval techniques, resulting in a modeled atmosphere closer

to the measurement by changing the height of the aerosol layer, resulting in an aerosol

height estimate. In this dissertation, computer algorithms inspired from mathematical

models of brain neural networks as well as information retrieval techniques such as least

squares are used.

Before the start of this dissertation, this algorithm had proven to successfully retrieve

aerosol heights from older satellite instruments and was eventually adopted to a newer,

more advanced satellite instrument such as the Tropospheric Monitoring Instrument

(TROPOMI) on board the Sentinel-5 Precursor mission by the Dutch Space O�ce (NSO)

and the European Space Agency (ESA). There were a few key learnings from this, 1.

retrieving aerosol height over bright surfaces was challenging as the surface signature was

eclipsing any aerosol signature in the spectral snapshots of the Earth’s atmosphere, and 2.

the algorithm was too slow and could only cover a few single-digit percentages of the total

snapshots made by the space-based imager. Consequently, there were no reliable estimates

over bright surfaces, and a loss of data due to a computationally demanding aerosol height

retrieval algorithm.

The �rst paper published in the progress of this dissertation (Chapter 2), tries to theorise

the reasons behind why retrieving aerosol heights from spectral snapshots in the oxygen

A-band resulted in large estimation errors by the algorithm, resulting in estimates of the

height of the aerosol layer that are biased closer to the surface than to the physical aerosol

layer itself. To that extent, the chapter analyses the in�uence of photons scattered back by

the surface on the spectral signature of the oxygen A-band itself. Two contributors to the

spectral signature were de�ned, namely the atmospheric path contribution (no surface) and

the surface contribution (di�erence between the total spectrum and the atmospheric path

contribution), which both contain clues to the height of the aerosol layer. The study reveals

that as the surface contribution increases, the amount of aerosol information available in

the measured re�ectance decreases at di�erent parts of the spectrum. The information

retrieval technique used in this algorithm uses the instrument signal to noise ratio (SNR)

as a weighting function to the measured spectral signature of the atmosphere. The parts of

the spectrum that were given a higher weight coincided with parts of the spectrum with

less information on aerosol height.

An alternative weighting approach, called dynamic scaling, has been proposed in

Chapter 3. This method non-linearly scales the instrument signal to noise ratio such

that parts of the spectral signature with lower aerosol information content were given a

lower weight in the aerosol height retrieval. This method was demonstrated with satellite

data from hyperspectral snapshots over the 2010 Moscow wild�res over Siberia and the
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2017 Iberian Peninsula wild�res over Central and Western Europe, using the GOME-2A

satellite instrument. The retrieved aerosol layer heights using this so-called dynamic

scaling approach resulted in slightly better aerosol layer height estimates over the formal

non-scaling approach. The retrieved aerosol optical thicknesses were also systematically

lower in comparison to the formal approach, although the retrieved values were still too

high for the spectral regime. The method works, but will need to provide vastly more

convincing performance improvements for it to be adopted beyond the test environment.

The algorithm’s slow nature is a product of the complexity of the model used to

synthesize these spectral signatures of the atmosphere. The model requires several thousand

calculations for these simulated spectra, which required the aerosol height algorithm several

minutes (in the order of 6-10 minutes) for a single pixel. There are several million pixels

in a single snapshot, which meant that the algorithm required a speed boost of several

orders of magnitude. To achieve this, machine learning algorithms were used to model

these complex computations into a mathematical model of arti�cial neural networks.

These e�orts are documented in Chapter 4. The new neural network model boosted the

aerosol height algorithm by several orders of magnitude: the older method required 184

seconds on average per pixel to compute aerosol layer heights, whereas the neural network

method only took 0.167 seconds on average per pixel. Such a boost in computational speed

now makes the near-realtime retrieval of aerosol layer heights feasible, i.e. the aerosol

layer height products can be provided within three hours of the satellite measuring the

atmosphere’s spectral signature. The neural network approach was applied to real data of

the December 2017 Californian wild�res as measured by TROPOMI. The retrieved aerosol

layer height estimates from the neural network approach generally di�ered from the slower

line-by-line approach by 100 m or less, with outliers to approximately 500 m. This was

deemed acceptable as a �rst iteration to improve the operational feasibility of the aerosol

layer height retrieval algorithm.

A larger validation e�ort was undertaken in Chapter 5. The trained neural network

models were uploaded onto the TROPOMI operational data processor for the Sentinel-5

Precursor mission and has been live since 2018, delivering near-realtime estimates of aerosol

layer height on a global scale. The operationally retrieved aerosol layer height product was

compared with aerosol heights computed from co-located CALIOP lidar pro�les across the

globe. Two sets of analyses were conducted: one looking at the entire globe as a whole and

the other looking at individually selected cases around the Saharan desert. This is because

cloud screening can be an issue and a visual inspection can help understand the in�uence

of un-screened clouds in the retrieval dataset. We report that TROPOMI’s neural network

aerosol layer height retrieval algorithm retrieves values that compare well with CALIOP

weighted extinction heights. For more than 1 million co-locations between CALIOP and

TROPOMI over the ocean, the TROPOMI ALH di�ers from CALIOP aerosol extinction

heights by approximately 1km on average and 0.76km median, with the TROPOMI ALH

values being lower than the CALIOP aerosol extinction heights. Over land, the same values

are 2.41km on average and 1.75km as the median — it is unclear how much improvement

the above mentioned dynamic scaling method could bring to these numbers over land. For

the selected cases lying largely over the ocean, the averaged retrieved ALH from TROPOMI

di�ered from CALIOP derived aerosol heights by 0.53km.

The e�orts from this dissertation have led to the �rst ever operational aerosol height
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data product that provides a global near-realtime data stream. This is the �rst milestone

for this product. It is now up to the next generation of the aerosol height retrieval working

group to improve upon this processor and deliver better and consistently more accurate

aerosol height estimates.
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Samenvatting

Aërosolen vormen de grootste onzekerheid in onze klimaatmodellen en daardoor uitein-

delijk ook voor onze toekomst. Verder spelen ze een belangrijke rol in de luchtvervuiling.

Aërosolen, ook wel �jn stof genoemd, zijn kleine deeltjes in de aardatmosfeer ter grootte

van 0.01�m tot 100 �m. Aërosolen zijn zeer divers van karakter. Enkele voorbeelden

van aërosolen zijn roetdeeltjes, rookdeeltjes ten gevolge van verbrandingsprocessen zoals

bosbranden, vulkaanas, aërosolen die vrijkomen bij industriële processen en verkeer, en

bijvoorbeeld kleine deeltjes die zich in de lucht boven zee bevinden, ook wel maritiem

aërosol genoemd. Aërosolen veranderen vaak van samenstelling en grootte. Aërosolen

vormen een grote onzekerheid in klimaatmodellen omdat ze erg lastig is te meten zijn, en

omdat ze van heel diverse en ook altijd veranderde aard zijn. Door de wind verspreiden

aërosolen zich over de wereld, dit maakt het doen van satelliet-observaties lucratief. Op

dit moment zijn er verschillende satellietmissie ’s die aërosolen kunnen waarnemen, hi-

erbij wordt wel de hoeveelheid aërosol consequent gemeten, maar niet de hoogte van de

aërosolen . Het laatste is belangrijk om de impact van aërosolen op het klimaat beter te

kunnen bepalen, daar de hoogte van de aërosolen onder andere bepaalt hoe groot het e�ect

van de aërosolen is op de opwarming van de aarde.

De eerste satellietinstrumenten die werden gebouwd om de hoogte van aërosolen te

kunnen meten maakte gebruik van lasers. met deze instrumenten kan heel nauwkeurig de

hoogte van aërosolen worden gemeten, maar door de smalle laserbundel beslaan ze niet het

totale oppervlakte van de aarde. Hierdoor wordt een bepaald gedeelte van de aarde maar

eens in de zo veel dagen gemeten. Een alternatief voor de bovengenoemde laser is een

hyperspectrale camera, ook wel een spectrometer genoemd. Met een spectrometer wordt

licht van verschillende kleuren uiteen gerafeld en apart gemeten. De satelliet spectrometers

maken zo kleurenfoto’s (snapshots) van de aarde. Zonlicht dat wordt gere�ecteerd en

verstrooid aan het aardoppervlak, wolken en aërosolen, en geabsorbeerd door bepaalde

gassen in de atmosfeer, wordt door de spectrometer per kleur licht gemeten. Het voordeel

van het gebruik van de spectrometer is dat je een groot deel van het aardoppervlak in een

keer kan bekijken. Dit betekent dat ieder gedeelte van de aarde dagelijks, of zelfs meerdere

malen per dag bekeken kan worden. De uitdaging hierbij is om de hoogte van de
aërosolen goed in te schatten met minimaal de snelheid waarmee de informatie
binnenkomt. Het hoofd thema van deze thesis is dan ook het ontwikkelen op het gebruik

van algoritmes, die snel en nauwkeurig de hoogte van aërosolen kunnen bepalen.

Het gebruik van spectrometers voor het bepalen van de hoogte van aërosolen zijn

gebaseerd op hele andere natuurkundige principes dan die gelden voor het gebruik van

lasers. Een spectrometer meet het zonlicht dat door de atmosfeer wordt verstrooid en

geabsorbeerd en geeft daarmee een duidelijk beeld van de samenstelling van de atmosfeer,

bestaande uit wolken, aërosolen, zuurstof, stikstof en andere gassen. In dit onderzoek wordt

gebruik gemaakt van zuurstof. Zuurstof heeft unieke eigenschappen, zuurstof absorbeert

namelijk licht van een bepaalde speci�eke kleur. Hoe dieper het zonlicht in de atmosfeer
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doordringt, hoe meer licht er wordt geabsorbeerd. Tenzij het een re�ecterend oppervlak

tegenkomt, zoalseen laag aërosolen of wolken. De mate van absorptie van het licht wordt

bepaald door hoeveel lucht het zonlicht heengaat en geeft daarmee informatie omtrent de

hoogte van de aërosolen. Hoe minder licht er wordt geabsorbeerd totdat er een re�ecterend

oppervlak , zoals een aërosol laag, wordt gemeten, des te hoger de aërosolen zich in de

atmosfeer bevinden en vice-versa.

Door computermodellen kan de lichtabsorptie door zuurstof worden nagebootst. In dit

proefschrift werken we met een dergelijk computermodel. Eén van de speerpunten binnen

dit model is de hoogte van de aërosolen. Het doel hierbij is om de hoogte van de aërsolen

te bepalen en indien nodig te veranderen, zodat de simulatie uiteindelijk zo goed mogelijk

overeenkomt met de meting van de satelliet spectrometer. Hoe dichter de simulatie bij de

werkelijke meting komt, hoe beter onze veronderstelling van de hoogte van de aërosolen.

Bovengenoemde methode is eerder succesvol getest. Dit gebeurde met oudere satelliet

spectrometers. Uiteindelijk werd deze methode ook gehanteerd in de nieuwere satelliet-

spectrometers, genaamd OMI en TROPOMI, die gebruikt zijn in dit proefschrift. Deze
satellietinstrumenten zijn ontwikkeld in opdracht van het Nederlandse Ruimte-
vaart Agentschap (NSO) en respectievelijk in 2004 en 2017 gelanceerd . Door het

gebruik van deze nieuwe reken methode gebruikmakend van de nieuwe instrumenten, zijn

er diverse ontdekkingen gedaan. Een belangrijke ontdekking is dat de verwachte hoogte

van de aërosolen boven land niet klopte. De verwachtingen met betrekking tot de aërosolen

boven zee was daarentegen beter. Daarnaast kon worden geconcludeerd dat de huidige

methode niet snel genoeg was voor de nieuwe satellieten, omdat deze satellieten signi�cant

meer data produceren.

Het eerste gedeelte van dit proefschrift legt uit waarom bovengenoemde methode

over land minder e�ectief is. Er werd ontdekt dat land in de eerdergenoemde methode te

‘licht’ was. Dit betekende dat de beelden weinig contrast opleverden. Hierdoor konden

aërosolen en land niet gescheiden worden gezien. Om het onderscheid tussen aërosolen en

land beter te kunnen maken, is er een nieuwe methode ontwikkeld. Hoewel deze nieuwe

methode succesvol is gebleken, moet de methode vanuit statistisch oogpunt nog wel veel

vaker worden toegepast, om zo te leiden tot onbetwiste en overtuigende resultaten. Deze

resultaten kunnen enkel worden behaald als de nieuwe methode wordt blootgesteld aan

een grotere hoeveelheid data.

In het tweede gedeelte draait het om het ontwikkelen van een snellere methode. Dit

om de nieuwe, snellere en grote hoeveelheid satellietdata te ondersteunen. Dit werd

behaald door een ander soort computeralgoritmes te ontwikkelen, gebaseerd op neurale

netwerken, oftewel zel�erende systemen. Deze algoritmes zijn speciaal gericht op het
informatie halen uit een grote hoeveelheid data, vergelijkbaar met hoe een brein
data opslaat en interpreteert. De resultaten hiervan waren verblu�end; ten eerste is

de nieuwe methode duizend(!) keer sneller dan de oude methode. Daarnaast behoudt de

nieuwe methode, ondanks het feit dat dit vele malen sneller gaat, de precisie van de oude

methode.

Het proefschrift heeft het volgende opgeleverd; het is het eerste dataproduct omtrent de

hoogte van aërosolen dat het hele aardoppervlak omvat waarbij er gebruik wordt gemaakt

van een verbeterde, geadvanceerde methode gebaseerd op zel�erende algoritmes. Het is

aan de nieuwe generatie wetenschappers om deze methode nog verder te verbeteren.
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1
Introduction

This thesis focuses on atmospheric aerosol particles. To understand the role of aerosols for

air quality and climate, let’s discuss the atmosphere in general. With each passing epoch,

developed and developing countries are more aware of their role in our changing Earth.

The development and growth of technology has a�orded many of us an incomparable

standard of living but at costs to all of us; we are collectively a�ecting the air we breathe,

the temperature of the Earth’s atmosphere and oceans, the amount of DNA-damaging solar

radiation reaching us, the oceans creeping up the sea shores, the frequency of tropical

thunderstorms, the hail raining down on a hot summer evening, droughts, �oods, and a

host more of phenomena that a�ect our quality of life. Slowly but surely, every policy

maker’s decision is being weighted by its impact on our Earth’s climate and air quality —

which of our actions is unsustainable for our home planet? How much time do we have

before it is too late? Answering these questions begins with observing our planet and

understanding the in�uence of a changing Earth on our future.

To understand the impact of mankind on planet Earth, we start with the atmosphere.

The atmosphere is a layer of gases extending from the Earth’s surface to approximately a

100 kilometers into space, trapped by the gravitational pull of the Earth. Of the atmosphere,

all of life on Earth lives either below the Earth’s surface (including oceans) or within 0-10

km in the �rst layer of the atmosphere - the troposphere; our ’living quarters’ is merely

0.15% of the Earth’s radius. What is even more awe-inspiring is the composition of the

Earth’s atmosphere - the air we breathe is mostly Nitrogen and Oxygen, with only 1%

being other gases, which include greenhouse gases essential for our survival. A part of this

1% of the aforementioned 0.15% is responsible for trapping heat and warming our Earth.

The study of our future, hence, involves precise measurements and study of our in�uence

on a tiny part of the whole of the planet.

The study of the physics and chemistry of the Earth’s atmosphere involves the Sun

and the Earth. On the macroscopic scale, incoming solar radiation gets absorbed by the

atmosphere, which emits longwave radiation to heat up the atmosphere; these components

are integral to the Earth’s radiation budget. On the microscopic scale, incoming solar

radiation interacts with several reactive molecules in the atmosphere, leading to a cresendo

of physical and chemical phenomena that shape our Earth’s atmosphere. One such example
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of reactive molecular species are greenhouse gases (of which, CO2 is the most famous),

which are e�cient at capturing heat from the Sun and warm the atmosphere. Without

greenhouse gases, the Earth would be inhospitable for life to evolve. The warming of

Earth’s surface and oceans results in convective motion of air and atmospheric turbulence,

leading to the formation of clouds, which are probably the most important driver of the

Earth’s fertility. The presence of clouds results in a redistribution of solar energy in many

di�erent ways. In order to understand the atmosphere, one must understand clouds as

well.

Generally speaking, depending on the height and geometrical thickness, clouds have the

ability to warm (in the case of high clouds), cool (in the case of low clouds) the atmosphere,

or have absolutely no a�ect to the radiation budget of the Earth’s atmosphere. With

increasing human contribution to global warming, the future of clouds is uncertain: we

are unsure whether clouds will evolve to either accelerate the global warming process or

slow it down. Understanding clouds will require an understanding of their genesis and

evolution, without which we are ill-equipped to accurately predict the future of our place

on Earth.

Clouds are a product of very complex atmospheric physics and chemistry. Essentially,

clouds on Earth comprise of water vapor condensed around so-called cloud condensation

nuclei (CCN). These condensation nuclei are non-gaseous, hydrophilic and very small

particles �oating in the atmosphere. These CCN particles are typically atmospheric aerosols,

which either originate from the Earth’s surface as primary aerosols, or are produced in

the atmosphere from chemical reactions (called secondary aerosols). These aerosols are

either naturally produced through naturally occurring forest �res (Figure 1.1), volcanic

eruptions (Figure 1.2), dust from desert storms (Figure 1.4), marine sea salt sprayed by the

ocean and so on, or through anthropogenic activities such as smoke from factories, crop

burning (Figure 1.3), emissions from vehicles, and so on. Provided that humidity is constant,

an atmosphere containing an abundance of tiny aerosol particles will result in more but

smaller cloud droplets, as there are more aerosols acting as cloud condensation nuclei.

This will change the Earth’s radiation budget from the perspective of clouds interacting

with solar radiation. A simple example of this phenomenon is the formation of clouds

with smaller droplet sizes along shipping lines over the ocean (see Figure 1.5). While

(through clouds) aerosols have an indirect impact on the Earth’s radiation budget, they

also have their own direct e�ects as well. Aerosols scatter and absorb shortwave radiation,

thus a�ecting the amount of solar radiation reaching the Earth’s surface. Local heating

by absorption by aerosols can also have an a�ect on the atmospheric stability. Also, the

interaction between aerosols and cloud layers will depend on whether the aerosols are

above, below or within clouds. The combined direct and indirect e�ects of aerosols on the

climate are considered among the largest sources of uncertainty in our knowledge of the

Earth’s radiation balance.
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Figure 1.1: Australian wild�res

on November 15th, 2019, as cap-

tured by NASA’s MODIS Aqua

satellite instrument. Image de-

rived from Euronews.

Figure 1.2: Eruption of the

Raikoke Volcano on 22nd June,

2019, as captured by NASA’s

Terra satellite. Image derived

from NASA.
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Figure 1.3: Crop burning

aerosols blanketing India on

a winter day on November

7th, 2017, as captured by

NASA’s MODIS Terra and Aqua

instruments. Image derived

from NASA.

Figure 1.4: Desert dust aerosols

from the Sahara transported

over the Atlantic Ocean on

18th June, 2020, as captured

by NASA-NOAA’s Suomi NPP

satellite. Image derived from

NASA.
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In the context of understanding their impact on the radiation budget, various properties

of aerosol particles are studied in order to characterize them into di�erent categories, such

as their shape, size, origin and their ability to interact with radiation. By studying these

particles, aerosols can be modeled into describable mathematical representations. These

are aerosol models, which are a part of a more comprehensive model used to describe the

Earth’s atmosphere and its interaction with solar radiation. Once the interaction of aerosol

and other species with radiation in the atmosphere has been modeled, the atmospheric

radiation is modeled using radiative transfer models (RTM). Depending on the objective of

the RTM, it provides the net radiation after all interactions at a speci�c atmospheric level

— for instance, computing the net radiation from the Sun on the surface after accounting

for di�erent components of the atmosphere, or the same at the top of atmosphere after

accounting for all radiative interactions that the incoming solar radiation participates in as

it traverses through various atmospheric layers of Earth and back to outer space. Aerosols

are studied on a macroscopic level using observations of incoming and outgoing solar

radiation from the Earth using space-based instruments, using RTMs to derive aerosol

properties from the measurements. Such techniques are a part of a bigger scienti�c �eld

known as remote sensing.

1.1 Aerosols
Research into aerosols began as early as the 19

th
century, following the interest in the

scienti�c communities into cloud formation. So far, aerosols are de�ned as a colloidal

suspension of particles, solid (ash, smoke, dust) or liquid (mist and fog), in the atmosphere.

Aerosols are either produced by emissions from the Earth’s surface carried up higher into

the atmosphere by winds, or through gas-solid transition of reactive chemical species

in optimal conditions (moisture, energy and so on). The various physical and chemical

processes responsible for their creation result in diversity of aerosol properties. Several

classi�cations are used to characterise aerosols, for example based on composition (organic

or inorganic), size, origin, and their intensive and extensive properties (discussed further in

this section). Aerosol particles have a diameter typically between 0.01 �m - 100 �m, and are

classi�ed into �ne or coarse aerosols (depending on their size). Fine aerosols are primarily

produced in the atmosphere through reactive gaseous species, whereas coarse aerosol are

directly emitted as particles.

Based on their origin, aerosols are classi�ed into two categories — primary and sec-

ondary. Primary aerosols are a result of direct emission of aerosol particles from the Earth.

These emissions can be natural or anthropogenic. For instance, black carbon aerosols

emitted from forest �res, ash clouds from volcanic eruption, desert dust aerosols, marine

sea spray aerosols are some examples of natural emissions of aerosols. Some of these

natural emissions are essential for the fertility of the Earth — for instance, the Bodele

depression in the Southern Saharan desert is the origin of approximately 40 million tonnes

of mineral matter to South America in a year, which fertilizes the Amazon rainforest [10].

Anthropogenic aerosols, on the other hand, are emitted from human activities. Examples

of such are unburnt hydrocarbons from transport vehicles, coal-�red power plants and

shipping (as shown in Figure 1.5).
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Figure 1.5: Left: NASA MODIS

image over Northeast Paci�c

Ocean on March 4, 2009. The

streaks in the image represent

clouds formed by shipping emis-

sions. Right: Cloud droplet

size colored from brightest to

darkest representing smaller

droplets to larger droplets. Im-

age derived from NASA.

In contrast to primary aerosols, secondary aerosols are produced in the atmosphere

through chemical processes between reactive gaseous species, leading to gas-solid tran-

sitions. Consider volcanic eruptions that produce volcanic ash clouds and eject aerosols

and SO2 vertically in the atmosphere. The SO2 in the volcanic ash plume reacts with water

vapor to produce sulphate aerosol particles. A similar but anthropogenic example is the

emission of unburnt hydrocarbons (black carbon aerosols), NOx and SO2 from incomplete

combustion of sulphur and nitrogen containing fossil fuels, which are converted to sulphate

and nitrate aerosols via chemical reactions with water vapor, oxygen and ammonia.

Aerosol scatter and absorb shortwave radiation, leading to either warming or cooling

of the planet. Before discussing the ability of aerosols to alter the radiation budget of the

Earth, let’s look at the ability of aerosols to scattering or absorb light in the context of

modeling the transfer of radiation between several layers in the atmosphere.

Scattering and absorption of light by aerosols
Scattering of incident light by aerosols is determined by the size of the aerosol particle

relative to the wavelength of the radiation. Before delving into the relationship between

size and scattering type, we have to �rst understand the many di�erent categories of

scattering.

Depending on the type of interaction of light between incident electromagnetic radia-

tion and the scattering component, there can be di�erent forms of scattering. If the incident

electromagnetic wave does not undergo a change in its frequency after scattering, it is

considered to be elastic scattering. If the wavelength of the radiation changes, it is a form

of inelastic scattering. In the context of modeling scattering in a terrestrial atmosphere,

it is common practice to assume that most of scattering is elastic with a few exceptions.

This is because elastic scattering dominates over inelastic scattering, and the inclusion

of inelastic scattering in a model signi�cantly increases the complexity, requiring more

computations that slow down data processors relying on the RTM. Algorithm developers

generally look at the downsides of excluding inelastic scattering in the RTM, by comparing

the RTM’s output including or excluding inelastic scattering. If the model output without

inelastic scattering is su�ciently close to the same that includes it, inelastic scattering can

be generally ignored.
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Figure 1.6: A graphical representation of scattering for Rayleigh and Mie scattering types. Rayleigh scattering is

generally isotropic, whereas Mie scattering is more directional. Image derived from the http://hyperphysics.phy-

astr.gsu.edu/hbase/atmos/blusky.htmlGeorgia State University website.

If the particle size is much smaller than the incident wavelength, the predominant

scattering is Rayleigh scattering. Rayleigh scattering dictates that the intensity of light

scattered by particles is inversely proportional to the fourth power of the incident wave-

length, i.e. the lower the wavelength the higher the intensity of Rayleigh-scattered light.

This is the reason why the sky during the day appears blue instead of red, as blue light

has a shorter wavelength than red and is hence more scattered than the red component of

light. As the particle size increases and becomes more comparable to or larger than the

incident wavelength, scattering becomes more directional and dependent on the angle of

incident light (Figure 1.6). In such cases, there are a few models that are better equipped

to describe the directionality of scattering. One commonly used model is Mie scattering,

which applies for spherical particels. To compute the scattering properties using the Mie

scattering model, detailed knowledge on the particle size distribution and refractive index is

required. In the context of atmospheric remote sensing, however, this information is usually

the unknown. As an alternative to Mie scattering, simpler models, that do not require

as much information on aerosol properties, can be used to approximate the scattering

properties of aerosols. One such model is the Henyey-Greenstein model [9], which has a

single parameter that determines the directionality of scattering. The governing model

parameter in the Henyey-Greenstein function is called the anisotropy factor g, and is used

to compute p(�) as follows,

p(�) =
1
4�

1−g2

(1+g2 −2g cos(�))3/2
. (1.1)

An additional advantage of the Henyey-Greenstein model is that it is computationally

more e�cient than Mie scattering in RTMs.

The ability of aerosols to scatter or absorb radiation is described by the single scattering

albedo. The aerosol single scattering albedo (!) is a wavelength-dependent unitless param-

eter calculated as the ratio of aerosol light scattering to extinction of light by aerosols. If

the extinction of incident electromagnetic radiation on a particle is purely due to scattering,

that particle will have a single scattering albedo of 1. Likewise, if the same extinction

is due to absorption only, the particle will have a single scattering albedo of 0. Aerosol

single scattering albedo is largely dependent on the aerosol chemical composition and

microphysical properties. Within the atmosphere, the single scattering albedo of aerosols

varies in the range between 0.6 and 1.0. The strongest absorbing aerosols are produced by
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biomass burning, although the single scattering albedo can vary strongly depending on

the material that is burned as well as on the burning process. The single scattering albedo

also varies with wavelength. For example Saharan dust particles will absorb much stronger

in the UV as compared to the visible and near-infrared [4]. The light that is absorbed by

aerosol particles will be released as longwave radiation. This raises the temperature of

the atmospheric layer these absorbing aerosol species occupy, thus changing atmospheric

stability. Due to these scattering and absorption properties, aerosols are important for the

radiation budget of the Earth. This mechanism is discussed in the following.

Interaction with radiation
Incoming solar shortwave radiation travels through the atmosphere and reaches the surface.

Some of this incoming radiation is re�ected back to space by bright re�ectors such as clouds,

ice sheets and deserts. Some of the shortwave light, however, interacts with atmospheric

species and dark surfaces, warming up the Earth’s land, ocean and the atmosphere. Once

warmed up, these various parts of our Earth’s atmosphere and surface re�ect back longwave

radiation outwards, which may be re-absorbed in the atmosphere by several reactive species

of which aerosols are a part. The role of aerosols in altering the radiation budget has a

signi�cant impact on the Earth’s climate.

Solar radiation entering the Earth’s atmosphere is either re�ected back to space, or

absorbed. Re�ection back to space is a result of scattering by clouds, aerosol particles and

molecules, and re�ection by the surface. Gas molecules, aerosol particles and the surface

can also absorb wave radiation. The absorbed shortwave radiation is emitted as longwave

radiation. Some of the longwave radiation is trapped in the atmosphere, for example by

greenhouse gases, clouds and aerosol particles. However, the total energy of the incoming

shortwave radiation is (almost) equal to the sum of the outgoing shortwave and longwave

radiation, which is referred to as the Earth’s radiation balance. Aerosols have signi�cant

contributions to scattering and absorption of especially shortwave radiation, and they

therefore impact the Earth’s climate.

A commonly discussed example to demonstrate the impact of aerosols on the Earth’s

climate is the eruption of Mt. Pinatubo in June 15, 1991, Philippines. Considered as the

largest eruption in 100 years, the Mt. Pinatubo incident resulted in the injection of sulphur

dioxide gas and ash clouds https://pubs.usgs.gov/fs/1997/fs113-97/up to 35 km, well into

the stratosphere. Unlike the troposphere, the stratosphere does not have a precipitation

mechanism to bring aerosols back to the surface. Consequently, the sulfate aerosols that

formed from the emitted sulphur dioxide stayed in the stratosphere for up to 15 months.

The sulfate aerosols in the stratosphere scatter part of the incoming solar shortwave

radiation back to space, which in the case of Mt. Pinatubo resulted a tropospheric cooling,

reducing the average global temperature by about 0.5 degree Celsius between 1991 to

1993. Absorbing aerosols such as black carbon have the opposite e�ect when compared to

volcanic sulfate clouds. Absorbing aerosols emit longwave radiation that warms up the

atmospheric layers they populate. If present above clouds, black carbon aerosols reduce the

e�ciency at which clouds re�ect back solar radiation. The e�ect of black carbon aerosols is

not limited to within the atmosphere — if deposited over ice sheets, black carbon aerosols

reduce snow albedo, increase absorption on incoming shortwave radiation and directly

contribute to global warming and ice sheet surface melting [5].
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In the Pinatubo eruption example, aerosols caused a net cooling of the surface due

to the aerosol direct radiative e�ect, which involves blocking shortwave solar radiation

from the Earth’s surface. Depending on their ability to absorb or scatter radiation, aerosols

directly a�ect the radiation budget by absorbing solar radiation (causing warming of the

atmospheric layer they occupy) or scattering back incoming solar radiation (cooling the

Earth’s surface and the atmosphere). All of these e�ects result in a net cooling of the

Earth’s surface and warming of the atmospheric layers. This warming of the atmospheric

layers has a direct impact on the convective available potential energy, potentially causing

in a reduction in atmospheric dynamics [12].

Indirectly, aerosols alter the radiation budget via clouds. As previously mentioned,

aerosols directly a�ect the formation of clouds and precipitation on Earth. Depending on

the type of aerosol particle acting as the CCN and its amount, aerosols alter the radiative

properties of clouds. For a given amount of water vapor present in the atmosphere, cloud

droplet size reduces with an increase in aerosol concentration. Clouds with a smaller

droplet size, due to a large CCN concentration, have a larger cloud optical depth due to

increase in the number concentration of cloud droplets. This increase in cloud optical depth

increases multiple scattering within the cloud layer, thereby increasing the cloud albedo.

An increase of cloud albedo re�ects back more of the incoming shortwave radiation being,

resulting in a cooling e�ect. Such a phenomena is called the Twomey e�ect, named after

Sean Twomey who �rst theorised it in 1974 [19].

The presence of aerosols can alter cloud lifetimes due to an increase in CCN and

subsequent decrease in cloud droplet size; smaller cloud droplets will take longer to coalesce

into larger ones, thereby delaying precipitation and increasing cloud lifetime. If embedded

into the cloud layer, absorbing aerosols can contribute to the evaporation of the cloud by

heating up the layer they are present at, and at the same time cause an increase in the

radiative forcing, resulting in warming [8, 11] (see Figure 1.7).

Figure 1.7: The e�ect of aerosols and clouds on incoming solar radiation. The �gure has been derived from IPCC

2007, modi�ed from Haywood and Boucher [6].
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1.2 Verticaldistributionofaerosols intheEarth’s
atmosphere

A key factor in the e�ects that aerosols have in the atmosphere, is the vertical distribution of

absorbing or scattering aerosols; understanding various processes such as aerosol radiative

e�ects, cloud dynamics and so on depend on the atmospheric layers where aerosols are

present. These are brie�y discussed in this section.

1.2.1 Theroleofaerosolverticaldistributiononatmospheric
processes

Depending on the single scattering albedo of aerosols, the aerosol direct radiative e�ect

can be strongly dependent on the vertical distribution of the aerosols; as aerosols become

more absorbing (such as black carbon aerosols), their direct radiative e�ects increase [7, 13].

Assuming a cloudless atmosphere, the knowledge of the vertical distribution of aerosols is

a key input parameter for climate models.

An aerosol layer sitatuated either above or below a cloud layer can also alter the

radiative forcing of the cloud. Podgorny and Ramanathan [14] used a radiation model

based on microphysical, chemical, optical and lidar data collected over the Indian ocean to

model the e�ect on cloud radiative forcing where aerosols were present directly above or

below clouds. They observed an aerosol-free cloudy atmospheric forcing is approximately

7.0 Wm
−2

, which changed to 7.5 Wm
−2

when aerosols with optical thickness at 500 nm

of 0.4 and aerosol single scattering albedo at 500 nm of 0.9 were introduced below the

clouds. When aerosols were introduced above the clouds, this number changed to almost

10.0 Wm
−2

. Studies by Choi and Chung [2], Samset et al. [15] report similar observations.

In the context of cloud-aerosol semi-direct e�ects, Allen et al. [1] have observed that

models that simulate a uniform aerosol vertical pro�le, i.e. aerosols are uniformly dis-

tributed throughout the entire atmospheric column, lead to negatively biased estimates of

semi-direct e�ects. Studying the e�ect of aerosols on atmospheric radiative forcing will

bene�t from knowledge on aerosol vertical distribution.

Observing the long-range transport of aerosols goes beyond the study of aerosol

radiative forcing. Volcanic eruptions can result in large sulphate aerosols and ash clouds,

which are hazardous to air transport. A good reference for this is the eruption of the

Icelandic volcano Eyjafjallajökull in 2010, which resulted in the mass closure of airports,

resulting in stranded passengers in all of Europe. Biomass burning aerosols are similarly

hazardous when it comes to aviation safety as well. For these reasons, observing the vertical

distribution of aerosols is key.

Finally, remote sensing observations bene�t from redundancy. Aerosol vertical distri-

bution observed from multiple remote sensing methods and missions will result in a much

better knowledge of the parameter. In this context, scienti�c products do not necessarily

compete: they add value to each other. This is why more operational products from di�er-

ent missions and methods will result in a better understanding of the impact of aerosols on

Earth.



1.2 Vertical distribution of aerosols in the Earth’s atmosphere 11

1.2.2 Observing aerosol vertical distribution
In the context of aerosol remote sensing, instruments can generally be classi�ed into

ground-based observations, airborne and space-based observations. All three strategies

have their own merits and shortcomings, which is why observations from all three sources

are relevant for weather and climate studies. For instance, ground-based measurement

units can take observations of aerosols at very short intervals of time, but they are �xed at

one location. A mitigation of their limited spatial coverage can be a network of ground sta-

tions, such as the AERONET (Aerosol Robotic Network) which is a Sun and sky radiometer

speci�c for aerosol observations. However, such networks have limitations on their own;

because these networks have several ‘moving parts’ (physically and organisationally), their

management becomes a challenge on its own. The radiosonde, an instrument �xed to a

weather balloon, takes precise measurements at various points in the atmospheric column.

However, radiosondes do not have a large spatial coverage and require re-deployment for

more temporal coverage. Aircraft-borne instruments improve upon the spatial coverage

limitations of radiosondes and ground-based instruments signi�cantly, and provide in-

formation on intrinsic properties of aerosols for remote sensing applications. If the goal

is to monitor aerosols globally, spaceborne instruments on board a satellite mission are

unparalleled. Satellite instruments have been growing in their popularity, which has led to

unprecedented improvements in their spatial resolution and temporal coverage. Satellite

instruments, combined with ground based monitoring networks and airborne instrument

observations, are the best step forward to observe aerosols.

Satellite and ground based remote sensing instruments exploit the property of aerosols

to interact with incident radiation in order to derive aerosol parameters. Depending on

the source of incident radiation, remote sensing can be of two kinds — active and passive.

Active instruments have their own source of electromagnetic radiation which is directed at

the aerosols. The interactions between the emitted radiation and aerosol particles result

in some of the signal returning back (also known as backscatter), which is then received

by a receiver typically present on the instrument itself. An example is the lidar (Light

Detection And Ranging), which measures the distance of the aerosol particles by using

the time delay of the return signal. This time delay, along with detailed information

about the instruments positioning in space or on the ground relative to the Earth, provide

su�cient information to calculate the vertical height of the aerosol particles in a layer

relative to the ground. An example of a satellite lidar is the CALIOP (Cloud Aerosol Lidar

with Orthogonal Polarisation) instrument [20], which emits a very focused laser beam

aimed directly downwards (nadir). This beam penetrates the atmosphere, resulting in

a backscatter signal in the presence of interacting atmospheric species such as aerosols

and clouds, and (if not fully attenuated) reaches the Earth’s surface before re�ecting back.

Lidars can be ground-based as well; an example of a network of lidars is the EARLINET

(European Aerosol Research Lidar Network), which consists of several powerful lidars

pointed towards the sky spread out all over Europe. An alternative to ground-based lidars

are ceilometers, which are essentially low-power lidars capable of penetrating only a

short distance into the atmosphere. An example of an operational ceilometer network is

maintained by the EUMETNET (European Meteorological Network), whose data has been

used in this dissertation as well.

Lidars are an excellent tool for looking at the entire atmospheric column, as they have
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the potential to measure multiple atmospheric layers with the same lidar beam. There

is one caveat, however; while satellite lidars are space-based, their narrow beam limits

their spatial coverage severely. Satellite lidars have to do several passes before they can

revisit a previously sensed location; considering that aerosols vary signi�cantly over time

due to atmospheric circulation and other physical and chemical processes, satellite lidars

give a detailed snapshot at a very low temporal resolution. Ground-based lidars have a

very high temporal resolution but do not cover the entire globe. For these reasons, lot

of research is currently being done in order to derive information on aerosol vertical

distribution from passive space-based instruments. Passive sensors cover a large area in a

single scan by measuring the backscattered solar radiation at the top of the atmosphere

after its interaction with scattering and absorbing species in the Earth’s atmosphere. This

enables them to revisit a speci�c point on Earth daily in the case of polar orbiting satellites,

or hourly in the case of geostationary satellites. An example of a passive instrument

inferring aerosol vertical information is TROPOMI (TROPOspheric Monitoring Instrument)

on board the Sentinel-5 Precursor mission by the European Space Agency (ESA), which

revisits every part of the Globe at least once each day. In the future, the geostationary

Sentinel-4 mission from ESA will provide hourly coverage of Europe and parts of North

Africa, with instruments capable of measuring aerosol vertical information.

Figure 1.8: A schematic of di�erent kinds of atmospheric remote sensing techniques. The yellow arrows represent

shortwave radiation from the Sun.

In the context of aerosol remote sensing, there are two kinds of passive sensors classi�ed

on the con�guration of their viewing geometry — nadir viewing which involves looking

straight downwards and horizontal viewing instruments such as limb sounding instruments

that look horizontally and solar occultation instruments which look horizontally towards

the Sun. Each of them have their advantages and disadvantages, with horizontal viewing

instruments having a better vertical pro�ling ability but only up until the upper troposphere

whereas the nadir viewing instrument views the entire atmospheric column with limited

pro�ling ability. The subject of this dissertation is the nadir-viewing satellite instrument

for deriving aerosol vertical information. This is discussed in the following section.



1.3 Forward modeling and inverse methods - techniqes used to infer aerosol properties from

remote sensing observations 13

1.3 Forward modeling and inverse methods - tech-
niqesusedto inferaerosol properties fromre-
mote sensing observations

Coupled with physical models describing the interaction of photons with the Earth’s

atmosphere, remote sensing observations of the Earth’s atmosphere can be exploited to

retrieve knowledge on aerosol properties at a particular scene being observed by the

instrument. For instance, physical models compute re�ectance at the top of the atmosphere,

which is the ratio of the incoming solar irradiance into the atmosphere and outgoing

Earth radiance at the top of the atmosphere. With knowledge on the satellite instrument’s

response function, these models compute how a satellite would measure re�ectance.

To retrieve aerosol vertical information, passive sensors exploit wavelength regions

where photons are absorbed by oxygen. Oxygen has unique light absorbing properties at

di�erent wavelength regions, for instance in the near-infrared region of the electromagnetic

spectrum between 758 nm and 770 nm (see Figure 1.9), also known as the oxygen A-band. In

this region, absorption is described by photon-induced magnetic dipole transition between

b1Σ+g ← X 3Σ−g (0,0) electric potential levels of molecular oxygen, and collision-induced

absorption between O2-O2 and O2-N2. The amount of absorption by oxygen at a speci�c

wavelength gives an indication of the photon path length through the atmosphere; if

absorption by oxygen at that wavelength is low, it suggests that the photon has not

travelled deep into the atmosphere before getting scattered back by a scattering layer in the

atmosphere, whereas higher oxygen absorption at the same wavelength suggests that the

photon travelled deeper into the atmosphere unobstructed (resulting in more interaction

with oxygen). Radiative transfer models exploit this interaction of photons with oxygen

and a scattering layer to infer the height at which the layer is present. These models

calculate the amount of light at the top of Earth’s atmosphere given a certain atmosphere

containing scattering and absorbing species. The simulated top of atmosphere re�ectance,

coupled with measurements from satellite sensors make up the key ingredients for an

aerosol height retrieval algorithm.

The retrieval of aerosol vertical information is an inverse problem that involves two

kinds of calculations (see Figure 1.10 for a diagrammatic representation of inverse problems).

First, a set of calculations compute with assumed aerosol properties the top of atmosphere

re�ectance (R). These calculations are done by a model called the forward model (f ), which

in the case of aerosol vertical information x is the radiative transfer model with certain

�xed parameters b,

R = f (x,b). (1.2)

The simulated top of atmosphere re�ectances are then fed into an inverse method which

retrieves aerosol parameters that best match the observed top of atmosphere re�ectances.

The deciding parameters here is the cost function �2, which gives an idea of how far the

guess of the aerosol properties is from what is measured by the satellite instrument y. In

the context of atmospheric retrievals, the cost function is a mathematical derivation of

an optimisation parameter, the most common being the mean squared error between the

modelled and real observations,
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Figure 1.9: Synthetic oxygen A-band spectra for a cloudless atmosphere containing aerosols over a surface with

an albedo of 0.03, as measured by a nadir pointing instrument for a solar zenith angle at 45
◦
. The instrument

settings are that of the UVN instrument. Aerosol single scattering albedo is �xed at 0.95 and scattering by aerosols

is described by a Henyey-Greenstein phase function with an asymmetry factor (g) of 0.7. Left: Aerosol layer is

�xed at a height of 900 hPa - 950 hPa, for two scenes are di�erent aerosol optical thicknesses. Right: Aerosol

vertical distribution is varied for an aerosol optical thickness of 1.0 at 760 nm.

Figure 1.10: Diagrammatic representation of information retrieval from observations using a forward model

and inverse method. Image derived from http://web.gps.caltech.edu/classes/ge193.old/
lectures/Lecture1.pdf.

http://web.gps.caltech.edu/classes/ge193.old/lectures/Lecture1.pdf
http://web.gps.caltech.edu/classes/ge193.old/lectures/Lecture1.pdf
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�2 = [y−F(x,b)]T [y−F(x,b)]. (1.3)

If the measurement error S� is known, it can be incorporated into the inverse method,

thereby transforming the cost function to

�2 = [y−F(x,b)]T S−� 1[y−F(x,b)]. (1.4)

The cost function is minimised iteratively. The retrieval is said to have converged to a

�nal solution when the state vector does not change beyond a certain threshold; if the state

vector does not change from iteration to iteration, the cost function cannot be minimised

further. In the context of development of scienti�c methods for retrieving information

it is insu�cient to assume the reliability of the �nal solution just from the minimised

cost function. There could be several assumptions made by the model that are incorrect,

meaning that the minimised solution is not representative of reality. There could also be

�aws in the instrument, which may need calibration post-launch. Sometimes, the amount

of information available in the measured spectra is simply insu�cient to reliably assume

that the �nal solution is representative of reality. Therefore, the model parameters that

lead to a minimised cost function are that model’s best representation of the observation.

Retrieving information in a remote sensing context is an ill-de�ned problem; there are

many unknowns which require assumptions. For instance, as clouds are more e�cient at

re�ecting radiation than aerosols, their presence in the measured scene is known to result in

errors in the retrieved aerosol property. Because of this, it is very important to incorporate

validation of the retrieved solution as an important step in the development of a retrieval

algorithm. Because of the ill-de�ned nature of the retrieval problem, there are several

challenges associated with the retrieval of aerosol information. These are highlighted in

the following section.

1.4 Challenges inretrievingaerosol layerheight
from satellite measurements of the oxygen A-
band reflectances

Assuming a thick aerosol layer over a very dark surface, the largest contribution to the top

of atmosphere re�ectance is scattering from this single aerosol layer. Since the majority

of the signal occurs due to aerosols, the retrieval algorithm usually does not face any

challenge in retrieving the height of this aerosol layer. These cases are, in reality, the

best case scenario. The typical scene for retrieving aerosols can contain multiple aerosol

layers over a bright re�ecting surface with the possibility of clouds either over or under

the aerosol layer. As aerosols are weak scatterers compared to clouds or bright surfaces

such as desert, the majority of the signal in the top of atmosphere re�ectance in these cases

is not from aerosols; retrieving aerosols is now a needle in the haystack problem. The four

major challenges in retrieving aerosol vertical information from the oxygen A-band are,

1. Retrieving aerosol vertical information in the presence of clouds When it

comes to retrieving aerosols in the presence of clouds from passive measurements

of the spectral signature of the top of atmosphere re�ectance, one approach is to
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abandon retrieval attempts. The retrieval of aerosol properties su�ers in the presence

of clouds; if the retrieval algorithm manages to meet the criteria described for a �nal

solution, the retrieved aerosol layer height does not necessarily represent the true

aerosol layer height. In these cases, if the cloud is situated over the aerosol layer, the

retrieved aerosol layer height is usually higher than the true aerosol layer height. If

clouds are situated below the aerosol layer, the retrieved aerosol layer height is lower

than the true aerosol layer height. There is a clear cloud signature in the oxygen

A-band, if at all clouds are present in the scene. In fact, the presence of aerosols

results in errors in the retrieved cloud product as well. This is a clear sign that the

retrieval algorithms for extracting vertical information from the oxygen A-band are

actually attempting to characterise the height at which most of the scattering in the

atmosphere takes place. As a result of this, aerosol layer height retrieval algorithms

must employ strict cloud �ltering in order to remove any cloud contamination in the

�nal aerosol product.

2. The in�uence of bright surfaces on aerosol vertical information retrieval
The issue of optically brighter objects diminishing aerosol signal in the TOA re-

�ectance extends to cases where, even over a cloudless scene, a bright surface can

result in an incorrect aerosol layer height estimate. Consequently, aerosol informa-

tion content from measured spectra in the oxygen A-band reduces with increasing

surface brightness [3, 17]. This is intuitive; generally appearing optically thinner

over bright surfaces, aerosol layers allow photons from the top of atmosphere to

pass through and interact with the surface. These interactions result in scattering

between the aerosol layer and the surface, thereby increasing the photon path length

through the atmosphere. A longer photon path length results in a larger number of

instances of interactions between photons and molecular oxygen, resulting in more

absorption in the oxygen A-band. Since aerosol heights are inferred from oxygen

absorption, a longer photon path length implies more absorption which further

implies a lower aerosol layer. This has been observed in literature; Sanders et al. [16]

report their retrievals of aerosol layer height to be biased closer to the surface over

land. There remains a requirement on the scattering aerosol layer in the atmosphere

to be brighter than the surface in one way or the other for the retrieved aerosol layer

height to be closer to the aerosol layer than the surface itself. This makes retrievals

over deserts, snow and ice very challenging. Within the oxygen A-band, vegetation

appears bright as the spectral band lies outside the photosynthetically active spec-

trum where plants absorb Sunlight (see Figure 1.11). This spectral range is known as

the Photosynthetically Active Radiation (PAR), beyond which plants do not absorb

Sunlight and rather re�ect it. The edge of the PAR towards the longer wavelength

side is known as the red-edge, beyond which densely vegetated land has the potential

to appear brighter than the desert when observed from space. This is due to the

unique cell structure of the leaves that allows for very e�cient scattering of light

[18]. Consequently, retrievals of aerosols over vegetated land are also error-prone.

3. Computational e�ort of line-by-line radiative transfer models in the con-
text of aerosol vertical information retrieval In the case of retrieving the ver-

tical information on weak scattering species such as aerosols, radiative transfer
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Figure 1.11: Surface re�ectance factor as a function of spectral wavelength for di�erent surface types. Image derived

from https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectral-re�ectanceSciencedirect.

calculations need to be very accurate as small errors in the re�ectance can lead to

large errors in the retrieved aerosol layer height. This is especially the case around

oxygen absorption lines present within the oxygen A-band, as the vertical infor-

mation of aerosols is inferred from these absorption lines by the retrieval method.

There are a large number of absorption lines in the oxygen A-band, which equates

to a large number of calculations. Because each calculation involves the accounting

of scattering and absorption in the entire atmospheric column, the computational

requirements are very steep. In an iterative estimation process, each step is thus

time consuming. If the retrieval algorithm needs several steps to converge to a �nal

solution, a compromised computational speed can severely limit the applicability

of the retrieval technique, especially in an operational environment that needs to

deliver near-realtime data with limited resources within a limited time frame. This

limitation puts a demand on the improvement of the computational speed of the

radiative transfer model calculations itself.

4. Limited aerosol information content in the oxygen A-band The oxygen A-

band has limited amount of information on the various aerosol properties. Because

of this, a lot of assumptions and simpli�cations have to be made in order to retrieve

aerosol layer height. From our experience the oxygen A-band can be used to retrieve

the height of a single aerosol layer with a certain geometric thickness, whereas

the atmosphere contains aerosols at several atmospheric layers, either separated

into separate layers or combined into a single layer with thicknesses that vary from

hundreds of meters to kilometers. What then does the retrieved aerosol layer height

really mean? According to [16], the aerosol layer height from the oxygen A-band

should be considered as an e�ective scattering height more so than an geometric

aerosol layer height. If the single aerosol layer in a cloudless scene over a dark
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surface is uniform, the e�ective scattering height aligns with the geometric height;

this is important to note as we proceed into this dissertation.

1.5 Research objectives
From the challenges discussed so far, this dissertation identi�es two primary topics for

research in the context of retrieving aerosol layer height from satellite measurements of

the top of atmosphere Earth radiance in the oxygen A-band.

1. Understanding the in�uence of re�ected radiation from the surface on the
retrieved aerosol layer height. The goal of understanding the in�uence of surface

on aerosol height retrievals is signi�cant, as we are interested in observing �re smoke,

volcanic ash, dust events and anthropogenic aerosols that a�ect human settlements.

Understanding this can help in developing methods to limit the in�uence of surface

albedo on aerosol layer height retrievals. To that extent, this dissertation

• expands upon error sources in the retrieved aerosol layer height product for

retrievals over bright surfaces, and

• proposes an alternative method to minimise the in�uence of the surface in

aerosol layer height retrievals over bright surface albedo scenes.

2. Speeding up the retrieval algorithm. The number of computations for retrieving

aerosol layer height for a single ground pixel is extremely high, which must be

limited signi�cantly to improve the e�ectiveness of the retrieval algorithm in an

operational environment. To tackle this problem, this thesis

• discusses a strategy that exploits arti�cial neural networks to reduce the number

of computations required by the forward model, and

• compares the neural network algorithm by comparing aerosol layer height

retrievals with the same from an active instrument.

1.6 Outline of this thesis
Chapter 2 discusses the sources of error associated with a retrieved aerosol layer height

product, followed by a possible strategy of ameliorating some of these errors in chapter 3.

Chapter 4 discusses the machine learning inspired radiative transfer modeling approach in

order to improve the computational speed of the retrievals. Chapter 5 validates the neural

network aerosol layer height retrieval algorithm using colocated aerosol height retrievals

from active space-based instruments. Finally, the dissertation concludes with chapter 6.
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2
A study on errors associated

with O2 A-band aerosol
retrievals over bright

surfaces

Decades of research into aerosol information in the oxygen A-band has proven its feasibility

in retrieving aerosol layer height from satellite measurements of the top-of-atmosphere

re�ectances. In the context of a theoretical application of understood principles, it is

fairly simple to retrieve aerosol layer height: simulate a top-of-atmosphere re�ectance

spectrum for a scene with known parameterisations and retrieve while assuming ALH

to be unknown. Practically, this is a pipe dream: the true parameterisations are never

known to a retrieval algorithm. Luckily, signi�cant assumptions in several parameters of

the atmosphere makes retrieving aerosol information from the oxygen A-band possible,

but with an important caveat. In this case, the largest source of error arises from incorrect

knowledge of the surface re�ectance. Interestingly, if the surface albedo is very low (a

dark surface such as the ocean), incorrect assumptions in other parameterisations such

as aerosol properties and so on do not in�uence the biases in the retrieved aerosol layer

height too much. However, if the surface albedo is large, a pandora’s box of errors in�uence

the �nal retrieved product. This chapter discusses this interesting quagmire of retrieving

aerosol properties from measured top-of-atmosphere re�ectance in the oxygen A-band

over optically bright surfaces in the context of the following research goal,

Expand upon error sources in the retrieved aerosol layer height product for re-
trievals over bright surfaces.1

1
This chapter is published in https://doi.org/10.5194/amt-11-161-2018, 2018.

https://doi.org/10.5194/amt-11-161-2018
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2.1 Introduction
The retrieval of aerosol properties from the oxygen A-band presents a few challenges, one

of them being that aerosol layers in the atmosphere are usually optically thin, and are quite

di�cult to observe in the presence of clouds. This is because clouds have an optical depth

which is typically orders of magnitude larger than that of aerosols, and are more e�cient in

scattering incoming radiation. Consequently, aerosol retrieval algorithms generally refrain

from retrieving over cloudy scenes; our algorithm is no exception to this and requires cloud

screening to �lter out pixels containing clouds. While cloudy pixels can be �ltered out to a

certain degree, retrieving aerosols from measurements in the oxygen A-band over bright

surfaces faces a host of other challenges. From literature, it is understood that aerosol

information content from measured spectra in the oxygen A-band reduces as the surface

albedo increases [2, 13]. Sanders et al. [12] report potentially large biases in their aerosol

layer height retrievals from the oxygen A-band when the surface albedo is �tted. In a

previous chapter, Sanders and de Haan [10] also report that certain speci�c combinations

of geometry, aerosol, and surface properties can result in unusually large uncertainties

in the retrieved aerosol layer height (see also Figure 8-2 in Sanders and de Haan [11]).

Such large biases can perhaps be attributed to a phenomenon known as the critical surface

albedo regime [14], wherein for speci�c surface albedos, the top of atmosphere re�ectance

becomes independent of the aerosol optical thickness. Sanders et al. [12] observe that when

the surface albedo isn’t �tted, typical uncertainties in the surface albedo database over

land can result in large biases. From our analyses, we understand that for relative errors

up to 10% in the surface albedo, retrievals over dark surfaces are not a�ected, whereas the

same over su�ciently bright surfaces (surface albedo greater than 0.2) can su�er from very

large biases.

A combination of all the error sources discussed previously can result in large biases.

In fact, we observe that the presence of errors often lead to no convergence in the retrieval,

with no concrete predictability on which pixel is likely to yield no result. Because of

this, the operational algorithm wastes resources trying to retrieve aerosol layer height

from pixels that potentially do not have any usable aerosol information. This is especially

problematic in the framework of high resolution instruments, which demand operational

processors to make e�cient use of computational time and e�ort to process large number

of spectra (typically several hundred per second). In order to design more e�cient opera-

tional algorithms, the concept of critical surface albedo needs to be extended beyond the

framework provided by Seidel and Popp [14] into the oxygen A-band for aerosol optical

thickness as well as aerosol layer height.

This chapter analyses simulated measured top of atmosphere re�ectance spectra in

the oxygen A-band and provides an explanation for the loss of aerosol information over

bright surfaces. Its implication is provided in an optimal estimation framework, speci�c to

the retrieval of aerosol layer height, with results from sensitivity analyses. The analysis

is followed up with a demonstration in a real data environment by retrieving aerosol

layer height over a bright surface. The case study chosen is the retrieval of optically thick

biomass burning aerosol plumes over the 2010 Russian wild�res, to demonstrate the e�ect

of this loss of aerosol information over land. This chapter is one in a series of chapters on

development of an operational oxygen A-band Aerosol Layer Height retrieval algorithm

for Sentinel-4/5/5-P by KNMI, preceeded by Sanders and de Haan [10] and Sanders et al.
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[12]. The current operational ALH algorithm for S5P is described in Sanders and de Haan

[11]. While the results of this chapter are relevant for the Sentinel 5-Precursor algorithm

as well, the instrument model used in the sensitivity studies is for the UVN spectrometer

on the S4 mission.

The next section (Section 2) provides a description of the forward model and the optimal

estimation framework. Section 3 discusses the concept of aerosol-surface ambiguities in the

oxygen A-band. Section 4 describes various sensitivities of our retrieval algorithm focusing

on the di�erence between dark and bright surfaces. Section 5 discusses aerosol layer height

retrievals over the 2010 Russian wild�res using GOME-2A data. Section 6 concludes this

chapter with a discussion and the implication of the �ndings from this chapter.

2.2 The forward model and the inverse method
2.2.1 Forward model
There are three primary parts of the forward model, namely the atmospheric model, the

radiative transfer code, and the instrument model. A radiative transfer code is used to

model a high resolution top of atmosphere radiance by propagating radiation through

the atmosphere described by the atmospheric model. The top of atmosphere re�ectance

R computed by the forward model is de�ned as the ratio of the radiance I of the pixel

measured by the instrument to the top of atmosphere solar irradiance E0 of the pixel on a

horizontal surface unit,

R(�) =
�I (�)
�0E0(�)

. (2.1)

�0 represents the cosine of the solar zenith angle of the pixel, and � represents the wave-

length.

The top of atmosphere re�ectance is calculated after the measured radiance and ir-

radiance are convolved with the Instrument Spectral Response Function (ISRF) of the

hyperspectral sensor in order to simulate measured spectra by a satellite instrument. For

simulations, the high resolution solar spectrum from Chance and Kurucz [1] is used.

Radiative transfer model
The radiative transfer model is the Layer Based Orders of Scattering (LABOS) method,

which is a variant derived from the Doubling-Adding method [3]. Atmospheric properties

are calculated line-by-line to compute the re�ectance at the top of atmosphere. The radiative

transfer code is a part of a software package called DISAMAR (Determining Instrument

Speci�cations and Analysing Methods for Atmospheric Retrievals), which is the main

workhorse of operational algorithm development e�orts at KNMI for oxygen A-band

aerosol height retrieval with S5P/S4/S5 instruments. Scattering by gases is described by

Rayleigh scattering, which has a low scattering cross section in this wavelength region.

Because of this, polarisation is ignored. Wavelength shifts caused by rotational Raman

scattering (RRS) are ignored in order to reduce computational e�ort, since line by line

calculations are computationally expensive in the oxygen A-band. This is convenient, since

the Raman scattering cross section is even smaller than that of Rayleigh scattering. The

atmosphere in the forward model is plane-parallel for the Earth radiance, and spherically

corrected for the incoming solar irradiance.
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Atmospheric model
For cloud-free conditions, the following four absorption and scattering processes are signif-

icant in the wavelength range between 758 nm and 770 nm: scattering by gases, re�ection

of light by the surface, scattering and absorption by aerosol particles, and absorption by

molecular oxygen. Absorption of solar radiation by O3 and H2O are ignored, since they

are not dominant absorbing gases in this spectral range.

The surface re�ectance is assumed isotropic, described by its albedo. Depending on

the surface albedo, a surface can either be bright or dark. Dark surfaces are classi�ed with

surface albedo close to 0.05 (or lower), which in the oxygen A-band spectral region typically

corresponds to ocean surfaces. Bright surfaces in the oxygen A-band on the other hand

have a surface albedo of 0.2 (intermediately bright) and higher and are primarily over land.

For the oxygen A-band at 760 nm, typical values of surface albedo over vegetated surfaces

exceed 0.4 since the wavelength band is located beyond the red edge where absorption of

solar radiation by chlorophyll diminishes. Scenes with snow or ice are not processed.

Aerosols are represented as a single layer with a �xed pressure thickness of 50 hPa,

containing aerosol particles with a �xed aerosol optical thickness and aerosol single scat-

tering albedo. Aerosol layer height is de�ned as the mid-pressure of the aerosol layer — if

the aerosol layer extends from 650 hPa to 600 hPa, the aerosol layer height is 625 hPa. In

the operational S5P aerosol layer height algorithm, currently the aerosol phase function

is a Henyey-Greenstein model [6] with an asymmetry factor of 0.7, and an aerosol single

scattering albedo of 0.95 [12]. While a Mie scattering model could be used instead of the

Henyey-Greenstein model, the latter is computationally less expensive and hence more

optimal for the operational algorithm.

Oxygen absorption cross-sections are derived from the NASA JPL database, following

Tran and Hartmann [17] who indicate that line parameters in the JPL database are more

accurate than the HITRAN 2008 database. First-order line mixing and collision induced

absorption by O2-O2 and O2-N2 are derived from Tran et al. [16] and Tran and Hartmann

[17].

Instrument model
The instrument model is described by the instrument slit function, whose spectral resolution

depends on its Full Width at Half Maximum (FWHM), and its noise model. For this study,

oxygen A-band is simulated using speci�cations of the Sentinel-4 Ultraviolet Visible and

Near infrared (UVN) instrument, which is set to launch in 2022. The instrument is a sounder

with a hourly coverage over Europe and Northern Africa at a spatial resolution of 8 × 8

km
2

sampled at 45
◦
N and 0

◦
E. The instrument has a FWHM of approximately 0.116 nm,

oversampled by a factor 3, e�ectively giving the instrument a spectral sampling interval of

0.04 nm. Aerosol layer height will be an operational product provided by the Sentinel-4

mission. An example of oxygen A-band spectra at a 0.116 nm resolution is provided in

Figure 1.9. For retrievals with real data, measurements from the Global Ozone Monitoring

Experiment-2 on board the MetOp-A satellite are used. Launched on October 16, 2006,

GOME-2A is an optical spectrometer fed by a scanning mirror which enables across-track

scanning in the nadir. The instrument has a spectral sampling interval of approximately

0.21 nm at 758 nm (spectral resolution of 0.48 nm for channel 4), and has a nominal spatial

resolution of 80 × 40 km
2

[8]. A shot noise model is assumed for the instrument.
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2.2.2 Inverse method
The inverse method is based on the Optimal Estimation (OE) framework described by

Rodgers [9], which is a Maximum A-Posteriori (MAP) estimator that constrains the least-

squares solution with a-priori knowledge on the state vector. The method assumes Gaussian

statistics for the a-priori errors. The iterative method is a Gauss-Newton approach, and

the estimation parameters are the aerosol optical thickness � and the aerosol layer height

z. The cost function �2 is de�ned as,

�2 = [y−F(x,b)]T S�−1[y−F(x,b)] + (x−xa)T Sa−1(x−xa), (2.2)

where y is the measured re�ectance, F(x,b) is the vector of calculated re�ectance using the

forward model, x is the state vector containing �t parameters, b is the vector containing

other model parameters, S� is the measurement error-covariance matrix, xa is the a-priori

state vector, and Sa is the a-priori error-covariance matrix. Sa is diagonal, assuming no

correlation between state vector elements. S� is also diagonal, since the measurement error

is assumed uncorrelated. [y−F(x,b)]T S�−1[y−F(x,b)] is the measurement part of the cost

function, whereas (x−xa)T Sa−1(x−xa) is the state vector part of the cost function.

The a-posteriori error covariance matrix Ŝ is computed as,

Ŝ = (KT S�K+Sa−1)−1, (2.3)

where K is the Jacobian with its columns containing partial derivatives of the re�ectance

with respect to the state vector elements. DISAMAR calculates the Jacobian semi analyt-

ically, similar to the reciprocity method described by Landgraf et al. [7]. The Jacobian

drives the retrieval towards the solution as an integral component in the update to the

state vector,

xn+1 = xa + (Kn
T S�−1Kn +Sa−1)−1Kn

T S�−1[y−F(xn) +Kn(xn −xa)], (2.4)

where xn+1 is the next iteration to the ntℎ iteration in the retrieval, and Kn is the Jacobian

evaluated at the ntℎ iteration. The Jacobian can become singular if the value of the partial

derivative of the re�ectance to the a state vector parameter is very low, or is correlated

to another parameter in the state vector. In these cases, the error covariance matrix does

not exist, since the inverse covariance matrix is non-invertible; if it is nearly singular, the

problem is ill-conditioned and may result in very large biases in the estimation.

The inverse method reaches a solution if the change in the state vector between

iterations is below a convergence threshold. It is possible that during iterations, the inverse

method estimates state vector elements beyond boundaries. In such a case, the state vector

element is adjusted back to just within its physical limits. If the adjustment is made in two

consecutive iterations, the retrieval is stopped and no solution is reached. The upper cap

in the number of iterations is set at 12, beyond which the retrieval is said to have failed.

In this chapter, these failed retrievals are termed as non-convergences. The next section

discusses the atmospheric conditions that can potentially lead to these non-convergences.
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2.3 Aerosol-surfaceambiguities intheoxygenA-band
2.3.1 Influence of surface reflectance on aerosol informa-

tion content in the oxygen A-band
Assuming the surface to be an isotropic re�ector, the top of atmosphere re�ectance over a

surface with an albedo As can be written as the sum of atmospheric path contribution of

the photon Rp and surface contribution Rs ,

R(�,As) = Rp(�) +Rs(�,As). (2.5)

Rp is the top of atmosphere re�ectance in the absence of a surface. Rs is calculated

by subtracting the path contribution from the total top of atmosphere re�ectance, and

represents contributions from photons that have been re�ected one or more times by the

surface. Rs is dependent on the absorbing and scattering species present in the atmosphere,

and also includes aerosol in�uences. Rp is calculated by substituting As = 0.0 and calculating

the top of atmosphere re�ectance in DISAMAR. Rs is calculated by subtracting Rp from R.

With increasing viewing angle, Rp increases whereas Rs decreases (Figure 2.1). This is in

line with expectation, since the slant aerosol optical thickness increases, which increases

the amount of contribution that aerosols have in R(�,As). At steeper geometries, light at

the top of atmosphere is more di�use than direct, which is the primary reason why Rs
decreases (assuming a Lambertian surface).

For a model parameter x with two values xa and xb , the di�erence spectrum ΔRΔx ,

de�ned as

ΔRΔx = Rxa −Rxb , (2.6)

can reveal the in�uence the model parameter x has on the oxygen A-band. The spectral

shape of ΔRΔx can also show parts of the spectrum that are more sensitive to x . Following

Equations 2.5 and 2.6, ΔRΔx (�,As) is de�ned as

ΔRΔx (�,As) = ΔRpΔx (�) +ΔRsΔx (�,As). (2.7)

If ΔRpΔx and ΔRsΔx have opposing signs, ΔRΔx reduces following Equation 2.7 which

results in a reduction of sensitivity to the parameter x .

Comparing ΔRpΔz and ΔRsΔz at two di�erent aerosol layer heights (z) for two di�erent

scenes with the same atmospheric conditions (Figure 2.2, left panel), it is observed that

ΔRpΔz and ΔRsΔz have opposite signs and Rp is relatively more sensitive to aerosol layer

height than Rs . This is especially the case in the deepest part of the R-branch between 759.50

nm and 761.30 nm and parts of the P-branch between 761.30 nm and 763.00 nm, where the

higher absorption cross section reduces the number of photons that can reach the surface.

This ultimately reduces the magnitude of Rs to the top of atmosphere for these absorption

sub-bands. ΔRsΔz over ocean and vegetation also shows an increase in its overall magnitude

with an increase in surface albedo, and hence an increase in cancellation between ΔRpΔz
and ΔRsΔz . Figure 2.3 represents the variation of the derivative of re�ectance with respect

to aerosol properties, for increasing surface albedo. Albeit subtle, the consequence of this

cancellation between ΔRpΔz and ΔRsΔz is observed in Figure 2.3 (Top), where )R/)z for
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the deepest part in the R-branch and parts of the P-branch diminishes gradually with an

increase in surface albedo.

The same experiment is repeated for aerosol optical thickness (� ), and the results

are presented in Figure 2.2 (middle panel). ΔRpΔ� and ΔRsΔ� are anti-correlated (Pearson

correlation coe�cient is -0.99, irrespective of the surface albedo), and the magnitude of

ΔRsΔ� increases with an increase in surface albedo. Figure 2.3 (Middle) shows the partial

derivative of the re�ectance with respect to � for increasing surface albedo. This anti-

correlation explains negative derivatives in the higher surface albedo regime.

ΔRpΔ! and ΔRsΔ! of aerosol single scattering albedo (!) in Figure 2.2 (right panel)

reveals a strong correlation (with a Pearson correlation coe�cient of almost unity). This

suggests that an increase in surface albedo increases the sensitivity of the model to !. We

suspect that this information predominantly arises from interactions between scattered

light by aerosols and surface. The magnitude of the partial derivative of re�ectance with

respect to ! for increasing surface albedo (shown in Figure 2.3, bottom) shows an increase,

which is in line with our analysis of Figure 2.2 (right panel).

For increasing surface albedo, the more dynamic parts of the )R/)� spectrum in Figure

2.3 (Middle) correspond to spectral points with less absorption by molecular oxygen. These

are also the parts of the spectrum with a high signal to noise ratio (SNR) and high S−1� . From

Equation 2.4, the inverse method gives a higher priority to spectral points with a higher

S−1� . Intuitively, low information of � from the oxygen A-band spectrum will increase the

dependency of the inverse method to prior information. This is further discussed in the

next section.

2.3.2 Aerosol-surface interplay in the top of atmosphere re-
flectance

In the inverse method, an a-priori error of 100% is assumed for the aerosol optical thickness,

which gives it freedom to vary during iterations. If the a-priori aerosol optical thickness

is far from the solution, a large a-priori error ensures that the retrieval can estimate the

parameter in fewer iterations. However, whether the Gauss-Newton optimisation reaches

the correct solution depends on two primary factors, i. if the cost function has a global

minimum, and ii. the gradient of the cost function is su�ciently large, such that it is

minimised signi�cantly at every iteration.

From our analysis of ΔRΔx for aerosol parameters, we have identi�ed aerosol optical

thickness to be the parameter most a�ected by an increasing surface albedo, due to the

cancellation between ΔRpΔ� and ΔRsΔ� owing to their similar amplitudes, spectral shapes

but opposing signs. Because of this, the top-of-atmosphere re�ectance spectrum becomes

independent of aerosol optical thickness for higher surface albedo regimes (Figure 2.4).

Over a dark surface such as the ocean, top of atmosphere re�ectance in the continuum

is unique at di�erent aerosol loads (Figure 2.4, left panel). The variation in the top of

atmosphere re�ectance in the continuum reduces as the instrument points more towards

the nadir. In such geometries, Rs can play a more signi�cant role than Rp and reduce the

available information on � in the R(�,As) spectrum. For bright surfaces, the variation in

the top of atmosphere re�ectance spectrum is less for steeper geometries relative to the

same geometries over the ocean (Figure 2.4, middle panel, green and blue line). There

can also be cases where, provided su�ciently high aerosol loading, the top of atmosphere
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re�ectance spectrum in the continuum can be independent of aerosol optical thickness over

very bright surfaces such as vegetation (Figure 2.4, right panel, green line). In such cases,

more than one value of � results in the same top of atmosphere re�ectance. Henceforth in

this chapter, this phenomenon is termed as aerosol-surface ambiguity.

A loss in aerosol information can have special implications in the minimisation of the

cost function. As observed in Figure 2.5, for lower surface albedo regimes there exists

a single minimum of the cost function. For such scenes, if the a-priori aerosol optical

thickness is far from the true value, the gradient is su�ciently large such that a small

change in the state vector between iterations leads to a signi�cant minimisation of the cost

function. As the surface albedo increases, this gradient decreases signi�cantly, and can

also result in the presence of multiple minima in the cost function (Figure 2.5, right) if the

state vector is far away from the truth. This makes the retrieval dependent on the initial

guess of � .

Because of a model error (described in Figure 2.5) in the aerosol layer height between

y and F(x,b) (in Equation 2.2), the global minimum of the cost function shifts away from

the true � . This shift is biased higher than the truth if the aerosol layer is lower in the

atmosphere in comparison to the aerosol layer in the synthetic true spectrum, because the

model has to compensate the extra absorption by molecular oxygen. If the aerosol layer is

higher in the atmosphere, the minimum of the cost function is situated at a � lower than

the true � . As observed in Figure 2.5 (left, red line), this shift of the cost function minimum

from the true � is larger over bright surfaces for a viewing angle close to nadir, where Rs is

more dominant. For the same angle, the global minimum over a dark surface is situated

at the true � value, even with the presence of a model disagreement with the simulated

‘true’ spectrum. As the viewing angle increases over the bright surface, Rp increases and

the global minimum of the cost function moves closer towards the true � .

If the a-priori error assigned to aerosol optical thickness is large, presence of aerosol-

surface ambiguities can result in non-convergences. Because the a-priori part of the cost

function has a smaller value than the measurement part, reducing a-priori error assigned

to the aerosol optical thickness does not necessarily guarantee a solution to this issue since

it does not remove the multiple-minima present in the cost function. Since errors between

aerosol optical thickness and aerosol layer height are correlated [12], a large error in the

optical thickness will lead to a large error in the aerosol layer height estimate. The next

section discusses the sensitivity of the aerosol layer height algorithm to this phenomenon

by introducing model errors in a simulation environment.
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Figure 2.1: Rp and Rs for increasing viewing zenith angle � over a surface with an albedo of 0.4 at 760 nm. The

solar zenith angle is �xed at 45
◦

and a relative azimuth angle of 0
◦
. Aerosol optical thickness is �xed at 1.0 for an

aerosol single scattering albedo of 0.95. Aerosol scattering phase function is a Henyey-Greenstein with g = 0.7.

The aerosol layer is situated at 600 hPa, with a thickness of 50 hPa.
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Figure 2.2: ΔRpΔx (in blue) and ΔRsΔx (in red, for As = 0.03 and green for As = 0.4) to model parameter x in the

oxygen A-band, as measured by a nadir pointing instrument for a solar zenith angle at 45
◦
. ΔRpΔx is calculated

as the di�erence of the modeled top-of-atmosphere re�ectance between two atmospheres, both cloudless and

contain aerosols, which di�er only in the parameter x for values xa and xb , according to Equation 2.6. The phase

function is described by a Henyey-Greenstein model with an anisotropy factor of 0.7, and the thickness of the

aerosol layer is �xed at 50 hPa. Left: � = 1.0 and ! = 0.95 with di�erent aerosol layer heights, za = 600 hPa and zb
= 800 hPa. Middle: �a = 1.0 and �b = 0.5 at z = 600 hPa and ! = 0.95. Right: � = 1.0 and z = 600 hPa for !a = 0.95

and !b = 0.9. Y-axis has optimised per plot.
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Figure 2.3: Derivative of re�ectance with respect to aerosol properties for di�erent surface albedos As . The z is

centered around 600 hPa, with � = 1.0, ! = 0.95, and a Henyey-Greenstein phase function with g = 0.7. The solar
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and the viewing zenith angle is 0
◦
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derivative of re�ectance with respect to � . Bottom: derivative of re�ectance with respect to !. The colorbar has

optimised per plot.
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Figure 2.4: Top-of-atmosphere re�ectance at 755 nm, well outside the oxygen A-band, from simulated spectra of

scenes containing aerosols over dark and bright surfaces. Red, blue and green lines represent di�erent viewing

zenith angles � , as a function of increasing aerosol optical thickness. Aerosols have a single scattering albedo of

0.95, and the aerosol scattering is described by a Henyey-Greenstein phase function with g = 0.7. Aerosol layer is

situated at 925 hPa. The solar zenith angle is 45
◦

and a relative azimuth angle is 0
◦
. Left: The surface albedo is

0.03 at 760 nm, typical over the ocean. Middle: The surface albedo is 0.25 at 760 nm, typical over land. Right:
The surface albedo is 0.4 at 760 nm, typical over vegetated land.
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Henyey-Greenstein aerosol phase function with g = 0.7. The solar zenith angle is �xed at 45
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for varying viewing

angles as speci�ed in the plot titles. The relative azimuth angle is 0
◦
. The state vector also contains aerosol layer

height, whose a-priori value is �xed at 700 hPa.
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2.4 Error analysis
In DISAMAR, forward models for simulation and retrieval have been kept separate so

that errors can be introduced into the simulated spectra to mimic errors in a real retrieval

scenario. In this section, the instrument model of the Sentinel-4 UVN near infrared spec-

trometer is used. The wavelength range for simulations and retrievals is between 758

nm and 770 nm. A comparative analysis of biases in the retrieved aerosol layer height is

conducted over ocean (As = 0.03) and land (As = 0.25, and As = 0.4). Bias in the aerosol

layer height is de�ned as the di�erence between retrieved and true aerosol layer height (in

hPa) — a positive sign indicates that the aerosol layer is retrieved below the true aerosol

layer height. The aerosol layer height retrieved is a single layer for the entire atmospheric

column, with a �xed thickness of 50 hPa.

2.4.1 Sensitivity to model error in the aerosol layer thick-
ness

In a typical real-world scenario, aerosol plumes can be as thick as 200 hPa in the atmosphere,

or more. We simulate a scene containing an aerosol layer that extends approximately from

the surface (1000 hPa) to 800 hPa in the atmosphere. The true � is 1.0, and the a-priori

� is 0.5. The a-priori value of the aerosol layer height is 650 hPa, and the aerosol layer

thickness is �xed at 50 hPa. In an ideal retrieval instance, the retrieved aerosol layer height

(which has a thickness of 50 hPa) should coincide with the height of the simulated thicker

aerosol layer. We observe that, in general, the error in the retrieved aerosol layer height

reduces as the viewing zenith angle increases (Figure 2.6, top left). This is explained by a

reduction in Rs and an increase in Rp , (Figure 2.1, red line), which explains why di�erence

in errors between retrievals over di�erent surfaces reduces with an increase in viewing

angle (Figure 2.6, top left, high viewing zenith angles).

At lower viewing zenith angles, the di�erence in aerosol layer height errors between

retrievals over the di�erent surfaces is the largest, since the e�ect of Rs interfering with Rp
is signi�cantly larger (Figure 2.1, blue line), which increases with an increase in surface

albedo (Figure 2.2, left). The retrieved aerosol layer is biased towards the surface in all three

surface albedo scenarios, with the aerosol layer being placed closer to the surface if the

surface albedo is brighter. This should not suggest a sensitivity to the geometrical thickness

of the aerosol layer. As the surface albedo increases, the number of photons that pass

through the atmosphere to interact with the surface before reaching the detector increases.

These photons have a longer path length, which results in an increased absorption by

oxygen at speci�c spectral points with weak oxygen absorption lines. In comparison to

photons at wavelengths with strong oxygen absorption lines, these photons have a higher

SNR since relatively more of them reach the detector. A higher SNR ensures lower noise,

and hence a higher value in the inverse of the measurement error covariance matrix S� .

If a spectral point has a higher value in S−1� matrix, it has a higher representation in the

cost function (in Equation 2.2), and hence a higher preference (or weight) in the optimal

estimation. Because of this, the retrieval prefers to retrieve an aerosol layer height described

by photons that travel through the aerosol layer closer to the surface. If, however, the

aerosol optical thickness is so large that the photons cannot penetrate the aerosol layer,

the retrieved aerosol layer height would be more accurate. Retrieving height of optically

thin aerosol layers can also be quite challenging, owing to the fact that these layers will
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Figure 2.6: Bias in aerosol layer height in the presence of model errors. Unless speci�ed, the relative azimuth

angle is 0
◦

and the solar zenith angle is 45
◦
, aerosol single scattering albedo of 0.95 and Henyey-Greenstein g of

0.7, and an aerosol layer at 650 hPa. Top left: Model error is introduced in the thickness of the aerosol layer. The

simulated spectra contains a 200 hPa thick aerosol plume extending from the 1000 hPa to 800 hPa. Top right:
Model error is introduced in the aerosol phase function. The simulated scenes contain aerosols with scattering

physics described by a Henyey-Greenstein phase function with g = 0.65 and retrieved with g = 0.7. Bottom left:
Model error is introduced in the single scattering albedo. The simulated spectra contains aerosols with ! = 0.95,

which is �xed in the retrieval forward model at 0.90. Bottom right: A relative error is introduced in the surface

albedo. The viewing angle is �xed at 20
◦
.
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allow more photons to pass through and interact with the surface, leading to an increase in

Rs , and hence an increase in the cancellation between Rp and Rs . As a result of this, large

biases in the retrieved aerosol layer height can be expected for optically thin layers over

bright surfaces.

Another consequence of retrieving aerosol layer height over bright surfaces is that the

retrieval may become more susceptible to model error in aerosol and surface properties,

such as the aerosol phase function anisotropy factor g, the aerosol single scattering albedo

! and especially the surface albedo As , which are �xed in the model. These are investigated

in the following.

2.4.2 Sensitivity to model error in the aerosol phase func-
tion

The presence of a model error in the aerosol phase function can result in large biases if

the surface is bright (Figure 2.6, top right). For a higher surface brightness and a viewing

angle close to nadir, this bias is larger. As the viewing angle increases, the biases reduce

signi�cantly. The correlation of bias with surface albedo suggests that biases cause by

model errors are exacerbated by the surface contribution Rs , which reduces as viewing

angle increases (Figure 2.1, right).

2.4.3 Sensitivity to model error in aerosol single scattering
albedo

From Figure 2.3, aerosol single scattering albedo plays an increasingly signi�cant role

in the retrieval of aerosol layer height as the surface gets brighter. Because of this, a

mis-characterisation of aerosol single scattering albedo in the model can lead to very large

biases over bright surfaces (Figure 2.6, bottom left), and also non-convergences. This is

not the case for retrievals over the ocean, since the in�uence of aerosol single scattering

albedo on the oxygen A-band spectrum is low. It is observed that, as the viewing angle

increases, these biases drop signi�cantly. This is again attributed to the decrease in Rs and

increase in Rp with increasing viewing angle (again, over a Lambertian surface).

2.4.4 Sensitivity to model error in surface albedo
Surface albedo is a critical component in the accurate retrieval of aerosol layer height

over bright surfaces. Because it is a �xed parameter in the forward model, an error in

the surface albedo can result in large biases in the retrieval. To simulate model errors,

relative errors of -10% to 10% are introduced in the retrieval forward model, such that the

surface is modeled darker or brighter than the true value. For relative errors of ±10%, the

retrieved aerosol layer height can be biased more than two orders of magnitude larger over

land than over ocean (Figure 2.6, bottom right). For retrievals over a bright surface such

as vegetation (As = 0.4 or greater), the model error can result in non-convergences. As

the model error reduces, retrievals over land with a surface albedo of 0.25 become more

acceptable. However, over very bright surfaces, an inaccuracy in surface albedo of more

than 2% can result in biases greater than 100 hPa.

The next section demonstrates the implication of these errors in a real retrieval scenario.
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2.5 Demonstration case: 2010 Russian wildfires
The 2010 Russian wild�res began in late July and lasted for several weeks until the beginning

of September. Literature reports droughts and record summer temperatures in the same

year as a precursor to the wild�res, both of which have been attributed to climate change

[5]. A consequence of the forest �res were optically thick aerosol plumes over the country,

especially over Moscow. In the �rst few weeks of August, 2010, due to the presence

of a strong anti-cyclonic circulation pattern in the atmosphere, the impact of biomass

burning aerosols on air quality in Moscow was markedly larger than what was observed

from previous wild�re incidences — the UV Aerosol Index (AI) reported by the Ozone

Monitoring Instrument (OMI) on board the NASA Aura mission observed an increase by

a factor of 4.1 from previous years [19] over Moscow, due to aerosol plumes originating

from the South and East of the city.

55◦N

60◦N

30◦E 40◦E30◦E 40◦E 30◦E 40◦E30◦E 40◦E 30◦E 40◦E30◦E 40◦E
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z [km]
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Figure 2.7: Left: Retrieved aerosol layer height from GOME-2A measurements of the 2010 Russian wild�res, in

kilometers above the ground with the aerosol layer height retrieval algorithm. Empty white boxes represent

pixels that do not converge to a solution. Middle: Retrieved aerosol optical thickness from the same retrievals.

Right: GOME-2A pixels for which there exist possible aerosol-surface ambiguities (empty pixels with white

borders).

The aerosol plume above Russia on the 8th of August, 2010 serves as a test case for

the aerosol layer height retrieval algorithm, due to fairly cloud-free conditions and the

optical thickness of the aerosol plume (see Figure 2.7, right). Because of this, we do not

employ a cloud-screening method. The GOME-2A instrument crosses over the scene at

approximately 09:45 hrs - 09:47 hrs at local time. The GOME-2A pixels within the region

of interest are recorded between 0745 hrs UTC and 0748 hrs UTC, at approximate latitude

bounds of 52
◦

and 60
◦

and longitude bounds 29
◦

and 45
◦
. This corresponds to 255 pixels

in total. Meteorological information relevant to the retrieval are temperature-pressure

pro�les and surface pressure, acquired from the European Center for Medium-Range

Weather Forecast (ECMWF) ERA-Interim database [4] at the GOME-2A pixel using nearest

neighbour interpolation. Surface albedo is derived using nearest neighbour interpolation

for version 1.3 of GOME-2A LER climatology derived from Tilstra et al. [15], which is at a

1
◦

x 1
◦

grid. Typical values of the surface albedo over the region of interest is around 0.21.

In the inverse method, the a-priori value of the aerosol layer height is approximately 800

hPa. The a-priori aerosol optical thickness is 1.0 at 760 nm.
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CALIOP data is used for validation, which provides vertical distribution of aerosols

and clouds for a footprint of approximately 70 m, with a 5 km horizontal resolution [18].

While the coverage of the instrument is not as expansive as the GOME-2 instrument, the

level of information available from CALIOP gives a good idea on the vertical position of

aerosols in the atmosphere. For a better validation dataset, CALIOP data recorded between

coordinates 52.0
◦

latitude and 64.0
◦

latitude, approximately around 1045 hrs UTC is used

for comparison of GOME-2A aerosol layer height retrieval results. The Level-1 CALIOP

attenuated backscatter data from 1064 nm is used because lidar in the visible region (532

nm) can get heavily attenuated over optically thick plumes. As can be seen from Figure

2.8, the aerosol layer is situated in between the surface and 5 km above the surface. In

total, 82 GOME-2A pixels falling within 100 km of the CALIPSO track are considered for

comparison.

The operational algorithm retrieves aerosol layer height and aerosol optical thickness,

with �xed a-priori values, as mentioned in Table 2.1. Following evaluation of the algorithm

on GOME-2A pixels by Sanders et al. [12], the surface albedo is not included in the state

vector. The single scattering albedo is not �tted in the sensitivity analyses in order to

maintain consistency with the current operational algorithms for the Sentinel missions,

which currently do not �t this parameter.

2.5.1 Results from the retrieval algorithm
Out of the chosen 255 GOME-2A pixels, 155 pixels converged and 100 pixels failed to

converge to a solution (40% of the pixels do not converge). The algorithm retrieved aerosol

layers primarily in the lower troposphere, roughly within 0 - 3 kilometers (Figure 2.7,

left). The mean aerosol layer height retrieved is 714 m above the ground with a standard

deviation of 647 m and a median of 450 m. The retrieved aerosol layers are optically thick

(Figure 2.7, middle), with an mean retrieved aerosol optical thickness of 3.0, a standard

deviation of 1.8, and a median of 2.5. The retrievals over the primary aerosol plume do not

converge to a solution.

Figure 2.8 (top) provides results of retrieving aerosol layer height over the chosen

82 GOME-2A pixels co-located to the CALIPSO track. The CALIOP backscatter data

shows that the aerosol plume extends from the ground to approximately 4 km between

latitudes 53
◦

and 60
◦
. Beyond 60

◦
latitude, the aerosol layer is elevated. Of the 82 pixels,

52 converge to a solution. From Figure 2.8, it is observed that the retrieved aerosol layer

heights are generally biased closer to the surface. This is explained by the increase in

surface contribution Rs which represents photons passing through the atmosphere and

interacting with the surface before reaching the detector. The spectral points representing

these photons have a higher weight in the optimal estimation in comparison to the photons

that do not interact with the surface and hence the aerosol layer height is retrieved closer

to the surface.

In Figure 2.8, the retrieval does not converge to a solution between latitudes 57
◦

and 60
◦
.

This area also corresponds to the primary biomass burning plume in Figure 2.7. However,

the estimated aerosol layer height in the last iteration for these pixels seems to be located

within the aerosol plume (Figure 2.8, top, white crosses between latitudes 57
◦

and 60
◦
). To

investigate this, we retrieve � from the top-of-atmosphere re�ectance in the continuum

with di�erent a-priori optical thickness values in order to test whether the non-uniqueness
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Figure 2.8: CALIOP lidar backscatter cross-section of a track falling within the region of interest over the 2010

Russian wild�re plume on 8
th

of August, 2010. Top: green dots and white crosses are GOME-2A pixels falling

within 100 km of the CALIPSO ground track — green dots represent converged aerosol layer heights, and white

crosses represent the aerosol layer heights at the last iteration for pixels that do not converge to a solution. These

retrieved altitudes are reported in km above ground surface. Bottom: Retrieval results are presented for pixels

for which the the pre�t method retrieves both � ′a and � ′b at similar values.
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Table 2.1: A-priori and validation information required to process data over 2010 Russian wild�res on the 8
tℎ

of

August, 2010.

parameter source remarks
radiance and irradiance GOME-2A data between latitudes 52

◦

and 60
◦

and longitudes 29
◦

and 45
◦

(255 pixels)

solar and satellite geome-

try

GOME-2A Level 1-b data

surface albedo As [15] GOME-2A LER at 1
◦

x 1
◦

grid at 758 nm and 772 nm

surface pressure ps ERA-Interim

temperature pressure pro-

�le

ERA-Interim

aerosol optical thickness � state vector element, a-

priori = 1.0

aerosol layer height ℎmid
[km]

state vector element, a-

priori = ps - 200 hPa

aerosol single scattering

albedo !
�xed at 0.95

aerosol phase function P(�) Henyey-Greenstein with

asymmetry factor g of 0.7

cloud mask none

validation CALIOP lidar pro�les 5 km × 5 km total attenu-

ated backscatter at 1064 nm
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of aerosol optical thickness is a potential cause of retrieval non-convergence.

2.5.2 Retrievingaerosol layerheightwithmultiplea-priori
aerosol optical thickness values

Aerosol optical thickness (� ) is �rst retrieved from the continuum before the oxygen A-

band between 755 nm - 756 nm. � is retrieved with two a-priori values �a and �b . In these

retrievals, the aerosol layer height is kept �xed at any arbitrary value, since its value will

hardly a�ect the continuum.

First, �a = 1.0 is chosen, and the retrieved solution � ′a is then used to decide the a-priori

value �b . If the solution for � ′a is not reached, then � ′b is not calculated. In the case that � ′a
is retrieved, �b is chosen in the following manner,

�b =

{
� ′a/2 if � ′a < �a
� ′a +0.5 if �a ≤ �

′
a < 10.0.

(2.8)

If the retrieval for � ′b fails, then we can infer a dependence on a-priori information. If

the retrieval is successful, � ′a and � ′b are compared to check if they are similar using the

following criterion,

�
′
a ≈ �

′
b if abs(�

′
a - �

′
b) < T×min(�

′
a , �

′
b), (2.9)

where T is a threshold, chosen to be 0.15. Increasing this threshold increases the margin

of similarity of � ′a and � ′b . This method is henceforth called the pre�t method.

Applying the pre�t method to the GOME-2A pixels processed previously, it is observed

that out of 255 pixels, 215 pixels retrieve � ′a and 40 pixels do not. Upon analysis of these 40

pixels, it is observed that the these pixels do not converge because the retrieved aerosol

optical thicknesses are in excess of 10.0, and DISAMAR stops the retrieval since � reaches

boundary conditions (beyond 20.0). Such large optical thicknesses may be attributed to

the saturation of the top of atmosphere re�ectance at very high aerosol loads, observed in

Figure 2.4. It is also possible that these retrievals do not converge because of the presence

of other model errors. Two pixels retrieve � ′a above 10.0, and hence are not considered for

retrieving � ′b .

From these 213 pixels, 209 pixels converge to � ′b , whereas four pixels do not converge

to a solution. These four pixels that do not converge are con�rmed cases of the presence

of aerosol-surface ambiguities, since the retrieval toggles between two values at every

iteration until the maximum number of allowable iterations is reached. This is also a

consequence of a non-unique top of atmosphere re�ectance at high aerosol load scenarios.

Out of the 209 pixels that retrieve both � ′a and � ′b , 205 pixels have similar retrieved optical

thickness values according to criterion in Equation 2.5.2. The rest have values which are

o� by more than 2.0.

From Figure 2.7 (right), pixels that contain aerosol-surface ambiguities primarily lie

within the main aerosol plume. This is in-line with our expectation of the top of atmosphere

being saturated at very high aerosol loads. Interestingly, these pixels also comprise 50%

of the pixels that do not converge for aerosol layer height retrieval. Figure 2.8 (bottom)
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provides a plot of the retrieval of CALIPSO co-located GOME-2A pixels, in which 22 pixels

are absent from the plot (relative to Figure 2.8, top). These are pixels for which the pre�t

method retrieves di�erent � ′a and � ′b .

2.5.3 Discussion
Out of the 100 pixels that do not converge, 50 pixels have been identi�ed which may be

a�ected by aerosol-surface ambiguities. For a majority of these pixels, the retrieved aerosol

optical thickness is typically beyond 4.0. It is possible that the true number of pixels that

are a�ected by aerosol-surface ambiguities are higher than 50 pixels — our analysis is

represented by a similarity criterion which relies on a similarity threshold T , which we

have set at 15% (Equation 2.5.2). With a more strict criterion, more pixels a�ected by

aerosol-surface ambiguities may be detected. Other non-convergences may be a result of

model errors. Comparing our retrievals with the CALIOP attenuated backscatter pro�le

from the infrared channel, we observe that our retrievals are biased closer to the surface,

with non-convergences occurring for pixels within the primary biomass burning plume.

2.6 Conclusions
Depending on the surface brightness, the interaction of photons scattered from the atmo-

sphere and the surface can result in a possible reduction of available aerosol information

in the oxygen A-band spectrum. Our basis for this assertion depends on the distinction of

aerosol information present in atmospheric path contributions Rp and surface contributions

Rs to the top of atmosphere re�ectance in the spectrum (Figure 2.1). The reduction of

aerosol information increases with increasing surface brightness and decreasing viewing

angle.

Our analyses reveal that the derivatives of the atmospheric path and surface contribu-

tions with respect to aerosol optical thickness are anti-correlated (see Figure 2.2, middle),

which a�ects the derivative of re�ectance with respect to aerosol optical thickness (see

Figure 2.3). As the surface gets brighter, the magnitude of this derivative decreases, which

reduces the sensitivity of the oxygen A-band spectrum to aerosol optical thickness. We

expect this anti-correlation behaviour to be strong for viewing angles closer to the nadir,

since Rp increases and Rs decreases with an increase in viewing angle (see Figure 2.1). One

of the consequences of this interference is the e�ect on cost function for retrieving aerosol

optical thickness. We report that the gradient of the cost function tends to become more

shallow as the surface albedo increases. This is especially the case when the viewing angle

is closer to the nadir (see Figure 2.5). We also notice that the cost function reduces at high

aerosol optical thickness beyond the local minimum near the truth (Figure 6, right), which

indicates the presence of multiple minima in the cost function. We attribute this behaviour

to the saturation of the top of atmosphere re�ectance at high aerosol loads (see Figure 2.4).

Similar analyses on the available information on aerosol layer height in Rp and Rs in the

oxygen A-band reveals that parts of the oxygen A-band spectrum with a low absorption by

oxygen have an increased cancellation of ΔRpΔz and ΔRsΔz (see Figure 2.2, left) and hence

a reduction in aerosol layer height sensitivity in speci�c parts of the spectrum (see Figure

2.6, top). This increases as surface albedo increases. It is also observed that the derivative

of ΔRpΔ! and ΔRsΔ! are both positive (see Figure 2.2, right), which increases the overall



42 2 A study on errors associated with O2 A-band aerosol retrievals over bright surfaces

sensitivity of the oxygen A-band spectrum to ! with increasing surface albedo. This is

observed in the derivative of re�ectance with respect to !, which increases in magnitude

with an increase in surface albedo.

The interaction between photons scattering back from the atmosphere (Rp) to the

detector and photons that travel through the atmosphere to the surface and back to the

detector (Rs) has direct consequences to the retrieval of aerosol layer height from the oxygen

A-band. Over bright surfaces, the retrieval algorithm becomes increasingly susceptible to

errors in the aerosol layer height estimates as well as non-convergences in the presence of

model errors (see Figure 2.6). The sign di�erence of ΔRpΔz and ΔRsΔz also explains why

retrieving a aerosol layer over bright surfaces with a 50 hPa thickness for thicker layer

(say 200 hPa thickness) can be biased closer to the ground (see Figure 2.6, top left). To

demonstrate this assertion in a real retrieval scenario, we have retrieved aerosol layer height

over the 2010 Russian wild�res in the 8th of August, 2010, using measured oxygen A-band

spectra recorded by the GOME-2 instrument on board the Metop-A satellite. For validating

our retrievals, we refer to lidar measurements by the CALIOP instrument on board the

CALIPSO mission which records, among other measurements, attenuated backscatter

at 1064 nm over the same wild�res scene a few hours after the GOME-2A acquisition.

Comparison of co-located GOME-2A and CALIPSO pixels reveals that, in the case of both

boundary and elevated aerosol layers, the retrieved aerosol layer height is biased closer

to the surface. For pixels with a high aerosol load, the algorithm fails to converge to a

solution (see Figure 2.7). Over optically thick plumes, the retrieval becomes dependent on

the a-priori aerosol optical thickness (see Figure 2.7, right).

The following chapter (Chapter 3) applies the knowledge gained from this study in the

development of the aerosol layer height retrieval algorithm for retrieving aerosols over

land.
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3
A weighted least sqares

approach to limit errors in
aerosol layer height

retrievals over bright
surfaces

Having established the information-cancelling e�ect that increasing surface brightness

introduces on the derivative of top-of-atmosphere re�ectance in the oxygen A-band with

respect to aerosol properties, the question now is whether this physics can be exploited

to ameliorate the e�ects of bright surfaces on the retrieved aerosol properties. The �rst

indication is the cancelling of aerosol layer height information occurs in parts of the

oxygen A-band spectra which have a low oxygen absorption cross section. A lower oxygen

absorption cross section results in a higher photon count, relative to parts of the spectrum

with a higher absorption cross section, in the measured signal. Consequently, the measured

signal now has a higher signal to noise ratio for parts of the spectrum with less aerosol

information.

The signal to noise ratio has a unique impact in the optimal estimation framework that

the KNMI aerosol layer height retrieval algorithm is based on — in a way, it directs the

retrieval to focus on parts of the spectrum more than other parts, in order to derive (in

this context) aerosol information. This chapter discusses a method called dynamic scaling,

which alters the signal to noise ratio by reducing its value at parts of the spectrum with

low aerosol information than parts of the spectrum with higher aerosol information. The

research goal covered in this chapter is,

Propose an alternativemethod tominimise the in�uence of the surface in aerosol
layer height retrievals over bright surface albedo scenes.1

1
This chapter is published in https://doi.org/10.5194/amt-11-3263-2018, 2018.

https://doi.org/10.5194/amt-11-3263-2018
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3.1 Introduction
Algorithms that estimate properties of atmospheric species from satellite measurements of

top-of-atmosphere (TOA) radiance (including spectral signatures of gases) in planetary

atmospheres typically employ an inverse method based on least squares. In the case of

retrieving terrestrial properties, this approach requires spectrally resolved measurements

of the TOA Earth radiance, solar irradiance, and a forward model as the minimal base

ingredients to retrieve the state vector parameters (which are also model parameters). The

goal of the least squares approach is to minimize a cost function, which aims to reduce

discrepancies between the forward model and the measurement by iteratively manipulating

state vector parameters. Upon minimization, the iterative scheme converges to a solution

that, in principle, best describes the forward model’s representation of the measurement.

Many atmospheric retrieval algorithms employ a weighted least-squares estimation

(WLSE) method modi�ed to include a-priori information on the state vector. An example

of such an inverse method setup is optimal estimation (OE, Rodgers [17]), which is an

attractive method particularly because of its e�cacy in providing posteriori error statistics

on the retrieved parameter. The KNMI aerosol layer height (ALH) retrieval algorithm uses

an inverse method based on OE, and exploits the spectral structure of the near-infrared

spectrum of the top-of-atmosphere radiance between 758 - 770 nm, where photons traveling

through the Earth’s atmosphere predominantly get absorbed by molecular oxygen. Oxygen

is a well-mixed gas and has a pressure-dependent spectral structure of its absorption lines

[12]; the further light in the oxygen A band passes through the atmosphere, the more

it gets absorbed until it interacts with scattering species (such as clouds and aerosols)

and scatters back to the TOA. It is this feature of the oxygen A band that has made it an

attractive wavelength region for retrieving aerosol information [3, 7, 8, 10, 15, 18–21, 27].

The algorithm is operational for the TROPOspheric Monitoring Instrument (TROPOMI) on

board the Sentinel-5 Precursor (S5P) mission [26], and is also a part of the Sentinel-4 (S4)

and Sentinel-5 (S5) missions [11] under the Copernicus satellite program of the European

Union.

Due to the large spectral variability in absorption within the oxygen A band, the

measured TOA radiance and the measurement noise have a high dynamic range. The

minimization of the propagation of measurement noise to the �nal retrieval solution should

be a critical component of any retrieval algorithm. In WLSE, this is accomplished by

the inverse measurement error covariance matrix which ranks the measurement on each

detector pixel using the information available on the measurement noise. Due to the extent

of the dynamic range of the measurement noise in the oxygen A band, this ranking matrix

becomes a primary controlling entity; if the measurement noise is very large, the inverse

noise variance is very low, which results in a lower rank to the measured signal from that

speci�c detector pixel.

Since the measured signal is scene dependent, the spectral rank of each detector pixel

is also scene dependent. This has special consequences over bright surfaces, where the

dynamic range of the measured signal is much larger than over dark surfaces. Due to this,

photons at wavelengths where the oxygen A band has a lower absorption cross section are

less absorbed (subsequently traveling further into the atmosphere) and have a much larger

representation in the WLSE method. A consequence of this, reported by Nanda et al. [14],

is that the retrieved ALH values are inaccurate for measurements over land.
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In order to account for unknown instrument and model errors, Sanders et al. [20]

multiply the measurement error from L1b by two for their GOME-2 case studies and by ten

in SCIAMACHY case studies (Sanders et al. 2018, manuscript in preparation) for retrieving

ALH over ocean and land. They observe that increasing the measurement noise results in

an increase in the number of retrieval convergences without signi�cantly decreasing the

accuracy of the retrieved ALH for the already-converged solutions. The method utilized by

Sanders et al. [20] does not change the shape of the noise spectrum since it is multiplied

by a constant. This chapter investigates a vector-based weighing scheme (we call it the

dynamic scaling method, as opposed to the formal approach which is unscaled OE), which

dynamically varies from scene to scene; such a weighting scheme changes the shape of

the noise spectrum itself. The objective of the dynamic scaling method is to in�uence the

inverse measurement error covariance matrix in its choice in ranking the instrument’s

detector pixels in its spectral dimension in order to maximize sensitivity to aerosol layer

height. The study discussed in this chapter is a part of a series of chapters discussing the

ALH retrieval algorithm developed at the KNMI [14, 18–20].

The retrieval algorithm is described in section 3.2, which provides a description of

the forward model and the formalism of OE. The incompatibility of retrieving aerosol

properties from oxygen A band measurements with the formal design of the measurement

error covariance matrix are brie�y discussed in the same section (section 3.2), before a

full description of the proposed method in section 3.3 and a demonstration in a synthetic

environment in section 3.4 are given. This method is applied to real data in section 3.5. The

Russian wild�res in August 2010, which were discussed by Nanda et al. [14], are revisited to

compare the two approaches. The data are derived from the GOME-2A (Global Ozone Mon-

itoring Experiment on board the MetOp-A platform of the EUropean Organization for the

Exploitation of METeorological SATellites, or EUMETSAT) instrument, and validated with

a co-located CALIPSO (Cloud-Aerosol Lidar and Infrared Path�nder Satellite Observation

of the National Aeronautics and Space Administration, or NASA) overpass. The dynamic

scaling method is further applied to the Portugal �res plume over Western Europe on the

17th of October, 2017, using data from the GOME-2B instrument, with validation from

the ground-based EUropean METeorological services NETwork (EUMETNET, Alexander

et al. [1]) ceilometer network in the Netherlands and Germany, along with radiosonde

measurements of the relative humidity pro�le and the back trajectory of the aerosol plumes.

This demonstration is followed by the conclusion in section 3.6.

3.2 The ALH retrieval algorithm

The algorithm is comprised of a forward model and an inverse method. The forward model

uses a radiative transfer model described by de Haan et al. [4] to calculate the top-of-

atmosphere (TOA) Earth radiance (I ) in the oxygen A band. This is done by propagating

incoming solar irradiance (E0) in the oxygen A band through the Earth’s atmosphere, which

is described by an atmospheric model. Finally, this model is �tted to the measured spectrum

to retrieve the primary unknown ALH, while �tting the Aerosol Optical Thickness (AOT).

For more details, the reader may refer to Sanders et al. [20].
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3.2.1 The forward model
The atmospheric model describes the interaction of photons with various components of

the Earth’s atmosphere that either absorb photons or scatter it in di�erent directions. The

oxygen absorption cross-sections are derived from the NASA Jet Propulsion Laboratory

database, and �rst-order line mixing and collision induced absorption between O2-O2 and

O2-N2 are de�ned from Tran et al. [24] and Tran and Hartmann [25]. The scattering species

in the atmosphere include gases and molecules that follow Rayleigh scattering principles,

aerosols, clouds and the surface. At present, the algorithm assumes cloud-free scenes, since

the presence of clouds can result in large biases in the retrieved ALH [19, 20]. Aerosols

are modeled as a single layer with a �xed thickness of 50 hPa. ALH is de�ned as the mid

pressure of the aerosol layer, converted to a height above the ground. The aerosol layer

has a constant aerosol extinction coe�cient and a �xed aerosol single scattering albedo

(!). Scattering by aerosols is described by a Henyey-Greenstein phase function [9] with an

anisotropy factor g of 0.7. This choice is motivated by the model’s simplicity in describing

scattering, which facilitates faster radiative transfer calculations than a more complex Mie

scattering model. Currently, the surface is modeled as Lambertian.

The radiative transfer calculations are done line-by-line within the wavelength range

of 758 nm - 770 nm, which requires a large computational e�ort for a single retrieval per

iteration. In order to reduce computational time per iteration, polarization is ignored. This

is a viable step, since the Rayleigh scattering cross section is very low in the near-infrared

region. Because of the low Rayleigh Scattering cross section in the near-infrared, Rotational

Raman Scattering can also be ignored.

The solar irradiance and Earth radiance are convolved with an Instrument Spectral

Response Function (ISRF) fISRF(� −�i) to simulate a spectrum observed by a satellite instru-

ment. The TOA Re�ectance (R) is computed as

yi = R(�i) =
�
�0

∫ fISRF(� −�i)I (�)d�
∫ fISRF(� −�i)E0(�)d�

(3.1)

where �0 is the cosine of the solar zenith angle �0, and the subscript i is the index of the

spectral channel. For a more in-depth description of the forward model, please refer to

Sanders et al. [20]. All synthetic spectra presented in this chapter are from a hypothetical

instrument with a Gaussian ISRF and a spectral resolution (FWHM) of 0.11 nm oversampled

by a factor 3. These speci�cations are very similar to the Sentinel-4 Ultraviolet Visible

and Near infrared (UVN) instrument. The sensitivity analyses conducted in this chapter

may also be applicable to instruments with a lower spectral resolution. Further on in this

chapter, experiments are conducted with measured spectra from the GOME-2 A and B

instruments, which have a lower spectral resolution than the S4 UVN instrument.

3.2.2 The role of the measurement error covariance matrix
in optimal estimation of ALH

The matrix S� (Equation 2.4) plays a very important role in the WLSE framework by,

essentially, ranking each spectral point based on the absolute measurement error in order

to reduce the e�ect of measurement noise in the retrieved parameter. This is done by the

S�−1 matrix, which assigns a relatively higher value for spectral points with a lower noise

covariance, and vice versa. The spectral points with a higher S�−1 value essentially have
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an overall stronger in�uence in the WLSE. The design of this WLSE framework makes the

retrieval solution intrinsically dependent on the quality of the S�−1 matrix. This matrix will

always rank higher those spectral points that represent photons less absorbed by oxygen,

i.e. those which travel through the atmosphere more easily, as the relative error at these

spectral points is low. Because aerosols are weak scatterers of light, a large fraction of

photons pass through the aerosol layer and interact with the surface before returning to

the detector.

A spectrometer’s detector pixel (in the spectral dimension) that contains a higher

concentration of oxygen absorption lines receives less number of photons, in comparison

to spectral points that contain fewer or no absorption lines. As a result of this, the relative

error at these spectral points is larger, resulting in a lower signal-to-noise ratio (SNR).

The expression of noise in the S� matrix at each spectral point is, hence, dependent on

the average absorption line strength within a spectral point. When the surface becomes

brighter (e.g. over land), the number of photons traveling from the surface to the detector

increases heterogeneously, depending on many contributing factors such as oxygen absorp-

tion line strength, aerosol optical thickness, aerosol layer height, and other atmospheric

properties. In principle, however, the increase in signal for detector pixels with low oxygen

absorption cross section is much higher than the same for detector pixels with a high

oxygen absorption cross section. This will be re�ected in the S� matrix, which will (for

example) rank measurements in the continuum higher than the same in the deepest part

of the absorption band.

If the information on ALH is derived from absorption by oxygen, this design of the

S�−1 matrix does not encourage an accurate ALH retrieval. From a WLSE standpoint,

the consequences of an increase in the number of photons in the TOA re�ectance that

travel to the surface can be quite signi�cant, some of which are reported Figure 2.6. A

possible avenue of improving the S�−1 matrix involves its dynamical manipulation. The

manipulation proposed in this chapter has been termed as the dynamic scaling method. The

next section elucidates this method, with a comparative analysis against the formal inverse

method, henceforth called the formal approach, presented further on in this chapter.

3.3 The dynamic scaling method
The dynamic scaling method identi�es favorable spectral points for ALH retrieval by �rst

identifying spectral points that are the least favorable. The noise is increased at these

unfavorable points, while keeping the noise at the other points unchanged. These favorable

and unfavorable spectral points are identi�ed using a class of vectors known as modifying

vectors (with the symbol M , and length equal to the number of spectral points).

To identify the unfavorable spectral points at which the measurement noise is to be

modi�ed, a modifying vector MAs/zaer is proposed as,

MAs/zaer (�i) =
KAs (�i)
Kzaer (�i)

[hPa], (3.2)

where KAs (�i) is the derivative of the TOA re�ectance with respect to surface re�ectance

at the ith index of the spectral point on the detector, and Kzaer (�i) is the same for zaer. In

principle, the ratio of KAs and K zaer is used as an identi�cation tool since our primary
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retrieval parameter is zaer whose information reduces asAs increases. This opposing nature

is discussed by Nanda et al. [14] (Figure 3 and Figure 4 in their chapter), where they show

an anti-correlation in the sensitivity of � and zaer in the atmospheric path contribution

and surface contribution to the TOA re�ectance. A large value in MAs/zaer (�i) represents

spectral points in the measurement with more sensitivity toAs than to zaer. The motivation

for choosing derivatives as the means for modi�cation is also partly motivated from the

fact that they are scene-dependent parameters, which make each modi�cation unique to

the scene.

Spectral points with a MAs/zaer (�i) higher than a speci�c threshold value should have a

limited representation in the estimation — these are the unfavorable spectral points. We

de�ne this threshold as the modifying threshold (T ), which is the 20th percentile value of

MAs/zaer . The threshold value set in our method has been chosen in a way to avoid scaling

the deeper parts of the R and P branches in the A band. The choice of thresholding remains

con�gurable to the user of this method, based on their requirements — in our case we have

chosen to use a static rule for deciding the value of T , but this could also be made dynamic.

An example of the shape of MAs/zaer is provided in Figure 3.1 (top row).

The reason for increasing the noise at speci�c unfavorable spectral points is to increase

the value of S� at these points. With a higher S� value, the S�−1 value will be lower, and

hence that spectral point will have a lower weight in the estimation. In principle, this is

equivalent to arti�cially increasing noise of measurements that contain less sensitivity to

aerosol layer height. To do this, the modi�ed SNR (denoted as SNRM ) is de�ned as,

SNRM (�i) =

{
SNR(�i), if MAs/zaer (�i) < T
SNR(�i)/MAs/� (�i), otherwise

(3.3)

whereMAs/� (�i) (belonging to the class of modifying vectors) is de�ned as the ratio between

the derivative of the TOA re�ectance with respect to the surface (KAs (�i)) and the same

with respect to aerosol optical thickness (� ) at 760 nm (K� (�i)),

MAs/� (�i) =
KAs (�i)
K� (�i)

[-]. (3.4)

The choice of modifying the SNR based on MAs/� arises from the fact that the amount of

contribution by the aerosol layer to the TOA re�ectance depends on its optical thickness. In

such a case, we are interested in how much this contribution fares against the contribution

from the surface. Information on both of these contributions can be inferred from the ratio

of KAs and K � , which have comparatively similar shapes. If the measurement of a spectral

pixel i is more sensitive to As, MAs/� (�i) will be larger, and hence the noise at i will be

increased, following Equation 3.3.

To run a retrieval using the dynamic scaling method, the derivatives of the re�ectance

with respect to As, zaer and � at 760 nm are calculated �rst, followed by the modi�cation of

SNR according to Equation 3.3. The state vector parameters � and zaer are then estimated

using SNRM . Users of this method may choose to scale the measurement error covariance

matrix at each iteration, since the derivatives change at each iteration. Nevertheless, we

have chosen to do it semi-statically since the measurement error covariance matrix is a

static matrix throughout every iteration.
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Figure 3.1: Top row: Modifying Vector MAs/zaer as a function of wavelength �. The solar zenith angle is 45
◦
, the

viewing zenith angle is 20
◦

and the relative azimuth angle is 0
◦
. The aerosol optical thickness (� ) is 0.5 at 760 nm,

over a surface with an albedo of 0.2 (left column) and 0.3 (right column) at 760 nm. The height of the aerosol

layer is 900 hPa with a pressure thickness of 200 hPa. The aerosol single scattering albedo is 0.95 and the aerosol

scattering is described by a Henyey-Greenstein phase function with an asymmetry factor of 0.7. The red dashed

line represents the modi�cation threshold value T , which has been set at the 20
th

percentile of MAs/zaer in this

example. Middle row: Modifying function MAs/� , Equation 3.4 as a function of wavelength. Bottom row: The

blue line represents the unscaled SNR whereas the green line represents the modi�ed SNR according to Equation

3.3.
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Examples of modifying vectors and SNRM are provided in Figure 3.1 (bottom row),

which shows the robustness of the method in scaling the SNR for di�erent surfaces. The

spectra generated in the �gure represents two scenes with identical atmospheric parameters,

solar and satellite geometries, but di�erent As. MAs/zaer , T and MAs/� for di�erent surfaces

are di�erent — this is important, since over-scaling the SNR can force the retrieval to rank

the measurements of photons traveling from the upper parts of the atmosphere higher,

while ignore the same from the lower parts of the atmosphere. This is why the modifying

vector MAs/� is chosen as a dynamically scene-dependent parameter (according to Equation

3.4), such that the scaling is large when As is large (Figure 3.1, mid row). In the next section,

the dynamic scaling method is demonstrated and compared to the formal approach (which

is the unscaled OE method) for synthetically generated spectra.

3.4 Sensitivity Analyses
To demonstrate the dynamic scaling method, synthetic spectra are generated for randomly

varying values in zaer, � , solar-satellite geometry (� , �0 and � −�0), and As, while keeping

other parameters constant. Noise is not added to the synthetic spectra. This method of

randomly generating model parameters for generating synthetic spectra gives a broad

picture of the method’s behavior. Table 3.1 provides a brief overview of the input model

parameters chosen for generating these spectra. An error is introduced in the forward

model during retrieval, and the bias in zaer (de�ned as retrieved - true) is used to assess

retrieval. The a priori zaer and � are set at 825 hPa and true � , respectively. While there

are many possible sources of errors, this chapter presents two kinds of errors, a) error in

the thickness of the aerosol layer, and b) error in the surface albedo database. A reason for

limiting the retrieval experiment scope to these two errors in the atmospheric part of the

forward model is due to the fact that they are one of the more common contributors to

retrieval biases. In real cases, aerosol layers may not be concentrated in a single layer of

50 hPa thickness, and the true surface albedo may vary signi�cantly (to the order of 10%

relative errors) from a monthly database of Lambertian Equivalent Re�ectivity (LER) values

depending on many parameters. In total, 2000 synthetic spectra are generated for each

synthetic experiment and the parameters zaer and � are estimated using both the formal

approach and the dynamic scaling method, to be compared side-by-side. The results from

analyzing biases in retrieved zaer are plotted in Figure 3.2. Although the dynamic scaling

method is speci�cally designed for land, retrievals over surfaces with a low As (less than

0.1) are also included.

3.4.1 Error in aerosol layer thickness
The synthetic spectra generated assume an aerosol layer thickness (pthick) of 100 hPa,

whereas the retrieval forward model assumes a 50 hPa thickness. For simplicity, a PDF

(denoted as ') of the biases of retrieved zaer is calculated, the peak of which represents the

value of maximum frequency of occurrence, and the full-width at half maximum of which

represents the spread.

In comparison with the formal approach (Figure 3.2a), the peak of ' for the dynamic

scaling method is closer to 0 hPa and has a larger magnitude (Table 3.2). The retrieval biases

for As ≤ 0.1 and above 0.1 are indicative of the robustness of the dynamic scaling method
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Table 3.1: Input parameters for synthetic experiments.

name value/remarks
atmospheric parameters
As 0.01 - 0.4 @ 760 nm (Lambertian)

� 1.0 - 5.0 @ 550 nm (or, 0.60 - 3.0 @ 760 nm)

zaer 600.0 - 900.0 hPa

! 0.95

g 0.7

Angstrom Exponent (Å) 1.5

temperature-pressure pro�le mid-latitude summer

instrument parameters
slit function FWHM 0.11 nm

spectral oversampling factor 3

slit function shape Gaussian

solar-satellite geometry parameters
� (viewing zenith angle) 0

◦
- 70

◦

�0 0
◦

- 70
◦

� −�0 (relative azimuth angle) � = 180
◦
, �0 varied between 0

◦
- 360

◦

in its scaling of the SNR (Table 3.2, pthick bias row). For As ≤ 0.1, the retrieval biases from

both dynamic scaling and formal approach are almost identical. Splitting the results to

� ≤ 2.0 and � > 2.0, it is observed that the dynamic scaling method reduces retrieval biases

of zaer by 40% relative to the same from the formal approach for high aerosol loads, and

about 11.5% for low aerosol loads. This is because a scene containing low aerosols allow for

more interactions between photons and the surface, which results in ALH retrievals being

biased closer to the surface. The dynamic scaling method ameliorates this behavior by

reducing the sensitivity of the retrieval algorithm to these photons. The formal approach

retrieves 27 more pixels than the dynamic scaling method for As > 0.1. An observation to

note is that there are instances where even the dynamic scaling method can result in large

retrieval biases (Figure 3.2b). Generally however, the dynamic scaling method is shown to

reduce retrieval biases in the presence of model errors in the aerosol layer thickness.

3.4.2 Error in surface albedo database
For generating errors in surface albedo, randomly varying relative errors (with respect

to the true surface albedo in the synthetic spectra) ranging between -10% to 10% were

introduced to the retrieval forward model. The results heavily favor the dynamic scaling

method, which shows a signi�cant improvement in retrieval behavior over the formal

method. The dynamic scaling method retrieves 73 more pixels than the formal approach

(Table 3.2, As error row), while also having a much smaller spread of retrieval biases around

the peak (Figure 3.2c). For As ≤ 0.1, the dynamic scaling method and the formal approach

are almost identical, with the dynamic scaling method having a smaller spread. For As >
0.1, however, the dynamic scaling method improves the spread of the retrieval biases

signi�cantly. The mean biases for the dynamic scaling approach are slightly larger than

the same for the formal approach, and the spread of retrieval biases in Figure 3.2d indicates
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Figure 3.2: Biases in retrieved zaer (in hPa) from synthetic measurements (2000 in total for each experiment)

discussed in Section 3.4. The top row represents zaer biases in the presence of a model error in the thickness of

the aerosol layer. The bottom row represents zaer biases in the presence of a model error in As. (a), (c) Probability

distribution function ' of retrieval biases. Blue line represents results from the dynamic scaling method, and the

red line represents the same for the formal approach. (b), (d) 2D density plot showing the distribution of biases

(density ranges from high in red to low in blue). The x axis represents biases from the dynamic scaling method,

whereas the y axis represents biases from the formal approach.
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that the dynamic scaling method does not necessarily improve retrieval biases for all cases.

However, the dynamic scaling method improves convergence from 89.3% to 92.3%, and

reduces bias for 86.4% of the cases.

The analysis of retrieval biases from the synthetic sensitivity analyses are very encour-

aging for the dynamic scaling method. The method has shown signi�cant improvements

for As > 0.1 (at 760 nm) in the presence of two very relevant model errors. The fact that the

dynamic scaling method is almost identical to the formal approach for As ≤ 0.1 rea�rms

the design of the modifying vector MAs/� , which is intended to modify the SNR only if the

modi�cation is necessary. A similar split of results for � ≤ 2.0 and � > 2.0 reveals that the

dynamic scaling method is almost similar to the formal approach for low values of � , and

only results in signi�cant improvements if the scene contains su�cient aerosols. Relative

to zaer biases from the formal approach, the biases from the dynamic scaling are reduced

by 53% for � > 2.0, and is practically the same for � ≤ 2.0. The success of the dynamic

scaling method in a synthetic environment also con�rms the fact that the design of the

S�−1 plays an important role in the biases of the retrieved zaer. The next section applies the

dynamic scaling method to measured spectra from GOME-2A and GOME-2B instruments

over aerosol plumes from forest �re events in Europe.
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Table 3.2: Results of the retrieval accuracy of zaer from sensitivity analyses, split into two classes of As. The

number of successful retrievals are reported in the ‘retrieved’ column. Columns with the heading A are the

locations of the peak of ', representing the zaer bias value with the highest frequency of occurrence. The same

with B are the full width at half maximum of ', representing the spread of zaer biases.

Formal Approach Dynamic scaling
As total

spec-

tra

ret A

[hPa]

B

[hPa]

ret A

[hPa]

B

[hPa]

pthick
≤ 0.1 453 453 8.70 22.31 453 8.70 20.04

> 0.1 1547 1473 8.70 48.62 1446 3.34 38.76

2000 1926 8.70 44.18 1899 4.70 35.56

As
≤ 0.1 451 451 -2.00 17.84 451 -2.00 14.36

> 0.1 1549 1335 -2.00 178.27 1408 -3.34 96.07

2000 1786 -2.00 150.64 1859 -3.34 81.85
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3.5 Application to GOME-2 data
The GOME-2 instrument is a part of an operational mission by the European Organization

for the Exploitation of Meteorological Satellites (EUMETSAT) to monitor trace gases and

aerosols in the atmosphere. It is a spectrometer with an across-track scanning mirror that

projects the TOA Earth radiance and solar irradiance through a prism on a grating to get

information in the ultraviolet, visible and the near-infrared regions of the electromagnetic

spectrum. In the oxygen A band, the spectral sampling interval is typically about 0.20 nm

and the FWHM is 0.50 nm [13]. The GOME-2 instrument is designed to have a footprint size

of 80 × 40 km
2

in the oxygen A band. The instrument also measures the linear polarization

of Earth radiance, which is important for correcting measured signal to calculate re�ectance

accurately.

In this section, measured spectra from the GOME-2A instrument on-board the Metop-A

satellite over Russian wild�res on August 8, 2010 (Figure 3.3a) and the Portuguese �re

plume with the GOME-2B instrument on-board the MetOp-B satellite on October 17, 2017

over Western Europe (Figure 3.3b) are used. The formal OE method is compared to the

dynamic scaling method by using space-based and ground based validation data. The noise

spectrum is derived from the GOME-2 Level 1-b product, which is a combination of the

systematic and random error components of the measurements [6].

Auxiliary information required for these retrievals are meteorological data, surface

albedo, and a-priori values for the optimal estimation (Table 3.3). The meteorological

data required are temperature-pressure pro�les and the surface pressure, derived from the

ERA-Interim database from Dee et al. [5]. These meteorological parameters are available

in regular space (1
◦× 1

◦
spatial resolution) and time grids, and require interpolation to the

satellite pixel’s coordinates and time of record. This interpolation is done using nearest

neighbor. The surface albedo database is derived from Tilstra et al. [23] version 2.1, which

has a resolution of 0.25
◦× 0.25

◦
, derived from the GOME-2A instrument. The surface LER

is chosen as the median of all LER database pixels intersecting the GOME-2 instrument

pixel, at wavelengths 758 nm and 772 nm with linear interpolation used for calculating

LER values at intermediate wavelengths. Algorithm settings are detailed in Table 3.3. The

test cases chosen in this chapter are relatively cloud-free, although not fully.

For validation, atmospheric lidar data from satellite and ground-based instruments

are chosen. For the 2010 Russian wild�res, the lidar attenuated backscatter at 1064 nm

from the CALIOP instrument (Cloud-Aerosol LIdar with Orthogonal Polarization) on board

NASA’s CALIPSO (Cloud-Aerosol Lidar and Infrared Path�nder Satellite Observations)

mission are used. These data have a very good representation of the scattering ability of

clouds and aerosols in the atmosphere at a vertical resolution of 60 m and a horizontal

resolution of 5 km. For the 2010 Russian wild�res, the CALIPSO overpass is at 10:45

UTC. All GOME-2A pixels co-located withing a 100 km vicinity of a CALIOP pro�le are

considered for validation. For the October 17, 2017 Portugal �re plume over Western

Europe, ground-based ceilometer data are used for validation (Table 3.4). These ceilometers

are a part of the ALC (Automated Lidars and Ceilometers) network of the E-PROFILE

observation program in the framework of the EUropean METeorological services NETwork

(EUMETNET). The parameter used for validation is the uncalibrated raw backscatter pro�le,

since the chapter focuses on qualitatively assessing the aerosol height retrievals with the

lidar backscatter pro�les. Lidar pro�les within an hour of the satellite instrument overpass
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Figure 3.3: MODIS Terra images of the two test cases. (a) MODIS RGB composite on 08:50 UTC, August 8, 2010 of

the 2010 Russian wild�res. The white line represents an approximation of CALIPSO’s ground track. (b) Portugal

wild�re plume observed by MODIS Terra on 11:00 UTC over Western Europe on October 17, 2017. Blue dots

represent 12 ceilometer locations.
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time are averaged into a single averaged pro�le, in order to reduce noise. These lidars have

a vertical range of approximately 15 m, and record data at a very high temporal resolution,

nominally every 6 seconds [1]. Although CALIOP data is available for the plume over

Western Europe for October 2017, CALIPSO does not have as good a co-location (both

spatially and temporally) in comparison to the ceilometers.

Table 3.3: Input data and algorithm setup for retrieving aerosol properties from GOME-2 measurements in the

oxygen A band.

parameter source remarks
radiance and irradiance GOME-2A/GOME-2B 3 minute granules

SNR measured spectrum GOME-2A/GOME-2B oper-

ational Level-1b product

3 minute granules

solar and satellite geome-

try

GOME-2A/GOME-2B

Level 1-b data

3 minute granules

surface albedo As Tilstra et al. [23] GOME-2A

LER at 0.25
◦

x 0.25
◦

grid at

758 nm and 772 nm

temperature-pressure pro-

�le

ERA-Interim nearest-neighbor interpo-

lated

aerosol optical thickness � state vector element, a-

priori = 0.8

aerosol layer height ℎmid
[km]

state vector element, a-

priori = 800 hPa

aerosol single scattering

albedo !
�xed at 0.95

aerosol phase function P(�) Henyey-Greenstein model

with anisotropy factor g of

0.7

cloud mask none

validation (Russian wild-

�res in 2010)

CALIOP lidar pro�les 5 km × 5 km total attenu-

ated backscatter at 1064 nm

validation (Portugal �res in

2017)

Alexander et al. [1] ground-based ceilometer

network

3.5.1 Russian wildfires on August 8, 2010
The wild�re plumes in and around Moscow on the 8

th
of August, 2010 are chosen as the

test case for the dynamic scaling method. Anti-cyclonic conditions on this day meant that

the region of interest was predominantly cloud-free. This case is the same in Chapter

2 (but with a smaller pixel selection to only focus on the plumes), with the exception

that the study presented in the current chapter uses a more-recent version of the surface

LER product from Tilstra et al. [23] with a larger amount of GOME-2A data incorporated

into its creation. The inclusion of this more-recent LER database has slightly improved

the results from the formal approach, but not signi�cantly. A MODIS Terra image taken

over the region on the same day (Figure 3.3a) shows that the plume, although thick, is



60

3 A weighted least sqares approach to limit errors in aerosol layer height retrievals over

bright surfaces

Table 3.4: Ceilometer stations in Western Europe used for validating the the retrieved zaer from GOME-2B for

plumes from the October 17, 2017 Portugal wild�res.

name institute coordinates GOME-2B over-
pass time

Hoogeveen KNMI 52.74
◦

6.59
◦

09:31:10 UTC

Bonn DWD 50.74
◦

7.19
◦

09:31:51 UTC

Luegde DWD 51.86
◦

9.27
◦

09:31:18 UTC

Putbus DWD 54.36
◦

13.47
◦

09:30:21 UTC

Luebeck DWD 53.81
◦

10.71
◦

09:30:40 UTC

De Bilt KNMI 52.09
◦

5.17
◦

09:31:21 UTC

Barth DWD 54.34
◦

12.71
◦

09:30:25 UTC

Elpersbuettel DWD 54.06
◦

9.01
◦

09:30:41 UTC

Soltau DWD 52.95
◦

9.80
◦

09:30:56 UTC

Aachen DWD 50.79
◦

6.03
◦

09:31:43 UTC

Hamburg DWD 53.65
◦

10.10
◦

09:30:56 UTC

Braunschweig DWD 52.29
◦

10.44
◦

09:31:05 UTC

non-homogeneously distributed in the scene, since the source of �res are very close to the

region of interest described in the test case. There are 85 GOME-2A pixels over the primary

biomass burning plume that are considered for retrieving aerosol optical thickness and

aerosol layer height. During the iterations, if the inverse method estimates non-physical

state vector values (such as an aerosol layer below the surface and a negative aerosol optical

thickness or a cloud-like optical thickness) twice in a row, the retrieval is stopped and

is said to have failed to converge. The algorithm also puts an upper cap of 12 iterations,

beyond which the retrieval is also labeled to have failed to converge.

On applying the formal ALH retrieval approach, 49 pixels converge and 36 pixels do

not converge to a solution (Figure 3.4 a,b). The �tted aerosol optical thickness values are in

excess of 6.0 in many cases — on average, the �tted AOT is 5.34 with a standard deviation

of 1.87 (Figure 3.5a, red). These values are too high - the AErosol RObotic NETwork

(AERONET) station in Moscow observed, on the same day, values between 1.0 at 870 nm

and 1.5 at 675 nm between 09:00 UTC and 10:00 UTC, whereas our retrieval estimates

an AOT of 6.60 at 760 nm over Moscow using dynamic scaling. The distribution of �tted

� appears to be spatially inconsistent with the aerosol plume observed by MODIS Terra

(Figure 3.4, a). The formal approach misses the primary biomass burning aerosol plume.

The average retrieved height of the plume is 0.5 km above the ground, with a standard

deviation of 0.15 km (Figure 3.5b, red histogram). Realistically, one can expect aerosols

this close to the surface, especially if the boundary layer captures much of the pollution.

However, aerosol-corrected boundary layer height modeled by Péré et al. [16] for the same

day over Moscow shows that the atmospheric boundary layer is approximately around

1.5-2.0 km altitude. Comparing the retrieval to co-located CALIPSO data in Figure 3.6

(blue markers), there are aerosols observed up to 4 km altitude, possibly in a multi-layered

structure. Based on the CALIPSO observations and the modeled height of the atmospheric

boundary layer, the retrieved ALH seems to be biased low in the atmosphere, thus too

close to the surface. These results are summarized in Table 3.5.

Applying the dynamic scaling method to the same scenario, we observe an increase in
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Table 3.5: Retrieval results from GOME-2 experiments. Columns marked with A, B, C and D are mean retrieved

zaer (in km), standard deviation of retrieved zaer (in km), mean �tted � and standard deviation of the �tted � ,

respectively. ntotal represents the total number of pixels in the scene, and nret represents the number of retrieved

pixels. As avg represents the average surface albedo of the scene.

case ntot As
formal approach dynamic scaling method

nret A B C D nret A B C D

A 85 0.19 49 0.5 0.15 5.34 1.87 78 1.37 0.37 4.82 2.04

B 206 0.15 161 2.66 1.85 2.31 1.69 173 3.35 1.75 2.22 1.83

Figure 3.4: Results from processing 85 GOME-2A pixels over Russia on the 8
th

of August, 2010 using the

formal approach and the dynamic scaling method. Empty GOME-2A pixels with a white border represent non-

convergences. (a) Fitted � at 760 nm from the formal approach. (b) Retrieved zaer from the formal approach. (c)
Fitted � at 760 nm from the dynamic scaling method. (d) Retrieved zaer from the dynamic scaling method. The

background image for all plots is a subset of the MODIS Terra image in Figure 3.3a.
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Figure 3.5: Histograms of �tted aerosol optical thickness (� , left column) and aerosol layer height (zaer, right

column) from GOME-2A and GOME-2B pixels. Histograms in red are retrievals from the formal approach and the

histograms in blue are results from the dynamic scaling method. (a) Fitted � from the GOME-2A pixels over the

August 8, 2010 wild�res plume over Russian. (b) Retrieved zaer from the GOME-2A pixels over the August 8, 2010

wild�res plume over Russian. (c) Fitted � from the GOME-2B pixels over the October 17, 2017 wild�res plume

over Western Europe. (d) Retrieved zaer from the GOME-2B pixels over the October 17, 2017 wild�res plume over

Western Europe. The axes are adjusted for each plot.
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the number of convergences to 78 pixels out of the 85 chosen (60% increase compared to

the formal approach), as shown in Figure 3.4 (c and d). The �tted aerosol optical thickness

is approximately 4.82, with a standard deviation of 2.04 (Figure 3.5a, blue histogram). While

these �tted AOT values are still high to the scene, the spatial distribution is consistent with

the biomass burning plume seen by MODIS (Figure 3.4c). The retrieved aerosol layer height

is, on average, 1.37 km, with a standard deviation of 0.367 km (Figure 3.5b, blue histogram).

Looking at CALIPSO data, this value appears to be more realistic for the biomass burning

plume (Figure 3.6, black markers), as the aerosol particles are located farther away from

the surface.

3.5.2 Portugal fire plume over Western Europe on October
17, 2017

The October 2017 Portugal wild�res began in the third week of October. On the 16th of

October, the hurricane Ophelia made landfall over Ireland as a mid-latitude cyclone. Due

to the cyclonic conditions the forest �re aerosol plumes were pulled from Portugal into

Western Europe along with Saharan desert dust [2], which was observed the next day (Figure

3.3b). The aerosol plume from these �res are di�erent from the aerosol plumes observed

with the 2010 Russian wild�res case, primarily because the region of our interest is farther

away from the �res; the plume over Western Europe appears to be more homogeneous.

The GOME-2B overpass on the 17
th

October, 2017, is approximately around 09:30 UTC,

and the MODIS image in Figure 3.3b is approximately around 11:00 UTC. Although some

of these GOME-2B pixels may be cloud-contaminated, our retrieval assumes cloud-free

conditions. This assumption can result in large values in retrieved aerosol heights and

�tted optical thicknesses. 206 GOME-2B pixels are chosen for this study. On average, the

LER of this scene from the 2017 �res is 0.15 at 760 nm, whereas the same for the 2010 �res

is 0.19, see Table 3.5.

Out of the 206 pixels, 161 pixels converge to a solution from the formal approach (Figure

3.7 a, b). The �tted � at 760 nm is on average 2.31, with a standard deviation of 1.69 (Figure

3.5c, red histogram). Typical �tted � over the plume seems to be around 3.0, which is too

high of a value for this case since it disagrees with AERONET measurements, which show

AOT values approximately between 2.0 and 1.0 at 675 nm and 870 nm over Lille during the

GOME-2B overpass time. The retrieved zaer is, on average, approximately 2.66 km from

the ground with a standard deviation of 1.85 km (Figure 3.5d, red histogram). Many of

the pixels that do not converge seem to be cloudy (the bottom corner of the GOME-2B

pixels, Figure 3.7a). The dynamic scaling method increases the number of convergences to

173 pixels (Figure 3.7 c, d). On average, this method retrieves an aerosol layer height of

3.35 km, with a standard deviation of 1.75 km (Figure 3.5d, blue histogram). The average

aerosol optical thickness at 760 nm �tted is 2.22 with a standard deviation of 1.83 (Figure

3.5c, blue histogram).

Comparing the retrieved zaer is to pro�les from a ground-based ceilometer in De Bilt,

Netherlands (Figure 3.8a, black pro�le), the �rst observation is that the dynamic scaling

method seems to retrieve a height that is more representative of the top of the aerosol layer,

whereas the formal approach retrieves a more realistic aerosol height that is more-or-less

the mid of the elevated layer’s pro�le. It is, however, important to note that pulses from

ceilometers are weak and tend to get attenuated beyond the bottom of the aerosol layer.
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Figure 3.6: GOME-2A derived aerosol layer heights colocated within 100 km to the CALIPSO ground track (using

great circle distance), plotted over attenuated backscatter (�) of the CALIOP lidar at 1064 nm. The blue and black

markers in white squares represent converged ALH from the formal approach and the dynamic scaling method,

respectively.
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Figure 3.7: Results from processing 206 GOME-2B pixels over Western Europe using the formal approach and the

dynamic scaling method. Empty GOME-2B pixels with a white border represent non-convergences. (a) Fitted �
at 760 nm from the formal approach. (b) Retrieved zaer from the formal approach. (c) Fitted � at 760 nm from the

dynamic scaling method. (d) Retrieved zaer from the dynamic scaling method. The background image is a subset

of the MODIS Terra image in Figure 3.3b.
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Because of this, layers above these can appear as weak backscatterers even though they may

not be. A radiosonde pro�le of the relative humidity reveals the presence of an atmospheric

layer that extends well beyond the altitude range from where the lidar backscatter becomes

progressively weaker. This pro�le also shows the presence of a layer at the 200 - 400 hPa

pressure levels, coinciding with a weak attenuated backscattered signal observed by the

ceilometer in the same atmospheric level. A look into back trajectories, calculated using

the TRAJKS model described in Stohl et al. [22], shows that the pressure levels between

800 hPa to 600 hPa (at De Bilt) likely contains aerosols carried from Portugal to De Bilt

(Figure 3.8b). The back trajectory of air mass at 250 hPa also passes through this peninsula,

but may not contain biomass burning aerosols since the layer at this atmospheric level

does not mix with the lower level (according to the TRAJKS calculations). Following this,

we have compared the retrieved zaer from both methods to backscatter pro�les from other

ceilometer stations, reported in Figure 3.9. In general, while both the dynamic scaling

method and the formal approach retrieve zaer values that fall within the aerosol plumes,

the dynamic scaling method retrieves heights that are slightly higher. This has to do with

our conclusions from Figure 3.8.

The LER of a scene tells us which surface is brighter. In this case, the surface in the

2010 Russian �res was brighter than the same in the 2017 Western Europe case. The values

of the modifying vectors MAs/zaer and MAs/� over the two di�erent scenes, however, can

tell us the in�uence of the surface on the measurements itself, since these parameters are a

direct comparison of the sensitivity of the measurement to aerosol properties and surface

albedo. On average, MAs/zaer and MAs/� in the 2010 Russian wild�res case are much larger

in comparison to the same for the 2017 Portugal �re plume over Western Europe (Figure

3.10). This suggests that backscatter from the surface for the 2010 Russian wild�res case

plays a bigger role in the measurements observed by the GOME-2 instrument. The dynamic

scaling method is, hence, e�ectively able to apply a wavelength-dependent scaling of the

SNR by relying on scene-dependent parameters. If the modifying vector MAs/� is very low,

aerosol properties retrieved from the dynamic scaling method will be approximately equal

to the same from the formal approach. This is an example of the robustness of the method

— the SNR should only be scaled when there is a need for it to be scaled.
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Figure 3.8: (a) Radiosonde pro�le of relative humidity (blue), plotted alongside an averaged raw attenuated

backscatter pro�le (black) from the ceilometer at De Bilt, Netherlands. Both pro�les are approximately around

13:00 UTC. The red and blue dashed line represents retrieved aerosol layer height using the formal approach and

the dynamic scaling method, respectively. The red and blue shaded boxes represent the aerosol layer from the

respective retrieval methods. The red and blue dashed line represents retrieved aerosol layer height using the

formal approach and the dynamic scaling method, respectively. (b) Back trajectories calculated for 17 October,

2017 at 13:00 UTC with the end point at De Bilt, and the sources going back to 3 days.
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Figure 3.9: Validation of the retrieved aerosol layer height over Western Europe from ceilometers located in

Netherlands and Germany from the CEILONET and DWD network. The black lines represent averaged ceilometer

pro�les of acquisitions 1 hour before and after the GOME-2B overpass over each location (600 pro�les). The

pro�les are uncalibrated raw attenuated backscatter � as a function of lidar range (in km). The gray shaded region

represents the standard deviation of the pro�les used to create the averaged pro�le. The red and blue dashed line

represents retrieved aerosol layer height using the formal approach and the dynamic scaling method, respectively.

The red and blue shaded boxes represent the aerosol layer from the respective retrieval methods.
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Figure 3.10: A comparison of the calculated matrices in the dynamic scaling method for all chosen GOME-2 pixels

as a function of wavelength calculated for (a) the 2010 Russian wild�res, and (b) the 2017 Portugal wild�res.

The black dotted line is the averaged modifying vector MAs/zaer (Equation 3.2) and the blue line is the averaged

modifying vector MAs/� (Equation 3.4) for all GOME-2 pixels chosen in each scene. The y-axis on the left is

the range of values for MAs/zaer , and the same on the right is for MAs/� . The red line is the averaged modifying

threshold T , which is set at the 20
th

percentile of MAs/zaer .

3.6 Conclusion
Inversion algorithms that retrieve aerosol properties from spectral measurements in the

oxygen A band (between 758 nm and 770 nm) can face a lot of trouble over land. This is

primarily because of the location of oxygen A band band beyond the red-edge, a wavelength

region with diminishing ability of vegetation to absorb solar radiation as wavelength

increases. This is especially the case when retrieving aerosol layer height using optimal

estimation and radiative transfer models, as observed from Nanda et al. [14], Sanders and

de Haan [19], and Sanders et al. [20].

The optimal estimation framework, an application of the weighted least squares tech-

nique, is designed to rank data points (in this case, spectral points in the measured TOA

radiance and solar irradiance) higher when the SNR is higher, in order to reduce the in-

�uence of measurement error in the �nal retrieved solution. In the oxygen A band, these

spectral points coincide with weak oxygen absorption cross sections, since low absorption

equates to a high number of photons that can traverse through the atmospheric medium.

Over oceans, due to its low albedo the number of photons that travel back from the surface

are few. The signal recorded by satellites from an ocean scene, hence, predominantly arise

from scattering and absorption by atmospheric species (in this case, aerosols). Over land,

however, the number of photons that travel back from the surface increases dramatically.

Due to this, the optimal estimation framework ranks spectral points representing photons

that have traveled back from the surface higher than the same from aerosol layers. This is

the primary error source when it comes to biases in aerosol retrievals from oxygen A band

measurements over land.

This chapter introduces the dynamic scaling method, which is designed to retrieve
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aerosol layer height over bright surfaces from oxygen A band measurements. The core

principle of this proposed improvement is the wavelength-dependent modi�cation of the

measurement error covariance matrix by the subsequent wavelength-dependent modi�ca-

tion of the signal-to-noise ratio of the measured spectrum, in order to reduce its preference

towards photons that interact with the surface. The modi�cation uses the scene-dependent

Jacobian matrix, which makes it robust. The dynamic scaling method is compared with

formal optimal estimation approach by retrieving aerosol layer height and aerosol optical

thickness from synthetically generated spectra with randomly varied model parameters

and model errors (that is, the forward models for simulation and retrieval have di�erent

model parameters). The results from the synthetic experiments generally favor the dynamic

scaling method, which shows a signi�cant improvement of the accuracy of retrieved aerosol

layer height in the presence of errors in the assumed aerosol geometric thickness and the

surface albedo (up to 10% relative errors) in the model.

The dynamic scaling method is also demonstrated for real spectra by using GOME-2A

and GOME-2B oxygen A band measurements of two separate wild�re incidences in Europe,

one being the 8
th

of August, 2010 Russian wild�res and the other being the more-recent

17
th

of October, 2017 Portugal wild�res. In the case of the 2010 Russian wild�res, the

formal optimal estimation retrieval approach produces few convergences, and misses out

the primary biomass burning aerosol plume (as observed from a MODIS Terra image). The

�tted aerosol optical thickness are unrealistically high and spatially inconsistent with the

aerosol plume observed by MODIS Terra. Co-located CALIOP lidar pro�les show that the

retrieved aerosol layer height is biased low in the atmosphere, closer to the surface. The

dynamic scaling method, on the other hand, increases the number of converged pixels

by 60% in comparison to the formal approach. The �tted aerosol optical thickness is

still too high, but the spatial distribution of the aerosol optical thickness, as compared

to same observed in the MODIS Terra image, is consistent. The retrieved aerosol layer

heights are also more realistic, as they are positioned close to the centroid of the CALIOP

backscatter pro�le describing aerosols. For the Portugal wild�re plume in the 17
th

of

October, 2017 over Western Europe, the dynamic scaling method does not increase the

number of convergences signi�cantly. The dynamic scaling method retrieves aerosol layer

heights that are only slightly higher, and �ts aerosol optical thicknesses at values are

slightly lower in comparison to the same from the formal approach. The retrieved heights

from both method are compared to lidar pro�les from the EUMETNET ACL network of

ceilometers. The comparison shows that both methods retrieved heights that are within the

pro�les that could be associated with aerosol layers. Analyzing a radiosonde pro�le of the

relative humidity and calculated back trajectories, it is observed that the ceilometer pro�les

miss higher aerosol layers due to attenuation of the signal at lower atmospheric levels. This

explains why the retrieved heights from the dynamic scaling method are slightly higher

than the same from the formal approach.

In general, the dynamic scaling method improves the number of converged pixels. Be-

tween the two discussed cases, the dynamic scaling method provides a better improvement

in the 2010 Russian wild�res case. This is primarily because the method is scene dependent.

An important driver that determines the improvement of retrievals is the level to which

the surface in�uences the TOA re�ectance, which is jointly in�uenced by two parameters

— the surface albedo and the aerosol optical thickness. The average surface albedo of the
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scene for the 2010 Russian wild�res case was observed to be brighter than the same for

the 2017 Portugal wild�res case. This is a possible explanation for the di�erences in the

performance of the dynamic scaling method for the two cases.

The �tted aerosol optical thickness is systematically lower for the dynamic scaling

method in comparison to the formal approach. A part of this can be attributed to the

reduction of in�uence of spectral points in the measurement with a larger in�uence from

the surface albedo. While this is expected, the method does not necessarily make the �tted

aerosol optical thickness more realistic. It may well be the in�uence of assumptions in

aerosol properties such as aerosol single scattering albedo and the phase function. It could,

however, also be that the method does not fully remove the in�uence of surface in the

measured top-of-atmosphere re�ectance signal. In any case, the dynamic scaling method

improves the representativity of the �tted aerosol optical thickness of the MODIS Terra

observed smoke plume.

While the dynamic scaling may improve the the outcome of a retrieval attempt, it

de�nitely places a burden on the operational algorithm — there are now more pixels for

the operational algorithm to go through, which means more iterations in the optimal

estimation method. Each iteration requires signi�cant computational time, owing to the

fact that the radiative transfer model computes the top-of-atmosphere re�ectance in a

line-by-line fashion. This is a problem that must be addressed. The following chapter

(Chapter 4) provides an alternative approach to line-by-line calculations in an operational

environment.
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4
Speeding up the forward
modeling: an approach to

make the retrievals
operationally more feasible

For a retrieval algorithm to be operationally feasible, there are certain requirements that

need to be met. For instance, the retrieval algorithm must be able to process an entire

granule of data telemetered down by the satellite to the ground station before the next

telemetry instance. This means processing spectral data for a very large (sometimes

millions) of pixels, requiring signi�cant of computational time and resources. It is to the

bene�t of a retrieval algorithm to be fast and diligent in its processing of real-time satellite

data.

In the case of the aerosol layer height retrieval algorithm discussed thus far, line-by-line

radiative transfer calculations require several minutes in order to process a single pixel,

with little certainty on whether retrieving aerosol layer height from a certain pixel will lead

to a converged solution or diverge to no solution at all. This cripples the retrieval product,

which is forced to process a subset of the data instead of all of the data. The bottleneck

is the radiative transfer calculations itself, which require almost a minute for computing

top-of-atmosphere re�ectance spectra in the oxygen A-band. This chapter proposes a

neural network modeling of the line-by-line radiative transfer model, and applies it to real

data to show that the current algorithm can be made operationally feasible. The research

goal of this chapter is,

Describe a strategy that exploits arti�cial neural networks to reduce the number
of computations required by the forward model.1

1
This chapter is published in https://doi.org/10.5194/amt-12-6619-2019, 2019.

https://doi.org/10.5194/amt-12-6619-2019
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4.1 Introduction
Launched in October 13, 2017, The TROPOsperic Monitoring Instrument [37] on board

the Sentinel-5 Precursor mission is the �rst of the satellite-based atmospheric composition

monitoring instruments in the Sentinel mission of the European Space Agency. The aerosol

layer height (ALH) retrieval algorithm [23, 24, 28, 30] is a part of TROPOMI’s operational

product suite, expected to be delivered near real time. The ALH (symbolised as zaer) retrieval

algorithm, operating within the near infrared region in the oxygen A-band between 758 nm

- 770 nm, exploits information about heights of scattering layers derived from absorption of

photons by molecular oxygen — the amount of absorption indicates whether the scattering

layer is closer or farther from the surface; if the number of photons absorbed by oxygen is

higher, it suggests a longer photon path length due to an aerosol layer present closer to

the surface. This principle has been applied to cloud height algorithms such as FRESCO

(Fast Retrieval Scheme for Clouds from the Oxygen A-band) by Wang et al. [38], which

use look up tables for generating top of atmosphere (TOA) re�ectances to compute cloud

parameters. Since clouds are such e�cient scatterers of light, FRESCO can approximate

scattering by cloud using a Lambertian model — this simpli�cation works for optically thick

cloud layers quite well. For aerosol layers, however, such calculations need to be done in

much greater detail due to their weaker scattering properties. TROPOMI’s ALH algorithm

employs the science code Disamar (Determining Instrument Speci�cations and Methods for

Atmospheric Retrievals) that uses the Layer-Based Orders of Scattering (LABOS) radiative

transfer model based on the doubling-adding method [8] that calculates re�ectances at the

TOA and its derivatives with respect to aerosol layer height and aerosol optical thickness

(� ). These calculations are done line-by-line, requiring calculations at 3980 wavelengths to

generate these TOA re�ectances within the oxygen A-band. Having computed the TOA

re�ectance spectra, aerosol layer heights are retrieved with Optimal Estimation (OE), an

iterative retrieval scheme developed by Rodgers [27] that incorporates a priori knowledge

of retrieval parameters into their estimation. Such a retrieval scheme also provides a

posteriori error estimations, which are important for assimilation models and diagnosing

the retrieval results.

The ALH retrieval algorithm is computationally expensive, requiring several minutes

to compute zaer for a single ground pixel [30]. As near-real time processors need to

consistently go through large volumes of data recorded by the satellite for the mission

lifetime, the operational computation capability is much restricted for TROPOMI recording

approximately 1.4 million pixels within a single orbit where, on average, 50,000 pixels are

typically identi�ed as aerosol contaminated pixels (with a UVAI value greater than 0.0)

for retrieving aerosol layer height. This places a steep requirement on the computational

infrastructure to process all possible pixels from a single orbit. The online radiative transfer

model severely limits the ALH data product, processing only a small fraction of the total

possible pixels within a single orbit while compromising the timeliness of the data delivery.

The bottleneck identi�ed here is the large number of calculations that the forward

model has to compute to retrieve information on weak scatterers such as aerosols. Several

steps to circumvent this bottleneck exist, such as using correlated k-distribution method

to reduce the number of calculations [14], using a look up table for calculating forward

model outputs, or entirely foregoing the forward model and directly retrieving zaer from

observed spectra using neural networks [3, 4]. Studies by Sanders and de Haan [29] have
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shown that the look up table for re�ectance alone measure up to 46 GB in size, and perhaps

similar or larger sizes for the derivatives. Chimot et al. [3] describe an approach using

a radiative transfer model to generate slant column densities of the O2-O2 band at 477

nm from Ozone Monitoring Instrument (OMI) measurements for di�erent aerosol optical

depths (among other input parameters) to train several arti�cial neural network models that

directly retrieve aerosol layer height. Operationally, their neural network models use the

MODIS aerosol optical depth at 550 nm and retrieved OMI slant column densities, thereby

entirely foregoing line-by-line calculations and signi�cantly speeding up the retrieval

algorithm. The trained neural network models directly retrieved aerosol layer heights from

spectra measured by OMI on board the NASA Aura mission, without using line-by-line

calculations or an iterative estimation step such as OE [4]. A similar example of retrievals

is the ROCINN (Retrieval of Cloud Information using Neural Networks) cloud algorithm

developed by Loyola [21] which uses neural networks to compute convolved re�ectance

spectra to retrieve cloud properties. These retrievals show the exploitable capabilities of

arti�cial neural networks in the context of retrieving atmospheric properties from oxygen

absorption bands.

The work of Chimot et al. [4] and Loyola et al. [20] bring to light the e�cacy of arti�cial

neural networks in satellite remote sensing of oxygen absorption bands for retrieving

properties of scattering species in the atmosphere. This chapter discusses a method in-

spired by Chimot et al. [3] and Loyola [21] to retrieve aerosol layer height from oxygen

A-band measurements by TROPOMI. While Chimot et al. [3] directly retrieve aerosol layer

heights from their neural network models, the operational algorithm in this chapter utilises

neural networks to calculate top-of-atmosphere radiances in the forward model. This is

subsequently used by an optimal estimation scheme to retrieve aerosol layer heights. Simi-

larly while Loyola [21] derive top-of-atmosphere sun-normalised radiances only for their

cloud property retrieval algorithm, the method in this chapter has dedicated neural net-

work models that calculate the Jacobian as well as the top-of-atmosphere sun-normalised

radiances. By reducing the time consumed for calculating forward model outputs, computa-

tional e�ciency of TROPOMI’s aerosol layer height retrieval algorithm can be signi�cantly

improved.

Section 4.2 introduces the operational aerosol layer height algorithm and discusses the

line-by-line forward model. The neural network forward model approach is detailed in

section 4.3, and its veri�cation on a test data set is discussed in same section. This approach

is then applied to various test cases using synthetic and real TROPOMI spectra (section

4.4) before concluding in section 4.5.

4.2 The TROPOMI aerosol layer height retrieval
algorithm

The TROPOMI aerosol layer height is one of the many algorithms that exploit vertical

information of scattering aerosol species in the oxygen A-band [5–7, 10–13, 16, 24, 26, 28–

31, 35, 39, 43, 44]. These methods invert a forward model that describes the atmosphere, to

compute the height of the scattering layer. This section discusses the setup of the TROPOMI

ALH retrieval algorithm, which consists of the inversion of a forward model representing

the atmosphere using optimal estimation as the retrieval method, and a description of the
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forward model.

4.2.1 TheDisamar forwardmodel and its many simplifications
of atmospheric properties

Optimal estimation iteratively simulates TOA radiance spectra until the convergence of �2
(Equation ??). For this, disamar computes re�ectances at a high resolution wavelength grid.

The computed high resolution re�ectances are combined with a reference solar spectrum

derived from Chance and Kurucz [2] to obtain a high resolution Earth radiance. The

high resolution Earth radiance and the solar spectrum are convolved with the instrument

spectral response function to obtain Earth radiance and solar irradiance spectrum in the

instrument’s wavelength grid, before �nally computing the re�ectance spectrum in the

instrument grid using Equation ??. It is important to note that the steps of including the

reference solar spectrum to compute re�ectances in the instrument’s wavelength grid are

not undertaken by the neural network algorithm. The neural network aerosol layer height

retrieval algorithm directly convolves the re�ectance. The di�erence between including an

excluding a reference spectrum in the convolution process results in di�erences in the order

of 4% to 5% around 762 nm and 766 nm. Further on in this chapter, a direct comparison

between disamar retrievals of aerosol layer height and retrievals with the neural network

algorithm is provided.

Re�ectances are calculated by accounting for scattering and absorption of photons from

their interactions with aerosols, the surface, and molecular species. Molecular scattering

of photons in the oxygen A-band is described by Rayleigh scattering, and absorption

is described by photon-induced magnetic dipole transition between b1Σ+g ←X 3Σ−g (0,0)
electric potential levels of molecular oxygen, and collision-induced absorption between

O2-O2 and O2-N2. The total in�uence of the O2 A-band on the TOA re�ectance is described

by its extinction cross-section, which is a sum of the three aforementioned contributions.

As the vertical distribution of oxygen is exactly known, the extinction cross-section can

be exploited to retrieve zaer from satellite measurements of the oxygen A-band. For this,

Disamar calculates absorption (or extinction) cross sections at 3980 wavelengths within

the range 758 nm - 770 nm.

To reduce the number of calculations, various atmospheric properties are simpli�ed. As

the Rayleigh optical thickness is low at 760 nm, Disamar only computes the monochromatic

component of light by calculating the �rst element of the Stoke’s vector. The exclusion of

higher order Stoke’s vector elements of the radiation �elds has not shown to be a signi�cant

source of error [29].

Calculating the in�uence of Rotational Raman Scattering (RRS) is also ignored, as it is

a computationally expensive step. While this exclusion of RRS is not advised by literature

[33, 36], preliminary experiments by Sanders and de Haan [29] have ascertained that the

errors in the retrieved aerosol layer height resulting from ignoring RRS of the oxygen

A-band in the forward model are signi�cantly smaller than the e�ect of other model errors

such as errors due to incorrect surface albedo. Therefore, RRS has been historically not

simulated in the forward model of the KNMI aerosol layer height retrieval algorithm. The

atmosphere is assumed cloud-free, which is a required simpli�cation as the retrieval of

zaer in the presence of clouds is still challenging and thereby is performed only for pixels

which are unlikely to contain clouds. Compared to totally cloud-free scenes, errors in
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retrieved zaer are large for cloud-free scenes containing undetected optically thin cirrus

clouds [30]. The fraction of the pixel containing aerosols is assumed to be 100%, which

further simpli�es the representation of aerosols within the atmosphere.

Perhaps the largest simpli�cation of the atmosphere lies in model’s description of

aerosols, assumed to be distributed in a homogeneous layer at a height zaer with a 50 hPa

thickness, a �xed aerosol optical thickness (� ) and a single scattering albedo (!) of 0.95

(so, scattering aerosols). A Henyey-Greenstein model [15] with an asymmetry parameter

g value of 0.7 is used to parameterize the aerosol scattering phase function, which is

one of the widely used approximations. These �xed aerosol optical properties have been

derived from AERONET data and tested by Sanders et al. [30], who retrieved zaer from

GOME-2 spectra to show that the algorithm is robust to �xing aerosol model parameters

such as the single scattering albedo and the Henyey-Greenstein phase function asymmetry

parameter. The surface is assumed to be an isotropic re�ector with a brightness described

by its Lambertian Equivalent Re�ectivity (LER). This is also an important simpli�cation,

requiring less computations over other surface models such as a Bi-directional Re�ectance

Model. Although the forward model is capable of including sun-induced chlorophyll

�uorescence into the retrieval, it is currently being considered for a future implementation

of TROPOMI’s operational ALH retrieval algorithm. Lastly, the atmosphere is spherically

corrected for incoming solar radiation and remains plane-parallel for outgoing Earth

radiance.

These simpli�cations in the Disamar forward model are a necessity for the line-by-line

aerosol layer height algorithm, owing to its slow computational speed. The speed up of

forward model simulation encourages increasing the complexity of simulation assumption.

4.2.2 Application to TROPOMI
TROPOMI’s near infrared (NIR) spectrometer records data between 675 nm - 775 nm, spread

across two bands — band 5 contains the oxygen B-band and band 6 the oxygen A-band.

The spectral resolution, which is described by the full width at half maximum (FWHM)

of the instrument spectral response function (ISRF), is 0.38 nm with a spectral sampling

interval of 0.12 nm. The spatial resolution is around 7 km × 3.5 km for band 5 and 6. Initial

observations from the TROPOMI NIR spectrometer show a signal to noise ratio (SNR) of

3000 in the continuum before the oxygen A-band. The instrument polarization sensitivity

is reduced to below 0.5% by adopting the technology of the polarization scrambler of OMI

[19, 37]. Disamar utilizes TROPOMI’s swath-dependent ISRFs to convolve I (�) and E0(�)
into I (�i) and E0(�i) in the instrument’s spectral wavelength grid, after which the modeled

re�ectance is calculated using Equation ??.
Input parameters required by the TROPOMI ALH retrieval algorithm encompass satel-

lite observations of the radiance and the irradiance, solar-satellite geometry, and a host

of atmospheric and surface parameters required for modeling the interactions of photons

within the Earth’s atmosphere (see Table 4.1). Meteorological parameters are taken from

ECMWF (European Centre for Medium-range Weather Forecast), including the temperature-

pressure pro�le at 91 atmospheric levels (of which the surface is a part). The various geo-

physical parameters are interpolated to TROPOMI’s ground pixels using nearest neighbour

interpolation.

TROPOMI incorporates information from the VIIRS instrument to detect the presence
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of cirrus clouds in the measured scene (using a cirrus re�ectance threshold of 0.01). This

information is further combined with cloud fraction retrievals by the TROPOMI FRESCO

algorithm (maximum cloud fraction of 0.6), and the di�erence between the scene albedo

in the database in the UV band and the apparent scene albedo at the same wavelength

calculated using a lookup table (if the di�erence is larger than 0.2, it suggests cloud

contamination). A combination of these di�erent cloud detection strategies results in the

cloud_warning �ag in the level-2 TROPOMI ALH product. In this chapter, however, we

use a strict FRESCO cloud fraction �lter of 0.2 alone to remove cloudy pixels.

Calculation of TOA re�ectance and its derivatives with respect to zaer, and � in a line-by-

line fashion takes approximately 40-60 seconds to complete on a computer equipped with

Intel(R) Xeon(R) CPU E3-1275 v5 at a clock speed of 3.60 GHz. In an iterative framework

such as the Gauss-Newton method, the retrieval of zaer can take between 3-6 iterations

depending on the amount of aerosol information available in the observed spectra, requiring

several minutes to compute retrieval outputs for a speci�c scene. If these retrievals fail by

not converging within the maximum number of iterations, the processor can waste up to

10 minutes on a pixel without retrieving a product. In order to compute Disamar’s outputs

quicker, a neural network implementation is discussed in the next section.
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Table 4.1: Input parameters required for retrieving aerosol layer height using TROPOMI measured spectra.

Parameter Source Remarks

Radiance and irradiance TROPOMI Level-1b prod-

uct

SNR measured spectrum TROPOMI Level-1b prod-

uct

Geolocation parameters TROPOMI Level-1b prod-

uct

Surface albedo GOME-2 LER database [34]

Meteorological parameters ECMWF 17km horizontal resolution

Cloud fraction TROPOMI Level-2 FRESCO

product

Absorbing aerosol index

(AAI)

TROPOMI Level-2 AAI

product

Land-sea mask NASA Toolkit

Surface altitude GMTED 2010 pre-averaged
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4.3 The neural network (NN) forward model
4.3.1 Artificial Neural Networks
The history of neural networks began with a paper by McCulloch and Pitts [22] who

theorised on how a brain neuron might work. This led eventually to Donald O. Hebb, who

in his book Organization of Behaviour (published in 1949) explained that neural pathways

are strengthened the more they are used [32]. While these contributions to science were

entirely related to the biological neural network, computer scientists in the 1960s began to

take interest in simulating neural networks. This led to the development of the �rst ever

neural network called the perceptron by Bernard Widrow and Marcian Ho� from Stanford

University called ADALINE [42], which was used to �lter out echoes from telephone lines.

Many years later, arti�cial neural networks are now an integral part of the modern day

world, with a wide variety of applications including processing data at very high speeds

for atmospheric remote sensing.

Arti�cial neural networks, as the name implies, is a network of individual processing

units known as neurons or nodes (see Figure 4.1). Each node computes an output for

certain inputs. The interaction of these individual processing units, also known as nodes

(or neurons), enable the connecting network to map a set of inputs (also known as the

input layer) to a set of outputs (or, the output layer) via layers of nodes between the input

and output layers (called the hidden layers). The connections are known as weights whose

value symbolises the strength of a connection between two nodes. Since the nodes connect

inputs to the outputs, higher values in a set of connecting weights represent a stronger

in�uence of a particular parameter in the input layer over a particular parameter in the

output layer. The weights between two nodes are calculated by training the neural network

to a data containing the neural network’s input and output.

The training (or optimisation) of a neural network begins with a training data set

containing many instances of input and output layer elements. Initially, the weights of

the neural network are randomly generated. The output of the neural network is the

amalgamation of the output of each individual node — these calculations are known as

forward propagation. As true values of the output layer for a given set of inputs are exactly

known in the training data set, the output of the neural network calculated after using

randomised, non-optimised weights will result in an error between the expected and the

computed neural network output. These biases are called prediction errors, an essential

element in the optimization of the neural network weights.

The mean squared error (MSE) between the true output and the calculated output is

also called the loss function (henceforth annotated as Δ), which is synonymous to a cost

function (Equation 4.1),

Δ =
1
n�

∑
∀�
(nn� −o�)2 (4.1)

where � is the wavelength, n� represents the number of elements in the output layer, nn�
represents the calculated output for wavelength via forward propagation, and o� are the

outputs in the training data set. The optimisation of the neural network then aims to

minimise the loss function Δ, which is a function of weights in the neural network. This is

achieved by calculating the gradient of each weightw , which is the partial derivative )Δ/)w
— the gradient computes the change in the loss function for a change in each weight. These
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Figure 4.1: The basic element of an arti�cial neural network — the node (the element described in the box labelled

node(j)). The input to a node is the output from a previous layer, either a hidden layer or the input layer, which is

weight-summed using the weights between the previous layer element and the note j. The summation is then

passed through an activation function f to calculate the output of the node j. Image derived from Chokmani,

Karem Khalil, Bousnobra Ouarda, Taha Bourdages, Raymond. (2020). Estimation of River Ice Thickness Using

Arti�cial Neural Networks.

gradients are then used by optimisers such as the ADAM optimiser (Adaptive Moment

Estimation) by Kingma and Ba [17] to minimise Δ, in an iterative manner. The training

of a neural network is concluded when the loss function is minimised until it cannot be

minimised anymore for that speci�c neural network con�guration.

4.3.2 The TROPOMI NN forward model for the ALH retrieval
algorithm

The standard architecture of the NN-augmented operational aerosol layer height processor

includes three neural network models for estimating top of atmosphere sun-normalised

radiance, the derivative of the re�ectance with respect to zaer, and the same for � . It

is also possible to assign the neural network to compute the re�ectance instead of the

sun-normalized radiance — the results will not change. The de�nition of sun-normalised

radiance used in this chapter is the ratio of Earth radiance to solar irradiance. Disamar

calculates derivatives with respect to re�ectance, which is the sun-normalised radiance

multiplied by the ratio of � and cosine of solar zenith angle. All three neural network

models share the same input model parameters. Optimising a single neural network

model for all three forward model outputs is not necessary; the correlations between

the input parameters and the di�erent forward model outputs are di�erent, which can

complicate the optimisation of a general-purpose neural network. This chapter, however,

acknowledges modern developments in neural network optimisation techniques that now

a�ord selectively optimising a neural network for di�erent tasks [18, 40].

The models are trained using the python Tensor�ow module [1], and further imple-

mented into an operational processor using C++ interface to Tensor�ow. These neural

network models require training data containing Disamar input and output parameters
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and a connecting architecture that encompasses the input feature vector containing scene-

varying model parameters, the number of hidden layers, number of nodes in each hidden

layer, and an activation function that maps the input to the �nal output layer containing

Disamar outputs. In Tensor�ow, the derivative of Δ with respect to the weights are com-

puted using reverse-mode automatic di�erentiation, which computes numerical values of

derivatives without the use of analytical expressions [41].

The inputs for NN are referred together as the feature vector. The choice of the param-

eters included into the feature vector is a very important factor deciding the performance

of the neural network. The primary classes of model parameters (relevant to retrieving

zaer) varying from scene to scene are solar-satellite geometry, aerosol parameters, meteoro-

logical parameters and surface parameters (Table 4.2). The various aerosol parameters that

are �xed from scene to scene are the aerosol single scattering albedo (!), the asymmetry

factor of the phase function, and the angstrom exponent, as they are also �xed in the

line-by-line operational aerosol layer height processor. The scattering phase function of

aerosols is currently limited to a Henyey-Greenstein model with a �xed g value of 0.7

to mimic Disamar. Surface pressure as well as the temperature-pressure pro�le are two

important meteorological parameters relevant to retrieving zaer. A di�erence between

Disamar and NN models is the de�nition of this temperature information in the input.

Disamar requires the entire temperature-pressure pro�le of the atmosphere, whereas NN

only uses the temperature at zaer. Surface albedo is speci�ed at 758 nm as well as 772

nm in Disamar, whereas it is only speci�ed at 758 nm in the feature vector of NN. In

general there is a greater scope to add detailed information in Disamar. However, Disamar

has historically incorporated many simpli�cations in order to reduce computational time.

The current NN model is developed with the aim to mimic Disamar as much as possible,

without including additional state vector elements into the retrieval, such as chlorophyll

�uorescence, aerosol optical properties, cloud properties, and so on.

4.3.3 Training the neural networks
Since the NN forward model is speci�cally designed for TROPOMI, the solar-satellite

geometry is selected to represent TROPOMI orbits for the training data. Meteorological

parameters for the locations associated with these solar-satellite geometries are derived

from the 2017 60-layer ERA-Interim Reanalysis data [9], and aerosol and surface parameters

are randomly generated within their physical boundaries. This training data generation

strategy spans the entire set of TROPOMI solar and viewing angles as well as meteorological

parameters.

Generally, the required training data size increases with increasing non-linearity be-

tween input and output layers in a neural network — there is no speci�c method to

accurately determine the required sample size before training. The number of spectra

generated for the training set was determined by training di�erent models with di�erent

number of spectra in the training set ranging from 1,000 to 600,000. In general it was

observed that incorporating more data resulted in a better neural network model. In order

to test the trained neural network model, a choice of 500,000 spectra were selected. Finding

the most optimal neural network con�guration requires testing the trained neural network

model. To that extent, the training data set was split into a training-testing split, where

the model was trained on a majority of the training data set and tested on the remaining
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Table 4.2: Scene-dependent input model parameters for the NN model. See also Figure 4.2 for a histogram of the

input parameters. The solar-satellite geometry parameters are generated in combinations conforming to the ones

encountered by TROPOMI’s orbits.

Parameter class Model Parameters Remarks limits

Geometry

Solar zenith angle

(�0)
in feature vector 8.20

◦
- 80.0

◦

Viewing zenith an-

gle (�)

in feature vector 0.0
◦

- 66.60
◦

Solar azimuth angle

(�0)
in feature vector -180.0

◦
- 180.0

◦

Viewing azimuth

angle (�)

in feature vector -180.0
◦

- 180.0
◦

Aerosol parameters

Aerosol pixel frac-

tion

�xed 1.0

Single scattering

albedo (!)

�xed 0.95

Aerosol optical

thickness (� )

in feature vector 0.05 - 5.0

Aerosol layer

height (zaer)
in feature vector 75 hPa - 1000.0 hPa

Aerosol layer thick-

ness (pthick)

varied but excluded

from feature vector

50 hPa - 200 hPa

Scattering phase

function

�xed Henyey-

Greenstein

asymmetry factor

(g)

�xed 0.7

Angstrom expo-

nent (Å)

�xed 0.0

Meteorological pa-

rameters

Temperature in feature vector temperature at zaer

Surface parameters

Surface pressure

(ps)
in feature vector 520 hPa - 1048.50

hPa

Surface re�ectance

model

LER

Surface albedo (As) in feature vector 2.08E-7 - 0.70
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minority. Once trained, the model was tested again on a test data set with 100,000 scenes

outside of the training data set. These spectra were generated using Disamar with model

parameter ranges described in Table 4.2. Figure 4.2 plots the distribution of the input

parameters necessary for training the neural network. The neural network model accepts

solar azimuth and viewing azimuth angles separately, however they are plotted together as

relative azimuth angle in Figure 4.2 to save space. The generation of this training data set

is by far the most time consuming step since each Disamar run requires between 50-60 sec-

onds to generate the synthetic spectra. Once the data has been generated, it is prepared for

training the neural network models in NN. This is done by data normalisation, achieved by

subtracting the mean of each of the training input and output parameters and dividing the

di�erence by its standard deviation, which makes the learning process quicker by reducing

the search space for the optimizer. The o�set and scaling parameters are important, as the

neural network computes outputs within this scaled range, which needs to be re-scaled

back to physical values. This training requires a few hours on an Intel(R) Xeon(R) CPU

E3-1275 v5 at a clock speed of 3.60 GHz.

The most optimal con�gurations for each of the three NN models are determined by

the number of hidden layers, the number of nodes on each layer and the chosen activation

function for which the discrepancy between the modeled output for speci�c inputs and the

truth (derived from Disamar) is minimal. The di�erence between the outputs calculated by

Disamar and NN for these three models provide insight on their performance.

In order to test the most optimal number of layers, the most optimal number of nodes

per each layer and the activation function, several neural network con�gurations were

trained for 250,000 iterations and their summed losses (de�ned as Δ×n�) were compared to

�nd out which was the best con�guration. Figure 4.3 plots the summed losses as a function

of training iteration for di�erent con�gurations.

To begin, with 50 nodes per each hidden layer, three neural networks for each of the

three models were trained — one-layered, two-layered and three-layered. The neural

network models performed best with at least two hidden layers (Figure 4.3a). For all three

models, their two-layered versions show a similar summed loss to their three-layered alter-

natives, with the summed loss for the two-layered NNdisamar(K� ) showing more stability

with training epoch. Therefore, a simpler two-layered architecture is chosen for all three

models. Continuing on, three other architectures for each of the three models were chosen

with 50, 100, and 200 nodes for each of the two hidden layers. The results that with more

training steps, the choice of 100 nodes for each of the two layers has a compromise between

summed training loss and simplicity (Figure 4.3b), especially for NNdisamar(K� ). Finally,

going ahead with a two-layered and 100 nodes for each layer con�guration, three activation

functions namely the sigmoid function, the hyperbolic tangent function (tanh) and the

recti�ed linear unit (relu) function were tested for each of the neural network models

(Figure 4.3c). In this case, while all functions converge to similar summed loss values by

250,000 iterations, the sigmoid function has a good compromise between training loss and

stability. Figure 4.4 gives a graphic representation of the neural network model.

The �nalised con�gurations were then trained for one million iterations after which they

were applied to the test data set to study prediction errors. Figure 4.5 plots the performance

of each of the neural networks trained on the testing data set. An error analysis revealed

that the trained neural networks were capable of calculating Disamar outputs with low
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Figure 4.2: Histograms of the various input parameters for each of the neural network models in NN. Minimum

and maximum values for each of the parameters are shown in Table 4.2.

Figure 4.3: Summed loss as a function of training step for di�erent neural network model con�gurations. (a) The

neural network models have 50 nodes per each layer with a sigmoid activation function. (b) The neural network

models have two hidden layers with each node activated by the sigmoid function. (c) The neural network models

have two hidden layers with a 100 nodes for each layer.
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Figure 4.4: Schematic of each of the three neural networks in NN. There are two hidden layers, each containing

100 nodes. z represents inputs for each of the nodes, whereas nn represents the inputs and outputs of the neural

network.
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errors, generally within 1-3% of Disamar calculations. Averaged convolved errors of the

neural network model for the sun normalised radiance (NNI ) did not exceed 1%. The neural

network model for the derivative of the re�ectance with respect to � and zaer perform well

in general for parts of the spectrum with large oxygen absorption cross sections, where the

value of the derivatives are high (indicating a higher amount of information content from

those speci�c wavelength regions). Errors in the deepest part of the R-branch between

759 nm and 762 nm and the P-branch between 752.50 nm and 765 nm, do not exceed 3%

for NNKzaer . The same can be said for NNK� , which displays errors in the range of 1% in

the same wavelength region. For wavelengths outside of the deepest parts of the R and

P-branch, the relative errors are large, and exceed 10% easily. However, the relative errors

are calculated as the absolute value of the di�erence between the true spectrum and the

neural network calculated spectrum, divided by the true spectrum. These values can be

very large when the value of the true spectrum is very small, which is the case for the

derivatives outside the deepest part of the R and P branches. The consequence of these

errors in a retrieval scenario from synthetic and real spectra are discussed in the following

section.

Figure 4.5: Performance of the �nalised neural network. The top row represents the averaged output of each of

the neural networks for surface albedo less than 0.4. The bottom row represents the convolved version of the top

row (plotted as the red line with the left-handed y-axis) and the convolved relative error (plotted in log scale)

with the truth (plotted in blue with the right-handed y-axis). The relative errors are computed as the absolute

value of the di�erence (post-convolution) between the averaged true and averaged predicted spectra, divided by

the averaged true spectra. (a,b) represent the neural network computed sun-normalised radiances, (c,d) represent

the same for the derivative of re�ectance with respect to aerosol layer height, and (e,f) the same with respect to

aerosol optical thickness.
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4.4 Comparison between Disamar and NN aerosol
layer height retrieval algorithms

To test the NN augmented retrieval algorithm, we apply the generated NN models to

synthetic test data and real data from TROPOMI, and compare its retrieval capabilities to

those of Disamar. The synthetic data were produced using the Disamar radiative transfer

model because of which we expect the online radiative transfer retrievals to be generally

better than the NN-based retrievals. The aerosol model used in the retrieval is as in Section

4.2.1, using �xed parameters for aerosol single scattering albedo, aerosol layer thickness

and aerosol scattering phase function.

4.4.1 PerformanceofNNversusDisamar inretrieving aerosol
layer height in the presence of model errors

A comparison of biases (in the presence of model errors) in the �nal retrieved solution is

indicative of the e�cacy of NN in replacing Disamar to retrieve ALH. To directly compare

zaer retrieval capabilities of Disamar and NN, radiance and irradiance spectra convolved

with a TROPOMI slit function were generated to replicate TROPOMI-measured spectra.

Bias is de�ned as the di�erence between retrieved and true aerosol layer height (i.e.,

retrieved - true). A total of 2000 scenes for four synthetic experiments were generated from

the test data set containing TROPOMI geometries, with randomly varied model errors in

aerosol single scattering albedo, Henyey-Greenstein phase function asymmetery parameter,

and surface albedo (described in Table 4.3). Figure 4.6 compares the retrieved zaer from

line-by-line and neural network approaches for each of the synthetic experiments. A

histogram of these di�erences is plotted in Figure 4.7.

The retrieved aerosol layer heights from Disamar and NN in the presence of model

errors in aerosol layer thickness were found to be almost similar (Figure 4.6a), with a

Pearson correlation coe�cient close to 1.0. Introducing model errors in other aerosol

properties such as single scattering albedo (Figure 4.6b) and scattering phase function

(Figure 4.6c) also resulted in a similar agreement between Disamar and NN retrieved aerosol

layer heights. Furthermore, both methods retrieved similar aerosol layer heights in the

presence of model errors in surface albedo as well (Figure 4.6d).

A total of 5558 retrievals out of the 8000 di�erence cases converged to a �nal solution.

On average, zaer retrieved using NN di�ered by approximately 5.0 hPa from the same

using Disamar (Figure 4.7), with a median of approximately 2.0 hPa. The spread of the

retrieval di�erences were minimal, with a majority of the retrievals di�ering by less than

13.0 hPa. Di�erences close to and above 100.0 hPa did exist, but such retrievals were very

uncommon.

Out of the 8000 scenes within the synthetic experiment, NN retrieved aerosol layer

heights for 546 scenes where Disamar did not. Contrariwise, 586 scenes converged for

Disamar and not for NN. A comparison of the biases from these odd retrieval results is

plotted in Figure 4.8, which indicates that retrievals from NN in cases where Disamar fails

are realistic as the distribution of the biases is very similar to those cases when Disamar

succeeds and NN does not (Figure 4.8). Retrievals using the NN forward model on average

required three more iterations to reach a solution when compared to the same by Disamar.

Similarly, retrievals from Disamar had a signi�cantly lower minimised cost function (less
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Figure 4.6: Retrieved layer heights compared between Disamar and NN for 2000 synthetic spectra in the presence

of model errors. The dots represent converged scenes only, with the x axis representing retrievals from Disamar

and the y-axis representing the same from NN. The model errors represented in this �gure are (a) aerosol layer

pressure thickness, (b) aerosol single scattering albedo, (c) aerosol scattering phase function asymmetry factor,

and (d) surface albedo. These results as well as the introduced model errors are summarised in Table 4.3. The

Pearson correlation coe�cient (R) between the retrieved zaer from di�erent methods is mentioned in each of the

plots.

Figure 4.7: Histogram of di�erences between the re-

trieved zaer values using Disamar and NN retrieval meth-

ods for synthetic spectra generated by Disamar. To-

tal number of cases is 8000, whereas the plot contains

5558 retrieved samples for both Disamar and NN; non-

converged cases are not included. A map of these di�er-

ences are plotted in Figure 4.10c.
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Figure 4.8: Histogram of biases (retrieved - true) for

scenes in the synthetic experiment for which either NN

converges to a solution (red bar plot) and Disamar does

not, or Disamar converges to a solution (blue bar plot)

whereas NN does not.

by four orders of magnitude on average) at the end of the retrieval when compared to NN.

This is within expectation as NN cannot truly replicate Disamar. Having tested the NN

augmented retrieval algorithm in a synthetic environment, the retrieval algorithm was

installed into the operational TROPOMI processor for testing with real data.

4.4.2 Application to December 2017 Californian forest fires
observed by TROPOMI

Figure 4.9: (a) MODIS Terra image of the December 12, 2017 Southern Californian wild�re plume, extending from

land to ocean. (b) Calculated aerosol absorbing index from the TROPOMI level-2 processor. Missing pixels are

�agged by a cloud mask or land-sea mask, or have an AAI less than 1.0.

The December 2017 Southern California wild�res have been attributed to very low
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humidity levels, following delayed autumn precipitation and severe multi-annual drought

[25]. Particularly on December 12, the region of the �res was cloud-free, owing to high-

pressure conditions. A MODIS Terra image of the plume and the retrieved AAI from

TROPOMI is plotted in Figure 4.9. The biomass burning plume extended well beyond the

coastline and over the ocean (Figure 4.9a), which provides a roughly cloud-free and low

surface brightness test case for implementing the aerosol layer height retrieval algorithm.

The AAI values were above 5.0 in the bulk of the plume (Figure 4.9b), indicating a very high

concentration of elevated absorbing aerosols. Pixels with an AAI value less than 1.0 were

excluded from the retrieval experiment. Cloud-contaminated pixels were removed from

the data selected for processing using the FRESCO cloud mask product from TROPOMI

(maximum cloud fraction of 0.2), but parts of the biomass burning plume that did not contain

any clouds were also removed as the cloud fraction values for these pixels were higher

than the threshold. This is because FRESCO-based cloud fraction values over cloud-free

scenes containing aerosols (biomass burning aerosols in this case) are generally expected

to be positively biased. The retrieval algorithms did not process pixels in the coastline,

where the surface albedo retrieval is likely to be wrong.

Figure 4.10 compares the retrieved zaer over the plume using the line-by-line and neural

network based forward models, respectively. The number of the converged retrievals

is 7418 for the line-by-line algorithm, but 7370 for the neural network algorithm. The

di�erences between zaer (disamar) and zaer (NN) go up to as much as 0.5 km (Figure 4.10c).

A majority of the negative di�erences are for the part of the plume extending from the coast

between 47
◦
N and 40

◦
N. Figure 4.11 provides plots for further comparison between the

two retrieval techniques. The neural network augmented processor retrieved aerosol layer

heights which were (on average) less than 50.0 meters apart from the same by the line-by-

line counterpart (Figure 4.11b). The standard deviation of the di�erences are approximately

160 meters, which indicates the presence of outliers. However, a majority of the di�erences

in the two retrievals are less than 100 meters; this is indicated by the 15
th

and the 85
th

percentile of these di�erences of -115.0 meters and 40.0 meters respectively. Although the

retrieval algorithms have good agreement, they primarily di�ered for the lower aerosol

loading scenes (Table 4.4). The majority of the pixels where the neural network algorithm

di�ered from the line-by-line counterpart by more than 200 meters were for AAI values

less than 2.0 (Figure 4.11c). Most of these biases were caused by an over-estimation of the

retrieved aerosol layer height using the neural network algorithm, in comparison to the

same from disamar. Pixels with AAI values larger than 5.0 also showed a consistent bias of

60 meters with a standard deviation of 30 meters. This bias is not well understood.

The time required by the line-by-line operational processor was 184.01±0.50 seconds

per pixel, whereas the same for the neural network processor was 0.167± 0.0003 seconds per

pixel. The neural network algorithm shows an improvement in the computational speed

by three orders of magnitude over the line-by-line retrieval algorithm. The computational

speed gained from implementing NN enables retrieval of aerosol layer heights from all

potential scenes in the entire orbit within the stipulated operational processing time slot.



94

4 Speeding up the forward modeling: an approach to make the retrievals operationally more

feasible

Table 4.3: A count of converged and non-converged results from synthetic experiments comparing retrieved

aerosol layer heights between Disamar and NN.

experiment Converged (Disamar) Converged (NN)

model pa-

rameter

sim ret yes no yes no con-

verged

pthick 200 hPa 50 ha 1641 359 1550 450

! [0.93,

0.96]

0.95 1396 604 1412 588

g [0.67,

0.73]

0.7 1571 429 1567 433

As [0.95As ,
1.05As]

As 1536 464 1575 425

Figure 4.10: (a) Aerosol layer height retrieved using Disamar as the forward model. (b) The same, but with NN

replacing Disamar in the operational processor. (c) di�erence between Disamar and NN retrieved aerosol layer

heights.
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Figure 4.11: Comparison of retrieved aerosol layer heights from TROPOMI-measured spectra (orbit number 858)

for the 12th December, 2017 Southern California �res using Disamar and NN. (a) Retrieved aerosol layer heights

from the two methods; (b) Histogram of the di�erence between retrieved heights from Disamar and NN. The

di�erence is de�ned as zaer(Disamar) - zaer(NN). (c) Di�erences compared to TROPOMI’s operational AAI product

(x axis).

Table 4.4: Statistics of di�erence between retrieved zaer from Disamar and NN from Figure 4.10c.

AAI [-] number
of sam-
ples

mean
[m]

median
[m]

std [m] 15th per-
centile
[m]

85th per-
centile
[m]

<2.0 3227 -50.74 -62.10 206.44 -228.65 108.31

2.0 - 3.0 2723 -54.96 -43.20 110.75 -184.85 67.10

3.0 - 5.0 1167 10.32 19.42 63.65 -61.63 65.26

>5.0 253 61.35 61.00 30.954 26.56 95.22

4.5 Conclusion
Of the algorithms that currently retrieve TROPOMI’s suite of level-2 products, the aerosol

layer height processor is an example of one that requires online radiative transfer calcu-

lations. These online calculations have traditionally been tackled with KNMI’s radiative

transfer code disamar, which calculates (among other parameters) sun-normalised radi-

ances in the oxygen A-band. There are, in total, 3980 line-by-line calculations per iteration

in the optimal estimation scheme, requiring several minutes to retrieve aerosol layer height

estimates from a single scene. This limits the yield of the aerosol layer height processor

signi�cantly.

The bottleneck is identi�ed to be the number of calculations Disamar needs to do at

every iteration of the Gauss-Newton scheme of the estimation process. As a replacement,

this chapter proposes using arti�cial neural networks in the forward model step. Three

neural networks are trained, for the sun-normalised radiance and the derivative of the

re�ectance with respect to aerosol layer height and aerosol optical thickness, the two

state vector elements. As the goal is to replicate and replace Disamar, line-by-line forward

model calculations from Disamar were used to train these neural networks. A total of

500,000 spectra were generated using Disamar, and each of the neural network models was

trained for a total of 1 million iterations with the mean squared error between the training

data output and the neural network output being the cost function to be minimised in the
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optimisation process.

Over a test data set with 100,000 di�erent scenes unique from the training data set, the

neural network models performed well, with errors not exceeding 1-3% in general in the

predicted spectra and derivatives. Having tested the neural network models for prediction

errors in the forward model output spectra, they were implemented into the aerosol layer

height breadboard algorithm and further tested for retrieval accuracy. In order to do so,

experiments with synthetic as well as real data were conducted. The synthetic scenes

included 2000 spectra with di�erent model errors in aerosol and surface properties. In

these cases, the neural network algorithm showed very good compatibility with the aerosol

layer height algorithm, since it was able to replicate the biases satisfactorily.

We evaluate aerosol layer heights retrieved from TROPOMI measurements over South-

ern California on 12 December, 2017, when the �re plume extensively �oats from land to

ocean over a dry and almost cloudless scene. Operational retrievals using both Disamar

and the neural network forward models showed very similar results, with a few outliers

around 500 meters for pixels containing low aerosol loads. These biases were outweighed

by the upgrade in the computational speed of the retrieval algorithm, as the neural network

augmented processor observed a speedup of three orders of magnitude, making the aerosol

layer height processor operationally feasible.

In this chapter, the previous method of retrieval was directly augmented with the

neural network method. With the boost in the computational speed of top-of-atmosphere

re�ectances in the oxygen A-band, a host of assumptions that were once necessary for

a line-by-line RTM are now antiquated. The neural network radiative transfer method

allows for possibilities to improve upon the previous ways of retrieving aerosol layer height

from the oxygen A-band, including removing the several simpli�cations mentioned in

Section 4.2.1. However, before starting a project on improving the ALH retrieval algorithm,

a benchmark of the current state-of-the-art must be established. The following chapter

(Chapter 5) presents a �rst evaluation of TROPOMI’s operational Level-2 processor for the

aerosol layer height retrieval algorithm.
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5
A first evaluation of

retrieved aerosol heights
from the TROPOMI ALH

algorithm

With the neural network algorithm implemented to the operational TROPOMI level-2

processor, the quality of the ALH retrieval algorithm can now be tested. This is an important

step in the development of the algorithm — a �rst validation of the retrieved product acts

as a benchmark from which the product needs to be improved upon.

An appropriate choice of data for comparing the quality of the retrieved ALHs from

measured TROPOMI spectra are lidars, either atmospheric or ground based. In this chapter,

the data from the CALIOP instrument on board the CALIPSO mission is used for any

TROPOMI-CALIOP colocation (spatially and temporally) all throughout the globe. While

the chapter presents colocated data for the entire globe, a few well-understood cases are

chosen as a subject of deeper comparison between TROPOMI and CALIOP retrieved aerosol

height. The research goal of this chapter is,

Provide a�rst benchmarkof theALHretrieval algorithmby comparingTROPOMI
operational level-2 ALHs to other data sources.1

1
This chapter is published in https://doi.org/10.5194/amt-13-3043-2020, 2020.

https://doi.org/10.5194/amt-13-3043-2020
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5.1 Introduction
In the fourth quarter of 2019, an operational data stream of retrieved ALHs derived from

measured oxygen A-band spectra by TROPOMI has been made available to the general

public; the TROPOMI operational UVAI product augmented by the TROPOMI ALH product

has the potential to further the operational monitoring of aerosol properties globally.

This chapter discusses some key features of the product and its limitations by comparing

it with co-located CALIOP pro�les, and paints a future outlook of the evolution of the

TROPOMI ALH algorithm. The chapter looks into more than two million colocations

between TROPOMI ground pixels and CALIOP pro�les over an extended period of time

covering several months from May 2018 till March 2019, in order to draw conclusions

on the accuracy of the TROPOMI ALH retrievals. Further on, the chapter also discusses

four selected cases in and around West Africa for a deeper analysis of the comparison

with CALIOP data; the choice of using the Africa as a study area arises from the fact that

a signi�cant majority of colocations between TROPOMI and CALIOP are concentrated

around the West African region.

In Section 5.2 of this chapter, we discuss the data and methods used in this chapter;

section 5.2.1 describes the retrieval algorithm and highlights di�erent diagnostic parameters

available for assessing the product’s quality. Following this, the comparison between

CALIOP and TROPOMI estimates of aerosol heights are presented in 5.3 — Section 5.3.1

presents an overall analysis of a large number of TROPOMI-CALIOP colocations, followed

by Section 5.3.2 which discusses selected cases for a deeper dive into the TROPOMI

product. The chapter concludes with section 5.4, highlighting important areas of potential

improvement in the current TROPOMI ALH product.

5.2 Data and Methods
5.2.1 TROPOMI ALH
The TROPOMI ALH product is derived from measurements of the oxygen A-band in the

near infrared region between 758 nm and 770 nm. Within this spectral range, TROPOMI

measures top of atmosphere radiances and solar irradiances with a spectral resolution

between 0.34 nm and 0.35 nm and a spectral sampling of 0.126 nm. The retrieval algorithm

exploits the absorption characteristics of molecular oxygen, which varies with the photon

path length — the photon path length for an aerosol layer closer to the surface is longer,

which appears as deeper oxygen absorption lines in the measured spectrum (see Figure

1.9).

The reported ALH is the height of a single aerosol layer for the entire atmospheric

column within the scene measured by TROPOMI; in reality however, there can be several

cases where distinctly separated elevated and boundary layer aerosols are present in the

same scene. In such cases, the retrieval algorithm is expected to retrieve an optical centroid

pressure or height of the two (or more) aerosol layers, depending on the atmospheric level

of the aerosol layer from which most of the photons are scattered back. For instance, if

the elevated aerosol layer contributes signi�cantly more than the boundary layer aerosols

to the top of atmosphere measured spectra, the ALH retrieval algorithm is expected to

retrieve values closer to the elevated layer.

The technique for retrieving ALH is based on optimal estimation [10], where an RTM
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that calculates the top of atmosphere oxygen A-band spectra is �tted to TROPOMI measured

oxygen A-band spectra. The cost function that is minimised in this estimation step, �2, is

de�ned as

�2 = [y −F(x,b)]T S�−1[y −F(x,b)] + (x −xa)T Sa−1(x −xa), (5.1)

where, y is the re�ectance spectra calculated from measured radiances and irradiances for

the oxygen A-band, F(x,b) is the modeled re�ectance for input parameters b, of which

the state vector x containing ALH zaer and aerosol optical thickness � is a part, xa is the

a priori state vector and S�−1 and Sa−1 are the measurement error covariance and the a

priori error covariance matrices. Optimal estimation is an iterative process, requiring

several iterations to minimise the cost function described in Equation 5.1. The approach is

Gauss-Newton, with a maximum number of iterations set at 10. If the optimal estimation

does not converge within these iterations, the ALH �eld in the �nal level-2 product is �lled

with a �ll value. For a given measurement, optimal estimation is said to have converged

to a �nal solution if the update to the state vector for the next iteration is less than the

expected precision.

The �2 is a measure of how close the modelled sun-normalised radiances are to the

observations, with smaller values representing a better �t. The consequence of the many

assumptions in the model (described in Section 4.2.1) result in a large �2 (to the order of 1E4-

1E7), with larger �2 representing a larger departure between the model and the observation.

There are several reasons for these departures, the more important ones being the presence

of undetected clouds in the scene, incorrect surface re�ectance information, and multiple

aerosol layers. These attributes are not parameterised into the RTM, and can be source of

discrepancies between the measured and the modeled re�ectances. The RTM in this case is

a neural network model that has learned parts of a full physics RTM derived from de Haan

et al. [1], described in Nanda et al. [7] (Section 3), which is three orders of magnitude

faster than DISAMAR. In short, the atmosphere is simpli�ed by DISAMAR in order to

reduce computational burden, and the neural network forward model is implemented for a

further performance boost in an operational environment; for instance, DISAMAR ignores

rotational raman scattering even though literature has shown that the oxygen A-band ring

e�ects are sensitive to ALH [14, 15]. These decisions have been made in order to speed

up line-by-line calculations of DISAMAR, which are the basis of the training data for its

neural network counterpart. This decision is motivated by preliminary sensitivity analyses

conducted by Sanders and de Haan [11] which conclude that the e�ect of ignoring RRS is

not signi�cant enough to venture in its implementation into the forward model.

The surface re�ectance model used in the algorithm is derived from Tilstra et al. [13],

which is a Lambertian equivalent re�ectance (LER) database with a spatial resolution of

0.25
◦× 0.25

◦
. In contrast to TROPOMI’s ALH product which is reported at 7.2 km × 3.6 km

till August 6, 2019, and 5.6 km × 3.6 km thereafter, the LER database is much coarser spatially.

This can lead to several artefacts in the �nal product, discussed further on in this chapter

in Section 5.3.2. Another issue to note is in the in�uence of bright surfaces on the retrieval.

The oxygen A-band lies beyond the red edge, a wavelength region in which vegetation

has high re�ectance values. This poses several challenges; a signi�cant portion of the

measured signal over land might be contributions from the surface re�ectance (see Figure

2.1). If the aerosol optical thickness of the measured scene is low, the contribution of the
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surface to the top of atmosphere radiance dominates over the contribution from scattering

by aerosols — there are more photons that get scattered back from the surface than the

aerosol layer. In such cases, the retrieval algorithm will tend to retrieve an aerosol layer

closer to the surface. Generally we �nd that, if the contribution to the top of atmosphere

re�ectance from aerosols is signi�cantly larger than the same from the surface (i.e. the

aerosol layer appears brighter than the surface), the retrieval algorithm will tend to retrieve

a height closer to the aerosol layer (Section 5.2 and Figure 10 from Nanda et al. [8] discuss

this observation explicitly).

The forward model parameterises aerosols with a Henyey-Greenstein scattering phase

function [4] with an asymmetry factor of 0.7, a single scattering albedo of 0.95, and a

�xed aerosol optical thickness for an aerosol layer parameterised by a single atmospheric

layer with a 50 hPa thickness. These assumptions have to be made since very little a

priori information about aerosols in a scene is known. While more complex scattering

models exist, the Henyey-Greenstein model has been used for retrieving ALH when the

forward model was of line-by-line nature as the number of calculations it requires is far

less than a scattering model such as the Mie model. Sensitivity analyses have shown that

this assumption has few rami�cations [12]. Fixing the single scattering albedo is a much

bigger concern; while retrievals over the ocean do not su�er for a priori errors in the single

scattering albedo, retrievals over land do have large errors and non-convergences which

reduce as the the viewing zenith angle increases [6]. The choice of using 0.95 as a �xed

value arises from average values derived by Dubovik et al. [2] from long-term observations

using the aerosol robotic network (AERONET). The algorithm assumes a single aerosol

layer for the entire atmosphere, within which aerosols are uniformly distributed and the

aerosol volume extinction coe�cient is constant. This is an important simpli�cation to

note when comparing with CALIOP pro�les, since these lidar pro�les have the capability

to detect multiple aerosol layers. The simplicity in the aerosol pro�le parameterisation

arises from the fact that it is impossible to know, without prior information, whether the

scene consists of a single or multiple aerosol layers. While �tting of the aerosol layer

pressure thickness along with the aerosol layer mid pressure does not result in large errors

in the retrieved ALH, the precision of the retrieved aerosol layer mid pressure signi�cantly

deteriorates with increasing errors in the surface albedo [12]. More research has to be done

before more information on the aerosol pro�le is retrieved from the oxygen A-band alone.

Finally, the ALH retrieval algorithm implements a pixel selection scheme before com-

mitting to retrieving ALH estimates. This pixel selection scheme involves auxiliary data

products from TROPOMI such as the UVAI and cloud fraction estimates from the TROPOMI

Fast Retrieval Scheme for Clouds from Oxygen absorption bands (FRESCO) algorithm [16],

and the cirrus re�ectances derived from the Visible Infrared Imaging Radiometer Suite

(VIIRS) on the Suomi National Polar-Orbiting Partnership (Suomi NPP) satellite.

1. The maximum solar zenith angle allowed is 75
◦
. If the pixel does not meet this

criterion, it is removed from the processing and a �ag is raised.

2. If the pixel over water lies in the sun-glint region (a maximum sun-glint angle of 18

◦
), it is processed but a sun glint warning �ag is recorded in the level-2 product.

3. If the standard deviation of the surface elevation within the pixel is beyond 1000 m,
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the pixel is not processed and a �ag is raised. If it is beyond 300 m, a warning �ag is

raised and the pixel is processed.

4. If the surface covered by the pixel comprises of both land and water, a warning

indicating mixed surface type is raised and the pixel is processed regardless.

5. If the pixel contains snow or ice, the pixel is not processed and a �ag is raised.

6. If the TROPOMI level-2 UV Absorbing Index product reports a value below 0.0, the

pixel is not processed and a �ag is raised. If the value is less than 1.0, a low UVAI

�ag is raised.

7. If the reported cloud fraction values from the TROPOMI FRESCO product for the

pixel is beyond 0.6, the pixel is not processed and a �ag is raised.

8. If the VIIRS average cirrus re�ectance for the pixel is beyond 0.4, the pixel is not

processed and a �ag is raised. If it is beyond 0.01, a warning for possible cirrus clouds

is indicated.

9. If the di�erence between the scene albedo (calculated using a look up table) from

the Level-2 UVAI product and the surface albedo from the Tilstra et al. [13] database

at 380 nm is beyond 0.4, the pixel is removed from the processing pool and a �ag is

raised for possible cloud contamination. If this is value is beyond 0.2, a warning �ag

is raised.

10. The nominal TROPOMI pixels also contain radiances at a sub-pixel level, which are

called small pixel radiances. If the standard deviation of the small pixel radiances is

larger than 1E-7, the scene is deemed to be non-homogeneous (possibly containing

clouds) and it is removed from the processing pool.

These relevant �ags are reported in Table 5.1 and are available in the level-2 data

products; the values for each of these �ags can be accessed with bitwise-and operations

for each pixel with the value of each processing quality �ag. For cloud �ltering, the

cloud_warning �ag is the preferred �ag for removing possibly cloudy pixels. This �ag is a

combination of FRESCO cloud fraction retrievals, VIIRS cirrus re�ectance retrievals and

the di�erence between the surface albedo and the scene albedo at 380 nm. An example of

applying the cloud_warning �ags to �lter out possibly cloudy pixels is provided in Figure

5.1.

5.2.2 CALIOP weighted extinction height
The Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) instrument is a part of

the payload for the Cloud-Aerosol Lidar and Infrared Path�nder Satellite Observation

(CALIPSO) mission [17], which orbits the Earth in a sun-synchronous orbit. The CALIOP

instrument has three backscatter receiver channel, two channels for the orthogonal mea-

surement of received backscatter signal at 532 nm and one channel for backscatter at 1064

nm. Lidar pro�les from the CALIPSO mission are a good source of data for validating

retrieved ALHs from TROPOMI, because of their ability to map the vertical structure of

the atmosphere. The data from the CALIOP instrument relevant for validating TROPOMI
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Table 5.1: Processing Quality Flags relevant for diagnosing S5P ALH product quality. The descriptions are derived

from the S5P IODD.

name value description

CONVERGED
success 0 successful retrieval; warnings

still possible.

sun_glint_warning 2048 pixel is in sun-glint region

cloud_warning 32768 combination of di�erent cloud

detection methods

UVAI_warning 65536 UVAI is lower than 1.0

snow_ice_warning 16384 scene contains snow/ice

NON-CONVERGED or MISSING
convergence_error 19 optimal estimation did not con-

verge

sza_range_error 7 Solar zenith ≥ 75
◦

max_iteration_convergence_error 21 no convergence; retrieval ex-

ceeds maximum iterations

aot_lower_boundary_error 22 no convergence; AOT ≤ 0.0 twice

in succession

other_boundary_convergence_error 23 no convergence; state vector el-

ement crosses boundary condi-

tions twice

solar_eclipse_�lter 64 pixel not processed because of

solar eclipse

cloud_�lter 65 pixel skipped; FRESCO cloud

fraction greater than 0.6

altitude_roughness_�lter 67 pixel skipped; STD of DEM in

pixel > 1000.0 m

snow_ice_�lter 70 pixel skipped; pixel contains

snow/ice

UVAI_�lter 71 pixel skipped; UVAI < 0.0

cloud_fraction_fresco_�lter 72 pixel skipped; cloud fraction >
0.6

cirrus_re�ectance_viirs_�lter 76 pixel skipped; VIIRS cirrus re-

�ectance > 0.4
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Figure 5.1: (a) A VIIRS corrected re�ectance image over the West African coast on the 8
th

of June, 2018. (b)
All successful TROPOMI retrievals within a certain bounding box. (c) Same as (b) but with all pixels that

possibly fall within the sun glint region or are cloud contaminated are removed (using cloud_warning �ag and

sun_glint_warning from Table 5.1).

ALH are the level-1 backscatter pro�les and the level-2 aerosol extinction pro�les, which

are used at the same time.

In this chapter, the level-1 total backscatter pro�les from the 532 nm channel are used as

curtain plots to visualise the vertical structure of the atmosphere. Level-2 aerosol extinction

pro�les from the 532 nm channel are then used to compute an aerosol weighted extinction

height ALHext, following the de�nition provided by Equation 1 in Ko� et al. [5],

ALHext =

n
∑
i=1

�ext,iZi

n
∑
i=1

�ext,i

, (5.2)

where Zi is the height from sea level in the ith lidar vertical level i (in km), and �ext,i is the

aerosol extinction coe�cient (in km
−1

) at the same level. The Level-2 aerosol extinction

pro�le product from CALIOP only includes atmospheric levels where aerosols are detected.

In the case when aerosols are present over clouds, ALHext will be situated to the center of

the aerosol layer, with any possibly undetected aerosol layers below the cloud layer not

included in the calculations due to attenuation of the signal beyond the cloud layer. This is

an important detail as the TROPOMI ALH algorithm cannot separate cloud and aerosol

signals from the measured radiances, and cloud contamination will a�ect the retrieved

product. In this chapter, the CALIOP 532 nm channel observations are chosen for analysis

as the conclusions from the analysis of the results do not change when the 1064 nm channel

observations are used instead. The CALIOP aerosol product might be cloud contaminated

as well, but this is di�cult to ascertain. Plotting ALHext over curtain plots of level-1 total

backscatter pro�les can be used to visually discern possibly cloud-contaminated CALIOP

level-2 aerosol product.
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Figure 5.2: Histogram of di�erences between CALIOP ALHext (Equation 5.2) and TROPOMI ALH from colocated

data between May 1, 2018 and February 28, 2019. Blue histogram represents TROPOMI pixels over the ocean

whereas the red histogram is for TROPOMI pixels over land. The blue line represents the mean di�erence between

TROPOMI ALH and CALIOP ALHext for TROPOMI pixels over the ocean, whereas the red line represents the

same for TROPOMI pixels over land. The black line at 0.0 km di�erence on the x-axis is plotted to aid the reader

in their interpretation of this �gure. (a) All colocations except TROPOMI pixels falling in the sun glint region.

TROPOMI pixels with retrievd AOT greater than 5.0 are discarded. For pixels over land, if the GOME-2 surface

albedo is less than 0.1 or greater than 0.4, they are discarded. Similarly, over the ocean all TROPOMI pixels that

have a GOME-2 surface albedo greater than 0.05 are discarded. (b) Same, except only TROPOMI ALH retrievals

that are cloud-screened using cloud_warning �ag from Table 5.1 are included.

5.3 Results
5.3.1 Comparison of TROPOMI ALH and CALIOP ALHext
TROPOMI-CALIOP colocations between 1

st
of May 2018 to the 28

th
of February 2019

are selected. Two sets of overall comparisons are done between CALIOP ALHext and

TROPOMI ALH, one with all colocations (Figure 5.2a) that aren’t cloud �ltered and the

other with a smaller subset of the dataset constrained by the cloud_warning �ag from

Table 5.1 (Figure 5.2b). The contrast between retrievals over land and ocean is apparent in

Figure 5.4 (cloudy scenes �ltered out using the cloud_warning �ag), with a majority of the

negative di�erences with values lower than -2 km occurring over land.

From Figure 5.2a , what is immediately clear is that the CALIOP ALHext are higher than

the TROPOMI ALH. With an average di�erence of -2.25 km, median di�erence of -1.62

km and a standard deviation of 3.83 km, the retrieved ALH from TROPOMI over land is

reported to be systematically closer to the surface than CALIOPALHext than in comparison

with retrievals over the ocean, which has a mean di�erence of -0.41 km, a median di�erence

of -0.29 km and a very high standard deviation of 6.86 km. There are several cases over

the ocean where TROPOMI ALH is signi�cantly higher than the CALIOP ALHext, which

could be due to cloud contamination. The comparison of the cloud-screened retrievals

(Figure 5.2b) reveals that the retrieved ALH from TROPOMI over the ocean di�ers from

CALIOP ALHext by -1.03 km on average, a median di�erence of -0.76 km and a standard
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Figure 5.3: Scatter density plots of the di�erence between TROPOMI ALH and CALIOP ALHext as a function of

(a) TROPOMI UVAI, (b) TROPOMI AOT and (c) GOME-2 LER for the oxygen A-band used for the TROPOMI

retrievals for cases over land (with a minimum surface albedo of 0.1). The colors represent density of plots. The y

axis is optimised for each plot. The data is �ltered in the same fashion as in Figure 5.2, with data over the ocean

and land combined for plots (a) and (b), and data only over land for plot (c).

deviation of 1.97 km. More than 50% of the TROPOMI ALH retrievals over the ocean have

an absolute di�erence with ALHext less than 1.0 km. Retrievals over land are have a larger

di�erence, with -2.41 km on average and a median of -1.75 km. The results are very skewed

over land, with very large negative values dictating the average — this is indicated by the

very large standard deviation of 3.56 km. 50% of the selected colocations over land have an

absolute di�erence with ALHext less than approximately 1.8 km.

The distribution of the di�erences between TROPOMI ALH and CALIOP ALHext as a

function of the retrieved UVAI (Figure 5.3a) shows that for most cases, the UVAI is below

2.0. The spread of the di�erences in this UVAI regime is large, which reduces as the UVAI

increases. The di�erences seem to be less often positive as the UVAI increases; if compared

with the behaviour observed between Figure 5.2a and Figure 5.2b where a majority of

the positive di�erences vanish once the data is cloud screened, such a behaviour could

be related to clouds. The distribution of the di�erences as a function of retrieved AOT in

Figure 5.3b show that the majority of the colocations have AOT values between 0 and 2.

Finally, the distribution of these di�erences as a function of the GOME-2 LER values used

for the retrievals for cases over land show that the retrievals tend to have a lower di�erence

as the LER value increases — this could be a consequence of the fact that so few retrievals

converge in high LER regimes that, unless the aerosol layer has a signi�cant contribution

to the measured top of atmosphere radiance in comparison to the surface, the retrievals

tend to fail.

Retrieved ALH over land (if successful) can be closer to the surface than where the

aerosol layer actually is situated vertically. The TROPOMI ALH product, unlike the CALIOP

ALHext which only considers aerosol signatures in the recorded backscatter pro�le, is also

in�uenced by the presence of undetected clouds. These are some of the several possible
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Figure 5.4: A map of cloud �ltered and sun glint �ltered di�erences between colocated TROPOMI ALH and

CALIOP ALHext considered for Figure 5.2b.
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sources of departures between the observations of CALIOP and TROPOMI over the same

scene. In the next section, the comparison between TROPOMI ALH and CALIOP ALHext
is extended for a few selected scenes.

5.3.2 Analysis of selected cases
Selected cases
The analysis presented in the previous section alone is insu�cient to fully quantify the

quality of the retrieved TROPOMI ALHs, due to the manner in which clouds are handled

by both aerosol heights; TROPOMI pixels are a�ected by the presence of undetected clouds

whereas CALIOP aerosol extinction pro�les do not consider clouds. Another signi�cant

source of departure between TROPOMI and CALIOP is their di�ering sensing principles.

Making conclusions on the quality of the current TROPOMI ALH product requires case-

by-case studies of selected scenes. In line with this, four cases are selected to represent a

very good mix of scenes containing elevated aerosol layers as well as aerosol layers close

to the surface, high and low UV absorbing index, clear and cloudy scenes, clouds over and

below aerosol layers, multiple aerosol layers, and retrievals over land and the ocean.

The cases selected are Saharan desert dust and biomass burning events, three o� the

west coast of Sahara (desert dust) in June 2018 and one o� the South Saharan coast (biomass

burning) in December 2018. All four cases have very good colocations between TROPOMI

and CALIOP, with the CALIOP ground track over the aerosol plumes (plotted with a yellow

line over the VIIRS images in Figure 5.5 (1
st

column). The operational ALH level-2 algorithm

operates on pixels falling within the sun-glint regime, however they are excluded from

the analyses presented in this chapter. The retrieved UV absorbing index (UVAI) from the

operational level-2 UVAI product gives an idea about the shape of the aerosol plumes in all

these cases (Figure 5.5 (2
nd

column)). The UVAI is in�uenced by many factors including the

height of the aerosol layer, with lower UVAI values for aerosol layers closer to the surface.

Cases a and b contain several pixels with UVAI values greater than 3.0, whereas a majority

of the TROPOMI pixels in cases c and d have TROPOMI UVAI values between 0.0 and 2.0.

A signi�cant majority of successful the retrievals in these selected scenes are over a dark

surface, owing to the bright surface albedo of the Saharan desert. The reader is pointed

to Gri�n et al. [3] for comparison of the TROPOMI ALH retrievals over land for biomass

burning aerosol plumes with the same from several other instruments including CALIOP.

It is important to note that spaceborne lidars, while having the advantage of being

able to map more than one vertical layer in the atmosphere, su�er from attenuation of the

signal in the presence of strongly backscattering species such as clouds or aerosols with

a large optical depth. In the presence of a primary strongly backscattering aerosol layer,

the attenuation of the signal may lead to undetected secondary aerosol layers beneath the

primary layer. These layers, not apparent in the CALIOP curtain plots of the measured

attenuated backscatter pro�les, may be detected by the level 2 aerosol extinction pro�le

product from the CALIOP mission, using the formula described in Equation 5.2. Some of

these discussed situations are observed in the CALIOP curtain plots of the selected cases

in Figure 5.6, especially for cases a and b, where the attenuated signal does not detect

possibly lower aerosol or cloud layers, and in case d where the attenuation of the signal

due to a thick aerosol plume can hide the surface from the received backscatter signal.

TROPOMI, on the other hand, will tend to report an ALH between these two layers as it
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Figure 5.5: 1st column: Corrected re�ectance for the four selected cases as measured by the Suomi NPP/VIIRS

imager. The yellow line represents the CALIOP ground track. 2nd column: The TROPOMI level-2 UV Absorbing

Index product. The black line passing through the TROPOMI level-2 retrievals on this plot represents the ground

track of the CALIPSO mission. 3rd column: Retrieved aerosol optical thickness from TROPOMI. 4th column:
Operational TROPOMI ALH.
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will be in�uenced by photons scattered back from both layers.

Analysis
The retrieved TROPOMI ALH in Figure 5.5 (4

th
column) represent successful retrievals for

each of the selected cases. Beyond the sun glint warning, the cloud_warning �ag in Table

5.1 is applied to remove possibly cloud contaminated data. The retrieved aerosol optical

thickness (AOT), which is a part of the state vector, for each of the scenes are plotted over

the VIIRS image of the scene in Figure 5.5 (3
rd

column). The retrieved AOT (�aer) can act

as a diagnostic tool to indicate the in�uence of the surface (over bright surfaces) or the

presence of undetected clouds (both over bright and dark surfaces) — in these cases, the

retrieved AOT of the scene can be uncharacteristically high with values much greater than

3.0. All retrieved TROPOMI AOT values beyond 5.0 are discarded as the neural network

forward models are trained with AOT values less than or equal to 5.0.

A visual inspection of the �gures in Figure 5.5 shows that the retrieved UVAI, AOT

and ALH need not be spatially correlated, as they are separate properties of the observed

aerosol plumes — for instance, if the retrieved UVAI and AOT are low (case c), the retrieved

ALH need not necessarily be low. An inspection of the plots of the retrieved AOT for cases

c (between latitudes 10
◦

and 15
◦

and longitude -20
◦
) and d reveal square structures, both

over the ocean and land. These square shaped spatial artefacts are the surface albedo grids

derived from the database provided by Tilstra et al. [13], which is the current source for

surface re�ectance in the ALH retrieval algorithm. In cases such as case c, the retrieved

AOT contains surface information in�uenced by the assumed albedo in the database. These

spatial features are not as apparent in cases a and b (Figure 5.5, 1
st

and 2
nd

rows) as a

majority of the signal in the measured top of atmosphere radiances come from aerosols

and the minority from the surface. Another major observation is the lack of retrievals

over the desert. This is within expectation, as measurements of the top of atmosphere

radiances over a cloud-free desert scene tend to contain more photons scattered back from

the surface than the aerosol layer. As a result, retrievals over bright scenes are sensitive to

the assumed errors in the surface albedo, thereby reducing sensitivity to the assumed ALH

(Sanders et al. [12], Section 2, Figure 2).

While scenes not contaminated with clouds show a smooth spatial distribution of the

retrieved ALH, the presence of clouds may or may not add spatial variability in the ALH

product. For instance, the the presence of low clouds are clear in case b (Figure 5.5b)

beyond latitude 21.0
◦
, but the retrieved ALH is spatially homogeneous with values less

than 1.0 km. For each of the selected cases, colocated CALIOP pro�les in Figure 5.6 give

additional information about the scene. The CALIOP curtain plot for case b reveals the

in�uence of low clouds as well as high clouds on the cloud-screened ALH. An example

of cloud-contaminated heterogeneous vertical distribution of TROPOMI ALH in Figure

5.6a can be observed between latitudes 9.5
◦

and 11.0
◦
. The cloud �ltering following the

cloud_warning �ag in Table 5.1 does not detect these low clouds (for instance above latitude

21.50
◦
, see Figure 5.6 a, b). These are manually for comparison further on.

From Figure 5.2b, TROPOMI retrievals of ALH over bright surfaces are expected to di�er

from CALIOP ALHext, wherein the TROPOMI ALH product may report ALH estimates

closer to the surface than CALIOP will. This is observed in case d (Figure 5.5, bottom

row), wherein the CALIOP curtain plot for (Figure 5.6d) indicates that the plume is close to
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Figure 5.6: CALIOP level-1 backscatter curtain plots for measurements in the 532 nm channel for the four selected

cases in Figure 5.5. The blue markers (crosses over a white box) represent co-located TROPOMI ALH retrievals

within 100 km of each CALIOP pro�le present in this plot. The black markers (crosses over a white box) represent

the CALIOP weight aerosol heights as computed using Equation 5.2. TROPOMI data that are either in sun-glint

region or cloud contaminated are removed (cloud detection is done using the cloud_warning �ag from Table 5.1).
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the surface, with a maximum height less than 3 km; TROPOMI ALH for biomass burning

aerosol plume that extends from land to the ocean is slightly closer to the surface in the case

of land when compared to CALIOP ALHext, whereas over the ocean both height estimates

more or less are in agreement.

For cases a and b, retrieved TROPOMI ALH does not seem to coincide with large values

of the received backscatter signal in the level-1 data, whereas it does for case c, and to a

certain extent for case d (over land it tends to be closer to the surface). Parts of the CALIOP

curtain plots for cases a, b and c suggest that a possible second layer beneath the layer

that is visually obvious, or that the desert dust layer extends deeper to the surface and the

CALIOP signal is simply too attenuated to detect it.

A direct comparison of the CALIOP ALHext and TROPOMI ALH for these four selected

cases are presented in Figure 5.7. For this comparison, every cloud-�ltered and sun-glint-

�ltered TROPOMI pixel with ALH information colocated to a speci�c CALIOP level-2

aerosol extinction pro�le in Figure 5.6 is averaged and a standard deviation is also computed.

These averaged TROPOMI ALH are then compared to the CALIOP ALHext, and show

that TROPOMI ALH di�er from CALIOP ALHext by 0.53 km, with a pearson correlation

coe�cient of 0.64 and a slope of 1.0; CALIOP ALHext are systematically higher than

TROPOMI ALH (indicated by a y-intercept of the �t at 0.53 km). The CALIOP ALHext is

also higher than TROPOMI ALH almost consistently in most cases. This could possibly

be due to CALIOP possibly underestimating the aerosol layer thickness due to strong

attenuation of the lidar signal at the top of the aerosol layer Rajapakshe et al. [9], whereas

TROPOMI ALH product does not su�er from such attenuation.
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Figure 5.7: Comparison between the CALIOP weighted extinction heights (y-axis) calculated using Equation

5.2 and plotted in Figure 5.6, against averaged TROPOMI ALH (x-axis). The blue lines represent the standard

deviation of the TROPOMI heights in the averaging pool, and the markers represent the mean TROPOMI ALH

for each CALIOP ALHext. The dashed black line marks the �t between CALIOP ALHext and TROPOMI ALH. The

solid black line is a neutral line between the x and the y axes. The legend in the bottom right corner describes the

di�erent markers used for the di�erent cases.
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5.4 Discussion and conclusion
This chapter discusses the quality of the soon to be released TROPOMI ALH product by

comparing it with CALIOP data of colocated measurements of scenes containing aerosols

between the two instruments. In order to do so, CALIOP weighted extinction heights from

the 532 nm channel were calculated following Equation 5.2, and then directly compared

to TROPOMI ALH. Further on, four individual cases of Saharan desert dust and biomass

burning aerosol events in 2018 were selected for a deeper analysis of the product’s quality.

From the analysis presented in this chapter, TROPOMI’s neural network ALH retrieval

algorithm retrieves ALH values that compare well with CALIOP weighted extinction

heights in cloud-screened cases following the cloud screening strategy using the TROPOMI

ALH level-2 processing quality �ags discussed in Table 5.1. For more than 1 million

colocations between CALIOP and TROPOMI over the ocean, the TROPOMI ALH di�ers

from CALIOP ALHext on average by approximately -1 km and -0.76 km median, with the

TROPOMI ALH values being lower than the CALIOP ALHext. Over land, the same values

are -2.41 km on average and -1.75 km as the median. To get a better understanding of

the di�erences between TROPOMI and CALIOP retrieved aerosol heights, this chapter

compared the ALH for selected cases among the more 1 million colocations that were

better understood. The four selected scenes were chosen around the West Saharan region,

where a majority of the TROPOMI-CALIOP colocations were found. For the selected cases,

largely over the ocean within a portion of the data over land, the averaged retrieved ALH

from TROPOMI di�ered from CALIOP ALHext by 0.53 km, with CALIOP ALHext being

higher than TROPOMI ALH. These numbers are indicative that TROPOMI ALH performs

well, especially considering the many simpli�cations made by the retrieval algorithm in

order to optimise on the computational speed; future improvements to the forward model

may only improve the product further on.

There is a clear distinction between TROPOMI ALH retrievals over land and the ocean

as photons scattering back from bright surfaces tend to in�uence ALH estimates closer

towards the surface than an elevated aerosol layer. Retrieved ALH over land, if successful,

can to be closer to the surface if measured signal in the top of atmosphere contains

more photons scattered back from the deepest atmospheric layer which is the surface,

in comparison to elevated aerosol layers which are higher up in the atmosphere. This,

however can change depending on the amount of aerosol information available in the

spectrum compared to same from the surface. Any attempt in retrieving ALH over the

desert generally fail, with very few exceptions. There are several challenges, that will need

further development.

The TROPOMI level-2 UVAI product is currently an ingredient in selecting pixels

containing aerosols for retrieving ALH. While this choice works quite well for cloud free

scenarios, it does not do a great job when a scene that contains both aerosols and clouds.

These cloudy scenes seem to not be detected by the current cloud �ltering schematic in

the level-2 algorithm, and will require a signi�cant update in deciding whether a pixel is

cloudy or not. For cases scenes with a low aerosol load, square shaped artefacts resulting

from a surface albedo database with a resolution signi�cantly lower than TROPOMI exist.

Currently, the GOME-2 surface LER product derived from Tilstra et al. [13] is used opera-

tionally, and will eventually need to be updated with a higher resolution version possibly

derived from TROPOMI itself. To that extent, owing to the boost in the computational speed
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of the radiative transfer calculations, the algorithm can now incorporate more complex

aerosol property and pro�le parameterizations. Such a step will bene�t the TROPOMI ALH

retrieval accuracy signi�cantly.

Finally, space based lidars such as the CALIOP instrument on board the CALIPSO

mission are a very good source of aerosol vertical information to validate the TROPOMI

ALH product. While the CALIOP level-1 backscatter pro�les may be attenuated in cases

of very strong signals from the top of the aerosol layer, the weighted extinction heights

in conjunction with the backscatter pro�les are su�cient for validation activities. These

CALIOP pro�les will be very important in assessing the impact of future development

activities of the TROPOMI ALH product.
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6
Conclusions and outlook

This dissertation presents the algorithmic improvements implemented in the KNMI aerosol

layer height retrieval algorithm, which now allow it to be operationally feasible for the

current Sentinel-5 Precursor satellite mission and future Sentinel-4 and Sentinel-5 missions.

The suggested improvements are focused on the identi�ed challenges for retrieving aerosol

layer height from measurements of the top of atmosphere re�ectance in the oxygen A-band

using satellite sensors, namely

• The retrieval of aerosols over land is challenging, as the aerosols generally have a

signi�cantly lower contribution to the top of atmosphere re�ectance in the oxygen

A-band in comparison to the land, and

• Due to the density of oxygen absorption lines in the A-band, computing the top of

atmosphere re�ectance in the A-band requires calculations for many wavelengths,

which slows down the retrieval of aerosol properties if done using line-by-line

radiative transfer models.

The options presented in this study were tested with both synthetic (Sentinel-5 Pre-

cursor and Sentinel 4) and real (GOME-2 and Sentinel-5 Precursor) satellite data. The key

�ndings and take-home messages from this study are summarised in the following section.

6.1 Summary

Photons scattering frombright surfaces reduce the available information on aerosols
in the top of atmosphere re�ectance measured by satellite instruments; this one
of the primary causes of errors in retrieved aerosol properties from oxygen A-
band measurements over land. There is an anti-correlative behavior between the sur-

face and aerosol contributions in the top of atmosphere re�ectance in the oxygen A-band.

Over optically dark surfaces such as the ocean, aerosols are relatively bright, and there-

fore dominate the top-of-atmosphere signal for cloud free scenes. As the surface gets

brighter, the relative contribution of the aerosols decreases. For bright surfaces, such as
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deserts, the surface contribution dominates the signal. There are several implications of

this phenomenon:

• With an increase in surface contribution to the top of atmosphere re�ectance, the

gradient of the cost function becomes increasingly shallow. The reduction in cost

function ‘steepness’ can be seen in cases when the viewing angle is zero (nadir

viewing), since the surface contribution will be larger as the photon path length is

the smallest (less scattering of photons in this geometry).

• With increasing viewing zenith angle and increasing aerosol optical thickness over

bright surfaces, sensitivity studies show the presence of multiple minima in the cost

function. This is not present over darker surfaces such as the ocean.

• As the surface contribution increases, parts of the oxygen A-band that contain a

signi�cant portion of the aerosol vertical information start to lose sensitivity to

aerosol layer height. This results in larger uncertainties in the retrieved aerosol

vertical information.

• The increase in surface contribution increases the sensitivity of the model to errors in

the assumed model parameters. Variables which did not a�ect the retrieved aerosol

layer height over darker scenes now cause larger errors over optically bright surfaces.

Errors in the assumed surface albedo are more apparent in the retrieved product. In

general, for high surface albedo, the retrieved aerosol layer height is biased closer to

the surface, if the retrieval converges at all.

Although not explicitly mentioned in Chapter 2 of this dissertation, the consequence

of an incorrectly assumed surface albedo can be observed even over dark surfaces such as

the ocean. For instance in Chapter 5 Figure 5.5, square shaped artefacts with pixel sizes

the same as the surface albedo database used in the radiative transfer calculations can

be observed over the ocean for areas with little aerosols. These surface albedo database

artefacts disappear as the aerosol contributions in the scene increase, which is one way to

highlight the fact that the surface contributions are relevant when the aerosol contributions

are low.

The errors due to surface contributions can be reduced to a certain extent by scal-
ing the signal to noise ratio of the measured signal in the retrieval process. This

is done by exploiting the mechanism of the measurement error covariance matrix, which

ranks spectral points with the highest signal to noise ratio (SNR) higher than the ones

with lower signal to noise ratios. In the oxygen A-band, parts of the spectrum that have a

lower oxygen absorption cross section have more surface contribution: which is low as the

albedo is low, and high when the surface brightness increases. However, the measurements

with a high surface albedo contribution, are also the parts of the oxygen A-band spectrum

with lesser information on aerosol layer height. To retrieve aerosol layer height over bright

surfaces, the SNR is scaled dynamically using the derivatives of the top of atmospheric

re�ectance spectra with respect to aerosol optical thickness, aerosol layer height and the

surface albedo. This scaling changes with di�erent aerosol optical thickness and surface

brightness, and assigns a higher noise value to parts of the spectrum with photons that are
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less absorbed by the oxygen molecule. This scaling of the SNR results in an improvement

in the retrieved aerosol product, with a signi�cant improvement in the biases in the re-

trieved aerosol layer height over bright surfaces in comparison to the original non-scaling

approach. In 2000 synthetic case studies, the dynamic scaling method showed an increase

in converged retrievals from 89% to 92%, and a reduction in biases for 86% of the cases. The

method applied to real retrievals also shows an increase in the number of convergences in

comparison to the original method.

Neural networks learn and replicate the line-by-line radiative transfer calcula-
tions of the top of atmosphere re�ectance as well as its derivatives with respect
to aerosol optical thickness and aerosol layer height within acceptable error mar-
gins, and improve computational speeds bymore than three orders of magnitude.
Neural networks are known to be universal function approximators, which is an excellent

use case for replacing line-by-line calculations in the operational processors of satellite

missions. In this case, neural networks trained on 500,000 spectra generated by line-by-line

radiative transfer calculations were shown to retrieve aerosol layer heights well within

50 m (or, 50 hPa) compared to retrievals with the line-by-line radiative transfer model on

the same spectra, both using an optimal estimation setup. This ensures that the retrieved

product has error estimates that can be used by assimilation models. The neural network

model improves feasibility of the aerosol layer height retrieval algorithm in an operational

environment, which previously was hindered by the slow nature of line-by-line calculations.

Applied to real retrievals, the neural network radiative transfer model compared well with

the line-by-line counterpart, with average di�erences below 40 m and a standard deviation

of approximately 150 m. The retrievals from both methods were the most di�erent for low

AAI values (less than 2.0) with large di�erences up to 500 meters, reducing signi�cantly as

the AAI increased.

The neural network model was later incorporated into the Sentinel-5 Precursor’s

operational level-2 processor, and now processes a signi�cant amount of data on a daily

basis. The study presented in Chapters 4 and 5 have shown that trained neural networks

can be used as a good proxy for a full physics radiative transfer model such as DISAMAR.

The TROPOMI retrieved aerosol layer heights compared with aerosol extinction heights

derived from the CALIOP instrument for selected cases using 800 colocations do show

good agreement: a di�erence of 530 m on average, signalling that the TROPOMI level-2

operational processor is performing well on aerosol retrieval within the limitations of

the measurement technique. But at the same time there are several challenges that these

colocation studies have also identi�ed. For instance, for more than 1.5 million colocations

between CALIOP and TROPOMI, the TROPOMI aerosol layer height product is, in general,

lower than the aerosol extinction heights from CALIOP — this could very well be due to

the di�ering sensing principles of CALIOP and TROPOMI. The two instruments also using

di�erent wavelengths of light, which has di�erent sensitivities to aerosols. The di�erences

were on average approximately 1 km (0.7 km median) for pixels over the ocean, and more

than 2 km (1.75 km median) for pixels over land, clearly indicating that retrieval sensitivities

over land and ocean di�er. The processor currently does not include the proposed dynamic

scaling method. When it is introduced in the operational processor in the future, it will

help in reducing the error caused by surface contributions signi�cantly.
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6.2 Outlook
The operational aerosol layer height algorithm developed in the period of this dissertation

has the potential for further improvements. The various avenues of improvement are

highlighted as follows.

Retrieving aerosol information over land from the oxygen B-band. Retrieving

aerosol properties over land from the oxygen A-band is challenging because of its position

beyond the red edge. Land is signi�cantly brighter in this wavelength range as the amount

of photosynthetically active radiation reduces drastically from 700 nm and up (red edge),

and vegetation becomes increasingly brighter. In wavelengths beyond this edge, retrievals

with acceptable accuracy are only possible when there is su�cient aerosol information

in the top of atmosphere re�ectance spectra. An alternative, or a complimentary, is the

oxygen B-band which lies before the red edge.

In the B-band, land appears dark: almost as dark as the ocean (except for deserts and

snow/ice). Although the absorption lines are not as deep as the A-band, there is su�cient

aerosol vertical information for retrieval algorithms [3]. Work by Xu et al. [4] has shown

this to be feasible. Combining the two seems to be the way forward, as Chen et al. [1]

suggest. They have retrieved aerosol heights using both A and B bands together, and report

a signi�cant improvement over retrieved aerosol heights using the oxygen A-band alone.

This can be operationalised into the TROPOMI level-2 processor to replace the existing

oxygen A-band aerosol layer height retrieval algorithm. This, however, is only limited to

TROPOMI thus far, and will need more work to improve retrieval results for Sentinel-4.

Incorporatingmore parameters into the forwardmodel. Having established that

neural networks can be trained to learn the calculations of a radiative transfer model, there

are more avenues of research to determine the extent of its capabilities. The goal of the

neural network study in this dissertation was to replicate a forward model that was limited

by operational constraints of computational time — several parameters in the model were

simpli�ed or assumed in order to reduce the number of calculations. Now, the DISAMAR

forward model could potentially be expanded to include more complex model parameters

such as a the Mie aerosol scattering model or a surface re�ectance model. The calculation

times required by DISAMAR are irrelevant, as it is the neural network model that will be

running the calculations operationally and not the forward model.

Moving from a simplistic aerosol pro�le to a one that is more representative
of reality. One of the model parameters that will eventually need an update is the aerosol

vertical representation. The current aerosol model is unrealistic — aerosols are not always

50 hPa thick, or are uniformly distributed into a single layer. Expanding DISAMAR to

include an aerosol vertical pro�le will one day be necessary to retrieve aerosol pro�les

from oxygen absorption bands. This may involve more calculations by DISAMAR, which

can slow down the retrieval algorithm even more. Here, neural network implementation

presented in this thesis can help learn the new and improved radiative transfer model with

aerosol pro�les.

Cloud �ltering usingmachine learning techniques Clouds are the most important

disturbance for aerosol information retrieval as well as the aerosol layer height algorithm
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described in this dissertation or any other aerosol retrieval algorithm. The most commonly

used strategy is to use data from multiple sensors in order to remove cloudy pixels, and only

apply the aerosol retrieval algorithm on cloud-free pixels. In the case of solar backscatter

instrumentation like TROPOMI this can lead to false positive classi�cations, and result in

removing pixels with very thick aerosol plumes. Here, machine learning algorithms can

play an important role in cloud-screening. There are two ways to do this — train learning

algorithms that either identify if a pixel contains clouds (using input data of cloudy scenes),

or train models that identify whether the pixel contains cloud-free scenes (using input data

of cloud-free scenes). In the former, we �lter out detected pixels and in the latter we only

process detected pixels. Research on this topic will lead to a more reliable level-2 aerosol

layer height product from Earth Observation missions.

Exploiting multiple viewing geometries from the hourly Sentinel-4 observa-
tions. The Sentinel-4 mission is geostationary, which allows multiple measurements of a

single scene over the course of a day. In the case of Sentinel-4, an hourly granularity in the

measured signal can be expected. One of the disadvantages is the changing solar-satellite

geometry, which will need a surface re�ectance model (such as a bidirectional re�ectance

distribution function) that calculates surface re�ectance as a function of the geometries.

Multiple geometries can provide multiple observations of the same scene, provided the

aerosols in the scene are spatio-temporally stable. These multiple observations may be

used to infer more aerosol properties and/or improve the accuracy as compared to a single

measurement. Such methods already have a heritage in existing satellite missions such as

MISR [2], which could be a starting point for Sentinel-4.
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