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Fast inverse nonlinear Fourier transform

V. Vaibhav*

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2. 2628 CD Delft, The Netherlands

(Received 8 May 2018; published 20 July 2018)

This paper considers the non-Hermitian Zakharov-Shabat scattering problem which forms the basis for
defining the SU(2)-nonlinear Fourier transform (NFT). The theoretical underpinnings of this generalization
of the conventional Fourier transform is quite well established in the Ablowitz-Kaup-Newell-Segur formalism;
however, efficient numerical algorithms that could be employed in practical applications are still unavailable. In
this paper, we present two fast inverse NFT algorithms with O(KN + N log2 N ) complexity and a convergence
rate of O(N−2), where N is the number of samples of the signal and K is the number of eigenvalues. These
algorithms are realized using a new fast layer-peeling (LP) scheme [O(N log2 N )] together with a new fast
Darboux transformation (FDT) algorithm [O(KN + N log2 N )] previously developed by V. Vaibhav [Phys. Rev.
E 96, 063302 (2017)]. The proposed fast inverse NFT algorithm proceeds in two steps: The first step involves
computing the radiative part of the potential using the fast LP scheme for which the input is synthesized under
the assumption that the radiative potential is nonlinearly bandlimited, i.e., the continuous spectrum has a compact
support. The second step involves addition of bound states using the FDT algorithm. Finally, the performance of
these algorithms is demonstrated through exhaustive numerical tests.

DOI: 10.1103/PhysRevE.98.013304

I. INTRODUCTION

The nonlinear Fourier (NF) spectrum offers a novel way
of encoding information in optical pulses where the nonlinear
effects are adequately taken into account as opposed to being
treated as a source of distortion. This idea has its origin in
the work of Hasegawa and Nyu [1], who were the first to
propose the use of discrete eigenvalues of the NF spectrum
for encoding information. Recent advances in coherent optical
communication have made it possible to reconsider this old

idea with some extensions and improvements. Extension of this
scheme consists in using additional degrees of freedom offered
by the NF spectrum such as the norming constants and the
continuous spectrum. For an overview of the recent progress
in theoretical as well as experimental aspects of various optical
communication methodologies that are based on the nonlinear
Fourier transform (NFT), we refer the reader to the review
article [2] and the references therein.

In order to realize any NFT-based modulation methodology,
it is imperative to have a suitable low-complexity inverse NFT
algorithm which forms the primary motivation behind this
work. The central idea is to use a fast version of the well-
known layer-peeling (LP) algorithm within the framework of
an appropriate discretization scheme applied to the Zakharov-
Shabat (ZS) problem. This approach has been characterized as
the differential approach by Bruckstein et al. [4,5] where fast
realizations of the LP algorithm which achieves a complexity
of O (N log2 N ) for N samples of the reflection data are also
discussed. However, the earliest work on fast LP is that of
McClary [6] which appeared in the geophysics literature. More
recently, this method has been adopted by Brenne and Skaar

*vishal.vaibhav@gmail.com

[7] in the design of grating-assisted codirectional couplers.
However, this paper reports a complexity of O (N2).1 It is in-
teresting to note that, at the heart of it, all of the aforementioned
versions of LP are similar; however, the manner in which the
discrete system is obtained seem to vary. In this work, we
consider the discrete system obtained as a result of applying
(exponential) trapezoidal rule to the ZS problem as discussed
in Ref. [3].

The next important idea is to recognize that the Darboux
transformation (DT) provides a promising route to the most
general inverse NFT algorithm.2 A fast version of DT (referred
to as FDT) is developed in Ref. [3], which is based on the
pioneering work of Lubich on convolution quadrature [8] and
a fast LP algorithm. The schematic of the fast inverse NFT is
shown in Fig. 1, where we note that FDT is capable of taking
a seed potential qR (t ) and augmenting it by introducing the
bound states corresponding to SK (the discrete spectrum to
be introduced in Sec. II and K is the number of bound states
or eigenvalues). If qR (t ) is the radiative part of q(t ), i.e., it
is generated from NF spectrum which has an empty discrete
spectrum and ρR (ξ ) as the reflection coefficient, then q(t ) is
the full inverse of the NF spectrum characterized by SK and
ρ(ξ ). The preliminary results of this approach were reported

1In this paper, we do not consider the method of discretization
presented in Ref. [7]; however, let us briefly mention that on account of
the piecewise constant assumption used in this work for the scattering
potential, the order of convergence gets artificially restricted to
O (N−1). This problem has been remedied in Ref. [3] where this
discretization scheme is termed as the split-Magnus method.

2The possibility of devising an inverse NFT algorithm without
resorting to any variant of the Darboux transformation will be
explored in a future publication.
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FIG. 1. The figure shows a schematic of the fast inverse NFT
(INFT) algorithm where the dashed line depicts the missing part of
the algorithm to be discussed in this article (the FDT algorithm has
been reported in Ref. [3]). Here, qR (t ) refers to the “radiative” part
of the signal q(t ) which is obtained as a result of removing the bound
states. Note that qR (t ) has the reflection coefficient ρR (ξ ) [see Sec. II
for the connection between ρR (ξ ) and ρ(ξ )].

in Ref. [9]. Further, we restrict ourselves to the special case
of compactly supported reflection coefficient which means
ρR (ξ ), and in turn ρ(ξ ) has a compact support in R. The
radiative potential corresponding to ρR (ξ ) can be described as
a nonlinearly bandlimited signal in analogy with bandlimited
signals in the conventional Fourier analysis. It must be noted
that nonlinearly bandlimited signals are bandlimited only in the
weak signal limit. Other classes of signals will be considered
in a forthcoming paper. Let us also remark here that if ρR (ξ )
decays sufficiently fast, it can be effectively regarded as
compactly supported and the methods presented in this paper
can be readily applied to such cases.

For the class of signals described above, we present two
fast inverse NFT algorithms3 that exhibit a complexity of
O (KN + N log2 N ) and a rate of convergence of O (N−2),
where N is the number of samples and K is the number of
eigenvalues (or bound states). Note that, as discussed earlier
in this section, various LP algorithms exist in the literature
and they can, in principle, provide a framework for the fast
inverse NFT; however, it is not obvious at the outset if the
overall rate of convergence will turn out to be of O (N−2).
Therefore, we restrict ourselves to the discrete system based
on the trapezoidal rule. Admittedly, any method that constructs
the radiative part of the original potential such that it is
compatible with FDT [3] yields an inverse NFT algorithm
together with FDT. It is possible that a “hybrid” scheme based
on an algorithm (for the radiative part) that has higher order
of convergence than that of FDT may provide a superior
alternative in terms of accuracy (disregarding the possible
impact on the complexity for the moment); however, the
aforementioned higher-order algorithms do not exist as of now.

Finally, we note that the LP algorithm (irrespective of the
underlying discrete system) has the reputation of being ill
conditioned or unstable in the presence of noise [14,15] in the
reflection coefficient. For optical communication, this obser-
vation is important but not critical as the reflection coefficient

3Most of the earlier work on inverse NFT focuses on special cases
such as purely continuous [4–7,10–12] or purely discrete nonlinear
Fourier spectrum [3,13]. For the sake of brevity of presentation, we
do not attempt to review these special cases here (see Ref. [2]).

is known exactly at the stage of encoding of information at the
transmitter end. A more relevant question here, therefore, is the
stability of the algorithm in the presence of round-off errors.
We provide exhaustive numerical tests in order to understand
the ill-conditioning effects; however, no theoretical results for
stability are provided.

This paper is organized as follows: Section II discusses
the basic theory of scattering. Sec. III introduces the discrete
framework for forward and inverse scattering, which admits
of the layer-peeling property. This section also introduces a
recipe for computing a class of signals dubbed the nonlinearly
bandlimited signals. Finally, the inverse NFT is described in
Sec. III C and the numerical results are presented in Sec. IV.
Section V concludes this paper.

In this paper we use the following notation. The set of
nonzero positive real numbers (R) is denoted by R+. Nonzero
positive (negative) integers are denoted by Z+ (Z−). For any
complex number ζ , Re(ζ ) and Im(ζ ) refer to the real and the
imaginary parts of ζ , respectively. Its complex conjugate is
denoted by ζ ∗. The upper half (lower half) of complex plane
C is denoted by C+ (C−).

II. THE AKNS SYSTEM

The NFT of any complex-valued signal q(t ) is introduced
via the associated ZS scattering problem [16], which can be
stated as follows: Let ζ ∈ R and v = (v1, v2)ᵀ ∈ C2, then

vt = −iζσ3v + Uv, (1)

where σ3 = diag(1,−1) and the matrix elements of U are
U11 = U22 = 0 and U12 = q(t ) = −U ∗

21 = −r∗(t ). Here q(t )
is identified as the scattering potential. The solution of the
scattering problem (1), henceforth referred to as the ZS prob-
lem, consists in finding the so-called scattering coefficients
which are defined through special solutions of (1) known as the
Jost solutions. The Jost solutions of the first kind, denoted by
ψ (t ; ζ ), has the asymptotic behavior ψ (t ; ζ )e−iζ t → (0, 1)ᵀ

as t → ∞. The Jost solutions of the second kind, denoted
by φ(t ; ζ ), has the asymptotic behavior φ(t ; ζ )eiζ t → (1, 0)ᵀ

as t → −∞. The so-called scattering coefficients, a(ζ ) and
b(ζ ), are obtained from the asymptotic behavior φ(t ; ζ ) →
(a(ζ )e−iζ t , b(ζ )eiζ t )ᵀ as t → ∞. The process of computing
these scattering coefficients will be referred to as forward
scattering.

In general, the nonlinear Fourier spectrum for the potential
q(t ) comprises a discrete and a continuous spectrum. The
discrete spectrum consists of the so-called eigenvalues ζk ∈
C+, such that a(ζk ) = 0 and the norming constants bk such
that φ(t ; ζk ) = bkψ (t ; ζk ). Note that (ζk, bk ) describes a bound
state or a solitonic state associated with the potential. For
convenience, let the discrete spectrum be denoted by the set

SK = {(ζk, bk ) ∈ C2| Im ζk > 0, k = 1, 2, . . . , K}. (2)

The continuous spectrum, also referred to as the reflection
coefficient, is defined by ρ(ξ ) = b(ξ )/a(ξ ) for ξ ∈ R. In
preparation for the discussion in the following sections, let
us define

aS (ζ ) =
K∏

k=1

(
ζ − ζk

ζ − ζ ∗
k

)
, (3)

013304-2
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and ρR (ξ ) = aS (ξ )ρ(ξ ). The reflection coefficient ρR (ξ ) now
corresponds to a purely radiative potential.

Next, let us note that the class of integrable nonlinear evo-
lution problems that can be treated by the methods proposed in
this article are those described by the Ablowitz-Kaup-Newell-
Segur formalism [17,18]. In optical fiber communication, the
propagation of optical field in a loss-less single mode fiber
under Kerr-type focusing nonlinearity is governed by the
nonlinear Schrödinger equation [19,20] which can be cast into
the following standard form:

i∂xq = ∂2
t q + 2|q|2q, (t, x) ∈ R × R+, (4)

where q(t, x) is a complex valued function associated with
the slowly varying envelope of the electric field, t is the
retarded time, and x is the position along the fiber. If the
potential evolves according to (4), then the scattering data
evolve as bk (x) = bke

−4iζ 2
k x and ρ(ξ, x) = ρ(ξ )e−4iξ 2x [a(ζ )

and, consequently, ζk do not evolve]. In the rest of the paper,
we suppress the dependence on x for the sake of brevity.

III. DISCRETE INVERSE SCATTERING

In order to discuss the discretization scheme, we take an
equispaced grid defined by tn = T1 + nh, n = 0, 1, . . . , N,

with tN = T2, where h is the grid spacing. Define �−, �+ ∈ R
such that h�− = −T1, h�+ = T2. Further, let us define z =
eiζh. For the potential functions supported in [T1, T2], we set
Qn = 2hq(tn), Rn = 2hr (tn). In the following, we summarize
the discrete framework reported in Ref. [3] which is based on
the trapezoidal rule of integration. Setting �n = 1 − QnRn,
the recurrence relation for the Jost solution reads as vn+1 =
z−1Mn+1(z2)vn, which is referred to as the discrete scattering
problem. Here Mn+1(z2) is known as the transfer matrix, which
is given by

Mn+1(z2) = z−1

�n+1

(
1 + z2Qn+1Rn z2Qn+1 + Qn

Rn+1 + z2Rn Rn+1Qn + z2

)
. (5)

Note that the transfer matrix approach introduced above is
analogous to that used to solve wave-propagation problems
in dielectric layered-media [21, chap. 1]. In particular, from
the factorization

vn+1 = 1

�n+1

(
1 Qn+1

Rn+1 1

)(
z−1 0

0 z

)(
1 Qn

Rn 1

)
vn,

it can be inferred that the continuous system in (1) is ap-
proximated by two instantaneous scatterers with “free-space”
propagation between them in each of the layers as shown in
Fig. 2. The error analysis of the discrete system presented above
is carried out in Ref. [3] where it is shown that the global order
of convergence is O (h2) for fixed ζ .

In order to express the discrete approximation to the Jost
solutions, let us define the vector-valued polynomial

Pn(z) =
[
P

(n)
1 (z)

P
(n)
2 (z)

]
=

n∑
k=0

P (n)
k zk =

n∑
k=0

[
P

(n)
1,k

P
(n)
2,k

]
zk. (6)

The Jost solution φ can be written in the form φn =
z�−z−n Pn(z2) with the initial condition given by φ0 =
z�− (1, 0)ᵀ that translate into P0 = (1, 0)ᵀ. The recurrence

relation for Pn(z2) takes the form

Pn+1(z2) = Mn+1(z2)Pn(z2). (7)

The discrete system discussed above facilitated the develop-
ment of a fast forward scattering algorithm in Ref. [3]. This
relied on the fact that the transfer matrices have polynomial
entries—a form that is amenable to fast Fourier transform
(FFT)-based fast polynomial arithmetic [22].

In the following sections, we provide details of the fast
inverse NFT algorithm by first developing the methods needed
for inversion of the continuous spectrum to compute what can
be viewed as a purely radiative potential. The general version
of the inverse NFT is then developed using the FDT algorithm
presented in Ref. [3].

A. The layer-peeling algorithm

Borrowing the terminology from the theory of layered
dielectric media [21, chap. 1], let the interval [tn, tn+1] cor-
respond to the (n + 1)-th layer, which is completely char-
acterized by the transfer matrix Mn+1(z2) (see Fig. 2). The
discrete forward scattering consists in “accumulating” all the
layers to form PN (z2). The problem of recovering the discrete
samples of the scattering potential from the discrete scattering
coefficients or PN (z2) is referred to as the discrete inverse
scattering which is facilitated by the LP algorithm. Starting
from the recurrence relation (7), one LP step consists in using
Pn+1(z2) to retrieve the samples of the potential needed to
compute the transfer matrix M̃n+1(z2) = z−2[Mn+1(z2)]−1 so
that the entire step can be repeated with Pn(z2) until all
the samples of the potential are recovered. The mathematical
details of this algorithm can be found in Ref. [3]. For the sake of
reader’s convenience, some of the main results are summarized
below.

Assume Q0 = 0. Then the recurrence relation (7) yields

P
(n+1)
1,0 = �−1

n+1

n∏
k=1

(
1 + QkRk

1 − QkRk

)
= �−1

n+1

n∏
k=1

(
2 − �k

�k

)
,

(8)
and P (n+1)

n+1 = 0. The last relationship follows from the assump-
tion Q0 = 0. For sufficiently small h, it is reasonable to assume
that 1 + QnRn > 0 so thatP (n)

1,0 > 0 (it also implies that |Qn| =
|Rn| < 1). The layer-peeling step consists in computing the
samples of the potential, Rn+1 and Rn (with Qn+1 = −R∗

n+1
and Qn = −R∗

n), as follows:

Rn+1 = P
(n+1)
2,0

P
(n+1)
1,0

, Rn = χ

1 +
√

1 + |χ |2 , (9)

where

χ =
[
P

(n+1)
2,1 − Rn+1P

(n+1)
1,1

][
P

(n+1)
1,0 − Qn+1P

(n+1)
2,0

] .
Note that P

(n+1)
1,0 �= 0 and P

(n+1)
1,0 − Qn+1P

(n+1)
2,0 �= 0. As ev-

ident from (5), the transfer matrix, Mn+1(z2), connecting
Pn(z2) and Pn+1(z2) is completely determined by these
relations.

If the steps of the LP algorithm are carried out sequentially,
then one ends up with a complexity of O (N2). It turns out
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FIG. 2. The figure depicts the equivalent layered-media for the discrete scattering problem in Sec. III. In each of the layers, the ZS problem
is approximated by two instantaneous scatterers and a “free-space” propagation between them.

that a fast implementation of this LP algorithm does exist [3],
which has a complexity ofO (N log2 N ) for the discrete system
considered in this article. In the following sections, we describe
how to synthesize the input for the LP algorithm in order to
compute the radiative part of the scattering potential.

B. Nonlinearly bandlimited signals

A signal is said to be nonlinearly bandlimited if it has an
empty discrete spectrum and a reflection coefficient ρ(ξ ) that
is compactly supported in R. This is a direct generalization
of the notion of bandlimited signals for conventional Fourier
transform. However, nonlinearly bandlimited signals are not
bandlimited, in general. Let us consider the reflection coeffi-
cient ρ(ξ ) as input. Let the support of ρ(ξ ) be contained in
[−�,�] so that its Fourier series representation is

ρ(ξ ) =
∑
k∈Z

ρke
ikπξ

� . (10)

If |ρk| is significant only for k � −n (n ∈ Z+), then ρ(ξ ) =∑∞
k=−n ρkz

2k + Rn(z2), where z = exp(iπξ/2�) and Rn de-
notes the remainder terms. Putting h = π/2� and T2 = nh ≡
h�+, we have exp(2iξT2) = z2n so that

ρ̆(ξ ) = ρ(ξ )z2n =
∞∑

k=0

ρ̆kz
2k + z2nRn(z2). (11)

Now, it follows that ρ̆k = 2hp̆(2hk) where

p̆(τ ) = F−1[ρ](τ ) = 1

2π

∫ �

−�

ρ̆(ξ )e−iξτ dξ. (12)

Let 2�0 be the fundamental period and � = m�0, where m ∈
Z+; then, h = π/2m�0 ≡ h0/m; therefore, h � h0. Now, if
we ignore the remainder term and truncate the series after N

terms in (11), the input to the fast LP algorithm can be

P
(N )
1 (z2) = 1, P

(N )
2 (z2) =

N−1∑
k=0

ρ̆kz
2k. (13)

This accomplishes the inversion of the reflection coefficient,
which is assumed to be compactly supported. Let ξj = j�ξ

for j = −M, . . . ,M − 1, where

�ξ = π

2Mh
.

Then the coefficients ρ̆k can be estimated using the Fourier
sum

2hkp̆(2hk) ≈ 1

2M

M−1∑
j=−M

ρ̆(ξj )e−i2hkξj

= 1

2M

M−1∑
j=−M

ρ̆(ξj )e−i
2πjk

2M ,

for k = 0, 1, . . . , N . The quantity M is chosen to be some
multiple of N , say, M = nos × N , where nos is referred to as
the oversampling factor. Therefore, the overall complexity of
synthesizing the input for the LP algorithm works out to be
O (N log N ).

Before we conclude this discussion, let us consider the
problem of estimation of T2. It is of interest to determine a
T2 such that the energy in the tail of the scattering potential,
which is to be neglected, is below a certain threshold, say,
ε. Fortunately, there is an interesting result due to Epstein
[23] that allows us to do exactly that. From the theory of
Gelfand-Levitan-Marchenko equations, it can be shown that
there exists a time T such that

E+(T ) =
∫ ∞

T

|q(t )|2dt � 2I2
2 (T )

[1 − I2
1 (T )]

, (14)

assuming I1(T ) < 1, where

Im(T ) =
[∫ ∞

2T

|p(−τ )|mdτ

]1/m

for m = 1, 2 (see Appendix B for a proof which, in essence, is
contained in the work of Epstein [23]). Let T = T (ε) be such
that

2I2
2 (T )

[1 − I2
1 (T )]

� ε, (15)

then E+(T ) � ε. Consequently, it suffices to choose T2 �
T (ε).

1. Alternative approach

It is possible to compute the polynomial approximation to
the scattering coefficients a(ξ ) and b(ξ ) using ρ(ξ ), which can
be then used to synthesize the input to the fast LP algorithm.
There is no apparent benefit of this approach compared to
the method described above; however, we describe it for the
sake of completeness. The first step consists of constructing a
polynomial approximation for a(ζ ) in |z| < 1 where z = eiζh

(under the assumption that no bound states are present). To this

013304-4
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end, let

ρ(ξ ) =
∑
k∈Z

ρkz
2k, z = eiξh. (16)

With a slight abuse of notation, let us denote this expansion
as ρ(z2). Let us note that in this case, a(ξ ) is not analytic
in R which means that it is also not analytic on the unit circle
|z| = 1. Here, the relation [17,18] |a(ξ )|2 + |b(ξ )|2 = 1 allows
us to set up a Riemann-Hilbert (RH) problem for a sectionally
analytic function,

g̃(z2) =
{

g(z2) |z| < 1,

−g∗(1/z∗2) |z| > 1,
(17)

such that the jump condition is given by

g̃(−)(z2) − g̃(+)(z2) = log

[ |ρ(z2)|2
1 + |ρ(z2)|2

]
, |z| = 1, (18)

where g̃(−)(z2) and g̃(+)(z2) denotes the boundary values
when approaching the unit circle from |z| < 1 and |z| > 1,
respectively. Let the jump function on the right-hand side of
(18) be denoted by f (z2) which can be expanded as a Fourier
series,

f (z2) =
∑
k∈Z

fkz
2k, |z| = 1. (19)

Now, the solution to the RH problem can be stated using the
Cauchy integral [22, chap. 14],

g̃(z2) = 1

2πi

∮
|w|=1

f (w)

z2 − w
dw. (20)

The function g(z2) analytic in |z| < 1 then works out to be

g(z2) =
∑

k∈Z+∪{0}
fkz

2k, |z| < 1. (21)

Finally, aN (z2) = {exp[g(z2)]}N with z = eiζh, where {·}N
denotes truncation after N terms. The implementation of the
procedure laid out above can be carried out using the FFT
algorithm, which involves computation of the coefficients fk

and the exponentiation in the last step [22, chap. 13]. Note
that, in the computation of g(z2), we discarded half of the
coefficients; therefore, in the numerical implementation it is
necessary to work with at least 2N number of samples of f (z2)
in order to obtain aN (z2), which is a polynomial of degree
N − 1.

The next step is to compute the polynomial approximation
for b̆(ξ ). To this end, consider

b̆(ξ ) = b(ξ )z2n =
[ ∞∑

k=0

ρ̆kz
2k + z2nRn(z2)

]
exp[g(z2)].

(22)
In the following, we will again discard the remainder term. The
polynomial approximation for b̆(ξ ) reads as

b̆N (z2) =
{

aN (z2)
N−1∑
k=0

ρ̆kz
2k

}
N

=
N−1∑
k=0

b̆kz
2k. (23)

Now, the input to the fast LP algorithm works out to be

P
(N )
1 (z2) =

N−1∑
k=0

akz
2k, P

(N )
2 (z2) =

N−1∑
k=0

b̆kz
2k. (24)

C. Fast inverse NFT

In the previous sections, we restricted ourselves to the case
of empty discrete spectrum. In this section, we describe how
a fast inverse NFT algorithm can be developed for the general
NF spectrum using either the Classical DT (CDT) or the FDT
algorithm reported in Ref. [3]. Given a reflection coefficient
ρ(ξ ), ξ ∈ R, and the discrete spectrum SK , define aS (ξ ) as
in (3) and ρR (ξ ) = aS (ξ )ρ(ξ ). Let q(t ) denote the scattering
potential corresponding to the aforementioned NF spectrum.

Now, as illustrated in Fig. 1, the inverse NFT can be carried
out in the following two steps:

(i) Generate the signalqR (t ) corresponding to the reflection
coefficient ρR (ξ ) using the method described in Sec. III B. This
amounts to computing the purely radiative part of the complete
potential q(t ). The complexity of this step is O (N log2 N )
if the number of nodes used for the FFT operation involved
there is given by M = nosN , where nos 
 N . Here nos can be
identified as the oversampling factor (typically �8).

(ii) Use the signal qR (t ) as the seed potential and add bound
states described by SK using the CDT or the FDT algorithm to
obtain q(t ). The complexity of this step is O(KN + N log2 N )
when FDT is employed while O (K2N ) when CDT is em-
ployed. Here we also consider the partial fraction (PF) variant
of the FDT algorithm (labeled as FDT-PF), which is shown to
offer a small increase in speed [3].

Finally, let us note that the overall complexity of the inverse
NFT is given by O(KN + N log2 N ) when FDT is used and
O(K2N + N log2 N ) when CDT is used.

IV. NUMERICAL EXPERIMENTS

Let q (num) denote the numerically computed potential for a
given NF spectrum. If the exact potential q is known, then we
quantify the error as

erel = ‖q (num) − q‖L2/‖q‖L2 , (25)

where the integrals are evaluated numerically using the trape-
zoidal rule. For the purpose of convergence analysis, only
those examples are deemed to be admissible where closed-
form solutions are available. However, on account of scarcity
of such examples, an exhaustive test for universality of the
algorithm cannot be carried out in this manner. To remedy
this, we choose a higher-order convergent algorithm for the
forward scattering problem and compute the NF spectrum of
the potential generated by the fast inverse NFT. The error
between the computed NF spectrum and the provided NF
spectrum can serve as a good metric to measure the robustness
of the algorithm.

For the higher-order scheme, we choose the (exponential)
three-step implicit Adams method (IA3) [24] which has an
order of convergence 4, i.e., O (N−4) (see Appendix A for
details). Fortunately, this method can also be made fast by the
use of FFT-based polynomial arithmetic which allows us to test
for large number of samples (N ∈ {210, 211, . . . , 220}). Note
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that this procedure by no means qualifies as the test for total
numerical error on account of the fact that the error metric is not
the true numerical error. Therefore, the results in this case must
be interpreted with caution. Further, for the sake of comparison,
we also consider the Töplitz inner bordering (TIB) algorithm
for inverse scattering (Belai et al. [11]) whenever the discrete
spectrum is empty. We use the second-order convergent version
of this algorithm which has also been reported in Frumin et al.
[12]. The latter paper provides an improved understanding of
the original algorithm presented in Ref. [11]; therefore, we
choose to refer to Ref. [12] in this article whenever we mention
the TIB algorithm.

Finally, let us emphasize that the primary objective behind
the numerical tests in this section is to verify the trends ex-
pected from the theory. The actual values of any defined perfor-
mance metric observed in the results are merely representative
of what can be achieved,4 and, admittedly, better results can be
obtain by appropriately tuning the parameters used in the test.
For instance, a good choice of the computational domain helps
to maintain a smaller step size in the numerical discretization
and, hence, lowers the numerical error.

A. Secant-hyperbolic potential

Here we devise tests to confirm the order of convergence and
the complexity of computations for the algorithms proposed
thus far. To this end, we choose the secant-hyperbolic potential
given by q(t ) = (AR + K ) sech t , which is treated exactly in
Ref. [25]. Here AR ∈ [0, 0.5) and K is a positive integer. The
discrete spectrum can be stated as

SK =
{

(ζk, bk )

∣∣∣∣∣ζk = i(AR + 0.5 + K − k),

bk = (−1)k, k = 1, 2, . . . , K

}
, (26)

and the continuous spectrum is given by ρ = ρR/aS , where
aS (ξ ) is defined by (3) and

ρR (ξ ) = b(ξ )
�(0.5 + AR − iξ )�(0.5 − AR − iξ )

[�(0.5 − iξ )]2
. (27)

with b(ξ ) = − sin[(AR + K )π ] sech(πξ ). This test consist in
studying the behavior of the fast INFTs for different number
of samples (N ) as well as eigenvalues (K). We set AR = 0.4.
The scattering potential is scaled by κ = 2(

∑K
k=1 Im ζk )1/2 and

[−T , T ], T = 30κ/ mink (Im ζk ), is taken as the computational
domain and we set Nth = N/8 for FDT-PF as in Ref. [3].

Let us first consider the case K = 0 so that ρ = ρR (setting
the convention that aS = 1 when K = 0). Note that on account
of the exponential decay of ρ, it can be assumed to be effec-
tively supported in a bounded domain. Besides the knowledge
of the true potential allows us to provide a good estimate
of the computational domain. Set T = log(2AR/ε) ≈ 30 for
ε = 10−12 and then [−T , T ] can be taken as the computational
domain.5 The result for AR = 0.4 is plotted in Fig. 3 which

4The total run time, for instance, may differ on different computing
machines; therefore, we would only be interested in trends as far as
the complexity analysis of the algorithms are concerned.

5For the ZS problem, let us note that the error in the initial condition
at the left boundary can be kept below ε > 0 if ‖qχ(−∞,T1]‖L1 �
sinh−1 ε [3].

FIG. 3. The figure shows a comparison of the algorithms LP and
TIB for the secant-hyperbolic potential (AR = 0.4) with respect to
convergence rate (left) and run time per sample (right).

shows that the performance of LP is comparable to that of
TIB. Further, each of these algorithms exhibit a second order
of convergence [i.e., error vanishing as O (N−2)]. The run-time
behavior in Fig. 3 shows that LP-based INFTs have a poly-log
complexity per sample as opposed to the O (N ) complexity
per sample exhibited by TIB.

For K > 0, the results are plotted in Fig. 4 which reveal
that the fast INFTs based on FDT (labeled as “INFT-B”) and
FDT-PF (labeled as “INFT-C”) are superior to that based on
CDT (labeled as “INFT-A”), which becomes unstable with an
increasing number of eigenvalues. The latter, however, can be
useful for a small number eigenvalues. The figure also confirms
the second order of convergence of INFT-B and -C which is
consistent with the underlying one-step method, namely the
trapezoidal rule. For small number of eigenvalues, INFT-A
also exhibits a second order of convergence. Finally, let us
observe that, for fixed N , INFT-A has a complexity of O (K2)
and that for INFT-B and -C is O (K ). While these trends
can be confirmed from Fig. 5, let us mention that, with an
improved implementation, INFT-B and -C can be made even
more competitive to INFT-A in complexity.

B. Nonlinearly bandlimited signals

Let us consider a soliton-free signal whose continuous
spectrum is given by

Hrc(ξ ) =

⎧⎪⎨⎪⎩
Arc |τsξ | � 1 − β,
Arc
2

[
1 + cos

(
π
2β

�
)]

||τsξ | − 1| � β,

0 |τsξ | > 1 + β,

(28)

where � = |τsξ | − (1 − β ) with β ∈ [0, 1] and Arc and τs

are positive constants. The nonlinear impulse response (NIR)
hrc(τ ) can be worked out exactly; however, we do not use this
information for constructing the input to the fast LP algorithm.
Note that Hrc(ξ ) and hrc(τ ) describe the well-known raised-
cosine filter in the frequency domain and the time domain,
respectively.

In order to estimate the computational domain, we use
Epstein’s result discussed in Sec. III B, which consists in
finding a time T such that

E+(T ) =
∫ ∞

T

|q(t )|2dt � 2I2
2 (T )

[1 − I2
1 (T )]

, (29)
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FIG. 4. The figure shows the performance of the algorithms INFT-A, -B, and -C for a fixed number of eigenvalues (K ∈ {12, 16, 20}) and
varying number of samples (N ) for the secant-hyperbolic potential (see Sec. IV A). The error plotted on the vertical axis is defined by (26).

assuming I1(T ) < 1, where

Im(T ) =
[∫ ∞

2T

|hrc(−τ )|mdτ

]1/m

for m = 1, 2. A crude estimate for T such that I2
2 (T ) = ε is

given by

2T (ε) ∼ (A2
rcτ

4
s

)1/5
β−4/5ε−1/5, (30)

FIG. 5. The figure shows the performance of the algorithms INFT-A, -B, -C for a fixed number of samples (N ∈ {213, 214, 215}) and varying
number of eigenvalues (K) for the secant-hyperbolic potential (see Sec. IV A). The error is quantified by (26).
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FIG. 6. The figure shows the error analysis for the signal generated from the continuous spectrum given by (28) which is the frequency-domain
description of the raised-cosine filter (see Sec. IV B). The error is quantified by (31).

which uses the asymptotic form of hrc(τ ). If ε 
 1, then
we may assume that the potential is effectively supported6 in
[−T (ε), T (ε)], where we set ε = 10−9. Also, let β = 0.5 and
τs = 1 in the following.

For this example, we devise two kinds of tests. For the
first kind of test, we disregard any modulation scheme and
carry out the inverse NFT for varying number of samples (N )
for each of the values of Arc ∈ {10, . . . , 50}. In the second
kind of test, we consider the quadrature-phase-shift-keyed
(QPSK) modulation scheme which is described later. Let
�h = [−π/2h, π/2h], then the error is quantified by

erel = ‖ρ (num) − ρ‖L2(�h )/‖ρ‖L2(�h ), (31)

where the integrals are computed from N equispaced samples
in �h using the trapezoidal rule. As stated in the beginning,
the quantity ρ (num) is computed using the (exponential) IA3.

The results of the first kind of test are shown in Fig. 6 where
a comparison is made between LP and TIB.7 From the plots in
the top row of Fig. 6, the second order of convergence is readily
confirmed for both of these algorithms with LP performing
somewhat better than TIB. The plateauing of the error in these
plots can be attributed to accumulating numerical errors in the
inverse NFT algorithm as well as the implicit Adams method.
The behavior of the error with respect to Arc is shown in the
bottom row of Fig. 6 where LP shows better performance than
TIB.

6Epstein’s theorem provides an estimate for the right boundary if
the right NIR is used; therefore, strictly speaking, the computational
domain must be of the form (−∞, T (ε)].

7The complexity of TIB becomes prohibitive for increasing N ;
therefore, we restrict ourselves to N � 218.

Now, for the second kind of test, we consider the QPSK
modulation of the continuous spectrum as follows:

ρ(ξ ) =
(∑

n∈J

sne
−inπτsξ

)
Hrc(ξ ) = S(ξ )Hrc(ξ ), (32)

where the index set is J = {−Nsym/2, . . . , Nsym/2 − 1} and
sn ∈ {±1,±i} with Nsym > 0 being an even integer. The
estimate for the right boundary works out to be

T2 = T (ε) + πτsNsym/4; (33)

however, an estimate for the for the left boundary is not
available in a closed form. Here we take a heuristic approach by
setting T1 = −W × T2, where W is chosen by trial and error.
The scale factor Arc is chosen such that Aeff = 10, where

Aeff = ‖ρ‖2/‖Hrc‖2. (34)

It is important to observe here that the signal generated from
(32) is highly asymmetric with poor decay behavior as t →
−∞ (see Fig. 7). The higher values of the quantities Nsym

and Aeff both tend to worsen this phenomenon. Therefore, this
example turns out to be very challenging for the numerical al-
gorithm. In Fig. 8, we provide results of numerical experiments
conducted with Nsym ∈ {4, 8, . . . , 256} number of symbols
where W = 5 log2 Nsym is used to determine the computational
domain. The accuracy of LP and TIB tends to worsen with an
increasing number of symbols, where LP performs slightly
better than TIB. Based on these results it is evident that any
method of pulse shaping must take into account the relationship
between the signal and its NF spectrum as opposed to directly
applying conventional Fourier transform–based techniques of
pulse shaping.
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FIG. 7. The figure shows the potential corresponding to a QPSK
modulated continuous spectrum given by (32) with number of
symbols Nsym ∈ {16, 32}. The number of samples used is N = 212

and the computational domain is [−15T2, T2], where T2 is given by
(33). Also, we set Aeff = 10 which is defined by (34).

1. Addition of bound states

Here we fix Arc = 20 and assume no modulation of the con-
tinuous spectrum. The bound states to be added are described
by (26). Let us observe that the “augmented” potential has a
reflection coefficient which is given by ρ (aug) = ρ/aS . Now the
error can be quantified by (31). The potentials are scaled by κ

as in Sec. IV A and the computational domain is chosen such
that −T1 = T2 = T (ε)κ/ mink (Im ζk ).

The results for the continuous spectrum are shown in Fig. 9
where the order of convergence can be confirmed from the plots
in the top row. The plots in the bottom row reveal that INFT-A,
which is based on CDT, is unstable for an increasing number
of eigenvalues. On the other hand, the algorithms INFT-B and
-C, which are based on FDT and FDT-PF, respectively, seem to
perform equally well without showing any signs of instability.

For the discrete spectrum, we assume that the discrete
eigenvalues are known exactly and then use this information
to compute the norming constants using the method discussed
in Ref. [3]. The error is quantified by

erel =
√√√√( K∑

k=1

∣∣b(num)
k − bk

∣∣2)/ K∑
k=1

|bk|2, (35)

where b
(num)
k is the numerically computed norming constant

using IA3. The results are shown in Fig. 10, where the
order of convergence turns out to be O (N−1) from the plots
in the top row. This decrease of order of convergence can
be attributed to the use of the true eigenvalues as opposed
to the numerically computed one to compute the norming
constants. Again, the plots in the bottom row reveal that
INFT-A is unstable for an increasing number of eigenval-
ues. On the other hand, the algorithms INFT-B and -C
seem to perform equally well while showing no signs of
instability.

FIG. 8. The figure shows the error analysis for the QPSK modulated continuous spectrum given by (32) for varying number of symbols
Nsym (see Sec. IV B). Here we set Aeff = 10, which is defined by (34).
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FIG. 9. The figure shows the results of the error analysis for an example where the discrete spectrum is SK and the continuous spectrum is
identical to the Fourier spectrum of the raised-cosine filter (see Sec. IV B 1). The error plotted on the vertical axis corresponds to the continuous
spectrum, which is quantified by (31). Here Arc = 20.

V. CONCLUSION

To conclude, we have presented two new fast inverse
NFT algorithms with O (KN + N log2 N ) complexity and a

convergence rate of O (N−2). These algorithms are based on
the discrete framework introduced in Ref. [3] for the Zakharov-
Shabat scattering problem where the well-known one-step

FIG. 10. The figures shows the results of the error analysis for an example where the discrete spectrum is SK and the continuous spectrum
is identical to the Fourier spectrum of the raised-cosine filter (see Sec. IV B). The error plotted on the vertical axis corresponds to the norming
constant, which is quantified by (35). Here Arc = 20.
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method, namely the trapezoidal rule, is employed for the
numerical discretization. Further, our algorithm depends on the
fast layer-peeling scheme and the fast Darboux transformation
algorithm reported in Ref. [3]. The only restrictive aspect
of the algorithms presented is the fact that we require the
reflection coefficient to be compactly supported or decaying
sufficiently fast so that it can be effectively regarded as com-
pactly supported. Broadly, our approach can be characterized
as the differential approach [4,5] of inverse NFT. Numerical
tests reveal that both variants of the inverse NFT algorithm are
capable of dealing with a large number of eigenvalues (within
the limitations of the double precision arithmetic) previously
unreported. Further, we have also presented a comparative
study of the proposed algorithms with the well-known TIB
algorithm [11,12] which can be characterized as the integral
approach of inverse NFT. For the cases considered in this
article, our algorithms perform better than the TIB algorithm in
terms of accuracy while being faster by an order of magnitude.
Let us also note that the TIB algorithm has no consequence
for the inverse NFT in the general case because it requires the
discrete spectrum to be empty.8

Next, let us mention that we have not included simulations
of a realistic optical fiber link in order to demonstrate the
effectiveness of our algorithms. A thorough testing for various
NFT-based modulation schemes for a realistic optical fiber link
is beyond the scope of this paper. This omission, however,
does not impact the study of the limitation of the proposed
algorithms from a numerical analysis perspective.

Future research on fast inverse NFTs will further focus
on the stability properties of the layer-peeling algorithm and
the Darboux transformation. Moreover, we would also like to
consider other linear multistep methods to obtain a higher-
order convergent forward or inverse NFT. The implicit Adams
method used in this paper for the purpose of testing already
demonstrates that such possibilities do exist, at least, for the
solution of the direct Zakharov-Shabat scattering problem.

APPENDIX A: IMPLICIT ADAMS METHOD

In order to develop the numerical scheme based on the IA
method, we begin with the transformation ṽ = eiσ3ζ tv so that
the ZS problem in (1) reads as

ṽt = Ũ ṽ, Ũ =
(

0 qe2iζ t

re−2iζ t 0

)
. (A1)

Let the grid {tn} be as defined in Sec. III and set Un = U (tn)
and Ũn = Ũ (tn). The discretization of (A1) using the m-step

8The TIB algorithm uses the discrete system based on the Gelfand-
Levitan-Marchenko integral equations for inverse NFT. In the pres-
ence of bound states, the nonlinear impulse response becomes expo-
nentially increasing in a certain half-space, thus, adversely affecting
the numerical conditioning of the inverse NFT. We hope to fully
address these aspects in a future publication where we would also
explore the possibility of devising an inverse NFT algorithm without
resorting to any variant of the Darboux transformation.

TABLE I. Implicit Adams Method.

Method β Order of convergence

IA1

(
1
2 , 1

2

)
2

IA2

(− 1
12 , 8

12 , 5
12

)
3

IA3

(
1
24 , − 5

24 , 19
24 , 9

24

)
4

IA method (m ∈ {1, 2, 3}) reads as

ṽn+m − ṽn+m−1 = h

m∑
s=0

βsŨn+s ṽn+s , (A2)

where β = (β0, β1, . . . , βm) are known constants [24, chap.
III.1] (also summarized in Table I). Solving for ṽn+m, we have

ṽn+m = (σ0 − hβmŨn+m)−1

×
[

(σ0 + hβm−1Ũn+m−1)ṽn+m−1

+
m−2∑
s=0

hβsŨn+s ṽn+s

]
,

or, equivalently,

vn+m = (σ0 − hβmUn+m)−1

×
[

m−2∑
s=0

hβse
−iσ3ζh(m−s)Un+svn+s

+ e−iσ3ζh(σ0 + hβm−1Un+m−1)vn+m−1

]
, (A3)

where σ0 = diag(1, 1). The individual matrices can be worked
out as

(σ0 − hβmUn+m)−1e−iσ3ζh(σ0 + hβm−1Un+m−1) = z−1

�n+m

×
(

1 + z2β̄m−1Rn+m−1Qn+m z2Qn+m + β̄m−1Qn+m−1

Rn+m + z2β̄m−1Rn+m−1 z2 + β̄m−1Rn+mQn+m−1

)
≡ z−1M

(1)
n+m(z2), (A4)

where Qn = (hβm)qn, Rn = (hβm)rn, �n = 1 − QnRn, and

β = β/βm = (β0, β1, . . . , 1). (A5)

Also,

(σ0 − hβmUn+m)−1e−iσ3ζ (m−s)hhβsUn+s

= βs

z−(m−s)

�n+m

(
z2(m−s)Rn+sQn+m Qn+s

z2(m−s)Rn+s Rn+mQn+s

)
≡ βsz

−(m−s)M
(m−s)
n+m (z2). (A6)
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The m-step IA methods lead to transfer matrices Mn ∈
C2m×2m of the form

Mn+m(z2)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

M
(1)
n+m βm−2M

(2)
n+m . . . β1M

(m−1)
n+m (z2) β0M

(m)
n+m

σ0 0 . . . 0 0

0 σ0 . . . 0 0
...

...
. . .

...
...

0 0 . . . σ0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(A7)

where M
(s)
n+m(z2) ∈ C2×2 so that

WWWn+m = Mn+m(z2)WWWn+m−1, (A8)

where wn = znvn and

WWWn = (wn,wn−1, . . . ,wn−m+1)ᵀ ∈ C2m.

Let us consider the Jost solution φ(t ; ζ ). We assume
that qn = 0 for n = −m + 1,−m + 2, . . . , 0 so that φn =
z�−z−n(1, 0)ᵀ for n = −m + 1,−m + 2, . . . , 0. The discrete
approximation to the Jost solution can be expressed as φn =
z�−z−n Pn(z2). The initial condition works out to be

WWW0 = z�−

⎛⎜⎜⎜⎜⎝
φ0

zφ−1

...

z−m+1φ−m+1

⎞⎟⎟⎟⎟⎠

= z�−

⎛⎜⎜⎜⎜⎝
P0(z2)

P−1(z2)
...

P−m+1(z2)

⎞⎟⎟⎟⎟⎠ = z�−

⎛⎜⎜⎜⎜⎜⎜⎝

1

0
...

1

0

⎞⎟⎟⎟⎟⎟⎟⎠,

yielding the recurrence relation

PPPn+m(z2) = Mn+m(z2)PPPn+m−1(z2), (A9)

where PPPn(z2) = [Pn(z2), Pn−1(z2), . . . , Pn−m+1(z2)]ᵀ ∈
C2m. The discrete approximation to the scattering coefficients
is obtained from the scattered field: φN = (aNz−�+ , bNz�+ )ᵀ

yields aN (z2) = P
(N )
1 (z2) and bN (z2) = (z2)−�+P

(N )
2 (z2). The

quantities aN and bN are referred to as the discrete scattering
coefficients uniquely defined for Re ζ ∈ [−π/2h, π/2h].

Finally, let us mention that, for ζ varying over a compact
domain, the error in the computation of the scattering coeffi-
cients can be shown to be O (N−p ) provided that q(t ) is at
least p-times differentiable [24, chap. III].

It is evident from the preceding paragraph that the for-
ward scattering step requires us to form the following cu-
mulative product: MN (z2) × MN−1(z2) × . . . × M2(z2) ×
M1(z2). Let m̄ denote the nearest base-2 number greater than
or equal to (m + 1), and then pairwise multiplication using
FFT [22] yields the recurrence relation for the complexity
� (n) of computing the scattering coefficients with n samples:
� (n) = 8m3ν(m̄n/2) + 2� (n/2), n = 2, 4, . . . , N, where
ν(n) = O (n log n) is the cost of multiplying two polynomials

of degree n − 1 (ignoring the cost of additions). Solving the
recurrence relation yields � (N ) = O (m3N log2 N ).

Finally, the results of the tests for benchmarking are shown
Fig. 11.

APPENDIX B: AN EXTENSION OF THE THEOREM
OF EPSTEIN

In the following, we would like to extend Theorem 4 of
Ref. [23] to obtain the result (29). Define the nonlinear impulse
response

p(τ ) = F−1[ρ](τ ) = 1

2π

∫ ∞

−∞
ρ(ξ )e−iξτ dξ (B1)

and assume p(τ ) ∈ L1 ∩ L2. Consider the Jost solutions with
prescribed asymptotic behavior as x → ∞:

ψ (t ; ζ ) =
(

0
1

)
eiζ t +

∫ ∞

t

eiζ s A(t, s)ds, (B2)

where A is independent of ζ . Our starting point for the
analysis of the inverse problem would be the Gelfand-Levitan-
Marchenko (GLM) integral equations. In the following, we fix
t ∈ R so that the GLM equations for y ∈ �t = [t,∞) is given
by

A∗
2(t, y) = −

∫ ∞

t

A1(t, s)f (s + y)ds,

A∗
1(t, y) = f (t + y) +

∫ ∞

t

A2(t, s)f (s + y)ds, (B3)

where f (τ ) = p(−τ ). The solution of the GLM equa-
tions allows us to recover the scattering potential using
q(t ) = −2A1(t, t ) together with the estimate ‖qχ[t,∞)‖2

2 =
−2A2(t, t ), where χ� denotes the characteristic function of
� ⊂ R. Define the operator

P[g](y) =
∫ ∞

t

f (y + s)g(s)ds, (B4)

whose Hermitian conjugate, denoted by P†, works out to be

P†[g](y) =
∫ ∞

t

f ∗(y + s)g(s)ds. (B5)

Define K = P† ◦ P so that

K [g](y) =
∫ ∞

t

ds

∫ ∞

t

dx f ∗(y + s)f (s + x)g(x)

=
∫ ∞

t

K(y, x; t )g(x)dx,

(B6)

where the kernel function K(y, x; t ) is given by

K(y, x; t ) =
∫ ∞

t

ds f ∗(y + s)f (s + x). (B7)

The GLM equations in (B3) can now be stated as

Aj (t, y) = �j (t, y) − K [Aj (t, ·)](y), j = 1, 2, (B8)

which is a Fredholm integral equation of the second kind where

�1(t, y) = f ∗(t + y), �2(t, y) = −P†[f (t + ·)](y).
(B9)
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FIG. 11. The figure shows a comparison of convergence behavior and run time of NFT algorithms based on the discretization schemes,
namely IAm (m ∈ {1, 2, 3}) and the Split-Magnus (SM) and Magnus methods with one-point Gauss quadrature (MG1) (the latter two are
discussed in Ref. [3, Sec. IV] as a way of benchmarking). The method IA1 is identical to the trapezoidal rule. The test corresponds to a
secant-hyperbolic profile q(t ) = 4.4 sech(t ).

Let Im(t ) = ‖f χ[2t,∞)‖Lm for m = 1, 2,∞, then

‖K ‖L∞(�t ) = ess supy∈�t

∫ ∞

t

dx |K(y, x; t )|

� ess supy∈�t

∫ ∞

t

dx

∫ ∞

t

ds |f (y + s)||f (s + x)|

� ess supy∈�t

∫ ∞

t+y

du|f (u)|
∫ ∞

t+u−y

du1 |f (u1)|

� [I1(t )]2, (B10)

and ‖�2(t, ·)‖L∞(�t ) � [I2(t )]2. IfI1(t ) < 1, then the standard
theory of Fredholm equations suggests that the resolvent of
the operator K exists [26]. Under this assumption, certain
estimates for q(t ) can be easily obtained [23]: From (B8), we
have

‖Aj (t, ·)‖L∞(�t ) � ‖�j (t, ·)‖L∞(�t )

+‖K ‖L∞(�t )‖Aj (t, ·)‖L2(�t ),

which yields

‖A1(t, ·)‖L∞(�t ) �
I∞(t )

[1 − I2
1 (t )]

,

‖A2(t, ·)‖L∞(�t ) �
I2

2 (t )

[1 − I2
1 (t )]

.

Given that from here one can only assert that |Aj (t, y)| �
‖Aj (t, ·)‖L∞(�t ) almost everywhere (a.e.), we need to ascertain
the continuity of Aj (t, y) with respect to y throughout the
domain �t or as y → t from above. Assume that f (τ ) is
continuous; then �j (t, y) is continuous with respect to y. It can
be seen that the kernel function K(y, x; t ) is also continuous
with respect to y. Therefore, if the resolvent kernel is contin-
uous (w.r.t. y), then the result follows. To this end, consider
the Neumann series for the resolvent R =∑n∈Z+ (−1)nKn,
where Kn = K ◦ Kn−1 with K1 = K . For fixed t , the partial
sums

∑
1�n�N ‖Kn‖L∞(�t ) � [1 − I2

1 (t )]−1 for all N < ∞.
Therefore, uniform convergence of the partial sums allows us
to conclude the continuity of the limit of the partial sums.

Now using the identities q(t ) = −2A1(t, t ) and
‖qχ[t,∞)‖2

2 = −2A2(t, t ), we have

‖qχ[t,∞)‖L∞ � 2I∞(t )

[1 − I2
1 (t )]

,

‖qχ[t,∞)‖2
L2 �

2I2
2 (t )

[1 − I2
1 (t )]

.

(B11)

If I1(t ) < 1 does not hold for all t ∈ R, then one can find a
T > 0 such that I1(t ) < 1 holds for t ∈ [T ,∞). The estimates
obtained above would then be valid in [T ,∞).

The second inequality in (B11) can be used to choose the
computational domain for the inverse NFT. Let us consider
the example considered in Sec. IV B: The nonlinear impulse
response works out to be

prc(τ ) = A

πτs

sinc

(
τ

τs

) cos
(
β τ

τs

)
1 −
(

2βτ

πτs

)2 . (B12)

Note that prc(−τ ) = prc(τ ). From the asymptotic form

|prc(τ )| ∼
(

Aπτ 2
s

4β2

)
1

τ 3
,

it follows that

I1(T ) ∼
(

Aπτ 2
s

4β2

)
1

2(2T )2
,

I2
2 (T ) ∼

(
Aπτ 2

s

4β2

)2 1

5(2T )5
.

(B13)

If I1(T ) 
 1, then setting I2
2 (T ) = ε gives

T (ε) ∼ 1

2

(
π2A2τ 4

s

40β4ε

)1/5

. (B14)
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