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Abstract

Bayesian Network (BN) has been increasingly exploited to improve different aspects of Human
Reliability Analysis (HRA), resulting in a new generation of HRA techniques, known as BN-HRA models.
However, validating and evaluating the accuracy of BN-HRA models is still a challenging task. In this
study, we have assessed and compared the performance of some of well-known BN-HRA techniques
using human performance data obtained from an offshore evacuation simulation. Based on the role of
data in quantifying the BN-HRA models, three categories of BN-HRA models have been considered: (i)
BN-CREAM and BN-SPARH, which are based on predefined rules (rule-based methods), (ii) Bayesian
Parameter Learning (BPL), which is entirely based on the available data (data-based method), and {iii)
BN-SLIM model which is based on both the available data and the predefined rules (hybrid method).
The results of the present study show that the data-based methods, i.e., BN-SLIM and BPL, in general
outperform the rule-based methods. Cross-validation analysis further demonstrates the superiority of

BN-SLIM over BPL, particularly in case of data scarcity.

Keywords
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parameter learning.
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1. Introduction

Human factor is one of the main causes of technological accidents, causing environmental damage,
major capital losses, and noticeable death toll [1-3]. Human Reliability Analysis (HRA) methods such as
CREAM [4], SLIM [5], and SPAR-H [6] have been developed to identify potential human errors and
estimate their occurrence probability in the operation of complex systems and processes. An integral
part of HRA methods is assessing the performance shaping factors (PSFs), which characterize the
context and human aspects of human failure events [7]. HRA methods provide instructions for
calculating the conditional Human Error Probability (HEP) during a task in a particular context [8]. On
the other hand, a nominal HEP of a given task is the probability of human error when the impact of

different contexts on human performance is not considered [9].

The conventional HRA methods have some limitations such as being highly subjective [8, 10, 11],
lacking a causal mechanism to link PSFs to the operator performance [12, 13], ineffective in
incorporating multiple data sources [10, 14], being deterministic and thus not fully capable of handling
uncertainties [8, 10, 15, 16], and not easily compatible with system safety assessment models [8, 13].
To mitigate these shortcomings some researchers have employed Bayesian network (BN) to enhance

and extend the conventional HRA models [10].

BN has been introduced as a significant element in the third generation of HRA methods —a generation
with more insight into HRA data [14, 17]. BN can effectively model the causal relationships between
PSFs and respective human failure events while considering dependencies among the PSFs. BN’s ability
in combining different sources of information allows the development of HRA models with a stronger
basis in cognitive theory and empirical data [8]. Moreover, BN is able to handle uncertainty primarily
by assigning prior probability distributions to the PSFs and by updating these priors as new information
becomes available, leading to more objective results [18]. BN has also been employed to assess the

PSFs and quantify their joint impact on HEP based on expert judgment and empirical data [12, 19, 20].

The integration of BN with the conventional HRA methods has lead to what are generally known as
BN-HRA methods, such as BN-SPARH [8], BN-CREAM [16], and BN-SLIM [15]. The causal framework of
BN-HRA methods can provide a proactive approach for preventing human errors under different
contextual conditions [15]. Moreover, BN-HRA methods are able to work with perfect, partial or very
little information on the PSFs [8]. Both conventional HRA methods [21-24] and BN-HRA methods [8,
10, 13, 15, 16] have been widely used in system safety and risk assessment for assessing and reducing
HEPs. However, despite the obvious advantages of BN-HRA methods over their conventional

counterparts, studies on the performance and accuracy of BN-HRA methods have been very limited
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(e.g., [10]), particularly using empirical and simulation data (e.g. [25, 26]). The lack of comparative
studies, in turn, may leave the impression that since the BN-HRA methods are built on BN would all
result in more or less the same HEP for a given task. Therefore, the present study can be considered
as an attempt to provide more insight into the performance of some BN-HRA methods using the

simulation data generated in an offshore evacuation virtual environment [27].

For the sake of clarity, in the present study we have considered four BN-HRA methods and categorized
them into three groups based on the role of data in developing the required conditional probability
tables needed to quantify the BN models. The first group includes the BN-CREAM [16] and BN-SPARH
[8] which use predefined relationships and cognitive theories to calculate the probabilities. The second
group includes a BN which uses the maximum likelihood estimation [28] for calculating the conditional
probabilities merely based on the available data. The third group includes a refined version of the BN-
SLIM [15], which can be considered as a hybrid model that uses both the available data and the
predefined relationships of the original SLIM to calculate the conditional probabilities. It is also worth
noting that to perform a quantitative comparison among the foregoing BN-HRA methods, it was
inevitable to make assumptions and adjustments both to the BN-HRA methods and the dataset,
resulting in the customized BN-HRA models in the present study (These adjustments will be further
discussed in the respective sections.). As such, the results of the present study should not be

generalized as the results of the original BN-HRA methods.

The rest of the paper is organized as follows: Section 2 briefly revisits the CREAM, SPAR-H and SLIM
methods. Section 3 recapitulates the basics of BN, Bayesian parameter learning, and the BN versions
of the foregoing HRA methods. In Section 4, the foregoing methods are applied to the simulation data,

and their accuracy is evaluated. Section 5 concludes the study.
2. Human reliability assessment methods

2.1.SPAR-H

The SPAR-H method was developed for the U.S. nuclear regulatory commission to be used in
probabilistic safety analysis models [6]. This method considers two nominal HEPs (NHEPs) of 0.001 and
0.0001 for two task types of diagnosis and action, respectively. The model uses eight predefined PSFs
to represent the performance context and to estimate the conditional HEPs given a particular context.
The PSFs are “available time”, “stressors”, “complexity”, “experience/training”, “procedures”,
“ergonomics/HMI”, “fitness for duty” and “work processes”. These PSFs are fixed and should be
applied to any context regardless of their relevance. Each PSF has a certain number of states each with

a particular assigned multiplier S [6]. For instance, for the PSF “experience/training”, the sets of states
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and their corresponding multipliers are States = {High, Nominal, Low, Insufficient information}and S =
{0.5, 1, 3, 1}. Having the state of each PSF identified, Eq. (1) is used to estimate the HEP if the number
of negative PSFs (PSFs with a multiplier greater than 1) is less than three; otherwise Eq. (2) is used. S;

is the multiplier of the i-th PSF (i =1, ..., 8).

_ NHEPIES;
HEP = NHEP([[8S;-1)+1 (1)
HEP = NHEP[[8S; (2)
2.2.CREAM

CREAM was developed by Hollnagel [4] to be used in the general applications of HRA. This method
represents a contextual control model and defines four categories for the control mode, namely:
scrambled, opportunistic, tactical and strategic, which are ordered ascendingly with regard to the

degree of control. The control modes are related to different HEP intervals as presented in Table 1.

Table 1. Control modes and probability intervals in CREAM [4]

Control Modes HEP intervals
Strategic 5.0 E-06 < HEP < 0.01
Tactical 0.001 < HEP<O0.1
Opportunistic 0.01<HEP<0.5
Scramble 0.1<HEP<1.0

In the original CREAM, nine Common Performance Conditions (CPCs) or PSFs are defined to describe
the context. The nine PSFs are “adequacy of organization”, “working conditions”, “adequacy of man-
machine interface and operational support”, “availability of procedures and plans”, “number of
simultaneous goals”, “available time”, “time of day”, “adequacy of training and experience”, and “crew
collaboration quality”. Each PSF has a number of determined states with the negative, positive or
neutral effects on performance probability. For instance, for “Adequacy of training and experience”,
the sets of the states and their effects are States = {Adequate with high experience, Adequate with

limited experience, Inadequate} and Effect = {Positive, Neutral, Negative}.

According to the number of positive and negative effects of the PSFs and using the basic diagram of
CREAM, the likely control mode of an operator is determined. CREAM uses Table 2 to reflect on how
the effects of PSFs on human performance would change (from neutral to positive or negative) due to
the dependencies among the PSFs [4]. For example, according to Table 2, the ratio (2/3) in the third

row indicates that if at least two out of the three PSFs “Working conditions”, “Adequacy of MMI and

4
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operational support” and “Availability of procedure and plans” have negative effects, the neutral effect

of “Number of simultaneous goals” changes to negative as well.

Table 2. Rules for adjusting the effects of PSFs in CREAM [4].

PSF The effect depends on the following PSFs

i Adequacy of MMI . Adequacy of
Working Adequacy of ] Available . o

. o and operational . Time of day training and
conditions (4/5) | organization time .

support experience
Number of ) Adequacy of MMI | Availability of
. Working .
simultaneous . and operational procedure
conditions

goals (2/3) support and plans

. . ) Adequacy of MMI | Availability of | Number of Time of day
Available time Working

» and operational procedure simultaneous
(4/5) conditions
support and plans goals
Crew Adequacy of
. Adequacy of o
collaboration o training and
. organization .
quality (2/2) experience
2.3.SLIM

SLIM is a flexible technique to estimate HEP during task execution [5]. It is a decision analysis approach
in which the success likelihood index (SLI) of an error is calculated under the combined effects of the
PSFs. A wide range of PSFs can be considered in the SLIM, enabling it to be used in different industries
and contexts [29—-31]. Although SLIM heavily relies on expert judgment, it could be quite practical
where data on human error is insufficient. For a given task, the SLI is calculated by Eq. (3). The rate (R;)
shows the extent to which the PSF;is desirable for executing the task while the weight (W;) shows the

relative importance of the PSF; to the task.
SLI = YN, W;R; (3)

To estimate the HEP in executing the task, the logarithmic relationship can be used to calibrate the SLI

as:
Log(HEP) = aSLI + b (4)

where the constant parameters a and b can be determined by two tasks for which the amounts of

HEPs and the corresponding SLIs are already known using, for instance, historical data or expert
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judgment. In the conventional SLIM all the input parameters (the weights, rates, and the constants a

and b) are determined by experts, introducing degrees of epistemic uncertainty into the analysis.

3. BN versions of HRA methods

3.1.Bayesian Network and Bayesian Parameter Learning

BN = (G, 0) is a graphical model for probabilistic inference. G is the graphical structure in which the
nodes display the random variables X = {x1, X3, ..., Xn}, and the directed arcs represent the dependencies
among the random variables; 6 is the set of network parameters presented as the conditional
probability tables (CPTs) of the nodes [32]. BN satisfies the Markov condition in that the variables
(nodes) in the graph are independent of their non-descendants given their parents. As such, the joint
probability distribution of the random variables can be presented as the product of the conditional

probabilities of the nodes given their immediate parents as:
P(X) = [Ti=; P(xi|Pa(x:)) (5)

where Pa(x;) is the parent set of nodex;, and P(x;|Pa(x;)) = 6; is the network parameter used to
populate the CPT of node x;. These parameters can be elicited from experts or be learned from data.
Using the Bayes' theorem, BN is able to update the prior probabilities of the nodes by observing new
evidence (E), as presented in Eq. (6). The main application of probability updating is in sensitivity
analysis [33]. In the context of HRA, the evidence can be observation of human error in a task, an
occurrence of incidents in an operation, or new information about the performance context.

P(E|X)P(X) _ P(X,E)
P(E)  XYxP(XE)

P(X|E) = (6)

The BN parameters can be estimated via parameter learning algorithms, e.g., the maximum likelihood

estimation. Given a dataset D = {X1, X2,..., X™} which contains complete observations of the states

of the BN variables X/ = {x{,x%, . ..,x,];}, the network parameters 6 can be estimated by maximizing

the likelihood or log-likelihood of the dataset as [28, 34]:

Log_likelihood(D; G,8) = Log(P(D|6)) = Log [T7, P(x],x3,...,x}16) =

Log [T} T P(x! 1Pa(x))) = Log ], 11 6] =X 7 Log 6] (7)
3.2.BN-SPARH

Groth and Sliwer [8] proposed that using BN would make HRA models more compatible with the HRA
practitioners’ perspective. They illustrated how BN-SPARH can be useful for causal and evidential
reasoning with perfect, partial or no information on the PSFs states. The main steps for developing the

BN-SPARH can be summarized as:
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Building the BN-SPARH structure: BN-SPARH has a simple structure with 9 nodes; eight nodes to
represent the eight PSFs and one node to represent the HEP. The states of the PSF nodes are the same
as the states defined in the conventional SPAR-H method [6]; however, the “Insufficient information”
state is excluded because even in the absence of sufficient information (non-informative) prior
probability distributions can still be assigned to the PSF nodes of the BN. The HEP node has two states:
human error occurs (HEP = Yes) and human error does not occur (HEP = No). The causal arc between

a PSF node and the HEP node illustrates the conditional dependence of the latter on the former.

Quantifying BN-SPARH: Using the predefined mathematical relationships given in Egs. (1) and (2), the
CPT of the HEP node can be populated. However, in case of “Available time = Inadequate” or “Fitness
for duty = Unfit” the conditional HEP would be equal to 1 (i.e., we are certain that HEP = Yes). The
probability mass function of the states of each PSF is identified using the available data and/or experts’

knowledge.

3.3.BN-CREAM

Kim et al. [16] developed the BN-CREAM so that the uncertainty associated with the states of the PSFs
can be modeled using probability distributions. To better handle the uncertainties, Yang et al. [35] and
Zou et al. [36] proposed fuzzy BN-CREAM, which are beyond the scope of the present study. The BN-
CREAM can be developed through the following steps:

Determining the primary effect of each PSF: For each PSF, there is a node that represents the states
of the PSF and is connected to another node for modeling the primary effect of the states of that PSF
on the performance reliability. To demonstrate how to relate the states of a PSF to their effects, the

CPT of node “Effect of crew collaboration quality” has been presented in Table 3.

Table 3. CPT of node “Effect of crew collaboration quality”.

‘States ‘
Expected effect ef\f/iiirglnt Efficient |Inefficient |Deficient
[Positive & lo lo lo |
Neutral o [ [ lo |
INegative o lo lo [ |

Adjusting the PSFs’ effects: Considering the dependencies among the four PSFs (Table 2), the adjusted

effects of the PSFs are considered by assigning four specific nodes. The CPTs of these nodes are filled
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using the rule presented in Section 2.2. For the sake of clarity, Table 4 reports parts of the CPT of node

“Adjusted crew collaboration quality”.

Table 4. Parts of the CPT of node “Adjusted crew collaboration quality”

Crew . Adjusted crew collaboration
collaboration Adeqt.lacY of Adequacy.of training quality
) organization and experience
quality |Positive HNeutraI HNegative |
Positive lo [ lo |
Positive ‘Neutral HO Hl HO |
‘Negative HO Hl HO |
Positive lo [ lo |
Neutral
Neutral ‘Neutral HO Hl HO |
‘Negative HO Hl HO |
Positive lo [ lo |
Negative ‘Neutral HO Hl HO |
‘Negative HO HO Hl |

Determining the control mode: Given the effects of all the 9 PSFs, the CPT of node “control mode” can
be determined by employing the rules defined in the conventional CREAM. Due to the massive size of
the CPT of this node (size of 37 x 22), in some studies the nine PSFs are divided into 3 groups to reduce

the calculation load [16, 36].

Calculating HEP: Although the HEP estimation is not included in the BN-CREAM proposed by Kim et al.
[16], adding the HEP node with the two states of “HEP = Yes” and “HEP = No” can facilitate the
calculation of the HEP. The CPT of the HEP node can be filled in with the mean values of the HEP

intervals.

Using the mean values of probability intervals is a common practice in probabilistic safety assessment
[37] although some information may be lost using this approach. Another alternative would be using
Dempster-Shafer theory to handle probability intervals [38], which could increase the accuracy of the
calculated HEP yet at the expense of a more complicated analysis, which is beyond the scope of the

present study.

3.4.BN-SLIM
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Abrishami et al. [15] developed BN-SLIM and demonstrated that it outperforms the conventional SLIM
by considering the probability distribution of PSFs, by considering the dependencies among the HEPs,
and by identifying the critical PSFs and PSF rates using the probability updating feature of the BN. To

develop the BN-SLIM the following steps should be taken:

Building the BN-SLIM structure: According to the conventional SLIM, the total effect of contributing
PSFs on the HEP is modeled through the SLI variable. Thus, two functions are needed for estimating
the HEP: One for calculating the SLI given a set of N PSFs, and the other for calculating the HEP given
the SLI. Thus, a BN with N + 2 nodes would be required, N nodes for representing the PSFs and 2 nodes

for representing the SLI and the HEP.

Each PSF node has several states to represent its rates. Thus, the number of the states of the SLI node
is equal to the number of possible combinations of the rates (states) of the PSFs nodes. For example,
consider a case with two PSFs, PSF1 and PSF2, each with two rates of 3 (indicating a poor state) and 7
(indicating a good state) and respective weights of 0.2 and 0.8. As a result, the SLI node would have
four states as SLI = 0.2 X {3,7} + 0.8 X {3,7} = {3.0, 3.8, 6.2, 7.0}. The SLI node should be the only
parent of the HEP node, which in turn would have two states, human error occurs (HEP = Yes) and

human error does not occur (HEP = No).

BN-SLIM quantification: To quantify the effects of the PSFs nodes, CPTs should be assigned to the SLI
and HEP nodes. The CPT of the SLI node shows which combination of the PSF rates would result in
which state (value) of the SLI. To build the CPT of the HEP node, the conditional error probability is
assigned via direct application of the logarithmic formula in Eq. (4). For example, P(HEP = Yes | SLI =

3.8) = 10~(38a+b) \yhere a and b are determined based on expert knowledge and/or available data.

4. Comparing the performance of BN-HRA models
4.1.Case study

In this study, we use the simulation data of human performance during offshore emergency evacuation
generated in a virtual environment [27]. The dataset contains 129 observations with six binary
variables. Each record contains three dependent variables associated with three PSFs and three
independent variables associated with three possible responses of the test participants (each response
is considered as a possible human failure). According to the designed experiment, “Training”,
“Visibility”, and “Complexity” are selected as the three PSFs as in Table 5. The three executive tasks in
the evacuation process are defined as “Evacuation”, “Backtracking” and “Exposure to hazard” [27]. The
definitions of these tasks are presented in Table 6. If the time of “Evacuation” or “Backtracking” takes
longer than a benchmark time, or if the “Exposure to hazard” leads to injury, a human failure is

supposed to have occurred.
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Yo. Table 5. Description of the PSFs [27].

PSF Description State

Visibility It refers to the amount of ambient light | High: performing a task in daytime
available while performing a specific task. . )

The amount of light is believed to affect the Low: performing a task at night
visibility of the evacuees and hence their
performance.

Complexity It refers to how difficult it is to perform the | Low: if there is no hazard or obstacle
task in a given context. Complexity considers | on the available routes to the
both the task and the environment in which | lifeboat station.
the task is to be performed. The more | )
difficult the task to perform the greater the H',gh: if several routes‘ are‘ blocked
likelihood of human error. VYIth hazards such as jet fire, pool

fire, and heavy smoke

Training It refers to the type of training provided to | Active: learning to navigate to the
the evacuees (participants in the virtual | lifeboat platform by freely exploring
experiment). the environment.

Active - passive: learning to navigate
to the lifeboat platform by watching
three training videos hosted by an
avatar who described a specific
predetermined path. The participant
can imitate the routes taken by the
avatar after each video.

Yo)

Yo¥ Table 6. Tasks description [27].

Task Description

Evacuation Time to evacuation refers to the time taken by the participant to

reach the lifeboat platform from the starting position.

Backtracking Backtracking time is the time spent by the participant to go back

the way they had come. In an ideal case, the participant should
not spend time in backtracking unless the route followed is
blocked, in which case they might have to backtrack to find an
alternative route.

Exposure to hazard Depending on the type of hazard and time spent close enough to

the hazard, the participant could be injured or not.
Yor

Yot Tables 7 and 8 present the data-derived relative frequencies of the PSF states and the relative failure
Yoo frequencies of the tasks. The relative failure frequency of each task has been considered as the

Yol objective HEP of that task in the present study.

10
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YoA Table 7. Data-derived relative frequencies of the states of PSFs [27].

Visibility Training Complexity

State Frequency | State Frequency State Frequency

High 0.67 Active 0.51 Low 0.67

Low 0.33 Active-Passive | 0.49 High 0.33
Yo9
Y. Table 8. Data-derived relative failure frequencies of the tasks [27].

Evacuation Backtracking Exposure to hazard

State Frequency | State Frequency | State Frequency

Time of 0.37 Time of 0.26 No exposure to 0.83

evacuation < backtracking < hazard (HEP = No)

benchmark benchmark time

time (HEP = (HEP = No)

No)

Time of 0.63 Time of 0.74 First or second- 0.17

evacuation > backtracking > degree burn or

benchmark benchmark time death (HEP = Yes)

time (HEP = (HEP = Yes)

Yes)
Y
Yy 4.2. Applying BN-HRA models
Yy In the present study, the BN-HRA models are categorized into three groups with regard to the role of
Y1¢ data in calculating the conditional dependency of the HEP node on the PSF nodes. It should be noted
Y1e that in all the three categories the prior probabilities of the root nodes (i.e., PSFs) are identified using
Y the available data.
Yy o Rule-based models: BN-SPARH and BN-CREAM estimate the HEP using the predefined rules
YA given in the original SPAR-H and CREAM. For example, the probabilities to populate the CPTs
Y14 of the BN-SPARH can be calculated using Egs.(1) and (2) regardless of the available data. In
YV other words, the CPT of the HEP node in a rule-based model remains the same for any task in
v a specific context since the available data does not play a role in quantifying the relationship
YVvY between the PSFs and the HEP.
Yvy e Data-based model: It refers to a BN model in which the CPT of the HEP node given the PSFs
YV¢ are solely estimated based on the available data using parameter learning algorithms.
Yvo e Hybrid model: As is the case in the BN-SLIM, the relationship between the HEP node and the
Yva PSFs is given by Eqgs. (3) and (4), i.e., the rule-based part of the modeling. The probability
Yvv distribution of the rates and weights of the PSFs in Eq.(3) and the constant parameters in Eq.(4)

11
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are determined based on the available data, i.e., the data-based part of modeling. This makes

the BN-SLIM a semi-rule-based semi-data-based technique, or a hybrid technique.

The main features of the three categories are summarized in Table 9.

Table 9. Main features of rule-based, data-based, and hybrid BN-HRA methods in the present study.

Examples | Flexible set of | Ability to calculate
Model How to populate CPTs?
PSFs? distinct HEPs?
BN-
Rule- SPARH; Using predefined rules; available
No No
based BN- data do not play a role
CREAM
Data- BN Using Bayesian parameter
Yes Yes
based learning algorithms
BN-SLIM Using predefined rules and
Hybrid Yes Yes
available data

It should be noted that BN-SPARH has the potential to be upgraded to a hybrid model if the weights of
its PSFs can be evaluated using the data and then be accommodated in the mathematical relationship
between PSFs and HEP (i.e., Egs. (1) and (2)). However, this topic is beyond the scope of the present
study and can be investigated in a separate work. To evaluate the validity and accuracy of the foregoing
models, the observed relative frequency of the HEP of each task, i.e., the objective HEP, is compared

with the corresponding HEPs estimated by the BN-HRA methods.

4.2.1. Rule-based models: BN-SPARH and BN-CREAM

The PSFs defined in the dataset of Musharraf et al. [27] — herein, dataset PSFs — are different from the
PSFs defined in the original SPAR-H and CREAM — herein, model PSFs. As such, the model PSFs which
are the closest in meaning and context to the dataset PSFs should first be identified. For instance,
“Visibility” (Table 5), which is a dataset PSF, has been related to “Work condition” and “Ergonomic”,

which are the model PSFs in CREAM and SPAR-H, respectively.

n

The corresponding PSFs to “Training”, “Visibility” and “Complexity” are listed in Tables 10 and 11 for
BN-CREAM and BN-SPARH, respectively [4, 6]. Using the data, the probabilities (relative frequencies)

of the states of these three PSFs are calculated. However, due to the lack of simulation data about the
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rest of the PSFs, equal probabilities have been assigned to their states in both BN-SPARH and BN-
CREAM.

Table 10. Probability distribution of the rates of the PSFs in BN-CREAM. Corresponding dataset PSFs
are mentioned in the brackets.

PSF State Probability
Adequacy of training and Inadequate 0
experience (Training) Adequate with low experience 0.49
Adequate with high experience 0.51
Working condition Incompatible 0.33
(Visibility) Compatible 0.67
Advantageous 0
Number of simultaneous Fewer than the actual capacity 0
goals (Complexity) Matching current capacity 0.67
More than the actual capacity 0.33

Table 11. Probability distribution of the rates of PSFs in BN-SPARH. Corresponding dataset PSFs are
mentioned in the brackets.

PSF State Probability
Experience /Training Low 0.00
Nominal 0.49
High 0.51
Ergonomic (Visibility) Missing 0.00
Poor 0.33
Nominal 0.00
Good 0.67
Complexity Nominal 0.67
Moderate 0.00
High 0.33

It is worth noting that if the available information is not enough, the conventional SPAR-H considers
the nominal states of the PSFs; it is also able to assign a probability distribution to the states [8], which
is the case in the present study. The resulting BN-CREAM and BN-SPARH for the backtracking task are
displayed in Figures 1 and 2, respectively. The models have been generated using AgenaRisk software
[39]. Since the context of the three tasks is the same, and all the tasks are of action type, the BN-
CREAM and BN-SPARH both result in the identical HEPs for all the three tasks. That is why the modeling

has been performed only for “Backtracking”.
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It should be noted that both SPAR-H and CREAM (and their BN versions) are built on the predefined
sets of PSFs which cannot be changed regardless of their relevance to the context of interest.
Therefore, if some PSFs are eliminated, the defined rules in CREAM and SPAR-H become futile. The BN-
SPARH and BN-CREAM also inherit this limitation in which all the predefined PSFs, whether relevant or

irrelevant to the dataset, would be required to calculate the CPTs of the models.

One way to minimize the impact of irrelevant PSFs on the calculated HEP is to keep all the model PSFs
but assign equal probabilities to the states of the PSFs which are deemed irrelevant to the dataset
PSFs. This modeling technique is expected to reduce the impact of irrelevant PSFs because equal state
probabilities of a PSF node would result in the minimum amount of mutual information between the

PSF node and the HEP node [40].
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Figure 1. BN-CREAM model for predicting the HEP of “Backtracking”. The HEPs of “Evacuation” and
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“Exposure to hazard” would be the same.
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Y.
AR 4.2.2. Hybrid model: BN-SLIM

AR For building the BN-SLIM in the present study, we used the simulation data to calculate the probability
Yy of the rates of the PSFs, the weights of the PSFs with respect to each task, and also the parameters a
YYe and b in Eq (4). Due to the binary nature of the variables in the simulation data, two rates of 3 and 7
Yyo are considered as the worst and the best states of the PSFs. Table 12 presents the data-derived
ARl probabilities (relative frequencies) of the rates of the PSFs. To measure the strength of the causal

YV relationship between a PSF and a task failure, Jaccard coefficient [41] in Eq. (8) can be used:

YYA
ARR Table 12. Probability distribution of the PSFs rates in BN-SLIM.
PSF Rate Probability
Training 7 0.51
3 0.49
Visibility 7 0.67
3 0.33
Complexity 7 0.67
3 0.33
Yo

Y J(,2) = —n (8)

e+f+g+h
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where for the binary variables y (e.g., a PSF) and z (e.g., the task), e represents the number of
observations where y and z are equal to 1; f represents the number of observations where y is 0 and z
is 1; g represents the number of observations where y is 1 and z is 0; h represents the number of
observations where both y and z are 0. The calculated Jaccard coefficient and the normalized weights

of the PSFs are listed in Table 13.

Table 13. Jaccard coefficient and normalized weights of the PSFs derived from the data.

Jaccard coefficient Normalized weight
PSFs Exposure Exposure
Evacuation | Backtracking to Evacuation | Backtracking to
hazard hazard
Training 0.55 0.42 0.58 0.34 0.33 0.30
Visibility 0.53 0.35 0.52 0.32 0.28 0.27
Complexity 0.55 0.49 0.84 0.34 0.39 0.43

The two constant parameters in Eq. (4) are calculated considering the highest and the lowest SLI values
and their corresponding HEP (frequency) for each task. The SLI values and their corresponding HEPs
are presented in Table 14. Due to no observed error for the “Exposure to a hazard” in the dataset, the
lowest HEP of this task is assumed to be as 1.0 E-06. Unlike the BN-SPARH and BN-CREAM, the BN-
SLIM does not result in the same HEPs for all the tasks as, despite the same PSFs, the weights of the
PSFs differ from task to task. The developed BN-SLIM is depicted in Figure 3.

Table 14. The Lowest and highest SLI values and their corresponding relative error frequencies
(objective HEPs) estimated directly from the simulation data.

Relative error frequencies
SU values Evacuation | Backtracking Exposure to
hazard
7 0.55 0.59 1.0 E-06
4.30 0.91 - -
4.11 - 0.95 -
4.07 - - 0.67
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Figure3. BN-SLIM model for predicting the HEP of “Backtracking”, “Evacuation” and “Exposure to

hazard”.

4.2.3. Data-based model: Bayesian parameter learning

To develop the data-based model for estimating the HEPs, the structure of the BN (Figure 4) is built
with six nodes associated with the three PSFs and the three tasks. Having the structure of the BN
determined, the network’s conditional probabilities can be calculated from the dataset using the

parameter learning algorithms embedded in AgenaRisk software [39].
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Figure 4. Developed BN via the learning parameter algorithm (BPL model).

4.3.Results

To evaluate the validity and accuracy of the models in the present study, in Figures 5-7 the HEPs
estimated by the models are compared with the corresponding objective HEPs (data-derived relative

error frequencies).

As can be seen in Figure 5, the BPL model and BN-SPARH predict the HEP of “Evacuation” as 0.58 and
0.57, respectively, which are close to the objective HEP of 0.63. The BN-SLIM with the HEP of 0.77
seems to have slightly overestimated the HEP of “Evacuation” while the HEP of 0.13 estimated by the
BN-CREAM is too far from the objective HEP. As can be seen in Figure 6, with an objective HEP of 0.74
for the “Backtracking”, the BPL model provides a relatively more accurate estimation (HEP = 0.7) than
the BN-SLIM (HEP = 0.81). However, the estimations of the BN-SPARH (HEP = 0.57) and BN-CREAM
(HEP = 0.13) remarkably differ from the objective HEP.

As illustrated in Figure 7, with the objective HEP of 0.18 for “Exposure to hazard”, the BPL model and
the BN-SLIM both result in a very close HEP of 0.17. The BN-CREAM results in the most accurate HEP
(0.13) for this task than the other two tasks, while there is a huge gap between the result of the BN-
SPARH (HEP = 0.57) and the objective HEP of 0.18 for this task.
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To make a better view of the models' accuracy and validity, we have introduced the Overall
Performance Accuracy (OPA) as a performance indicator of the models by measuring the Euclidean
distance between the model HEPs and the objective HEPs. Considering the foregoing three tasks, the
distance between the objective HEP = (HEP;,HEP,,HEP;) and the model HEP =
(HEPy, HEP,, HEP;) can be calculated for each BN-HRA model as:

OPApoger = Jz?zl(HEPi — HEP)? (©)

where i =1, 2, 3 denotes the three tasks of “Evacuation”, “Backtracking”, and “Exposure to hazard”. A
lower value of OPA represents a more accurate model estimation. For instance, using the number in

Figures 5-7, the OPA of the BN-SLIM can be calculated as:

Evacuation Backtracking Exposure to hazard

OPApn—_siim = J(O.63 —0.77)2 + (0.74 — 0.81)2 + (0.18 —0.17)2 = 0.157

The OPAs of the models are presented in Table 15. The comparison between the OPA values shows
that BPL model with an OPA of 0.065 has a better performance in predicting the HEPs than other BN-
HRA models. The BN-SLIM stands in the second place which would demonstrate the higher
performance of the data-based models in general (BPL model, and to a lesser degree the BN-SLIM) in

estimating the HEPs.

Table 15. Comparing the models performance based on their OPA.

BN-HRA models BPL model BN-SLIM BN-SPARH BN-CREAM
OPA 0.065 0.157 0.430 0.790

4.4.Evaluation of models’ generalizability

Although the accuracy of the BPL model, given a sufficiently large dataset, is better than the other BN-
HRA models, it is important to evaluate the models accuracy in a more practical condition where the

models need to be extended to cases with no or insufficient data.

Cross-validation is a technique used for evaluating the performance of machine learning models. The
goal of cross-validation is to test the model's ability in predicting data that was not used in the
development of the model so that problems like overfitting [42] can be marked. It also helps gain

insight into how reliably the model could be generalized to an independent dataset. K-fold is a popular

21


https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Overfitting

EYY

Yy

£Y¢

Yo

€Y

YV

EYA

AR

£

AR

Y'Y

Y'Y

£Ye

tYo

A

YV

EYA

A

12

cross-validation technique when there is limited input data [43]. For example, if 4-fold cross-validation
is used, the data set is split into four subsets of equal size; then in each iteration, the model is trained
on the three data subsets (train folds) and tested on the remaining fourth subset (test fold) (Figure 8).
Repeating this operation for all the subsets, the averaged result may give an estimate of the model’s

predictive performance.

[ Test fold [ Train fold

Iteration # 1

Iteration # 2

Iteration # 3

Iteration # 4

T
Total available data

Figure 8. Four-fold cross-validation.

In the present study, we use the four-fold cross-validation to assess the generalizability of the models.

For this purpose, the train and test errors in each iteration can be calculated for a task as:

Ef® = |HEP/® — HEP/*| (10)
E/* = |HEP/" — HEP"| (11)

when E]-TR and E]-TE are the train error and the test error of the j-th iteration (given a 4-fold validation,
j=1,2,3,4), respectively. For a given task, HEPTR and HEPTF are the model HEPs of the train and
test datasets, respectively, while HEPTR and HEPTE are the relative human error frequencies
(objective HEPs) calculated using the train and the test datasets, respectively. So, after four iterations,
four pairs of train and test errors are calculated, and the average train error (E7®) and the average test
error (ETE) of a model are calculated as:

4 TR
_Xj=1Ej
4

ETR (12)
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Train error is used to identify the extent to which a model fits the train dataset, while the test error is
used to ensure that the model is not overfitting [44]. In other words, a large train error illustrates that
the model is underfitting and thus unable to predict the HEP accurately. Nevertheless, a small train
error may not guarantee the model accuracy unless there is a small difference between the test and

the train errors.

It should be noted that the CPTs of the BN-SPARH and the BN-CREAM are constants in all the iterations
as these two models are rule-based, and their CPTs are thus defined based on predefined rules not the
train or test data. However, the probabilities of the PSFs, as the root nodes of the BN models, would

change in each iteration.

To obtain a better insight into the models’ accuracy, the test and train errors of the models for the
three tasks are depicted in Figures 9-11. As can be seen in Figure 9, for the “Evacuation”, the BN-
CREAM has the highest train error (0.48) and thus the lowest accuracy among the models. (It is worth
noting that since the train error of the BN-CREAM is already large, there is no point in considering its
test error). The large differences between the train and the test errors of the BPL model and the BN-
SPARH indicate that these models are susceptible to overfitting (i.e., a small train error but a large test
error). On the other hand, the BN-SLIM has a small train error (0.09), and there is a small difference
between its train and test errors, ruling out the possibility of overfitting. This shows a better

performance of the BN-SLIM in predicting the HEP of “Evacuation” compared to the other models.

Considering the HEP of the “Backtracking”, Figure 10 illustrates that the BN-CREAM may not be an
accurate model since it has the highest train error (0.56) among the models. There is a notable
difference between the train and test errors of the BPL model while the difference between the train
and test errors of both the BN-SPARH and the BN-SLIM is negligible. This may imply the BN-SPARH and
BN-SLIM are more accurate than the BPL model. Furthermore, the smaller train error of the BN-SLIM

(0.1) indicates that it is more accurate than the BN-SPARH in estimating the HEP of “Backtracking”.

Considering the “Exposure to hazard”, as can be seen in Figure 11, there are no noticeable differences
between the train and the test errors of the models. The train error of the BN-SPARH is the highest
(0.31) and that of the BN-SLIM is the lowest (0.01), indicating that BN-SLIM is able to calculate the HEP

of this task more accurately than the other models.
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Figure 9. Test and train errors of the BN-HRA models for the “Evacuation”.
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Figure 10. Test and train errors of the BN-HRA models for the “Backtracking”.

24



¢Vt

1A%

EVA

£vq

EAN

EAN

EAY

EAY

EAE

¢AO

¢AT

EAY

EAA

A9

£9.

£9)

€4y

€9y

£9¢

¢qo0

€41

£V

BPL model
0.35

Test error

BN-CREAM BN-SLIM

e Train error

BN-SPARH

Figure 11. Test and train errors of the BN-HRA models for the “Exposure to a hazard”.

To identify a model with the best performance with regard to all the three tasks, the OPAs of each
model for both the train and the test datasets are computed. The train OPA of a model measures the
Euclidean distance between the average HEPs estimated by the model using the train dataset and the
average objective HEPs derived from the same train dataset. The test OPA can be calculated in the
same way yet using the test dataset instead of the train datasets. By comparing the OPAs of the models
and also by comparing the train and test OPAs of a single model, an analyst may get some idea about

the performance of the models. For instance, between two models:

e the model with a smaller train OPA generally outperforms the one with a larger train OPA. In
other words, the former model better fits the data whereas the latter model relatively
underfits the data.

o the model with a smaller difference between its train and test OPAs is preferred over the
model with a larger difference. This is because a model with a small train OPA and a large test

OPA (i.e., a larger difference between its train and test OPAs) may suffer from overfitting.

As can be seenin Figure 12, the train OPAs of the BN-CREAM (0.74) and the BN-SPARH (0.34) are higher
than the train OPAs of the other two models, indicating that the BN-CREAM and the BN-SPARH are not
sufficiently accurate for estimating the HEPs using the train data (let alone using the test data which is
one-fourth the size of the train data.) The least amount of train OPA for the BPL model may give the
impression that it is the most accurate model given a sufficiently large dataset. However, the large

difference between its train and test OPAs shows that it is overfitting the train data.
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Figure 12 depicts that the BN-SLIM has relatively a small train OPA (0.13), and there is no considerable
difference between its train and test OPAs, indicating a generally better performance of the BN-SLIM.
Therefore, considering the performance of the models with regard to the individual tasks (Figures 9-
11) and the three tasks altogether (Figure 12), the BN-SLIM can be identified as the model with the

best performance.

0.8

0.7

0.6

0.5
0.4 M Train
W Test

0.3

0.2

0

BPL model BN-SLIM BN-SPARH BN-CREAM

OPA

Figure 12. Models’ OPAs calculated using the train and test data. The BN-CREAM and BN-SPARH have
the highest train and test OPAs, indicating their lower performance in estimating the HEP. The BPL
model has the lowest train OPA, but the notable difference between its train and test OPAs may
imply overfitting. The BN-SLIM has relatively low train and test OPAs, and the slight difference

between its train and test OPAs indicates its better performance than the BPL model.

4.5.Final remarks

As discussed before, the predetermined sets of PSFs in the BN-CREAM and the BN-SPARH may include
some PSFs irrelevant to the context or dataset of interest. To reduce the impact of irrelevant (or
redundant) PSFs on the estimated HEP, in Section 4.2.1 we assigned equal probabilities to the states
of such PSFs. However, the inclusion of irrelevant PSFs may to some extent affect the accuracy of the

HEPs estimated by the BN-SPARH and BN-CREAM. To illustrate this better, we added a redundant PSF
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—the “Available time” — with equal state probabilities as P(rate =7, rate =3) = (0.5, 0.5) to the BN-SLIM*
which resulted in the OPA of the BN-SLIM to increase from 0.157 to 0.373. This experiment may further
demonstrate the advantage of the BN-SLIM and the BPL model as the choice of PSFs are more intuitive
in these two models (compared to the forced PSFs in the BN-CREAM and BN-SPARH) in accordance

with the context of interest.

Furthermore, the BN-CREAM and the BN-SPARH, unlike the BN-SLIM and the BPL model, are not able
to differentiate among the HEPs of the tasks within the same context, resulting in the same HEPs for
all the tasks. This limitation could result in an overestimation or underestimation of the total HEP
depending on whether the tasks are performed sequentially or simultaneously. The BN-SLIM would
have also resulted in the same HEPs had it not been able to assign different weights to the PSFs for

different tasks.

The foregoing restrictions, i.e., being developed on predefined and unchangeable sets of PSFs and
being incapable of considering different weights for the PSFs in different tasks, are in our perspective
two of the main reasons for the lower performance of the BN-SPARH and the BN-CREAM in the present
study. Nevertheless, before a verdict can be announced on the performance of the BN-HRA methods,
further research must be carried out using data of different size and context, especially with the
development of data collection systems such as SACADA [45] and HERA [46], and under different

assumptions and model modifications.

5. Conclusions

In the present study we compared the performance of some selected BN-HRA models using the
simulation data of human performance generated in an offshore evacuation virtual experiment.
Considering the role of data in establishing the causal links between the PSFs and the HEP, three types
of BN-HRA methods were investigated: (i) the rule-based methods of BN-CREAM and BN-SPARH, (ii)
the data-based method of Bayesian parameter learning (BPL model), and (iii) the semi-rule-based (or
semi-data-based) method of BN-SLIM. The BN-CREAM, the BN-SPARH and to some extent the BN-SLIM
use fixed rules (mathematical relationships) to estimate the HEP from the PSFs. The BPL model, on the
other hand, relies solely on the available data to derive the correlation between the PSFs and the HEP

without any restrictive presumptions.

The comparison of the models' overall performance illustrated that data-based methods — the BPL

model and the BN-SLIM — are more accurate than the rule-based methods. Furthermore, the k-fold

1 Note that neither the BN-SLIM nor the BPL model forces the analyst to use a predefined set of PSFs, and can
consider only the PSFs which are deemed relevant to the context.
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validation of the methods demonstrated that the BN-SLIM may outperform the BPL model particularly
in the absence of complete and sufficiently large databases, which is usually the case. (BPL model is

more data sensitive than the BN-SLIM and is thus less accurate under data scarcity).

However, it should be noted that the performance of the BN-HRA methods in the present study was
compared using a limited dataset and under assumptions and model adjustments. Such assumptions
and model modifications (e.g., the selection of PSFs, the use of mean values instead of the probability
intervals) were necessary to make the BN-HRA methods applicable to the dataset. Therefore, the
performance of the customized BN-HRA methods employed in the current study may not exactly
reflect the performance of the original BN-HRA methods. That being said, the outcomes of the present
study cannot fully be extended to other contexts and domains unless further studies are conducted

using different datasts and assumptions.
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